1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "jvmtifiles/jvmtiEnv.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/objArrayOop.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "oops/symbolOop.hpp"
  41 #include "prims/jvm_misc.hpp"
  42 #include "prims/jvmtiExport.hpp"
  43 #include "prims/jvmtiThreadState.hpp"
  44 #include "prims/privilegedStack.hpp"
  45 #include "runtime/aprofiler.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/frame.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/interfaceSupport.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/jniPeriodicChecker.hpp"
  56 #include "runtime/memprofiler.hpp"
  57 #include "runtime/mutexLocker.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/osThread.hpp"
  60 #include "runtime/safepoint.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/statSampler.hpp"
  63 #include "runtime/stubRoutines.hpp"
  64 #include "runtime/task.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/threadLocalStorage.hpp"
  67 #include "runtime/vframe.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "runtime/vframe_hp.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "runtime/vm_operations.hpp"
  72 #include "services/attachListener.hpp"
  73 #include "services/management.hpp"
  74 #include "services/threadService.hpp"
  75 #include "utilities/defaultStream.hpp"
  76 #include "utilities/dtrace.hpp"
  77 #include "utilities/events.hpp"
  78 #include "utilities/preserveException.hpp"
  79 #ifdef TARGET_OS_FAMILY_linux
  80 # include "os_linux.inline.hpp"
  81 # include "thread_linux.inline.hpp"
  82 #endif
  83 #ifdef TARGET_OS_FAMILY_solaris
  84 # include "os_solaris.inline.hpp"
  85 # include "thread_solaris.inline.hpp"
  86 #endif
  87 #ifdef TARGET_OS_FAMILY_windows
  88 # include "os_windows.inline.hpp"
  89 # include "thread_windows.inline.hpp"
  90 #endif
  91 #ifndef SERIALGC
  92 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  93 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  94 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  95 #endif
  96 #ifdef COMPILER1
  97 #include "c1/c1_Compiler.hpp"
  98 #endif
  99 #ifdef COMPILER2
 100 #include "opto/c2compiler.hpp"
 101 #include "opto/idealGraphPrinter.hpp"
 102 #endif
 103 
 104 #ifdef DTRACE_ENABLED
 105 
 106 // Only bother with this argument setup if dtrace is available
 107 
 108 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 109 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 110 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 111   intptr_t, intptr_t, bool);
 112 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 113   intptr_t, intptr_t, bool);
 114 
 115 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 116   {                                                                        \
 117     ResourceMark rm(this);                                                 \
 118     int len = 0;                                                           \
 119     const char* name = (javathread)->get_thread_name();                    \
 120     len = strlen(name);                                                    \
 121     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 122       name, len,                                                           \
 123       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 124       (javathread)->osthread()->thread_id(),                               \
 125       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 126   }
 127 
 128 #else //  ndef DTRACE_ENABLED
 129 
 130 #define DTRACE_THREAD_PROBE(probe, javathread)
 131 
 132 #endif // ndef DTRACE_ENABLED
 133 
 134 // Class hierarchy
 135 // - Thread
 136 //   - VMThread
 137 //   - WatcherThread
 138 //   - ConcurrentMarkSweepThread
 139 //   - JavaThread
 140 //     - CompilerThread
 141 
 142 // ======= Thread ========
 143 
 144 // Support for forcing alignment of thread objects for biased locking
 145 void* Thread::operator new(size_t size) {
 146   if (UseBiasedLocking) {
 147     const int alignment = markOopDesc::biased_lock_alignment;
 148     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 149     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
 150     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 151     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 152            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 153            "JavaThread alignment code overflowed allocated storage");
 154     if (TraceBiasedLocking) {
 155       if (aligned_addr != real_malloc_addr)
 156         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 157                       real_malloc_addr, aligned_addr);
 158     }
 159     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 160     return aligned_addr;
 161   } else {
 162     return CHeapObj::operator new(size);
 163   }
 164 }
 165 
 166 void Thread::operator delete(void* p) {
 167   if (UseBiasedLocking) {
 168     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 169     CHeapObj::operator delete(real_malloc_addr);
 170   } else {
 171     CHeapObj::operator delete(p);
 172   }
 173 }
 174 
 175 
 176 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 177 // JavaThread
 178 
 179 
 180 Thread::Thread() {
 181   // stack
 182   _stack_base   = NULL;
 183   _stack_size   = 0;
 184   _self_raw_id  = 0;
 185   _lgrp_id      = -1;
 186   _osthread     = NULL;
 187 
 188   // allocated data structures
 189   set_resource_area(new ResourceArea());
 190   set_handle_area(new HandleArea(NULL));
 191   set_active_handles(NULL);
 192   set_free_handle_block(NULL);
 193   set_last_handle_mark(NULL);
 194   set_osthread(NULL);
 195 
 196   // This initial value ==> never claimed.
