1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/universe.inline.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/objArrayOop.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "oops/symbolOop.hpp"
  40 #include "prims/jvm_misc.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "prims/privilegedStack.hpp"
  44 #include "runtime/aprofiler.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/fprofiler.hpp"
  49 #include "runtime/frame.inline.hpp"
  50 #include "runtime/init.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/jniPeriodicChecker.hpp"
  55 #include "runtime/memprofiler.hpp"
  56 #include "runtime/mutexLocker.hpp"
  57 #include "runtime/objectMonitor.hpp"
  58 #include "runtime/osThread.hpp"
  59 #include "runtime/safepoint.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/statSampler.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/task.hpp"
  64 #include "runtime/threadCritical.hpp"
  65 #include "runtime/threadLocalStorage.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "runtime/vm_operations.hpp"
  71 #include "services/attachListener.hpp"
  72 #include "services/management.hpp"
  73 #include "services/threadService.hpp"
  74 #include "utilities/defaultStream.hpp"
  75 #include "utilities/dtrace.hpp"
  76 #include "utilities/events.hpp"
  77 #include "utilities/preserveException.hpp"
  78 #ifdef TARGET_OS_FAMILY_linux
  79 # include "os_linux.inline.hpp"
  80 # include "thread_linux.inline.hpp"
  81 #endif
  82 #ifdef TARGET_OS_FAMILY_solaris
  83 # include "os_solaris.inline.hpp"
  84 # include "thread_solaris.inline.hpp"
  85 #endif
  86 #ifdef TARGET_OS_FAMILY_windows
  87 # include "os_windows.inline.hpp"
  88 # include "thread_windows.inline.hpp"
  89 #endif
  90 #ifndef SERIALGC
  91 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  92 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  93 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  94 #endif
  95 #ifdef COMPILER1
  96 #include "c1/c1_Compiler.hpp"
  97 #endif
  98 #ifdef COMPILER2
  99 #include "opto/c2compiler.hpp"
 100 #include "opto/idealGraphPrinter.hpp"
 101 #endif
 102 
 103 #ifdef DTRACE_ENABLED
 104 
 105 // Only bother with this argument setup if dtrace is available
 106 
 107 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 108 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 109 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 110   intptr_t, intptr_t, bool);
 111 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 112   intptr_t, intptr_t, bool);
 113 
 114 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 115   {                                                                        \
 116     ResourceMark rm(this);                                                 \
 117     int len = 0;                                                           \
 118     const char* name = (javathread)->get_thread_name();                    \
 119     len = strlen(name);                                                    \
 120     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 121       name, len,                                                           \
 122       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 123       (javathread)->osthread()->thread_id(),                               \
 124       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 125   }
 126 
 127 #else //  ndef DTRACE_ENABLED
 128 
 129 #define DTRACE_THREAD_PROBE(probe, javathread)
 130 
 131 #endif // ndef DTRACE_ENABLED
 132 
 133 // Class hierarchy
 134 // - Thread
 135 //   - VMThread
 136 //   - WatcherThread
 137 //   - ConcurrentMarkSweepThread
 138 //   - JavaThread
 139 //     - CompilerThread
 140 
 141 // ======= Thread ========
 142 
 143 // Support for forcing alignment of thread objects for biased locking
 144 void* Thread::operator new(size_t size) {
 145   if (UseBiasedLocking) {
 146     const int alignment = markOopDesc::biased_lock_alignment;
 147     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 148     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
 149     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 150     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 151            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 152            "JavaThread alignment code overflowed allocated storage");
 153     if (TraceBiasedLocking) {
 154       if (aligned_addr != real_malloc_addr)
 155         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 156                       real_malloc_addr, aligned_addr);
 157     }
 158     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 159     return aligned_addr;
 160   } else {
 161     return CHeapObj::operator new(size);
 162   }
 163 }
 164 
 165 void Thread::operator delete(void* p) {
 166   if (UseBiasedLocking) {
 167     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 168     CHeapObj::operator delete(real_malloc_addr);
 169   } else {
 170     CHeapObj::operator delete(p);
 171   }
 172 }
 173 
 174 
 175 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 176 // JavaThread
 177 
 178 
 179 Thread::Thread() {
 180   // stack
 181   _stack_base   = NULL;
 182   _stack_size   = 0;
 183   _self_raw_id  = 0;
 184   _lgrp_id      = -1;
 185   _osthread     = NULL;
 186 
 187   // allocated data structures
 188   set_resource_area(new ResourceArea());
 189   set_handle_area(new HandleArea(NULL));
 190   set_active_handles(NULL);
 191   set_free_handle_block(NULL);
 192   set_last_handle_mark(NULL);
 193   set_osthread(NULL);
 194 
 195   // This initial value ==> never claimed.
 196   _oops_do_parity = 0;
 197 
 198   // the handle mark links itself to last_handle_mark
 199   new HandleMark(this);
 200 
 201   // plain initialization
 202   debug_only(_owned_locks = NULL;)
 203   debug_only(_allow_allocation_count = 0;)
 204   NOT_PRODUCT(_allow_safepoint_count = 0;)
 205   NOT_PRODUCT(_skip_gcalot = false;)
 206   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 207   _jvmti_env_iteration_count = 0;
 208   _vm_operation_started_count = 0;
 209   _vm_operation_completed_count = 0;
 210   _current_pending_monitor = NULL;
 211   _current_pending_monitor_is_from_java = true;
 212   _current_waiting_monitor = NULL;
 213   _num_nested_signal = 0;
 214   omFreeList = NULL ;
 215   omFreeCount = 0 ;
 216   omFreeProvision = 32 ;
 217   omInUseList = NULL ;
 218   omInUseCount = 0 ;
 219 
 220   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 221   _suspend_flags = 0;
 222 
 223   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 224   _hashStateX = os::random() ;
 225   _hashStateY = 842502087 ;
 226   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 227   _hashStateW = 273326509 ;
 228 
 229   _OnTrap   = 0 ;
 230   _schedctl = NULL ;
 231   _Stalled  = 0 ;
 232   _TypeTag  = 0x2BAD ;
 233 
 234   // Many of the following fields are effectively final - immutable
 235   // Note that nascent threads can't use the Native Monitor-Mutex
 236   // construct until the _MutexEvent is initialized ...
 237   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 238   // we might instead use a stack of ParkEvents that we could provision on-demand.
 239   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 240   // and ::Release()
 241   _ParkEvent   = ParkEvent::Allocate (this) ;
 242   _SleepEvent  = ParkEvent::Allocate (this) ;
 243   _MutexEvent  = ParkEvent::Allocate (this) ;
 244   _MuxEvent    = ParkEvent::Allocate (this) ;
 245 
 246 #ifdef CHECK_UNHANDLED_OOPS
 247   if (CheckUnhandledOops) {
 248     _unhandled_oops = new UnhandledOops(this);
 249   }
 250 #endif // CHECK_UNHANDLED_OOPS
 251 #ifdef ASSERT
 252   if (UseBiasedLocking) {
 253     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 254     assert(this == _real_malloc_address ||
 255            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 256            "bug in forced alignment of thread objects");
 257   }
 258 #endif /* ASSERT */
 259 }
 260 
 261 void Thread::initialize_thread_local_storage() {
 262   // Note: Make sure this method only calls
 263   // non-blocking operations. Otherwise, it might not work
 264   // with the thread-startup/safepoint interaction.
 265 
 266   // During Java thread startup, safepoint code should allow this
 267   // method to complete because it may need to allocate memory to
 268   // store information for the new thread.
 269 
 270   // initialize structure dependent on thread local storage
 271   ThreadLocalStorage::set_thread(this);
 272 
 273   // set up any platform-specific state.
 274   os::initialize_thread();
 275 
 276 }
 277 
 278 void Thread::record_stack_base_and_size() {
 279   set_stack_base(os::current_stack_base());
 280   set_stack_size(os::current_stack_size());
 281 }
 282 
 283 
 284 Thread::~Thread() {
 285   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 286   ObjectSynchronizer::omFlush (this) ;
 287 
 288   // deallocate data structures
 289   delete resource_area();
 290   // since the handle marks are using the handle area, we have to deallocated the root
 291   // handle mark before deallocating the thread's handle area,
 292   assert(last_handle_mark() != NULL, "check we have an element");
 293   delete last_handle_mark();
 294   assert(last_handle_mark() == NULL, "check we have reached the end");
 295 
 296   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 297   // We NULL out the fields for good hygiene.
 298   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 299   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 300   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 301   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 302 
 303   delete handle_area();
 304 
 305   // osthread() can be NULL, if creation of thread failed.
 306   if (osthread() != NULL) os::free_thread(osthread());
 307 
 308   delete _SR_lock;
 309 
 310   // clear thread local storage if the Thread is deleting itself
 311   if (this == Thread::current()) {
 312     ThreadLocalStorage::set_thread(NULL);
 313   } else {
 314     // In the case where we're not the current thread, invalidate all the
 315     // caches in case some code tries to get the current thread or the
 316     // thread that was destroyed, and gets stale information.
 317     ThreadLocalStorage::invalidate_all();
 318   }
 319   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 320 }
 321 
 322 // NOTE: dummy function for assertion purpose.
 323 void Thread::run() {
 324   ShouldNotReachHere();
 325 }
 326 
 327 #ifdef ASSERT
 328 // Private method to check for dangling thread pointer
 329 void check_for_dangling_thread_pointer(Thread *thread) {
 330  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 331          "possibility of dangling Thread pointer");
 332 }
 333 #endif
 334 
 335 
 336 #ifndef PRODUCT
 337 // Tracing method for basic thread operations
 338 void Thread::trace(const char* msg, const Thread* const thread) {
 339   if (!TraceThreadEvents) return;
 340   ResourceMark rm;
 341   ThreadCritical tc;
 342   const char *name = "non-Java thread";
 343   int prio = -1;
 344   if (thread->is_Java_thread()
 345       && !thread->is_Compiler_thread()) {
 346     // The Threads_lock must be held to get information about
 347     // this thread but may not be in some situations when
 348     // tracing  thread events.
 349     bool release_Threads_lock = false;
 350     if (!Threads_lock->owned_by_self()) {
 351       Threads_lock->lock();
 352       release_Threads_lock = true;
 353     }
 354     JavaThread* jt = (JavaThread *)thread;
 355     name = (char *)jt->get_thread_name();
 356     oop thread_oop = jt->threadObj();
 357     if (thread_oop != NULL) {
 358       prio = java_lang_Thread::priority(thread_oop);
 359     }
 360     if (release_Threads_lock) {
 361       Threads_lock->unlock();
 362     }
 363   }
 364   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 365 }
 366 #endif
 367 
 368 
 369 ThreadPriority Thread::get_priority(const Thread* const thread) {
 370   trace("get priority", thread);
 371   ThreadPriority priority;
 372   // Can return an error!
 373   (void)os::get_priority(thread, priority);
 374   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 375   return priority;
 376 }
 377 
 378 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 379   trace("set priority", thread);
 380   debug_only(check_for_dangling_thread_pointer(thread);)
 381   // Can return an error!
 382   (void)os::set_priority(thread, priority);
 383 }
 384 
 385 
 386 void Thread::start(Thread* thread) {
 387   trace("start", thread);
 388   // Start is different from resume in that its safety is guaranteed by context or
 389   // being called from a Java method synchronized on the Thread object.
 390   if (!DisableStartThread) {
 391     if (thread->is_Java_thread()) {
 392       // Initialize the thread state to RUNNABLE before starting this thread.
 393       // Can not set it after the thread started because we do not know the
 394       // exact thread state at that time. It could be in MONITOR_WAIT or
 395       // in SLEEPING or some other state.
 396       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 397                                           java_lang_Thread::RUNNABLE);
 398     }
 399     os::start_thread(thread);
 400   }
 401 }
 402 
 403 // Enqueue a VM_Operation to do the job for us - sometime later
 404 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 405   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 406   VMThread::execute(vm_stop);
 407 }
 408 
 409 
 410 //
 411 // Check if an external suspend request has completed (or has been
 412 // cancelled). Returns true if the thread is externally suspended and
 413 // false otherwise.
 414 //
 415 // The bits parameter returns information about the code path through
 416 // the routine. Useful for debugging:
 417 //
 418 // set in is_ext_suspend_completed():
 419 // 0x00000001 - routine was entered
 420 // 0x00000010 - routine return false at end
 421 // 0x00000100 - thread exited (return false)
 422 // 0x00000200 - suspend request cancelled (return false)
 423 // 0x00000400 - thread suspended (return true)
 424 // 0x00001000 - thread is in a suspend equivalent state (return true)
 425 // 0x00002000 - thread is native and walkable (return true)
 426 // 0x00004000 - thread is native_trans and walkable (needed retry)
 427 //
 428 // set in wait_for_ext_suspend_completion():
 429 // 0x00010000 - routine was entered
 430 // 0x00020000 - suspend request cancelled before loop (return false)
 431 // 0x00040000 - thread suspended before loop (return true)
 432 // 0x00080000 - suspend request cancelled in loop (return false)
 433 // 0x00100000 - thread suspended in loop (return true)
 434 // 0x00200000 - suspend not completed during retry loop (return false)
 435 //
 436 
 437 // Helper class for tracing suspend wait debug bits.
 438 //
 439 // 0x00000100 indicates that the target thread exited before it could
 440 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 441 // 0x00080000 each indicate a cancelled suspend request so they don't
 442 // count as wait failures either.
 443 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 444 
 445 class TraceSuspendDebugBits : public StackObj {
 446  private:
 447   JavaThread * jt;
 448   bool         is_wait;
 449   bool         called_by_wait;  // meaningful when !is_wait
 450   uint32_t *   bits;
 451 
 452  public:
 453   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 454                         uint32_t *_bits) {
 455     jt             = _jt;
 456     is_wait        = _is_wait;
 457     called_by_wait = _called_by_wait;
 458     bits           = _bits;
 459   }
 460 
 461   ~TraceSuspendDebugBits() {
 462     if (!is_wait) {
 463 #if 1
 464       // By default, don't trace bits for is_ext_suspend_completed() calls.
 465       // That trace is very chatty.
 466       return;
 467 #else
 468       if (!called_by_wait) {
 469         // If tracing for is_ext_suspend_completed() is enabled, then only
 470         // trace calls to it from wait_for_ext_suspend_completion()
 471         return;
 472       }
 473 #endif
 474     }
 475 
 476     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 477       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 478         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 479         ResourceMark rm;
 480 
 481         tty->print_cr(
 482             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 483             jt->get_thread_name(), *bits);
 484 
 485         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 486       }
 487     }
 488   }
 489 };
 490 #undef DEBUG_FALSE_BITS
 491 
 492 
 493 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 494   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 495 
 496   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 497   bool do_trans_retry;           // flag to force the retry
 498 
 499   *bits |= 0x00000001;
 500 
 501   do {
 502     do_trans_retry = false;
 503 
 504     if (is_exiting()) {
 505       // Thread is in the process of exiting. This is always checked
 506       // first to reduce the risk of dereferencing a freed JavaThread.
 507       *bits |= 0x00000100;
 508       return false;
 509     }
 510 
 511     if (!is_external_suspend()) {
 512       // Suspend request is cancelled. This is always checked before
 513       // is_ext_suspended() to reduce the risk of a rogue resume
 514       // confusing the thread that made the suspend request.
 515       *bits |= 0x00000200;
 516       return false;
 517     }
 518 
 519     if (is_ext_suspended()) {
 520       // thread is suspended
 521       *bits |= 0x00000400;
 522       return true;
 523     }
 524 
 525     // Now that we no longer do hard suspends of threads running
 526     // native code, the target thread can be changing thread state
 527     // while we are in this routine:
 528     //
 529     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 530     //
 531     // We save a copy of the thread state as observed at this moment
 532     // and make our decision about suspend completeness based on the
 533     // copy. This closes the race where the thread state is seen as
 534     // _thread_in_native_trans in the if-thread_blocked check, but is
 535     // seen as _thread_blocked in if-thread_in_native_trans check.
 536     JavaThreadState save_state = thread_state();
 537 
 538     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 539       // If the thread's state is _thread_blocked and this blocking
 540       // condition is known to be equivalent to a suspend, then we can
 541       // consider the thread to be externally suspended. This means that
 542       // the code that sets _thread_blocked has been modified to do
 543       // self-suspension if the blocking condition releases. We also
 544       // used to check for CONDVAR_WAIT here, but that is now covered by
 545       // the _thread_blocked with self-suspension check.
 546       //
 547       // Return true since we wouldn't be here unless there was still an
 548       // external suspend request.
 549       *bits |= 0x00001000;
 550       return true;
 551     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 552       // Threads running native code will self-suspend on native==>VM/Java
 553       // transitions. If its stack is walkable (should always be the case
 554       // unless this function is called before the actual java_suspend()
 555       // call), then the wait is done.
 556       *bits |= 0x00002000;
 557       return true;
 558     } else if (!called_by_wait && !did_trans_retry &&
 559                save_state == _thread_in_native_trans &&
 560                frame_anchor()->walkable()) {
 561       // The thread is transitioning from thread_in_native to another
 562       // thread state. check_safepoint_and_suspend_for_native_trans()
 563       // will force the thread to self-suspend. If it hasn't gotten
 564       // there yet we may have caught the thread in-between the native
 565       // code check above and the self-suspend. Lucky us. If we were
 566       // called by wait_for_ext_suspend_completion(), then it
 567       // will be doing the retries so we don't have to.
