1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/castnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/countbitsnode.hpp"
  44 #include "opto/intrinsicnode.hpp"
  45 #include "opto/idealKit.hpp"
  46 #include "opto/mathexactnode.hpp"
  47 #include "opto/movenode.hpp"
  48 #include "opto/mulnode.hpp"
  49 #include "opto/narrowptrnode.hpp"
  50 #include "opto/opaquenode.hpp"
  51 #include "opto/parse.hpp"
  52 #include "opto/runtime.hpp"
  53 #include "opto/rootnode.hpp"
  54 #include "opto/subnode.hpp"
  55 #include "opto/vectornode.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "prims/unsafe.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "utilities/macros.hpp"
  61 
  62 
  63 class LibraryIntrinsic : public InlineCallGenerator {
  64   // Extend the set of intrinsics known to the runtime:
  65  public:
  66  private:
  67   bool             _is_virtual;
  68   bool             _does_virtual_dispatch;
  69   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  70   int8_t           _last_predicate; // Last generated predicate
  71   vmIntrinsics::ID _intrinsic_id;
  72 
  73  public:
  74   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  75     : InlineCallGenerator(m),
  76       _is_virtual(is_virtual),
  77       _does_virtual_dispatch(does_virtual_dispatch),
  78       _predicates_count((int8_t)predicates_count),
  79       _last_predicate((int8_t)-1),
  80       _intrinsic_id(id)
  81   {
  82   }
  83   virtual bool is_intrinsic() const { return true; }
  84   virtual bool is_virtual()   const { return _is_virtual; }
  85   virtual bool is_predicated() const { return _predicates_count > 0; }
  86   virtual int  predicates_count() const { return _predicates_count; }
  87   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  88   virtual JVMState* generate(JVMState* jvms);
  89   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  90   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  91 };
  92 
  93 
  94 // Local helper class for LibraryIntrinsic:
  95 class LibraryCallKit : public GraphKit {
  96  private:
  97   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  98   Node*             _result;        // the result node, if any
  99   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
 100 
 101   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
 102 
 103  public:
 104   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 105     : GraphKit(jvms),
 106       _intrinsic(intrinsic),
 107       _result(NULL)
 108   {
 109     // Check if this is a root compile.  In that case we don't have a caller.
 110     if (!jvms->has_method()) {
 111       _reexecute_sp = sp();
 112     } else {
 113       // Find out how many arguments the interpreter needs when deoptimizing
 114       // and save the stack pointer value so it can used by uncommon_trap.
 115       // We find the argument count by looking at the declared signature.
 116       bool ignored_will_link;
 117       ciSignature* declared_signature = NULL;
 118       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 119       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 120       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 121     }
 122   }
 123 
 124   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 125 
 126   ciMethod*         caller()    const    { return jvms()->method(); }
 127   int               bci()       const    { return jvms()->bci(); }
 128   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 129   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 130   ciMethod*         callee()    const    { return _intrinsic->method(); }
 131 
 132   bool  try_to_inline(int predicate);
 133   Node* try_to_predicate(int predicate);
 134 
 135   void push_result() {
 136     // Push the result onto the stack.
 137     if (!stopped() && result() != NULL) {
 138       BasicType bt = result()->bottom_type()->basic_type();
 139       push_node(bt, result());
 140     }
 141   }
 142 
 143  private:
 144   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 145     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 146   }
 147 
 148   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 149   void  set_result(RegionNode* region, PhiNode* value);
 150   Node*     result() { return _result; }
 151 
 152   virtual int reexecute_sp() { return _reexecute_sp; }
 153 
 154   // Helper functions to inline natives
 155   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 156   Node* generate_slow_guard(Node* test, RegionNode* region);
 157   Node* generate_fair_guard(Node* test, RegionNode* region);
 158   Node* generate_negative_guard(Node* index, RegionNode* region,
 159                                 // resulting CastII of index:
 160                                 Node* *pos_index = NULL);
 161   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 162                              Node* array_length,
 163                              RegionNode* region);
 164   void  generate_string_range_check(Node* array, Node* offset,
 165                                     Node* length, bool char_count);
 166   Node* generate_current_thread(Node* &tls_output);
 167   Node* load_mirror_from_klass(Node* klass);
 168   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 169                                       RegionNode* region, int null_path,
 170                                       int offset);
 171   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 172                                RegionNode* region, int null_path) {
 173     int offset = java_lang_Class::klass_offset_in_bytes();
 174     return load_klass_from_mirror_common(mirror, never_see_null,
 175                                          region, null_path,
 176                                          offset);
 177   }
 178   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 179                                      RegionNode* region, int null_path) {
 180     int offset = java_lang_Class::array_klass_offset_in_bytes();
 181     return load_klass_from_mirror_common(mirror, never_see_null,
 182                                          region, null_path,
 183                                          offset);
 184   }
 185   Node* generate_access_flags_guard(Node* kls,
 186                                     int modifier_mask, int modifier_bits,
 187                                     RegionNode* region);
 188   Node* generate_interface_guard(Node* kls, RegionNode* region);
 189   Node* generate_array_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, false, false);
 191   }
 192   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 193     return generate_array_guard_common(kls, region, false, true);
 194   }
 195   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 196     return generate_array_guard_common(kls, region, true, false);
 197   }
 198   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 199     return generate_array_guard_common(kls, region, true, true);
 200   }
 201   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 202                                     bool obj_array, bool not_array);
 203   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 204   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 205                                      bool is_virtual = false, bool is_static = false);
 206   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 207     return generate_method_call(method_id, false, true);
 208   }
 209   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 210     return generate_method_call(method_id, true, false);
 211   }
 212   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 213   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 214 
 215   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 216   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 219   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 220                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 221   bool inline_string_indexOfChar();
 222   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 223   bool inline_string_toBytesU();
 224   bool inline_string_getCharsU();
 225   bool inline_string_copy(bool compress);
 226   bool inline_string_char_access(bool is_store);
 227   Node* round_double_node(Node* n);
 228   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 229   bool inline_math_native(vmIntrinsics::ID id);
 230   bool inline_math(vmIntrinsics::ID id);
 231   template <typename OverflowOp>
 232   bool inline_math_overflow(Node* arg1, Node* arg2);
 233   void inline_math_mathExact(Node* math, Node* test);
 234   bool inline_math_addExactI(bool is_increment);
 235   bool inline_math_addExactL(bool is_increment);
 236   bool inline_math_multiplyExactI();
 237   bool inline_math_multiplyExactL();
 238   bool inline_math_multiplyHigh();
 239   bool inline_math_negateExactI();
 240   bool inline_math_negateExactL();
 241   bool inline_math_subtractExactI(bool is_decrement);
 242   bool inline_math_subtractExactL(bool is_decrement);
 243   bool inline_min_max(vmIntrinsics::ID id);
 244   bool inline_notify(vmIntrinsics::ID id);
 245   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 246   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 247   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 248   Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false);
 249 
 250   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 251   DecoratorSet mo_decorator_for_access_kind(AccessKind kind);
 252   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 253   static bool klass_needs_init_guard(Node* kls);
 254   bool inline_unsafe_allocate();
 255   bool inline_unsafe_newArray(bool uninitialized);
 256   bool inline_unsafe_copyMemory();
 257   bool inline_native_currentThread();
 258 
 259   bool inline_native_time_funcs(address method, const char* funcName);
 260 #ifdef JFR_HAVE_INTRINSICS
 261   bool inline_native_classID();
 262   bool inline_native_getEventWriter();
 263 #endif
 264   bool inline_native_isInterrupted();
 265   bool inline_native_Class_query(vmIntrinsics::ID id);
 266   bool inline_native_subtype_check();
 267   bool inline_native_getLength();
 268   bool inline_array_copyOf(bool is_copyOfRange);
 269   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 270   bool inline_preconditions_checkIndex();
 271   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array);
 272   bool inline_native_clone(bool is_virtual);
 273   bool inline_native_Reflection_getCallerClass();
 274   // Helper function for inlining native object hash method
 275   bool inline_native_hashcode(bool is_virtual, bool is_static);
 276   bool inline_native_getClass();
 277 
 278   // Helper functions for inlining arraycopy
 279   bool inline_arraycopy();
 280   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 281                                                 RegionNode* slow_region);
 282   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 283   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 284                                       uint new_idx);
 285 
 286   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 287   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 288   bool inline_unsafe_fence(vmIntrinsics::ID id);
 289   bool inline_onspinwait();
 290   bool inline_fp_conversions(vmIntrinsics::ID id);
 291   bool inline_number_methods(vmIntrinsics::ID id);
 292   bool inline_reference_get();
 293   bool inline_Class_cast();
 294   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 295   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 296   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 297   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 298   Node* inline_counterMode_AESCrypt_predicate();
 299   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 300   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 301   bool inline_ghash_processBlocks();
 302   bool inline_base64_encodeBlock();
 303   bool inline_sha_implCompress(vmIntrinsics::ID id);
 304   bool inline_digestBase_implCompressMB(int predicate);
 305   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 306                                  bool long_state, address stubAddr, const char *stubName,
 307                                  Node* src_start, Node* ofs, Node* limit);
 308   Node* get_state_from_sha_object(Node *sha_object);
 309   Node* get_state_from_sha5_object(Node *sha_object);
 310   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 311   bool inline_encodeISOArray();
 312   bool inline_updateCRC32();
 313   bool inline_updateBytesCRC32();
 314   bool inline_updateByteBufferCRC32();
 315   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 316   bool inline_updateBytesCRC32C();
 317   bool inline_updateDirectByteBufferCRC32C();
 318   bool inline_updateBytesAdler32();
 319   bool inline_updateByteBufferAdler32();
 320   bool inline_multiplyToLen();
 321   bool inline_hasNegatives();
 322   bool inline_squareToLen();
 323   bool inline_mulAdd();
 324   bool inline_montgomeryMultiply();
 325   bool inline_montgomerySquare();
 326   bool inline_vectorizedMismatch();
 327   bool inline_fma(vmIntrinsics::ID id);
 328   bool inline_character_compare(vmIntrinsics::ID id);
 329   bool inline_fp_min_max(vmIntrinsics::ID id);
 330 
 331   bool inline_profileBoolean();
 332   bool inline_isCompileConstant();
 333 
 334   // Vector API support
 335   bool inline_vector_nary_operation(int n);
 336   bool inline_vector_broadcast_coerced();
 337   bool inline_vector_mem_operation(bool is_store);
 338   bool inline_vector_gather_scatter(bool is_scatter);
 339   bool inline_vector_reduction();
 340   bool inline_vector_test();
 341   bool inline_vector_blend();
 342   bool inline_vector_rearrange();
 343   bool inline_vector_compare();
 344   bool inline_vector_broadcast_int();
 345   bool inline_vector_cast_reinterpret(bool is_cast);
 346   bool inline_vector_extract();
 347   bool inline_vector_insert();
 348   Node* box_vector(Node* in, const TypeInstPtr* vbox_type, BasicType bt, int num_elem);
 349   Node* unbox_vector(Node* in, const TypeInstPtr* vbox_type, BasicType bt, int num_elem);
 350   Node* shift_count(Node* cnt, int shift_op, BasicType bt, int num_elem);
 351   Node* gen_call_to_svml(int vector_api_op_id, BasicType bt, int num_elem, Node* opd1, Node* opd2);
 352   void set_vector_result(Node* result, bool set_res = true);
 353 
 354   void clear_upper_avx() {
 355 #ifdef X86
 356     if (UseAVX >= 2) {
 357       C->set_clear_upper_avx(true);
 358     }
 359 #endif
 360   }
 361 };
 362 
 363 //---------------------------make_vm_intrinsic----------------------------
 364 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 365   vmIntrinsics::ID id = m->intrinsic_id();
 366   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 367 
 368   if (!m->is_loaded()) {
 369     // Do not attempt to inline unloaded methods.
 370     return NULL;
 371   }
 372 
 373   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 374   bool is_available = false;
 375 
 376   {
 377     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 378     // the compiler must transition to '_thread_in_vm' state because both
 379     // methods access VM-internal data.
 380     VM_ENTRY_MARK;
 381     methodHandle mh(THREAD, m->get_Method());
 382     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 383                    !C->directive()->is_intrinsic_disabled(mh) &&
 384                    !vmIntrinsics::is_disabled_by_flags(mh);
 385 
 386   }
 387 
 388   if (is_available) {
 389     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 390     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 391     return new LibraryIntrinsic(m, is_virtual,
 392                                 vmIntrinsics::predicates_needed(id),
 393                                 vmIntrinsics::does_virtual_dispatch(id),
 394                                 (vmIntrinsics::ID) id);
 395   } else {
 396     return NULL;
 397   }
 398 }
 399 
 400 //----------------------register_library_intrinsics-----------------------
 401 // Initialize this file's data structures, for each Compile instance.
 402 void Compile::register_library_intrinsics() {
 403   // Nothing to do here.
 404 }
 405 
 406 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 407   LibraryCallKit kit(jvms, this);
 408   Compile* C = kit.C;
 409   int nodes = C->unique();
 410 #ifndef PRODUCT
 411   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 412     char buf[1000];
 413     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 414     tty->print_cr("Intrinsic %s", str);
 415   }
 416 #endif
 417   ciMethod* callee = kit.callee();
 418   const int bci    = kit.bci();
 419 
 420   // Try to inline the intrinsic.
 421   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 422       kit.try_to_inline(_last_predicate)) {
 423     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 424                                           : "(intrinsic)";
 425     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 426     if (C->print_intrinsics() || C->print_inlining()) {
 427       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 428     }
 429     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 430     if (C->log()) {
 431       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 432                      vmIntrinsics::name_at(intrinsic_id()),
 433                      (is_virtual() ? " virtual='1'" : ""),
 434                      C->unique() - nodes);
 435     }
 436     // Push the result from the inlined method onto the stack.
 437     kit.push_result();
 438     C->print_inlining_update(this);
 439     return kit.transfer_exceptions_into_jvms();
 440   }
 441 
 442   // The intrinsic bailed out
 443   if (jvms->has_method()) {
 444     // Not a root compile.
 445     const char* msg;
 446     if (callee->intrinsic_candidate()) {
 447       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 448     } else {
 449       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 450                          : "failed to inline (intrinsic), method not annotated";
 451     }
 452     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 453     if (C->print_intrinsics() || C->print_inlining()) {
 454       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 455     }
 456   } else {
 457     // Root compile
 458     ResourceMark rm;
 459     stringStream msg_stream;
 460     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 461                      vmIntrinsics::name_at(intrinsic_id()),
 462                      is_virtual() ? " (virtual)" : "", bci);
 463     const char *msg = msg_stream.as_string();
 464     log_debug(jit, inlining)("%s", msg);
 465     if (C->print_intrinsics() || C->print_inlining()) {
 466       tty->print("%s", msg);
 467     }
 468   }
 469   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 470   C->print_inlining_update(this);
 471   return NULL;
 472 }
 473 
 474 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 475   LibraryCallKit kit(jvms, this);
 476   Compile* C = kit.C;
 477   int nodes = C->unique();
 478   _last_predicate = predicate;
 479 #ifndef PRODUCT
 480   assert(is_predicated() && predicate < predicates_count(), "sanity");
 481   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 482     char buf[1000];
 483     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 484     tty->print_cr("Predicate for intrinsic %s", str);
 485   }
 486 #endif
 487   ciMethod* callee = kit.callee();
 488   const int bci    = kit.bci();
 489 
 490   Node* slow_ctl = kit.try_to_predicate(predicate);
 491   if (!kit.failing()) {
 492     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 493                                           : "(intrinsic, predicate)";
 494     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 495     if (C->print_intrinsics() || C->print_inlining()) {
 496       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 497     }
 498     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 499     if (C->log()) {
 500       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 501                      vmIntrinsics::name_at(intrinsic_id()),
 502                      (is_virtual() ? " virtual='1'" : ""),
 503                      C->unique() - nodes);
 504     }
 505     return slow_ctl; // Could be NULL if the check folds.
 506   }
 507 
 508   // The intrinsic bailed out
 509   if (jvms->has_method()) {
 510     // Not a root compile.
 511     const char* msg = "failed to generate predicate for intrinsic";
 512     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 513     if (C->print_intrinsics() || C->print_inlining()) {
 514       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 515     }
 516   } else {
 517     // Root compile
 518     ResourceMark rm;
 519     stringStream msg_stream;
 520     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 521                      vmIntrinsics::name_at(intrinsic_id()),
 522                      is_virtual() ? " (virtual)" : "", bci);
 523     const char *msg = msg_stream.as_string();
 524     log_debug(jit, inlining)("%s", msg);
 525     if (C->print_intrinsics() || C->print_inlining()) {
 526       C->print_inlining_stream()->print("%s", msg);
 527     }
 528   }
 529   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 530   return NULL;
 531 }
 532 
 533 bool LibraryCallKit::try_to_inline(int predicate) {
 534   // Handle symbolic names for otherwise undistinguished boolean switches:
 535   const bool is_store       = true;
 536   const bool is_compress    = true;
 537   const bool is_static      = true;
 538   const bool is_volatile    = true;
 539 
 540   if (!jvms()->has_method()) {
 541     // Root JVMState has a null method.
 542     assert(map()->memory()->Opcode() == Op_Parm, "");
 543     // Insert the memory aliasing node
 544     set_all_memory(reset_memory());
 545   }
 546   assert(merged_memory(), "");
 547 
 548   switch (intrinsic_id()) {
 549   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 550   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 551   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 552 
 553   case vmIntrinsics::_dsin:
 554   case vmIntrinsics::_dcos:
 555   case vmIntrinsics::_dtan:
 556   case vmIntrinsics::_dabs:
 557   case vmIntrinsics::_datan2:
 558   case vmIntrinsics::_dsqrt:
 559   case vmIntrinsics::_dexp:
 560   case vmIntrinsics::_dlog:
 561   case vmIntrinsics::_dlog10:
 562   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 563 
 564   case vmIntrinsics::_min:
 565   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 566 
 567   case vmIntrinsics::_notify:
 568   case vmIntrinsics::_notifyAll:
 569     return inline_notify(intrinsic_id());
 570 
 571   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 572   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 573   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 574   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 575   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 576   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 577   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 578   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 579   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 580   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 581   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 582   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 583   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 584 
 585   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 586 
 587   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 588   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 589   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 590   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 591 
 592   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 593   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 594   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 595   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 596   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 597   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 598   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 599 
 600   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 601   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 602 
 603   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 604   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 605   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 606   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 607 
 608   case vmIntrinsics::_compressStringC:
 609   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 610   case vmIntrinsics::_inflateStringC:
 611   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 612 
 613   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 614   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 615   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 616   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 617   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 618   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 619   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 620   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 621   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 622 
 623   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 624   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 625   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 626   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 627   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 628   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 629   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 630   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 631   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 632 
 633   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 634   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 635   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 636   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 637   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 638   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 639   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 640   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 641   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 642 
 643   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 644   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 645   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 646   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 647   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 648   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 649   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 650   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 651   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 652 
 653   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 654   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 655   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 656   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 657 
 658   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 659   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 660   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 661   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 662 
 663   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 664   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 665   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 666   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 667   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 668   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 669   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 670   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 671   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 672 
 673   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 674   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 675   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 676   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 677   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 678   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 679   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 680   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 681   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 682 
 683   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 684   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 685   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 686   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 687   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 688   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 689   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 690   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 691   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 692 
 693   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 694   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 695   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 696   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 697   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 698   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 699   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 700   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 701   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 702 
 703   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 704   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 705   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 706   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 707   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 708 
 709   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 710   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 711   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 712   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 713   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 714   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 715   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 716   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 717   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 718   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 719   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 720   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 721   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 722   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 723   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 724   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 725   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 726   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 727   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 728   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 729 
 730   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 731   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 732   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 733   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 734   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 735   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 736   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 737   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 738   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 739   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 740   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 741   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 742   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 743   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 744   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 745 
 746   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 747   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 748   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 749   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 750 
 751   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 752   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 753   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 754   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 755   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 756 
 757   case vmIntrinsics::_loadFence:
 758   case vmIntrinsics::_storeFence:
 759   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 760 
 761   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 762 
 763   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 764   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 765 
 766 #ifdef JFR_HAVE_INTRINSICS
 767   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime");
 768   case vmIntrinsics::_getClassId:               return inline_native_classID();
 769   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 770 #endif
 771   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 772   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 773   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 774   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 775   case vmIntrinsics::_getLength:                return inline_native_getLength();
 776   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 777   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 778   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 779   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 780   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 781   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 782 
 783   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 784   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 785 
 786   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 787 
 788   case vmIntrinsics::_isInstance:
 789   case vmIntrinsics::_getModifiers:
 790   case vmIntrinsics::_isInterface:
 791   case vmIntrinsics::_isArray:
 792   case vmIntrinsics::_isPrimitive:
 793   case vmIntrinsics::_getSuperclass:
 794   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 795 
 796   case vmIntrinsics::_floatToRawIntBits:
 797   case vmIntrinsics::_floatToIntBits:
 798   case vmIntrinsics::_intBitsToFloat:
 799   case vmIntrinsics::_doubleToRawLongBits:
 800   case vmIntrinsics::_doubleToLongBits:
 801   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 802 
 803   case vmIntrinsics::_numberOfLeadingZeros_i:
 804   case vmIntrinsics::_numberOfLeadingZeros_l:
 805   case vmIntrinsics::_numberOfTrailingZeros_i:
 806   case vmIntrinsics::_numberOfTrailingZeros_l:
 807   case vmIntrinsics::_bitCount_i:
 808   case vmIntrinsics::_bitCount_l:
 809   case vmIntrinsics::_reverseBytes_i:
 810   case vmIntrinsics::_reverseBytes_l:
 811   case vmIntrinsics::_reverseBytes_s:
 812   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 813 
 814   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 815 
 816   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 817 
 818   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 819 
 820   case vmIntrinsics::_aescrypt_encryptBlock:
 821   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 822 
 823   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 824   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 825     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 826 
 827   case vmIntrinsics::_counterMode_AESCrypt:
 828     return inline_counterMode_AESCrypt(intrinsic_id());
 829 
 830   case vmIntrinsics::_sha_implCompress:
 831   case vmIntrinsics::_sha2_implCompress:
 832   case vmIntrinsics::_sha5_implCompress:
 833     return inline_sha_implCompress(intrinsic_id());
 834 
 835   case vmIntrinsics::_digestBase_implCompressMB:
 836     return inline_digestBase_implCompressMB(predicate);
 837 
 838   case vmIntrinsics::_multiplyToLen:
 839     return inline_multiplyToLen();
 840 
 841   case vmIntrinsics::_squareToLen:
 842     return inline_squareToLen();
 843 
 844   case vmIntrinsics::_mulAdd:
 845     return inline_mulAdd();
 846 
 847   case vmIntrinsics::_montgomeryMultiply:
 848     return inline_montgomeryMultiply();
 849   case vmIntrinsics::_montgomerySquare:
 850     return inline_montgomerySquare();
 851 
 852   case vmIntrinsics::_vectorizedMismatch:
 853     return inline_vectorizedMismatch();
 854 
 855   case vmIntrinsics::_ghash_processBlocks:
 856     return inline_ghash_processBlocks();
 857   case vmIntrinsics::_base64_encodeBlock:
 858     return inline_base64_encodeBlock();
 859 
 860   case vmIntrinsics::_encodeISOArray:
 861   case vmIntrinsics::_encodeByteISOArray:
 862     return inline_encodeISOArray();
 863 
 864   case vmIntrinsics::_updateCRC32:
 865     return inline_updateCRC32();
 866   case vmIntrinsics::_updateBytesCRC32:
 867     return inline_updateBytesCRC32();
 868   case vmIntrinsics::_updateByteBufferCRC32:
 869     return inline_updateByteBufferCRC32();
 870 
 871   case vmIntrinsics::_updateBytesCRC32C:
 872     return inline_updateBytesCRC32C();
 873   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 874     return inline_updateDirectByteBufferCRC32C();
 875 
 876   case vmIntrinsics::_updateBytesAdler32:
 877     return inline_updateBytesAdler32();
 878   case vmIntrinsics::_updateByteBufferAdler32:
 879     return inline_updateByteBufferAdler32();
 880 
 881   case vmIntrinsics::_profileBoolean:
 882     return inline_profileBoolean();
 883   case vmIntrinsics::_isCompileConstant:
 884     return inline_isCompileConstant();
 885 
 886   case vmIntrinsics::_hasNegatives:
 887     return inline_hasNegatives();
 888 
 889   case vmIntrinsics::_fmaD:
 890   case vmIntrinsics::_fmaF:
 891     return inline_fma(intrinsic_id());
 892 
 893   case vmIntrinsics::_isDigit:
 894   case vmIntrinsics::_isLowerCase:
 895   case vmIntrinsics::_isUpperCase:
 896   case vmIntrinsics::_isWhitespace:
 897     return inline_character_compare(intrinsic_id());
 898 
 899   case vmIntrinsics::_maxF:
 900   case vmIntrinsics::_minF:
 901   case vmIntrinsics::_maxD:
 902   case vmIntrinsics::_minD:
 903     return inline_fp_min_max(intrinsic_id());
 904 
 905   case vmIntrinsics::_VectorUnaryOp:
 906     return inline_vector_nary_operation(1);
 907   case vmIntrinsics::_VectorBinaryOp:
 908     return inline_vector_nary_operation(2);
 909   case vmIntrinsics::_VectorTernaryOp:
 910     return inline_vector_nary_operation(3);
 911   case vmIntrinsics::_VectorBroadcastCoerced:
 912     return inline_vector_broadcast_coerced();
 913   case vmIntrinsics::_VectorLoadOp:
 914     return inline_vector_mem_operation(/*is_store=*/false);
 915   case vmIntrinsics::_VectorStoreOp:
 916     return inline_vector_mem_operation(/*is_store=*/true);
 917   case vmIntrinsics::_VectorGatherOp:
 918     return inline_vector_gather_scatter(/*is_scatter*/ false);
 919   case vmIntrinsics::_VectorScatterOp:
 920     return inline_vector_gather_scatter(/*is_scatter*/ true);
 921   case vmIntrinsics::_VectorReductionCoerced:
 922     return inline_vector_reduction();
 923   case vmIntrinsics::_VectorTest:
 924     return inline_vector_test();
 925   case vmIntrinsics::_VectorBlend:
 926     return inline_vector_blend();
 927   case vmIntrinsics::_VectorRearrange:
 928     return inline_vector_rearrange();
 929   case vmIntrinsics::_VectorCompare:
 930     return inline_vector_compare();
 931   case vmIntrinsics::_VectorBroadcastInt:
 932     return inline_vector_broadcast_int();
 933   case vmIntrinsics::_VectorReinterpret:
 934     return inline_vector_cast_reinterpret(/*is_cast*/ false);
 935   case vmIntrinsics::_VectorCast:
 936     return inline_vector_cast_reinterpret(/*is_cast*/ true);
 937   case vmIntrinsics::_VectorInsert:
 938     return inline_vector_insert();
 939   case vmIntrinsics::_VectorExtract:
 940     return inline_vector_extract();
 941 
 942   default:
 943     // If you get here, it may be that someone has added a new intrinsic
 944     // to the list in vmSymbols.hpp without implementing it here.
 945 #ifndef PRODUCT
 946     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 947       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 948                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 949     }
 950 #endif
 951     return false;
 952   }
 953 }
 954 
 955 Node* LibraryCallKit::try_to_predicate(int predicate) {
 956   if (!jvms()->has_method()) {
 957     // Root JVMState has a null method.
 958     assert(map()->memory()->Opcode() == Op_Parm, "");
 959     // Insert the memory aliasing node
 960     set_all_memory(reset_memory());
 961   }
 962   assert(merged_memory(), "");
 963 
 964   switch (intrinsic_id()) {
 965   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 966     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 967   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 968     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 969   case vmIntrinsics::_counterMode_AESCrypt:
 970     return inline_counterMode_AESCrypt_predicate();
 971   case vmIntrinsics::_digestBase_implCompressMB:
 972     return inline_digestBase_implCompressMB_predicate(predicate);
 973 
 974   default:
 975     // If you get here, it may be that someone has added a new intrinsic
 976     // to the list in vmSymbols.hpp without implementing it here.
 977 #ifndef PRODUCT
 978     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 979       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 980                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 981     }
 982 #endif
 983     Node* slow_ctl = control();
 984     set_control(top()); // No fast path instrinsic
 985     return slow_ctl;
 986   }
 987 }
 988 
 989 //------------------------------set_result-------------------------------
 990 // Helper function for finishing intrinsics.
 991 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 992   record_for_igvn(region);
 993   set_control(_gvn.transform(region));
 994   set_result( _gvn.transform(value));
 995   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 996 }
 997 
 998 //------------------------------generate_guard---------------------------
 999 // Helper function for generating guarded fast-slow graph structures.
1000 // The given 'test', if true, guards a slow path.  If the test fails
1001 // then a fast path can be taken.  (We generally hope it fails.)
1002 // In all cases, GraphKit::control() is updated to the fast path.
1003 // The returned value represents the control for the slow path.
1004 // The return value is never 'top'; it is either a valid control
1005 // or NULL if it is obvious that the slow path can never be taken.
1006 // Also, if region and the slow control are not NULL, the slow edge
1007 // is appended to the region.
1008 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1009   if (stopped()) {
1010     // Already short circuited.
1011     return NULL;
1012   }
1013 
1014   // Build an if node and its projections.
1015   // If test is true we take the slow path, which we assume is uncommon.
1016   if (_gvn.type(test) == TypeInt::ZERO) {
1017     // The slow branch is never taken.  No need to build this guard.
1018     return NULL;
1019   }
1020 
1021   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1022 
1023   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1024   if (if_slow == top()) {
1025     // The slow branch is never taken.  No need to build this guard.
1026     return NULL;
1027   }
1028 
1029   if (region != NULL)
1030     region->add_req(if_slow);
1031 
1032   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1033   set_control(if_fast);
1034 
1035   return if_slow;
1036 }
1037 
1038 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1039   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1040 }
1041 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1042   return generate_guard(test, region, PROB_FAIR);
1043 }
1044 
1045 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1046                                                      Node* *pos_index) {
1047   if (stopped())
1048     return NULL;                // already stopped
1049   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1050     return NULL;                // index is already adequately typed
1051   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1052   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1053   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1054   if (is_neg != NULL && pos_index != NULL) {
1055     // Emulate effect of Parse::adjust_map_after_if.
1056     Node* ccast = new CastIINode(index, TypeInt::POS);
1057     ccast->set_req(0, control());
1058     (*pos_index) = _gvn.transform(ccast);
1059   }
1060   return is_neg;
1061 }
1062 
1063 // Make sure that 'position' is a valid limit index, in [0..length].
1064 // There are two equivalent plans for checking this:
1065 //   A. (offset + copyLength)  unsigned<=  arrayLength
1066 //   B. offset  <=  (arrayLength - copyLength)
1067 // We require that all of the values above, except for the sum and
1068 // difference, are already known to be non-negative.
1069 // Plan A is robust in the face of overflow, if offset and copyLength
1070 // are both hugely positive.
1071 //
1072 // Plan B is less direct and intuitive, but it does not overflow at
1073 // all, since the difference of two non-negatives is always
1074 // representable.  Whenever Java methods must perform the equivalent
1075 // check they generally use Plan B instead of Plan A.
1076 // For the moment we use Plan A.
1077 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1078                                                   Node* subseq_length,
1079                                                   Node* array_length,
1080                                                   RegionNode* region) {
1081   if (stopped())
1082     return NULL;                // already stopped
1083   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1084   if (zero_offset && subseq_length->eqv_uncast(array_length))
1085     return NULL;                // common case of whole-array copy
1086   Node* last = subseq_length;
1087   if (!zero_offset)             // last += offset
1088     last = _gvn.transform(new AddINode(last, offset));
1089   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1090   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1091   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1092   return is_over;
1093 }
1094 
1095 // Emit range checks for the given String.value byte array
1096 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1097   if (stopped()) {
1098     return; // already stopped
1099   }
1100   RegionNode* bailout = new RegionNode(1);
1101   record_for_igvn(bailout);
1102   if (char_count) {
1103     // Convert char count to byte count
1104     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1105   }
1106 
1107   // Offset and count must not be negative
1108   generate_negative_guard(offset, bailout);
1109   generate_negative_guard(count, bailout);
1110   // Offset + count must not exceed length of array
1111   generate_limit_guard(offset, count, load_array_length(array), bailout);
1112 
1113   if (bailout->req() > 1) {
1114     PreserveJVMState pjvms(this);
1115     set_control(_gvn.transform(bailout));
1116     uncommon_trap(Deoptimization::Reason_intrinsic,
1117                   Deoptimization::Action_maybe_recompile);
1118   }
1119 }
1120 
1121 //--------------------------generate_current_thread--------------------
1122 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1123   ciKlass*    thread_klass = env()->Thread_klass();
1124   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1125   Node* thread = _gvn.transform(new ThreadLocalNode());
1126   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1127   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1128   tls_output = thread;
1129   return threadObj;
1130 }
1131 
1132 
1133 //------------------------------make_string_method_node------------------------
1134 // Helper method for String intrinsic functions. This version is called with
1135 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1136 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1137 // containing the lengths of str1 and str2.
1138 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1139   Node* result = NULL;
1140   switch (opcode) {
1141   case Op_StrIndexOf:
1142     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1143                                 str1_start, cnt1, str2_start, cnt2, ae);
1144     break;
1145   case Op_StrComp:
1146     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1147                              str1_start, cnt1, str2_start, cnt2, ae);
1148     break;
1149   case Op_StrEquals:
1150     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1151     // Use the constant length if there is one because optimized match rule may exist.
1152     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1153                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1154     break;
1155   default:
1156     ShouldNotReachHere();
1157     return NULL;
1158   }
1159 
1160   // All these intrinsics have checks.
1161   C->set_has_split_ifs(true); // Has chance for split-if optimization
1162   clear_upper_avx();
1163 
1164   return _gvn.transform(result);
1165 }
1166 
1167 //------------------------------inline_string_compareTo------------------------
1168 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1169   Node* arg1 = argument(0);
1170   Node* arg2 = argument(1);
1171 
1172   arg1 = must_be_not_null(arg1, true);
1173   arg2 = must_be_not_null(arg2, true);
1174 
1175   arg1 = access_resolve(arg1, ACCESS_READ);
1176   arg2 = access_resolve(arg2, ACCESS_READ);
1177 
1178   // Get start addr and length of first argument
1179   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1180   Node* arg1_cnt    = load_array_length(arg1);
1181 
1182   // Get start addr and length of second argument
1183   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1184   Node* arg2_cnt    = load_array_length(arg2);
1185 
1186   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1187   set_result(result);
1188   return true;
1189 }
1190 
1191 //------------------------------inline_string_equals------------------------
1192 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1193   Node* arg1 = argument(0);
1194   Node* arg2 = argument(1);
1195 
1196   // paths (plus control) merge
1197   RegionNode* region = new RegionNode(3);
1198   Node* phi = new PhiNode(region, TypeInt::BOOL);
1199 
1200   if (!stopped()) {
1201 
1202     arg1 = must_be_not_null(arg1, true);
1203     arg2 = must_be_not_null(arg2, true);
1204 
1205     arg1 = access_resolve(arg1, ACCESS_READ);
1206     arg2 = access_resolve(arg2, ACCESS_READ);
1207 
1208     // Get start addr and length of first argument
1209     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1210     Node* arg1_cnt    = load_array_length(arg1);
1211 
1212     // Get start addr and length of second argument
1213     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1214     Node* arg2_cnt    = load_array_length(arg2);
1215 
1216     // Check for arg1_cnt != arg2_cnt
1217     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1218     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1219     Node* if_ne = generate_slow_guard(bol, NULL);
1220     if (if_ne != NULL) {
1221       phi->init_req(2, intcon(0));
1222       region->init_req(2, if_ne);
1223     }
1224 
1225     // Check for count == 0 is done by assembler code for StrEquals.