 197   _oops_do_parity = 0;
 198 
 199   // the handle mark links itself to last_handle_mark
 200   new HandleMark(this);
 201 
 202   // plain initialization
 203   debug_only(_owned_locks = NULL;)
 204   debug_only(_allow_allocation_count = 0;)
 205   NOT_PRODUCT(_allow_safepoint_count = 0;)
 206   NOT_PRODUCT(_skip_gcalot = false;)
 207   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 208   _jvmti_env_iteration_count = 0;
 209   _vm_operation_started_count = 0;
 210   _vm_operation_completed_count = 0;
 211   _current_pending_monitor = NULL;
 212   _current_pending_monitor_is_from_java = true;
 213   _current_waiting_monitor = NULL;
 214   _num_nested_signal = 0;
 215   omFreeList = NULL ;
 216   omFreeCount = 0 ;
 217   omFreeProvision = 32 ;
 218   omInUseList = NULL ;
 219   omInUseCount = 0 ;
 220 
 221   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 222   _suspend_flags = 0;
 223 
 224   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 225   _hashStateX = os::random() ;
 226   _hashStateY = 842502087 ;
 227   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 228   _hashStateW = 273326509 ;
 229 
 230   _OnTrap   = 0 ;
 231   _schedctl = NULL ;
 232   _Stalled  = 0 ;
 233   _TypeTag  = 0x2BAD ;
 234 
 235   // Many of the following fields are effectively final - immutable
 236   // Note that nascent threads can't use the Native Monitor-Mutex
 237   // construct until the _MutexEvent is initialized ...
 238   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 239   // we might instead use a stack of ParkEvents that we could provision on-demand.
 240   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 241   // and ::Release()
 242   _ParkEvent   = ParkEvent::Allocate (this) ;
 243   _SleepEvent  = ParkEvent::Allocate (this) ;
 244   _MutexEvent  = ParkEvent::Allocate (this) ;
 245   _MuxEvent    = ParkEvent::Allocate (this) ;
 246 
 247 #ifdef CHECK_UNHANDLED_OOPS
 248   if (CheckUnhandledOops) {
 249     _unhandled_oops = new UnhandledOops(this);
 250   }
 251 #endif // CHECK_UNHANDLED_OOPS
 252 #ifdef ASSERT
 253   if (UseBiasedLocking) {
 254     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 255     assert(this == _real_malloc_address ||
 256            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 257            "bug in forced alignment of thread objects");
 258   }
 259 #endif /* ASSERT */
 260 }
 261 
 262 void Thread::initialize_thread_local_storage() {
 263   // Note: Make sure this method only calls
 264   // non-blocking operations. Otherwise, it might not work
 265   // with the thread-startup/safepoint interaction.
 266 
 267   // During Java thread startup, safepoint code should allow this
 268   // method to complete because it may need to allocate memory to
 269   // store information for the new thread.
 270 
 271   // initialize structure dependent on thread local storage
 272   ThreadLocalStorage::set_thread(this);
 273 
 274   // set up any platform-specific state.