 568       //
 569       // Since we use the saved thread state in the if-statement above,
 570       // there is a chance that the thread has already transitioned to
 571       // _thread_blocked by the time we get here. In that case, we will
 572       // make a single unnecessary pass through the logic below. This
 573       // doesn't hurt anything since we still do the trans retry.
 574 
 575       *bits |= 0x00004000;
 576 
 577       // Once the thread leaves thread_in_native_trans for another
 578       // thread state, we break out of this retry loop. We shouldn't
 579       // need this flag to prevent us from getting back here, but
 580       // sometimes paranoia is good.
 581       did_trans_retry = true;
 582 
 583       // We wait for the thread to transition to a more usable state.
 584       for (int i = 1; i <= SuspendRetryCount; i++) {
 585         // We used to do an "os::yield_all(i)" call here with the intention
 586         // that yielding would increase on each retry. However, the parameter
 587         // is ignored on Linux which means the yield didn't scale up. Waiting
 588         // on the SR_lock below provides a much more predictable scale up for
 589         // the delay. It also provides a simple/direct point to check for any
 590         // safepoint requests from the VMThread
 591 
 592         // temporarily drops SR_lock while doing wait with safepoint check
 593         // (if we're a JavaThread - the WatcherThread can also call this)
 594         // and increase delay with each retry
 595         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 596 
 597         // check the actual thread state instead of what we saved above
 598         if (thread_state() != _thread_in_native_trans) {
 599           // the thread has transitioned to another thread state so
 600           // try all the checks (except this one) one more time.
 601           do_trans_retry = true;
 602           break;
 603         }
 604       } // end retry loop
 605 
 606 
 607     }
 608   } while (do_trans_retry);
 609 
 610   *bits |= 0x00000010;
 611   return false;
 612 }
 613 
 614 //
 615 // Wait for an external suspend request to complete (or be cancelled).
 616 // Returns true if the thread is externally suspended and false otherwise.
 617 //
 618 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 619        uint32_t *bits) {
 620   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 621                              false /* !called_by_wait */, bits);
 622 
 623   // local flag copies to minimize SR_lock hold time
 624   bool is_suspended;
 625   bool pending;
 626   uint32_t reset_bits;
 627 
 628   // set a marker so is_ext_suspend_completed() knows we are the caller
 629   *bits |= 0x00010000;
 630 
 631   // We use reset_bits to reinitialize the bits value at the top of
 632   // each retry loop. This allows the caller to make use of any
 633   // unused bits for their own marking purposes.
 634   reset_bits = *bits;
 635 
 636   {
 637     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 638     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 639                                             delay, bits);
 640     pending = is_external_suspend();
 641   }
 642   // must release SR_lock to allow suspension to complete
 643 
 644   if (!pending) {
 645     // A cancelled suspend request is the only false return from
 646     // is_ext_suspend_completed() that keeps us from entering the
 647     // retry loop.
 648     *bits |= 0x00020000;
 649     return false;
 650   }
 651 
 652   if (is_suspended) {
 653     *bits |= 0x00040000;
 654     return true;
 655   }
 656 
 657   for (int i = 1; i <= retries; i++) {
 658     *bits = reset_bits;  // reinit to only track last retry
 659 
 660     // We used to do an "os::yield_all(i)" call here with the intention
 661     // that yielding would increase on each retry. However, the parameter
 662     // is ignored on Linux which means the yield didn't scale up. Waiting
 663     // on the SR_lock below provides a much more predictable scale up for
 664     // the delay. It also provides a simple/direct point to check for any
 665     // safepoint requests from the VMThread
 666 
 667     {
 668       MutexLocker ml(SR_lock());
 669       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 670       // can also call this)  and increase delay with each retry
 671       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 672 
 673       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 674                                               delay, bits);
 675 
 676       // It is possible for the external suspend request to be cancelled
 677       // (by a resume) before the actual suspend operation is completed.
 678       // Refresh our local copy to see if we still need to wait.
 679       pending = is_external_suspend();
 680     }
 681 
 682     if (!pending) {
 683       // A cancelled suspend request is the only false return from
 684       // is_ext_suspend_completed() that keeps us from staying in the
 685       // retry loop.
 686       *bits |= 0x00080000;
 687       return false;
 688     }
 689 
 690     if (is_suspended) {
 691       *bits |= 0x00100000;
 692       return true;
 693     }
 694   } // end retry loop
 695 
 696   // thread did not suspend after all our retries
 697   *bits |= 0x00200000;
 698   return false;
 699 }
 700 
 701 #ifndef PRODUCT
 702 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 703 
 704   // This should not need to be atomic as the only way for simultaneous
 705   // updates is via interrupts. Even then this should be rare or non-existant
 706   // and we don't care that much anyway.
 707 
 708   int index = _jmp_ring_index;
 709   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 710   _jmp_ring[index]._target = (intptr_t) target;
 711   _jmp_ring[index]._instruction = (intptr_t) instr;
 712   _jmp_ring[index]._file = file;
 713   _jmp_ring[index]._line = line;
 714 }
 715 #endif /* PRODUCT */
 716 
 717 // Called by flat profiler
 718 // Callers have already called wait_for_ext_suspend_completion
 719 // The assertion for that is currently too complex to put here:
 720 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 721   bool gotframe = false;
 722   // self suspension saves needed state.
 723   if (has_last_Java_frame() && _anchor.walkable()) {
 724      *_fr = pd_last_frame();
 725      gotframe = true;
 726   }
 727   return gotframe;
 728 }
 729 
 730 void Thread::interrupt(Thread* thread) {
 731   trace("interrupt", thread);
 732   debug_only(check_for_dangling_thread_pointer(thread);)
 733   os::interrupt(thread);
 734 }
 735 
 736 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 737   trace("is_interrupted", thread);
 738   debug_only(check_for_dangling_thread_pointer(thread);)
 739   // Note:  If clear_interrupted==false, this simply fetches and
 740   // returns the value of the field osthread()->interrupted().
 741   return os::is_interrupted(thread, clear_interrupted);
 742 }
 743 
 744 
 745 // GC Support
 746 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 747   jint thread_parity = _oops_do_parity;
 748   if (thread_parity != strong_roots_parity) {
 749     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 750     if (res == thread_parity) return true;
 751     else {
 752       guarantee(res == strong_roots_parity, "Or else what?");
 753       assert(SharedHeap::heap()->n_par_threads() > 0,
 754              "Should only fail when parallel.");
 755       return false;
 756     }
 757   }
 758   assert(SharedHeap::heap()->n_par_threads() > 0,
 759          "Should only fail when parallel.");
 760   return false;
 761 }
 762 
 763 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 764   active_handles()->oops_do(f);
 765   // Do oop for ThreadShadow
 766   f->do_oop((oop*)&_pending_exception);
 767   handle_area()->oops_do(f);
 768 }
 769 
 770 void Thread::nmethods_do(CodeBlobClosure* cf) {
 771   // no nmethods in a generic thread...
 772 }
 773 
 774 void Thread::print_on(outputStream* st) const {
 775   // get_priority assumes osthread initialized
 776   if (osthread() != NULL) {
 777     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 778     osthread()->print_on(st);
 779   }
 780   debug_only(if (WizardMode) print_owned_locks_on(st);)
 781 }
 782 
 783 // Thread::print_on_error() is called by fatal error handler. Don't use
 784 // any lock or allocate memory.
 785 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 786   if      (is_VM_thread())                  st->print("VMThread");
 787   else if (is_Compiler_thread())            st->print("CompilerThread");
 788   else if (is_Java_thread())                st->print("JavaThread");
 789   else if (is_GC_task_thread())             st->print("GCTaskThread");
 790   else if (is_Watcher_thread())             st->print("WatcherThread");
 791   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 792   else st->print("Thread");
 793 
 794   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 795             _stack_base - _stack_size, _stack_base);
 796 
 797   if (osthread()) {
 798     st->print(" [id=%d]", osthread()->thread_id());
 799   }
 800 }
 801 
 802 #ifdef ASSERT
 803 void Thread::print_owned_locks_on(outputStream* st) const {
 804   Monitor *cur = _owned_locks;
 805   if (cur == NULL) {
 806     st->print(" (no locks) ");
 807   } else {
 808     st->print_cr(" Locks owned:");
 809     while(cur) {
 810       cur->print_on(st);
 811       cur = cur->next();
 812     }
 813   }
 814 }
 815 
 816 static int ref_use_count  = 0;
 817 
 818 bool Thread::owns_locks_but_compiled_lock() const {
 819   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 820     if (cur != Compile_lock) return true;
 821   }
 822   return false;
 823 }
 824 
 825 
 826 #endif
 827 
 828 #ifndef PRODUCT
 829 
 830 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 831 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 832 // no threads which allow_vm_block's are held
 833 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 834     // Check if current thread is allowed to block at a safepoint
 835     if (!(_allow_safepoint_count == 0))
 836       fatal("Possible safepoint reached by thread that does not allow it");
 837     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 838       fatal("LEAF method calling lock?");
 839     }
 840 
 841 #ifdef ASSERT
 842     if (potential_vm_operation && is_Java_thread()
 843         && !Universe::is_bootstrapping()) {
 844       // Make sure we do not hold any locks that the VM thread also uses.
 845       // This could potentially lead to deadlocks
 846       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 847         // Threads_lock is special, since the safepoint synchronization will not start before this is
 848         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 849         // since it is used to transfer control between JavaThreads and the VMThread
 850         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 851         if ( (cur->allow_vm_block() &&
 852               cur != Threads_lock &&
 853               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 854               cur != VMOperationRequest_lock &&
 855               cur != VMOperationQueue_lock) ||
 856               cur->rank() == Mutex::special) {
 857           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 858         }
 859       }
 860     }
 861 
 862     if (GCALotAtAllSafepoints) {
 863       // We could enter a safepoint here and thus have a gc
 864       InterfaceSupport::check_gc_alot();
 865     }
 866 #endif
 867 }
 868 #endif
 869 
 870 bool Thread::is_in_stack(address adr) const {
 871   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 872   address end = os::current_stack_pointer();
 873   if (stack_base() >= adr && adr >= end) return true;
 874 
 875   return false;
 876 }
 877 
 878 
 879 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 880 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 881 // used for compilation in the future. If that change is made, the need for these methods
 882 // should be revisited, and they should be removed if possible.
 883 
 884 bool Thread::is_lock_owned(address adr) const {
 885   return on_local_stack(adr);
 886 }
 887 
 888 bool Thread::set_as_starting_thread() {
 889  // NOTE: this must be called inside the main thread.
 890   return os::create_main_thread((JavaThread*)this);
 891 }
 892 
 893 static void initialize_class(symbolHandle class_name, TRAPS) {
 894   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 895   instanceKlass::cast(klass)->initialize(CHECK);
 896 }
 897 
 898 
 899 // Creates the initial ThreadGroup
 900 static Handle create_initial_thread_group(TRAPS) {
 901   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
 902   instanceKlassHandle klass (THREAD, k);
 903 
 904   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 905   {
 906     JavaValue result(T_VOID);
 907     JavaCalls::call_special(&result,
 908                             system_instance,
 909                             klass,
 910                             vmSymbolHandles::object_initializer_name(),
 911                             vmSymbolHandles::void_method_signature(),
 912                             CHECK_NH);
 913   }
 914   Universe::set_system_thread_group(system_instance());
 915 
 916   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 917   {
 918     JavaValue result(T_VOID);
 919     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 920     JavaCalls::call_special(&result,
 921                             main_instance,
 922                             klass,
 923                             vmSymbolHandles::object_initializer_name(),
 924                             vmSymbolHandles::threadgroup_string_void_signature(),
 925                             system_instance,
 926                             string,
 927                             CHECK_NH);
 928   }
 929   return main_instance;
 930 }
 931 
 932 // Creates the initial Thread
 933 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 934   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
 935   instanceKlassHandle klass (THREAD, k);
 936   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 937 
 938   java_lang_Thread::set_thread(thread_oop(), thread);
 939   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 940   thread->set_threadObj(thread_oop());
 941 
 942   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 943 
 944   JavaValue result(T_VOID);
 945   JavaCalls::call_special(&result, thread_oop,
 946                                    klass,
 947                                    vmSymbolHandles::object_initializer_name(),
 948                                    vmSymbolHandles::threadgroup_string_void_signature(),
 949                                    thread_group,
 950                                    string,
 951                                    CHECK_NULL);
 952   return thread_oop();
 953 }
 954 
 955 static void call_initializeSystemClass(TRAPS) {
 956   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 957   instanceKlassHandle klass (THREAD, k);
 958 
 959   JavaValue result(T_VOID);
 960   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
 961                                          vmSymbolHandles::void_method_signature(), CHECK);
 962 }
 963 
 964 #ifdef KERNEL
 965 static void set_jkernel_boot_classloader_hook(TRAPS) {
 966   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
 967   instanceKlassHandle klass (THREAD, k);
 968 
 969   if (k == NULL) {
 970     // sun.jkernel.DownloadManager may not present in the JDK; just return
 971     return;
 972   }
 973 
 974   JavaValue result(T_VOID);
 975   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
 976                                          vmSymbolHandles::void_method_signature(), CHECK);
 977 }
 978 #endif // KERNEL
 979 
 980 static void reset_vm_info_property(TRAPS) {
 981   // the vm info string
 982   ResourceMark rm(THREAD);
 983   const char *vm_info = VM_Version::vm_info_string();
 984 
 985   // java.lang.System class
 986   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 987   instanceKlassHandle klass (THREAD, k);
 988 
 989   // setProperty arguments
 990   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 991   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 992 
 993   // return value
 994   JavaValue r(T_OBJECT);
 995 
 996   // public static String setProperty(String key, String value);
 997   JavaCalls::call_static(&r,
 998                          klass,
 999                          vmSymbolHandles::setProperty_name(),
1000                          vmSymbolHandles::string_string_string_signature(),
1001                          key_str,
1002                          value_str,
1003                          CHECK);
1004 }
1005 
1006 
1007 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1008   assert(thread_group.not_null(), "thread group should be specified");
1009   assert(threadObj() == NULL, "should only create Java thread object once");
1010 
1011   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
1012   instanceKlassHandle klass (THREAD, k);
1013   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1014 
1015   java_lang_Thread::set_thread(thread_oop(), this);
1016   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1017   set_threadObj(thread_oop());
1018 
1019   JavaValue result(T_VOID);
1020   if (thread_name != NULL) {
1021     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1022     // Thread gets assigned specified name and null target
1023     JavaCalls::call_special(&result,
1024                             thread_oop,
1025                             klass,
1026                             vmSymbolHandles::object_initializer_name(),
1027                             vmSymbolHandles::threadgroup_string_void_signature(),
1028                             thread_group, // Argument 1
1029                             name,         // Argument 2
1030                             THREAD);
1031   } else {
1032     // Thread gets assigned name "Thread-nnn" and null target
1033     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1034     JavaCalls::call_special(&result,
1035                             thread_oop,
1036                             klass,
1037                             vmSymbolHandles::object_initializer_name(),
1038                             vmSymbolHandles::threadgroup_runnable_void_signature(),
1039                             thread_group, // Argument 1
1040                             Handle(),     // Argument 2
1041                             THREAD);
1042   }
1043 
1044 
1045   if (daemon) {
1046       java_lang_Thread::set_daemon(thread_oop());
1047   }
1048 
1049   if (HAS_PENDING_EXCEPTION) {
1050     return;
1051   }
1052 
1053   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1054   Handle threadObj(this, this->threadObj());
1055 
1056   JavaCalls::call_special(&result,
1057                          thread_group,
1058                          group,
1059                          vmSymbolHandles::add_method_name(),
1060                          vmSymbolHandles::thread_void_signature(),
1061                          threadObj,          // Arg 1
1062                          THREAD);
1063 
1064 
1065 }
1066 
1067 // NamedThread --  non-JavaThread subclasses with multiple
1068 // uniquely named instances should derive from this.
1069 NamedThread::NamedThread() : Thread() {
1070   _name = NULL;
1071   _processed_thread = NULL;
1072 }
1073 
1074 NamedThread::~NamedThread() {
1075   if (_name != NULL) {
1076     FREE_C_HEAP_ARRAY(char, _name);
1077     _name = NULL;
1078   }
1079 }
1080 
1081 void NamedThread::set_name(const char* format, ...) {
1082   guarantee(_name == NULL, "Only get to set name once.");
1083   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1084   guarantee(_name != NULL, "alloc failure");
1085   va_list ap;
1086   va_start(ap, format);
1087   jio_vsnprintf(_name, max_name_len, format, ap);
1088   va_end(ap);
1089 }
1090 
1091 // ======= WatcherThread ========
1092 
1093 // The watcher thread exists to simulate timer interrupts.  It should
1094 // be replaced by an abstraction over whatever native support for
1095 // timer interrupts exists on the platform.
1096 
1097 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1098 volatile bool  WatcherThread::_should_terminate = false;
1099 
1100 WatcherThread::WatcherThread() : Thread() {
1101   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1102   if (os::create_thread(this, os::watcher_thread)) {
1103     _watcher_thread = this;
1104 
1105     // Set the watcher thread to the highest OS priority which should not be
1106     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1107     // is created. The only normal thread using this priority is the reference
1108     // handler thread, which runs for very short intervals only.
1109     // If the VMThread's priority is not lower than the WatcherThread profiling
1110     // will be inaccurate.