1226 
1227     if (!stopped()) {
1228       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1229       phi->init_req(1, equals);
1230       region->init_req(1, control());
1231     }
1232   }
1233 
1234   // post merge
1235   set_control(_gvn.transform(region));
1236   record_for_igvn(region);
1237 
1238   set_result(_gvn.transform(phi));
1239   return true;
1240 }
1241 
1242 //------------------------------inline_array_equals----------------------------
1243 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1244   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1245   Node* arg1 = argument(0);
1246   Node* arg2 = argument(1);
1247 
1248   arg1 = access_resolve(arg1, ACCESS_READ);
1249   arg2 = access_resolve(arg2, ACCESS_READ);
1250 
1251   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1252   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1253   clear_upper_avx();
1254 
1255   return true;
1256 }
1257 
1258 //------------------------------inline_hasNegatives------------------------------
1259 bool LibraryCallKit::inline_hasNegatives() {
1260   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1261     return false;
1262   }
1263 
1264   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1265   // no receiver since it is static method
1266   Node* ba         = argument(0);
1267   Node* offset     = argument(1);
1268   Node* len        = argument(2);
1269 
1270   ba = must_be_not_null(ba, true);
1271 
1272   // Range checks
1273   generate_string_range_check(ba, offset, len, false);
1274   if (stopped()) {
1275     return true;
1276   }
1277   ba = access_resolve(ba, ACCESS_READ);
1278   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1279   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1280   set_result(_gvn.transform(result));
1281   return true;
1282 }
1283 
1284 bool LibraryCallKit::inline_preconditions_checkIndex() {
1285   Node* index = argument(0);
1286   Node* length = argument(1);
1287   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1288     return false;
1289   }
1290 
1291   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1292   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1293 
1294   {
1295     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1296     uncommon_trap(Deoptimization::Reason_intrinsic,
1297                   Deoptimization::Action_make_not_entrant);
1298   }
1299 
1300   if (stopped()) {
1301     return false;
1302   }
1303 
1304   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1305   BoolTest::mask btest = BoolTest::lt;
1306   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1307   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1308   _gvn.set_type(rc, rc->Value(&_gvn));
1309   if (!rc_bool->is_Con()) {
1310     record_for_igvn(rc);
1311   }
1312   set_control(_gvn.transform(new IfTrueNode(rc)));
1313   {
1314     PreserveJVMState pjvms(this);
1315     set_control(_gvn.transform(new IfFalseNode(rc)));
1316     uncommon_trap(Deoptimization::Reason_range_check,
1317                   Deoptimization::Action_make_not_entrant);
1318   }
1319 
1320   if (stopped()) {
1321     return false;
1322   }
1323 
1324   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1325   result->set_req(0, control());
1326   result = _gvn.transform(result);
1327   set_result(result);
1328   replace_in_map(index, result);
1329   clear_upper_avx();
1330   return true;
1331 }
1332 
1333 //------------------------------inline_string_indexOf------------------------
1334 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1335   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1336     return false;
1337   }
1338   Node* src = argument(0);
1339   Node* tgt = argument(1);
1340 
1341   // Make the merge point
1342   RegionNode* result_rgn = new RegionNode(4);
1343   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1344 
1345   src = must_be_not_null(src, true);
1346   tgt = must_be_not_null(tgt, true);
1347 
1348   src = access_resolve(src, ACCESS_READ);
1349   tgt = access_resolve(tgt, ACCESS_READ);
1350 
1351   // Get start addr and length of source string
1352   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1353   Node* src_count = load_array_length(src);
1354 
1355   // Get start addr and length of substring
1356   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1357   Node* tgt_count = load_array_length(tgt);
1358 
1359   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1360     // Divide src size by 2 if String is UTF16 encoded
1361     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1362   }
1363   if (ae == StrIntrinsicNode::UU) {
1364     // Divide substring size by 2 if String is UTF16 encoded
1365     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1366   }
1367 
1368   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1369   if (result != NULL) {
1370     result_phi->init_req(3, result);
1371     result_rgn->init_req(3, control());
1372   }
1373   set_control(_gvn.transform(result_rgn));
1374   record_for_igvn(result_rgn);
1375   set_result(_gvn.transform(result_phi));
1376 
1377   return true;
1378 }
1379 
1380 //-----------------------------inline_string_indexOf-----------------------
1381 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1382   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1383     return false;
1384   }
1385   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1386     return false;
1387   }
1388   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1389   Node* src         = argument(0); // byte[]
1390   Node* src_count   = argument(1); // char count
1391   Node* tgt         = argument(2); // byte[]
1392   Node* tgt_count   = argument(3); // char count
1393   Node* from_index  = argument(4); // char index
1394 
1395   src = must_be_not_null(src, true);
1396   tgt = must_be_not_null(tgt, true);
1397 
1398   src = access_resolve(src, ACCESS_READ);
1399   tgt = access_resolve(tgt, ACCESS_READ);
1400 
1401   // Multiply byte array index by 2 if String is UTF16 encoded
1402   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1403   src_count = _gvn.transform(new SubINode(src_count, from_index));
1404   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1405   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1406 
1407   // Range checks
1408   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1409   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1410   if (stopped()) {
1411     return true;
1412   }
1413 
1414   RegionNode* region = new RegionNode(5);
1415   Node* phi = new PhiNode(region, TypeInt::INT);
1416 
1417   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1418   if (result != NULL) {
1419     // The result is index relative to from_index if substring was found, -1 otherwise.
1420     // Generate code which will fold into cmove.
1421     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1422     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1423 
1424     Node* if_lt = generate_slow_guard(bol, NULL);
1425     if (if_lt != NULL) {
1426       // result == -1
1427       phi->init_req(3, result);
1428       region->init_req(3, if_lt);
1429     }
1430     if (!stopped()) {
1431       result = _gvn.transform(new AddINode(result, from_index));
1432       phi->init_req(4, result);
1433       region->init_req(4, control());
1434     }
1435   }
1436 
1437   set_control(_gvn.transform(region));
1438   record_for_igvn(region);
1439   set_result(_gvn.transform(phi));
1440   clear_upper_avx();
1441 
1442   return true;
1443 }
1444 
1445 // Create StrIndexOfNode with fast path checks
1446 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1447                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1448   // Check for substr count > string count
1449   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1450   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1451   Node* if_gt = generate_slow_guard(bol, NULL);
1452   if (if_gt != NULL) {
1453     phi->init_req(1, intcon(-1));
1454     region->init_req(1, if_gt);
1455   }
1456   if (!stopped()) {
1457     // Check for substr count == 0
1458     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1459     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1460     Node* if_zero = generate_slow_guard(bol, NULL);
1461     if (if_zero != NULL) {
1462       phi->init_req(2, intcon(0));
1463       region->init_req(2, if_zero);
1464     }
1465   }
1466   if (!stopped()) {
1467     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1468   }
1469   return NULL;
1470 }
1471 
1472 //-----------------------------inline_string_indexOfChar-----------------------
1473 bool LibraryCallKit::inline_string_indexOfChar() {
1474   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1475     return false;
1476   }
1477   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1478     return false;
1479   }
1480   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1481   Node* src         = argument(0); // byte[]
1482   Node* tgt         = argument(1); // tgt is int ch
1483   Node* from_index  = argument(2);
1484   Node* max         = argument(3);
1485 
1486   src = must_be_not_null(src, true);
1487   src = access_resolve(src, ACCESS_READ);
1488 
1489   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1490   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1491   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1492 
1493   // Range checks
1494   generate_string_range_check(src, src_offset, src_count, true);
1495   if (stopped()) {
1496     return true;
1497   }
1498 
1499   RegionNode* region = new RegionNode(3);
1500   Node* phi = new PhiNode(region, TypeInt::INT);
1501 
1502   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1503   C->set_has_split_ifs(true); // Has chance for split-if optimization
1504   _gvn.transform(result);
1505 
1506   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1507   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1508 
1509   Node* if_lt = generate_slow_guard(bol, NULL);
1510   if (if_lt != NULL) {
1511     // result == -1
1512     phi->init_req(2, result);
1513     region->init_req(2, if_lt);
1514   }
1515   if (!stopped()) {
1516     result = _gvn.transform(new AddINode(result, from_index));
1517     phi->init_req(1, result);
1518     region->init_req(1, control());
1519   }
1520   set_control(_gvn.transform(region));
1521   record_for_igvn(region);
1522   set_result(_gvn.transform(phi));
1523 
1524   return true;
1525 }
1526 //---------------------------inline_string_copy---------------------
1527 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1528 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1529 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1530 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1531 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1532 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1533 bool LibraryCallKit::inline_string_copy(bool compress) {
1534   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1535     return false;
1536   }
1537   int nargs = 5;  // 2 oops, 3 ints
1538   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1539 
1540   Node* src         = argument(0);
1541   Node* src_offset  = argument(1);
1542   Node* dst         = argument(2);
1543   Node* dst_offset  = argument(3);
1544   Node* length      = argument(4);
1545 
1546   // Check for allocation before we add nodes that would confuse
1547   // tightly_coupled_allocation()
1548   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1549 
1550   // Figure out the size and type of the elements we will be copying.
1551   const Type* src_type = src->Value(&_gvn);
1552   const Type* dst_type = dst->Value(&_gvn);
1553   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1554   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1555   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1556          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1557          "Unsupported array types for inline_string_copy");
1558 
1559   src = must_be_not_null(src, true);
1560   dst = must_be_not_null(dst, true);
1561 
1562   // Convert char[] offsets to byte[] offsets
1563   bool convert_src = (compress && src_elem == T_BYTE);
1564   bool convert_dst = (!compress && dst_elem == T_BYTE);
1565   if (convert_src) {
1566     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1567   } else if (convert_dst) {
1568     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1569   }
1570 
1571   // Range checks
1572   generate_string_range_check(src, src_offset, length, convert_src);
1573   generate_string_range_check(dst, dst_offset, length, convert_dst);
1574   if (stopped()) {
1575     return true;
1576   }
1577 
1578   src = access_resolve(src, ACCESS_READ);
1579   dst = access_resolve(dst, ACCESS_WRITE);
1580 
1581   Node* src_start = array_element_address(src, src_offset, src_elem);
1582   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1583   // 'src_start' points to src array + scaled offset
1584   // 'dst_start' points to dst array + scaled offset
1585   Node* count = NULL;
1586   if (compress) {
1587     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1588   } else {
1589     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1590   }
1591 
1592   if (alloc != NULL) {
1593     if (alloc->maybe_set_complete(&_gvn)) {
1594       // "You break it, you buy it."
1595       InitializeNode* init = alloc->initialization();
1596       assert(init->is_complete(), "we just did this");
1597       init->set_complete_with_arraycopy();
1598       assert(dst->is_CheckCastPP(), "sanity");
1599       assert(dst->in(0)->in(0) == init, "dest pinned");
1600     }
1601     // Do not let stores that initialize this object be reordered with
1602     // a subsequent store that would make this object accessible by
1603     // other threads.
1604     // Record what AllocateNode this StoreStore protects so that
1605     // escape analysis can go from the MemBarStoreStoreNode to the
1606     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1607     // based on the escape status of the AllocateNode.
1608     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1609   }
1610   if (compress) {
1611     set_result(_gvn.transform(count));
1612   }
1613   clear_upper_avx();
1614 
1615   return true;
1616 }
1617 
1618 #ifdef _LP64
1619 #define XTOP ,top() /*additional argument*/
1620 #else  //_LP64
1621 #define XTOP        /*no additional argument*/
1622 #endif //_LP64
1623 
1624 //------------------------inline_string_toBytesU--------------------------
1625 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1626 bool LibraryCallKit::inline_string_toBytesU() {
1627   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1628     return false;
1629   }
1630   // Get the arguments.
1631   Node* value     = argument(0);
1632   Node* offset    = argument(1);
1633   Node* length    = argument(2);
1634 
1635   Node* newcopy = NULL;
1636 
1637   // Set the original stack and the reexecute bit for the interpreter to reexecute
1638   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1639   { PreserveReexecuteState preexecs(this);
1640     jvms()->set_should_reexecute(true);
1641 
1642     // Check if a null path was taken unconditionally.
1643     value = null_check(value);
1644 
1645     RegionNode* bailout = new RegionNode(1);
1646     record_for_igvn(bailout);
1647 
1648     // Range checks
1649     generate_negative_guard(offset, bailout);
1650     generate_negative_guard(length, bailout);
1651     generate_limit_guard(offset, length, load_array_length(value), bailout);
1652     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1653     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1654 
1655     if (bailout->req() > 1) {
1656       PreserveJVMState pjvms(this);
1657       set_control(_gvn.transform(bailout));
1658       uncommon_trap(Deoptimization::Reason_intrinsic,
1659                     Deoptimization::Action_maybe_recompile);
1660     }
1661     if (stopped()) {
1662       return true;
1663     }
1664 
1665     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1666     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1667     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1668     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1669 
1670     // Calculate starting addresses.
1671     value = access_resolve(value, ACCESS_READ);
1672     Node* src_start = array_element_address(value, offset, T_CHAR);
1673     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1674 
1675     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1676     const TypeInt* toffset = gvn().type(offset)->is_int();
1677     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1678 
1679     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1680     const char* copyfunc_name = "arraycopy";
1681     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1682     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1683                       OptoRuntime::fast_arraycopy_Type(),
1684                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1685                       src_start, dst_start, ConvI2X(length) XTOP);
1686     // Do not let reads from the cloned object float above the arraycopy.
1687     if (alloc != NULL) {
1688       if (alloc->maybe_set_complete(&_gvn)) {
1689         // "You break it, you buy it."
1690         InitializeNode* init = alloc->initialization();
1691         assert(init->is_complete(), "we just did this");
1692         init->set_complete_with_arraycopy();
1693         assert(newcopy->is_CheckCastPP(), "sanity");
1694         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1695       }
1696       // Do not let stores that initialize this object be reordered with
1697       // a subsequent store that would make this object accessible by
1698       // other threads.
1699       // Record what AllocateNode this StoreStore protects so that
1700       // escape analysis can go from the MemBarStoreStoreNode to the
1701       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1702       // based on the escape status of the AllocateNode.
1703       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1704     } else {
1705       insert_mem_bar(Op_MemBarCPUOrder);
1706     }
1707   } // original reexecute is set back here
1708 
1709   C->set_has_split_ifs(true); // Has chance for split-if optimization
1710   if (!stopped()) {
1711     set_result(newcopy);
1712   }
1713   clear_upper_avx();
1714 
1715   return true;
1716 }
1717 
1718 //------------------------inline_string_getCharsU--------------------------
1719 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1720 bool LibraryCallKit::inline_string_getCharsU() {
1721   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1722     return false;
1723   }
1724 
1725   // Get the arguments.
1726   Node* src       = argument(0);
1727   Node* src_begin = argument(1);
1728   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1729   Node* dst       = argument(3);
1730   Node* dst_begin = argument(4);
1731 
1732   // Check for allocation before we add nodes that would confuse
1733   // tightly_coupled_allocation()
1734   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1735 
1736   // Check if a null path was taken unconditionally.
1737   src = null_check(src);
1738   dst = null_check(dst);
1739   if (stopped()) {
1740     return true;
1741   }
1742 
1743   // Get length and convert char[] offset to byte[] offset
1744   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1745   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1746 
1747   // Range checks
1748   generate_string_range_check(src, src_begin, length, true);
1749   generate_string_range_check(dst, dst_begin, length, false);
1750   if (stopped()) {
1751     return true;
1752   }
1753 
1754   if (!stopped()) {
1755     src = access_resolve(src, ACCESS_READ);
1756     dst = access_resolve(dst, ACCESS_WRITE);
1757 
1758     // Calculate starting addresses.
1759     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1760     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1761 
1762     // Check if array addresses are aligned to HeapWordSize
1763     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1764     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1765     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1766                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1767 
1768     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1769     const char* copyfunc_name = "arraycopy";
1770     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1771     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1772                       OptoRuntime::fast_arraycopy_Type(),
1773                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1774                       src_start, dst_start, ConvI2X(length) XTOP);
1775     // Do not let reads from the cloned object float above the arraycopy.
1776     if (alloc != NULL) {
1777       if (alloc->maybe_set_complete(&_gvn)) {
1778         // "You break it, you buy it."
1779         InitializeNode* init = alloc->initialization();
1780         assert(init->is_complete(), "we just did this");
1781         init->set_complete_with_arraycopy();
1782         assert(dst->is_CheckCastPP(), "sanity");
1783         assert(dst->in(0)->in(0) == init, "dest pinned");
1784       }
1785       // Do not let stores that initialize this object be reordered with
1786       // a subsequent store that would make this object accessible by
1787       // other threads.
1788       // Record what AllocateNode this StoreStore protects so that
1789       // escape analysis can go from the MemBarStoreStoreNode to the
1790       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1791       // based on the escape status of the AllocateNode.
1792       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1793     } else {
1794       insert_mem_bar(Op_MemBarCPUOrder);
1795     }
1796   }
1797 
1798   C->set_has_split_ifs(true); // Has chance for split-if optimization
1799   return true;
1800 }
1801 
1802 //----------------------inline_string_char_access----------------------------
1803 // Store/Load char to/from byte[] array.
1804 // static void StringUTF16.putChar(byte[] val, int index, int c)
1805 // static char StringUTF16.getChar(byte[] val, int index)
1806 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1807   Node* value  = argument(0);
1808   Node* index  = argument(1);
1809   Node* ch = is_store ? argument(2) : NULL;
1810 
1811   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1812   // correctly requires matched array shapes.
1813   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1814           "sanity: byte[] and char[] bases agree");
1815   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1816           "sanity: byte[] and char[] scales agree");
1817 
1818   // Bail when getChar over constants is requested: constant folding would
1819   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1820   // Java method would constant fold nicely instead.
1821   if (!is_store && value->is_Con() && index->is_Con()) {
1822     return false;
1823   }
1824 
1825   value = must_be_not_null(value, true);
1826   value = access_resolve(value, is_store ? ACCESS_WRITE : ACCESS_READ);
1827 
1828   Node* adr = array_element_address(value, index, T_CHAR);
1829   if (adr->is_top()) {
1830     return false;
1831   }
1832   if (is_store) {
1833     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1834   } else {
1835     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
1836     set_result(ch);
1837   }
1838   return true;
1839 }
1840 
1841 //--------------------------round_double_node--------------------------------
1842 // Round a double node if necessary.
1843 Node* LibraryCallKit::round_double_node(Node* n) {
1844   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1845     n = _gvn.transform(new RoundDoubleNode(0, n));
1846   return n;
1847 }
1848 
1849 //------------------------------inline_math-----------------------------------
1850 // public static double Math.abs(double)
1851 // public static double Math.sqrt(double)
1852 // public static double Math.log(double)
1853 // public static double Math.log10(double)
1854 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1855   Node* arg = round_double_node(argument(0));
1856   Node* n = NULL;
1857   switch (id) {
1858   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1859   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1860   default:  fatal_unexpected_iid(id);  break;
1861   }
1862   set_result(_gvn.transform(n));
1863   return true;
1864 }
1865 
1866 //------------------------------runtime_math-----------------------------
1867 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1868   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1869          "must be (DD)D or (D)D type");
1870 
1871   // Inputs
1872   Node* a = round_double_node(argument(0));
1873   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1874 
1875   const TypePtr* no_memory_effects = NULL;
1876   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1877                                  no_memory_effects,
1878                                  a, top(), b, b ? top() : NULL);
1879   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1880 #ifdef ASSERT
1881   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1882   assert(value_top == top(), "second value must be top");
1883 #endif
1884 
1885   set_result(value);
1886   return true;
1887 }
1888 
1889 //------------------------------inline_math_native-----------------------------
1890 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1891 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1892   switch (id) {
1893     // These intrinsics are not properly supported on all hardware
1894   case vmIntrinsics::_dsin:
1895     return StubRoutines::dsin() != NULL ?
1896       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1897       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1898   case vmIntrinsics::_dcos:
1899     return StubRoutines::dcos() != NULL ?
1900       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1901       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1902   case vmIntrinsics::_dtan:
1903     return StubRoutines::dtan() != NULL ?
1904       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1905       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1906   case vmIntrinsics::_dlog:
1907     return StubRoutines::dlog() != NULL ?
1908       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1909       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1910   case vmIntrinsics::_dlog10:
1911     return StubRoutines::dlog10() != NULL ?
1912       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1913       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1914 
1915     // These intrinsics are supported on all hardware
1916   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1917   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1918 
1919   case vmIntrinsics::_dexp:
1920     return StubRoutines::dexp() != NULL ?
1921       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1922       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1923   case vmIntrinsics::_dpow: {
1924     Node* exp = round_double_node(argument(2));
1925     const TypeD* d = _gvn.type(exp)->isa_double_constant();
1926     if (d != NULL && d->getd() == 2.0) {
1927       // Special case: pow(x, 2.0) => x * x
1928       Node* base = round_double_node(argument(0));
1929       set_result(_gvn.transform(new MulDNode(base, base)));
1930       return true;
1931     }
1932     return StubRoutines::dpow() != NULL ?
1933       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1934       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1935   }
1936 #undef FN_PTR
1937 
1938    // These intrinsics are not yet correctly implemented
1939   case vmIntrinsics::_datan2:
1940     return false;
1941 
1942   default:
1943     fatal_unexpected_iid(id);
1944     return false;
1945   }
1946 }
1947 
1948 static bool is_simple_name(Node* n) {
1949   return (n->req() == 1         // constant
1950           || (n->is_Type() && n->as_Type()->type()->singleton())
1951           || n->is_Proj()       // parameter or return value
1952           || n->is_Phi()        // local of some sort
1953           );
1954 }
1955 
1956 //----------------------------inline_notify-----------------------------------*
1957 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1958   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1959   address func;
1960   if (id == vmIntrinsics::_notify) {
1961     func = OptoRuntime::monitor_notify_Java();
1962   } else {
1963     func = OptoRuntime::monitor_notifyAll_Java();
1964   }
1965   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1966   make_slow_call_ex(call, env()->Throwable_klass(), false);
1967   return true;
1968 }
1969 
1970 
1971 //----------------------------inline_min_max-----------------------------------
1972 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1973   set_result(generate_min_max(id, argument(0), argument(1)));
1974   return true;
1975 }
1976 
1977 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1978   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1979   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1980   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1981   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1982 
1983   {
1984     PreserveJVMState pjvms(this);
1985     PreserveReexecuteState preexecs(this);
1986     jvms()->set_should_reexecute(true);
1987 
1988     set_control(slow_path);
1989     set_i_o(i_o());
1990 
1991     uncommon_trap(Deoptimization::Reason_intrinsic,
1992                   Deoptimization::Action_none);
1993   }
1994 
1995   set_control(fast_path);
1996   set_result(math);
1997 }
1998 
1999 template <typename OverflowOp>
2000 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2001   typedef typename OverflowOp::MathOp MathOp;
2002 
2003   MathOp* mathOp = new MathOp(arg1, arg2);
2004   Node* operation = _gvn.transform( mathOp );
2005   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2006   inline_math_mathExact(operation, ofcheck);
2007   return true;
2008 }
2009 
2010 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2011   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2012 }
2013 
2014 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2015   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2016 }
2017 
2018 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2019   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2020 }
2021 
2022 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2023   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2024 }
2025 
2026 bool LibraryCallKit::inline_math_negateExactI() {
2027   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2028 }
2029 
2030 bool LibraryCallKit::inline_math_negateExactL() {
2031   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2032 }
2033 
2034 bool LibraryCallKit::inline_math_multiplyExactI() {
2035   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2036 }
2037 
2038 bool LibraryCallKit::inline_math_multiplyExactL() {
2039   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2040 }
2041 
2042 bool LibraryCallKit::inline_math_multiplyHigh() {
2043   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2044   return true;
2045 }
2046 
2047 Node*
2048 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2049   // These are the candidate return value:
2050   Node* xvalue = x0;
2051   Node* yvalue = y0;
2052 
2053   if (xvalue == yvalue) {
2054     return xvalue;
2055   }
2056 
2057   bool want_max = (id == vmIntrinsics::_max);
2058 
2059   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2060   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2061   if (txvalue == NULL || tyvalue == NULL)  return top();
2062   // This is not really necessary, but it is consistent with a
2063   // hypothetical MaxINode::Value method:
2064   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2065 
2066   // %%% This folding logic should (ideally) be in a different place.
2067   // Some should be inside IfNode, and there to be a more reliable
2068   // transformation of ?: style patterns into cmoves.  We also want
2069   // more powerful optimizations around cmove and min/max.
2070 
2071   // Try to find a dominating comparison of these guys.
2072   // It can simplify the index computation for Arrays.copyOf
2073   // and similar uses of System.arraycopy.
2074   // First, compute the normalized version of CmpI(x, y).
2075   int   cmp_op = Op_CmpI;
2076   Node* xkey = xvalue;
2077   Node* ykey = yvalue;
2078   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2079   if (ideal_cmpxy->is_Cmp()) {
2080     // E.g., if we have CmpI(length - offset, count),
2081     // it might idealize to CmpI(length, count + offset)
2082     cmp_op = ideal_cmpxy->Opcode();
2083     xkey = ideal_cmpxy->in(1);
2084     ykey = ideal_cmpxy->in(2);
2085   }
2086 
2087   // Start by locating any relevant comparisons.
2088   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2089   Node* cmpxy = NULL;
2090   Node* cmpyx = NULL;
2091   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2092     Node* cmp = start_from->fast_out(k);
2093     if (cmp->outcnt() > 0 &&            // must have prior uses
2094         cmp->in(0) == NULL &&           // must be context-independent
2095         cmp->Opcode() == cmp_op) {      // right kind of compare
2096       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2097       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2098     }
2099   }
2100 
2101   const int NCMPS = 2;
2102   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2103   int cmpn;
2104   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2105     if (cmps[cmpn] != NULL)  break;     // find a result
2106   }
2107   if (cmpn < NCMPS) {
2108     // Look for a dominating test that tells us the min and max.
2109     int depth = 0;                // Limit search depth for speed
2110     Node* dom = control();
2111     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2112       if (++depth >= 100)  break;
2113       Node* ifproj = dom;
2114       if (!ifproj->is_Proj())  continue;
2115       Node* iff = ifproj->in(0);
2116       if (!iff->is_If())  continue;
2117       Node* bol = iff->in(1);
2118       if (!bol->is_Bool())  continue;
2119       Node* cmp = bol->in(1);
2120       if (cmp == NULL)  continue;
2121       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2122         if (cmps[cmpn] == cmp)  break;
2123       if (cmpn == NCMPS)  continue;
2124       BoolTest::mask btest = bol->as_Bool()->_test._test;
2125       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2126       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2127       // At this point, we know that 'x btest y' is true.
2128       switch (btest) {
2129       case BoolTest::eq:
2130         // They are proven equal, so we can collapse the min/max.
2131         // Either value is the answer.  Choose the simpler.
2132         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2133           return yvalue;
2134         return xvalue;
2135       case BoolTest::lt:          // x < y
2136       case BoolTest::le:          // x <= y
2137         return (want_max ? yvalue : xvalue);
2138       case BoolTest::gt:          // x > y
2139       case BoolTest::ge:          // x >= y
2140         return (want_max ? xvalue : yvalue);
2141       default:
2142         break;
2143       }
2144     }
2145   }
2146 
2147   // We failed to find a dominating test.
2148   // Let's pick a test that might GVN with prior tests.
2149   Node*          best_bol   = NULL;
2150   BoolTest::mask best_btest = BoolTest::illegal;
2151   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2152     Node* cmp = cmps[cmpn];
2153     if (cmp == NULL)  continue;
2154     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2155       Node* bol = cmp->fast_out(j);
2156       if (!bol->is_Bool())  continue;
2157       BoolTest::mask btest = bol->as_Bool()->_test._test;
2158       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2159       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2160       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2161         best_bol   = bol->as_Bool();
2162         best_btest = btest;
2163       }
2164     }
2165   }
2166 
2167   Node* answer_if_true  = NULL;
2168   Node* answer_if_false = NULL;
2169   switch (best_btest) {
2170   default:
2171     if (cmpxy == NULL)
2172       cmpxy = ideal_cmpxy;
2173     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2174     // and fall through:
2175   case BoolTest::lt:          // x < y
2176   case BoolTest::le:          // x <= y
2177     answer_if_true  = (want_max ? yvalue : xvalue);
2178     answer_if_false = (want_max ? xvalue : yvalue);
2179     break;
2180   case BoolTest::gt:          // x > y
2181   case BoolTest::ge:          // x >= y
2182     answer_if_true  = (want_max ? xvalue : yvalue);
2183     answer_if_false = (want_max ? yvalue : xvalue);
2184     break;
2185   }
2186 
2187   jint hi, lo;
2188   if (want_max) {
2189     // We can sharpen the minimum.
2190     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2191     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2192   } else {
2193     // We can sharpen the maximum.
2194     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2195     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2196   }
2197 
2198   // Use a flow-free graph structure, to avoid creating excess control edges
2199   // which could hinder other optimizations.
2200   // Since Math.min/max is often used with arraycopy, we want
2201   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2202   Node* cmov = CMoveNode::make(NULL, best_bol,
2203                                answer_if_false, answer_if_true,
2204                                TypeInt::make(lo, hi, widen));
2205 
2206   return _gvn.transform(cmov);
2207 
2208   /*
2209   // This is not as desirable as it may seem, since Min and Max
2210   // nodes do not have a full set of optimizations.
2211   // And they would interfere, anyway, with 'if' optimizations
2212   // and with CMoveI canonical forms.
2213   switch (id) {
2214   case vmIntrinsics::_min:
2215     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2216   case vmIntrinsics::_max:
2217     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2218   default:
2219     ShouldNotReachHere();
2220   }
2221   */
2222 }
2223 
2224 inline int
2225 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2226   const TypePtr* base_type = TypePtr::NULL_PTR;
2227   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2228   if (base_type == NULL) {
2229     // Unknown type.
2230     return Type::AnyPtr;
2231   } else if (base_type == TypePtr::NULL_PTR) {
2232     // Since this is a NULL+long form, we have to switch to a rawptr.
2233     base   = _gvn.transform(new CastX2PNode(offset));
2234     offset = MakeConX(0);
2235     return Type::RawPtr;
2236   } else if (base_type->base() == Type::RawPtr) {
2237     return Type::RawPtr;
2238   } else if (base_type->isa_oopptr()) {
2239     // Base is never null => always a heap address.
2240     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2241       return Type::OopPtr;
2242     }
2243     // Offset is small => always a heap address.
2244     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2245     if (offset_type != NULL &&
2246         base_type->offset() == 0 &&     // (should always be?)
2247         offset_type->_lo >= 0 &&
2248         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2249       return Type::OopPtr;
2250     } else if (type == T_OBJECT) {
2251       // off heap access to an oop doesn't make any sense. Has to be on
2252       // heap.
2253       return Type::OopPtr;
2254     }
2255     // Otherwise, it might either be oop+off or NULL+addr.
2256     return Type::AnyPtr;
2257   } else {
2258     // No information:
2259     return Type::AnyPtr;
2260   }
2261 }
2262 
2263 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) {
2264   Node* uncasted_base = base;
2265   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2266   if (kind == Type::RawPtr) {
2267     return basic_plus_adr(top(), uncasted_base, offset);
2268   } else if (kind == Type::AnyPtr) {
2269     assert(base == uncasted_base, "unexpected base change");
2270     if (can_cast) {
2271       if (!_gvn.type(base)->speculative_maybe_null() &&
2272           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2273         // According to profiling, this access is always on
2274         // heap. Casting the base to not null and thus avoiding membars
2275         // around the access should allow better optimizations
2276         Node* null_ctl = top();
2277         base = null_check_oop(base, &null_ctl, true, true, true);
2278         assert(null_ctl->is_top(), "no null control here");
2279         return basic_plus_adr(base, offset);
2280       } else if (_gvn.type(base)->speculative_always_null() &&
2281                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2282         // According to profiling, this access is always off
2283         // heap.
2284         base = null_assert(base);
2285         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2286         offset = MakeConX(0);
2287         return basic_plus_adr(top(), raw_base, offset);
2288       }
2289     }
2290     // We don't know if it's an on heap or off heap access. Fall back
2291     // to raw memory access.
2292     base = access_resolve(base, decorators);
2293     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2294     return basic_plus_adr(top(), raw, offset);
2295   } else {
2296     assert(base == uncasted_base, "unexpected base change");
2297     // We know it's an on heap access so base can't be null
2298     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2299       base = must_be_not_null(base, true);
2300     }
2301     return basic_plus_adr(base, offset);
2302   }
2303 }
2304 
2305 //--------------------------inline_number_methods-----------------------------
2306 // inline int     Integer.numberOfLeadingZeros(int)
2307 // inline int        Long.numberOfLeadingZeros(long)
2308 //
2309 // inline int     Integer.numberOfTrailingZeros(int)
2310 // inline int        Long.numberOfTrailingZeros(long)
2311 //
2312 // inline int     Integer.bitCount(int)
2313 // inline int        Long.bitCount(long)
2314 //
2315 // inline char  Character.reverseBytes(char)
2316 // inline short     Short.reverseBytes(short)
2317 // inline int     Integer.reverseBytes(int)
2318 // inline long       Long.reverseBytes(long)
2319 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2320   Node* arg = argument(0);
2321   Node* n = NULL;
2322   switch (id) {
2323   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2324   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2325   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2326   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2327   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2328   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2329   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2330   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2331   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2332   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2333   default:  fatal_unexpected_iid(id);  break;
2334   }
2335   set_result(_gvn.transform(n));
2336   return true;
2337 }
2338 
2339 //----------------------------inline_unsafe_access----------------------------
2340 
2341 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2342   // Attempt to infer a sharper value type from the offset and base type.
2343   ciKlass* sharpened_klass = NULL;
2344 
2345   // See if it is an instance field, with an object type.
2346   if (alias_type->field() != NULL) {
2347     if (alias_type->field()->type()->is_klass()) {
2348       sharpened_klass = alias_type->field()->type()->as_klass();
2349     }
2350   }
2351 
2352   // See if it is a narrow oop array.
2353   if (adr_type->isa_aryptr()) {
2354     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2355       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2356       if (elem_type != NULL) {
2357         sharpened_klass = elem_type->klass();
2358       }
2359     }
2360   }
2361 
2362   // The sharpened class might be unloaded if there is no class loader
2363   // contraint in place.
2364   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2365     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2366 
2367 #ifndef PRODUCT
2368     if (C->print_intrinsics() || C->print_inlining()) {
2369       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2370       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2371     }
2372 #endif
2373     // Sharpen the value type.
2374     return tjp;
2375   }
2376   return NULL;
2377 }
2378 
2379 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2380   switch (kind) {
2381       case Relaxed:
2382         return MO_UNORDERED;
2383       case Opaque:
2384         return MO_RELAXED;
2385       case Acquire:
2386         return MO_ACQUIRE;
2387       case Release:
2388         return MO_RELEASE;
2389       case Volatile:
2390         return MO_SEQ_CST;
2391       default:
2392         ShouldNotReachHere();
2393         return 0;
2394   }
2395 }
2396 
2397 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2398   if (callee()->is_static())  return false;  // caller must have the capability!
2399   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2400   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2401   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2402   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2403 
2404   if (type == T_OBJECT || type == T_ARRAY) {
2405     decorators |= ON_UNKNOWN_OOP_REF;
2406   }
2407 
2408   if (unaligned) {
2409     decorators |= C2_UNALIGNED;
2410   }
2411 
2412 #ifndef PRODUCT
2413   {
2414     ResourceMark rm;
2415     // Check the signatures.
2416     ciSignature* sig = callee()->signature();
2417 #ifdef ASSERT
2418     if (!is_store) {
2419       // Object getReference(Object base, int/long offset), etc.
2420       BasicType rtype = sig->return_type()->basic_type();
2421       assert(rtype == type, "getter must return the expected value");
2422       assert(sig->count() == 2, "oop getter has 2 arguments");
2423       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2424       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2425     } else {
2426       // void putReference(Object base, int/long offset, Object x), etc.
2427       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2428       assert(sig->count() == 3, "oop putter has 3 arguments");
2429       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2430       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2431       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2432       assert(vtype == type, "putter must accept the expected value");
2433     }
2434 #endif // ASSERT
2435  }
2436 #endif //PRODUCT
2437 
2438   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2439 
2440   Node* receiver = argument(0);  // type: oop
2441 
2442   // Build address expression.
2443   Node* adr;
2444   Node* heap_base_oop = top();
2445   Node* offset = top();
2446   Node* val;
2447 
2448   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2449   Node* base = argument(1);  // type: oop
2450   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2451   offset = argument(2);  // type: long
2452   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2453   // to be plain byte offsets, which are also the same as those accepted
2454   // by oopDesc::field_addr.
2455   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2456          "fieldOffset must be byte-scaled");
2457   // 32-bit machines ignore the high half!
2458   offset = ConvL2X(offset);
2459   adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed);
2460 
2461   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2462     heap_base_oop = base;
2463   } else if (type == T_OBJECT) {
2464     return false; // off-heap oop accesses are not supported
2465   }
2466 
2467   // Can base be NULL? Otherwise, always on-heap access.
2468   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2469 
2470   if (!can_access_non_heap) {
2471     decorators |= IN_HEAP;
2472   }
2473 
2474   val = is_store ? argument(4) : NULL;
2475 
2476   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2477 
2478   // Try to categorize the address.