 275   os::initialize_thread();
 276 
 277 }
 278 
 279 void Thread::record_stack_base_and_size() {
 280   set_stack_base(os::current_stack_base());
 281   set_stack_size(os::current_stack_size());
 282 }
 283 
 284 
 285 Thread::~Thread() {
 286   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 287   ObjectSynchronizer::omFlush (this) ;
 288 
 289   // deallocate data structures
 290   delete resource_area();
 291   // since the handle marks are using the handle area, we have to deallocated the root
 292   // handle mark before deallocating the thread's handle area,
 293   assert(last_handle_mark() != NULL, "check we have an element");
 294   delete last_handle_mark();
 295   assert(last_handle_mark() == NULL, "check we have reached the end");
 296 
 297   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 298   // We NULL out the fields for good hygiene.
 299   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 300   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 301   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 302   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 303 
 304   delete handle_area();
 305 
 306   // osthread() can be NULL, if creation of thread failed.
 307   if (osthread() != NULL) os::free_thread(osthread());
 308 
 309   delete _SR_lock;
 310 
 311   // clear thread local storage if the Thread is deleting itself
 312   if (this == Thread::current()) {
 313     ThreadLocalStorage::set_thread(NULL);
 314   } else {
 315     // In the case where we're not the current thread, invalidate all the
 316     // caches in case some code tries to get the current thread or the
 317     // thread that was destroyed, and gets stale information.
 318     ThreadLocalStorage::invalidate_all();
 319   }
 320   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 321 }
 322 
 323 // NOTE: dummy function for assertion purpose.
 324 void Thread::run() {
 325   ShouldNotReachHere();
 326 }
 327 
 328 #ifdef ASSERT
 329 // Private method to check for dangling thread pointer
 330 void check_for_dangling_thread_pointer(Thread *thread) {
 331  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 332          "possibility of dangling Thread pointer");
 333 }
 334 #endif
 335 
 336 
 337 #ifndef PRODUCT
 338 // Tracing method for basic thread operations
 339 void Thread::trace(const char* msg, const Thread* const thread) {
 340   if (!TraceThreadEvents) return;
 341   ResourceMark rm;
 342   ThreadCritical tc;
 343   const char *name = "non-Java thread";
 344   int prio = -1;
 345   if (thread->is_Java_thread()
 346       && !thread->is_Compiler_thread()) {
 347     // The Threads_lock must be held to get information about
 348     // this thread but may not be in some situations when
 349     // tracing  thread events.
 350     bool release_Threads_lock = false;
 351     if (!Threads_lock->owned_by_self()) {
 352       Threads_lock->lock();
 353       release_Threads_lock = true;
 354     }
 355     JavaThread* jt = (JavaThread *)thread;
 356     name = (char *)jt->get_thread_name();
 357     oop thread_oop = jt->threadObj();
 358     if (thread_oop != NULL) {
 359       prio = java_lang_Thread::priority(thread_oop);
 360     }
 361     if (release_Threads_lock) {
 362       Threads_lock->unlock();
 363     }
 364   }
 365   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 366 }
 367 #endif
 368 
 369 
 370 ThreadPriority Thread::get_priority(const Thread* const thread) {
 371   trace("get priority", thread);
 372   ThreadPriority priority;
 373   // Can return an error!
 374   (void)os::get_priority(thread, priority);
 375   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 376   return priority;
 377 }
 378 
 379 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 380   trace("set priority", thread);
 381   debug_only(check_for_dangling_thread_pointer(thread);)
 382   // Can return an error!
 383   (void)os::set_priority(thread, priority);
 384 }
 385 
 386 
 387 void Thread::start(Thread* thread) {
 388   trace("start", thread);
 389   // Start is different from resume in that its safety is guaranteed by context or
 390   // being called from a Java method synchronized on the Thread object.
 391   if (!DisableStartThread) {
 392     if (thread->is_Java_thread()) {
 393       // Initialize the thread state to RUNNABLE before starting this thread.