1111     os::set_priority(this, MaxPriority);
1112     if (!DisableStartThread) {
1113       os::start_thread(this);
1114     }
1115   }
1116 }
1117 
1118 void WatcherThread::run() {
1119   assert(this == watcher_thread(), "just checking");
1120 
1121   this->record_stack_base_and_size();
1122   this->initialize_thread_local_storage();
1123   this->set_active_handles(JNIHandleBlock::allocate_block());
1124   while(!_should_terminate) {
1125     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1126     assert(watcher_thread() == this,  "thread consistency check");
1127 
1128     // Calculate how long it'll be until the next PeriodicTask work
1129     // should be done, and sleep that amount of time.
1130     size_t time_to_wait = PeriodicTask::time_to_wait();
1131 
1132     // we expect this to timeout - we only ever get unparked when
1133     // we should terminate
1134     {
1135       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1136 
1137       jlong prev_time = os::javaTimeNanos();
1138       for (;;) {
1139         int res= _SleepEvent->park(time_to_wait);
1140         if (res == OS_TIMEOUT || _should_terminate)
1141           break;
1142         // spurious wakeup of some kind
1143         jlong now = os::javaTimeNanos();
1144         time_to_wait -= (now - prev_time) / 1000000;
1145         if (time_to_wait <= 0)
1146           break;
1147         prev_time = now;
1148       }
1149     }
1150 
1151     if (is_error_reported()) {
1152       // A fatal error has happened, the error handler(VMError::report_and_die)
1153       // should abort JVM after creating an error log file. However in some
1154       // rare cases, the error handler itself might deadlock. Here we try to
1155       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1156       //
1157       // This code is in WatcherThread because WatcherThread wakes up
1158       // periodically so the fatal error handler doesn't need to do anything;
1159       // also because the WatcherThread is less likely to crash than other
1160       // threads.
1161 
1162       for (;;) {
1163         if (!ShowMessageBoxOnError
1164          && (OnError == NULL || OnError[0] == '\0')
1165          && Arguments::abort_hook() == NULL) {
1166              os::sleep(this, 2 * 60 * 1000, false);
1167              fdStream err(defaultStream::output_fd());
1168              err.print_raw_cr("# [ timer expired, abort... ]");
1169              // skip atexit/vm_exit/vm_abort hooks
1170              os::die();
1171         }
1172 
1173         // Wake up 5 seconds later, the fatal handler may reset OnError or
1174         // ShowMessageBoxOnError when it is ready to abort.
1175         os::sleep(this, 5 * 1000, false);
1176       }
1177     }
1178 
1179     PeriodicTask::real_time_tick(time_to_wait);
1180 
1181     // If we have no more tasks left due to dynamic disenrollment,
1182     // shut down the thread since we don't currently support dynamic enrollment
1183     if (PeriodicTask::num_tasks() == 0) {
1184       _should_terminate = true;
1185     }
1186   }
1187 
1188   // Signal that it is terminated
1189   {
1190     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1191     _watcher_thread = NULL;
1192     Terminator_lock->notify();
1193   }
1194 
1195   // Thread destructor usually does this..
1196   ThreadLocalStorage::set_thread(NULL);
1197 }
1198 
1199 void WatcherThread::start() {
1200   if (watcher_thread() == NULL) {
1201     _should_terminate = false;
1202     // Create the single instance of WatcherThread
1203     new WatcherThread();
1204   }
1205 }
1206 
1207 void WatcherThread::stop() {
1208   // it is ok to take late safepoints here, if needed
1209   MutexLocker mu(Terminator_lock);
1210   _should_terminate = true;
1211   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1212 
1213   Thread* watcher = watcher_thread();
1214   if (watcher != NULL)
1215     watcher->_SleepEvent->unpark();
1216 
1217   while(watcher_thread() != NULL) {
1218     // This wait should make safepoint checks, wait without a timeout,
1219     // and wait as a suspend-equivalent condition.
1220     //
1221     // Note: If the FlatProfiler is running, then this thread is waiting
1222     // for the WatcherThread to terminate and the WatcherThread, via the
1223     // FlatProfiler task, is waiting for the external suspend request on
1224     // this thread to complete. wait_for_ext_suspend_completion() will
1225     // eventually timeout, but that takes time. Making this wait a
1226     // suspend-equivalent condition solves that timeout problem.
1227     //
1228     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1229                           Mutex::_as_suspend_equivalent_flag);
1230   }
1231 }
1232 
1233 void WatcherThread::print_on(outputStream* st) const {
1234   st->print("\"%s\" ", name());
1235   Thread::print_on(st);
1236   st->cr();
1237 }
1238 
1239 // ======= JavaThread ========
1240 
1241 // A JavaThread is a normal Java thread
1242 
1243 void JavaThread::initialize() {
1244   // Initialize fields
1245 
1246   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1247   set_claimed_par_id(-1);
1248 
1249   set_saved_exception_pc(NULL);
1250   set_threadObj(NULL);
1251   _anchor.clear();
1252   set_entry_point(NULL);
1253   set_jni_functions(jni_functions());
1254   set_callee_target(NULL);
1255   set_vm_result(NULL);
1256   set_vm_result_2(NULL);
1257   set_vframe_array_head(NULL);
1258   set_vframe_array_last(NULL);
1259   set_deferred_locals(NULL);
1260   set_deopt_mark(NULL);
1261   set_deopt_nmethod(NULL);
1262   clear_must_deopt_id();
1263   set_monitor_chunks(NULL);
1264   set_next(NULL);
1265   set_thread_state(_thread_new);
1266   _terminated = _not_terminated;
1267   _privileged_stack_top = NULL;
1268   _array_for_gc = NULL;
1269   _suspend_equivalent = false;
1270   _in_deopt_handler = 0;
1271   _doing_unsafe_access = false;
1272   _stack_guard_state = stack_guard_unused;
1273   _exception_oop = NULL;
1274   _exception_pc  = 0;
1275   _exception_handler_pc = 0;
1276   _exception_stack_size = 0;
1277   _is_method_handle_return = 0;
1278   _jvmti_thread_state= NULL;
1279   _should_post_on_exceptions_flag = JNI_FALSE;
1280   _jvmti_get_loaded_classes_closure = NULL;
1281   _interp_only_mode    = 0;
1282   _special_runtime_exit_condition = _no_async_condition;
1283   _pending_async_exception = NULL;
1284   _is_compiling = false;
1285   _thread_stat = NULL;
1286   _thread_stat = new ThreadStatistics();
1287   _blocked_on_compilation = false;
1288   _jni_active_critical = 0;
1289   _do_not_unlock_if_synchronized = false;
1290   _cached_monitor_info = NULL;
1291   _parker = Parker::Allocate(this) ;
1292 
1293 #ifndef PRODUCT
1294   _jmp_ring_index = 0;
1295   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1296     record_jump(NULL, NULL, NULL, 0);
1297   }
1298 #endif /* PRODUCT */
1299 
1300   set_thread_profiler(NULL);
1301   if (FlatProfiler::is_active()) {
1302     // This is where we would decide to either give each thread it's own profiler
1303     // or use one global one from FlatProfiler,
1304     // or up to some count of the number of profiled threads, etc.
1305     ThreadProfiler* pp = new ThreadProfiler();
1306     pp->engage();
1307     set_thread_profiler(pp);
1308   }
1309 
1310   // Setup safepoint state info for this thread
1311   ThreadSafepointState::create(this);
1312 
1313   debug_only(_java_call_counter = 0);
1314 
1315   // JVMTI PopFrame support
1316   _popframe_condition = popframe_inactive;
1317   _popframe_preserved_args = NULL;
1318   _popframe_preserved_args_size = 0;
1319 
1320   pd_initialize();
1321 }
1322 
1323 #ifndef SERIALGC
1324 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1325 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1326 #endif // !SERIALGC
1327 
1328 JavaThread::JavaThread(bool is_attaching) :
1329   Thread()
1330 #ifndef SERIALGC
1331   , _satb_mark_queue(&_satb_mark_queue_set),
1332   _dirty_card_queue(&_dirty_card_queue_set)
1333 #endif // !SERIALGC
1334 {
1335   initialize();
1336   _is_attaching = is_attaching;
1337   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1338 }
1339 
1340 bool JavaThread::reguard_stack(address cur_sp) {
1341   if (_stack_guard_state != stack_guard_yellow_disabled) {
1342     return true; // Stack already guarded or guard pages not needed.
1343   }
1344 
1345   if (register_stack_overflow()) {
1346     // For those architectures which have separate register and
1347     // memory stacks, we must check the register stack to see if
1348     // it has overflowed.
1349     return false;
1350   }
1351 
1352   // Java code never executes within the yellow zone: the latter is only
1353   // there to provoke an exception during stack banging.  If java code
1354   // is executing there, either StackShadowPages should be larger, or
1355   // some exception code in c1, c2 or the interpreter isn't unwinding
1356   // when it should.
1357   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1358 
1359   enable_stack_yellow_zone();
1360   return true;
1361 }
1362 
1363 bool JavaThread::reguard_stack(void) {
1364   return reguard_stack(os::current_stack_pointer());
1365 }
1366 
1367 
1368 void JavaThread::block_if_vm_exited() {
1369   if (_terminated == _vm_exited) {
1370     // _vm_exited is set at safepoint, and Threads_lock is never released
1371     // we will block here forever
1372     Threads_lock->lock_without_safepoint_check();
1373     ShouldNotReachHere();
1374   }
1375 }
1376 
1377 
1378 // Remove this ifdef when C1 is ported to the compiler interface.
1379 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1380 
1381 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1382   Thread()
1383 #ifndef SERIALGC
1384   , _satb_mark_queue(&_satb_mark_queue_set),
1385   _dirty_card_queue(&_dirty_card_queue_set)
1386 #endif // !SERIALGC
1387 {
1388   if (TraceThreadEvents) {
1389     tty->print_cr("creating thread %p", this);
1390   }
1391   initialize();
1392   _is_attaching = false;
1393   set_entry_point(entry_point);
1394   // Create the native thread itself.
1395   // %note runtime_23
1396   os::ThreadType thr_type = os::java_thread;
1397   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1398                                                      os::java_thread;
1399   os::create_thread(this, thr_type, stack_sz);
1400 
1401   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1402   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1403   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1404   // the exception consists of creating the exception object & initializing it, initialization
1405   // will leave the VM via a JavaCall and then all locks must be unlocked).
1406   //
1407   // The thread is still suspended when we reach here. Thread must be explicit started
1408   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1409   // by calling Threads:add. The reason why this is not done here, is because the thread
1410   // object must be fully initialized (take a look at JVM_Start)
1411 }
1412 
1413 JavaThread::~JavaThread() {
1414   if (TraceThreadEvents) {
1415       tty->print_cr("terminate thread %p", this);
1416   }
1417 
1418   // JSR166 -- return the parker to the free list
1419   Parker::Release(_parker);
1420   _parker = NULL ;
1421 
1422   // Free any remaining  previous UnrollBlock
1423   vframeArray* old_array = vframe_array_last();
1424 
1425   if (old_array != NULL) {
1426     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1427     old_array->set_unroll_block(NULL);
1428     delete old_info;
1429     delete old_array;
1430   }
1431 
1432   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1433   if (deferred != NULL) {
1434     // This can only happen if thread is destroyed before deoptimization occurs.
1435     assert(deferred->length() != 0, "empty array!");
1436     do {
1437       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1438       deferred->remove_at(0);
1439       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1440       delete dlv;
1441     } while (deferred->length() != 0);
1442     delete deferred;
1443   }
1444 
1445   // All Java related clean up happens in exit
1446   ThreadSafepointState::destroy(this);
1447   if (_thread_profiler != NULL) delete _thread_profiler;
1448   if (_thread_stat != NULL) delete _thread_stat;
1449 }
1450 
1451 
1452 // The first routine called by a new Java thread
1453 void JavaThread::run() {
1454   // initialize thread-local alloc buffer related fields
1455   this->initialize_tlab();
1456 
1457   // used to test validitity of stack trace backs
1458   this->record_base_of_stack_pointer();
1459 
1460   // Record real stack base and size.
1461   this->record_stack_base_and_size();
1462 
1463   // Initialize thread local storage; set before calling MutexLocker
1464   this->initialize_thread_local_storage();
1465 
1466   this->create_stack_guard_pages();
1467 
1468   this->cache_global_variables();
1469 
1470   // Thread is now sufficient initialized to be handled by the safepoint code as being
1471   // in the VM. Change thread state from _thread_new to _thread_in_vm
1472   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1473 
1474   assert(JavaThread::current() == this, "sanity check");
1475   assert(!Thread::current()->owns_locks(), "sanity check");
1476 
1477   DTRACE_THREAD_PROBE(start, this);
1478 
1479   // This operation might block. We call that after all safepoint checks for a new thread has
1480   // been completed.
1481   this->set_active_handles(JNIHandleBlock::allocate_block());
1482 
1483   if (JvmtiExport::should_post_thread_life()) {
1484     JvmtiExport::post_thread_start(this);
1485   }
1486 
1487   // We call another function to do the rest so we are sure that the stack addresses used
1488   // from there will be lower than the stack base just computed
1489   thread_main_inner();
1490 
1491   // Note, thread is no longer valid at this point!
1492 }
1493 
1494 
1495 void JavaThread::thread_main_inner() {
1496   assert(JavaThread::current() == this, "sanity check");
1497   assert(this->threadObj() != NULL, "just checking");
1498 
1499   // Execute thread entry point. If this thread is being asked to restart,
1500   // or has been stopped before starting, do not reexecute entry point.
1501   // Note: Due to JVM_StopThread we can have pending exceptions already!
1502   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1503     // enter the thread's entry point only if we have no pending exceptions
1504     HandleMark hm(this);
1505     this->entry_point()(this, this);
1506   }
1507 
1508   DTRACE_THREAD_PROBE(stop, this);
1509 
1510   this->exit(false);
1511   delete this;
1512 }
1513 
1514 
1515 static void ensure_join(JavaThread* thread) {
1516   // We do not need to grap the Threads_lock, since we are operating on ourself.
1517   Handle threadObj(thread, thread->threadObj());
1518   assert(threadObj.not_null(), "java thread object must exist");
1519   ObjectLocker lock(threadObj, thread);
1520   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1521   thread->clear_pending_exception();
1522   // It is of profound importance that we set the stillborn bit and reset the thread object,
1523   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1524   // false. So in case another thread is doing a join on this thread , it will detect that the thread
1525   // is dead when it gets notified.
1526   java_lang_Thread::set_stillborn(threadObj());
1527   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1528   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1529   java_lang_Thread::set_thread(threadObj(), NULL);
1530   lock.notify_all(thread);
1531   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1532   thread->clear_pending_exception();
1533 }
1534 
1535 
1536 // For any new cleanup additions, please check to see if they need to be applied to
1537 // cleanup_failed_attach_current_thread as well.
1538 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1539   assert(this == JavaThread::current(),  "thread consistency check");
1540   if (!InitializeJavaLangSystem) return;
1541 
1542   HandleMark hm(this);
1543   Handle uncaught_exception(this, this->pending_exception());
1544   this->clear_pending_exception();
1545   Handle threadObj(this, this->threadObj());
1546   assert(threadObj.not_null(), "Java thread object should be created");
1547 
1548   if (get_thread_profiler() != NULL) {
1549     get_thread_profiler()->disengage();
1550     ResourceMark rm;
1551     get_thread_profiler()->print(get_thread_name());
1552   }
1553 
1554 
1555   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1556   {
1557     EXCEPTION_MARK;
1558 
1559     CLEAR_PENDING_EXCEPTION;
1560   }
1561   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1562   // has to be fixed by a runtime query method
1563   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1564     // JSR-166: change call from from ThreadGroup.uncaughtException to
1565     // java.lang.Thread.dispatchUncaughtException
1566     if (uncaught_exception.not_null()) {
1567       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1568       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1569         (address)uncaught_exception(), (address)threadObj(), (address)group());
1570       {
1571         EXCEPTION_MARK;
1572         // Check if the method Thread.dispatchUncaughtException() exists. If so
1573         // call it.  Otherwise we have an older library without the JSR-166 changes,
1574         // so call ThreadGroup.uncaughtException()
1575         KlassHandle recvrKlass(THREAD, threadObj->klass());
1576         CallInfo callinfo;
1577         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1578         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1579                                            vmSymbolHandles::dispatchUncaughtException_name(),
1580                                            vmSymbolHandles::throwable_void_signature(),
1581                                            KlassHandle(), false, false, THREAD);
1582         CLEAR_PENDING_EXCEPTION;
1583         methodHandle method = callinfo.selected_method();
1584         if (method.not_null()) {
1585           JavaValue result(T_VOID);
1586           JavaCalls::call_virtual(&result,
1587                                   threadObj, thread_klass,
1588                                   vmSymbolHandles::dispatchUncaughtException_name(),
1589                                   vmSymbolHandles::throwable_void_signature(),
1590                                   uncaught_exception,
1591                                   THREAD);
1592         } else {
1593           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1594           JavaValue result(T_VOID);
1595           JavaCalls::call_virtual(&result,
1596                                   group, thread_group,
1597                                   vmSymbolHandles::uncaughtException_name(),
1598                                   vmSymbolHandles::thread_throwable_void_signature(),
1599                                   threadObj,           // Arg 1
1600                                   uncaught_exception,  // Arg 2
1601                                   THREAD);
1602         }
1603         CLEAR_PENDING_EXCEPTION;
1604       }
1605     }
1606 
1607     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1608     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1609     // is deprecated anyhow.