2479   Compile::AliasType* alias_type = C->alias_type(adr_type);
2480   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2481 
2482   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2483       alias_type->adr_type() == TypeAryPtr::RANGE) {
2484     return false; // not supported
2485   }
2486 
2487   bool mismatched = false;
2488   BasicType bt = alias_type->basic_type();
2489   if (bt != T_ILLEGAL) {
2490     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2491     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2492       // Alias type doesn't differentiate between byte[] and boolean[]).
2493       // Use address type to get the element type.
2494       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2495     }
2496     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2497       // accessing an array field with getReference is not a mismatch
2498       bt = T_OBJECT;
2499     }
2500     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2501       // Don't intrinsify mismatched object accesses
2502       return false;
2503     }
2504     mismatched = (bt != type);
2505   } else if (alias_type->adr_type()->isa_oopptr()) {
2506     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2507   }
2508 
2509   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2510 
2511   if (mismatched) {
2512     decorators |= C2_MISMATCHED;
2513   }
2514 
2515   // First guess at the value type.
2516   const Type *value_type = Type::get_const_basic_type(type);
2517 
2518   // Figure out the memory ordering.
2519   decorators |= mo_decorator_for_access_kind(kind);
2520 
2521   if (!is_store && type == T_OBJECT) {
2522     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2523     if (tjp != NULL) {
2524       value_type = tjp;
2525     }
2526   }
2527 
2528   receiver = null_check(receiver);
2529   if (stopped()) {
2530     return true;
2531   }
2532   // Heap pointers get a null-check from the interpreter,
2533   // as a courtesy.  However, this is not guaranteed by Unsafe,
2534   // and it is not possible to fully distinguish unintended nulls
2535   // from intended ones in this API.
2536 
2537   if (!is_store) {
2538     Node* p = NULL;
2539     // Try to constant fold a load from a constant field
2540     ciField* field = alias_type->field();
2541     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2542       // final or stable field
2543       p = make_constant_from_field(field, heap_base_oop);
2544     }
2545 
2546     if (p == NULL) { // Could not constant fold the load
2547       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2548       // Normalize the value returned by getBoolean in the following cases
2549       if (type == T_BOOLEAN &&
2550           (mismatched ||
2551            heap_base_oop == top() ||                  // - heap_base_oop is NULL or
2552            (can_access_non_heap && field == NULL))    // - heap_base_oop is potentially NULL
2553                                                       //   and the unsafe access is made to large offset
2554                                                       //   (i.e., larger than the maximum offset necessary for any
2555                                                       //   field access)
2556             ) {
2557           IdealKit ideal = IdealKit(this);
2558 #define __ ideal.
2559           IdealVariable normalized_result(ideal);
2560           __ declarations_done();
2561           __ set(normalized_result, p);
2562           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2563           __ set(normalized_result, ideal.ConI(1));
2564           ideal.end_if();
2565           final_sync(ideal);
2566           p = __ value(normalized_result);
2567 #undef __
2568       }
2569     }
2570     if (type == T_ADDRESS) {
2571       p = gvn().transform(new CastP2XNode(NULL, p));
2572       p = ConvX2UL(p);
2573     }
2574     // The load node has the control of the preceding MemBarCPUOrder.  All
2575     // following nodes will have the control of the MemBarCPUOrder inserted at
2576     // the end of this method.  So, pushing the load onto the stack at a later
2577     // point is fine.
2578     set_result(p);
2579   } else {
2580     if (bt == T_ADDRESS) {
2581       // Repackage the long as a pointer.
2582       val = ConvL2X(val);
2583       val = gvn().transform(new CastX2PNode(val));
2584     }
2585     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2586   }
2587 
2588   return true;
2589 }
2590 
2591 //----------------------------inline_unsafe_load_store----------------------------
2592 // This method serves a couple of different customers (depending on LoadStoreKind):
2593 //
2594 // LS_cmp_swap:
2595 //
2596 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2597 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2598 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2599 //
2600 // LS_cmp_swap_weak:
2601 //
2602 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2603 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2604 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2605 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2606 //
2607 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2608 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2609 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2610 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2611 //
2612 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2613 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2614 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2615 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2616 //
2617 // LS_cmp_exchange:
2618 //
2619 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2620 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2621 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2622 //
2623 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2624 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2625 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2626 //
2627 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2628 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2629 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2630 //
2631 // LS_get_add:
2632 //
2633 //   int  getAndAddInt( Object o, long offset, int  delta)
2634 //   long getAndAddLong(Object o, long offset, long delta)
2635 //
2636 // LS_get_set:
2637 //
2638 //   int    getAndSet(Object o, long offset, int    newValue)
2639 //   long   getAndSet(Object o, long offset, long   newValue)
2640 //   Object getAndSet(Object o, long offset, Object newValue)
2641 //
2642 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2643   // This basic scheme here is the same as inline_unsafe_access, but
2644   // differs in enough details that combining them would make the code
2645   // overly confusing.  (This is a true fact! I originally combined
2646   // them, but even I was confused by it!) As much code/comments as
2647   // possible are retained from inline_unsafe_access though to make
2648   // the correspondences clearer. - dl
2649 
2650   if (callee()->is_static())  return false;  // caller must have the capability!
2651 
2652   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2653   decorators |= mo_decorator_for_access_kind(access_kind);
2654 
2655 #ifndef PRODUCT
2656   BasicType rtype;
2657   {
2658     ResourceMark rm;
2659     // Check the signatures.
2660     ciSignature* sig = callee()->signature();
2661     rtype = sig->return_type()->basic_type();
2662     switch(kind) {
2663       case LS_get_add:
2664       case LS_get_set: {
2665       // Check the signatures.
2666 #ifdef ASSERT
2667       assert(rtype == type, "get and set must return the expected type");
2668       assert(sig->count() == 3, "get and set has 3 arguments");
2669       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2670       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2671       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2672       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2673 #endif // ASSERT
2674         break;
2675       }
2676       case LS_cmp_swap:
2677       case LS_cmp_swap_weak: {
2678       // Check the signatures.
2679 #ifdef ASSERT
2680       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2681       assert(sig->count() == 4, "CAS has 4 arguments");
2682       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2683       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2684 #endif // ASSERT
2685         break;
2686       }
2687       case LS_cmp_exchange: {
2688       // Check the signatures.
2689 #ifdef ASSERT
2690       assert(rtype == type, "CAS must return the expected type");
2691       assert(sig->count() == 4, "CAS has 4 arguments");
2692       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2693       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2694 #endif // ASSERT
2695         break;
2696       }
2697       default:
2698         ShouldNotReachHere();
2699     }
2700   }
2701 #endif //PRODUCT
2702 
2703   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2704 
2705   // Get arguments:
2706   Node* receiver = NULL;
2707   Node* base     = NULL;
2708   Node* offset   = NULL;
2709   Node* oldval   = NULL;
2710   Node* newval   = NULL;
2711   switch(kind) {
2712     case LS_cmp_swap:
2713     case LS_cmp_swap_weak:
2714     case LS_cmp_exchange: {
2715       const bool two_slot_type = type2size[type] == 2;
2716       receiver = argument(0);  // type: oop
2717       base     = argument(1);  // type: oop
2718       offset   = argument(2);  // type: long
2719       oldval   = argument(4);  // type: oop, int, or long
2720       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2721       break;
2722     }
2723     case LS_get_add:
2724     case LS_get_set: {
2725       receiver = argument(0);  // type: oop
2726       base     = argument(1);  // type: oop
2727       offset   = argument(2);  // type: long
2728       oldval   = NULL;
2729       newval   = argument(4);  // type: oop, int, or long
2730       break;
2731     }
2732     default:
2733       ShouldNotReachHere();
2734   }
2735 
2736   // Build field offset expression.
2737   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2738   // to be plain byte offsets, which are also the same as those accepted
2739   // by oopDesc::field_addr.
2740   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2741   // 32-bit machines ignore the high half of long offsets
2742   offset = ConvL2X(offset);
2743   Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false);
2744   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2745 
2746   Compile::AliasType* alias_type = C->alias_type(adr_type);
2747   BasicType bt = alias_type->basic_type();
2748   if (bt != T_ILLEGAL &&
2749       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2750     // Don't intrinsify mismatched object accesses.
2751     return false;
2752   }
2753 
2754   // For CAS, unlike inline_unsafe_access, there seems no point in
2755   // trying to refine types. Just use the coarse types here.
2756   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2757   const Type *value_type = Type::get_const_basic_type(type);
2758 
2759   switch (kind) {
2760     case LS_get_set:
2761     case LS_cmp_exchange: {
2762       if (type == T_OBJECT) {
2763         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2764         if (tjp != NULL) {
2765           value_type = tjp;
2766         }
2767       }
2768       break;
2769     }
2770     case LS_cmp_swap:
2771     case LS_cmp_swap_weak:
2772     case LS_get_add:
2773       break;
2774     default:
2775       ShouldNotReachHere();
2776   }
2777 
2778   // Null check receiver.
2779   receiver = null_check(receiver);
2780   if (stopped()) {
2781     return true;
2782   }
2783 
2784   int alias_idx = C->get_alias_index(adr_type);
2785 
2786   if (type == T_OBJECT || type == T_ARRAY) {
2787     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2788 
2789     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2790     // could be delayed during Parse (for example, in adjust_map_after_if()).
2791     // Execute transformation here to avoid barrier generation in such case.
2792     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2793       newval = _gvn.makecon(TypePtr::NULL_PTR);
2794 
2795     if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2796       // Refine the value to a null constant, when it is known to be null
2797       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2798     }
2799   }
2800 
2801   Node* result = NULL;
2802   switch (kind) {
2803     case LS_cmp_exchange: {
2804       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2805                                             oldval, newval, value_type, type, decorators);
2806       break;
2807     }
2808     case LS_cmp_swap_weak:
2809       decorators |= C2_WEAK_CMPXCHG;
2810     case LS_cmp_swap: {
2811       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2812                                              oldval, newval, value_type, type, decorators);
2813       break;
2814     }
2815     case LS_get_set: {
2816       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2817                                      newval, value_type, type, decorators);
2818       break;
2819     }
2820     case LS_get_add: {
2821       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2822                                     newval, value_type, type, decorators);
2823       break;
2824     }
2825     default:
2826       ShouldNotReachHere();
2827   }
2828 
2829   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2830   set_result(result);
2831   return true;
2832 }
2833 
2834 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2835   // Regardless of form, don't allow previous ld/st to move down,
2836   // then issue acquire, release, or volatile mem_bar.
2837   insert_mem_bar(Op_MemBarCPUOrder);
2838   switch(id) {
2839     case vmIntrinsics::_loadFence:
2840       insert_mem_bar(Op_LoadFence);
2841       return true;
2842     case vmIntrinsics::_storeFence:
2843       insert_mem_bar(Op_StoreFence);
2844       return true;
2845     case vmIntrinsics::_fullFence:
2846       insert_mem_bar(Op_MemBarVolatile);
2847       return true;
2848     default:
2849       fatal_unexpected_iid(id);
2850       return false;
2851   }
2852 }
2853 
2854 bool LibraryCallKit::inline_onspinwait() {
2855   insert_mem_bar(Op_OnSpinWait);
2856   return true;
2857 }
2858 
2859 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2860   if (!kls->is_Con()) {
2861     return true;
2862   }
2863   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2864   if (klsptr == NULL) {
2865     return true;
2866   }
2867   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2868   // don't need a guard for a klass that is already initialized
2869   return !ik->is_initialized();
2870 }
2871 
2872 //----------------------------inline_unsafe_allocate---------------------------
2873 // public native Object Unsafe.allocateInstance(Class<?> cls);
2874 bool LibraryCallKit::inline_unsafe_allocate() {
2875   if (callee()->is_static())  return false;  // caller must have the capability!
2876 
2877   null_check_receiver();  // null-check, then ignore
2878   Node* cls = null_check(argument(1));
2879   if (stopped())  return true;
2880 
2881   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2882   kls = null_check(kls);
2883   if (stopped())  return true;  // argument was like int.class
2884 
2885   Node* test = NULL;
2886   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2887     // Note:  The argument might still be an illegal value like
2888     // Serializable.class or Object[].class.   The runtime will handle it.
2889     // But we must make an explicit check for initialization.
2890     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2891     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2892     // can generate code to load it as unsigned byte.
2893     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2894     Node* bits = intcon(InstanceKlass::fully_initialized);
2895     test = _gvn.transform(new SubINode(inst, bits));
2896     // The 'test' is non-zero if we need to take a slow path.
2897   }
2898 
2899   Node* obj = new_instance(kls, test);
2900   set_result(obj);
2901   return true;
2902 }
2903 
2904 //------------------------inline_native_time_funcs--------------
2905 // inline code for System.currentTimeMillis() and System.nanoTime()
2906 // these have the same type and signature
2907 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2908   const TypeFunc* tf = OptoRuntime::void_long_Type();
2909   const TypePtr* no_memory_effects = NULL;
2910   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2911   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2912 #ifdef ASSERT
2913   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2914   assert(value_top == top(), "second value must be top");
2915 #endif
2916   set_result(value);
2917   return true;
2918 }
2919 
2920 #ifdef JFR_HAVE_INTRINSICS
2921 
2922 /*
2923 * oop -> myklass
2924 * myklass->trace_id |= USED
2925 * return myklass->trace_id & ~0x3
2926 */
2927 bool LibraryCallKit::inline_native_classID() {
2928   Node* cls = null_check(argument(0), T_OBJECT);
2929   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2930   kls = null_check(kls, T_OBJECT);
2931 
2932   ByteSize offset = KLASS_TRACE_ID_OFFSET;
2933   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2934   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
2935 
2936   Node* clsused = longcon(0x01l); // set the class bit
2937   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
2938   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2939   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
2940 
2941 #ifdef TRACE_ID_META_BITS
2942   Node* mbits = longcon(~TRACE_ID_META_BITS);
2943   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
2944 #endif
2945 #ifdef TRACE_ID_SHIFT
2946   Node* cbits = intcon(TRACE_ID_SHIFT);
2947   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
2948 #endif
2949 
2950   set_result(tvalue);
2951   return true;
2952 
2953 }
2954 
2955 bool LibraryCallKit::inline_native_getEventWriter() {
2956   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
2957 
2958   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
2959                                   in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
2960 
2961   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2962 
2963   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
2964   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
2965 
2966   IfNode* iff_jobj_null =
2967     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
2968 
2969   enum { _normal_path = 1,
2970          _null_path = 2,
2971          PATH_LIMIT };
2972 
2973   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
2974   PhiNode*    result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
2975 
2976   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
2977   result_rgn->init_req(_null_path, jobj_is_null);
2978   result_val->init_req(_null_path, null());
2979 
2980   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
2981   set_control(jobj_is_not_null);
2982   Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT,
2983                           IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
2984   result_rgn->init_req(_normal_path, control());
2985   result_val->init_req(_normal_path, res);
2986 
2987   set_result(result_rgn, result_val);
2988 
2989   return true;
2990 }
2991 
2992 #endif // JFR_HAVE_INTRINSICS
2993 
2994 //------------------------inline_native_currentThread------------------
2995 bool LibraryCallKit::inline_native_currentThread() {
2996   Node* junk = NULL;
2997   set_result(generate_current_thread(junk));
2998   return true;
2999 }
3000 
3001 //------------------------inline_native_isInterrupted------------------
3002 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3003 bool LibraryCallKit::inline_native_isInterrupted() {
3004   // Add a fast path to t.isInterrupted(clear_int):
3005   //   (t == Thread.current() &&
3006   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3007   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3008   // So, in the common case that the interrupt bit is false,
3009   // we avoid making a call into the VM.  Even if the interrupt bit
3010   // is true, if the clear_int argument is false, we avoid the VM call.
3011   // However, if the receiver is not currentThread, we must call the VM,
3012   // because there must be some locking done around the operation.
3013 
3014   // We only go to the fast case code if we pass two guards.
3015   // Paths which do not pass are accumulated in the slow_region.
3016 
3017   enum {
3018     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3019     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3020     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3021     PATH_LIMIT
3022   };
3023 
3024   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3025   // out of the function.
3026   insert_mem_bar(Op_MemBarCPUOrder);
3027 
3028   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3029   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3030 
3031   RegionNode* slow_region = new RegionNode(1);
3032   record_for_igvn(slow_region);
3033 
3034   // (a) Receiving thread must be the current thread.
3035   Node* rec_thr = argument(0);
3036   Node* tls_ptr = NULL;
3037   Node* cur_thr = generate_current_thread(tls_ptr);
3038 
3039   // Resolve oops to stable for CmpP below.
3040   cur_thr = access_resolve(cur_thr, 0);
3041   rec_thr = access_resolve(rec_thr, 0);
3042 
3043   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3044   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3045 
3046   generate_slow_guard(bol_thr, slow_region);
3047 
3048   // (b) Interrupt bit on TLS must be false.
3049   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3050   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3051   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3052 
3053   // Set the control input on the field _interrupted read to prevent it floating up.
3054   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3055   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3056   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3057 
3058   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3059 
3060   // First fast path:  if (!TLS._interrupted) return false;
3061   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3062   result_rgn->init_req(no_int_result_path, false_bit);
3063   result_val->init_req(no_int_result_path, intcon(0));
3064 
3065   // drop through to next case
3066   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3067 
3068 #ifndef _WINDOWS
3069   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3070   Node* clr_arg = argument(1);
3071   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3072   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3073   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3074 
3075   // Second fast path:  ... else if (!clear_int) return true;
3076   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3077   result_rgn->init_req(no_clear_result_path, false_arg);
3078   result_val->init_req(no_clear_result_path, intcon(1));
3079 
3080   // drop through to next case
3081   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3082 #else
3083   // To return true on Windows you must read the _interrupted field
3084   // and check the event state i.e. take the slow path.
3085 #endif // _WINDOWS
3086 
3087   // (d) Otherwise, go to the slow path.
3088   slow_region->add_req(control());
3089   set_control( _gvn.transform(slow_region));
3090 
3091   if (stopped()) {
3092     // There is no slow path.
3093     result_rgn->init_req(slow_result_path, top());
3094     result_val->init_req(slow_result_path, top());
3095   } else {
3096     // non-virtual because it is a private non-static
3097     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3098 
3099     Node* slow_val = set_results_for_java_call(slow_call);
3100     // this->control() comes from set_results_for_java_call
3101 
3102     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3103     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3104 
3105     // These two phis are pre-filled with copies of of the fast IO and Memory
3106     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3107     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3108 
3109     result_rgn->init_req(slow_result_path, control());
3110     result_io ->init_req(slow_result_path, i_o());
3111     result_mem->init_req(slow_result_path, reset_memory());
3112     result_val->init_req(slow_result_path, slow_val);
3113 
3114     set_all_memory(_gvn.transform(result_mem));
3115     set_i_o(       _gvn.transform(result_io));
3116   }
3117 
3118   C->set_has_split_ifs(true); // Has chance for split-if optimization
3119   set_result(result_rgn, result_val);
3120   return true;
3121 }
3122 
3123 //---------------------------load_mirror_from_klass----------------------------
3124 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3125 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3126   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3127   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3128   // mirror = ((OopHandle)mirror)->resolve();
3129   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3130 }
3131 
3132 //-----------------------load_klass_from_mirror_common-------------------------
3133 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3134 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3135 // and branch to the given path on the region.
3136 // If never_see_null, take an uncommon trap on null, so we can optimistically
3137 // compile for the non-null case.
3138 // If the region is NULL, force never_see_null = true.
3139 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3140                                                     bool never_see_null,
3141                                                     RegionNode* region,
3142                                                     int null_path,
3143                                                     int offset) {
3144   if (region == NULL)  never_see_null = true;
3145   Node* p = basic_plus_adr(mirror, offset);
3146   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3147   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3148   Node* null_ctl = top();
3149   kls = null_check_oop(kls, &null_ctl, never_see_null);
3150   if (region != NULL) {
3151     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3152     region->init_req(null_path, null_ctl);
3153   } else {
3154     assert(null_ctl == top(), "no loose ends");
3155   }
3156   return kls;
3157 }
3158 
3159 //--------------------(inline_native_Class_query helpers)---------------------
3160 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3161 // Fall through if (mods & mask) == bits, take the guard otherwise.
3162 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3163   // Branch around if the given klass has the given modifier bit set.
3164   // Like generate_guard, adds a new path onto the region.
3165   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3166   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3167   Node* mask = intcon(modifier_mask);
3168   Node* bits = intcon(modifier_bits);
3169   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3170   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3171   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3172   return generate_fair_guard(bol, region);
3173 }
3174 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3175   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3176 }
3177 
3178 //-------------------------inline_native_Class_query-------------------
3179 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3180   const Type* return_type = TypeInt::BOOL;
3181   Node* prim_return_value = top();  // what happens if it's a primitive class?
3182   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3183   bool expect_prim = false;     // most of these guys expect to work on refs
3184 
3185   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3186 
3187   Node* mirror = argument(0);
3188   Node* obj    = top();
3189 
3190   switch (id) {
3191   case vmIntrinsics::_isInstance:
3192     // nothing is an instance of a primitive type
3193     prim_return_value = intcon(0);
3194     obj = argument(1);
3195     break;
3196   case vmIntrinsics::_getModifiers:
3197     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3198     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3199     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3200     break;
3201   case vmIntrinsics::_isInterface:
3202     prim_return_value = intcon(0);
3203     break;
3204   case vmIntrinsics::_isArray:
3205     prim_return_value = intcon(0);
3206     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3207     break;
3208   case vmIntrinsics::_isPrimitive:
3209     prim_return_value = intcon(1);
3210     expect_prim = true;  // obviously
3211     break;
3212   case vmIntrinsics::_getSuperclass:
3213     prim_return_value = null();
3214     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3215     break;
3216   case vmIntrinsics::_getClassAccessFlags:
3217     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3218     return_type = TypeInt::INT;  // not bool!  6297094
3219     break;
3220   default:
3221     fatal_unexpected_iid(id);
3222     break;
3223   }
3224 
3225   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3226   if (mirror_con == NULL)  return false;  // cannot happen?
3227 
3228 #ifndef PRODUCT
3229   if (C->print_intrinsics() || C->print_inlining()) {
3230     ciType* k = mirror_con->java_mirror_type();
3231     if (k) {
3232       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3233       k->print_name();
3234       tty->cr();
3235     }
3236   }
3237 #endif
3238 
3239   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3240   RegionNode* region = new RegionNode(PATH_LIMIT);
3241   record_for_igvn(region);
3242   PhiNode* phi = new PhiNode(region, return_type);
3243 
3244   // The mirror will never be null of Reflection.getClassAccessFlags, however
3245   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3246   // if it is. See bug 4774291.
3247 
3248   // For Reflection.getClassAccessFlags(), the null check occurs in
3249   // the wrong place; see inline_unsafe_access(), above, for a similar
3250   // situation.
3251   mirror = null_check(mirror);
3252   // If mirror or obj is dead, only null-path is taken.
3253   if (stopped())  return true;
3254 
3255   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3256 
3257   // Now load the mirror's klass metaobject, and null-check it.
3258   // Side-effects region with the control path if the klass is null.
3259   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3260   // If kls is null, we have a primitive mirror.
3261   phi->init_req(_prim_path, prim_return_value);
3262   if (stopped()) { set_result(region, phi); return true; }
3263   bool safe_for_replace = (region->in(_prim_path) == top());
3264 
3265   Node* p;  // handy temp
3266   Node* null_ctl;
3267 
3268   // Now that we have the non-null klass, we can perform the real query.
3269   // For constant classes, the query will constant-fold in LoadNode::Value.
3270   Node* query_value = top();
3271   switch (id) {
3272   case vmIntrinsics::_isInstance:
3273     // nothing is an instance of a primitive type
3274     query_value = gen_instanceof(obj, kls, safe_for_replace);
3275     break;
3276 
3277   case vmIntrinsics::_getModifiers:
3278     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3279     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3280     break;
3281 
3282   case vmIntrinsics::_isInterface:
3283     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3284     if (generate_interface_guard(kls, region) != NULL)
3285       // A guard was added.  If the guard is taken, it was an interface.
3286       phi->add_req(intcon(1));
3287     // If we fall through, it's a plain class.
3288     query_value = intcon(0);
3289     break;
3290 
3291   case vmIntrinsics::_isArray:
3292     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3293     if (generate_array_guard(kls, region) != NULL)
3294       // A guard was added.  If the guard is taken, it was an array.
3295       phi->add_req(intcon(1));
3296     // If we fall through, it's a plain class.
3297     query_value = intcon(0);
3298     break;
3299 
3300   case vmIntrinsics::_isPrimitive:
3301     query_value = intcon(0); // "normal" path produces false
3302     break;
3303 
3304   case vmIntrinsics::_getSuperclass:
3305     // The rules here are somewhat unfortunate, but we can still do better
3306     // with random logic than with a JNI call.
3307     // Interfaces store null or Object as _super, but must report null.
3308     // Arrays store an intermediate super as _super, but must report Object.
3309     // Other types can report the actual _super.
3310     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3311     if (generate_interface_guard(kls, region) != NULL)
3312       // A guard was added.  If the guard is taken, it was an interface.
3313       phi->add_req(null());
3314     if (generate_array_guard(kls, region) != NULL)
3315       // A guard was added.  If the guard is taken, it was an array.
3316       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3317     // If we fall through, it's a plain class.  Get its _super.
3318     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3319     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3320     null_ctl = top();
3321     kls = null_check_oop(kls, &null_ctl);
3322     if (null_ctl != top()) {
3323       // If the guard is taken, Object.superClass is null (both klass and mirror).
3324       region->add_req(null_ctl);
3325       phi   ->add_req(null());
3326     }
3327     if (!stopped()) {
3328       query_value = load_mirror_from_klass(kls);
3329     }
3330     break;
3331 
3332   case vmIntrinsics::_getClassAccessFlags:
3333     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3334     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3335     break;
3336 
3337   default:
3338     fatal_unexpected_iid(id);
3339     break;
3340   }
3341 
3342   // Fall-through is the normal case of a query to a real class.
3343   phi->init_req(1, query_value);
3344   region->init_req(1, control());
3345 
3346   C->set_has_split_ifs(true); // Has chance for split-if optimization
3347   set_result(region, phi);
3348   return true;
3349 }
3350 
3351 //-------------------------inline_Class_cast-------------------
3352 bool LibraryCallKit::inline_Class_cast() {
3353   Node* mirror = argument(0); // Class
3354   Node* obj    = argument(1);
3355   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3356   if (mirror_con == NULL) {
3357     return false;  // dead path (mirror->is_top()).
3358   }
3359   if (obj == NULL || obj->is_top()) {
3360     return false;  // dead path
3361   }
3362   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3363 
3364   // First, see if Class.cast() can be folded statically.
3365   // java_mirror_type() returns non-null for compile-time Class constants.
3366   ciType* tm = mirror_con->java_mirror_type();
3367   if (tm != NULL && tm->is_klass() &&
3368       tp != NULL && tp->klass() != NULL) {
3369     if (!tp->klass()->is_loaded()) {
3370       // Don't use intrinsic when class is not loaded.
3371       return false;
3372     } else {
3373       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3374       if (static_res == Compile::SSC_always_true) {
3375         // isInstance() is true - fold the code.
3376         set_result(obj);
3377         return true;
3378       } else if (static_res == Compile::SSC_always_false) {
3379         // Don't use intrinsic, have to throw ClassCastException.
3380         // If the reference is null, the non-intrinsic bytecode will
3381         // be optimized appropriately.
3382         return false;
3383       }
3384     }
3385   }
3386 
3387   // Bailout intrinsic and do normal inlining if exception path is frequent.
3388   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3389     return false;
3390   }
3391 
3392   // Generate dynamic checks.
3393   // Class.cast() is java implementation of _checkcast bytecode.
3394   // Do checkcast (Parse::do_checkcast()) optimizations here.
3395 
3396   mirror = null_check(mirror);
3397   // If mirror is dead, only null-path is taken.
3398   if (stopped()) {
3399     return true;
3400   }
3401 
3402   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3403   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3404   RegionNode* region = new RegionNode(PATH_LIMIT);
3405   record_for_igvn(region);
3406 
3407   // Now load the mirror's klass metaobject, and null-check it.
3408   // If kls is null, we have a primitive mirror and
3409   // nothing is an instance of a primitive type.
3410   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3411 
3412   Node* res = top();
3413   if (!stopped()) {
3414     Node* bad_type_ctrl = top();
3415     // Do checkcast optimizations.
3416     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3417     region->init_req(_bad_type_path, bad_type_ctrl);
3418   }
3419   if (region->in(_prim_path) != top() ||
3420       region->in(_bad_type_path) != top()) {
3421     // Let Interpreter throw ClassCastException.
3422     PreserveJVMState pjvms(this);
3423     set_control(_gvn.transform(region));
3424     uncommon_trap(Deoptimization::Reason_intrinsic,
3425                   Deoptimization::Action_maybe_recompile);
3426   }
3427   if (!stopped()) {
3428     set_result(res);
3429   }
3430   return true;
3431 }
3432 
3433 
3434 //--------------------------inline_native_subtype_check------------------------
3435 // This intrinsic takes the JNI calls out of the heart of
3436 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3437 bool LibraryCallKit::inline_native_subtype_check() {
3438   // Pull both arguments off the stack.
3439   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3440   args[0] = argument(0);
3441   args[1] = argument(1);
3442   Node* klasses[2];             // corresponding Klasses: superk, subk
3443   klasses[0] = klasses[1] = top();
3444 
3445   enum {
3446     // A full decision tree on {superc is prim, subc is prim}:
3447     _prim_0_path = 1,           // {P,N} => false
3448                                 // {P,P} & superc!=subc => false
3449     _prim_same_path,            // {P,P} & superc==subc => true
3450     _prim_1_path,               // {N,P} => false
3451     _ref_subtype_path,          // {N,N} & subtype check wins => true
3452     _both_ref_path,             // {N,N} & subtype check loses => false
3453     PATH_LIMIT
3454   };
3455 
3456   RegionNode* region = new RegionNode(PATH_LIMIT);
3457   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3458   record_for_igvn(region);
3459 
3460   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3461   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3462   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3463 
3464   // First null-check both mirrors and load each mirror's klass metaobject.
3465   int which_arg;
3466   for (which_arg = 0; which_arg <= 1; which_arg++) {
3467     Node* arg = args[which_arg];
3468     arg = null_check(arg);
3469     if (stopped())  break;
3470     args[which_arg] = arg;
3471 
3472     Node* p = basic_plus_adr(arg, class_klass_offset);
3473     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3474     klasses[which_arg] = _gvn.transform(kls);
3475   }
3476 
3477   // Resolve oops to stable for CmpP below.
3478   args[0] = access_resolve(args[0], 0);
3479   args[1] = access_resolve(args[1], 0);
3480 
3481   // Having loaded both klasses, test each for null.
3482   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3483   for (which_arg = 0; which_arg <= 1; which_arg++) {
3484     Node* kls = klasses[which_arg];
3485     Node* null_ctl = top();
3486     kls = null_check_oop(kls, &null_ctl, never_see_null);
3487     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3488     region->init_req(prim_path, null_ctl);
3489     if (stopped())  break;
3490     klasses[which_arg] = kls;
3491   }
3492 
3493   if (!stopped()) {
3494     // now we have two reference types, in klasses[0..1]
3495     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3496     Node* superk = klasses[0];  // the receiver
3497     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3498     // now we have a successful reference subtype check
3499     region->set_req(_ref_subtype_path, control());
3500   }
3501 
3502   // If both operands are primitive (both klasses null), then
3503   // we must return true when they are identical primitives.
3504   // It is convenient to test this after the first null klass check.
3505   set_control(region->in(_prim_0_path)); // go back to first null check
3506   if (!stopped()) {
3507     // Since superc is primitive, make a guard for the superc==subc case.
3508     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3509     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3510     generate_guard(bol_eq, region, PROB_FAIR);
3511     if (region->req() == PATH_LIMIT+1) {
3512       // A guard was added.  If the added guard is taken, superc==subc.
3513       region->swap_edges(PATH_LIMIT, _prim_same_path);
3514       region->del_req(PATH_LIMIT);
3515     }
3516     region->set_req(_prim_0_path, control()); // Not equal after all.
3517   }
3518 
3519   // these are the only paths that produce 'true':
3520   phi->set_req(_prim_same_path,   intcon(1));
3521   phi->set_req(_ref_subtype_path, intcon(1));
3522 
3523   // pull together the cases:
3524   assert(region->req() == PATH_LIMIT, "sane region");
3525   for (uint i = 1; i < region->req(); i++) {
3526     Node* ctl = region->in(i);
3527     if (ctl == NULL || ctl == top()) {
3528       region->set_req(i, top());
3529       phi   ->set_req(i, top());
3530     } else if (phi->in(i) == NULL) {
3531       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3532     }
3533   }
3534 
3535   set_control(_gvn.transform(region));
3536   set_result(_gvn.transform(phi));
3537   return true;
3538 }
3539 
3540 //---------------------generate_array_guard_common------------------------
3541 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3542                                                   bool obj_array, bool not_array) {
3543 
3544   if (stopped()) {
3545     return NULL;
3546   }
3547 
3548   // If obj_array/non_array==false/false:
3549   // Branch around if the given klass is in fact an array (either obj or prim).
3550   // If obj_array/non_array==false/true:
3551   // Branch around if the given klass is not an array klass of any kind.
3552   // If obj_array/non_array==true/true:
3553   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3554   // If obj_array/non_array==true/false:
3555   // Branch around if the kls is an oop array (Object[] or subtype)
3556   //
3557   // Like generate_guard, adds a new path onto the region.
3558   jint  layout_con = 0;
3559   Node* layout_val = get_layout_helper(kls, layout_con);
3560   if (layout_val == NULL) {
3561     bool query = (obj_array
3562                   ? Klass::layout_helper_is_objArray(layout_con)
3563                   : Klass::layout_helper_is_array(layout_con));
3564     if (query == not_array) {
3565       return NULL;                       // never a branch
3566     } else {                             // always a branch
3567       Node* always_branch = control();
3568       if (region != NULL)
3569         region->add_req(always_branch);
3570       set_control(top());
3571       return always_branch;
3572     }
3573   }
3574   // Now test the correct condition.
3575   jint  nval = (obj_array
3576                 ? (jint)(Klass::_lh_array_tag_type_value
3577                    <<    Klass::_lh_array_tag_shift)
3578                 : Klass::_lh_neutral_value);
3579   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3580   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3581   // invert the test if we are looking for a non-array
3582   if (not_array)  btest = BoolTest(btest).negate();
3583   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3584   return generate_fair_guard(bol, region);
3585 }
3586 
3587 
3588 //-----------------------inline_native_newArray--------------------------
3589 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3590 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3591 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3592   Node* mirror;
3593   Node* count_val;
3594   if (uninitialized) {
3595     mirror    = argument(1);
3596     count_val = argument(2);
3597   } else {
3598     mirror    = argument(0);
3599     count_val = argument(1);
3600   }
3601 
3602   mirror = null_check(mirror);
3603   // If mirror or obj is dead, only null-path is taken.
3604   if (stopped())  return true;
3605 
3606   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3607   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3608   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3609   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3610   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3611 
3612   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3613   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3614                                                   result_reg, _slow_path);
3615   Node* normal_ctl   = control();
3616   Node* no_array_ctl = result_reg->in(_slow_path);
3617 
3618   // Generate code for the slow case.  We make a call to newArray().
3619   set_control(no_array_ctl);
3620   if (!stopped()) {
3621     // Either the input type is void.class, or else the
3622     // array klass has not yet been cached.  Either the
3623     // ensuing call will throw an exception, or else it
3624     // will cache the array klass for next time.
3625     PreserveJVMState pjvms(this);
3626     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3627     Node* slow_result = set_results_for_java_call(slow_call);
3628     // this->control() comes from set_results_for_java_call
3629     result_reg->set_req(_slow_path, control());
3630     result_val->set_req(_slow_path, slow_result);
3631     result_io ->set_req(_slow_path, i_o());
3632     result_mem->set_req(_slow_path, reset_memory());
3633   }
3634 
3635   set_control(normal_ctl);
3636   if (!stopped()) {
3637     // Normal case:  The array type has been cached in the java.lang.Class.
3638     // The following call works fine even if the array type is polymorphic.
3639     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3640     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3641     result_reg->init_req(_normal_path, control());
3642     result_val->init_req(_normal_path, obj);
3643     result_io ->init_req(_normal_path, i_o());
3644     result_mem->init_req(_normal_path, reset_memory());
3645 
3646     if (uninitialized) {
3647       // Mark the allocation so that zeroing is skipped
3648       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3649       alloc->maybe_set_complete(&_gvn);
3650     }
3651   }
3652 
3653   // Return the combined state.