 394       // Can not set it after the thread started because we do not know the
 395       // exact thread state at that time. It could be in MONITOR_WAIT or
 396       // in SLEEPING or some other state.
 397       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 398                                           java_lang_Thread::RUNNABLE);
 399     }
 400     os::start_thread(thread);
 401   }
 402 }
 403 
 404 // Enqueue a VM_Operation to do the job for us - sometime later
 405 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 406   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 407   VMThread::execute(vm_stop);
 408 }
 409 
 410 
 411 //
 412 // Check if an external suspend request has completed (or has been
 413 // cancelled). Returns true if the thread is externally suspended and
 414 // false otherwise.
 415 //
 416 // The bits parameter returns information about the code path through
 417 // the routine. Useful for debugging:
 418 //
 419 // set in is_ext_suspend_completed():
 420 // 0x00000001 - routine was entered
 421 // 0x00000010 - routine return false at end
 422 // 0x00000100 - thread exited (return false)
 423 // 0x00000200 - suspend request cancelled (return false)
 424 // 0x00000400 - thread suspended (return true)
 425 // 0x00001000 - thread is in a suspend equivalent state (return true)
 426 // 0x00002000 - thread is native and walkable (return true)
 427 // 0x00004000 - thread is native_trans and walkable (needed retry)
 428 //
 429 // set in wait_for_ext_suspend_completion():
 430 // 0x00010000 - routine was entered
 431 // 0x00020000 - suspend request cancelled before loop (return false)
 432 // 0x00040000 - thread suspended before loop (return true)
 433 // 0x00080000 - suspend request cancelled in loop (return false)
 434 // 0x00100000 - thread suspended in loop (return true)
 435 // 0x00200000 - suspend not completed during retry loop (return false)
 436 //
 437 
 438 // Helper class for tracing suspend wait debug bits.
 439 //
 440 // 0x00000100 indicates that the target thread exited before it could
 441 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 442 // 0x00080000 each indicate a cancelled suspend request so they don't
 443 // count as wait failures either.
 444 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 445 
 446 class TraceSuspendDebugBits : public StackObj {
 447  private:
 448   JavaThread * jt;
 449   bool         is_wait;
 450   bool         called_by_wait;  // meaningful when !is_wait
 451   uint32_t *   bits;
 452 
 453  public:
 454   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 455                         uint32_t *_bits) {
 456     jt             = _jt;
 457     is_wait        = _is_wait;
 458     called_by_wait = _called_by_wait;
 459     bits           = _bits;
 460   }
 461 
 462   ~TraceSuspendDebugBits() {
 463     if (!is_wait) {
 464 #if 1
 465       // By default, don't trace bits for is_ext_suspend_completed() calls.
 466       // That trace is very chatty.
 467       return;
 468 #else
 469       if (!called_by_wait) {
 470         // If tracing for is_ext_suspend_completed() is enabled, then only
 471         // trace calls to it from wait_for_ext_suspend_completion()
 472         return;
 473       }
 474 #endif
 475     }
 476 
 477     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 478       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 479         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 480         ResourceMark rm;
 481 
 482         tty->print_cr(
 483             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 484             jt->get_thread_name(), *bits);
 485 
 486         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 487       }
 488     }
 489   }
 490 };
 491 #undef DEBUG_FALSE_BITS
 492 
 493 
 494 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 495   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 496 
 497   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 498   bool do_trans_retry;           // flag to force the retry
 499 
 500   *bits |= 0x00000001;
 501 
 502   do {
 503     do_trans_retry = false;
 504 
 505     if (is_exiting()) {
 506       // Thread is in the process of exiting. This is always checked
 507       // first to reduce the risk of dereferencing a freed JavaThread.
 508       *bits |= 0x00000100;
 509       return false;
 510     }
 511 
 512     if (!is_external_suspend()) {
 513       // Suspend request is cancelled. This is always checked before
 514       // is_ext_suspended() to reduce the risk of a rogue resume
 515       // confusing the thread that made the suspend request.