1610     { int count = 3;
1611       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1612         EXCEPTION_MARK;
1613         JavaValue result(T_VOID);
1614         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1615         JavaCalls::call_virtual(&result,
1616                               threadObj, thread_klass,
1617                               vmSymbolHandles::exit_method_name(),
1618                               vmSymbolHandles::void_method_signature(),
1619                               THREAD);
1620         CLEAR_PENDING_EXCEPTION;
1621       }
1622     }
1623 
1624     // notify JVMTI
1625     if (JvmtiExport::should_post_thread_life()) {
1626       JvmtiExport::post_thread_end(this);
1627     }
1628 
1629     // We have notified the agents that we are exiting, before we go on,
1630     // we must check for a pending external suspend request and honor it
1631     // in order to not surprise the thread that made the suspend request.
1632     while (true) {
1633       {
1634         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1635         if (!is_external_suspend()) {
1636           set_terminated(_thread_exiting);
1637           ThreadService::current_thread_exiting(this);
1638           break;
1639         }
1640         // Implied else:
1641         // Things get a little tricky here. We have a pending external
1642         // suspend request, but we are holding the SR_lock so we
1643         // can't just self-suspend. So we temporarily drop the lock
1644         // and then self-suspend.
1645       }
1646 
1647       ThreadBlockInVM tbivm(this);
1648       java_suspend_self();
1649 
1650       // We're done with this suspend request, but we have to loop around
1651       // and check again. Eventually we will get SR_lock without a pending
1652       // external suspend request and will be able to mark ourselves as
1653       // exiting.
1654     }
1655     // no more external suspends are allowed at this point
1656   } else {
1657     // before_exit() has already posted JVMTI THREAD_END events
1658   }
1659 
1660   // Notify waiters on thread object. This has to be done after exit() is called
1661   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1662   // group should have the destroyed bit set before waiters are notified).
1663   ensure_join(this);
1664   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1665 
1666   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1667   // held by this thread must be released.  A detach operation must only
1668   // get here if there are no Java frames on the stack.  Therefore, any
1669   // owned monitors at this point MUST be JNI-acquired monitors which are
1670   // pre-inflated and in the monitor cache.
1671   //
1672   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1673   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1674     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1675     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1676     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1677   }
1678 
1679   // These things needs to be done while we are still a Java Thread. Make sure that thread
1680   // is in a consistent state, in case GC happens
1681   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1682 
1683   if (active_handles() != NULL) {
1684     JNIHandleBlock* block = active_handles();
1685     set_active_handles(NULL);
1686     JNIHandleBlock::release_block(block);
1687   }
1688 
1689   if (free_handle_block() != NULL) {
1690     JNIHandleBlock* block = free_handle_block();
1691     set_free_handle_block(NULL);
1692     JNIHandleBlock::release_block(block);
1693   }
1694 
1695   // These have to be removed while this is still a valid thread.
1696   remove_stack_guard_pages();
1697 
1698   if (UseTLAB) {
1699     tlab().make_parsable(true);  // retire TLAB
1700   }
1701 
1702   if (jvmti_thread_state() != NULL) {
1703     JvmtiExport::cleanup_thread(this);
1704   }
1705 
1706 #ifndef SERIALGC
1707   // We must flush G1-related buffers before removing a thread from
1708   // the list of active threads.
1709   if (UseG1GC) {
1710     flush_barrier_queues();
1711   }
1712 #endif
1713 
1714   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1715   Threads::remove(this);
1716 }
1717 
1718 #ifndef SERIALGC
1719 // Flush G1-related queues.
1720 void JavaThread::flush_barrier_queues() {
1721   satb_mark_queue().flush();
1722   dirty_card_queue().flush();
1723 }
1724 
1725 void JavaThread::initialize_queues() {
1726   assert(!SafepointSynchronize::is_at_safepoint(),
1727          "we should not be at a safepoint");
1728 
1729   ObjPtrQueue& satb_queue = satb_mark_queue();
1730   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1731   // The SATB queue should have been constructed with its active
1732   // field set to false.
1733   assert(!satb_queue.is_active(), "SATB queue should not be active");
1734   assert(satb_queue.is_empty(), "SATB queue should be empty");
1735   // If we are creating the thread during a marking cycle, we should
1736   // set the active field of the SATB queue to true.
1737   if (satb_queue_set.is_active()) {
1738     satb_queue.set_active(true);
1739   }
1740 
1741   DirtyCardQueue& dirty_queue = dirty_card_queue();
1742   // The dirty card queue should have been constructed with its
1743   // active field set to true.
1744   assert(dirty_queue.is_active(), "dirty card queue should be active");
1745 }
1746 #endif // !SERIALGC
1747 
1748 void JavaThread::cleanup_failed_attach_current_thread() {
1749   if (get_thread_profiler() != NULL) {
1750     get_thread_profiler()->disengage();
1751     ResourceMark rm;
1752     get_thread_profiler()->print(get_thread_name());
1753   }
1754 
1755   if (active_handles() != NULL) {
1756     JNIHandleBlock* block = active_handles();
1757     set_active_handles(NULL);
1758     JNIHandleBlock::release_block(block);
1759   }
1760 
1761   if (free_handle_block() != NULL) {
1762     JNIHandleBlock* block = free_handle_block();
1763     set_free_handle_block(NULL);
1764     JNIHandleBlock::release_block(block);
1765   }
1766 
1767   // These have to be removed while this is still a valid thread.
1768   remove_stack_guard_pages();
1769 
1770   if (UseTLAB) {
1771     tlab().make_parsable(true);  // retire TLAB, if any
1772   }
1773 
1774 #ifndef SERIALGC
1775   if (UseG1GC) {
1776     flush_barrier_queues();
1777   }
1778 #endif
1779 
1780   Threads::remove(this);
1781   delete this;
1782 }
1783 
1784 
1785 
1786 
1787 JavaThread* JavaThread::active() {
1788   Thread* thread = ThreadLocalStorage::thread();
1789   assert(thread != NULL, "just checking");
1790   if (thread->is_Java_thread()) {
1791     return (JavaThread*) thread;
1792   } else {
1793     assert(thread->is_VM_thread(), "this must be a vm thread");
1794     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1795     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1796     assert(ret->is_Java_thread(), "must be a Java thread");
1797     return ret;
1798   }
1799 }
1800 
1801 bool JavaThread::is_lock_owned(address adr) const {
1802   if (Thread::is_lock_owned(adr)) return true;
1803 
1804   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1805     if (chunk->contains(adr)) return true;
1806   }
1807 
1808   return false;
1809 }
1810 
1811 
1812 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1813   chunk->set_next(monitor_chunks());
1814   set_monitor_chunks(chunk);
1815 }
1816 
1817 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1818   guarantee(monitor_chunks() != NULL, "must be non empty");
1819   if (monitor_chunks() == chunk) {
1820     set_monitor_chunks(chunk->next());
1821   } else {
1822     MonitorChunk* prev = monitor_chunks();
1823     while (prev->next() != chunk) prev = prev->next();
1824     prev->set_next(chunk->next());
1825   }
1826 }
1827 
1828 // JVM support.
1829 
1830 // Note: this function shouldn't block if it's called in
1831 // _thread_in_native_trans state (such as from
1832 // check_special_condition_for_native_trans()).
1833 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1834 
1835   if (has_last_Java_frame() && has_async_condition()) {
1836     // If we are at a polling page safepoint (not a poll return)
1837     // then we must defer async exception because live registers
1838     // will be clobbered by the exception path. Poll return is
1839     // ok because the call we a returning from already collides
1840     // with exception handling registers and so there is no issue.
1841     // (The exception handling path kills call result registers but
1842     //  this is ok since the exception kills the result anyway).
1843 
1844     if (is_at_poll_safepoint()) {
1845       // if the code we are returning to has deoptimized we must defer
1846       // the exception otherwise live registers get clobbered on the
1847       // exception path before deoptimization is able to retrieve them.
1848       //
1849       RegisterMap map(this, false);
1850       frame caller_fr = last_frame().sender(&map);
1851       assert(caller_fr.is_compiled_frame(), "what?");
1852       if (caller_fr.is_deoptimized_frame()) {
1853         if (TraceExceptions) {
1854           ResourceMark rm;
1855           tty->print_cr("deferred async exception at compiled safepoint");
1856         }
1857         return;
1858       }
1859     }
1860   }
1861 
1862   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1863   if (condition == _no_async_condition) {
1864     // Conditions have changed since has_special_runtime_exit_condition()
1865     // was called:
1866     // - if we were here only because of an external suspend request,
1867     //   then that was taken care of above (or cancelled) so we are done
1868     // - if we were here because of another async request, then it has
1869     //   been cleared between the has_special_runtime_exit_condition()
1870     //   and now so again we are done
1871     return;
1872   }
1873 
1874   // Check for pending async. exception
1875   if (_pending_async_exception != NULL) {
1876     // Only overwrite an already pending exception, if it is not a threadDeath.
1877     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1878 
1879       // We cannot call Exceptions::_throw(...) here because we cannot block
1880       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1881 
1882       if (TraceExceptions) {
1883         ResourceMark rm;
1884         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1885         if (has_last_Java_frame() ) {
1886           frame f = last_frame();
1887           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1888         }
1889         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1890       }
1891       _pending_async_exception = NULL;
1892       clear_has_async_exception();
1893     }
1894   }
1895 
1896   if (check_unsafe_error &&
1897       condition == _async_unsafe_access_error && !has_pending_exception()) {
1898     condition = _no_async_condition;  // done
1899     switch (thread_state()) {
1900     case _thread_in_vm:
1901       {
1902         JavaThread* THREAD = this;
1903         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1904       }
1905     case _thread_in_native:
1906       {
1907         ThreadInVMfromNative tiv(this);
1908         JavaThread* THREAD = this;
1909         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1910       }
1911     case _thread_in_Java:
1912       {
1913         ThreadInVMfromJava tiv(this);
1914         JavaThread* THREAD = this;
1915         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1916       }
1917     default:
1918       ShouldNotReachHere();
1919     }
1920   }
1921 
1922   assert(condition == _no_async_condition || has_pending_exception() ||
1923          (!check_unsafe_error && condition == _async_unsafe_access_error),
1924          "must have handled the async condition, if no exception");
1925 }
1926 
1927 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1928   //
1929   // Check for pending external suspend. Internal suspend requests do
1930   // not use handle_special_runtime_exit_condition().
1931   // If JNIEnv proxies are allowed, don't self-suspend if the target
1932   // thread is not the current thread. In older versions of jdbx, jdbx
1933   // threads could call into the VM with another thread's JNIEnv so we
1934   // can be here operating on behalf of a suspended thread (4432884).
1935   bool do_self_suspend = is_external_suspend_with_lock();
1936   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1937     //
1938     // Because thread is external suspended the safepoint code will count
1939     // thread as at a safepoint. This can be odd because we can be here
1940     // as _thread_in_Java which would normally transition to _thread_blocked
1941     // at a safepoint. We would like to mark the thread as _thread_blocked
1942     // before calling java_suspend_self like all other callers of it but
1943     // we must then observe proper safepoint protocol. (We can't leave
1944     // _thread_blocked with a safepoint in progress). However we can be
1945     // here as _thread_in_native_trans so we can't use a normal transition
1946     // constructor/destructor pair because they assert on that type of
1947     // transition. We could do something like:
1948     //
1949     // JavaThreadState state = thread_state();
1950     // set_thread_state(_thread_in_vm);
1951     // {
1952     //   ThreadBlockInVM tbivm(this);
1953     //   java_suspend_self()
1954     // }
1955     // set_thread_state(_thread_in_vm_trans);
1956     // if (safepoint) block;
1957     // set_thread_state(state);
1958     //
1959     // but that is pretty messy. Instead we just go with the way the
1960     // code has worked before and note that this is the only path to
1961     // java_suspend_self that doesn't put the thread in _thread_blocked
1962     // mode.
1963 
1964     frame_anchor()->make_walkable(this);
1965     java_suspend_self();
1966 
1967     // We might be here for reasons in addition to the self-suspend request
1968     // so check for other async requests.
1969   }
1970 
1971   if (check_asyncs) {
1972     check_and_handle_async_exceptions();
1973   }
1974 }
1975 
1976 void JavaThread::send_thread_stop(oop java_throwable)  {
1977   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1978   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1979   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1980 
1981   // Do not throw asynchronous exceptions against the compiler thread
1982   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1983   if (is_Compiler_thread()) return;
1984 
1985   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1986   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1987     java_lang_Thread::set_stillborn(threadObj());
1988   }
1989 
1990   {
1991     // Actually throw the Throwable against the target Thread - however
1992     // only if there is no thread death exception installed already.
1993     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1994       // If the topmost frame is a runtime stub, then we are calling into
1995       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1996       // must deoptimize the caller before continuing, as the compiled  exception handler table
1997       // may not be valid
1998       if (has_last_Java_frame()) {
1999         frame f = last_frame();
2000         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2001           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2002           RegisterMap reg_map(this, UseBiasedLocking);
2003           frame compiled_frame = f.sender(&reg_map);
2004           if (compiled_frame.can_be_deoptimized()) {
2005             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2006           }
2007         }
2008       }
2009 
2010       // Set async. pending exception in thread.
2011       set_pending_async_exception(java_throwable);
2012 
2013       if (TraceExceptions) {
2014        ResourceMark rm;
2015        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2016       }
2017       // for AbortVMOnException flag
2018       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2019     }
2020   }
2021 
2022 
2023   // Interrupt thread so it will wake up from a potential wait()
2024   Thread::interrupt(this);
2025 }
2026 
2027 // External suspension mechanism.
2028 //
2029 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2030 // to any VM_locks and it is at a transition
2031 // Self-suspension will happen on the transition out of the vm.
2032 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2033 //
2034 // Guarantees on return:
2035 //   + Target thread will not execute any new bytecode (that's why we need to
2036 //     force a safepoint)
2037 //   + Target thread will not enter any new monitors
2038 //
2039 void JavaThread::java_suspend() {
2040   { MutexLocker mu(Threads_lock);
2041     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2042        return;
2043     }
2044   }
2045 
2046   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2047     if (!is_external_suspend()) {
2048       // a racing resume has cancelled us; bail out now
2049       return;
2050     }
2051 
2052     // suspend is done
2053     uint32_t debug_bits = 0;
2054     // Warning: is_ext_suspend_completed() may temporarily drop the
2055     // SR_lock to allow the thread to reach a stable thread state if
2056     // it is currently in a transient thread state.
2057     if (is_ext_suspend_completed(false /* !called_by_wait */,
2058                                  SuspendRetryDelay, &debug_bits) ) {
2059       return;
2060     }
2061   }
2062 
2063   VM_ForceSafepoint vm_suspend;
2064   VMThread::execute(&vm_suspend);
2065 }
2066 
2067 // Part II of external suspension.
2068 // A JavaThread self suspends when it detects a pending external suspend
2069 // request. This is usually on transitions. It is also done in places
2070 // where continuing to the next transition would surprise the caller,
2071 // e.g., monitor entry.
2072 //
2073 // Returns the number of times that the thread self-suspended.
2074 //
2075 // Note: DO NOT call java_suspend_self() when you just want to block current
2076 //       thread. java_suspend_self() is the second stage of cooperative
2077 //       suspension for external suspend requests and should only be used
2078 //       to complete an external suspend request.
2079 //
2080 int JavaThread::java_suspend_self() {
2081   int ret = 0;
2082 
2083   // we are in the process of exiting so don't suspend
2084   if (is_exiting()) {
2085      clear_external_suspend();
2086      return ret;
2087   }
2088 
2089   assert(_anchor.walkable() ||
2090     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2091     "must have walkable stack");
2092 
2093   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2094 
2095   assert(!this->is_ext_suspended(),
2096     "a thread trying to self-suspend should not already be suspended");
2097 
2098   if (this->is_suspend_equivalent()) {
2099     // If we are self-suspending as a result of the lifting of a
2100     // suspend equivalent condition, then the suspend_equivalent
2101     // flag is not cleared until we set the ext_suspended flag so
2102     // that wait_for_ext_suspend_completion() returns consistent
2103     // results.
2104     this->clear_suspend_equivalent();
2105   }
2106 
2107   // A racing resume may have cancelled us before we grabbed SR_lock
2108   // above. Or another external suspend request could be waiting for us
2109   // by the time we return from SR_lock()->wait(). The thread
2110   // that requested the suspension may already be trying to walk our
2111   // stack and if we return now, we can change the stack out from under
2112   // it. This would be a "bad thing (TM)" and cause the stack walker
2113   // to crash. We stay self-suspended until there are no more pending
2114   // external suspend requests.
2115   while (is_external_suspend()) {
2116     ret++;
2117     this->set_ext_suspended();
2118 
2119     // _ext_suspended flag is cleared by java_resume()
2120     while (is_ext_suspended()) {
2121       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2122     }
2123   }
2124 
2125   return ret;
2126 }
2127 
2128 #ifdef ASSERT
2129 // verify the JavaThread has not yet been published in the Threads::list, and
2130 // hence doesn't need protection from concurrent access at this stage
2131 void JavaThread::verify_not_published() {
2132   if (!Threads_lock->owned_by_self()) {
2133    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2134    assert( !Threads::includes(this),
2135            "java thread shouldn't have been published yet!");
2136   }
2137   else {
2138    assert( !Threads::includes(this),
2139            "java thread shouldn't have been published yet!");
2140   }
2141 }
2142 #endif
2143 
2144 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2145 // progress or when _suspend_flags is non-zero.