3654   set_i_o(        _gvn.transform(result_io)  );
3655   set_all_memory( _gvn.transform(result_mem));
3656 
3657   C->set_has_split_ifs(true); // Has chance for split-if optimization
3658   set_result(result_reg, result_val);
3659   return true;
3660 }
3661 
3662 //----------------------inline_native_getLength--------------------------
3663 // public static native int java.lang.reflect.Array.getLength(Object array);
3664 bool LibraryCallKit::inline_native_getLength() {
3665   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3666 
3667   Node* array = null_check(argument(0));
3668   // If array is dead, only null-path is taken.
3669   if (stopped())  return true;
3670 
3671   // Deoptimize if it is a non-array.
3672   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3673 
3674   if (non_array != NULL) {
3675     PreserveJVMState pjvms(this);
3676     set_control(non_array);
3677     uncommon_trap(Deoptimization::Reason_intrinsic,
3678                   Deoptimization::Action_maybe_recompile);
3679   }
3680 
3681   // If control is dead, only non-array-path is taken.
3682   if (stopped())  return true;
3683 
3684   // The works fine even if the array type is polymorphic.
3685   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3686   Node* result = load_array_length(array);
3687 
3688   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3689   set_result(result);
3690   return true;
3691 }
3692 
3693 //------------------------inline_array_copyOf----------------------------
3694 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3695 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3696 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3697   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3698 
3699   // Get the arguments.
3700   Node* original          = argument(0);
3701   Node* start             = is_copyOfRange? argument(1): intcon(0);
3702   Node* end               = is_copyOfRange? argument(2): argument(1);
3703   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3704 
3705   Node* newcopy = NULL;
3706 
3707   // Set the original stack and the reexecute bit for the interpreter to reexecute
3708   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3709   { PreserveReexecuteState preexecs(this);
3710     jvms()->set_should_reexecute(true);
3711 
3712     array_type_mirror = null_check(array_type_mirror);
3713     original          = null_check(original);
3714 
3715     // Check if a null path was taken unconditionally.
3716     if (stopped())  return true;
3717 
3718     Node* orig_length = load_array_length(original);
3719 
3720     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3721     klass_node = null_check(klass_node);
3722 
3723     RegionNode* bailout = new RegionNode(1);
3724     record_for_igvn(bailout);
3725 
3726     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3727     // Bail out if that is so.
3728     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3729     if (not_objArray != NULL) {
3730       // Improve the klass node's type from the new optimistic assumption:
3731       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3732       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3733       Node* cast = new CastPPNode(klass_node, akls);
3734       cast->init_req(0, control());
3735       klass_node = _gvn.transform(cast);
3736     }
3737 
3738     // Bail out if either start or end is negative.
3739     generate_negative_guard(start, bailout, &start);
3740     generate_negative_guard(end,   bailout, &end);
3741 
3742     Node* length = end;
3743     if (_gvn.type(start) != TypeInt::ZERO) {
3744       length = _gvn.transform(new SubINode(end, start));
3745     }
3746 
3747     // Bail out if length is negative.
3748     // Without this the new_array would throw
3749     // NegativeArraySizeException but IllegalArgumentException is what
3750     // should be thrown
3751     generate_negative_guard(length, bailout, &length);
3752 
3753     if (bailout->req() > 1) {
3754       PreserveJVMState pjvms(this);
3755       set_control(_gvn.transform(bailout));
3756       uncommon_trap(Deoptimization::Reason_intrinsic,
3757                     Deoptimization::Action_maybe_recompile);
3758     }
3759 
3760     if (!stopped()) {
3761       // How many elements will we copy from the original?
3762       // The answer is MinI(orig_length - start, length).
3763       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3764       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3765 
3766       original = access_resolve(original, ACCESS_READ);
3767 
3768       // Generate a direct call to the right arraycopy function(s).
3769       // We know the copy is disjoint but we might not know if the
3770       // oop stores need checking.
3771       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3772       // This will fail a store-check if x contains any non-nulls.
3773 
3774       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3775       // loads/stores but it is legal only if we're sure the
3776       // Arrays.copyOf would succeed. So we need all input arguments
3777       // to the copyOf to be validated, including that the copy to the
3778       // new array won't trigger an ArrayStoreException. That subtype
3779       // check can be optimized if we know something on the type of
3780       // the input array from type speculation.
3781       if (_gvn.type(klass_node)->singleton()) {
3782         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3783         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3784 
3785         int test = C->static_subtype_check(superk, subk);
3786         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3787           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3788           if (t_original->speculative_type() != NULL) {
3789             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3790           }
3791         }
3792       }
3793 
3794       bool validated = false;
3795       // Reason_class_check rather than Reason_intrinsic because we
3796       // want to intrinsify even if this traps.
3797       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3798         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3799                                                    klass_node);
3800 
3801         if (not_subtype_ctrl != top()) {
3802           PreserveJVMState pjvms(this);
3803           set_control(not_subtype_ctrl);
3804           uncommon_trap(Deoptimization::Reason_class_check,
3805                         Deoptimization::Action_make_not_entrant);
3806           assert(stopped(), "Should be stopped");
3807         }
3808         validated = true;
3809       }
3810 
3811       if (!stopped()) {
3812         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3813 
3814         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
3815                                                 load_object_klass(original), klass_node);
3816         if (!is_copyOfRange) {
3817           ac->set_copyof(validated);
3818         } else {
3819           ac->set_copyofrange(validated);
3820         }
3821         Node* n = _gvn.transform(ac);
3822         if (n == ac) {
3823           ac->connect_outputs(this);
3824         } else {
3825           assert(validated, "shouldn't transform if all arguments not validated");
3826           set_all_memory(n);
3827         }
3828       }
3829     }
3830   } // original reexecute is set back here
3831 
3832   C->set_has_split_ifs(true); // Has chance for split-if optimization
3833   if (!stopped()) {
3834     set_result(newcopy);
3835   }
3836   return true;
3837 }
3838 
3839 
3840 //----------------------generate_virtual_guard---------------------------
3841 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3842 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3843                                              RegionNode* slow_region) {
3844   ciMethod* method = callee();
3845   int vtable_index = method->vtable_index();
3846   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3847          "bad index %d", vtable_index);
3848   // Get the Method* out of the appropriate vtable entry.
3849   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
3850                      vtable_index*vtableEntry::size_in_bytes() +
3851                      vtableEntry::method_offset_in_bytes();
3852   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3853   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3854 
3855   // Compare the target method with the expected method (e.g., Object.hashCode).
3856   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3857 
3858   Node* native_call = makecon(native_call_addr);
3859   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3860   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3861 
3862   return generate_slow_guard(test_native, slow_region);
3863 }
3864 
3865 //-----------------------generate_method_call----------------------------
3866 // Use generate_method_call to make a slow-call to the real
3867 // method if the fast path fails.  An alternative would be to
3868 // use a stub like OptoRuntime::slow_arraycopy_Java.
3869 // This only works for expanding the current library call,
3870 // not another intrinsic.  (E.g., don't use this for making an
3871 // arraycopy call inside of the copyOf intrinsic.)
3872 CallJavaNode*
3873 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3874   // When compiling the intrinsic method itself, do not use this technique.
3875   guarantee(callee() != C->method(), "cannot make slow-call to self");
3876 
3877   ciMethod* method = callee();
3878   // ensure the JVMS we have will be correct for this call
3879   guarantee(method_id == method->intrinsic_id(), "must match");
3880 
3881   const TypeFunc* tf = TypeFunc::make(method);
3882   CallJavaNode* slow_call;
3883   if (is_static) {
3884     assert(!is_virtual, "");
3885     slow_call = new CallStaticJavaNode(C, tf,
3886                            SharedRuntime::get_resolve_static_call_stub(),
3887                            method, bci());
3888   } else if (is_virtual) {
3889     null_check_receiver();
3890     int vtable_index = Method::invalid_vtable_index;
3891     if (UseInlineCaches) {
3892       // Suppress the vtable call
3893     } else {
3894       // hashCode and clone are not a miranda methods,
3895       // so the vtable index is fixed.
3896       // No need to use the linkResolver to get it.
3897        vtable_index = method->vtable_index();
3898        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3899               "bad index %d", vtable_index);
3900     }
3901     slow_call = new CallDynamicJavaNode(tf,
3902                           SharedRuntime::get_resolve_virtual_call_stub(),
3903                           method, vtable_index, bci());
3904   } else {  // neither virtual nor static:  opt_virtual
3905     null_check_receiver();
3906     slow_call = new CallStaticJavaNode(C, tf,
3907                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3908                                 method, bci());
3909     slow_call->set_optimized_virtual(true);
3910   }
3911   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
3912     // To be able to issue a direct call (optimized virtual or virtual)
3913     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
3914     // about the method being invoked should be attached to the call site to
3915     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
3916     slow_call->set_override_symbolic_info(true);
3917   }
3918   set_arguments_for_java_call(slow_call);
3919   set_edges_for_java_call(slow_call);
3920   return slow_call;
3921 }
3922 
3923 
3924 /**
3925  * Build special case code for calls to hashCode on an object. This call may
3926  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3927  * slightly different code.
3928  */
3929 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3930   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3931   assert(!(is_virtual && is_static), "either virtual, special, or static");
3932 
3933   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3934 
3935   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3936   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3937   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3938   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3939   Node* obj = NULL;
3940   if (!is_static) {
3941     // Check for hashing null object
3942     obj = null_check_receiver();
3943     if (stopped())  return true;        // unconditionally null
3944     result_reg->init_req(_null_path, top());
3945     result_val->init_req(_null_path, top());
3946   } else {
3947     // Do a null check, and return zero if null.
3948     // System.identityHashCode(null) == 0
3949     obj = argument(0);
3950     Node* null_ctl = top();
3951     obj = null_check_oop(obj, &null_ctl);
3952     result_reg->init_req(_null_path, null_ctl);
3953     result_val->init_req(_null_path, _gvn.intcon(0));
3954   }
3955 
3956   // Unconditionally null?  Then return right away.
3957   if (stopped()) {
3958     set_control( result_reg->in(_null_path));
3959     if (!stopped())
3960       set_result(result_val->in(_null_path));
3961     return true;
3962   }
3963 
3964   // We only go to the fast case code if we pass a number of guards.  The
3965   // paths which do not pass are accumulated in the slow_region.
3966   RegionNode* slow_region = new RegionNode(1);
3967   record_for_igvn(slow_region);
3968 
3969   // If this is a virtual call, we generate a funny guard.  We pull out
3970   // the vtable entry corresponding to hashCode() from the target object.
3971   // If the target method which we are calling happens to be the native
3972   // Object hashCode() method, we pass the guard.  We do not need this
3973   // guard for non-virtual calls -- the caller is known to be the native
3974   // Object hashCode().
3975   if (is_virtual) {
3976     // After null check, get the object's klass.
3977     Node* obj_klass = load_object_klass(obj);
3978     generate_virtual_guard(obj_klass, slow_region);
3979   }
3980 
3981   // Get the header out of the object, use LoadMarkNode when available
3982   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3983   // The control of the load must be NULL. Otherwise, the load can move before
3984   // the null check after castPP removal.
3985   Node* no_ctrl = NULL;
3986   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3987 
3988   // Test the header to see if it is unlocked.
3989   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3990   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
3991   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3992   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
3993   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
3994 
3995   generate_slow_guard(test_unlocked, slow_region);
3996 
3997   // Get the hash value and check to see that it has been properly assigned.
3998   // We depend on hash_mask being at most 32 bits and avoid the use of
3999   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4000   // vm: see markOop.hpp.
4001   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4002   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4003   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4004   // This hack lets the hash bits live anywhere in the mark object now, as long
4005   // as the shift drops the relevant bits into the low 32 bits.  Note that
4006   // Java spec says that HashCode is an int so there's no point in capturing
4007   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4008   hshifted_header      = ConvX2I(hshifted_header);
4009   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4010 
4011   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4012   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4013   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4014 
4015   generate_slow_guard(test_assigned, slow_region);
4016 
4017   Node* init_mem = reset_memory();
4018   // fill in the rest of the null path:
4019   result_io ->init_req(_null_path, i_o());
4020   result_mem->init_req(_null_path, init_mem);
4021 
4022   result_val->init_req(_fast_path, hash_val);
4023   result_reg->init_req(_fast_path, control());
4024   result_io ->init_req(_fast_path, i_o());
4025   result_mem->init_req(_fast_path, init_mem);
4026 
4027   // Generate code for the slow case.  We make a call to hashCode().
4028   set_control(_gvn.transform(slow_region));
4029   if (!stopped()) {
4030     // No need for PreserveJVMState, because we're using up the present state.
4031     set_all_memory(init_mem);
4032     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4033     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4034     Node* slow_result = set_results_for_java_call(slow_call);
4035     // this->control() comes from set_results_for_java_call
4036     result_reg->init_req(_slow_path, control());
4037     result_val->init_req(_slow_path, slow_result);
4038     result_io  ->set_req(_slow_path, i_o());
4039     result_mem ->set_req(_slow_path, reset_memory());
4040   }
4041 
4042   // Return the combined state.
4043   set_i_o(        _gvn.transform(result_io)  );
4044   set_all_memory( _gvn.transform(result_mem));
4045 
4046   set_result(result_reg, result_val);
4047   return true;
4048 }
4049 
4050 //---------------------------inline_native_getClass----------------------------
4051 // public final native Class<?> java.lang.Object.getClass();
4052 //
4053 // Build special case code for calls to getClass on an object.
4054 bool LibraryCallKit::inline_native_getClass() {
4055   Node* obj = null_check_receiver();
4056   if (stopped())  return true;
4057   set_result(load_mirror_from_klass(load_object_klass(obj)));
4058   return true;
4059 }
4060 
4061 //-----------------inline_native_Reflection_getCallerClass---------------------
4062 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4063 //
4064 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4065 //
4066 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4067 // in that it must skip particular security frames and checks for
4068 // caller sensitive methods.
4069 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4070 #ifndef PRODUCT
4071   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4072     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4073   }
4074 #endif
4075 
4076   if (!jvms()->has_method()) {
4077 #ifndef PRODUCT
4078     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4079       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4080     }
4081 #endif
4082     return false;
4083   }
4084 
4085   // Walk back up the JVM state to find the caller at the required
4086   // depth.
4087   JVMState* caller_jvms = jvms();
4088 
4089   // Cf. JVM_GetCallerClass
4090   // NOTE: Start the loop at depth 1 because the current JVM state does
4091   // not include the Reflection.getCallerClass() frame.
4092   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4093     ciMethod* m = caller_jvms->method();
4094     switch (n) {
4095     case 0:
4096       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4097       break;
4098     case 1:
4099       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4100       if (!m->caller_sensitive()) {
4101 #ifndef PRODUCT
4102         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4103           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4104         }
4105 #endif
4106         return false;  // bail-out; let JVM_GetCallerClass do the work
4107       }
4108       break;
4109     default:
4110       if (!m->is_ignored_by_security_stack_walk()) {
4111         // We have reached the desired frame; return the holder class.
4112         // Acquire method holder as java.lang.Class and push as constant.
4113         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4114         ciInstance* caller_mirror = caller_klass->java_mirror();
4115         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4116 
4117 #ifndef PRODUCT
4118         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4119           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4120           tty->print_cr("  JVM state at this point:");
4121           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4122             ciMethod* m = jvms()->of_depth(i)->method();
4123             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4124           }
4125         }
4126 #endif
4127         return true;
4128       }
4129       break;
4130     }
4131   }
4132 
4133 #ifndef PRODUCT
4134   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4135     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4136     tty->print_cr("  JVM state at this point:");
4137     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4138       ciMethod* m = jvms()->of_depth(i)->method();
4139       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4140     }
4141   }
4142 #endif
4143 
4144   return false;  // bail-out; let JVM_GetCallerClass do the work
4145 }
4146 
4147 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4148   Node* arg = argument(0);
4149   Node* result = NULL;
4150 
4151   switch (id) {
4152   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4153   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4154   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4155   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4156 
4157   case vmIntrinsics::_doubleToLongBits: {
4158     // two paths (plus control) merge in a wood
4159     RegionNode *r = new RegionNode(3);
4160     Node *phi = new PhiNode(r, TypeLong::LONG);
4161 
4162     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4163     // Build the boolean node
4164     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4165 
4166     // Branch either way.
4167     // NaN case is less traveled, which makes all the difference.
4168     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4169     Node *opt_isnan = _gvn.transform(ifisnan);
4170     assert( opt_isnan->is_If(), "Expect an IfNode");
4171     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4172     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4173 
4174     set_control(iftrue);
4175 
4176     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4177     Node *slow_result = longcon(nan_bits); // return NaN
4178     phi->init_req(1, _gvn.transform( slow_result ));
4179     r->init_req(1, iftrue);
4180 
4181     // Else fall through
4182     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4183     set_control(iffalse);
4184 
4185     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4186     r->init_req(2, iffalse);
4187 
4188     // Post merge
4189     set_control(_gvn.transform(r));
4190     record_for_igvn(r);
4191 
4192     C->set_has_split_ifs(true); // Has chance for split-if optimization
4193     result = phi;
4194     assert(result->bottom_type()->isa_long(), "must be");
4195     break;
4196   }
4197 
4198   case vmIntrinsics::_floatToIntBits: {
4199     // two paths (plus control) merge in a wood
4200     RegionNode *r = new RegionNode(3);
4201     Node *phi = new PhiNode(r, TypeInt::INT);
4202 
4203     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4204     // Build the boolean node
4205     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4206 
4207     // Branch either way.
4208     // NaN case is less traveled, which makes all the difference.
4209     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4210     Node *opt_isnan = _gvn.transform(ifisnan);
4211     assert( opt_isnan->is_If(), "Expect an IfNode");
4212     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4213     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4214 
4215     set_control(iftrue);
4216 
4217     static const jint nan_bits = 0x7fc00000;
4218     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4219     phi->init_req(1, _gvn.transform( slow_result ));
4220     r->init_req(1, iftrue);
4221 
4222     // Else fall through
4223     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4224     set_control(iffalse);
4225 
4226     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4227     r->init_req(2, iffalse);
4228 
4229     // Post merge
4230     set_control(_gvn.transform(r));
4231     record_for_igvn(r);
4232 
4233     C->set_has_split_ifs(true); // Has chance for split-if optimization
4234     result = phi;
4235     assert(result->bottom_type()->isa_int(), "must be");
4236     break;
4237   }
4238 
4239   default:
4240     fatal_unexpected_iid(id);
4241     break;
4242   }
4243   set_result(_gvn.transform(result));
4244   return true;
4245 }
4246 
4247 //----------------------inline_unsafe_copyMemory-------------------------
4248 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4249 bool LibraryCallKit::inline_unsafe_copyMemory() {
4250   if (callee()->is_static())  return false;  // caller must have the capability!
4251   null_check_receiver();  // null-check receiver
4252   if (stopped())  return true;
4253 
4254   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4255 
4256   Node* src_ptr =         argument(1);   // type: oop
4257   Node* src_off = ConvL2X(argument(2));  // type: long
4258   Node* dst_ptr =         argument(4);   // type: oop
4259   Node* dst_off = ConvL2X(argument(5));  // type: long
4260   Node* size    = ConvL2X(argument(7));  // type: long
4261 
4262   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4263          "fieldOffset must be byte-scaled");
4264 
4265   src_ptr = access_resolve(src_ptr, ACCESS_READ);
4266   dst_ptr = access_resolve(dst_ptr, ACCESS_WRITE);
4267   Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ);
4268   Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE);
4269 
4270   // Conservatively insert a memory barrier on all memory slices.
4271   // Do not let writes of the copy source or destination float below the copy.
4272   insert_mem_bar(Op_MemBarCPUOrder);
4273 
4274   // Call it.  Note that the length argument is not scaled.
4275   make_runtime_call(RC_LEAF|RC_NO_FP,
4276                     OptoRuntime::fast_arraycopy_Type(),
4277                     StubRoutines::unsafe_arraycopy(),
4278                     "unsafe_arraycopy",
4279                     TypeRawPtr::BOTTOM,
4280                     src, dst, size XTOP);
4281 
4282   // Do not let reads of the copy destination float above the copy.
4283   insert_mem_bar(Op_MemBarCPUOrder);
4284 
4285   return true;
4286 }
4287 
4288 //------------------------clone_coping-----------------------------------
4289 // Helper function for inline_native_clone.
4290 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
4291   assert(obj_size != NULL, "");
4292   Node* raw_obj = alloc_obj->in(1);
4293   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4294 
4295   AllocateNode* alloc = NULL;
4296   if (ReduceBulkZeroing) {
4297     // We will be completely responsible for initializing this object -
4298     // mark Initialize node as complete.
4299     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4300     // The object was just allocated - there should be no any stores!
4301     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4302     // Mark as complete_with_arraycopy so that on AllocateNode
4303     // expansion, we know this AllocateNode is initialized by an array
4304     // copy and a StoreStore barrier exists after the array copy.
4305     alloc->initialization()->set_complete_with_arraycopy();
4306   }
4307 
4308   // Copy the fastest available way.
4309   // TODO: generate fields copies for small objects instead.
4310   Node* size = _gvn.transform(obj_size);
4311 
4312   access_clone(obj, alloc_obj, size, is_array);
4313 
4314   // Do not let reads from the cloned object float above the arraycopy.
4315   if (alloc != NULL) {
4316     // Do not let stores that initialize this object be reordered with
4317     // a subsequent store that would make this object accessible by
4318     // other threads.
4319     // Record what AllocateNode this StoreStore protects so that
4320     // escape analysis can go from the MemBarStoreStoreNode to the
4321     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4322     // based on the escape status of the AllocateNode.
4323     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4324   } else {
4325     insert_mem_bar(Op_MemBarCPUOrder);
4326   }
4327 }
4328 
4329 //------------------------inline_native_clone----------------------------
4330 // protected native Object java.lang.Object.clone();
4331 //
4332 // Here are the simple edge cases:
4333 //  null receiver => normal trap
4334 //  virtual and clone was overridden => slow path to out-of-line clone
4335 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4336 //
4337 // The general case has two steps, allocation and copying.
4338 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4339 //
4340 // Copying also has two cases, oop arrays and everything else.
4341 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4342 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4343 //
4344 // These steps fold up nicely if and when the cloned object's klass
4345 // can be sharply typed as an object array, a type array, or an instance.
4346 //
4347 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4348   PhiNode* result_val;
4349 
4350   // Set the reexecute bit for the interpreter to reexecute
4351   // the bytecode that invokes Object.clone if deoptimization happens.
4352   { PreserveReexecuteState preexecs(this);
4353     jvms()->set_should_reexecute(true);
4354 
4355     Node* obj = null_check_receiver();
4356     if (stopped())  return true;
4357 
4358     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4359 
4360     // If we are going to clone an instance, we need its exact type to
4361     // know the number and types of fields to convert the clone to
4362     // loads/stores. Maybe a speculative type can help us.
4363     if (!obj_type->klass_is_exact() &&
4364         obj_type->speculative_type() != NULL &&
4365         obj_type->speculative_type()->is_instance_klass()) {
4366       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4367       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4368           !spec_ik->has_injected_fields()) {
4369         ciKlass* k = obj_type->klass();
4370         if (!k->is_instance_klass() ||
4371             k->as_instance_klass()->is_interface() ||
4372             k->as_instance_klass()->has_subklass()) {
4373           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4374         }
4375       }
4376     }
4377 
4378     Node* obj_klass = load_object_klass(obj);
4379     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4380     const TypeOopPtr*   toop   = ((tklass != NULL)
4381                                 ? tklass->as_instance_type()
4382                                 : TypeInstPtr::NOTNULL);
4383 
4384     // Conservatively insert a memory barrier on all memory slices.
4385     // Do not let writes into the original float below the clone.
4386     insert_mem_bar(Op_MemBarCPUOrder);
4387 
4388     // paths into result_reg:
4389     enum {
4390       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4391       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4392       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4393       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4394       PATH_LIMIT
4395     };
4396     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4397     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4398     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4399     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4400     record_for_igvn(result_reg);
4401 
4402     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4403     if (array_ctl != NULL) {
4404       // It's an array.
4405       PreserveJVMState pjvms(this);
4406       set_control(array_ctl);
4407       Node* obj_length = load_array_length(obj);
4408       Node* obj_size  = NULL;
4409       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4410 
4411       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4412       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) {
4413         // If it is an oop array, it requires very special treatment,
4414         // because gc barriers are required when accessing the array.
4415         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4416         if (is_obja != NULL) {
4417           PreserveJVMState pjvms2(this);
4418           set_control(is_obja);
4419           obj = access_resolve(obj, ACCESS_READ);
4420           // Generate a direct call to the right arraycopy function(s).
4421           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4422           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4423           ac->set_cloneoop();
4424           Node* n = _gvn.transform(ac);
4425           assert(n == ac, "cannot disappear");
4426           ac->connect_outputs(this);
4427 
4428           result_reg->init_req(_objArray_path, control());
4429           result_val->init_req(_objArray_path, alloc_obj);
4430           result_i_o ->set_req(_objArray_path, i_o());
4431           result_mem ->set_req(_objArray_path, reset_memory());
4432         }
4433       }
4434       // Otherwise, there are no barriers to worry about.
4435       // (We can dispense with card marks if we know the allocation
4436       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4437       //  causes the non-eden paths to take compensating steps to
4438       //  simulate a fresh allocation, so that no further
4439       //  card marks are required in compiled code to initialize
4440       //  the object.)
4441 
4442       if (!stopped()) {
4443         copy_to_clone(obj, alloc_obj, obj_size, true);
4444 
4445         // Present the results of the copy.
4446         result_reg->init_req(_array_path, control());
4447         result_val->init_req(_array_path, alloc_obj);
4448         result_i_o ->set_req(_array_path, i_o());
4449         result_mem ->set_req(_array_path, reset_memory());
4450       }
4451     }
4452 
4453     // We only go to the instance fast case code if we pass a number of guards.
4454     // The paths which do not pass are accumulated in the slow_region.
4455     RegionNode* slow_region = new RegionNode(1);
4456     record_for_igvn(slow_region);
4457     if (!stopped()) {
4458       // It's an instance (we did array above).  Make the slow-path tests.
4459       // If this is a virtual call, we generate a funny guard.  We grab
4460       // the vtable entry corresponding to clone() from the target object.
4461       // If the target method which we are calling happens to be the
4462       // Object clone() method, we pass the guard.  We do not need this
4463       // guard for non-virtual calls; the caller is known to be the native
4464       // Object clone().
4465       if (is_virtual) {
4466         generate_virtual_guard(obj_klass, slow_region);
4467       }
4468 
4469       // The object must be easily cloneable and must not have a finalizer.
4470       // Both of these conditions may be checked in a single test.
4471       // We could optimize the test further, but we don't care.
4472       generate_access_flags_guard(obj_klass,
4473                                   // Test both conditions:
4474                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4475                                   // Must be cloneable but not finalizer:
4476                                   JVM_ACC_IS_CLONEABLE_FAST,
4477                                   slow_region);
4478     }
4479 
4480     if (!stopped()) {
4481       // It's an instance, and it passed the slow-path tests.
4482       PreserveJVMState pjvms(this);
4483       Node* obj_size  = NULL;
4484       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4485       // is reexecuted if deoptimization occurs and there could be problems when merging
4486       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4487       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4488 
4489       copy_to_clone(obj, alloc_obj, obj_size, false);
4490 
4491       // Present the results of the slow call.
4492       result_reg->init_req(_instance_path, control());
4493       result_val->init_req(_instance_path, alloc_obj);
4494       result_i_o ->set_req(_instance_path, i_o());
4495       result_mem ->set_req(_instance_path, reset_memory());
4496     }
4497 
4498     // Generate code for the slow case.  We make a call to clone().
4499     set_control(_gvn.transform(slow_region));
4500     if (!stopped()) {
4501       PreserveJVMState pjvms(this);
4502       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4503       // We need to deoptimize on exception (see comment above)
4504       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
4505       // this->control() comes from set_results_for_java_call
4506       result_reg->init_req(_slow_path, control());
4507       result_val->init_req(_slow_path, slow_result);
4508       result_i_o ->set_req(_slow_path, i_o());
4509       result_mem ->set_req(_slow_path, reset_memory());
4510     }
4511 
4512     // Return the combined state.
4513     set_control(    _gvn.transform(result_reg));
4514     set_i_o(        _gvn.transform(result_i_o));
4515     set_all_memory( _gvn.transform(result_mem));
4516   } // original reexecute is set back here
4517 
4518   set_result(_gvn.transform(result_val));
4519   return true;
4520 }
4521 
4522 // If we have a tightly coupled allocation, the arraycopy may take care
4523 // of the array initialization. If one of the guards we insert between
4524 // the allocation and the arraycopy causes a deoptimization, an
4525 // unitialized array will escape the compiled method. To prevent that
4526 // we set the JVM state for uncommon traps between the allocation and
4527 // the arraycopy to the state before the allocation so, in case of
4528 // deoptimization, we'll reexecute the allocation and the
4529 // initialization.
4530 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4531   if (alloc != NULL) {
4532     ciMethod* trap_method = alloc->jvms()->method();
4533     int trap_bci = alloc->jvms()->bci();
4534 
4535     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4536           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4537       // Make sure there's no store between the allocation and the
4538       // arraycopy otherwise visible side effects could be rexecuted
4539       // in case of deoptimization and cause incorrect execution.
4540       bool no_interfering_store = true;
4541       Node* mem = alloc->in(TypeFunc::Memory);
4542       if (mem->is_MergeMem()) {
4543         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4544           Node* n = mms.memory();
4545           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4546             assert(n->is_Store() || n->Opcode() == Op_ShenandoahWBMemProj, "what else?");
4547             no_interfering_store = false;
4548             break;
4549           }
4550         }
4551       } else {
4552         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4553           Node* n = mms.memory();
4554           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4555             assert(n->is_Store() || n->Opcode() == Op_ShenandoahWBMemProj, "what else?");
4556             no_interfering_store = false;
4557             break;
4558           }
4559         }
4560       }
4561 
4562       if (no_interfering_store) {
4563         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4564         uint size = alloc->req();
4565         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4566         old_jvms->set_map(sfpt);
4567         for (uint i = 0; i < size; i++) {
4568           sfpt->init_req(i, alloc->in(i));
4569         }
4570         // re-push array length for deoptimization
4571         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4572         old_jvms->set_sp(old_jvms->sp()+1);
4573         old_jvms->set_monoff(old_jvms->monoff()+1);
4574         old_jvms->set_scloff(old_jvms->scloff()+1);
4575         old_jvms->set_endoff(old_jvms->endoff()+1);
4576         old_jvms->set_should_reexecute(true);
4577 
4578         sfpt->set_i_o(map()->i_o());
4579         sfpt->set_memory(map()->memory());
4580         sfpt->set_control(map()->control());
4581 
4582         JVMState* saved_jvms = jvms();
4583         saved_reexecute_sp = _reexecute_sp;
4584 
4585         set_jvms(sfpt->jvms());
4586         _reexecute_sp = jvms()->sp();
4587 
4588         return saved_jvms;
4589       }
4590     }
4591   }
4592   return NULL;
4593 }
4594 
4595 // In case of a deoptimization, we restart execution at the
4596 // allocation, allocating a new array. We would leave an uninitialized
4597 // array in the heap that GCs wouldn't expect. Move the allocation
4598 // after the traps so we don't allocate the array if we
4599 // deoptimize. This is possible because tightly_coupled_allocation()
4600 // guarantees there's no observer of the allocated array at this point
4601 // and the control flow is simple enough.
4602 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4603                                                     int saved_reexecute_sp, uint new_idx) {
4604   if (saved_jvms != NULL && !stopped()) {
4605     assert(alloc != NULL, "only with a tightly coupled allocation");
4606     // restore JVM state to the state at the arraycopy
4607     saved_jvms->map()->set_control(map()->control());
4608     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4609     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4610     // If we've improved the types of some nodes (null check) while
4611     // emitting the guards, propagate them to the current state
4612     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4613     set_jvms(saved_jvms);
4614     _reexecute_sp = saved_reexecute_sp;
4615 
4616     // Remove the allocation from above the guards
4617     CallProjections callprojs;
4618     alloc->extract_projections(&callprojs, true);
4619     InitializeNode* init = alloc->initialization();
4620     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4621     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4622     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4623     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4624 
4625     // move the allocation here (after the guards)
4626     _gvn.hash_delete(alloc);
4627     alloc->set_req(TypeFunc::Control, control());
4628     alloc->set_req(TypeFunc::I_O, i_o());
4629     Node *mem = reset_memory();
4630     set_all_memory(mem);
4631     alloc->set_req(TypeFunc::Memory, mem);
4632     set_control(init->proj_out_or_null(TypeFunc::Control));
4633     set_i_o(callprojs.fallthrough_ioproj);
4634 
4635     // Update memory as done in GraphKit::set_output_for_allocation()
4636     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4637     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4638     if (ary_type->isa_aryptr() && length_type != NULL) {
4639       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4640     }
4641     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4642     int            elemidx  = C->get_alias_index(telemref);
4643     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
4644     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
4645 
4646     Node* allocx = _gvn.transform(alloc);
4647     assert(allocx == alloc, "where has the allocation gone?");
4648     assert(dest->is_CheckCastPP(), "not an allocation result?");
4649 
4650     _gvn.hash_delete(dest);
4651     dest->set_req(0, control());
4652     Node* destx = _gvn.transform(dest);
4653     assert(destx == dest, "where has the allocation result gone?");
4654   }
4655 }
4656 
4657 
4658 //------------------------------inline_arraycopy-----------------------
4659 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4660 //                                                      Object dest, int destPos,
4661 //                                                      int length);
4662 bool LibraryCallKit::inline_arraycopy() {
4663   // Get the arguments.
4664   Node* src         = argument(0);  // type: oop
4665   Node* src_offset  = argument(1);  // type: int
4666   Node* dest        = argument(2);  // type: oop
4667   Node* dest_offset = argument(3);  // type: int
4668   Node* length      = argument(4);  // type: int
4669 
4670   uint new_idx = C->unique();
4671 
4672   // Check for allocation before we add nodes that would confuse
4673   // tightly_coupled_allocation()
4674   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4675 
4676   int saved_reexecute_sp = -1;
4677   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4678   // See arraycopy_restore_alloc_state() comment
4679   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4680   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4681   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
4682   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4683 
4684   // The following tests must be performed
4685   // (1) src and dest are arrays.
4686   // (2) src and dest arrays must have elements of the same BasicType
4687   // (3) src and dest must not be null.
4688   // (4) src_offset must not be negative.
4689   // (5) dest_offset must not be negative.
4690   // (6) length must not be negative.
4691   // (7) src_offset + length must not exceed length of src.
4692   // (8) dest_offset + length must not exceed length of dest.
4693   // (9) each element of an oop array must be assignable
4694 
4695   // (3) src and dest must not be null.
4696   // always do this here because we need the JVM state for uncommon traps
4697   Node* null_ctl = top();
4698   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4699   assert(null_ctl->is_top(), "no null control here");
4700   dest = null_check(dest, T_ARRAY);
4701 
4702   if (!can_emit_guards) {
4703     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4704     // guards but the arraycopy node could still take advantage of a
4705     // tightly allocated allocation. tightly_coupled_allocation() is
4706     // called again to make sure it takes the null check above into
4707     // account: the null check is mandatory and if it caused an
4708     // uncommon trap to be emitted then the allocation can't be
4709     // considered tightly coupled in this context.
4710     alloc = tightly_coupled_allocation(dest, NULL);
4711   }
4712 
4713   bool validated = false;
4714 
4715   const Type* src_type  = _gvn.type(src);
4716   const Type* dest_type = _gvn.type(dest);
4717   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4718   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4719 
4720   // Do we have the type of src?
4721   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4722   // Do we have the type of dest?
4723   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4724   // Is the type for src from speculation?
4725   bool src_spec = false;
4726   // Is the type for dest from speculation?
4727   bool dest_spec = false;
4728 
4729   if ((!has_src || !has_dest) && can_emit_guards) {
4730     // We don't have sufficient type information, let's see if
4731     // speculative types can help. We need to have types for both src
4732     // and dest so that it pays off.