 516       *bits |= 0x00000200;
 517       return false;
 518     }
 519 
 520     if (is_ext_suspended()) {
 521       // thread is suspended
 522       *bits |= 0x00000400;
 523       return true;
 524     }
 525 
 526     // Now that we no longer do hard suspends of threads running
 527     // native code, the target thread can be changing thread state
 528     // while we are in this routine:
 529     //
 530     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 531     //
 532     // We save a copy of the thread state as observed at this moment
 533     // and make our decision about suspend completeness based on the
 534     // copy. This closes the race where the thread state is seen as
 535     // _thread_in_native_trans in the if-thread_blocked check, but is
 536     // seen as _thread_blocked in if-thread_in_native_trans check.
 537     JavaThreadState save_state = thread_state();
 538 
 539     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 540       // If the thread's state is _thread_blocked and this blocking
 541       // condition is known to be equivalent to a suspend, then we can
 542       // consider the thread to be externally suspended. This means that
 543       // the code that sets _thread_blocked has been modified to do
 544       // self-suspension if the blocking condition releases. We also
 545       // used to check for CONDVAR_WAIT here, but that is now covered by
 546       // the _thread_blocked with self-suspension check.
 547       //
 548       // Return true since we wouldn't be here unless there was still an
 549       // external suspend request.
 550       *bits |= 0x00001000;
 551       return true;
 552     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 553       // Threads running native code will self-suspend on native==>VM/Java
 554       // transitions. If its stack is walkable (should always be the case
 555       // unless this function is called before the actual java_suspend()
 556       // call), then the wait is done.
 557       *bits |= 0x00002000;
 558       return true;
 559     } else if (!called_by_wait && !did_trans_retry &&
 560                save_state == _thread_in_native_trans &&
 561                frame_anchor()->walkable()) {
 562       // The thread is transitioning from thread_in_native to another
 563       // thread state. check_safepoint_and_suspend_for_native_trans()
 564       // will force the thread to self-suspend. If it hasn't gotten
 565       // there yet we may have caught the thread in-between the native
 566       // code check above and the self-suspend. Lucky us. If we were
 567       // called by wait_for_ext_suspend_completion(), then it
 568       // will be doing the retries so we don't have to.
 569       //
 570       // Since we use the saved thread state in the if-statement above,
 571       // there is a chance that the thread has already transitioned to
 572       // _thread_blocked by the time we get here. In that case, we will
 573       // make a single unnecessary pass through the logic below. This
 574       // doesn't hurt anything since we still do the trans retry.
 575 
 576       *bits |= 0x00004000;
 577 
 578       // Once the thread leaves thread_in_native_trans for another
 579       // thread state, we break out of this retry loop. We shouldn't
 580       // need this flag to prevent us from getting back here, but
 581       // sometimes paranoia is good.
 582       did_trans_retry = true;
 583 
 584       // We wait for the thread to transition to a more usable state.
 585       for (int i = 1; i <= SuspendRetryCount; i++) {
 586         // We used to do an "os::yield_all(i)" call here with the intention
 587         // that yielding would increase on each retry. However, the parameter
 588         // is ignored on Linux which means the yield didn't scale up. Waiting
 589         // on the SR_lock below provides a much more predictable scale up for
 590         // the delay. It also provides a simple/direct point to check for any
 591         // safepoint requests from the VMThread
 592 
 593         // temporarily drops SR_lock while doing wait with safepoint check
 594         // (if we're a JavaThread - the WatcherThread can also call this)
 595         // and increase delay with each retry
 596         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 597 
 598         // check the actual thread state instead of what we saved above
 599         if (thread_state() != _thread_in_native_trans) {
 600           // the thread has transitioned to another thread state so
 601           // try all the checks (except this one) one more time.
 602           do_trans_retry = true;
 603           break;
 604         }
 605       } // end retry loop
 606 
 607 
 608     }
 609   } while (do_trans_retry);
 610 
 611   *bits |= 0x00000010;
 612   return false;
 613 }
 614 
 615 //
 616 // Wait for an external suspend request to complete (or be cancelled).