2146 // Current thread needs to self-suspend if there is a suspend request and/or
2147 // block if a safepoint is in progress.
2148 // Async exception ISN'T checked.
2149 // Note only the ThreadInVMfromNative transition can call this function
2150 // directly and when thread state is _thread_in_native_trans
2151 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2152   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2153 
2154   JavaThread *curJT = JavaThread::current();
2155   bool do_self_suspend = thread->is_external_suspend();
2156 
2157   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2158 
2159   // If JNIEnv proxies are allowed, don't self-suspend if the target
2160   // thread is not the current thread. In older versions of jdbx, jdbx
2161   // threads could call into the VM with another thread's JNIEnv so we
2162   // can be here operating on behalf of a suspended thread (4432884).
2163   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2164     JavaThreadState state = thread->thread_state();
2165 
2166     // We mark this thread_blocked state as a suspend-equivalent so
2167     // that a caller to is_ext_suspend_completed() won't be confused.
2168     // The suspend-equivalent state is cleared by java_suspend_self().
2169     thread->set_suspend_equivalent();
2170 
2171     // If the safepoint code sees the _thread_in_native_trans state, it will
2172     // wait until the thread changes to other thread state. There is no
2173     // guarantee on how soon we can obtain the SR_lock and complete the
2174     // self-suspend request. It would be a bad idea to let safepoint wait for
2175     // too long. Temporarily change the state to _thread_blocked to
2176     // let the VM thread know that this thread is ready for GC. The problem
2177     // of changing thread state is that safepoint could happen just after
2178     // java_suspend_self() returns after being resumed, and VM thread will
2179     // see the _thread_blocked state. We must check for safepoint
2180     // after restoring the state and make sure we won't leave while a safepoint
2181     // is in progress.
2182     thread->set_thread_state(_thread_blocked);
2183     thread->java_suspend_self();
2184     thread->set_thread_state(state);
2185     // Make sure new state is seen by VM thread
2186     if (os::is_MP()) {
2187       if (UseMembar) {
2188         // Force a fence between the write above and read below
2189         OrderAccess::fence();
2190       } else {
2191         // Must use this rather than serialization page in particular on Windows
2192         InterfaceSupport::serialize_memory(thread);
2193       }
2194     }
2195   }
2196 
2197   if (SafepointSynchronize::do_call_back()) {
2198     // If we are safepointing, then block the caller which may not be
2199     // the same as the target thread (see above).
2200     SafepointSynchronize::block(curJT);
2201   }
2202 
2203   if (thread->is_deopt_suspend()) {
2204     thread->clear_deopt_suspend();
2205     RegisterMap map(thread, false);
2206     frame f = thread->last_frame();
2207     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2208       f = f.sender(&map);
2209     }
2210     if (f.id() == thread->must_deopt_id()) {
2211       thread->clear_must_deopt_id();
2212       f.deoptimize(thread);
2213     } else {
2214       fatal("missed deoptimization!");
2215     }
2216   }
2217 }
2218 
2219 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2220 // progress or when _suspend_flags is non-zero.
2221 // Current thread needs to self-suspend if there is a suspend request and/or
2222 // block if a safepoint is in progress.
2223 // Also check for pending async exception (not including unsafe access error).
2224 // Note only the native==>VM/Java barriers can call this function and when
2225 // thread state is _thread_in_native_trans.
2226 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2227   check_safepoint_and_suspend_for_native_trans(thread);
2228 
2229   if (thread->has_async_exception()) {
2230     // We are in _thread_in_native_trans state, don't handle unsafe
2231     // access error since that may block.
2232     thread->check_and_handle_async_exceptions(false);
2233   }
2234 }
2235 
2236 // We need to guarantee the Threads_lock here, since resumes are not
2237 // allowed during safepoint synchronization
2238 // Can only resume from an external suspension
2239 void JavaThread::java_resume() {
2240   assert_locked_or_safepoint(Threads_lock);
2241 
2242   // Sanity check: thread is gone, has started exiting or the thread
2243   // was not externally suspended.
2244   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2245     return;
2246   }
2247 
2248   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2249 
2250   clear_external_suspend();
2251 
2252   if (is_ext_suspended()) {
2253     clear_ext_suspended();
2254     SR_lock()->notify_all();
2255   }
2256 }
2257 
2258 void JavaThread::create_stack_guard_pages() {
2259   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2260   address low_addr = stack_base() - stack_size();
2261   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2262 
2263   int allocate = os::allocate_stack_guard_pages();
2264   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2265 
2266   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2267     warning("Attempt to allocate stack guard pages failed.");
2268     return;
2269   }
2270 
2271   if (os::guard_memory((char *) low_addr, len)) {
2272     _stack_guard_state = stack_guard_enabled;
2273   } else {
2274     warning("Attempt to protect stack guard pages failed.");
2275     if (os::uncommit_memory((char *) low_addr, len)) {
2276       warning("Attempt to deallocate stack guard pages failed.");
2277     }
2278   }
2279 }
2280 
2281 void JavaThread::remove_stack_guard_pages() {
2282   if (_stack_guard_state == stack_guard_unused) return;
2283   address low_addr = stack_base() - stack_size();
2284   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2285 
2286   if (os::allocate_stack_guard_pages()) {
2287     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2288       _stack_guard_state = stack_guard_unused;
2289     } else {
2290       warning("Attempt to deallocate stack guard pages failed.");
2291     }
2292   } else {
2293     if (_stack_guard_state == stack_guard_unused) return;
2294     if (os::unguard_memory((char *) low_addr, len)) {
2295       _stack_guard_state = stack_guard_unused;
2296     } else {
2297         warning("Attempt to unprotect stack guard pages failed.");
2298     }
2299   }
2300 }
2301 
2302 void JavaThread::enable_stack_yellow_zone() {
2303   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2304   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2305 
2306   // The base notation is from the stacks point of view, growing downward.
2307   // We need to adjust it to work correctly with guard_memory()
2308   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2309 
2310   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2311   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2312 
2313   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2314     _stack_guard_state = stack_guard_enabled;
2315   } else {
2316     warning("Attempt to guard stack yellow zone failed.");
2317   }
2318   enable_register_stack_guard();
2319 }
2320 
2321 void JavaThread::disable_stack_yellow_zone() {
2322   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2323   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2324 
2325   // Simply return if called for a thread that does not use guard pages.
2326   if (_stack_guard_state == stack_guard_unused) return;
2327 
2328   // The base notation is from the stacks point of view, growing downward.
2329   // We need to adjust it to work correctly with guard_memory()
2330   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2331 
2332   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2333     _stack_guard_state = stack_guard_yellow_disabled;
2334   } else {
2335     warning("Attempt to unguard stack yellow zone failed.");
2336   }
2337   disable_register_stack_guard();
2338 }
2339 
2340 void JavaThread::enable_stack_red_zone() {
2341   // The base notation is from the stacks point of view, growing downward.
2342   // We need to adjust it to work correctly with guard_memory()
2343   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2344   address base = stack_red_zone_base() - stack_red_zone_size();
2345 
2346   guarantee(base < stack_base(),"Error calculating stack red zone");
2347   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2348 
2349   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2350     warning("Attempt to guard stack red zone failed.");
2351   }
2352 }
2353 
2354 void JavaThread::disable_stack_red_zone() {
2355   // The base notation is from the stacks point of view, growing downward.
2356   // We need to adjust it to work correctly with guard_memory()
2357   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2358   address base = stack_red_zone_base() - stack_red_zone_size();
2359   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2360     warning("Attempt to unguard stack red zone failed.");
2361   }
2362 }
2363 
2364 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2365   // ignore is there is no stack
2366   if (!has_last_Java_frame()) return;
2367   // traverse the stack frames. Starts from top frame.
2368   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2369     frame* fr = fst.current();
2370     f(fr, fst.register_map());
2371   }
2372 }
2373 
2374 
2375 #ifndef PRODUCT
2376 // Deoptimization
2377 // Function for testing deoptimization
2378 void JavaThread::deoptimize() {
2379   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2380   StackFrameStream fst(this, UseBiasedLocking);
2381   bool deopt = false;           // Dump stack only if a deopt actually happens.
2382   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2383   // Iterate over all frames in the thread and deoptimize
2384   for(; !fst.is_done(); fst.next()) {
2385     if(fst.current()->can_be_deoptimized()) {
2386 
2387       if (only_at) {
2388         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2389         // consists of comma or carriage return separated numbers so
2390         // search for the current bci in that string.
2391         address pc = fst.current()->pc();
2392         nmethod* nm =  (nmethod*) fst.current()->cb();
2393         ScopeDesc* sd = nm->scope_desc_at( pc);
2394         char buffer[8];
2395         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2396         size_t len = strlen(buffer);
2397         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2398         while (found != NULL) {
2399           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2400               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2401             // Check that the bci found is bracketed by terminators.
2402             break;
2403           }
2404           found = strstr(found + 1, buffer);
2405         }
2406         if (!found) {
2407           continue;
2408         }
2409       }
2410 
2411       if (DebugDeoptimization && !deopt) {
2412         deopt = true; // One-time only print before deopt
2413         tty->print_cr("[BEFORE Deoptimization]");
2414         trace_frames();
2415         trace_stack();
2416       }
2417       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2418     }
2419   }
2420 
2421   if (DebugDeoptimization && deopt) {
2422     tty->print_cr("[AFTER Deoptimization]");
2423     trace_frames();
2424   }
2425 }
2426 
2427 
2428 // Make zombies
2429 void JavaThread::make_zombies() {
2430   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2431     if (fst.current()->can_be_deoptimized()) {
2432       // it is a Java nmethod
2433       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2434       nm->make_not_entrant();
2435     }
2436   }
2437 }
2438 #endif // PRODUCT
2439 
2440 
2441 void JavaThread::deoptimized_wrt_marked_nmethods() {
2442   if (!has_last_Java_frame()) return;
2443   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2444   StackFrameStream fst(this, UseBiasedLocking);
2445   for(; !fst.is_done(); fst.next()) {
2446     if (fst.current()->should_be_deoptimized()) {
2447       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2448     }
2449   }
2450 }
2451 
2452 
2453 // GC support
2454 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2455 
2456 void JavaThread::gc_epilogue() {
2457   frames_do(frame_gc_epilogue);
2458 }
2459 
2460 
2461 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2462 
2463 void JavaThread::gc_prologue() {
2464   frames_do(frame_gc_prologue);
2465 }
2466 
2467 // If the caller is a NamedThread, then remember, in the current scope,
2468 // the given JavaThread in its _processed_thread field.
2469 class RememberProcessedThread: public StackObj {
2470   NamedThread* _cur_thr;
2471 public:
2472   RememberProcessedThread(JavaThread* jthr) {
2473     Thread* thread = Thread::current();
2474     if (thread->is_Named_thread()) {
2475       _cur_thr = (NamedThread *)thread;
2476       _cur_thr->set_processed_thread(jthr);
2477     } else {
2478       _cur_thr = NULL;
2479     }
2480   }
2481 
2482   ~RememberProcessedThread() {
2483     if (_cur_thr) {
2484       _cur_thr->set_processed_thread(NULL);
2485     }
2486   }
2487 };
2488 
2489 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2490   // Verify that the deferred card marks have been flushed.
2491   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2492 
2493   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2494   // since there may be more than one thread using each ThreadProfiler.
2495 
2496   // Traverse the GCHandles
2497   Thread::oops_do(f, cf);
2498 
2499   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2500           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2501 
2502   if (has_last_Java_frame()) {
2503     // Record JavaThread to GC thread
2504     RememberProcessedThread rpt(this);
2505 
2506     // Traverse the privileged stack
2507     if (_privileged_stack_top != NULL) {
2508       _privileged_stack_top->oops_do(f);
2509     }
2510 
2511     // traverse the registered growable array
2512     if (_array_for_gc != NULL) {
2513       for (int index = 0; index < _array_for_gc->length(); index++) {
2514         f->do_oop(_array_for_gc->adr_at(index));
2515       }
2516     }
2517 
2518     // Traverse the monitor chunks
2519     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2520       chunk->oops_do(f);
2521     }
2522 
2523     // Traverse the execution stack
2524     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2525       fst.current()->oops_do(f, cf, fst.register_map());
2526     }
2527   }
2528 
2529   // callee_target is never live across a gc point so NULL it here should
2530   // it still contain a methdOop.
2531 
2532   set_callee_target(NULL);
2533 
2534   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2535   // If we have deferred set_locals there might be oops waiting to be
2536   // written
2537   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2538   if (list != NULL) {
2539     for (int i = 0; i < list->length(); i++) {
2540       list->at(i)->oops_do(f);
2541     }
2542   }
2543 
2544   // Traverse instance variables at the end since the GC may be moving things
2545   // around using this function
2546   f->do_oop((oop*) &_threadObj);
2547   f->do_oop((oop*) &_vm_result);
2548   f->do_oop((oop*) &_vm_result_2);
2549   f->do_oop((oop*) &_exception_oop);
2550   f->do_oop((oop*) &_pending_async_exception);
2551 
2552   if (jvmti_thread_state() != NULL) {
2553     jvmti_thread_state()->oops_do(f);
2554   }
2555 }
2556 
2557 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2558   Thread::nmethods_do(cf);  // (super method is a no-op)
2559 
2560   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2561           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2562 
2563   if (has_last_Java_frame()) {
2564     // Traverse the execution stack
2565     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2566       fst.current()->nmethods_do(cf);
2567     }
2568   }
2569 }
2570 
2571 // Printing
2572 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2573   switch (_thread_state) {
2574   case _thread_uninitialized:     return "_thread_uninitialized";
2575   case _thread_new:               return "_thread_new";
2576   case _thread_new_trans:         return "_thread_new_trans";
2577   case _thread_in_native:         return "_thread_in_native";
2578   case _thread_in_native_trans:   return "_thread_in_native_trans";
2579   case _thread_in_vm:             return "_thread_in_vm";
2580   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2581   case _thread_in_Java:           return "_thread_in_Java";
2582   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2583   case _thread_blocked:           return "_thread_blocked";
2584   case _thread_blocked_trans:     return "_thread_blocked_trans";
2585   default:                        return "unknown thread state";
2586   }
2587 }
2588 
2589 #ifndef PRODUCT
2590 void JavaThread::print_thread_state_on(outputStream *st) const {
2591   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2592 };
2593 void JavaThread::print_thread_state() const {
2594   print_thread_state_on(tty);
2595 };
2596 #endif // PRODUCT
2597 
2598 // Called by Threads::print() for VM_PrintThreads operation
2599 void JavaThread::print_on(outputStream *st) const {
2600   st->print("\"%s\" ", get_thread_name());
2601   oop thread_oop = threadObj();
2602   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2603   Thread::print_on(st);
2604   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2605   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2606   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2607     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2608   }
2609 #ifndef PRODUCT
2610   print_thread_state_on(st);
2611   _safepoint_state->print_on(st);
2612 #endif // PRODUCT
2613 }
2614 
2615 // Called by fatal error handler. The difference between this and
2616 // JavaThread::print() is that we can't grab lock or allocate memory.
2617 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2618   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2619   oop thread_obj = threadObj();
2620   if (thread_obj != NULL) {
2621      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2622   }
2623   st->print(" [");
2624   st->print("%s", _get_thread_state_name(_thread_state));
2625   if (osthread()) {
2626     st->print(", id=%d", osthread()->thread_id());
2627   }
2628   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2629             _stack_base - _stack_size, _stack_base);
2630   st->print("]");
2631   return;
2632 }
2633 
2634 // Verification
2635 
2636 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2637 
2638 void JavaThread::verify() {
2639   // Verify oops in the thread.
2640   oops_do(&VerifyOopClosure::verify_oop, NULL);
2641 
2642   // Verify the stack frames.
2643   frames_do(frame_verify);
2644 }
2645 
2646 // CR 6300358 (sub-CR 2137150)
2647 // Most callers of this method assume that it can't return NULL but a
2648 // thread may not have a name whilst it is in the process of attaching to
2649 // the VM - see CR 6412693, and there are places where a JavaThread can be
2650 // seen prior to having it's threadObj set (eg JNI attaching threads and
2651 // if vm exit occurs during initialization). These cases can all be accounted
2652 // for such that this method never returns NULL.
2653 const char* JavaThread::get_thread_name() const {
2654 #ifdef ASSERT
2655   // early safepoints can hit while current thread does not yet have TLS
2656   if (!SafepointSynchronize::is_at_safepoint()) {
2657     Thread *cur = Thread::current();
2658     if (!(cur->is_Java_thread() && cur == this)) {
2659       // Current JavaThreads are allowed to get their own name without
2660       // the Threads_lock.