4733 
4734     // Do we already have or could we have type information for src
4735     bool could_have_src = has_src;
4736     // Do we already have or could we have type information for dest
4737     bool could_have_dest = has_dest;
4738 
4739     ciKlass* src_k = NULL;
4740     if (!has_src) {
4741       src_k = src_type->speculative_type_not_null();
4742       if (src_k != NULL && src_k->is_array_klass()) {
4743         could_have_src = true;
4744       }
4745     }
4746 
4747     ciKlass* dest_k = NULL;
4748     if (!has_dest) {
4749       dest_k = dest_type->speculative_type_not_null();
4750       if (dest_k != NULL && dest_k->is_array_klass()) {
4751         could_have_dest = true;
4752       }
4753     }
4754 
4755     if (could_have_src && could_have_dest) {
4756       // This is going to pay off so emit the required guards
4757       if (!has_src) {
4758         src = maybe_cast_profiled_obj(src, src_k, true);
4759         src_type  = _gvn.type(src);
4760         top_src  = src_type->isa_aryptr();
4761         has_src = (top_src != NULL && top_src->klass() != NULL);
4762         src_spec = true;
4763       }
4764       if (!has_dest) {
4765         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4766         dest_type  = _gvn.type(dest);
4767         top_dest  = dest_type->isa_aryptr();
4768         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4769         dest_spec = true;
4770       }
4771     }
4772   }
4773 
4774   if (has_src && has_dest && can_emit_guards) {
4775     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4776     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4777     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4778     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4779 
4780     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4781       // If both arrays are object arrays then having the exact types
4782       // for both will remove the need for a subtype check at runtime
4783       // before the call and may make it possible to pick a faster copy
4784       // routine (without a subtype check on every element)
4785       // Do we have the exact type of src?
4786       bool could_have_src = src_spec;
4787       // Do we have the exact type of dest?
4788       bool could_have_dest = dest_spec;
4789       ciKlass* src_k = top_src->klass();
4790       ciKlass* dest_k = top_dest->klass();
4791       if (!src_spec) {
4792         src_k = src_type->speculative_type_not_null();
4793         if (src_k != NULL && src_k->is_array_klass()) {
4794           could_have_src = true;
4795         }
4796       }
4797       if (!dest_spec) {
4798         dest_k = dest_type->speculative_type_not_null();
4799         if (dest_k != NULL && dest_k->is_array_klass()) {
4800           could_have_dest = true;
4801         }
4802       }
4803       if (could_have_src && could_have_dest) {
4804         // If we can have both exact types, emit the missing guards
4805         if (could_have_src && !src_spec) {
4806           src = maybe_cast_profiled_obj(src, src_k, true);
4807         }
4808         if (could_have_dest && !dest_spec) {
4809           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4810         }
4811       }
4812     }
4813   }
4814 
4815   ciMethod* trap_method = method();
4816   int trap_bci = bci();
4817   if (saved_jvms != NULL) {
4818     trap_method = alloc->jvms()->method();
4819     trap_bci = alloc->jvms()->bci();
4820   }
4821 
4822   bool negative_length_guard_generated = false;
4823 
4824   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4825       can_emit_guards &&
4826       !src->is_top() && !dest->is_top()) {
4827     // validate arguments: enables transformation the ArrayCopyNode
4828     validated = true;
4829 
4830     RegionNode* slow_region = new RegionNode(1);
4831     record_for_igvn(slow_region);
4832 
4833     // (1) src and dest are arrays.
4834     generate_non_array_guard(load_object_klass(src), slow_region);
4835     generate_non_array_guard(load_object_klass(dest), slow_region);
4836 
4837     // (2) src and dest arrays must have elements of the same BasicType
4838     // done at macro expansion or at Ideal transformation time
4839 
4840     // (4) src_offset must not be negative.
4841     generate_negative_guard(src_offset, slow_region);
4842 
4843     // (5) dest_offset must not be negative.
4844     generate_negative_guard(dest_offset, slow_region);
4845 
4846     // (7) src_offset + length must not exceed length of src.
4847     generate_limit_guard(src_offset, length,
4848                          load_array_length(src),
4849                          slow_region);
4850 
4851     // (8) dest_offset + length must not exceed length of dest.
4852     generate_limit_guard(dest_offset, length,
4853                          load_array_length(dest),
4854                          slow_region);
4855 
4856     // (6) length must not be negative.
4857     // This is also checked in generate_arraycopy() during macro expansion, but
4858     // we also have to check it here for the case where the ArrayCopyNode will
4859     // be eliminated by Escape Analysis.
4860     if (EliminateAllocations) {
4861       generate_negative_guard(length, slow_region);
4862       negative_length_guard_generated = true;
4863     }
4864 
4865     // (9) each element of an oop array must be assignable
4866     Node* src_klass  = load_object_klass(src);
4867     Node* dest_klass = load_object_klass(dest);
4868     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4869 
4870     if (not_subtype_ctrl != top()) {
4871       PreserveJVMState pjvms(this);
4872       set_control(not_subtype_ctrl);
4873       uncommon_trap(Deoptimization::Reason_intrinsic,
4874                     Deoptimization::Action_make_not_entrant);
4875       assert(stopped(), "Should be stopped");
4876     }
4877     {
4878       PreserveJVMState pjvms(this);
4879       set_control(_gvn.transform(slow_region));
4880       uncommon_trap(Deoptimization::Reason_intrinsic,
4881                     Deoptimization::Action_make_not_entrant);
4882       assert(stopped(), "Should be stopped");
4883     }
4884 
4885     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
4886     const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
4887     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
4888   }
4889 
4890   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
4891 
4892   if (stopped()) {
4893     return true;
4894   }
4895 
4896   Node* new_src = access_resolve(src, ACCESS_READ);
4897   Node* new_dest = access_resolve(dest, ACCESS_WRITE);
4898 
4899   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, new_src, src_offset, new_dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
4900                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4901                                           // so the compiler has a chance to eliminate them: during macro expansion,
4902                                           // we have to set their control (CastPP nodes are eliminated).
4903                                           load_object_klass(src), load_object_klass(dest),
4904                                           load_array_length(src), load_array_length(dest));
4905 
4906   ac->set_arraycopy(validated);
4907 
4908   Node* n = _gvn.transform(ac);
4909   if (n == ac) {
4910     ac->connect_outputs(this);
4911   } else {
4912     assert(validated, "shouldn't transform if all arguments not validated");
4913     set_all_memory(n);
4914   }
4915   clear_upper_avx();
4916 
4917 
4918   return true;
4919 }
4920 
4921 
4922 // Helper function which determines if an arraycopy immediately follows
4923 // an allocation, with no intervening tests or other escapes for the object.
4924 AllocateArrayNode*
4925 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4926                                            RegionNode* slow_region) {
4927   if (stopped())             return NULL;  // no fast path
4928   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4929 
4930   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4931   if (alloc == NULL)  return NULL;
4932 
4933   Node* rawmem = memory(Compile::AliasIdxRaw);
4934   // Is the allocation's memory state untouched?
4935   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4936     // Bail out if there have been raw-memory effects since the allocation.
4937     // (Example:  There might have been a call or safepoint.)
4938     return NULL;
4939   }
4940   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4941   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4942     return NULL;
4943   }
4944 
4945   // There must be no unexpected observers of this allocation.
4946   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4947     Node* obs = ptr->fast_out(i);
4948     if (obs != this->map()) {
4949       return NULL;
4950     }
4951   }
4952 
4953   // This arraycopy must unconditionally follow the allocation of the ptr.
4954   Node* alloc_ctl = ptr->in(0);
4955   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4956 
4957   Node* ctl = control();
4958   while (ctl != alloc_ctl) {
4959     // There may be guards which feed into the slow_region.
4960     // Any other control flow means that we might not get a chance
4961     // to finish initializing the allocated object.
4962     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4963       IfNode* iff = ctl->in(0)->as_If();
4964       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
4965       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4966       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4967         ctl = iff->in(0);       // This test feeds the known slow_region.
4968         continue;
4969       }
4970       // One more try:  Various low-level checks bottom out in
4971       // uncommon traps.  If the debug-info of the trap omits
4972       // any reference to the allocation, as we've already
4973       // observed, then there can be no objection to the trap.
4974       bool found_trap = false;
4975       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4976         Node* obs = not_ctl->fast_out(j);
4977         if (obs->in(0) == not_ctl && obs->is_Call() &&
4978             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4979           found_trap = true; break;
4980         }
4981       }
4982       if (found_trap) {
4983         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4984         continue;
4985       }
4986     }
4987     return NULL;
4988   }
4989 
4990   // If we get this far, we have an allocation which immediately
4991   // precedes the arraycopy, and we can take over zeroing the new object.
4992   // The arraycopy will finish the initialization, and provide
4993   // a new control state to which we will anchor the destination pointer.
4994 
4995   return alloc;
4996 }
4997 
4998 //-------------inline_encodeISOArray-----------------------------------
4999 // encode char[] to byte[] in ISO_8859_1
5000 bool LibraryCallKit::inline_encodeISOArray() {
5001   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5002   // no receiver since it is static method
5003   Node *src         = argument(0);
5004   Node *src_offset  = argument(1);
5005   Node *dst         = argument(2);
5006   Node *dst_offset  = argument(3);
5007   Node *length      = argument(4);
5008 
5009   src = must_be_not_null(src, true);
5010   dst = must_be_not_null(dst, true);
5011 
5012   src = access_resolve(src, ACCESS_READ);
5013   dst = access_resolve(dst, ACCESS_WRITE);
5014 
5015   const Type* src_type = src->Value(&_gvn);
5016   const Type* dst_type = dst->Value(&_gvn);
5017   const TypeAryPtr* top_src = src_type->isa_aryptr();
5018   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5019   if (top_src  == NULL || top_src->klass()  == NULL ||
5020       top_dest == NULL || top_dest->klass() == NULL) {
5021     // failed array check
5022     return false;
5023   }
5024 
5025   // Figure out the size and type of the elements we will be copying.
5026   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5027   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5028   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5029     return false;
5030   }
5031 
5032   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5033   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5034   // 'src_start' points to src array + scaled offset
5035   // 'dst_start' points to dst array + scaled offset
5036 
5037   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5038   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5039   enc = _gvn.transform(enc);
5040   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5041   set_memory(res_mem, mtype);
5042   set_result(enc);
5043   clear_upper_avx();
5044 
5045   return true;
5046 }
5047 
5048 //-------------inline_multiplyToLen-----------------------------------
5049 bool LibraryCallKit::inline_multiplyToLen() {
5050   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5051 
5052   address stubAddr = StubRoutines::multiplyToLen();
5053   if (stubAddr == NULL) {
5054     return false; // Intrinsic's stub is not implemented on this platform
5055   }
5056   const char* stubName = "multiplyToLen";
5057 
5058   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5059 
5060   // no receiver because it is a static method
5061   Node* x    = argument(0);
5062   Node* xlen = argument(1);
5063   Node* y    = argument(2);
5064   Node* ylen = argument(3);
5065   Node* z    = argument(4);
5066 
5067   x = must_be_not_null(x, true);
5068   y = must_be_not_null(y, true);
5069 
5070   x = access_resolve(x, ACCESS_READ);
5071   y = access_resolve(y, ACCESS_READ);
5072   z = access_resolve(z, ACCESS_WRITE);
5073 
5074   const Type* x_type = x->Value(&_gvn);
5075   const Type* y_type = y->Value(&_gvn);
5076   const TypeAryPtr* top_x = x_type->isa_aryptr();
5077   const TypeAryPtr* top_y = y_type->isa_aryptr();
5078   if (top_x  == NULL || top_x->klass()  == NULL ||
5079       top_y == NULL || top_y->klass() == NULL) {
5080     // failed array check
5081     return false;
5082   }
5083 
5084   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5085   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5086   if (x_elem != T_INT || y_elem != T_INT) {
5087     return false;
5088   }
5089 
5090   // Set the original stack and the reexecute bit for the interpreter to reexecute
5091   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5092   // on the return from z array allocation in runtime.
5093   { PreserveReexecuteState preexecs(this);
5094     jvms()->set_should_reexecute(true);
5095 
5096     Node* x_start = array_element_address(x, intcon(0), x_elem);
5097     Node* y_start = array_element_address(y, intcon(0), y_elem);
5098     // 'x_start' points to x array + scaled xlen
5099     // 'y_start' points to y array + scaled ylen
5100 
5101     // Allocate the result array
5102     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5103     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5104     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5105 
5106     IdealKit ideal(this);
5107 
5108 #define __ ideal.
5109      Node* one = __ ConI(1);
5110      Node* zero = __ ConI(0);
5111      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5112      __ set(need_alloc, zero);
5113      __ set(z_alloc, z);
5114      __ if_then(z, BoolTest::eq, null()); {
5115        __ increment (need_alloc, one);
5116      } __ else_(); {
5117        // Update graphKit memory and control from IdealKit.
5118        sync_kit(ideal);
5119        Node *cast = new CastPPNode(z, TypePtr::NOTNULL);
5120        cast->init_req(0, control());
5121        _gvn.set_type(cast, cast->bottom_type());
5122        C->record_for_igvn(cast);
5123 
5124        Node* zlen_arg = load_array_length(cast);
5125        // Update IdealKit memory and control from graphKit.
5126        __ sync_kit(this);
5127        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5128          __ increment (need_alloc, one);
5129        } __ end_if();
5130      } __ end_if();
5131 
5132      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5133        // Update graphKit memory and control from IdealKit.
5134        sync_kit(ideal);
5135        Node * narr = new_array(klass_node, zlen, 1);
5136        // Update IdealKit memory and control from graphKit.
5137        __ sync_kit(this);
5138        __ set(z_alloc, narr);
5139      } __ end_if();
5140 
5141      sync_kit(ideal);
5142      z = __ value(z_alloc);
5143      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5144      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5145      // Final sync IdealKit and GraphKit.
5146      final_sync(ideal);
5147 #undef __
5148 
5149     Node* z_start = array_element_address(z, intcon(0), T_INT);
5150 
5151     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5152                                    OptoRuntime::multiplyToLen_Type(),
5153                                    stubAddr, stubName, TypePtr::BOTTOM,
5154                                    x_start, xlen, y_start, ylen, z_start, zlen);
5155   } // original reexecute is set back here
5156 
5157   C->set_has_split_ifs(true); // Has chance for split-if optimization
5158   set_result(z);
5159   return true;
5160 }
5161 
5162 //-------------inline_squareToLen------------------------------------
5163 bool LibraryCallKit::inline_squareToLen() {
5164   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5165 
5166   address stubAddr = StubRoutines::squareToLen();
5167   if (stubAddr == NULL) {
5168     return false; // Intrinsic's stub is not implemented on this platform
5169   }
5170   const char* stubName = "squareToLen";
5171 
5172   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5173 
5174   Node* x    = argument(0);
5175   Node* len  = argument(1);
5176   Node* z    = argument(2);
5177   Node* zlen = argument(3);
5178 
5179   x = must_be_not_null(x, true);
5180   z = must_be_not_null(z, true);
5181 
5182   x = access_resolve(x, ACCESS_READ);
5183   z = access_resolve(z, ACCESS_WRITE);
5184 
5185   const Type* x_type = x->Value(&_gvn);
5186   const Type* z_type = z->Value(&_gvn);
5187   const TypeAryPtr* top_x = x_type->isa_aryptr();
5188   const TypeAryPtr* top_z = z_type->isa_aryptr();
5189   if (top_x  == NULL || top_x->klass()  == NULL ||
5190       top_z  == NULL || top_z->klass()  == NULL) {
5191     // failed array check
5192     return false;
5193   }
5194 
5195   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5196   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5197   if (x_elem != T_INT || z_elem != T_INT) {
5198     return false;
5199   }
5200 
5201 
5202   Node* x_start = array_element_address(x, intcon(0), x_elem);
5203   Node* z_start = array_element_address(z, intcon(0), z_elem);
5204 
5205   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5206                                   OptoRuntime::squareToLen_Type(),
5207                                   stubAddr, stubName, TypePtr::BOTTOM,
5208                                   x_start, len, z_start, zlen);
5209 
5210   set_result(z);
5211   return true;
5212 }
5213 
5214 //-------------inline_mulAdd------------------------------------------
5215 bool LibraryCallKit::inline_mulAdd() {
5216   assert(UseMulAddIntrinsic, "not implemented on this platform");
5217 
5218   address stubAddr = StubRoutines::mulAdd();
5219   if (stubAddr == NULL) {
5220     return false; // Intrinsic's stub is not implemented on this platform
5221   }
5222   const char* stubName = "mulAdd";
5223 
5224   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5225 
5226   Node* out      = argument(0);
5227   Node* in       = argument(1);
5228   Node* offset   = argument(2);
5229   Node* len      = argument(3);
5230   Node* k        = argument(4);
5231 
5232   out = must_be_not_null(out, true);
5233 
5234   in = access_resolve(in, ACCESS_READ);
5235   out = access_resolve(out, ACCESS_WRITE);
5236 
5237   const Type* out_type = out->Value(&_gvn);
5238   const Type* in_type = in->Value(&_gvn);
5239   const TypeAryPtr* top_out = out_type->isa_aryptr();
5240   const TypeAryPtr* top_in = in_type->isa_aryptr();
5241   if (top_out  == NULL || top_out->klass()  == NULL ||
5242       top_in == NULL || top_in->klass() == NULL) {
5243     // failed array check
5244     return false;
5245   }
5246 
5247   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5248   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5249   if (out_elem != T_INT || in_elem != T_INT) {
5250     return false;
5251   }
5252 
5253   Node* outlen = load_array_length(out);
5254   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5255   Node* out_start = array_element_address(out, intcon(0), out_elem);
5256   Node* in_start = array_element_address(in, intcon(0), in_elem);
5257 
5258   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5259                                   OptoRuntime::mulAdd_Type(),
5260                                   stubAddr, stubName, TypePtr::BOTTOM,
5261                                   out_start,in_start, new_offset, len, k);
5262   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5263   set_result(result);
5264   return true;
5265 }
5266 
5267 //-------------inline_montgomeryMultiply-----------------------------------
5268 bool LibraryCallKit::inline_montgomeryMultiply() {
5269   address stubAddr = StubRoutines::montgomeryMultiply();
5270   if (stubAddr == NULL) {
5271     return false; // Intrinsic's stub is not implemented on this platform
5272   }
5273 
5274   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5275   const char* stubName = "montgomery_multiply";
5276 
5277   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5278 
5279   Node* a    = argument(0);
5280   Node* b    = argument(1);
5281   Node* n    = argument(2);
5282   Node* len  = argument(3);
5283   Node* inv  = argument(4);
5284   Node* m    = argument(6);
5285 
5286   a = access_resolve(a, ACCESS_READ);
5287   b = access_resolve(b, ACCESS_READ);
5288   n = access_resolve(n, ACCESS_READ);
5289   m = access_resolve(m, ACCESS_WRITE);
5290 
5291   const Type* a_type = a->Value(&_gvn);
5292   const TypeAryPtr* top_a = a_type->isa_aryptr();
5293   const Type* b_type = b->Value(&_gvn);
5294   const TypeAryPtr* top_b = b_type->isa_aryptr();
5295   const Type* n_type = a->Value(&_gvn);
5296   const TypeAryPtr* top_n = n_type->isa_aryptr();
5297   const Type* m_type = a->Value(&_gvn);
5298   const TypeAryPtr* top_m = m_type->isa_aryptr();
5299   if (top_a  == NULL || top_a->klass()  == NULL ||
5300       top_b == NULL || top_b->klass()  == NULL ||
5301       top_n == NULL || top_n->klass()  == NULL ||
5302       top_m == NULL || top_m->klass()  == NULL) {
5303     // failed array check
5304     return false;
5305   }
5306 
5307   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5308   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5309   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5310   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5311   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5312     return false;
5313   }
5314 
5315   // Make the call
5316   {
5317     Node* a_start = array_element_address(a, intcon(0), a_elem);
5318     Node* b_start = array_element_address(b, intcon(0), b_elem);
5319     Node* n_start = array_element_address(n, intcon(0), n_elem);
5320     Node* m_start = array_element_address(m, intcon(0), m_elem);
5321 
5322     Node* call = make_runtime_call(RC_LEAF,
5323                                    OptoRuntime::montgomeryMultiply_Type(),
5324                                    stubAddr, stubName, TypePtr::BOTTOM,
5325                                    a_start, b_start, n_start, len, inv, top(),
5326                                    m_start);
5327     set_result(m);
5328   }
5329 
5330   return true;
5331 }
5332 
5333 bool LibraryCallKit::inline_montgomerySquare() {
5334   address stubAddr = StubRoutines::montgomerySquare();
5335   if (stubAddr == NULL) {
5336     return false; // Intrinsic's stub is not implemented on this platform
5337   }
5338 
5339   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5340   const char* stubName = "montgomery_square";
5341 
5342   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5343 
5344   Node* a    = argument(0);
5345   Node* n    = argument(1);
5346   Node* len  = argument(2);
5347   Node* inv  = argument(3);
5348   Node* m    = argument(5);
5349 
5350   a = access_resolve(a, ACCESS_READ);
5351   n = access_resolve(n, ACCESS_READ);
5352   m = access_resolve(m, ACCESS_WRITE);
5353 
5354   const Type* a_type = a->Value(&_gvn);
5355   const TypeAryPtr* top_a = a_type->isa_aryptr();
5356   const Type* n_type = a->Value(&_gvn);
5357   const TypeAryPtr* top_n = n_type->isa_aryptr();
5358   const Type* m_type = a->Value(&_gvn);
5359   const TypeAryPtr* top_m = m_type->isa_aryptr();
5360   if (top_a  == NULL || top_a->klass()  == NULL ||
5361       top_n == NULL || top_n->klass()  == NULL ||
5362       top_m == NULL || top_m->klass()  == NULL) {
5363     // failed array check
5364     return false;
5365   }
5366 
5367   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5368   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5369   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5370   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5371     return false;
5372   }
5373 
5374   // Make the call
5375   {
5376     Node* a_start = array_element_address(a, intcon(0), a_elem);
5377     Node* n_start = array_element_address(n, intcon(0), n_elem);
5378     Node* m_start = array_element_address(m, intcon(0), m_elem);
5379 
5380     Node* call = make_runtime_call(RC_LEAF,
5381                                    OptoRuntime::montgomerySquare_Type(),
5382                                    stubAddr, stubName, TypePtr::BOTTOM,
5383                                    a_start, n_start, len, inv, top(),
5384                                    m_start);
5385     set_result(m);
5386   }
5387 
5388   return true;
5389 }
5390 
5391 //-------------inline_vectorizedMismatch------------------------------
5392 bool LibraryCallKit::inline_vectorizedMismatch() {
5393   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5394 
5395   address stubAddr = StubRoutines::vectorizedMismatch();
5396   if (stubAddr == NULL) {
5397     return false; // Intrinsic's stub is not implemented on this platform
5398   }
5399   const char* stubName = "vectorizedMismatch";
5400   int size_l = callee()->signature()->size();
5401   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5402 
5403   Node* obja = argument(0);
5404   Node* aoffset = argument(1);
5405   Node* objb = argument(3);
5406   Node* boffset = argument(4);
5407   Node* length = argument(6);
5408   Node* scale = argument(7);
5409 
5410   const Type* a_type = obja->Value(&_gvn);
5411   const Type* b_type = objb->Value(&_gvn);
5412   const TypeAryPtr* top_a = a_type->isa_aryptr();
5413   const TypeAryPtr* top_b = b_type->isa_aryptr();
5414   if (top_a == NULL || top_a->klass() == NULL ||
5415     top_b == NULL || top_b->klass() == NULL) {
5416     // failed array check
5417     return false;
5418   }
5419 
5420   Node* call;
5421   jvms()->set_should_reexecute(true);
5422 
5423   obja = access_resolve(obja, ACCESS_READ);
5424   objb = access_resolve(objb, ACCESS_READ);
5425   Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ);
5426   Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ);
5427 
5428   call = make_runtime_call(RC_LEAF,
5429     OptoRuntime::vectorizedMismatch_Type(),
5430     stubAddr, stubName, TypePtr::BOTTOM,
5431     obja_adr, objb_adr, length, scale);
5432 
5433   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5434   set_result(result);
5435   return true;
5436 }
5437 
5438 /**
5439  * Calculate CRC32 for byte.
5440  * int java.util.zip.CRC32.update(int crc, int b)
5441  */
5442 bool LibraryCallKit::inline_updateCRC32() {
5443   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5444   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5445   // no receiver since it is static method
5446   Node* crc  = argument(0); // type: int
5447   Node* b    = argument(1); // type: int
5448 
5449   /*
5450    *    int c = ~ crc;
5451    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5452    *    b = b ^ (c >>> 8);
5453    *    crc = ~b;
5454    */
5455 
5456   Node* M1 = intcon(-1);
5457   crc = _gvn.transform(new XorINode(crc, M1));
5458   Node* result = _gvn.transform(new XorINode(crc, b));
5459   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5460 
5461   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5462   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5463   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5464   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5465 
5466   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5467   result = _gvn.transform(new XorINode(crc, result));
5468   result = _gvn.transform(new XorINode(result, M1));
5469   set_result(result);
5470   return true;
5471 }
5472 
5473 /**
5474  * Calculate CRC32 for byte[] array.
5475  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5476  */
5477 bool LibraryCallKit::inline_updateBytesCRC32() {
5478   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5479   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5480   // no receiver since it is static method
5481   Node* crc     = argument(0); // type: int
5482   Node* src     = argument(1); // type: oop
5483   Node* offset  = argument(2); // type: int
5484   Node* length  = argument(3); // type: int
5485 
5486   const Type* src_type = src->Value(&_gvn);
5487   const TypeAryPtr* top_src = src_type->isa_aryptr();
5488   if (top_src  == NULL || top_src->klass()  == NULL) {
5489     // failed array check
5490     return false;
5491   }
5492 
5493   // Figure out the size and type of the elements we will be copying.
5494   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5495   if (src_elem != T_BYTE) {
5496     return false;
5497   }
5498 
5499   // 'src_start' points to src array + scaled offset
5500   src = must_be_not_null(src, true);
5501   src = access_resolve(src, ACCESS_READ);
5502   Node* src_start = array_element_address(src, offset, src_elem);
5503 
5504   // We assume that range check is done by caller.
5505   // TODO: generate range check (offset+length < src.length) in debug VM.
5506 
5507   // Call the stub.
5508   address stubAddr = StubRoutines::updateBytesCRC32();
5509   const char *stubName = "updateBytesCRC32";
5510 
5511   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5512                                  stubAddr, stubName, TypePtr::BOTTOM,
5513                                  crc, src_start, length);
5514   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5515   set_result(result);
5516   return true;
5517 }
5518 
5519 /**
5520  * Calculate CRC32 for ByteBuffer.
5521  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5522  */
5523 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5524   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5525   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5526   // no receiver since it is static method
5527   Node* crc     = argument(0); // type: int
5528   Node* src     = argument(1); // type: long
5529   Node* offset  = argument(3); // type: int
5530   Node* length  = argument(4); // type: int
5531 
5532   src = ConvL2X(src);  // adjust Java long to machine word
5533   Node* base = _gvn.transform(new CastX2PNode(src));
5534   offset = ConvI2X(offset);
5535 
5536   // 'src_start' points to src array + scaled offset
5537   Node* src_start = basic_plus_adr(top(), base, offset);
5538 
5539   // Call the stub.
5540   address stubAddr = StubRoutines::updateBytesCRC32();
5541   const char *stubName = "updateBytesCRC32";
5542 
5543   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5544                                  stubAddr, stubName, TypePtr::BOTTOM,
5545                                  crc, src_start, length);
5546   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5547   set_result(result);
5548   return true;
5549 }
5550 
5551 //------------------------------get_table_from_crc32c_class-----------------------
5552 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5553   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5554   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5555 
5556   return table;
5557 }
5558 
5559 //------------------------------inline_updateBytesCRC32C-----------------------
5560 //
5561 // Calculate CRC32C for byte[] array.
5562 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5563 //
5564 bool LibraryCallKit::inline_updateBytesCRC32C() {
5565   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5566   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5567   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5568   // no receiver since it is a static method
5569   Node* crc     = argument(0); // type: int
5570   Node* src     = argument(1); // type: oop
5571   Node* offset  = argument(2); // type: int
5572   Node* end     = argument(3); // type: int
5573 
5574   Node* length = _gvn.transform(new SubINode(end, offset));
5575 
5576   const Type* src_type = src->Value(&_gvn);
5577   const TypeAryPtr* top_src = src_type->isa_aryptr();
5578   if (top_src  == NULL || top_src->klass()  == NULL) {
5579     // failed array check
5580     return false;
5581   }
5582 
5583   // Figure out the size and type of the elements we will be copying.
5584   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5585   if (src_elem != T_BYTE) {
5586     return false;
5587   }
5588 
5589   // 'src_start' points to src array + scaled offset
5590   src = must_be_not_null(src, true);
5591   src = access_resolve(src, ACCESS_READ);
5592   Node* src_start = array_element_address(src, offset, src_elem);
5593 
5594   // static final int[] byteTable in class CRC32C
5595   Node* table = get_table_from_crc32c_class(callee()->holder());
5596   table = must_be_not_null(table, true);
5597   table = access_resolve(table, ACCESS_READ);
5598   Node* table_start = array_element_address(table, intcon(0), T_INT);
5599 
5600   // We assume that range check is done by caller.
5601   // TODO: generate range check (offset+length < src.length) in debug VM.
5602 
5603   // Call the stub.
5604   address stubAddr = StubRoutines::updateBytesCRC32C();
5605   const char *stubName = "updateBytesCRC32C";
5606 
5607   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5608                                  stubAddr, stubName, TypePtr::BOTTOM,
5609                                  crc, src_start, length, table_start);
5610   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5611   set_result(result);
5612   return true;
5613 }
5614 
5615 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5616 //
5617 // Calculate CRC32C for DirectByteBuffer.
5618 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5619 //
5620 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5621   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5622   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5623   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5624   // no receiver since it is a static method
5625   Node* crc     = argument(0); // type: int
5626   Node* src     = argument(1); // type: long
5627   Node* offset  = argument(3); // type: int
5628   Node* end     = argument(4); // type: int
5629 
5630   Node* length = _gvn.transform(new SubINode(end, offset));
5631 
5632   src = ConvL2X(src);  // adjust Java long to machine word
5633   Node* base = _gvn.transform(new CastX2PNode(src));
5634   offset = ConvI2X(offset);
5635 
5636   // 'src_start' points to src array + scaled offset
5637   Node* src_start = basic_plus_adr(top(), base, offset);
5638 
5639   // static final int[] byteTable in class CRC32C
5640   Node* table = get_table_from_crc32c_class(callee()->holder());
5641   table = must_be_not_null(table, true);
5642   table = access_resolve(table, ACCESS_READ);
5643   Node* table_start = array_element_address(table, intcon(0), T_INT);
5644 
5645   // Call the stub.
5646   address stubAddr = StubRoutines::updateBytesCRC32C();
5647   const char *stubName = "updateBytesCRC32C";
5648 
5649   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5650                                  stubAddr, stubName, TypePtr::BOTTOM,
5651                                  crc, src_start, length, table_start);
5652   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5653   set_result(result);
5654   return true;
5655 }
5656 
5657 //------------------------------inline_updateBytesAdler32----------------------
5658 //
5659 // Calculate Adler32 checksum for byte[] array.
5660 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5661 //
5662 bool LibraryCallKit::inline_updateBytesAdler32() {
5663   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5664   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5665   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5666   // no receiver since it is static method
5667   Node* crc     = argument(0); // type: int
5668   Node* src     = argument(1); // type: oop
5669   Node* offset  = argument(2); // type: int
5670   Node* length  = argument(3); // type: int
5671 
5672   const Type* src_type = src->Value(&_gvn);
5673   const TypeAryPtr* top_src = src_type->isa_aryptr();
5674   if (top_src  == NULL || top_src->klass()  == NULL) {
5675     // failed array check
5676     return false;
5677   }
5678 
5679   // Figure out the size and type of the elements we will be copying.
5680   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5681   if (src_elem != T_BYTE) {
5682     return false;
5683   }
5684 
5685   // 'src_start' points to src array + scaled offset
5686   src = access_resolve(src, ACCESS_READ);
5687   Node* src_start = array_element_address(src, offset, src_elem);
5688 
5689   // We assume that range check is done by caller.
5690   // TODO: generate range check (offset+length < src.length) in debug VM.
5691 
5692   // Call the stub.
5693   address stubAddr = StubRoutines::updateBytesAdler32();
5694   const char *stubName = "updateBytesAdler32";
5695 
5696   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5697                                  stubAddr, stubName, TypePtr::BOTTOM,
5698                                  crc, src_start, length);
5699   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5700   set_result(result);
5701   return true;
5702 }
5703 
5704 //------------------------------inline_updateByteBufferAdler32---------------
5705 //
5706 // Calculate Adler32 checksum for DirectByteBuffer.
5707 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5708 //
5709 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5710   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5711   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5712   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5713   // no receiver since it is static method
5714   Node* crc     = argument(0); // type: int
5715   Node* src     = argument(1); // type: long
5716   Node* offset  = argument(3); // type: int
5717   Node* length  = argument(4); // type: int
5718 
5719   src = ConvL2X(src);  // adjust Java long to machine word
5720   Node* base = _gvn.transform(new CastX2PNode(src));
5721   offset = ConvI2X(offset);
5722 
5723   // 'src_start' points to src array + scaled offset
5724   Node* src_start = basic_plus_adr(top(), base, offset);
5725 
5726   // Call the stub.
5727   address stubAddr = StubRoutines::updateBytesAdler32();
5728   const char *stubName = "updateBytesAdler32";
5729 
5730   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5731                                  stubAddr, stubName, TypePtr::BOTTOM,
5732                                  crc, src_start, length);
5733 
5734   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5735   set_result(result);
5736   return true;
5737 }
5738 
5739 //----------------------------inline_reference_get----------------------------
5740 // public T java.lang.ref.Reference.get();
5741 bool LibraryCallKit::inline_reference_get() {
5742   const int referent_offset = java_lang_ref_Reference::referent_offset;
5743   guarantee(referent_offset > 0, "should have already been set");
5744 
5745   // Get the argument:
5746   Node* reference_obj = null_check_receiver();
5747   if (stopped()) return true;
5748 
5749   const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr();
5750   assert(tinst != NULL, "obj is null");
5751   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5752   ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass();
5753   ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"),
5754                                                      ciSymbol::make("Ljava/lang/Object;"),
5755                                                      false);
5756   assert (field != NULL, "undefined field");
5757 
5758   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5759   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5760 
5761   ciInstanceKlass* klass = env()->Object_klass();
5762   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5763 
5764   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
5765   Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators);
5766   // Add memory barrier to prevent commoning reads from this field
5767   // across safepoint since GC can change its value.
5768   insert_mem_bar(Op_MemBarCPUOrder);
5769 
5770   set_result(result);
5771   return true;
5772 }
5773 
5774 
5775 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5776                                               bool is_exact=true, bool is_static=false,
5777                                               ciInstanceKlass * fromKls=NULL) {
5778   if (fromKls == NULL) {
5779     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5780     assert(tinst != NULL, "obj is null");
5781     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5782     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5783     fromKls = tinst->klass()->as_instance_klass();
5784   } else {
5785     assert(is_static, "only for static field access");
5786   }
5787   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5788                                               ciSymbol::make(fieldTypeString),
5789                                               is_static);
5790 
5791   assert (field != NULL, "undefined field");
5792   if (field == NULL) return (Node *) NULL;
5793 
5794   if (is_static) {
5795     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5796     fromObj = makecon(tip);
5797   }
5798 
5799   // Next code  copied from Parse::do_get_xxx():
5800 
5801   // Compute address and memory type.
5802   int offset  = field->offset_in_bytes();
5803   bool is_vol = field->is_volatile();
5804   ciType* field_klass = field->type();
5805   assert(field_klass->is_loaded(), "should be loaded");
5806   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5807   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5808   BasicType bt = field->layout_type();
5809 
5810   // Build the resultant type of the load
5811   const Type *type;
5812   if (bt == T_OBJECT) {
5813     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5814   } else {
5815     type = Type::get_const_basic_type(bt);
5816   }
5817 
5818   DecoratorSet decorators = IN_HEAP;
5819 
5820   if (is_vol) {
5821     decorators |= MO_SEQ_CST;
5822   }
5823 
5824   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
5825 }
5826 
5827 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5828                                                  bool is_exact = true, bool is_static = false,
5829                                                  ciInstanceKlass * fromKls = NULL) {
5830   if (fromKls == NULL) {
5831     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5832     assert(tinst != NULL, "obj is null");
5833     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5834     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5835     fromKls = tinst->klass()->as_instance_klass();
5836   }
5837   else {
5838     assert(is_static, "only for static field access");
5839   }
5840   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5841     ciSymbol::make(fieldTypeString),
5842     is_static);
5843 
5844   assert(field != NULL, "undefined field");
5845   assert(!field->is_volatile(), "not defined for volatile fields");
5846 
5847   if (is_static) {
5848     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5849     fromObj = makecon(tip);
5850   }
5851 
5852   // Next code  copied from Parse::do_get_xxx():
5853 
5854   // Compute address and memory type.