 617 // Returns true if the thread is externally suspended and false otherwise.
 618 //
 619 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 620        uint32_t *bits) {
 621   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 622                              false /* !called_by_wait */, bits);
 623 
 624   // local flag copies to minimize SR_lock hold time
 625   bool is_suspended;
 626   bool pending;
 627   uint32_t reset_bits;
 628 
 629   // set a marker so is_ext_suspend_completed() knows we are the caller
 630   *bits |= 0x00010000;
 631 
 632   // We use reset_bits to reinitialize the bits value at the top of
 633   // each retry loop. This allows the caller to make use of any
 634   // unused bits for their own marking purposes.
 635   reset_bits = *bits;
 636 
 637   {
 638     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 639     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 640                                             delay, bits);
 641     pending = is_external_suspend();
 642   }
 643   // must release SR_lock to allow suspension to complete
 644 
 645   if (!pending) {
 646     // A cancelled suspend request is the only false return from
 647     // is_ext_suspend_completed() that keeps us from entering the
 648     // retry loop.
 649     *bits |= 0x00020000;
 650     return false;
 651   }
 652 
 653   if (is_suspended) {
 654     *bits |= 0x00040000;
 655     return true;
 656   }
 657 
 658   for (int i = 1; i <= retries; i++) {
 659     *bits = reset_bits;  // reinit to only track last retry
 660 
 661     // We used to do an "os::yield_all(i)" call here with the intention
 662     // that yielding would increase on each retry. However, the parameter
 663     // is ignored on Linux which means the yield didn't scale up. Waiting
 664     // on the SR_lock below provides a much more predictable scale up for
 665     // the delay. It also provides a simple/direct point to check for any
 666     // safepoint requests from the VMThread
 667 
 668     {
 669       MutexLocker ml(SR_lock());
 670       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 671       // can also call this)  and increase delay with each retry
 672       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 673 
 674       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 675                                               delay, bits);
 676 
 677       // It is possible for the external suspend request to be cancelled
 678       // (by a resume) before the actual suspend operation is completed.
 679       // Refresh our local copy to see if we still need to wait.
 680       pending = is_external_suspend();
 681     }
 682 
 683     if (!pending) {
 684       // A cancelled suspend request is the only false return from
 685       // is_ext_suspend_completed() that keeps us from staying in the
 686       // retry loop.
 687       *bits |= 0x00080000;
 688       return false;
 689     }
 690 
 691     if (is_suspended) {
 692       *bits |= 0x00100000;
 693       return true;
 694     }
 695   } // end retry loop
 696 
 697   // thread did not suspend after all our retries
 698   *bits |= 0x00200000;
 699   return false;
 700 }
 701 
 702 #ifndef PRODUCT
 703 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 704 
 705   // This should not need to be atomic as the only way for simultaneous
 706   // updates is via interrupts. Even then this should be rare or non-existant
 707   // and we don't care that much anyway.
 708 
 709   int index = _jmp_ring_index;
 710   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 711   _jmp_ring[index]._target = (intptr_t) target;
 712   _jmp_ring[index]._instruction = (intptr_t) instr;
 713   _jmp_ring[index]._file = file;
 714   _jmp_ring[index]._line = line;
 715 }
 716 #endif /* PRODUCT */
 717 
 718 // Called by flat profiler
 719 // Callers have already called wait_for_ext_suspend_completion
 720 // The assertion for that is currently too complex to put here:
 721 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 722   bool gotframe = false;
 723   // self suspension saves needed state.
 724   if (has_last_Java_frame() && _anchor.walkable()) {
 725      *_fr = pd_last_frame();
 726      gotframe = true;
 727   }
 728   return gotframe;
 729 }
 730 
 731 void Thread::interrupt(Thread* thread) {
 732   trace("interrupt", thread);
 733   debug_only(check_for_dangling_thread_pointer(thread);)
 734   os::interrupt(thread);
 735 }
 736 
 737 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 738   trace("is_interrupted", thread);
 739   debug_only(check_for_dangling_thread_pointer(thread);)
 740   // Note:  If clear_interrupted==false, this simply fetches and
 741   // returns the value of the field osthread()->interrupted().