2661       assert_locked_or_safepoint(Threads_lock);
2662     }
2663   }
2664 #endif // ASSERT
2665     return get_thread_name_string();
2666 }
2667 
2668 // Returns a non-NULL representation of this thread's name, or a suitable
2669 // descriptive string if there is no set name
2670 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2671   const char* name_str;
2672   oop thread_obj = threadObj();
2673   if (thread_obj != NULL) {
2674     typeArrayOop name = java_lang_Thread::name(thread_obj);
2675     if (name != NULL) {
2676       if (buf == NULL) {
2677         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2678       }
2679       else {
2680         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2681       }
2682     }
2683     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2684       name_str = "<no-name - thread is attaching>";
2685     }
2686     else {
2687       name_str = Thread::name();
2688     }
2689   }
2690   else {
2691     name_str = Thread::name();
2692   }
2693   assert(name_str != NULL, "unexpected NULL thread name");
2694   return name_str;
2695 }
2696 
2697 
2698 const char* JavaThread::get_threadgroup_name() const {
2699   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2700   oop thread_obj = threadObj();
2701   if (thread_obj != NULL) {
2702     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2703     if (thread_group != NULL) {
2704       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2705       // ThreadGroup.name can be null
2706       if (name != NULL) {
2707         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2708         return str;
2709       }
2710     }
2711   }
2712   return NULL;
2713 }
2714 
2715 const char* JavaThread::get_parent_name() const {
2716   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2717   oop thread_obj = threadObj();
2718   if (thread_obj != NULL) {
2719     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2720     if (thread_group != NULL) {
2721       oop parent = java_lang_ThreadGroup::parent(thread_group);
2722       if (parent != NULL) {
2723         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2724         // ThreadGroup.name can be null
2725         if (name != NULL) {
2726           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2727           return str;
2728         }
2729       }
2730     }
2731   }
2732   return NULL;
2733 }
2734 
2735 ThreadPriority JavaThread::java_priority() const {
2736   oop thr_oop = threadObj();
2737   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2738   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2739   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2740   return priority;
2741 }
2742 
2743 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2744 
2745   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2746   // Link Java Thread object <-> C++ Thread
2747 
2748   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2749   // and put it into a new Handle.  The Handle "thread_oop" can then
2750   // be used to pass the C++ thread object to other methods.
2751 
2752   // Set the Java level thread object (jthread) field of the
2753   // new thread (a JavaThread *) to C++ thread object using the
2754   // "thread_oop" handle.
2755 
2756   // Set the thread field (a JavaThread *) of the
2757   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2758 
2759   Handle thread_oop(Thread::current(),
2760                     JNIHandles::resolve_non_null(jni_thread));
2761   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2762     "must be initialized");
2763   set_threadObj(thread_oop());
2764   java_lang_Thread::set_thread(thread_oop(), this);
2765 
2766   if (prio == NoPriority) {
2767     prio = java_lang_Thread::priority(thread_oop());
2768     assert(prio != NoPriority, "A valid priority should be present");
2769   }
2770 
2771   // Push the Java priority down to the native thread; needs Threads_lock
2772   Thread::set_priority(this, prio);
2773 
2774   // Add the new thread to the Threads list and set it in motion.
2775   // We must have threads lock in order to call Threads::add.
2776   // It is crucial that we do not block before the thread is
2777   // added to the Threads list for if a GC happens, then the java_thread oop
2778   // will not be visited by GC.
2779   Threads::add(this);
2780 }
2781 
2782 oop JavaThread::current_park_blocker() {
2783   // Support for JSR-166 locks
2784   oop thread_oop = threadObj();
2785   if (thread_oop != NULL &&
2786       JDK_Version::current().supports_thread_park_blocker()) {
2787     return java_lang_Thread::park_blocker(thread_oop);
2788   }
2789   return NULL;
2790 }
2791 
2792 
2793 void JavaThread::print_stack_on(outputStream* st) {
2794   if (!has_last_Java_frame()) return;
2795   ResourceMark rm;
2796   HandleMark   hm;
2797 
2798   RegisterMap reg_map(this);
2799   vframe* start_vf = last_java_vframe(&reg_map);
2800   int count = 0;
2801   for (vframe* f = start_vf; f; f = f->sender() ) {
2802     if (f->is_java_frame()) {
2803       javaVFrame* jvf = javaVFrame::cast(f);
2804       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2805 
2806       // Print out lock information
2807       if (JavaMonitorsInStackTrace) {
2808         jvf->print_lock_info_on(st, count);
2809       }
2810     } else {
2811       // Ignore non-Java frames
2812     }
2813 
2814     // Bail-out case for too deep stacks
2815     count++;
2816     if (MaxJavaStackTraceDepth == count) return;
2817   }
2818 }
2819 
2820 
2821 // JVMTI PopFrame support
2822 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2823   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2824   if (in_bytes(size_in_bytes) != 0) {
2825     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2826     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2827     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2828   }
2829 }
2830 
2831 void* JavaThread::popframe_preserved_args() {
2832   return _popframe_preserved_args;
2833 }
2834 
2835 ByteSize JavaThread::popframe_preserved_args_size() {
2836   return in_ByteSize(_popframe_preserved_args_size);
2837 }
2838 
2839 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2840   int sz = in_bytes(popframe_preserved_args_size());
2841   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2842   return in_WordSize(sz / wordSize);
2843 }
2844 
2845 void JavaThread::popframe_free_preserved_args() {
2846   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2847   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2848   _popframe_preserved_args = NULL;
2849   _popframe_preserved_args_size = 0;
2850 }
2851 
2852 #ifndef PRODUCT
2853 
2854 void JavaThread::trace_frames() {
2855   tty->print_cr("[Describe stack]");
2856   int frame_no = 1;
2857   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2858     tty->print("  %d. ", frame_no++);
2859     fst.current()->print_value_on(tty,this);
2860     tty->cr();
2861   }
2862 }
2863 
2864 
2865 void JavaThread::trace_stack_from(vframe* start_vf) {
2866   ResourceMark rm;
2867   int vframe_no = 1;
2868   for (vframe* f = start_vf; f; f = f->sender() ) {
2869     if (f->is_java_frame()) {
2870       javaVFrame::cast(f)->print_activation(vframe_no++);
2871     } else {
2872       f->print();
2873     }
2874     if (vframe_no > StackPrintLimit) {
2875       tty->print_cr("...<more frames>...");
2876       return;
2877     }
2878   }
2879 }
2880 
2881 
2882 void JavaThread::trace_stack() {
2883   if (!has_last_Java_frame()) return;
2884   ResourceMark rm;
2885   HandleMark   hm;
2886   RegisterMap reg_map(this);
2887   trace_stack_from(last_java_vframe(&reg_map));
2888 }
2889 
2890 
2891 #endif // PRODUCT
2892 
2893 
2894 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2895   assert(reg_map != NULL, "a map must be given");
2896   frame f = last_frame();
2897   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2898     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2899   }
2900   return NULL;
2901 }
2902 
2903 
2904 klassOop JavaThread::security_get_caller_class(int depth) {
2905   vframeStream vfst(this);
2906   vfst.security_get_caller_frame(depth);
2907   if (!vfst.at_end()) {
2908     return vfst.method()->method_holder();
2909   }
2910   return NULL;
2911 }
2912 
2913 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2914   assert(thread->is_Compiler_thread(), "must be compiler thread");
2915   CompileBroker::compiler_thread_loop();
2916 }
2917 
2918 // Create a CompilerThread
2919 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2920 : JavaThread(&compiler_thread_entry) {
2921   _env   = NULL;
2922   _log   = NULL;
2923   _task  = NULL;
2924   _queue = queue;
2925   _counters = counters;
2926   _buffer_blob = NULL;
2927 
2928 #ifndef PRODUCT
2929   _ideal_graph_printer = NULL;
2930 #endif
2931 }
2932 
2933 
2934 // ======= Threads ========
2935 
2936 // The Threads class links together all active threads, and provides
2937 // operations over all threads.  It is protected by its own Mutex
2938 // lock, which is also used in other contexts to protect thread
2939 // operations from having the thread being operated on from exiting
2940 // and going away unexpectedly (e.g., safepoint synchronization)
2941 
2942 JavaThread* Threads::_thread_list = NULL;
2943 int         Threads::_number_of_threads = 0;
2944 int         Threads::_number_of_non_daemon_threads = 0;
2945 int         Threads::_return_code = 0;
2946 size_t      JavaThread::_stack_size_at_create = 0;
2947 
2948 // All JavaThreads
2949 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2950 
2951 void os_stream();
2952 
2953 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2954 void Threads::threads_do(ThreadClosure* tc) {
2955   assert_locked_or_safepoint(Threads_lock);
2956   // ALL_JAVA_THREADS iterates through all JavaThreads
2957   ALL_JAVA_THREADS(p) {
2958     tc->do_thread(p);
2959   }
2960   // Someday we could have a table or list of all non-JavaThreads.
2961   // For now, just manually iterate through them.
2962   tc->do_thread(VMThread::vm_thread());
2963   Universe::heap()->gc_threads_do(tc);
2964   WatcherThread *wt = WatcherThread::watcher_thread();
2965   // Strictly speaking, the following NULL check isn't sufficient to make sure
2966   // the data for WatcherThread is still valid upon being examined. However,
2967   // considering that WatchThread terminates when the VM is on the way to
2968   // exit at safepoint, the chance of the above is extremely small. The right
2969   // way to prevent termination of WatcherThread would be to acquire
2970   // Terminator_lock, but we can't do that without violating the lock rank
2971   // checking in some cases.
2972   if (wt != NULL)
2973     tc->do_thread(wt);
2974 
2975   // If CompilerThreads ever become non-JavaThreads, add them here
2976 }
2977 
2978 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2979 
2980   extern void JDK_Version_init();
2981 
2982   // Check version
2983   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2984 
2985   // Initialize the output stream module
2986   ostream_init();
2987 
2988   // Process java launcher properties.
2989   Arguments::process_sun_java_launcher_properties(args);
2990 
2991   // Initialize the os module before using TLS
2992   os::init();
2993 
2994   // Initialize system properties.
2995   Arguments::init_system_properties();
2996 
2997   // So that JDK version can be used as a discrimintor when parsing arguments
2998   JDK_Version_init();
2999 
3000   // Update/Initialize System properties after JDK version number is known
3001   Arguments::init_version_specific_system_properties();
3002 
3003   // Parse arguments
3004   jint parse_result = Arguments::parse(args);
3005   if (parse_result != JNI_OK) return parse_result;
3006 
3007   if (PauseAtStartup) {
3008     os::pause();
3009   }
3010 
3011   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3012 
3013   // Record VM creation timing statistics
3014   TraceVmCreationTime create_vm_timer;
3015   create_vm_timer.start();
3016 
3017   // Timing (must come after argument parsing)
3018   TraceTime timer("Create VM", TraceStartupTime);
3019 
3020   // Initialize the os module after parsing the args
3021   jint os_init_2_result = os::init_2();
3022   if (os_init_2_result != JNI_OK) return os_init_2_result;
3023 
3024   // Initialize output stream logging
3025   ostream_init_log();
3026 
3027   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3028   // Must be before create_vm_init_agents()
3029   if (Arguments::init_libraries_at_startup()) {
3030     convert_vm_init_libraries_to_agents();
3031   }
3032 
3033   // Launch -agentlib/-agentpath and converted -Xrun agents
3034   if (Arguments::init_agents_at_startup()) {
3035     create_vm_init_agents();
3036   }
3037 
3038   // Initialize Threads state
3039   _thread_list = NULL;
3040   _number_of_threads = 0;
3041   _number_of_non_daemon_threads = 0;
3042 
3043   // Initialize TLS
3044   ThreadLocalStorage::init();
3045 
3046   // Initialize global data structures and create system classes in heap
3047   vm_init_globals();
3048 
3049   // Attach the main thread to this os thread
3050   JavaThread* main_thread = new JavaThread();
3051   main_thread->set_thread_state(_thread_in_vm);
3052   // must do this before set_active_handles and initialize_thread_local_storage
3053   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3054   // change the stack size recorded here to one based on the java thread
3055   // stacksize. This adjusted size is what is used to figure the placement
3056   // of the guard pages.
3057   main_thread->record_stack_base_and_size();
3058   main_thread->initialize_thread_local_storage();
3059 
3060   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3061 
3062   if (!main_thread->set_as_starting_thread()) {
3063     vm_shutdown_during_initialization(
3064       "Failed necessary internal allocation. Out of swap space");
3065     delete main_thread;
3066     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3067     return JNI_ENOMEM;
3068   }
3069 
3070   // Enable guard page *after* os::create_main_thread(), otherwise it would
3071   // crash Linux VM, see notes in os_linux.cpp.
3072   main_thread->create_stack_guard_pages();
3073 
3074   // Initialize Java-Level synchronization subsystem
3075   ObjectMonitor::Initialize() ;
3076 
3077   // Initialize global modules
3078   jint status = init_globals();
3079   if (status != JNI_OK) {
3080     delete main_thread;
3081     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3082     return status;
3083   }
3084 
3085   // Should be done after the heap is fully created
3086   main_thread->cache_global_variables();
3087 
3088   HandleMark hm;
3089 
3090   { MutexLocker mu(Threads_lock);
3091     Threads::add(main_thread);
3092   }
3093 
3094   // Any JVMTI raw monitors entered in onload will transition into
3095   // real raw monitor. VM is setup enough here for raw monitor enter.
3096   JvmtiExport::transition_pending_onload_raw_monitors();
3097 
3098   if (VerifyBeforeGC &&
3099       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3100     Universe::heap()->prepare_for_verify();
3101     Universe::verify();   // make sure we're starting with a clean slate
3102   }
3103 
3104   // Create the VMThread
3105   { TraceTime timer("Start VMThread", TraceStartupTime);
3106     VMThread::create();
3107     Thread* vmthread = VMThread::vm_thread();
3108 
3109     if (!os::create_thread(vmthread, os::vm_thread))
3110       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3111 
3112     // Wait for the VM thread to become ready, and VMThread::run to initialize
3113     // Monitors can have spurious returns, must always check another state flag
3114     {
3115       MutexLocker ml(Notify_lock);
3116       os::start_thread(vmthread);
3117       while (vmthread->active_handles() == NULL) {
3118         Notify_lock->wait();
3119       }
3120     }
3121   }
3122 
3123   assert (Universe::is_fully_initialized(), "not initialized");
3124   EXCEPTION_MARK;
3125 
3126   // At this point, the Universe is initialized, but we have not executed
3127   // any byte code.  Now is a good time (the only time) to dump out the
3128   // internal state of the JVM for sharing.
3129 
3130   if (DumpSharedSpaces) {
3131     Universe::heap()->preload_and_dump(CHECK_0);
3132     ShouldNotReachHere();
3133   }
3134 
3135   // Always call even when there are not JVMTI environments yet, since environments
3136   // may be attached late and JVMTI must track phases of VM execution
3137   JvmtiExport::enter_start_phase();
3138 
3139   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3140   JvmtiExport::post_vm_start();
3141 
3142   {
3143     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3144 
3145     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3146       create_vm_init_libraries();
3147     }
3148 
3149     if (InitializeJavaLangString) {
3150       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3151     } else {
3152       warning("java.lang.String not initialized");
3153     }
3154 
3155     if (AggressiveOpts) {
3156       {
3157         // Forcibly initialize java/util/HashMap and mutate the private
3158         // static final "frontCacheEnabled" field before we start creating instances
3159 #ifdef ASSERT
3160         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3161         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3162 #endif
3163         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3164         KlassHandle k = KlassHandle(THREAD, k_o);
3165         guarantee(k.not_null(), "Must find java/util/HashMap");
3166         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3167         ik->initialize(CHECK_0);
3168         fieldDescriptor fd;
3169         // Possible we might not find this field; if so, don't break
3170         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3171           k()->bool_field_put(fd.offset(), true);
3172         }
3173       }
3174 
3175       if (UseStringCache) {
3176         // Forcibly initialize java/lang/StringValue and mutate the private
3177         // static final "stringCacheEnabled" field before we start creating instances
3178         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3179         // Possible that StringValue isn't present: if so, silently don't break
3180         if (k_o != NULL) {
3181           KlassHandle k = KlassHandle(THREAD, k_o);
3182           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3183           ik->initialize(CHECK_0);
3184           fieldDescriptor fd;
3185           // Possible we might not find this field: if so, silently don't break
3186           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3187             k()->bool_field_put(fd.offset(), true);
3188           }
3189         }
3190       }
3191     }
3192 
3193     // Initialize java_lang.System (needed before creating the thread)
3194     if (InitializeJavaLangSystem) {
3195       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3196       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3197       Handle thread_group = create_initial_thread_group(CHECK_0);
3198       Universe::set_main_thread_group(thread_group());
3199       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3200       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3201       main_thread->set_threadObj(thread_object);
3202       // Set thread status to running since main thread has
3203       // been started and running.
3204       java_lang_Thread::set_thread_status(thread_object,
3205                                           java_lang_Thread::RUNNABLE);
3206 
3207       // The VM preresolve methods to these classes. Make sure that get initialized
3208       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3209       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3210       // The VM creates & returns objects of this class. Make sure it's initialized.
3211       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3212       call_initializeSystemClass(CHECK_0);
3213     } else {
3214       warning("java.lang.System not initialized");
3215     }
3216 
3217     // an instance of OutOfMemory exception has been allocated earlier
3218     if (InitializeJavaLangExceptionsErrors) {
3219       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3220       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3221       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3222       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3223       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3224       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3225       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3226     } else {
3227       warning("java.lang.OutOfMemoryError has not been initialized");
3228       warning("java.lang.NullPointerException has not been initialized");
3229       warning("java.lang.ClassCastException has not been initialized");
3230       warning("java.lang.ArrayStoreException has not been initialized");
3231       warning("java.lang.ArithmeticException has not been initialized");
3232       warning("java.lang.StackOverflowError has not been initialized");
3233     }
3234   }
3235 
3236   // See        : bugid 4211085.
3237   // Background : the static initializer of java.lang.Compiler tries to read
3238   //              property"java.compiler" and read & write property "java.vm.info".