5855   int offset = field->offset_in_bytes();
5856   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5857 
5858   return adr;
5859 }
5860 
5861 //------------------------------inline_aescrypt_Block-----------------------
5862 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5863   address stubAddr = NULL;
5864   const char *stubName;
5865   assert(UseAES, "need AES instruction support");
5866 
5867   switch(id) {
5868   case vmIntrinsics::_aescrypt_encryptBlock:
5869     stubAddr = StubRoutines::aescrypt_encryptBlock();
5870     stubName = "aescrypt_encryptBlock";
5871     break;
5872   case vmIntrinsics::_aescrypt_decryptBlock:
5873     stubAddr = StubRoutines::aescrypt_decryptBlock();
5874     stubName = "aescrypt_decryptBlock";
5875     break;
5876   default:
5877     break;
5878   }
5879   if (stubAddr == NULL) return false;
5880 
5881   Node* aescrypt_object = argument(0);
5882   Node* src             = argument(1);
5883   Node* src_offset      = argument(2);
5884   Node* dest            = argument(3);
5885   Node* dest_offset     = argument(4);
5886 
5887   src = must_be_not_null(src, true);
5888   dest = must_be_not_null(dest, true);
5889 
5890   src = access_resolve(src, ACCESS_READ);
5891   dest = access_resolve(dest, ACCESS_WRITE);
5892 
5893   // (1) src and dest are arrays.
5894   const Type* src_type = src->Value(&_gvn);
5895   const Type* dest_type = dest->Value(&_gvn);
5896   const TypeAryPtr* top_src = src_type->isa_aryptr();
5897   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5898   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5899 
5900   // for the quick and dirty code we will skip all the checks.
5901   // we are just trying to get the call to be generated.
5902   Node* src_start  = src;
5903   Node* dest_start = dest;
5904   if (src_offset != NULL || dest_offset != NULL) {
5905     assert(src_offset != NULL && dest_offset != NULL, "");
5906     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5907     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5908   }
5909 
5910   // now need to get the start of its expanded key array
5911   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5912   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5913   if (k_start == NULL) return false;
5914 
5915   if (Matcher::pass_original_key_for_aes()) {
5916     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5917     // compatibility issues between Java key expansion and SPARC crypto instructions
5918     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5919     if (original_k_start == NULL) return false;
5920 
5921     // Call the stub.
5922     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5923                       stubAddr, stubName, TypePtr::BOTTOM,
5924                       src_start, dest_start, k_start, original_k_start);
5925   } else {
5926     // Call the stub.
5927     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5928                       stubAddr, stubName, TypePtr::BOTTOM,
5929                       src_start, dest_start, k_start);
5930   }
5931 
5932   return true;
5933 }
5934 
5935 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5936 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5937   address stubAddr = NULL;
5938   const char *stubName = NULL;
5939 
5940   assert(UseAES, "need AES instruction support");
5941 
5942   switch(id) {
5943   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5944     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5945     stubName = "cipherBlockChaining_encryptAESCrypt";
5946     break;
5947   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5948     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5949     stubName = "cipherBlockChaining_decryptAESCrypt";
5950     break;
5951   default:
5952     break;
5953   }
5954   if (stubAddr == NULL) return false;
5955 
5956   Node* cipherBlockChaining_object = argument(0);
5957   Node* src                        = argument(1);
5958   Node* src_offset                 = argument(2);
5959   Node* len                        = argument(3);
5960   Node* dest                       = argument(4);
5961   Node* dest_offset                = argument(5);
5962 
5963   src = must_be_not_null(src, false);
5964   dest = must_be_not_null(dest, false);
5965 
5966   src = access_resolve(src, ACCESS_READ);
5967   dest = access_resolve(dest, ACCESS_WRITE);
5968 
5969   // (1) src and dest are arrays.
5970   const Type* src_type = src->Value(&_gvn);
5971   const Type* dest_type = dest->Value(&_gvn);
5972   const TypeAryPtr* top_src = src_type->isa_aryptr();
5973   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5974   assert (top_src  != NULL && top_src->klass()  != NULL
5975           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5976 
5977   // checks are the responsibility of the caller
5978   Node* src_start  = src;
5979   Node* dest_start = dest;
5980   if (src_offset != NULL || dest_offset != NULL) {
5981     assert(src_offset != NULL && dest_offset != NULL, "");
5982     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5983     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5984   }
5985 
5986   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5987   // (because of the predicated logic executed earlier).
5988   // so we cast it here safely.
5989   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5990 
5991   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5992   if (embeddedCipherObj == NULL) return false;
5993 
5994   // cast it to what we know it will be at runtime
5995   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5996   assert(tinst != NULL, "CBC obj is null");
5997   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5998   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5999   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6000 
6001   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6002   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6003   const TypeOopPtr* xtype = aklass->as_instance_type();
6004   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6005   aescrypt_object = _gvn.transform(aescrypt_object);
6006 
6007   // we need to get the start of the aescrypt_object's expanded key array
6008   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6009   if (k_start == NULL) return false;
6010 
6011   // similarly, get the start address of the r vector
6012   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6013   if (objRvec == NULL) return false;
6014   objRvec = access_resolve(objRvec, ACCESS_WRITE);
6015   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6016 
6017   Node* cbcCrypt;
6018   if (Matcher::pass_original_key_for_aes()) {
6019     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6020     // compatibility issues between Java key expansion and SPARC crypto instructions
6021     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6022     if (original_k_start == NULL) return false;
6023 
6024     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6025     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6026                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6027                                  stubAddr, stubName, TypePtr::BOTTOM,
6028                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6029   } else {
6030     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6031     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6032                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6033                                  stubAddr, stubName, TypePtr::BOTTOM,
6034                                  src_start, dest_start, k_start, r_start, len);
6035   }
6036 
6037   // return cipher length (int)
6038   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6039   set_result(retvalue);
6040   return true;
6041 }
6042 
6043 //------------------------------inline_counterMode_AESCrypt-----------------------
6044 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6045   assert(UseAES, "need AES instruction support");
6046   if (!UseAESCTRIntrinsics) return false;
6047 
6048   address stubAddr = NULL;
6049   const char *stubName = NULL;
6050   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6051     stubAddr = StubRoutines::counterMode_AESCrypt();
6052     stubName = "counterMode_AESCrypt";
6053   }
6054   if (stubAddr == NULL) return false;
6055 
6056   Node* counterMode_object = argument(0);
6057   Node* src = argument(1);
6058   Node* src_offset = argument(2);
6059   Node* len = argument(3);
6060   Node* dest = argument(4);
6061   Node* dest_offset = argument(5);
6062 
6063   src = access_resolve(src, ACCESS_READ);
6064   dest = access_resolve(dest, ACCESS_WRITE);
6065   counterMode_object = access_resolve(counterMode_object, ACCESS_WRITE);
6066 
6067   // (1) src and dest are arrays.
6068   const Type* src_type = src->Value(&_gvn);
6069   const Type* dest_type = dest->Value(&_gvn);
6070   const TypeAryPtr* top_src = src_type->isa_aryptr();
6071   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6072   assert(top_src != NULL && top_src->klass() != NULL &&
6073          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6074 
6075   // checks are the responsibility of the caller
6076   Node* src_start = src;
6077   Node* dest_start = dest;
6078   if (src_offset != NULL || dest_offset != NULL) {
6079     assert(src_offset != NULL && dest_offset != NULL, "");
6080     src_start = array_element_address(src, src_offset, T_BYTE);
6081     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6082   }
6083 
6084   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6085   // (because of the predicated logic executed earlier).
6086   // so we cast it here safely.
6087   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6088   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6089   if (embeddedCipherObj == NULL) return false;
6090   // cast it to what we know it will be at runtime
6091   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6092   assert(tinst != NULL, "CTR obj is null");
6093   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6094   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6095   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6096   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6097   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6098   const TypeOopPtr* xtype = aklass->as_instance_type();
6099   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6100   aescrypt_object = _gvn.transform(aescrypt_object);
6101   // we need to get the start of the aescrypt_object's expanded key array
6102   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6103   if (k_start == NULL) return false;
6104   // similarly, get the start address of the r vector
6105   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6106   if (obj_counter == NULL) return false;
6107   obj_counter = access_resolve(obj_counter, ACCESS_WRITE);
6108   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6109 
6110   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6111   if (saved_encCounter == NULL) return false;
6112   saved_encCounter = access_resolve(saved_encCounter, ACCESS_WRITE);
6113   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6114   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6115 
6116   Node* ctrCrypt;
6117   if (Matcher::pass_original_key_for_aes()) {
6118     // no SPARC version for AES/CTR intrinsics now.
6119     return false;
6120   }
6121   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6122   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6123                                OptoRuntime::counterMode_aescrypt_Type(),
6124                                stubAddr, stubName, TypePtr::BOTTOM,
6125                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6126 
6127   // return cipher length (int)
6128   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6129   set_result(retvalue);
6130   return true;
6131 }
6132 
6133 //------------------------------get_key_start_from_aescrypt_object-----------------------
6134 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6135 #if defined(PPC64) || defined(S390)
6136   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6137   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6138   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6139   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6140   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6141   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6142   if (objSessionK == NULL) {
6143     return (Node *) NULL;
6144   }
6145   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6146 #else
6147   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6148 #endif // PPC64
6149   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6150   if (objAESCryptKey == NULL) return (Node *) NULL;
6151 
6152   // now have the array, need to get the start address of the K array
6153   objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6154   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6155   return k_start;
6156 }
6157 
6158 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6159 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6160   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6161   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6162   if (objAESCryptKey == NULL) return (Node *) NULL;
6163 
6164   // now have the array, need to get the start address of the lastKey array
6165   objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6166   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6167   return original_k_start;
6168 }
6169 
6170 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6171 // Return node representing slow path of predicate check.
6172 // the pseudo code we want to emulate with this predicate is:
6173 // for encryption:
6174 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6175 // for decryption:
6176 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6177 //    note cipher==plain is more conservative than the original java code but that's OK
6178 //
6179 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6180   // The receiver was checked for NULL already.
6181   Node* objCBC = argument(0);
6182 
6183   Node* src = argument(1);
6184   Node* dest = argument(4);
6185 
6186   // Load embeddedCipher field of CipherBlockChaining object.
6187   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6188 
6189   // get AESCrypt klass for instanceOf check
6190   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6191   // will have same classloader as CipherBlockChaining object
6192   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6193   assert(tinst != NULL, "CBCobj is null");
6194   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6195 
6196   // we want to do an instanceof comparison against the AESCrypt class
6197   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6198   if (!klass_AESCrypt->is_loaded()) {
6199     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6200     Node* ctrl = control();
6201     set_control(top()); // no regular fast path
6202     return ctrl;
6203   }
6204 
6205   src = must_be_not_null(src, true);
6206   dest = must_be_not_null(dest, true);
6207 
6208   // Resolve oops to stable for CmpP below.
6209   src = access_resolve(src, 0);
6210   dest = access_resolve(dest, 0);
6211 
6212   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6213 
6214   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6215   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6216   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6217 
6218   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6219 
6220   // for encryption, we are done
6221   if (!decrypting)
6222     return instof_false;  // even if it is NULL
6223 
6224   // for decryption, we need to add a further check to avoid
6225   // taking the intrinsic path when cipher and plain are the same
6226   // see the original java code for why.
6227   RegionNode* region = new RegionNode(3);
6228   region->init_req(1, instof_false);
6229 
6230   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6231   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6232   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6233   region->init_req(2, src_dest_conjoint);
6234 
6235   record_for_igvn(region);
6236   return _gvn.transform(region);
6237 }
6238 
6239 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6240 // Return node representing slow path of predicate check.
6241 // the pseudo code we want to emulate with this predicate is:
6242 // for encryption:
6243 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6244 // for decryption:
6245 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6246 //    note cipher==plain is more conservative than the original java code but that's OK
6247 //
6248 
6249 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6250   // The receiver was checked for NULL already.
6251   Node* objCTR = argument(0);
6252 
6253   // Load embeddedCipher field of CipherBlockChaining object.
6254   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6255 
6256   // get AESCrypt klass for instanceOf check
6257   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6258   // will have same classloader as CipherBlockChaining object
6259   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6260   assert(tinst != NULL, "CTRobj is null");
6261   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6262 
6263   // we want to do an instanceof comparison against the AESCrypt class
6264   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6265   if (!klass_AESCrypt->is_loaded()) {
6266     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6267     Node* ctrl = control();
6268     set_control(top()); // no regular fast path
6269     return ctrl;
6270   }
6271 
6272   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6273   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6274   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6275   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6276   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6277 
6278   return instof_false; // even if it is NULL
6279 }
6280 
6281 //------------------------------inline_ghash_processBlocks
6282 bool LibraryCallKit::inline_ghash_processBlocks() {
6283   address stubAddr;
6284   const char *stubName;
6285   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6286 
6287   stubAddr = StubRoutines::ghash_processBlocks();
6288   stubName = "ghash_processBlocks";
6289 
6290   Node* data           = argument(0);
6291   Node* offset         = argument(1);
6292   Node* len            = argument(2);
6293   Node* state          = argument(3);
6294   Node* subkeyH        = argument(4);
6295 
6296   state = must_be_not_null(state, true);
6297   subkeyH = must_be_not_null(subkeyH, true);
6298   data = must_be_not_null(data, true);
6299 
6300   state = access_resolve(state, ACCESS_WRITE);
6301   subkeyH = access_resolve(subkeyH, ACCESS_READ);
6302   data = access_resolve(data, ACCESS_READ);
6303 
6304   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6305   assert(state_start, "state is NULL");
6306   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6307   assert(subkeyH_start, "subkeyH is NULL");
6308   Node* data_start  = array_element_address(data, offset, T_BYTE);
6309   assert(data_start, "data is NULL");
6310 
6311   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6312                                   OptoRuntime::ghash_processBlocks_Type(),
6313                                   stubAddr, stubName, TypePtr::BOTTOM,
6314                                   state_start, subkeyH_start, data_start, len);
6315   return true;
6316 }
6317 
6318 bool LibraryCallKit::inline_base64_encodeBlock() {
6319   address stubAddr;
6320   const char *stubName;
6321   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6322   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
6323   stubAddr = StubRoutines::base64_encodeBlock();
6324   stubName = "encodeBlock";
6325 
6326   if (!stubAddr) return false;
6327   Node* base64obj = argument(0);
6328   Node* src = argument(1);
6329   Node* offset = argument(2);
6330   Node* len = argument(3);
6331   Node* dest = argument(4);
6332   Node* dp = argument(5);
6333   Node* isURL = argument(6);
6334 
6335   src = must_be_not_null(src, true);
6336   src = access_resolve(src, ACCESS_READ);
6337   dest = must_be_not_null(dest, true);
6338   dest = access_resolve(dest, ACCESS_WRITE);
6339 
6340   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6341   assert(src_start, "source array is NULL");
6342   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6343   assert(dest_start, "destination array is NULL");
6344 
6345   Node* base64 = make_runtime_call(RC_LEAF,
6346                                    OptoRuntime::base64_encodeBlock_Type(),
6347                                    stubAddr, stubName, TypePtr::BOTTOM,
6348                                    src_start, offset, len, dest_start, dp, isURL);
6349   return true;
6350 }
6351 
6352 //------------------------------inline_sha_implCompress-----------------------
6353 //
6354 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6355 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6356 //
6357 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6358 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6359 //
6360 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6361 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6362 //
6363 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6364   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6365 
6366   Node* sha_obj = argument(0);
6367   Node* src     = argument(1); // type oop
6368   Node* ofs     = argument(2); // type int
6369 
6370   const Type* src_type = src->Value(&_gvn);
6371   const TypeAryPtr* top_src = src_type->isa_aryptr();
6372   if (top_src  == NULL || top_src->klass()  == NULL) {
6373     // failed array check
6374     return false;
6375   }
6376   // Figure out the size and type of the elements we will be copying.
6377   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6378   if (src_elem != T_BYTE) {
6379     return false;
6380   }
6381   // 'src_start' points to src array + offset
6382   src = must_be_not_null(src, true);
6383   src = access_resolve(src, ACCESS_READ);
6384   Node* src_start = array_element_address(src, ofs, src_elem);
6385   Node* state = NULL;
6386   address stubAddr;
6387   const char *stubName;
6388 
6389   switch(id) {
6390   case vmIntrinsics::_sha_implCompress:
6391     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6392     state = get_state_from_sha_object(sha_obj);
6393     stubAddr = StubRoutines::sha1_implCompress();
6394     stubName = "sha1_implCompress";
6395     break;
6396   case vmIntrinsics::_sha2_implCompress:
6397     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6398     state = get_state_from_sha_object(sha_obj);
6399     stubAddr = StubRoutines::sha256_implCompress();
6400     stubName = "sha256_implCompress";
6401     break;
6402   case vmIntrinsics::_sha5_implCompress:
6403     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6404     state = get_state_from_sha5_object(sha_obj);
6405     stubAddr = StubRoutines::sha512_implCompress();
6406     stubName = "sha512_implCompress";
6407     break;
6408   default:
6409     fatal_unexpected_iid(id);
6410     return false;
6411   }
6412   if (state == NULL) return false;
6413 
6414   assert(stubAddr != NULL, "Stub is generated");
6415   if (stubAddr == NULL) return false;
6416 
6417   // Call the stub.
6418   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6419                                  stubAddr, stubName, TypePtr::BOTTOM,
6420                                  src_start, state);
6421 
6422   return true;
6423 }
6424 
6425 //------------------------------inline_digestBase_implCompressMB-----------------------
6426 //
6427 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6428 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6429 //
6430 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6431   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6432          "need SHA1/SHA256/SHA512 instruction support");
6433   assert((uint)predicate < 3, "sanity");
6434   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6435 
6436   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6437   Node* src            = argument(1); // byte[] array
6438   Node* ofs            = argument(2); // type int
6439   Node* limit          = argument(3); // type int
6440 
6441   const Type* src_type = src->Value(&_gvn);
6442   const TypeAryPtr* top_src = src_type->isa_aryptr();
6443   if (top_src  == NULL || top_src->klass()  == NULL) {
6444     // failed array check
6445     return false;
6446   }
6447   // Figure out the size and type of the elements we will be copying.
6448   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6449   if (src_elem != T_BYTE) {
6450     return false;
6451   }
6452   // 'src_start' points to src array + offset
6453   src = must_be_not_null(src, false);
6454   src = access_resolve(src, ACCESS_READ);
6455   Node* src_start = array_element_address(src, ofs, src_elem);
6456 
6457   const char* klass_SHA_name = NULL;
6458   const char* stub_name = NULL;
6459   address     stub_addr = NULL;
6460   bool        long_state = false;
6461 
6462   switch (predicate) {
6463   case 0:
6464     if (UseSHA1Intrinsics) {
6465       klass_SHA_name = "sun/security/provider/SHA";
6466       stub_name = "sha1_implCompressMB";
6467       stub_addr = StubRoutines::sha1_implCompressMB();
6468     }
6469     break;
6470   case 1:
6471     if (UseSHA256Intrinsics) {
6472       klass_SHA_name = "sun/security/provider/SHA2";
6473       stub_name = "sha256_implCompressMB";
6474       stub_addr = StubRoutines::sha256_implCompressMB();
6475     }
6476     break;
6477   case 2:
6478     if (UseSHA512Intrinsics) {
6479       klass_SHA_name = "sun/security/provider/SHA5";
6480       stub_name = "sha512_implCompressMB";
6481       stub_addr = StubRoutines::sha512_implCompressMB();
6482       long_state = true;
6483     }
6484     break;
6485   default:
6486     fatal("unknown SHA intrinsic predicate: %d", predicate);
6487   }
6488   if (klass_SHA_name != NULL) {
6489     assert(stub_addr != NULL, "Stub is generated");
6490     if (stub_addr == NULL) return false;
6491 
6492     // get DigestBase klass to lookup for SHA klass
6493     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6494     assert(tinst != NULL, "digestBase_obj is not instance???");
6495     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6496 
6497     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6498     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6499     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6500     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6501   }
6502   return false;
6503 }
6504 //------------------------------inline_sha_implCompressMB-----------------------
6505 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6506                                                bool long_state, address stubAddr, const char *stubName,
6507                                                Node* src_start, Node* ofs, Node* limit) {
6508   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6509   const TypeOopPtr* xtype = aklass->as_instance_type();
6510   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6511   sha_obj = _gvn.transform(sha_obj);
6512 
6513   Node* state;
6514   if (long_state) {
6515     state = get_state_from_sha5_object(sha_obj);
6516   } else {
6517     state = get_state_from_sha_object(sha_obj);
6518   }
6519   if (state == NULL) return false;
6520 
6521   // Call the stub.
6522   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6523                                  OptoRuntime::digestBase_implCompressMB_Type(),
6524                                  stubAddr, stubName, TypePtr::BOTTOM,
6525                                  src_start, state, ofs, limit);
6526   // return ofs (int)
6527   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6528   set_result(result);
6529 
6530   return true;
6531 }
6532 
6533 enum VectorApiObjectType {
6534   VECAPI_VECTOR,
6535   VECAPI_MASK,
6536   VECAPI_SPECIES,
6537   VECAPI_SHUFFLE,
6538 };
6539 
6540 enum VectorMaskUseType {
6541   VecMaskUseLoad,
6542   VecMaskUseStore,
6543   VecMaskUseAll,
6544   VecMaskNotUsed
6545 };
6546 
6547 static bool arch_supports_vector(int op, int num_elem, BasicType type, VectorMaskUseType mask_use_type, int op_arity = 0) {
6548   // Check that the operation is valid.
6549   if (op <= 0) {
6550 #ifndef PRODUCT
6551     if (DebugVectorApi) {
6552       tty->print_cr("Rejected intrinsification because no valid vector op could be extracted");
6553     }
6554 #endif
6555     return false;
6556   }
6557 
6558   // Check that architecture supports this op-size-type combination.
6559   if (!Matcher::match_rule_supported_vector(op, num_elem, type, op_arity)) {
6560 #ifndef PRODUCT
6561     if (DebugVectorApi) {
6562       tty->print_cr("Rejected vector op (%s,%s,%d) because architecture does not support it",
6563                     NodeClassNames[op], type2name(type), num_elem);
6564     }
6565 #endif
6566     return false;
6567   } else {
6568     assert(Matcher::match_rule_supported(op), "must be supported");
6569   }
6570 
6571   // Check whether mask unboxing is supported.
6572   if (mask_use_type == VecMaskUseAll || mask_use_type == VecMaskUseLoad) {
6573     if (!Matcher::match_rule_supported_vector(Op_VectorLoadMask, num_elem, type)) {
6574     #ifndef PRODUCT
6575         if (DebugVectorApi) {
6576           tty->print_cr("Rejected vector mask loading (%s,%s,%d) because architecture does not support it",
6577                         NodeClassNames[Op_VectorLoadMask], type2name(type), num_elem);
6578         }
6579     #endif
6580         return false;
6581       }
6582   }
6583 
6584   // Check whether mask boxing is supported.
6585   if (mask_use_type == VecMaskUseAll || mask_use_type == VecMaskUseStore) {
6586     if (!Matcher::match_rule_supported_vector(Op_VectorStoreMask, num_elem, type)) {
6587     #ifndef PRODUCT
6588         if (DebugVectorApi) {
6589           tty->print_cr("Rejected vector mask storing (%s,%s,%d) because architecture does not support it",
6590                         NodeClassNames[Op_VectorStoreMask], type2name(type), num_elem);
6591         }
6592     #endif
6593         return false;
6594       }
6595   }
6596 
6597   return true;
6598 }
6599 
6600 // Should be aligned with constants in jdk.incubator.vector.VectorIntrinsics.
6601 enum {
6602   // Unary
6603   OP_ABS     = 0,
6604   OP_NEG     = 1,
6605   OP_SQRT    = 2,
6606   OP_NOT     = 3,
6607   // Binary
6608   OP_ADD     = 4,
6609   OP_SUB     = 5,
6610   OP_MUL     = 6,
6611   OP_DIV     = 7,
6612   OP_MIN     = 8,
6613   OP_MAX     = 9,
6614   OP_AND     = 10,
6615   OP_OR      = 11,
6616   OP_XOR     = 12,
6617   // Ternary
6618   OP_FMA     = 13,
6619   // Broadcast int
6620   OP_LSHIFT  = 14,
6621   OP_RSHIFT  = 15,
6622   OP_URSHIFT = 16,
6623   // Vector Math Library
6624   OP_TAN = 101,
6625   OP_SVML_START = OP_TAN,
6626   OP_TANH = 102,
6627   OP_SIN = 103,
6628   OP_SINH = 104,
6629   OP_COS = 105,
6630   OP_COSH = 106,
6631   OP_ASIN = 107,
6632   OP_ACOS = 108,
6633   OP_ATAN = 109,
6634   OP_ATAN2 = 110,
6635   OP_CBRT = 111,
6636   OP_LOG = 112,
6637   OP_LOG10 = 113,
6638   OP_LOG1P = 114,
6639   OP_POW = 115,
6640   OP_EXP = 116,
6641   OP_EXPM1 = 117,
6642   OP_HYPOT = 118,
6643   OP_SVML_END = OP_HYPOT,
6644 };
6645 
6646 static int get_opc(jint op, BasicType bt) {
6647   switch (op) {
6648     case OP_ADD: {
6649       switch (bt) {
6650         case T_BYTE:   // fall-through
6651         case T_SHORT:  // fall-through
6652         case T_INT:    return Op_AddI;
6653         case T_LONG:   return Op_AddL;
6654         case T_FLOAT:  return Op_AddF;
6655         case T_DOUBLE: return Op_AddD;
6656         default: fatal("ADD: %s", type2name(bt));
6657       }
6658       break;
6659     }
6660     case OP_SUB: {
6661       switch (bt) {
6662         case T_BYTE:   // fall-through
6663         case T_SHORT:  // fall-through
6664         case T_INT:    return Op_SubI;
6665         case T_LONG:   return Op_SubL;
6666         case T_FLOAT:  return Op_SubF;
6667         case T_DOUBLE: return Op_SubD;
6668         default: fatal("SUB: %s", type2name(bt));
6669       }
6670       break;
6671     }
6672     case OP_MUL: {
6673       switch (bt) {
6674         case T_BYTE:   // fall-through
6675         case T_SHORT:  // fall-through
6676         case T_INT:    return Op_MulI;
6677         case T_LONG:   return Op_MulL;
6678         case T_FLOAT:  return Op_MulF;
6679         case T_DOUBLE: return Op_MulD;
6680         default: fatal("MUL: %s", type2name(bt));
6681       }
6682       break;
6683     }
6684     case OP_DIV: {
6685       switch (bt) {
6686         case T_BYTE:   // fall-through
6687         case T_SHORT:  // fall-through
6688         case T_INT:    return Op_DivI;
6689         case T_LONG:   return Op_DivL;
6690         case T_FLOAT:  return Op_DivF;
6691         case T_DOUBLE: return Op_DivD;
6692         default: fatal("DIV: %s", type2name(bt));
6693       }
6694       break;
6695     }
6696     case OP_MIN: {
6697       switch (bt) {
6698         case T_BYTE:
6699         case T_SHORT:
6700         case T_INT:    return Op_MinI;
6701         case T_LONG:   return Op_MinL;
6702         case T_FLOAT:  return Op_MinF;
6703         case T_DOUBLE: return Op_MinD;
6704         default: fatal("MIN: %s", type2name(bt));
6705       }
6706       break;
6707     }
6708     case OP_MAX: {
6709       switch (bt) {
6710         case T_BYTE:
6711         case T_SHORT:
6712         case T_INT:    return Op_MaxI;
6713         case T_LONG:   return Op_MaxL;
6714         case T_FLOAT:  return Op_MaxF;
6715         case T_DOUBLE: return Op_MaxD;
6716         default: fatal("MAX: %s", type2name(bt));
6717       }
6718       break;
6719     }
6720     case OP_ABS: {
6721       switch (bt) {
6722         case T_BYTE:   // fall-through
6723         case T_SHORT:  // fall-through
6724         case T_LONG:   // fall-through
6725         case T_INT:    return Op_AbsI;
6726         case T_FLOAT:  return Op_AbsF;
6727         case T_DOUBLE: return Op_AbsD;
6728         default: fatal("ABS: %s", type2name(bt));
6729       }
6730       break;
6731     }
6732     case OP_NEG: {
6733       switch (bt) {
6734         case T_BYTE:   // fall-through
6735         case T_SHORT:  // fall-through
6736         case T_INT:    return Op_NegI;
6737         case T_FLOAT:  return Op_NegF;
6738         case T_DOUBLE: return Op_NegD;
6739         default: fatal("NEG: %s", type2name(bt));
6740       }
6741       break;
6742     }
6743     case OP_AND: {
6744       switch (bt) {
6745         case T_BYTE:   // fall-through
6746         case T_SHORT:  // fall-through
6747         case T_INT:    return Op_AndI;
6748         case T_LONG:   return Op_AndL;
6749         default: fatal("AND: %s", type2name(bt));
6750       }
6751       break;
6752     }
6753     case OP_OR: {
6754       switch (bt) {
6755         case T_BYTE:   // fall-through
6756         case T_SHORT:  // fall-through
6757         case T_INT:    return Op_OrI;
6758         case T_LONG:   return Op_OrL;
6759         default: fatal("OR: %s", type2name(bt));
6760       }
6761       break;
6762     }
6763     case OP_XOR: {
6764       switch (bt) {
6765         case T_BYTE:   // fall-through
6766         case T_SHORT:  // fall-through
6767         case T_INT:    return Op_XorI;
6768         case T_LONG:   return Op_XorL;
6769         default: fatal("XOR: %s", type2name(bt));
6770       }
6771       break;
6772     }
6773     case OP_SQRT: {
6774       switch (bt) {
6775         case T_FLOAT:  return Op_SqrtF;
6776         case T_DOUBLE: return Op_SqrtD;
6777         default: fatal("SQRT: %s", type2name(bt));
6778       }
6779       break;
6780     }
6781     case OP_NOT: {
6782       switch (bt) {
6783         case T_BYTE:   // fall-through
6784         case T_SHORT:  // fall-through
6785         case T_INT:    // fall-through
6786         case T_LONG:   return Op_Not;
6787         default: fatal("NOT: %s", type2name(bt));
6788       }
6789       break;
6790     }
6791     case OP_FMA: {
6792       switch (bt) {
6793         case T_FLOAT:  return Op_FmaF;
6794         case T_DOUBLE: return Op_FmaD;
6795         default: fatal("FMA: %s", type2name(bt));
6796       }
6797       break;
6798     }
6799     case OP_LSHIFT: {
6800       switch (bt) {
6801         case T_BYTE:   // fall-through
6802         case T_SHORT:  // fall-through
6803         case T_INT:  return Op_LShiftI;
6804         case T_LONG: return Op_LShiftL;
6805         default: fatal("LSHIFT: %s", type2name(bt));
6806       }
6807       break;
6808     }
6809     case OP_RSHIFT: {
6810       switch (bt) {
6811         case T_BYTE:   // fall-through
6812         case T_SHORT:  // fall-through
6813         case T_INT:  return Op_RShiftI;
6814         case T_LONG: return Op_RShiftL;
6815         default: fatal("RSHIFT: %s", type2name(bt));
6816       }
6817       break;
6818     }
6819     case OP_URSHIFT: {
6820       switch (bt) {
6821         case T_BYTE:  return Op_URShiftB;
6822         case T_SHORT: return Op_URShiftS;
6823         case T_INT:   return Op_URShiftI;
6824         case T_LONG:  return Op_URShiftL;
6825         default: fatal("URSHIFT: %s", type2name(bt));
6826       }
6827       break;
6828     }
6829     case OP_TAN:
6830     case OP_TANH:
6831     case OP_SIN:
6832     case OP_SINH:
6833     case OP_COS:
6834     case OP_COSH:
6835     case OP_ASIN:
6836     case OP_ACOS:
6837     case OP_ATAN:
6838     case OP_ATAN2:
6839     case OP_CBRT:
6840     case OP_LOG:
6841     case OP_LOG10:
6842     case OP_LOG1P:
6843     case OP_POW:
6844     case OP_EXP:
6845     case OP_EXPM1:
6846     case OP_HYPOT:
6847       return Op_CallLeafVector;
6848     default: fatal("unknown op: %d", op);
6849   }
6850   return 0; // Unimplemented
6851 }
6852 
6853 static int get_sopc(int opc, BasicType elem_bt) {
6854   int sopc = 0;
6855   switch (opc) {
6856     case Op_CallLeafVector:
6857       sopc = Op_CallLeafVector;
6858       break;
6859     default:
6860       sopc = VectorNode::opcode(opc, elem_bt);
6861       break;
6862   }
6863   return sopc;
6864 }
6865 Node* LibraryCallKit::box_vector(Node* vector, const TypeInstPtr* vbox_type,
6866                                  BasicType elem_bt, int num_elem) {
6867 
6868   const TypeVect* vec_type = TypeVect::make(elem_bt, num_elem);
6869 
6870   VectorBoxAllocateNode* alloc = new VectorBoxAllocateNode(C, vbox_type);
6871   set_edges_for_java_call(alloc, /*must_throw=*/false, /*separate_io_proj=*/true);
6872   make_slow_call_ex(alloc, env()->Throwable_klass(), /*separate_io_proj=*/true);
6873   set_i_o(_gvn.transform( new ProjNode(alloc, TypeFunc::I_O) ));
6874   set_all_memory(_gvn.transform( new ProjNode(alloc, TypeFunc::Memory) ));
6875   Node* ret = _gvn.transform(new ProjNode(alloc, TypeFunc::Parms));
6876 
6877   VectorBoxNode* vbox = new VectorBoxNode(C, ret, vector, vbox_type, vec_type);
6878   return _gvn.transform(vbox);
6879 }
6880 
6881 Node* LibraryCallKit::unbox_vector(Node* v, const TypeInstPtr* vbox_type, BasicType elem_bt, int num_elem) {
6882   const TypeInstPtr* vbox_type_v = gvn().type(v)->is_instptr();
6883   if (vbox_type->klass() != vbox_type_v->klass()) {
6884     return NULL; // arguments don't agree on vector shapes
6885   }
6886   if (vbox_type_v->maybe_null()) {
6887     return NULL; // no nulls are allowed
6888   }
6889   const TypeVect* vec_type = TypeVect::make(elem_bt, num_elem);
6890   Node* unbox = gvn().transform(new VectorUnboxNode(C, vec_type, v, merged_memory()));
6891   return unbox;
6892 }
6893 
6894 void LibraryCallKit::set_vector_result(Node* result, bool set_res) {
6895   if (DebugVectorApi) {
6896 #ifndef PRODUCT
6897     tty->print("============ ");
6898     callee()->print();
6899     tty->print_cr(" ============");
6900     result->dump(5);
6901     tty->print_cr("----------------------------------------------------");
6902 #endif
6903   }
6904   if (set_res) {
6905     set_result(result);
6906   }
6907 }
6908 
6909 bool LibraryCallKit::inline_vector_nary_operation(int n) {
6910   const TypeInt* opr              = gvn().type(argument(0))->is_int();
6911   const TypeInstPtr* vector_klass = gvn().type(argument(1))->is_instptr();
6912   const TypeInstPtr* elem_klass   = gvn().type(argument(2))->is_instptr();
6913   const TypeInt* vlen             = gvn().type(argument(3))->is_int();
6914 
6915   if (!opr->is_con() || vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
6916     return false; // not enough info for intrinsification
6917   }
6918   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
6919   if (!elem_type->is_primitive_type()) {
6920     return false; // should be primitive type
6921   }
6922   BasicType elem_bt = elem_type->basic_type();
6923   int num_elem = vlen->get_con();
6924   int opc = get_opc(opr->get_con(), elem_bt);
6925   int sopc = get_sopc(opc, elem_bt);
6926   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
6927   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
6928 
6929   if (opc == Op_CallLeafVector && !Matcher::supports_vector_calling_convention()) {
6930     return false;
6931   }
6932 
6933   // TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad.
6934   if (!arch_supports_vector(sopc, num_elem, elem_bt, vbox_klass->is_vectormask() ? VecMaskUseAll : VecMaskNotUsed, n)) {
6935     return false; // not supported
6936   }
6937 
6938   Node* opd1 = NULL; Node* opd2 = NULL; Node* opd3 = NULL;
6939   switch (n) {
6940     case 3: {
6941       opd3 = unbox_vector(argument(6), vbox_type, elem_bt, num_elem);
6942       if (opd3 == NULL) {
6943         return false;
6944       }
6945       // fall-through
6946     }
6947     case 2: {
6948       opd2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem);
6949       if (opd2 == NULL) {
6950         return false;
6951       }
6952       // fall-through
6953     }
6954     case 1: {
6955       opd1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
6956       if (opd1 == NULL) {
6957         return false;
6958       }
6959       break;
6960     }
6961     default: fatal("unsupported arity: %d", n);
6962   }
6963 
6964   Node* operation = NULL;
6965   if (sopc == Op_CallLeafVector) {
6966     operation = gen_call_to_svml(opr->get_con(), elem_bt, num_elem, opd1, opd2);
6967     if (operation == NULL) {
6968       return false;
6969     }
6970   } else {
6971     switch (n) {
6972       case 1:
6973       case 2: {
6974         operation = _gvn.transform(VectorNode::make(opc, opd1, opd2, num_elem, elem_bt));
6975         break;
6976       }
6977       case 3: {
6978         operation = _gvn.transform(VectorNode::make(opc, opd1, opd2, opd3, num_elem, elem_bt));
6979         break;
6980       }
6981       default: fatal("unsupported arity: %d", n);
6982     }
6983   }
6984   // Wrap it up in VectorBox to keep object type information.