 742   return os::is_interrupted(thread, clear_interrupted);
 743 }
 744 
 745 
 746 // GC Support
 747 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 748   jint thread_parity = _oops_do_parity;
 749   if (thread_parity != strong_roots_parity) {
 750     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 751     if (res == thread_parity) return true;
 752     else {
 753       guarantee(res == strong_roots_parity, "Or else what?");
 754       assert(SharedHeap::heap()->n_par_threads() > 0,
 755              "Should only fail when parallel.");
 756       return false;
 757     }
 758   }
 759   assert(SharedHeap::heap()->n_par_threads() > 0,
 760          "Should only fail when parallel.");
 761   return false;
 762 }
 763 
 764 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 765   active_handles()->oops_do(f);
 766   // Do oop for ThreadShadow
 767   f->do_oop((oop*)&_pending_exception);
 768   handle_area()->oops_do(f);
 769 }
 770 
 771 void Thread::nmethods_do(CodeBlobClosure* cf) {
 772   // no nmethods in a generic thread...
 773 }
 774 
 775 void Thread::print_on(outputStream* st) const {
 776   // get_priority assumes osthread initialized
 777   if (osthread() != NULL) {
 778     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 779     osthread()->print_on(st);
 780   }
 781   debug_only(if (WizardMode) print_owned_locks_on(st);)
 782 }
 783 
 784 // Thread::print_on_error() is called by fatal error handler. Don't use
 785 // any lock or allocate memory.
 786 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 787   if      (is_VM_thread())                  st->print("VMThread");
 788   else if (is_Compiler_thread())            st->print("CompilerThread");
 789   else if (is_Java_thread())                st->print("JavaThread");
 790   else if (is_GC_task_thread())             st->print("GCTaskThread");
 791   else if (is_Watcher_thread())             st->print("WatcherThread");
 792   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 793   else st->print("Thread");
 794 
 795   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 796             _stack_base - _stack_size, _stack_base);
 797 
 798   if (osthread()) {
 799     st->print(" [id=%d]", osthread()->thread_id());
 800   }
 801 }
 802 
 803 #ifdef ASSERT
 804 void Thread::print_owned_locks_on(outputStream* st) const {
 805   Monitor *cur = _owned_locks;
 806   if (cur == NULL) {
 807     st->print(" (no locks) ");
 808   } else {
 809     st->print_cr(" Locks owned:");
 810     while(cur) {
 811       cur->print_on(st);
 812       cur = cur->next();
 813     }
 814   }
 815 }
 816 
 817 static int ref_use_count  = 0;
 818 
 819 bool Thread::owns_locks_but_compiled_lock() const {
 820   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 821     if (cur != Compile_lock) return true;
 822   }
 823   return false;
 824 }
 825 
 826 
 827 #endif
 828 
 829 #ifndef PRODUCT
 830 
 831 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 832 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 833 // no threads which allow_vm_block's are held
 834 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 835     // Check if current thread is allowed to block at a safepoint
 836     if (!(_allow_safepoint_count == 0))
 837       fatal("Possible safepoint reached by thread that does not allow it");
 838     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 839       fatal("LEAF method calling lock?");
 840     }
 841 
 842 #ifdef ASSERT
 843     if (potential_vm_operation && is_Java_thread()
 844         && !Universe::is_bootstrapping()) {
 845       // Make sure we do not hold any locks that the VM thread also uses.