3239   //              When a security manager is installed through the command line
3240   //              option "-Djava.security.manager", the above properties are not
3241   //              readable and the static initializer for java.lang.Compiler fails
3242   //              resulting in a NoClassDefFoundError.  This can happen in any
3243   //              user code which calls methods in java.lang.Compiler.
3244   // Hack :       the hack is to pre-load and initialize this class, so that only
3245   //              system domains are on the stack when the properties are read.
3246   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3247   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3248   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3249   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3250   //              Once that is done, we should remove this hack.
3251   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3252 
3253   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3254   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3255   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3256   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3257   // This should also be taken out as soon as 4211383 gets fixed.
3258   reset_vm_info_property(CHECK_0);
3259 
3260   quicken_jni_functions();
3261 
3262   // Set flag that basic initialization has completed. Used by exceptions and various
3263   // debug stuff, that does not work until all basic classes have been initialized.
3264   set_init_completed();
3265 
3266   HS_DTRACE_PROBE(hotspot, vm__init__end);
3267 
3268   // record VM initialization completion time
3269   Management::record_vm_init_completed();
3270 
3271   // Compute system loader. Note that this has to occur after set_init_completed, since
3272   // valid exceptions may be thrown in the process.
3273   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3274   // set_init_completed has just been called, causing exceptions not to be shortcut
3275   // anymore. We call vm_exit_during_initialization directly instead.
3276   SystemDictionary::compute_java_system_loader(THREAD);
3277   if (HAS_PENDING_EXCEPTION) {
3278     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3279   }
3280 
3281 #ifdef KERNEL
3282   if (JDK_Version::is_gte_jdk17x_version()) {
3283     set_jkernel_boot_classloader_hook(THREAD);
3284   }
3285 #endif // KERNEL
3286 
3287 #ifndef SERIALGC
3288   // Support for ConcurrentMarkSweep. This should be cleaned up
3289   // and better encapsulated. The ugly nested if test would go away
3290   // once things are properly refactored. XXX YSR
3291   if (UseConcMarkSweepGC || UseG1GC) {
3292     if (UseConcMarkSweepGC) {
3293       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3294     } else {
3295       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3296     }
3297     if (HAS_PENDING_EXCEPTION) {
3298       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3299     }
3300   }
3301 #endif // SERIALGC
3302 
3303   // Always call even when there are not JVMTI environments yet, since environments
3304   // may be attached late and JVMTI must track phases of VM execution
3305   JvmtiExport::enter_live_phase();
3306 
3307   // Signal Dispatcher needs to be started before VMInit event is posted
3308   os::signal_init();
3309 
3310   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3311   if (!DisableAttachMechanism) {
3312     if (StartAttachListener || AttachListener::init_at_startup()) {
3313       AttachListener::init();
3314     }
3315   }
3316 
3317   // Launch -Xrun agents
3318   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3319   // back-end can launch with -Xdebug -Xrunjdwp.
3320   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3321     create_vm_init_libraries();
3322   }
3323 
3324   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3325   JvmtiExport::post_vm_initialized();
3326 
3327   Chunk::start_chunk_pool_cleaner_task();
3328 
3329   // initialize compiler(s)
3330   CompileBroker::compilation_init();
3331 
3332   Management::initialize(THREAD);
3333   if (HAS_PENDING_EXCEPTION) {
3334     // management agent fails to start possibly due to
3335     // configuration problem and is responsible for printing
3336     // stack trace if appropriate. Simply exit VM.
3337     vm_exit(1);
3338   }
3339 
3340   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3341   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3342   if (MemProfiling)                   MemProfiler::engage();
3343   StatSampler::engage();
3344   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3345 
3346   BiasedLocking::init();
3347 
3348 
3349   // Start up the WatcherThread if there are any periodic tasks
3350   // NOTE:  All PeriodicTasks should be registered by now. If they
3351   //   aren't, late joiners might appear to start slowly (we might
3352   //   take a while to process their first tick).
3353   if (PeriodicTask::num_tasks() > 0) {
3354     WatcherThread::start();
3355   }
3356 
3357   // Give os specific code one last chance to start
3358   os::init_3();
3359 
3360   create_vm_timer.end();
3361   return JNI_OK;
3362 }
3363 
3364 // type for the Agent_OnLoad and JVM_OnLoad entry points
3365 extern "C" {
3366   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3367 }
3368 // Find a command line agent library and return its entry point for
3369 //         -agentlib:  -agentpath:   -Xrun
3370 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3371 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3372   OnLoadEntry_t on_load_entry = NULL;
3373   void *library = agent->os_lib();  // check if we have looked it up before
3374 
3375   if (library == NULL) {
3376     char buffer[JVM_MAXPATHLEN];
3377     char ebuf[1024];
3378     const char *name = agent->name();
3379     const char *msg = "Could not find agent library ";
3380 
3381     if (agent->is_absolute_path()) {
3382       library = os::dll_load(name, ebuf, sizeof ebuf);
3383       if (library == NULL) {
3384         const char *sub_msg = " in absolute path, with error: ";
3385         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3386         char *buf = NEW_C_HEAP_ARRAY(char, len);
3387         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3388         // If we can't find the agent, exit.
3389         vm_exit_during_initialization(buf, NULL);
3390         FREE_C_HEAP_ARRAY(char, buf);
3391       }
3392     } else {
3393       // Try to load the agent from the standard dll directory
3394       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3395       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3396 #ifdef KERNEL
3397       // Download instrument dll
3398       if (library == NULL && strcmp(name, "instrument") == 0) {
3399         char *props = Arguments::get_kernel_properties();
3400         char *home  = Arguments::get_java_home();
3401         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3402                       " sun.jkernel.DownloadManager -download client_jvm";
3403         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3404         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3405         jio_snprintf(cmd, length, fmt, home, props);
3406         int status = os::fork_and_exec(cmd);
3407         FreeHeap(props);
3408         if (status == -1) {
3409           warning(cmd);
3410           vm_exit_during_initialization("fork_and_exec failed: %s",
3411                                          strerror(errno));
3412         }
3413         FREE_C_HEAP_ARRAY(char, cmd);
3414         // when this comes back the instrument.dll should be where it belongs.
3415         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3416       }
3417 #endif // KERNEL
3418       if (library == NULL) { // Try the local directory
3419         char ns[1] = {0};
3420         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3421         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3422         if (library == NULL) {
3423           const char *sub_msg = " on the library path, with error: ";
3424           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3425           char *buf = NEW_C_HEAP_ARRAY(char, len);
3426           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3427           // If we can't find the agent, exit.
3428           vm_exit_during_initialization(buf, NULL);
3429           FREE_C_HEAP_ARRAY(char, buf);
3430         }
3431       }
3432     }
3433     agent->set_os_lib(library);
3434   }
3435 
3436   // Find the OnLoad function.
3437   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3438     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3439     if (on_load_entry != NULL) break;
3440   }
3441   return on_load_entry;
3442 }
3443 
3444 // Find the JVM_OnLoad entry point
3445 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3446   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3447   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3448 }
3449 
3450 // Find the Agent_OnLoad entry point
3451 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3452   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3453   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3454 }
3455 
3456 // For backwards compatibility with -Xrun
3457 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3458 // treated like -agentpath:
3459 // Must be called before agent libraries are created
3460 void Threads::convert_vm_init_libraries_to_agents() {
3461   AgentLibrary* agent;
3462   AgentLibrary* next;
3463 
3464   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3465     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3466     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3467 
3468     // If there is an JVM_OnLoad function it will get called later,
3469     // otherwise see if there is an Agent_OnLoad
3470     if (on_load_entry == NULL) {
3471       on_load_entry = lookup_agent_on_load(agent);
3472       if (on_load_entry != NULL) {
3473         // switch it to the agent list -- so that Agent_OnLoad will be called,
3474         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3475         Arguments::convert_library_to_agent(agent);
3476       } else {
3477         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3478       }
3479     }
3480   }
3481 }
3482 
3483 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3484 // Invokes Agent_OnLoad
3485 // Called very early -- before JavaThreads exist
3486 void Threads::create_vm_init_agents() {
3487   extern struct JavaVM_ main_vm;
3488   AgentLibrary* agent;
3489 
3490   JvmtiExport::enter_onload_phase();
3491   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3492     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3493 
3494     if (on_load_entry != NULL) {
3495       // Invoke the Agent_OnLoad function
3496       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3497       if (err != JNI_OK) {
3498         vm_exit_during_initialization("agent library failed to init", agent->name());
3499       }
3500     } else {
3501       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3502     }
3503   }
3504   JvmtiExport::enter_primordial_phase();
3505 }
3506 
3507 extern "C" {
3508   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3509 }
3510 
3511 void Threads::shutdown_vm_agents() {
3512   // Send any Agent_OnUnload notifications
3513   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3514   extern struct JavaVM_ main_vm;
3515   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3516 
3517     // Find the Agent_OnUnload function.
3518     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3519       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3520                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3521 
3522       // Invoke the Agent_OnUnload function
3523       if (unload_entry != NULL) {
3524         JavaThread* thread = JavaThread::current();
3525         ThreadToNativeFromVM ttn(thread);
3526         HandleMark hm(thread);
3527         (*unload_entry)(&main_vm);
3528         break;
3529       }
3530     }
3531   }
3532 }
3533 
3534 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3535 // Invokes JVM_OnLoad
3536 void Threads::create_vm_init_libraries() {
3537   extern struct JavaVM_ main_vm;
3538   AgentLibrary* agent;
3539 
3540   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3541     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3542 
3543     if (on_load_entry != NULL) {
3544       // Invoke the JVM_OnLoad function
3545       JavaThread* thread = JavaThread::current();
3546       ThreadToNativeFromVM ttn(thread);
3547       HandleMark hm(thread);
3548       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3549       if (err != JNI_OK) {
3550         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3551       }
3552     } else {
3553       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3554     }
3555   }
3556 }
3557 
3558 // Last thread running calls java.lang.Shutdown.shutdown()
3559 void JavaThread::invoke_shutdown_hooks() {
3560   HandleMark hm(this);
3561 
3562   // We could get here with a pending exception, if so clear it now.
3563   if (this->has_pending_exception()) {
3564     this->clear_pending_exception();
3565   }
3566 
3567   EXCEPTION_MARK;
3568   klassOop k =
3569     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3570                                       THREAD);
3571   if (k != NULL) {
3572     // SystemDictionary::resolve_or_null will return null if there was
3573     // an exception.  If we cannot load the Shutdown class, just don't
3574     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3575     // and finalizers (if runFinalizersOnExit is set) won't be run.
3576     // Note that if a shutdown hook was registered or runFinalizersOnExit
3577     // was called, the Shutdown class would have already been loaded
3578     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3579     instanceKlassHandle shutdown_klass (THREAD, k);
3580     JavaValue result(T_VOID);
3581     JavaCalls::call_static(&result,
3582                            shutdown_klass,
3583                            vmSymbolHandles::shutdown_method_name(),
3584                            vmSymbolHandles::void_method_signature(),
3585                            THREAD);
3586   }
3587   CLEAR_PENDING_EXCEPTION;
3588 }
3589 
3590 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3591 // the program falls off the end of main(). Another VM exit path is through
3592 // vm_exit() when the program calls System.exit() to return a value or when
3593 // there is a serious error in VM. The two shutdown paths are not exactly
3594 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3595 // and VM_Exit op at VM level.
3596 //
3597 // Shutdown sequence:
3598 //   + Wait until we are the last non-daemon thread to execute
3599 //     <-- every thing is still working at this moment -->
3600 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3601 //        shutdown hooks, run finalizers if finalization-on-exit
3602 //   + Call before_exit(), prepare for VM exit
3603 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3604 //        currently the only user of this mechanism is File.deleteOnExit())
3605 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3606 //        post thread end and vm death events to JVMTI,
3607 //        stop signal thread
3608 //   + Call JavaThread::exit(), it will:
3609 //      > release JNI handle blocks, remove stack guard pages
3610 //      > remove this thread from Threads list
3611 //     <-- no more Java code from this thread after this point -->
3612 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3613 //     the compiler threads at safepoint
3614 //     <-- do not use anything that could get blocked by Safepoint -->
3615 //   + Disable tracing at JNI/JVM barriers
3616 //   + Set _vm_exited flag for threads that are still running native code
3617 //   + Delete this thread
3618 //   + Call exit_globals()
3619 //      > deletes tty
3620 //      > deletes PerfMemory resources
3621 //   + Return to caller
3622 
3623 bool Threads::destroy_vm() {
3624   JavaThread* thread = JavaThread::current();
3625 
3626   // Wait until we are the last non-daemon thread to execute
3627   { MutexLocker nu(Threads_lock);
3628     while (Threads::number_of_non_daemon_threads() > 1 )
3629       // This wait should make safepoint checks, wait without a timeout,
3630       // and wait as a suspend-equivalent condition.
3631       //
3632       // Note: If the FlatProfiler is running and this thread is waiting
3633       // for another non-daemon thread to finish, then the FlatProfiler
3634       // is waiting for the external suspend request on this thread to
3635       // complete. wait_for_ext_suspend_completion() will eventually
3636       // timeout, but that takes time. Making this wait a suspend-
3637       // equivalent condition solves that timeout problem.
3638       //
3639       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3640                          Mutex::_as_suspend_equivalent_flag);
3641   }
3642 
3643   // Hang forever on exit if we are reporting an error.
3644   if (ShowMessageBoxOnError && is_error_reported()) {
3645     os::infinite_sleep();
3646   }
3647 
3648   if (JDK_Version::is_jdk12x_version()) {
3649     // We are the last thread running, so check if finalizers should be run.
3650     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3651     HandleMark rm(thread);
3652     Universe::run_finalizers_on_exit();
3653   } else {
3654     // run Java level shutdown hooks
3655     thread->invoke_shutdown_hooks();
3656   }
3657 
3658   before_exit(thread);
3659 
3660   thread->exit(true);
3661 
3662   // Stop VM thread.
3663   {
3664     // 4945125 The vm thread comes to a safepoint during exit.
3665     // GC vm_operations can get caught at the safepoint, and the
3666     // heap is unparseable if they are caught. Grab the Heap_lock
3667     // to prevent this. The GC vm_operations will not be able to
3668     // queue until after the vm thread is dead.
3669     MutexLocker ml(Heap_lock);
3670 
3671     VMThread::wait_for_vm_thread_exit();
3672     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3673     VMThread::destroy();
3674   }
3675 
3676   // clean up ideal graph printers
3677 #if defined(COMPILER2) && !defined(PRODUCT)
3678   IdealGraphPrinter::clean_up();
3679 #endif
3680 
3681   // Now, all Java threads are gone except daemon threads. Daemon threads
3682   // running Java code or in VM are stopped by the Safepoint. However,
3683   // daemon threads executing native code are still running.  But they
3684   // will be stopped at native=>Java/VM barriers. Note that we can't
3685   // simply kill or suspend them, as it is inherently deadlock-prone.
3686 
3687 #ifndef PRODUCT
3688   // disable function tracing at JNI/JVM barriers
3689   TraceJNICalls = false;
3690   TraceJVMCalls = false;
3691   TraceRuntimeCalls = false;
3692 #endif
3693 
3694   VM_Exit::set_vm_exited();
3695 
3696   notify_vm_shutdown();
3697 
3698   delete thread;
3699 
3700   // exit_globals() will delete tty
3701   exit_globals();
3702 
3703   return true;
3704 }
3705 
3706 
3707 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3708   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3709   return is_supported_jni_version(version);
3710 }
3711 
3712 
3713 jboolean Threads::is_supported_jni_version(jint version) {
3714   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3715   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3716   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3717   return JNI_FALSE;
3718 }
3719 
3720 
3721 void Threads::add(JavaThread* p, bool force_daemon) {
3722   // The threads lock must be owned at this point
3723   assert_locked_or_safepoint(Threads_lock);
3724 
3725   // See the comment for this method in thread.hpp for its purpose and
3726   // why it is called here.
3727   p->initialize_queues();
3728   p->set_next(_thread_list);
3729   _thread_list = p;
3730   _number_of_threads++;
3731   oop threadObj = p->threadObj();
3732   bool daemon = true;
3733   // Bootstrapping problem: threadObj can be null for initial
3734   // JavaThread (or for threads attached via JNI)
3735   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3736     _number_of_non_daemon_threads++;
3737     daemon = false;
3738   }
3739 
3740   ThreadService::add_thread(p, daemon);
3741 
3742   // Possible GC point.
3743   Events::log("Thread added: " INTPTR_FORMAT, p);
3744 }
3745 
3746 void Threads::remove(JavaThread* p) {
3747   // Extra scope needed for Thread_lock, so we can check
3748   // that we do not remove thread without safepoint code notice
3749   { MutexLocker ml(Threads_lock);
3750 
3751     assert(includes(p), "p must be present");
3752 
3753     JavaThread* current = _thread_list;
3754     JavaThread* prev    = NULL;
3755 
3756     while (current != p) {
3757       prev    = current;
3758       current = current->next();
3759     }
3760 
3761     if (prev) {
3762       prev->set_next(current->next());
3763     } else {
3764       _thread_list = p->next();
3765     }
3766     _number_of_threads--;
3767     oop threadObj = p->threadObj();
3768     bool daemon = true;
3769     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3770       _number_of_non_daemon_threads--;
3771       daemon = false;
3772 
3773       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3774       // on destroy_vm will wake up.