6985   operation = box_vector(operation, vbox_type, elem_bt, num_elem);
6986   set_vector_result(operation);
6987 
6988   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
6989   return true;
6990 }
6991 
6992 // <V extends Vector<?,?>>
6993 // V broadcastCoerced(Class<?> vectorClass, Class<?> elementType, int vlen,
6994 //                    long bits,
6995 //                    LongFunction<V> defaultImpl)
6996 bool LibraryCallKit::inline_vector_broadcast_coerced() {
6997   const TypeInstPtr* vector_klass = gvn().type(argument(0))->is_instptr();
6998   const TypeInstPtr* elem_klass   = gvn().type(argument(1))->is_instptr();
6999   const TypeInt* vlen             = gvn().type(argument(2))->is_int();
7000 
7001   if (vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
7002     return false; // not enough info for intrinsification
7003   }
7004 
7005   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
7006   if (!elem_type->is_primitive_type()) {
7007     return false; // should be primitive type
7008   }
7009   BasicType elem_bt = elem_type->basic_type();
7010   int num_elem = vlen->get_con();
7011   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
7012   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
7013 
7014   // TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad.
7015   if (!arch_supports_vector(VectorNode::replicate_opcode(elem_bt), num_elem, elem_bt,
7016                             vbox_klass->is_vectormask() ? VecMaskUseStore : VecMaskNotUsed)) {
7017     return false; // not supported
7018   }
7019 
7020   Node* bits = argument(3); // long
7021 
7022   Node* elem = NULL;
7023   switch (elem_bt) {
7024     case T_BOOLEAN: // fall-through
7025     case T_BYTE:    // fall-through
7026     case T_SHORT:   // fall-through
7027     case T_CHAR:    // fall-through
7028     case T_INT: {
7029       elem = gvn().transform(new ConvL2INode(bits));
7030       break;
7031     }
7032     case T_DOUBLE: {
7033       elem = gvn().transform(new MoveL2DNode(bits));
7034       break;
7035     }
7036     case T_FLOAT: {
7037       bits = gvn().transform(new ConvL2INode(bits));
7038       elem = gvn().transform(new MoveI2FNode(bits));
7039       break;
7040     }
7041     case T_LONG: {
7042       elem = bits; // no conversion needed
7043       break;
7044     }
7045     default: fatal("%s", type2name(elem_bt));
7046   }
7047 
7048   Node* broadcast = VectorNode::scalar2vector(elem, num_elem, Type::get_const_basic_type(elem_bt));
7049   broadcast = gvn().transform(broadcast);
7050   Node* box = box_vector(broadcast, vbox_type, elem_bt, num_elem);
7051   set_vector_result(box);
7052 
7053   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
7054   return true;
7055 }
7056 
7057 //    <C, V extends Vector<?,?>>
7058 //    V load(Class<?> vectorClass, Class<?> elementType, int vlen,
7059 //           Object base, long offset,
7060 //           /* Vector.Mask<E,S> m*/
7061 //           Object container, int index,
7062 //           LoadOperation<C, VM> defaultImpl) {
7063 //
7064 //    <C, V extends Vector<?,?>>
7065 //    void store(Class<?> vectorClass, Class<?> elementType, int vlen,
7066 //               Object base, long offset,
7067 //               V v, /*Vector.Mask<E,S> m*/
7068 //               Object container, int index,
7069 //               StoreVectorOperation<C, V> defaultImpl) {
7070 
7071 bool LibraryCallKit::inline_vector_mem_operation(bool is_store) {
7072   const TypeInstPtr* vector_klass = gvn().type(argument(0))->is_instptr();
7073   const TypeInstPtr* elem_klass   = gvn().type(argument(1))->is_instptr();
7074   const TypeInt* vlen             = gvn().type(argument(2))->is_int();
7075 
7076   if (vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
7077     return false; // not enough info for intrinsification
7078   }
7079 
7080   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
7081   if (!elem_type->is_primitive_type()) {
7082     return false; // should be primitive type
7083   }
7084   BasicType elem_bt = elem_type->basic_type();
7085   int num_elem = vlen->get_con();
7086 
7087   // TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad.
7088   if (!arch_supports_vector(is_store ? Op_StoreVector : Op_LoadVector, num_elem, elem_bt, VecMaskNotUsed)) {
7089     return false; // not supported
7090   }
7091 
7092   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
7093   bool is_mask = vbox_klass->is_vectormask();
7094 
7095   Node* base = argument(3);
7096   Node* offset = ConvL2X(argument(4));
7097   DecoratorSet decorators = C2_UNSAFE_ACCESS;
7098   Node* addr = make_unsafe_address(base, offset, decorators, (is_mask ? T_BOOLEAN : elem_bt), true);
7099 
7100   // Can base be NULL? Otherwise, always on-heap access.
7101   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
7102 
7103   const TypePtr *addr_type = gvn().type(addr)->isa_ptr();
7104   const TypeAryPtr* arr_type = addr_type->isa_aryptr();
7105 
7106   // Now handle special case where load/store happens from/to byte array but element type is not byte.
7107   bool using_byte_array = arr_type != NULL && arr_type->elem()->array_element_basic_type() == T_BYTE && elem_bt != T_BYTE;
7108   // Handle loading masks.
7109   // If there is no consistency between array and vector element types, it must be special byte array case or loading masks
7110   if (arr_type != NULL && !using_byte_array && elem_bt != arr_type->elem()->array_element_basic_type() && !is_mask) {
7111     return false;
7112   }
7113   // Since we are using byte array, we need to double check that the byte operations are supported by backend.
7114   if (using_byte_array) {
7115     int byte_num_elem = num_elem * type2aelembytes(elem_bt);
7116     if (!arch_supports_vector(is_store ? Op_StoreVector : Op_LoadVector, byte_num_elem, T_BYTE, VecMaskNotUsed)) {
7117       return false; // not supported
7118     }
7119   }
7120   if (is_mask) {
7121     if (!arch_supports_vector(Op_LoadVector, num_elem, T_BOOLEAN, VecMaskNotUsed)) {
7122       return false; // not supported
7123     }
7124   }
7125 
7126   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
7127 
7128   if (can_access_non_heap) {
7129     insert_mem_bar(Op_MemBarCPUOrder);
7130   }
7131 
7132   if (is_store) {
7133     Node* val = unbox_vector(argument(6), vbox_type, elem_bt, num_elem);
7134     if (val == NULL) {
7135       return false; // operand unboxing failed
7136     }
7137     set_all_memory(reset_memory());
7138 
7139     // In case the store needs to happen to byte array, reinterpret the incoming vector to byte vector.
7140     int store_num_elem = num_elem;
7141     if (using_byte_array) {
7142       store_num_elem = num_elem * type2aelembytes(elem_bt);
7143       const TypeVect* to_vect_type = TypeVect::make(T_BYTE, store_num_elem);
7144       val = gvn().transform(new VectorReinterpretNode(val, val->bottom_type()->is_vect(), to_vect_type));
7145     }
7146 
7147     Node* vstore = gvn().transform(StoreVectorNode::make(0, control(), memory(addr), addr, addr_type, val, store_num_elem));
7148     set_memory(vstore, addr_type);
7149     set_vector_result(vstore, false);
7150   } else {
7151     // When using byte array, we need to load as byte then reinterpret the value. Otherwise, do a simple vector load.
7152     Node* vload = NULL;
7153     if (using_byte_array) {
7154       int load_num_elem = num_elem * type2aelembytes(elem_bt);
7155       vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, load_num_elem, T_BYTE));
7156       const TypeVect* to_vect_type = TypeVect::make(elem_bt, num_elem);
7157       vload = gvn().transform(new VectorReinterpretNode(vload, vload->bottom_type()->is_vect(), to_vect_type));
7158     } else {
7159       // Special handle for masks
7160       if (is_mask) {
7161           vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, num_elem, T_BOOLEAN));
7162           const TypeVect* to_vect_type = TypeVect::make(elem_bt, num_elem);
7163           vload = gvn().transform(new VectorLoadMaskNode(vload, to_vect_type));
7164       } else {
7165           vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, num_elem, elem_bt));
7166       }
7167     }
7168     Node* box = box_vector(vload, vbox_type, elem_bt, num_elem);
7169     set_vector_result(box);
7170   }
7171 
7172   if (can_access_non_heap) {
7173     insert_mem_bar(Op_MemBarCPUOrder);
7174   }
7175 
7176   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
7177   return true;
7178 }
7179 
7180 //    <C, V extends Vector<?>, W extends IntVector>
7181 //    void storeWithMap(Class<?> vectorClass, Class<?> elementType, int length, Class<?> vectorIndexClass,
7182 //                      Object base, long offset,    // Unsafe addressing
7183 //                      W index_vector, V v,
7184 //                      C container, int index, int[] indexMap, int indexM, // Arguments for default implementation
7185 //                      StoreVectorOperationWithMap<C, V> defaultImpl) {
7186 //
7187 bool LibraryCallKit::inline_vector_gather_scatter(bool is_scatter) {
7188   const TypeInstPtr* vector_klass     = gvn().type(argument(0))->is_instptr();
7189   const TypeInstPtr* elem_klass       = gvn().type(argument(1))->is_instptr();
7190   const TypeInt* vlen                 = gvn().type(argument(2))->is_int();
7191   const TypeInstPtr* vector_idx_klass = gvn().type(argument(3))->is_instptr();
7192 
7193   if (vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || vector_idx_klass->const_oop() == NULL || !vlen->is_con()) {
7194     return false; // not enough info for intrinsification
7195   }
7196 
7197   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
7198   if (!elem_type->is_primitive_type()) {
7199     return false; // should be primitive type
7200   }
7201   BasicType elem_bt = elem_type->basic_type();
7202   int num_elem = vlen->get_con();
7203 
7204   if (!arch_supports_vector(is_scatter ? Op_StoreVectorScatter : Op_LoadVectorGather, num_elem, elem_bt, VecMaskNotUsed)) {
7205     return false; // not supported
7206   }
7207 
7208   // Check that the vector holding indices is supported by architecture
7209   if (!arch_supports_vector(Op_LoadVector, num_elem, T_INT, VecMaskNotUsed)) {
7210       return false; // not supported
7211     }
7212 
7213   Node* base = argument(4);
7214   Node* offset = ConvL2X(argument(5));
7215   Node* addr = make_unsafe_address(base, offset, C2_UNSAFE_ACCESS, elem_bt, true);
7216 
7217   const TypePtr *addr_type = gvn().type(addr)->isa_ptr();
7218   const TypeAryPtr* arr_type = addr_type->isa_aryptr();
7219 
7220   // The array must be consistent with vector type
7221   if (arr_type == NULL || (arr_type != NULL && elem_bt != arr_type->elem()->array_element_basic_type())) {
7222     return false;
7223   }
7224   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
7225   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
7226 
7227   ciKlass* vbox_idx_klass = vector_idx_klass->const_oop()->as_instance()->java_lang_Class_klass();
7228 
7229   if (vbox_idx_klass == NULL) {
7230     return false;
7231   }
7232 
7233   const TypeInstPtr* vbox_idx_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_idx_klass);
7234 
7235   Node* index_vect = unbox_vector(argument(7), vbox_idx_type, T_INT, num_elem);
7236   if (index_vect == NULL) {
7237     return false;
7238   }
7239 
7240   const TypeVect* index_src_type = index_vect->as_Vector()->vect_type();
7241   const TypeVect* index_dst_type = TypeVect::make(T_INT, num_elem);
7242 
7243   if (Type::cmp(index_src_type, index_dst_type) != 0) {
7244     // For DoubleMaxVector and LongMaxVector, indexVector's length is twice.
7245     assert((elem_bt == T_DOUBLE || elem_bt == T_LONG) &&
7246            index_src_type->element_basic_type() == T_INT &&
7247            index_src_type->length() == index_dst_type->length() * 2,
7248            "Expect double the length");
7249 
7250     // Check whether resizing is support.
7251     if (!arch_supports_vector(Op_VectorReinterpret,
7252                               index_src_type->length(),
7253                               index_src_type->element_basic_type(),
7254                               VecMaskNotUsed)) {
7255       return false;
7256     }
7257     if (!arch_supports_vector(Op_VectorReinterpret,
7258                               num_elem,
7259                               T_INT,
7260                               VecMaskNotUsed)) {
7261       return false;
7262     }
7263     index_vect = gvn().transform(new VectorReinterpretNode(index_vect, index_src_type, index_dst_type));
7264   }
7265 
7266   const TypeVect* vector_type = TypeVect::make(elem_bt, num_elem);
7267   if (is_scatter) {
7268     Node* val = unbox_vector(argument(8), vbox_type, elem_bt, num_elem);
7269     if (val == NULL) {
7270       return false; // operand unboxing failed
7271     }
7272     set_all_memory(reset_memory());
7273 
7274     Node* vstore = gvn().transform(new StoreVectorScatterNode(control(), memory(addr), addr, addr_type, val, index_vect));
7275     set_memory(vstore, addr_type);
7276     set_vector_result(vstore, false);
7277  } else {
7278     Node* vload = gvn().transform(new LoadVectorGatherNode(control(), memory(addr), addr, addr_type, vector_type, index_vect));
7279 
7280     Node* box = box_vector(vload, vbox_type, elem_bt, num_elem);
7281     set_vector_result(box);
7282   }
7283 
7284   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
7285   return true;
7286 }
7287 
7288 // <V extends Vector<?,?>>
7289 // long reductionCoerced(int oprId, Class<?> vectorClass, Class<?> elementType, int vlen,
7290 //                       V v,
7291 //                       Function<V,Long> defaultImpl)
7292 
7293 bool LibraryCallKit::inline_vector_reduction() {
7294   const TypeInt* opr              = gvn().type(argument(0))->is_int();
7295   const TypeInstPtr* vector_klass = gvn().type(argument(1))->is_instptr();
7296   const TypeInstPtr* elem_klass   = gvn().type(argument(2))->is_instptr();
7297   const TypeInt* vlen             = gvn().type(argument(3))->is_int();
7298 
7299   if (vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
7300     return false; // not enough info for intrinsification
7301   }
7302   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
7303   if (!elem_type->is_primitive_type()) {
7304     return false; // should be primitive type
7305   }
7306   BasicType elem_bt = elem_type->basic_type();
7307   int num_elem = vlen->get_con();
7308 
7309   int opc  = get_opc(opr->get_con(), elem_bt);
7310   int sopc = ReductionNode::opcode(opc, elem_bt);
7311 
7312   // FIXME: When encountering a SubReduction, we want to check for support of
7313   // the corresponding AddReduction node.
7314   if (sopc == Op_SubReductionV) {
7315     if (gvn().type(argument(2))->isa_int()) {
7316       sopc = Op_AddReductionVI;
7317     } else if (gvn().type(argument(2))->isa_long()) {
7318       sopc = Op_AddReductionVL;
7319     }
7320   }
7321 
7322   // TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad.
7323   if (!arch_supports_vector(sopc, num_elem, elem_bt, VecMaskNotUsed)) {
7324     return false;
7325   }
7326 
7327   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
7328   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
7329 
7330   Node* opd = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
7331   if (opd == NULL) {
7332     return false; // operand unboxing failed
7333   }
7334 
7335   Node* init = ReductionNode::make_reduction_input(_gvn, opc, elem_bt);
7336   Node* rn = gvn().transform(ReductionNode::make(opc, NULL, init, opd, elem_bt));
7337 
7338   Node* bits = NULL;
7339   switch (elem_bt) {
7340     case T_BYTE:
7341     case T_SHORT:
7342     case T_INT: {
7343       bits = gvn().transform(new ConvI2LNode(rn));
7344       break;
7345     }
7346     case T_FLOAT: {
7347       rn   = gvn().transform(new MoveF2INode(rn));
7348       bits = gvn().transform(new ConvI2LNode(rn));
7349       break;
7350     }
7351     case T_DOUBLE: {
7352       bits = gvn().transform(new MoveD2LNode(rn));
7353       break;
7354     }
7355     case T_LONG: {
7356       bits = rn; // no conversion needed
7357       break;
7358     }
7359     default: fatal("%s", type2name(elem_bt));
7360   }
7361   set_vector_result(bits);
7362   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
7363   return true;
7364 }
7365 
7366 // static <V> boolean test(int cond, Class<?> vectorClass, Class<?> elementType, int vlen,
7367 //                         V v1, V v2,
7368 //                         BiFunction<V, V, Boolean> defaultImpl) {
7369 
7370 bool LibraryCallKit::inline_vector_test() {
7371   const TypeInt* cond             = gvn().type(argument(0))->is_int();
7372   const TypeInstPtr* vector_klass = gvn().type(argument(1))->is_instptr();
7373   const TypeInstPtr* elem_klass   = gvn().type(argument(2))->is_instptr();
7374   const TypeInt* vlen             = gvn().type(argument(3))->is_int();
7375 
7376   if (!cond->is_con() || vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
7377     return false; // not enough info for intrinsification
7378   }
7379   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
7380   if (!elem_type->is_primitive_type()) {
7381     return false; // should be primitive type
7382   }
7383   BasicType elem_bt = elem_type->basic_type();
7384   int num_elem = vlen->get_con();
7385   BoolTest::mask booltest = (BoolTest::mask)cond->get_con();
7386   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
7387   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
7388 
7389   if (!arch_supports_vector(Op_VectorTest, num_elem, elem_bt, vbox_klass->is_vectormask() ? VecMaskUseLoad : VecMaskNotUsed)) {
7390     return false;
7391   }
7392 
7393   Node* opd1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
7394   Node* opd2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem);
7395   if (opd1 == NULL || opd2 == NULL) {
7396     return false; // operand unboxing failed
7397   }
7398   Node* test = new VectorTestNode(opd1, opd2, booltest);
7399   test = _gvn.transform(test);
7400   set_vector_result(test);
7401   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
7402   return true;
7403 }
7404 
7405 // static
7406 // <V extends Vector, M extends Mask>
7407 // V blend(Class<V> vectorClass, Class<M> maskClass, Class<?> elementType, int vlen,
7408 //         V v1, V v2, M m,
7409 //         VectorBlendOp<V,M> defaultImpl) { ...
7410 //
7411 bool LibraryCallKit::inline_vector_blend() {
7412   const TypeInstPtr* vector_klass = gvn().type(argument(0))->is_instptr();
7413   const TypeInstPtr* mask_klass   = gvn().type(argument(1))->is_instptr();
7414   const TypeInstPtr* elem_klass   = gvn().type(argument(2))->is_instptr();
7415   const TypeInt*     vlen         = gvn().type(argument(3))->is_int();
7416 
7417   if (mask_klass->const_oop() == NULL || vector_klass->const_oop() == NULL ||
7418       elem_klass->const_oop() == NULL || !vlen->is_con()) {
7419     return false; // not enough info for intrinsification
7420   }
7421   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
7422   if (!elem_type->is_primitive_type()) {
7423     return false; // should be primitive type
7424   }
7425   BasicType elem_bt = elem_type->basic_type();
7426   BasicType mask_bt = elem_bt;
7427   int num_elem = vlen->get_con();
7428 
7429   if (!arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad)) {
7430     return false; // not supported
7431   }
7432   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
7433   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
7434 
7435   ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass();
7436   const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass);
7437 
7438   Node* v1   = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
7439   Node* v2   = unbox_vector(argument(5), vbox_type, elem_bt, num_elem);
7440   Node* mask = unbox_vector(argument(6), mbox_type, mask_bt, num_elem);
7441 
7442   if (v1 == NULL || v2 == NULL || mask == NULL) {
7443     return false; // operand unboxing failed
7444   }
7445 
7446   Node* blend = _gvn.transform(new VectorBlendNode(v1, v2, mask));
7447   Node* box = box_vector(blend, vbox_type, elem_bt, num_elem);
7448   set_vector_result(box);
7449 
7450   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
7451   return true;
7452 }
7453 
7454 //  static <V extends Vector<E,S>,
7455 //          M extends Vector.Mask<E,S>,
7456 //          S extends Vector.Shape, E>
7457 //  M compare(int cond, Class<V> vectorClass, Class<M> maskClass, Class<?> elementType, int vlen,
7458 //            V v1, V v2,
7459 //            VectorCompareOp<V,M> defaultImpl) { ...
7460 //
7461 bool LibraryCallKit::inline_vector_compare() {
7462   const TypeInt*     cond         = gvn().type(argument(0))->is_int();
7463   const TypeInstPtr* vector_klass = gvn().type(argument(1))->is_instptr();
7464   const TypeInstPtr* mask_klass   = gvn().type(argument(2))->is_instptr();
7465   const TypeInstPtr* elem_klass   = gvn().type(argument(3))->is_instptr();
7466   const TypeInt*     vlen         = gvn().type(argument(4))->is_int();
7467 
7468   if (!cond->is_con() || vector_klass->const_oop() == NULL || mask_klass->const_oop() == NULL ||
7469       elem_klass->const_oop() == NULL || !vlen->is_con()) {
7470     return false; // not enough info for intrinsification
7471   }
7472   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
7473   if (!elem_type->is_primitive_type()) {
7474     return false; // should be primitive type
7475   }
7476 
7477   int num_elem = vlen->get_con();
7478   BasicType elem_bt = elem_type->basic_type();
7479   BasicType mask_bt = elem_bt;
7480 
7481   if (!arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskUseStore)) {
7482     return false;
7483   }
7484 
7485   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
7486   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
7487 
7488   ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass();
7489   const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass);
7490 
7491   Node* v1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem);
7492   Node* v2 = unbox_vector(argument(6), vbox_type, elem_bt, num_elem);
7493 
7494   if (v1 == NULL || v2 == NULL) {
7495     return false; // operand unboxing failed
7496   }
7497   BoolTest::mask pred = (BoolTest::mask)cond->get_con();
7498   const TypeVect* vt = TypeVect::make(mask_bt, num_elem);
7499   Node* operation = _gvn.transform(new VectorMaskCmpNode(pred, v1, v2, vt));
7500 
7501   Node* box = box_vector(operation, mbox_type, mask_bt, num_elem);
7502   set_vector_result(box);
7503 
7504   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
7505   return true;
7506 }
7507 
7508 // static
7509 // <V extends Vector, Sh extends Shuffle>
7510 //  V rearrangeOp(Class<V> vectorClass, Class<Sh> shuffleClass, Class< ? > elementType, int vlen,
7511 //    V v1, Sh sh,
7512 //    VectorSwizzleOp<V, Sh, S, E> defaultImpl) { ...
7513 
7514 bool LibraryCallKit::inline_vector_rearrange() {
7515   const TypeInstPtr* vector_klass = gvn().type(argument(0))->is_instptr();
7516   const TypeInstPtr* shuffle_klass = gvn().type(argument(1))->is_instptr();
7517   const TypeInstPtr* elem_klass = gvn().type(argument(2))->is_instptr();
7518   const TypeInt*     vlen = gvn().type(argument(3))->is_int();
7519 
7520   if (shuffle_klass->const_oop() == NULL || vector_klass->const_oop() == NULL ||
7521     elem_klass->const_oop() == NULL || !vlen->is_con()) {
7522     return false; // not enough info for intrinsification
7523   }
7524   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
7525   if (!elem_type->is_primitive_type()) {
7526     return false; // should be primitive type
7527   }
7528   BasicType elem_bt = elem_type->basic_type();
7529   BasicType shuffle_bt = elem_bt;
7530   int num_elem = vlen->get_con();
7531 
7532   if (!arch_supports_vector(Op_VectorLoadShuffle, num_elem, elem_bt, VecMaskNotUsed)) {
7533     return false; // not supported
7534   }
7535   if (!arch_supports_vector(Op_VectorRearrange, num_elem, elem_bt, VecMaskNotUsed)) {
7536     return false; // not supported
7537   }
7538   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
7539   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
7540 
7541   ciKlass* shbox_klass = shuffle_klass->const_oop()->as_instance()->java_lang_Class_klass();
7542   const TypeInstPtr* shbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, shbox_klass);
7543 
7544   Node* v1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
7545   Node* shuffle = unbox_vector(argument(5), shbox_type, shuffle_bt, num_elem);
7546 
7547   if (v1 == NULL || shuffle == NULL) {
7548     return false; // operand unboxing failed
7549   }
7550 
7551   Node* rearrange = _gvn.transform(new VectorRearrangeNode(v1, shuffle));
7552   Node* box = box_vector(rearrange, vbox_type, elem_bt, num_elem);
7553   set_result(box);
7554 
7555   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
7556   return true;
7557 }
7558 
7559 Node* LibraryCallKit::shift_count(Node* cnt, int shift_op, BasicType bt, int num_elem) {
7560   assert(bt == T_INT || bt == T_LONG || bt == T_SHORT || bt == T_BYTE, "byte, short, long and int are supported");
7561   juint mask = (type2aelembytes(bt) * BitsPerByte - 1);
7562   Node* nmask = _gvn.transform(ConNode::make(TypeInt::make(mask)));
7563   Node* mcnt = _gvn.transform(new AndINode(cnt, nmask));
7564   return _gvn.transform(VectorNode::shift_count(shift_op, mcnt, num_elem, bt));
7565 }
7566 
7567 static void get_svml_address(int op, int bits, BasicType bt, const char** name_ptr, address* addr_ptr) {
7568   assert(name_ptr != NULL, "unexpected");
7569   assert(addr_ptr != NULL, "unexpected");
7570 
7571   // Since the addresses are resolved at runtime, using switch instead of table - otherwise might get NULL addresses.
7572   if (bt == T_FLOAT) {
7573     switch(op) {
7574       case OP_EXP: {
7575           switch(bits) {
7576             case 64: *name_ptr = "vector_float64_exp"; *addr_ptr = StubRoutines::vector_float64_exp(); break;
7577             case 128: *name_ptr = "vector_float128_exp"; *addr_ptr = StubRoutines::vector_float128_exp(); break;
7578             case 256: *name_ptr = "vector_float256_exp"; *addr_ptr = StubRoutines::vector_float256_exp(); break;
7579             case 512: *name_ptr = "vector_float512_exp"; *addr_ptr = StubRoutines::vector_float512_exp(); break;
7580             default: Unimplemented(); break;
7581           }
7582         }
7583         break;
7584       case OP_LOG1P: {
7585           switch(bits) {
7586             case 64: *name_ptr = "vector_float64_log1p"; *addr_ptr = StubRoutines::vector_float64_log1p(); break;
7587             case 128: *name_ptr = "vector_float128_log1p"; *addr_ptr = StubRoutines::vector_float128_log1p(); break;
7588             case 256: *name_ptr = "vector_float256_log1p"; *addr_ptr = StubRoutines::vector_float256_log1p(); break;
7589             case 512: *name_ptr = "vector_float512_log1p"; *addr_ptr = StubRoutines::vector_float512_log1p(); break;
7590             default: Unimplemented(); break;
7591           }
7592         }
7593         break;
7594       case OP_LOG: {
7595           switch(bits) {
7596             case 64: *name_ptr = "vector_float64_log"; *addr_ptr = StubRoutines::vector_float64_log(); break;
7597             case 128: *name_ptr = "vector_float128_log"; *addr_ptr = StubRoutines::vector_float128_log(); break;
7598             case 256: *name_ptr = "vector_float256_log"; *addr_ptr = StubRoutines::vector_float256_log(); break;
7599             case 512: *name_ptr = "vector_float512_log"; *addr_ptr = StubRoutines::vector_float512_log(); break;
7600             default: Unimplemented(); break;
7601           }
7602         }
7603         break;
7604       case OP_LOG10: {
7605           switch(bits) {
7606             case 64: *name_ptr = "vector_float64_log10"; *addr_ptr = StubRoutines::vector_float64_log10(); break;
7607             case 128: *name_ptr = "vector_float128_log10"; *addr_ptr = StubRoutines::vector_float128_log10(); break;
7608             case 256: *name_ptr = "vector_float256_log10"; *addr_ptr = StubRoutines::vector_float256_log10(); break;
7609             case 512: *name_ptr = "vector_float512_log10"; *addr_ptr = StubRoutines::vector_float512_log10(); break;
7610             default: Unimplemented(); break;
7611           }
7612         }
7613         break;
7614       case OP_EXPM1: {
7615           switch(bits) {
7616             case 64: *name_ptr = "vector_float64_expm1"; *addr_ptr = StubRoutines::vector_float64_expm1(); break;
7617             case 128: *name_ptr = "vector_float128_expm1"; *addr_ptr = StubRoutines::vector_float128_expm1(); break;
7618             case 256: *name_ptr = "vector_float256_expm1"; *addr_ptr = StubRoutines::vector_float256_expm1(); break;
7619             case 512: *name_ptr = "vector_float512_expm1"; *addr_ptr = StubRoutines::vector_float512_expm1(); break;
7620             default: Unimplemented(); break;
7621           }
7622         }
7623         break;
7624       case OP_SIN: {
7625           switch(bits) {
7626             case 64: *name_ptr = "vector_float64_sin"; *addr_ptr = StubRoutines::vector_float64_sin(); break;
7627             case 128: *name_ptr = "vector_float128_sin"; *addr_ptr = StubRoutines::vector_float128_sin(); break;
7628             case 256: *name_ptr = "vector_float256_sin"; *addr_ptr = StubRoutines::vector_float256_sin(); break;
7629             case 512: *name_ptr = "vector_float512_sin"; *addr_ptr = StubRoutines::vector_float512_sin(); break;
7630             default: Unimplemented(); break;
7631           }
7632         }
7633         break;
7634       case OP_COS: {
7635           switch(bits) {
7636             case 64: *name_ptr = "vector_float64_cos"; *addr_ptr = StubRoutines::vector_float64_cos(); break;
7637             case 128: *name_ptr = "vector_float128_cos"; *addr_ptr = StubRoutines::vector_float128_cos(); break;
7638             case 256: *name_ptr = "vector_float256_cos"; *addr_ptr = StubRoutines::vector_float256_cos(); break;
7639             case 512: *name_ptr = "vector_float512_cos"; *addr_ptr = StubRoutines::vector_float512_cos(); break;
7640             default: Unimplemented(); break;
7641           }
7642         }
7643         break;
7644       case OP_TAN: {
7645           switch(bits) {
7646             case 64: *name_ptr = "vector_float64_tan"; *addr_ptr = StubRoutines::vector_float64_tan(); break;
7647             case 128: *name_ptr = "vector_float128_tan"; *addr_ptr = StubRoutines::vector_float128_tan(); break;
7648             case 256: *name_ptr = "vector_float256_tan"; *addr_ptr = StubRoutines::vector_float256_tan(); break;
7649             case 512: *name_ptr = "vector_float512_tan"; *addr_ptr = StubRoutines::vector_float512_tan(); break;
7650             default: Unimplemented(); break;
7651           }
7652         }
7653         break;
7654       case OP_SINH: {
7655           switch(bits) {
7656             case 64: *name_ptr = "vector_float64_sinh"; *addr_ptr = StubRoutines::vector_float64_sinh(); break;
7657             case 128: *name_ptr = "vector_float128_sinh"; *addr_ptr = StubRoutines::vector_float128_sinh(); break;
7658             case 256: *name_ptr = "vector_float256_sinh"; *addr_ptr = StubRoutines::vector_float256_sinh(); break;
7659             case 512: *name_ptr = "vector_float512_sinh"; *addr_ptr = StubRoutines::vector_float512_sinh(); break;
7660             default: Unimplemented(); break;
7661           }
7662         }
7663         break;
7664       case OP_COSH: {
7665           switch(bits) {
7666             case 64: *name_ptr = "vector_float64_cosh"; *addr_ptr = StubRoutines::vector_float64_cosh(); break;
7667             case 128: *name_ptr = "vector_float128_cosh"; *addr_ptr = StubRoutines::vector_float128_cosh(); break;
7668             case 256: *name_ptr = "vector_float256_cosh"; *addr_ptr = StubRoutines::vector_float256_cosh(); break;
7669             case 512: *name_ptr = "vector_float512_cosh"; *addr_ptr = StubRoutines::vector_float512_cosh(); break;
7670             default: Unimplemented(); break;
7671           }
7672         }
7673         break;
7674       case OP_TANH: {
7675           switch(bits) {
7676             case 64: *name_ptr = "vector_float64_tanh"; *addr_ptr = StubRoutines::vector_float64_tanh(); break;
7677             case 128: *name_ptr = "vector_float128_tanh"; *addr_ptr = StubRoutines::vector_float128_tanh(); break;
7678             case 256: *name_ptr = "vector_float256_tanh"; *addr_ptr = StubRoutines::vector_float256_tanh(); break;
7679             case 512: *name_ptr = "vector_float512_tanh"; *addr_ptr = StubRoutines::vector_float512_tanh(); break;
7680             default: Unimplemented(); break;
7681           }
7682         }
7683         break;
7684       case OP_ASIN: {
7685           switch(bits) {
7686             case 64: *name_ptr = "vector_float64_asin"; *addr_ptr = StubRoutines::vector_float64_asin(); break;
7687             case 128: *name_ptr = "vector_float128_asin"; *addr_ptr = StubRoutines::vector_float128_asin(); break;
7688             case 256: *name_ptr = "vector_float256_asin"; *addr_ptr = StubRoutines::vector_float256_asin(); break;
7689             case 512: *name_ptr = "vector_float512_asin"; *addr_ptr = StubRoutines::vector_float512_asin(); break;
7690             default: Unimplemented(); break;
7691           }
7692         }
7693         break;
7694       case OP_ACOS: {
7695           switch(bits) {
7696             case 64: *name_ptr = "vector_float64_acos"; *addr_ptr = StubRoutines::vector_float64_acos(); break;
7697             case 128: *name_ptr = "vector_float128_acos"; *addr_ptr = StubRoutines::vector_float128_acos(); break;
7698             case 256: *name_ptr = "vector_float256_acos"; *addr_ptr = StubRoutines::vector_float256_acos(); break;
7699             case 512: *name_ptr = "vector_float512_acos"; *addr_ptr = StubRoutines::vector_float512_acos(); break;
7700             default: Unimplemented(); break;
7701           }
7702         }
7703         break;
7704       case OP_ATAN: {
7705           switch(bits) {
7706             case 64: *name_ptr = "vector_float64_atan"; *addr_ptr = StubRoutines::vector_float64_atan(); break;
7707             case 128: *name_ptr = "vector_float128_atan"; *addr_ptr = StubRoutines::vector_float128_atan(); break;
7708             case 256: *name_ptr = "vector_float256_atan"; *addr_ptr = StubRoutines::vector_float256_atan(); break;
7709             case 512: *name_ptr = "vector_float512_atan"; *addr_ptr = StubRoutines::vector_float512_atan(); break;
7710             default: Unimplemented(); break;
7711           }
7712         }
7713         break;
7714       case OP_CBRT: {
7715           switch(bits) {
7716             case 64: *name_ptr = "vector_float64_cbrt"; *addr_ptr = StubRoutines::vector_float64_cbrt(); break;
7717             case 128: *name_ptr = "vector_float128_cbrt"; *addr_ptr = StubRoutines::vector_float128_cbrt(); break;
7718             case 256: *name_ptr = "vector_float256_cbrt"; *addr_ptr = StubRoutines::vector_float256_cbrt(); break;
7719             case 512: *name_ptr = "vector_float512_cbrt"; *addr_ptr = StubRoutines::vector_float512_cbrt(); break;
7720             default: Unimplemented(); break;
7721           }
7722         }
7723         break;
7724        case OP_HYPOT: {
7725           switch(bits) {
7726             case 64: *name_ptr = "vector_float64_hypot"; *addr_ptr = StubRoutines::vector_float64_hypot(); break;
7727             case 128: *name_ptr = "vector_float128_hypot"; *addr_ptr = StubRoutines::vector_float128_hypot(); break;
7728             case 256: *name_ptr = "vector_float256_hypot"; *addr_ptr = StubRoutines::vector_float256_hypot(); break;
7729             case 512: *name_ptr = "vector_float512_hypot"; *addr_ptr = StubRoutines::vector_float512_hypot(); break;
7730             default: Unimplemented(); break;
7731           }
7732         }
7733         break;
7734       case OP_POW: {
7735           switch(bits) {
7736             case 64: *name_ptr = "vector_float64_pow"; *addr_ptr = StubRoutines::vector_float64_pow(); break;
7737             case 128: *name_ptr = "vector_float128_pow"; *addr_ptr = StubRoutines::vector_float128_pow(); break;
7738             case 256: *name_ptr = "vector_float256_pow"; *addr_ptr = StubRoutines::vector_float256_pow(); break;
7739             case 512: *name_ptr = "vector_float512_pow"; *addr_ptr = StubRoutines::vector_float512_pow(); break;
7740             default: Unimplemented(); break;
7741           }
7742         }
7743         break;
7744       case OP_ATAN2: {
7745           switch(bits) {
7746             case 64: *name_ptr = "vector_float64_atan2"; *addr_ptr = StubRoutines::vector_float64_atan2(); break;
7747             case 128: *name_ptr = "vector_float128_atan2"; *addr_ptr = StubRoutines::vector_float128_atan2(); break;
7748             case 256: *name_ptr = "vector_float256_atan2"; *addr_ptr = StubRoutines::vector_float256_atan2(); break;
7749             case 512: *name_ptr = "vector_float512_atan2"; *addr_ptr = StubRoutines::vector_float512_atan2(); break;
7750             default: Unimplemented(); break;
7751           }
7752         }
7753         break;
7754       default:
7755         *name_ptr = "invalid";
7756         *addr_ptr = NULL;
7757         break;
7758     }
7759   } else {
7760     assert(bt == T_DOUBLE, "must be FP type only");
7761     switch(op) {
7762       case OP_EXP: {
7763           switch(bits) {
7764             case 64: *name_ptr = "vector_double64_exp"; *addr_ptr = StubRoutines::vector_double64_exp(); break;
7765             case 128: *name_ptr = "vector_double128_exp"; *addr_ptr = StubRoutines::vector_double128_exp(); break;
7766             case 256: *name_ptr = "vector_double256_exp"; *addr_ptr = StubRoutines::vector_double256_exp(); break;
7767             case 512: *name_ptr = "vector_double512_exp"; *addr_ptr = StubRoutines::vector_double512_exp(); break;
7768             default: Unimplemented(); break;
7769           }
7770         }
7771         break;
7772       case OP_LOG1P: {
7773           switch(bits) {
7774             case 64: *name_ptr = "vector_double64_log1p"; *addr_ptr = StubRoutines::vector_double64_log1p(); break;
7775             case 128: *name_ptr = "vector_double128_log1p"; *addr_ptr = StubRoutines::vector_double128_log1p(); break;
7776             case 256: *name_ptr = "vector_double256_log1p"; *addr_ptr = StubRoutines::vector_double256_log1p(); break;
7777             case 512: *name_ptr = "vector_double512_log1p"; *addr_ptr = StubRoutines::vector_double512_log1p(); break;
7778             default: Unimplemented(); break;
7779           }
7780         }
7781         break;
7782       case OP_LOG: {
7783           switch(bits) {
7784             case 64: *name_ptr = "vector_double64_log"; *addr_ptr = StubRoutines::vector_double64_log(); break;
7785             case 128: *name_ptr = "vector_double128_log"; *addr_ptr = StubRoutines::vector_double128_log(); break;
7786             case 256: *name_ptr = "vector_double256_log"; *addr_ptr = StubRoutines::vector_double256_log(); break;
7787             case 512: *name_ptr = "vector_double512_log"; *addr_ptr = StubRoutines::vector_double512_log(); break;
7788             default: Unimplemented(); break;
7789           }
7790         }
7791         break;
7792       case OP_LOG10: {
7793           switch(bits) {
7794             case 64: *name_ptr = "vector_double64_log10"; *addr_ptr = StubRoutines::vector_double64_log10(); break;
7795             case 128: *name_ptr = "vector_double128_log10"; *addr_ptr = StubRoutines::vector_double128_log10(); break;
7796             case 256: *name_ptr = "vector_double256_log10"; *addr_ptr = StubRoutines::vector_double256_log10(); break;
7797             case 512: *name_ptr = "vector_double512_log10"; *addr_ptr = StubRoutines::vector_double512_log10(); break;
7798             default: Unimplemented(); break;
7799           }
7800         }
7801         break;
7802       case OP_EXPM1: {
7803           switch(bits) {
7804             case 64: *name_ptr = "vector_double64_expm1"; *addr_ptr = StubRoutines::vector_double64_expm1(); break;
7805             case 128: *name_ptr = "vector_double128_expm1"; *addr_ptr = StubRoutines::vector_double128_expm1(); break;
7806             case 256: *name_ptr = "vector_double256_expm1"; *addr_ptr = StubRoutines::vector_double256_expm1(); break;
7807             case 512: *name_ptr = "vector_double512_expm1"; *addr_ptr = StubRoutines::vector_double512_expm1(); break;
7808             default: Unimplemented(); break;
7809           }
7810         }
7811         break;
7812       case OP_SIN: {
7813           switch(bits) {
7814             case 64: *name_ptr = "vector_double64_sin"; *addr_ptr = StubRoutines::vector_double64_sin(); break;
7815             case 128: *name_ptr = "vector_double128_sin"; *addr_ptr = StubRoutines::vector_double128_sin(); break;
7816             case 256: *name_ptr = "vector_double256_sin"; *addr_ptr = StubRoutines::vector_double256_sin(); break;
7817             case 512: *name_ptr = "vector_double512_sin"; *addr_ptr = StubRoutines::vector_double512_sin(); break;
7818             default: Unimplemented(); break;
7819           }
7820         }
7821         break;
7822       case OP_COS: {
7823           switch(bits) {
7824             case 64: *name_ptr = "vector_double64_cos"; *addr_ptr = StubRoutines::vector_double64_cos(); break;
7825             case 128: *name_ptr = "vector_double128_cos"; *addr_ptr = StubRoutines::vector_double128_cos(); break;
7826             case 256: *name_ptr = "vector_double256_cos"; *addr_ptr = StubRoutines::vector_double256_cos(); break;
7827             case 512: *name_ptr = "vector_double512_cos"; *addr_ptr = StubRoutines::vector_double512_cos(); break;
7828             default: Unimplemented(); break;
7829           }
7830         }
7831         break;
7832       case OP_TAN: {
7833           switch(bits) {
7834             case 64: *name_ptr = "vector_double64_tan"; *addr_ptr = StubRoutines::vector_double64_tan(); break;
7835             case 128: *name_ptr = "vector_double128_tan"; *addr_ptr = StubRoutines::vector_double128_tan(); break;
7836             case 256: *name_ptr = "vector_double256_tan"; *addr_ptr = StubRoutines::vector_double256_tan(); break;
7837             case 512: *name_ptr = "vector_double512_tan"; *addr_ptr = StubRoutines::vector_double512_tan(); break;
7838             default: Unimplemented(); break;
7839           }
7840         }
7841         break;
7842       case OP_SINH: {
7843           switch(bits) {
7844             case 64: *name_ptr = "vector_double64_sinh"; *addr_ptr = StubRoutines::vector_double64_sinh(); break;
7845             case 128: *name_ptr = "vector_double128_sinh"; *addr_ptr = StubRoutines::vector_double128_sinh(); break;
7846             case 256: *name_ptr = "vector_double256_sinh"; *addr_ptr = StubRoutines::vector_double256_sinh(); break;
7847             case 512: *name_ptr = "vector_double512_sinh"; *addr_ptr = StubRoutines::vector_double512_sinh(); break;
7848             default: Unimplemented(); break;
7849           }
7850         }
7851         break;
7852       case OP_COSH: {
7853           switch(bits) {
7854             case 64: *name_ptr = "vector_double64_cosh"; *addr_ptr = StubRoutines::vector_double64_cosh(); break;
7855             case 128: *name_ptr = "vector_double128_cosh"; *addr_ptr = StubRoutines::vector_double128_cosh(); break;
7856             case 256: *name_ptr = "vector_double256_cosh"; *addr_ptr = StubRoutines::vector_double256_cosh(); break;
7857             case 512: *name_ptr = "vector_double512_cosh"; *addr_ptr = StubRoutines::vector_double512_cosh(); break;
7858             default: Unimplemented(); break;
7859           }
7860         }
7861         break;
7862       case OP_TANH: {
7863           switch(bits) {
7864             case 64: *name_ptr = "vector_double64_tanh"; *addr_ptr = StubRoutines::vector_double64_tanh(); break;
7865             case 128: *name_ptr = "vector_double128_tanh"; *addr_ptr = StubRoutines::vector_double128_tanh(); break;
7866             case 256: *name_ptr = "vector_double256_tanh"; *addr_ptr = StubRoutines::vector_double256_tanh(); break;
7867             case 512: *name_ptr = "vector_double512_tanh"; *addr_ptr = StubRoutines::vector_double512_tanh(); break;
7868             default: Unimplemented(); break;
7869           }
7870         }
7871         break;
7872       case OP_ASIN: {
7873           switch(bits) {
7874             case 64: *name_ptr = "vector_double64_asin"; *addr_ptr = StubRoutines::vector_double64_asin(); break;
7875             case 128: *name_ptr = "vector_double128_asin"; *addr_ptr = StubRoutines::vector_double128_asin(); break;
7876             case 256: *name_ptr = "vector_double256_asin"; *addr_ptr = StubRoutines::vector_double256_asin(); break;
7877             case 512: *name_ptr = "vector_double512_asin"; *addr_ptr = StubRoutines::vector_double512_asin(); break;
7878             default: Unimplemented(); break;
7879           }
7880         }
7881         break;
7882       case OP_ACOS: {
7883           switch(bits) {
7884             case 64: *name_ptr = "vector_double64_acos"; *addr_ptr = StubRoutines::vector_double64_acos(); break;
7885             case 128: *name_ptr = "vector_double128_acos"; *addr_ptr = StubRoutines::vector_double128_acos(); break;
7886             case 256: *name_ptr = "vector_double256_acos"; *addr_ptr = StubRoutines::vector_double256_acos(); break;
7887             case 512: *name_ptr = "vector_double512_acos"; *addr_ptr = StubRoutines::vector_double512_acos(); break;
7888             default: Unimplemented(); break;
7889           }
7890         }
7891         break;
7892       case OP_ATAN: {
7893           switch(bits) {
7894             case 64: *name_ptr = "vector_double64_atan"; *addr_ptr = StubRoutines::vector_double64_atan(); break;
7895             case 128: *name_ptr = "vector_double128_atan"; *addr_ptr = StubRoutines::vector_double128_atan(); break;
7896             case 256: *name_ptr = "vector_double256_atan"; *addr_ptr = StubRoutines::vector_double256_atan(); break;
7897             case 512: *name_ptr = "vector_double512_atan"; *addr_ptr = StubRoutines::vector_double512_atan(); break;
7898             default: Unimplemented(); break;
7899           }
7900         }
7901         break;
7902       case OP_CBRT: {
7903           switch(bits) {
7904             case 64: *name_ptr = "vector_double64_cbrt"; *addr_ptr = StubRoutines::vector_double64_cbrt(); break;
7905             case 128: *name_ptr = "vector_double128_cbrt"; *addr_ptr = StubRoutines::vector_double128_cbrt(); break;
7906             case 256: *name_ptr = "vector_double256_cbrt"; *addr_ptr = StubRoutines::vector_double256_cbrt(); break;
7907             case 512: *name_ptr = "vector_double512_cbrt"; *addr_ptr = StubRoutines::vector_double512_cbrt(); break;
7908             default: Unimplemented(); break;
7909           }
7910         }
7911         break;
7912       case OP_HYPOT: {
7913           switch(bits) {
7914             case 64: *name_ptr = "vector_double64_hypot"; *addr_ptr = StubRoutines::vector_double64_hypot(); break;
7915             case 128: *name_ptr = "vector_double128_hypot"; *addr_ptr = StubRoutines::vector_double128_hypot(); break;
7916             case 256: *name_ptr = "vector_double256_hypot"; *addr_ptr = StubRoutines::vector_double256_hypot(); break;
7917             case 512: *name_ptr = "vector_double512_hypot"; *addr_ptr = StubRoutines::vector_double512_hypot(); break;
7918             default: Unimplemented(); break;
7919           }
7920         }
7921         break;
7922       case OP_POW: {
7923           switch(bits) {
7924             case 64: *name_ptr = "vector_double64_pow"; *addr_ptr = StubRoutines::vector_double64_pow(); break;
7925             case 128: *name_ptr = "vector_double128_pow"; *addr_ptr = StubRoutines::vector_double128_pow(); break;
7926             case 256: *name_ptr = "vector_double256_pow"; *addr_ptr = StubRoutines::vector_double256_pow(); break;
7927             case 512: *name_ptr = "vector_double512_pow"; *addr_ptr = StubRoutines::vector_double512_pow(); break;
7928             default: Unimplemented(); break;
7929           }
7930         }
7931         break;
7932       case OP_ATAN2: {
7933           switch(bits) {
7934             case 64: *name_ptr = "vector_double64_atan2"; *addr_ptr = StubRoutines::vector_double64_atan2(); break;
7935             case 128: *name_ptr = "vector_double128_atan2"; *addr_ptr = StubRoutines::vector_double128_atan2(); break;
7936             case 256: *name_ptr = "vector_double256_atan2"; *addr_ptr = StubRoutines::vector_double256_atan2(); break;
7937             case 512: *name_ptr = "vector_double512_atan2"; *addr_ptr = StubRoutines::vector_double512_atan2(); break;
7938             default: Unimplemented(); break;
7939           }
7940         }
7941         break;
7942 
7943       default:
7944         *name_ptr = "invalid";
7945         *addr_ptr = NULL;
7946         break;
7947     }
7948   }
7949 }
7950 
7951 Node* LibraryCallKit::gen_call_to_svml(int vector_api_op_id, BasicType bt, int num_elem, Node* opd1, Node* opd2) {
7952   assert(vector_api_op_id >= OP_SVML_START && vector_api_op_id <= OP_SVML_END, "need valid op id");
7953   assert(opd1 != NULL, "must not be null");
7954   const TypeVect* vt = TypeVect::make(bt, num_elem);
7955   const TypeFunc* call_type = OptoRuntime::Math_Vector_Vector_Type(opd2 != NULL ? 2 : 1, vt, vt);
7956   const char* name = NULL;
7957   address addr = NULL;
7958 
7959   // Get address for svml method.
7960   get_svml_address(vector_api_op_id, vt->length_in_bytes() * BitsPerByte, bt, &name, &addr);
7961 
7962   if (addr == NULL) {
7963     return NULL;
7964   }
7965 
7966   assert(name != NULL, "name must not be null");
7967   Node* operation = make_runtime_call(RC_VECTOR,
7968                                       call_type,
7969                                       addr,
7970                                       name,
7971                                       TypePtr::BOTTOM,
7972                                       opd1,
7973                                       opd2);
7974   return _gvn.transform(new ProjNode(_gvn.transform(operation), TypeFunc::Parms));
7975 }
7976 
7977 //  static
7978 //  <V extends Vector<?,?>>
7979 //  V broadcastInt(int opr, Class<V> vectorClass, Class<?> elementType, int vlen,
7980 //                 V v, int i,
7981 //                 VectorBroadcastIntOp<V> defaultImpl) {
7982 //
7983 bool LibraryCallKit::inline_vector_broadcast_int() {
7984   const TypeInt* opr              = gvn().type(argument(0))->is_int();
7985   const TypeInstPtr* vector_klass = gvn().type(argument(1))->is_instptr();
7986   const TypeInstPtr* elem_klass   = gvn().type(argument(2))->is_instptr();
7987   const TypeInt* vlen             = gvn().type(argument(3))->is_int();
7988 
7989   if (!opr->is_con() || vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
7990     return false; // not enough info for intrinsification
7991   }
7992   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
7993   if (!elem_type->is_primitive_type()) {
7994     return false; // should be primitive type
7995   }
7996   BasicType elem_bt = elem_type->basic_type();
7997   int num_elem = vlen->get_con();
7998   int opc = get_opc(opr->get_con(), elem_bt);
7999   int sopc = get_sopc(opc, elem_bt); // get_node_id(opr->get_con(), elem_bt);
8000   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
8001   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
8002 
8003   if (!arch_supports_vector(sopc, num_elem, elem_bt, VecMaskNotUsed)) {
8004     return false; // not supported
8005   }
8006   Node* opd1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
8007   Node* opd2 = shift_count(argument(5), opc, elem_bt, num_elem);
8008   if (opd1 == NULL || opd2 == NULL) {
8009     return false;
8010   }
8011   Node* operation = _gvn.transform(VectorNode::make(opc, opd1, opd2, num_elem, elem_bt));
8012 
8013   Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem);
8014   set_vector_result(vbox);
8015   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
8016   return true;
8017 }
8018 
8019 bool LibraryCallKit::inline_vector_cast_reinterpret(bool is_cast) {
8020   const TypeInstPtr* vector_klass_from = gvn().type(argument(0))->is_instptr();
8021   const TypeInstPtr* elem_klass_from   = gvn().type(argument(1))->is_instptr();
8022   const TypeInt*     vlen_from         = gvn().type(argument(2))->is_int();
8023 
8024   const TypeInstPtr* vector_klass_to   = gvn().type(argument(3))->is_instptr();
8025   const TypeInstPtr* elem_klass_to     = gvn().type(argument(4))->is_instptr();
8026   const TypeInt*     vlen_to           = gvn().type(argument(5))->is_int();
8027 
8028   if (vector_klass_from->const_oop() == NULL || elem_klass_from->const_oop() == NULL || !vlen_from->is_con() ||
8029       vector_klass_to->const_oop() == NULL || elem_klass_to->const_oop() == NULL || !vlen_to->is_con()) {
8030     return false; // not enough info for intrinsification
8031   }
8032 
8033   ciKlass* vbox_klass_from = vector_klass_from->const_oop()->as_instance()->java_lang_Class_klass();
8034   ciKlass* vbox_klass_to = vector_klass_to->const_oop()->as_instance()->java_lang_Class_klass();
8035   if (!vbox_klass_from->is_vectorapi_vector() || !vbox_klass_to->is_vectorapi_vector()) {
8036     return false; // only vector & mask are supported
8037   }
8038   bool is_mask = vbox_klass_from->is_vectormask();
8039 
8040   ciType* elem_type_from = elem_klass_from->const_oop()->as_instance()->java_mirror_type();
8041   if (!elem_type_from->is_primitive_type()) {
8042     return false; // should be primitive type
8043   }
8044   BasicType elem_bt_from = elem_type_from->basic_type();
8045   ciType* elem_type_to = elem_klass_to->const_oop()->as_instance()->java_mirror_type();
8046   if (!elem_type_to->is_primitive_type()) {
8047     return false; // should be primitive type
8048   }
8049   BasicType elem_bt_to = elem_type_to->basic_type();
8050   if (is_mask && elem_bt_from != elem_bt_to) {
8051     return false; // type mismatch
8052   }
8053   int num_elem_from = vlen_from->get_con();
8054   int num_elem_to = vlen_to->get_con();
8055 
8056   // Check whether we can unbox to appropriate size. Even with casting, checking for reinterpret is needed
8057   // since we may need to change size.
8058   if (!arch_supports_vector(Op_VectorReinterpret,
8059                             num_elem_from,
8060                             elem_bt_from,
8061                             is_mask ? VecMaskUseAll : VecMaskNotUsed)) {
8062     return false;
8063   }
8064 
8065   // Check whether we can support resizing/reinterpreting to the new size.
8066   if (!arch_supports_vector(Op_VectorReinterpret,
8067                             num_elem_to,
8068                             elem_bt_to,
8069                             is_mask ? VecMaskUseAll : VecMaskNotUsed)) {
8070     return false;
8071   }
8072 
8073   // At this point, we know that both input and output vector registers are supported
8074   // by the architecture. Next check if the casted type is simply to same type - which means
8075   // that it is actually a resize and not a cast.
8076   if (is_cast && elem_bt_from == elem_bt_to) {
8077     is_cast = false;
8078   }
8079 
8080   const TypeInstPtr* vbox_type_from = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass_from);
8081 
8082   Node* opd1 = unbox_vector(argument(6), vbox_type_from, elem_bt_from, num_elem_from);
8083   if (opd1 == NULL) {
8084     return false;
8085   }
8086 
8087   const TypeVect* src_type = TypeVect::make(elem_bt_from, num_elem_from);
8088   const TypeVect* dst_type = TypeVect::make(elem_bt_to,   num_elem_to);
8089 
8090   Node* op = opd1;
8091   if (is_cast) {
8092     assert(!is_mask, "masks cannot be casted");
8093     int cast_vopc = VectorCastNode::opcode(elem_bt_from);
8094     // Make sure that cast is implemented to particular type/size combination.
8095     if (!arch_supports_vector(cast_vopc, num_elem_to, elem_bt_to, VecMaskNotUsed)) {
8096       return false;
8097     }
8098 
8099     if (num_elem_from < num_elem_to) {
8100       // Since input and output number of elements are not consistent, we need to make sure we
8101       // properly size. Thus, first make a cast that retains the number of elements from source.
8102       // In case the size exceeds the arch size, we do the minimum.
8103       int num_elem_for_cast = MIN2(num_elem_from, Matcher::max_vector_size(elem_bt_to));
8104 
8105       // It is possible that arch does not support this intermediate vector size
8106       // TODO More complex logic required here to handle this corner case for the sizes.
8107       if (!arch_supports_vector(cast_vopc, num_elem_for_cast, elem_bt_to, VecMaskNotUsed)) {
8108         return false;
8109       }
8110 
8111       op = _gvn.transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_for_cast));
8112       // Now ensure that the destination gets properly resized to needed size.
8113       op = _gvn.transform(new VectorReinterpretNode(op, op->bottom_type()->is_vect(), dst_type));
8114     } else if (num_elem_from > num_elem_to) {
8115       // Since number elements from input is larger than output, simply reduce size of input (we are supposed to
8116       // drop top elements anyway).
8117       int num_elem_for_resize = MAX2(num_elem_to, Matcher::min_vector_size(elem_bt_to));
8118 
8119       // It is possible that arch does not support this intermediate vector size
8120       // TODO More complex logic required here to handle this corner case for the sizes.
8121       if (!arch_supports_vector(Op_VectorReinterpret,
8122                                 num_elem_for_resize,
8123                                 elem_bt_from,
8124                                 VecMaskNotUsed)) {
8125         return false;
8126       }
8127 
8128       op = _gvn.transform(new VectorReinterpretNode(op,
8129                                                     src_type,
8130                                                     TypeVect::make(elem_bt_from,
8131                                                                    num_elem_for_resize)));
8132       op = _gvn.transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_to));
8133     } else {
8134       // Since input and output number of elements match, and since we know this vector size is
8135       // supported, simply do a cast with no resize needed.
8136       op = _gvn.transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_to));
8137     }
8138   } else if (Type::cmp(src_type, dst_type) != 0) {
8139     assert(!is_cast, "must be reinterpret");
8140     op = _gvn.transform(new VectorReinterpretNode(op, src_type, dst_type));
8141   }
8142 
8143   const TypeInstPtr* vbox_type_to = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass_to);
8144   Node* vbox = box_vector(op, vbox_type_to, elem_bt_to, num_elem_to);
8145   set_vector_result(vbox);
8146   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem_to * type2aelembytes(elem_bt_to))));
8147   return true;
8148 }
8149 
8150 bool LibraryCallKit::inline_vector_insert() {
8151   const TypeInstPtr* vector_klass = gvn().type(argument(0))->is_instptr();
8152   const TypeInstPtr* elem_klass   = gvn().type(argument(1))->is_instptr();
8153   const TypeInt* vlen             = gvn().type(argument(2))->is_int();
8154   const TypeInt* idx              = gvn().type(argument(4))->is_int();
8155 
8156   if (vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con() || !idx->is_con()) {
8157     return false; // not enough info for intrinsification
8158   }
8159   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
8160   if (!elem_type->is_primitive_type()) {
8161     return false; // should be primitive type
8162   }
8163   BasicType elem_bt = elem_type->basic_type();
8164   int num_elem = vlen->get_con();
8165   if (!arch_supports_vector(Op_VectorInsert, num_elem, elem_bt, VecMaskNotUsed)) {
8166     return false; // not supported
8167   }
8168 
8169   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
8170   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
8171 
8172   Node* opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem);
8173   if (opd == NULL) {
8174     return false;
8175   }
8176 
8177   Node* insert_val = argument(5);
8178   assert(gvn().type(insert_val)->isa_long() != NULL, "expected to be long");
8179 
8180   // Convert insert value back to its appropriate type.
8181   switch (elem_bt) {
8182     case T_BYTE:
8183       insert_val = gvn().transform(new ConvL2INode(insert_val));
8184       insert_val = gvn().transform(new CastIINode(insert_val, TypeInt::BYTE));
8185       break;
8186     case T_SHORT:
8187       insert_val = gvn().transform(new ConvL2INode(insert_val));
8188       insert_val = gvn().transform(new CastIINode(insert_val, TypeInt::SHORT));
8189       break;
8190     case T_INT:
8191       insert_val = gvn().transform(new ConvL2INode(insert_val));
8192       break;
8193     case T_FLOAT:
8194       insert_val = gvn().transform(new ConvL2INode(insert_val));
8195       insert_val = gvn().transform(new MoveI2FNode(insert_val));
8196       break;
8197     case T_DOUBLE:
8198       insert_val = gvn().transform(new MoveL2DNode(insert_val));
8199       break;
8200     case T_LONG:
8201       // no conversion needed
8202       break;
8203     default: fatal("%s", type2name(elem_bt)); break;
8204   }
8205 
8206   Node* operation = _gvn.transform(VectorInsertNode::make(opd, insert_val, idx->get_con()));
8207   operation = box_vector(operation, vbox_type, elem_bt, num_elem);
8208   set_vector_result(operation);
8209 
8210   C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
8211   return true;
8212 }
8213 
8214 bool LibraryCallKit::inline_vector_extract() {
8215   const TypeInstPtr* vector_klass = gvn().type(argument(0))->is_instptr();
8216   const TypeInstPtr* elem_klass   = gvn().type(argument(1))->is_instptr();
8217   const TypeInt* vlen             = gvn().type(argument(2))->is_int();
8218   const TypeInt* idx              = gvn().type(argument(4))->is_int();
8219 
8220   if (vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con() || !idx->is_con()) {
8221     return false; // not enough info for intrinsification
8222   }
8223   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
8224   if (!elem_type->is_primitive_type()) {
8225     return false; // should be primitive type
8226   }
8227   BasicType elem_bt = elem_type->basic_type();
8228   int num_elem = vlen->get_con();
8229   int vopc = ExtractNode::opcode(elem_bt);
8230   if (!arch_supports_vector(vopc, num_elem, elem_bt, VecMaskNotUsed)) {
8231     return false; // not supported
8232   }
8233 
8234   ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
8235   const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
8236 
8237   Node* opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem);
8238   if (opd == NULL) {
8239     return false;
8240   }
8241 
8242   Node* operation = gvn().transform(ExtractNode::make(opd, idx->get_con(), elem_bt));
8243 
8244   Node* bits = NULL;
8245   switch (elem_bt) {
8246     case T_BYTE:
8247     case T_SHORT:
8248     case T_INT: {
8249       bits = gvn().transform(new ConvI2LNode(operation));
8250       break;
8251     }
8252     case T_FLOAT: {
8253       bits = gvn().transform(new MoveF2INode(operation));
8254       bits = gvn().transform(new ConvI2LNode(bits));
8255       break;
8256     }
8257     case T_DOUBLE: {
8258       bits = gvn().transform(new MoveD2LNode(operation));
8259       break;
8260     }
8261     case T_LONG: {
8262       bits = operation; // no conversion needed
8263       break;
8264     }
8265     default: fatal("%s", type2name(elem_bt));
8266   }
8267 
8268   set_vector_result(bits);
8269   return true;
8270 }
8271 
8272 //------------------------------get_state_from_sha_object-----------------------
8273 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
8274   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
8275   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
8276   if (sha_state == NULL) return (Node *) NULL;
8277 
8278   // now have the array, need to get the start address of the state array
8279   sha_state = access_resolve(sha_state, ACCESS_WRITE);
8280   Node* state = array_element_address(sha_state, intcon(0), T_INT);
8281   return state;
8282 }
8283 
8284 //------------------------------get_state_from_sha5_object-----------------------
8285 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
8286   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
8287   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
8288   if (sha_state == NULL) return (Node *) NULL;
8289 
8290   // now have the array, need to get the start address of the state array
8291   sha_state = access_resolve(sha_state, ACCESS_WRITE);
8292   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
8293   return state;
8294 }
8295 
8296 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8297 // Return node representing slow path of predicate check.
8298 // the pseudo code we want to emulate with this predicate is:
8299 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
8300 //
8301 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8302   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
8303          "need SHA1/SHA256/SHA512 instruction support");
8304   assert((uint)predicate < 3, "sanity");
8305 
8306   // The receiver was checked for NULL already.
8307   Node* digestBaseObj = argument(0);
8308 
8309   // get DigestBase klass for instanceOf check
8310   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8311   assert(tinst != NULL, "digestBaseObj is null");
8312   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
8313 
8314   const char* klass_SHA_name = NULL;
8315   switch (predicate) {
8316   case 0:
8317     if (UseSHA1Intrinsics) {
8318       // we want to do an instanceof comparison against the SHA class
8319       klass_SHA_name = "sun/security/provider/SHA";
8320     }
8321     break;
8322   case 1:
8323     if (UseSHA256Intrinsics) {
8324       // we want to do an instanceof comparison against the SHA2 class
8325       klass_SHA_name = "sun/security/provider/SHA2";
8326     }
8327     break;
8328   case 2:
8329     if (UseSHA512Intrinsics) {
8330       // we want to do an instanceof comparison against the SHA5 class
8331       klass_SHA_name = "sun/security/provider/SHA5";
8332     }
8333     break;
8334   default:
8335     fatal("unknown SHA intrinsic predicate: %d", predicate);
8336   }
8337 
8338   ciKlass* klass_SHA = NULL;
8339   if (klass_SHA_name != NULL) {
8340     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
8341   }
8342   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
8343     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8344     Node* ctrl = control();
8345     set_control(top()); // no intrinsic path
8346     return ctrl;
8347   }
8348   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
8349 
8350   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
8351   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
8352   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8353   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
8354 
8355   return instof_false;  // even if it is NULL
8356 }
8357 
8358 //-------------inline_fma-----------------------------------
8359 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8360   Node *a = NULL;
8361   Node *b = NULL;
8362   Node *c = NULL;
8363   Node* result = NULL;
8364   switch (id) {
8365   case vmIntrinsics::_fmaD:
8366     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8367     // no receiver since it is static method
8368     a = round_double_node(argument(0));
8369     b = round_double_node(argument(2));
8370     c = round_double_node(argument(4));
8371     result = _gvn.transform(new FmaDNode(control(), a, b, c));
8372     break;
8373   case vmIntrinsics::_fmaF:
8374     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8375     a = argument(0);
8376     b = argument(1);
8377     c = argument(2);
8378     result = _gvn.transform(new FmaFNode(control(), a, b, c));
8379     break;
8380   default:
8381     fatal_unexpected_iid(id);  break;
8382   }
8383   set_result(result);
8384   return true;
8385 }
8386 
8387 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8388   // argument(0) is receiver
8389   Node* codePoint = argument(1);
8390   Node* n = NULL;
8391 
8392   switch (id) {
8393     case vmIntrinsics::_isDigit :
8394       n = new DigitNode(control(), codePoint);
8395       break;
8396     case vmIntrinsics::_isLowerCase :
8397       n = new LowerCaseNode(control(), codePoint);
8398       break;
8399     case vmIntrinsics::_isUpperCase :
8400       n = new UpperCaseNode(control(), codePoint);
8401       break;
8402     case vmIntrinsics::_isWhitespace :
8403       n = new WhitespaceNode(control(), codePoint);
8404       break;
8405     default:
8406       fatal_unexpected_iid(id);
8407   }
8408 
8409   set_result(_gvn.transform(n));
8410   return true;
8411 }
8412 
8413 //------------------------------inline_fp_min_max------------------------------
8414 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
8415 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
8416 
8417   // The intrinsic should be used only when the API branches aren't predictable,
8418   // the last one performing the most important comparison. The following heuristic
8419   // uses the branch statistics to eventually bail out if necessary.
8420 
8421   ciMethodData *md = callee()->method_data();
8422 
8423   if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) {
8424     ciCallProfile cp = caller()->call_profile_at_bci(bci());
8425 
8426     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
8427       // Bail out if the call-site didn't contribute enough to the statistics.
8428       return false;
8429     }
8430 
8431     uint taken = 0, not_taken = 0;
8432 
8433     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
8434       if (p->is_BranchData()) {
8435         taken = ((ciBranchData*)p)->taken();
8436         not_taken = ((ciBranchData*)p)->not_taken();
8437       }
8438     }
8439 
8440     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
8441     balance = balance < 0 ? -balance : balance;
8442     if ( balance > 0.2 ) {
8443       // Bail out if the most important branch is predictable enough.
8444       return false;
8445     }
8446   }
8447 */
8448 
8449   Node *a = NULL;
8450   Node *b = NULL;
8451   Node *n = NULL;
8452   switch (id) {
8453   case vmIntrinsics::_maxF:
8454   case vmIntrinsics::_minF:
8455     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
8456     a = argument(0);
8457     b = argument(1);
8458     break;
8459   case vmIntrinsics::_maxD:
8460   case vmIntrinsics::_minD:
8461     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
8462     a = round_double_node(argument(0));
8463     b = round_double_node(argument(2));
8464     break;
8465   default:
8466     fatal_unexpected_iid(id);
8467     break;
8468   }
8469   if (a->is_Con() || b->is_Con()) {
8470     return false;
8471   }
8472   switch (id) {
8473   case vmIntrinsics::_maxF:  n = new MaxFNode(a, b);  break;
8474   case vmIntrinsics::_minF:  n = new MinFNode(a, b);  break;
8475   case vmIntrinsics::_maxD:  n = new MaxDNode(a, b);  break;
8476   case vmIntrinsics::_minD:  n = new MinDNode(a, b);  break;
8477   default:  fatal_unexpected_iid(id);  break;
8478   }
8479   set_result(_gvn.transform(n));
8480   return true;
8481 }
8482 
8483 bool LibraryCallKit::inline_profileBoolean() {
8484   Node* counts = argument(1);
8485   const TypeAryPtr* ary = NULL;
8486   ciArray* aobj = NULL;
8487   if (counts->is_Con()
8488       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
8489       && (aobj = ary->const_oop()->as_array()) != NULL
8490       && (aobj->length() == 2)) {
8491     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8492     jint false_cnt = aobj->element_value(0).as_int();
8493     jint  true_cnt = aobj->element_value(1).as_int();
8494 
8495     if (C->log() != NULL) {
8496       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8497                      false_cnt, true_cnt);
8498     }
8499 
8500     if (false_cnt + true_cnt == 0) {
8501       // According to profile, never executed.
8502       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8503                           Deoptimization::Action_reinterpret);
8504       return true;
8505     }
8506 
8507     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8508     // is a number of each value occurrences.
8509     Node* result = argument(0);
8510     if (false_cnt == 0 || true_cnt == 0) {
8511       // According to profile, one value has been never seen.
8512       int expected_val = (false_cnt == 0) ? 1 : 0;
8513 
8514       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8515       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8516 
8517       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8518       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8519       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8520 
8521       { // Slow path: uncommon trap for never seen value and then reexecute
8522         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8523         // the value has been seen at least once.
8524         PreserveJVMState pjvms(this);
8525         PreserveReexecuteState preexecs(this);
8526         jvms()->set_should_reexecute(true);
8527 
8528         set_control(slow_path);
8529         set_i_o(i_o());
8530 
8531         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8532                             Deoptimization::Action_reinterpret);
8533       }
8534       // The guard for never seen value enables sharpening of the result and
8535       // returning a constant. It allows to eliminate branches on the same value
8536       // later on.
8537       set_control(fast_path);
8538       result = intcon(expected_val);
8539     }
8540     // Stop profiling.
8541     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8542     // By replacing method body with profile data (represented as ProfileBooleanNode
8543     // on IR level) we effectively disable profiling.
8544     // It enables full speed execution once optimized code is generated.
8545     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8546     C->record_for_igvn(profile);
8547     set_result(profile);
8548     return true;
8549   } else {
8550     // Continue profiling.
8551     // Profile data isn't available at the moment. So, execute method's bytecode version.
8552     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8553     // is compiled and counters aren't available since corresponding MethodHandle
8554     // isn't a compile-time constant.
8555     return false;
8556   }
8557 }
8558 
8559 bool LibraryCallKit::inline_isCompileConstant() {
8560   Node* n = argument(0);
8561   set_result(n->is_Con() ? intcon(1) : intcon(0));
8562   return true;
8563 }