3775       if (number_of_non_daemon_threads() == 1)
3776         Threads_lock->notify_all();
3777     }
3778     ThreadService::remove_thread(p, daemon);
3779 
3780     // Make sure that safepoint code disregard this thread. This is needed since
3781     // the thread might mess around with locks after this point. This can cause it
3782     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3783     // of this thread since it is removed from the queue.
3784     p->set_terminated_value();
3785   } // unlock Threads_lock
3786 
3787   // Since Events::log uses a lock, we grab it outside the Threads_lock
3788   Events::log("Thread exited: " INTPTR_FORMAT, p);
3789 }
3790 
3791 // Threads_lock must be held when this is called (or must be called during a safepoint)
3792 bool Threads::includes(JavaThread* p) {
3793   assert(Threads_lock->is_locked(), "sanity check");
3794   ALL_JAVA_THREADS(q) {
3795     if (q == p ) {
3796       return true;
3797     }
3798   }
3799   return false;
3800 }
3801 
3802 // Operations on the Threads list for GC.  These are not explicitly locked,
3803 // but the garbage collector must provide a safe context for them to run.
3804 // In particular, these things should never be called when the Threads_lock
3805 // is held by some other thread. (Note: the Safepoint abstraction also
3806 // uses the Threads_lock to gurantee this property. It also makes sure that
3807 // all threads gets blocked when exiting or starting).
3808 
3809 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3810   ALL_JAVA_THREADS(p) {
3811     p->oops_do(f, cf);
3812   }
3813   VMThread::vm_thread()->oops_do(f, cf);
3814 }
3815 
3816 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3817   // Introduce a mechanism allowing parallel threads to claim threads as
3818   // root groups.  Overhead should be small enough to use all the time,
3819   // even in sequential code.
3820   SharedHeap* sh = SharedHeap::heap();
3821   bool is_par = (sh->n_par_threads() > 0);
3822   int cp = SharedHeap::heap()->strong_roots_parity();
3823   ALL_JAVA_THREADS(p) {
3824     if (p->claim_oops_do(is_par, cp)) {
3825       p->oops_do(f, cf);
3826     }
3827   }
3828   VMThread* vmt = VMThread::vm_thread();
3829   if (vmt->claim_oops_do(is_par, cp))
3830     vmt->oops_do(f, cf);
3831 }
3832 
3833 #ifndef SERIALGC
3834 // Used by ParallelScavenge
3835 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3836   ALL_JAVA_THREADS(p) {
3837     q->enqueue(new ThreadRootsTask(p));
3838   }
3839   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3840 }
3841 
3842 // Used by Parallel Old
3843 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3844   ALL_JAVA_THREADS(p) {
3845     q->enqueue(new ThreadRootsMarkingTask(p));
3846   }
3847   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3848 }
3849 #endif // SERIALGC
3850 
3851 void Threads::nmethods_do(CodeBlobClosure* cf) {
3852   ALL_JAVA_THREADS(p) {
3853     p->nmethods_do(cf);
3854   }
3855   VMThread::vm_thread()->nmethods_do(cf);
3856 }
3857 
3858 void Threads::gc_epilogue() {
3859   ALL_JAVA_THREADS(p) {
3860     p->gc_epilogue();
3861   }
3862 }
3863 
3864 void Threads::gc_prologue() {
3865   ALL_JAVA_THREADS(p) {
3866     p->gc_prologue();
3867   }
3868 }
3869 
3870 void Threads::deoptimized_wrt_marked_nmethods() {
3871   ALL_JAVA_THREADS(p) {
3872     p->deoptimized_wrt_marked_nmethods();
3873   }
3874 }
3875 
3876 
3877 // Get count Java threads that are waiting to enter the specified monitor.
3878 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3879   address monitor, bool doLock) {
3880   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3881     "must grab Threads_lock or be at safepoint");
3882   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3883 
3884   int i = 0;
3885   {
3886     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3887     ALL_JAVA_THREADS(p) {
3888       if (p->is_Compiler_thread()) continue;
3889 
3890       address pending = (address)p->current_pending_monitor();
3891       if (pending == monitor) {             // found a match
3892         if (i < count) result->append(p);   // save the first count matches
3893         i++;
3894       }
3895     }
3896   }
3897   return result;
3898 }
3899 
3900 
3901 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3902   assert(doLock ||
3903          Threads_lock->owned_by_self() ||
3904          SafepointSynchronize::is_at_safepoint(),
3905          "must grab Threads_lock or be at safepoint");
3906 
3907   // NULL owner means not locked so we can skip the search
3908   if (owner == NULL) return NULL;
3909 
3910   {
3911     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3912     ALL_JAVA_THREADS(p) {
3913       // first, see if owner is the address of a Java thread
3914       if (owner == (address)p) return p;
3915     }
3916   }
3917   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3918   if (UseHeavyMonitors) return NULL;
3919 
3920   //
3921   // If we didn't find a matching Java thread and we didn't force use of
3922   // heavyweight monitors, then the owner is the stack address of the
3923   // Lock Word in the owning Java thread's stack.
3924   //
3925   JavaThread* the_owner = NULL;
3926   {
3927     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3928     ALL_JAVA_THREADS(q) {
3929       if (q->is_lock_owned(owner)) {
3930         the_owner = q;
3931         break;
3932       }
3933     }
3934   }
3935   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3936   return the_owner;
3937 }
3938 
3939 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3940 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3941   char buf[32];
3942   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3943 
3944   st->print_cr("Full thread dump %s (%s %s):",
3945                 Abstract_VM_Version::vm_name(),
3946                 Abstract_VM_Version::vm_release(),
3947                 Abstract_VM_Version::vm_info_string()
3948                );
3949   st->cr();
3950 
3951 #ifndef SERIALGC
3952   // Dump concurrent locks
3953   ConcurrentLocksDump concurrent_locks;
3954   if (print_concurrent_locks) {
3955     concurrent_locks.dump_at_safepoint();
3956   }
3957 #endif // SERIALGC
3958 
3959   ALL_JAVA_THREADS(p) {
3960     ResourceMark rm;
3961     p->print_on(st);
3962     if (print_stacks) {
3963       if (internal_format) {
3964         p->trace_stack();
3965       } else {
3966         p->print_stack_on(st);
3967       }
3968     }
3969     st->cr();
3970 #ifndef SERIALGC
3971     if (print_concurrent_locks) {
3972       concurrent_locks.print_locks_on(p, st);
3973     }
3974 #endif // SERIALGC
3975   }
3976 
3977   VMThread::vm_thread()->print_on(st);
3978   st->cr();
3979   Universe::heap()->print_gc_threads_on(st);
3980   WatcherThread* wt = WatcherThread::watcher_thread();
3981   if (wt != NULL) wt->print_on(st);
3982   st->cr();
3983   CompileBroker::print_compiler_threads_on(st);
3984   st->flush();
3985 }
3986 
3987 // Threads::print_on_error() is called by fatal error handler. It's possible
3988 // that VM is not at safepoint and/or current thread is inside signal handler.
3989 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3990 // memory (even in resource area), it might deadlock the error handler.
3991 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3992   bool found_current = false;
3993   st->print_cr("Java Threads: ( => current thread )");
3994   ALL_JAVA_THREADS(thread) {
3995     bool is_current = (current == thread);
3996     found_current = found_current || is_current;
3997 
3998     st->print("%s", is_current ? "=>" : "  ");
3999 
4000     st->print(PTR_FORMAT, thread);
4001     st->print(" ");
4002     thread->print_on_error(st, buf, buflen);
4003     st->cr();
4004   }
4005   st->cr();
4006 
4007   st->print_cr("Other Threads:");
4008   if (VMThread::vm_thread()) {
4009     bool is_current = (current == VMThread::vm_thread());
4010     found_current = found_current || is_current;
4011     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4012 
4013     st->print(PTR_FORMAT, VMThread::vm_thread());
4014     st->print(" ");
4015     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4016     st->cr();
4017   }
4018   WatcherThread* wt = WatcherThread::watcher_thread();
4019   if (wt != NULL) {
4020     bool is_current = (current == wt);
4021     found_current = found_current || is_current;
4022     st->print("%s", is_current ? "=>" : "  ");
4023 
4024     st->print(PTR_FORMAT, wt);
4025     st->print(" ");
4026     wt->print_on_error(st, buf, buflen);
4027     st->cr();
4028   }
4029   if (!found_current) {
4030     st->cr();
4031     st->print("=>" PTR_FORMAT " (exited) ", current);
4032     current->print_on_error(st, buf, buflen);
4033     st->cr();
4034   }
4035 }
4036 
4037 // Internal SpinLock and Mutex
4038 // Based on ParkEvent
4039 
4040 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4041 //
4042 // We employ SpinLocks _only for low-contention, fixed-length
4043 // short-duration critical sections where we're concerned
4044 // about native mutex_t or HotSpot Mutex:: latency.
4045 // The mux construct provides a spin-then-block mutual exclusion
4046 // mechanism.
4047 //
4048 // Testing has shown that contention on the ListLock guarding gFreeList
4049 // is common.  If we implement ListLock as a simple SpinLock it's common
4050 // for the JVM to devolve to yielding with little progress.  This is true
4051 // despite the fact that the critical sections protected by ListLock are
4052 // extremely short.
4053 //
4054 // TODO-FIXME: ListLock should be of type SpinLock.
4055 // We should make this a 1st-class type, integrated into the lock
4056 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4057 // should have sufficient padding to avoid false-sharing and excessive
4058 // cache-coherency traffic.
4059 
4060 
4061 typedef volatile int SpinLockT ;
4062 
4063 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4064   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4065      return ;   // normal fast-path return
4066   }
4067 
4068   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4069   TEVENT (SpinAcquire - ctx) ;
4070   int ctr = 0 ;
4071   int Yields = 0 ;
4072   for (;;) {
4073      while (*adr != 0) {
4074         ++ctr ;
4075         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4076            if (Yields > 5) {
4077              // Consider using a simple NakedSleep() instead.
4078              // Then SpinAcquire could be called by non-JVM threads
4079              Thread::current()->_ParkEvent->park(1) ;
4080            } else {
4081              os::NakedYield() ;
4082              ++Yields ;
4083            }
4084         } else {
4085            SpinPause() ;
4086         }
4087      }
4088      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4089   }
4090 }
4091 
4092 void Thread::SpinRelease (volatile int * adr) {
4093   assert (*adr != 0, "invariant") ;
4094   OrderAccess::fence() ;      // guarantee at least release consistency.
4095   // Roach-motel semantics.
4096   // It's safe if subsequent LDs and STs float "up" into the critical section,
4097   // but prior LDs and STs within the critical section can't be allowed
4098   // to reorder or float past the ST that releases the lock.
4099   *adr = 0 ;
4100 }
4101 
4102 // muxAcquire and muxRelease:
4103 //
4104 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4105 //    The LSB of the word is set IFF the lock is held.
4106 //    The remainder of the word points to the head of a singly-linked list
4107 //    of threads blocked on the lock.
4108 //
4109 // *  The current implementation of muxAcquire-muxRelease uses its own
4110 //    dedicated Thread._MuxEvent instance.  If we're interested in
4111 //    minimizing the peak number of extant ParkEvent instances then
4112 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4113 //    as certain invariants were satisfied.  Specifically, care would need
4114 //    to be taken with regards to consuming unpark() "permits".
4115 //    A safe rule of thumb is that a thread would never call muxAcquire()
4116 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4117 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4118 //    consume an unpark() permit intended for monitorenter, for instance.
4119 //    One way around this would be to widen the restricted-range semaphore
4120 //    implemented in park().  Another alternative would be to provide
4121 //    multiple instances of the PlatformEvent() for each thread.  One
4122 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4123 //
4124 // *  Usage:
4125 //    -- Only as leaf locks
4126 //    -- for short-term locking only as muxAcquire does not perform
4127 //       thread state transitions.
4128 //
4129 // Alternatives:
4130 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4131 //    but with parking or spin-then-park instead of pure spinning.
4132 // *  Use Taura-Oyama-Yonenzawa locks.
4133 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4134 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4135 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4136 //    acquiring threads use timers (ParkTimed) to detect and recover from
4137 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4138 //    boundaries by using placement-new.
4139 // *  Augment MCS with advisory back-link fields maintained with CAS().
4140 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4141 //    The validity of the backlinks must be ratified before we trust the value.
4142 //    If the backlinks are invalid the exiting thread must back-track through the
4143 //    the forward links, which are always trustworthy.
4144 // *  Add a successor indication.  The LockWord is currently encoded as
4145 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4146 //    to provide the usual futile-wakeup optimization.
4147 //    See RTStt for details.
4148 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4149 //
4150 
4151 
4152 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4153 enum MuxBits { LOCKBIT = 1 } ;
4154 
4155 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4156   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4157   if (w == 0) return ;
4158   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4159      return ;
4160   }
4161 
4162   TEVENT (muxAcquire - Contention) ;
4163   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4164   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4165   for (;;) {
4166      int its = (os::is_MP() ? 100 : 0) + 1 ;
4167 
4168      // Optional spin phase: spin-then-park strategy
4169      while (--its >= 0) {
4170        w = *Lock ;
4171        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4172           return ;
4173        }
4174      }
4175 
4176      Self->reset() ;
4177      Self->OnList = intptr_t(Lock) ;
4178      // The following fence() isn't _strictly necessary as the subsequent
4179      // CAS() both serializes execution and ratifies the fetched *Lock value.
4180      OrderAccess::fence();
4181      for (;;) {
4182         w = *Lock ;
4183         if ((w & LOCKBIT) == 0) {
4184             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4185                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4186                 return ;
4187             }
4188             continue ;      // Interference -- *Lock changed -- Just retry
4189         }
4190         assert (w & LOCKBIT, "invariant") ;
4191         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4192         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4193      }
4194 
4195      while (Self->OnList != 0) {
4196         Self->park() ;
4197      }
4198   }
4199 }
4200 
4201 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4202   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4203   if (w == 0) return ;
4204   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4205     return ;
4206   }
4207 
4208   TEVENT (muxAcquire - Contention) ;
4209   ParkEvent * ReleaseAfter = NULL ;
4210   if (ev == NULL) {
4211     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4212   }
4213   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4214   for (;;) {
4215     guarantee (ev->OnList == 0, "invariant") ;
4216     int its = (os::is_MP() ? 100 : 0) + 1 ;
4217 
4218     // Optional spin phase: spin-then-park strategy
4219     while (--its >= 0) {
4220       w = *Lock ;
4221       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4222         if (ReleaseAfter != NULL) {
4223           ParkEvent::Release (ReleaseAfter) ;
4224         }
4225         return ;
4226       }
4227     }
4228 
4229     ev->reset() ;
4230     ev->OnList = intptr_t(Lock) ;
4231     // The following fence() isn't _strictly necessary as the subsequent
4232     // CAS() both serializes execution and ratifies the fetched *Lock value.
4233     OrderAccess::fence();
4234     for (;;) {
4235       w = *Lock ;
4236       if ((w & LOCKBIT) == 0) {
4237         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4238           ev->OnList = 0 ;
4239           // We call ::Release while holding the outer lock, thus
4240           // artificially lengthening the critical section.
4241           // Consider deferring the ::Release() until the subsequent unlock(),
4242           // after we've dropped the outer lock.
4243           if (ReleaseAfter != NULL) {
4244             ParkEvent::Release (ReleaseAfter) ;
4245           }
4246           return ;
4247         }
4248         continue ;      // Interference -- *Lock changed -- Just retry
4249       }
4250       assert (w & LOCKBIT, "invariant") ;
4251       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4252       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4253     }
4254 
4255     while (ev->OnList != 0) {
4256       ev->park() ;
4257     }
4258   }
4259 }
4260 
4261 // Release() must extract a successor from the list and then wake that thread.
4262 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4263 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4264 // Release() would :
4265 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4266 // (B) Extract a successor from the private list "in-hand"
4267 // (C) attempt to CAS() the residual back into *Lock over null.
4268 //     If there were any newly arrived threads and the CAS() would fail.
4269 //     In that case Release() would detach the RATs, re-merge the list in-hand
4270 //     with the RATs and repeat as needed.  Alternately, Release() might
4271 //     detach and extract a successor, but then pass the residual list to the wakee.
4272 //     The wakee would be responsible for reattaching and remerging before it
4273 //     competed for the lock.
4274 //
4275 // Both "pop" and DMR are immune from ABA corruption -- there can be
4276 // multiple concurrent pushers, but only one popper or detacher.
4277 // This implementation pops from the head of the list.  This is unfair,
4278 // but tends to provide excellent throughput as hot threads remain hot.
4279 // (We wake recently run threads first).
4280 
4281 void Thread::muxRelease (volatile intptr_t * Lock)  {
4282   for (;;) {
4283     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4284     assert (w & LOCKBIT, "invariant") ;
4285     if (w == LOCKBIT) return ;
4286     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4287     assert (List != NULL, "invariant") ;
4288     assert (List->OnList == intptr_t(Lock), "invariant") ;
4289     ParkEvent * nxt = List->ListNext ;
4290 
4291     // The following CAS() releases the lock and pops the head element.
4292     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4293       continue ;
4294     }
4295     List->OnList = 0 ;
4296     OrderAccess::fence() ;
4297     List->unpark () ;
4298     return ;
4299   }
4300 }
4301 
4302 
4303 void Threads::verify() {
4304   ALL_JAVA_THREADS(p) {
4305     p->verify();
4306   }
4307   VMThread* thread = VMThread::vm_thread();
4308   if (thread != NULL) thread->verify();
4309 }