 846       // This could potentially lead to deadlocks
 847       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 848         // Threads_lock is special, since the safepoint synchronization will not start before this is
 849         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 850         // since it is used to transfer control between JavaThreads and the VMThread
 851         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 852         if ( (cur->allow_vm_block() &&
 853               cur != Threads_lock &&
 854               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 855               cur != VMOperationRequest_lock &&
 856               cur != VMOperationQueue_lock) ||
 857               cur->rank() == Mutex::special) {
 858           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 859         }
 860       }
 861     }
 862 
 863     if (GCALotAtAllSafepoints) {
 864       // We could enter a safepoint here and thus have a gc
 865       InterfaceSupport::check_gc_alot();
 866     }
 867 #endif
 868 }
 869 #endif
 870 
 871 bool Thread::is_in_stack(address adr) const {
 872   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 873   address end = os::current_stack_pointer();
 874   if (stack_base() >= adr && adr >= end) return true;
 875 
 876   return false;
 877 }
 878 
 879 
 880 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 881 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 882 // used for compilation in the future. If that change is made, the need for these methods
 883 // should be revisited, and they should be removed if possible.
 884 
 885 bool Thread::is_lock_owned(address adr) const {
 886   return on_local_stack(adr);
 887 }
 888 
 889 bool Thread::set_as_starting_thread() {
 890  // NOTE: this must be called inside the main thread.
 891   return os::create_main_thread((JavaThread*)this);
 892 }
 893 
 894 static void initialize_class(symbolHandle class_name, TRAPS) {
 895   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 896   instanceKlass::cast(klass)->initialize(CHECK);
 897 }
 898 
 899 
 900 // Creates the initial ThreadGroup
 901 static Handle create_initial_thread_group(TRAPS) {
 902   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
 903   instanceKlassHandle klass (THREAD, k);
 904 
 905   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 906   {
 907     JavaValue result(T_VOID);
 908     JavaCalls::call_special(&result,
 909                             system_instance,
 910                             klass,
 911                             vmSymbolHandles::object_initializer_name(),
 912                             vmSymbolHandles::void_method_signature(),
 913                             CHECK_NH);
 914   }
 915   Universe::set_system_thread_group(system_instance());
 916 
 917   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 918   {
 919     JavaValue result(T_VOID);
 920     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 921     JavaCalls::call_special(&result,
 922                             main_instance,
 923                             klass,
 924                             vmSymbolHandles::object_initializer_name(),
 925                             vmSymbolHandles::threadgroup_string_void_signature(),
 926                             system_instance,
 927                             string,
 928                             CHECK_NH);
 929   }
 930   return main_instance;
 931 }
 932 
 933 // Creates the initial Thread
 934 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 935   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
 936   instanceKlassHandle klass (THREAD, k);
 937   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 938 
 939   java_lang_Thread::set_thread(thread_oop(), thread);
 940   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 941   thread->set_threadObj(thread_oop());
 942 
 943   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 944 
 945   JavaValue result(T_VOID);
 946   JavaCalls::call_special(&result, thread_oop,
 947                                    klass,
 948                                    vmSymbolHandles::object_initializer_name(),
 949                                    vmSymbolHandles::threadgroup_string_void_signature(),
 950                                    thread_group,
 951                                    string,
 952                                    CHECK_NULL);
 953   return thread_oop();
 954 }
 955 
 956 static void call_initializeSystemClass(TRAPS) {
 957   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 958   instanceKlassHandle klass (THREAD, k);
 959 
 960   JavaValue result(T_VOID);
 961   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
 962                                          vmSymbolHandles::void_method_signature(), CHECK);
 963 }
 964 
 965 #ifdef KERNEL
 966 static void set_jkernel_boot_classloader_hook(TRAPS) {
 967   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
 968   instanceKlassHandle klass (THREAD, k);
 969 
 970   if (k == NULL) {
 971     // sun.jkernel.DownloadManager may not present in the JDK; just return
 972     return;
 973   }
 974 
 975   JavaValue result(T_VOID);
 976   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
 977                                          vmSymbolHandles::void_method_signature(), CHECK);
 978 }
 979 #endif // KERNEL
 980 
 981 static void reset_vm_info_property(TRAPS) {
 982   // the vm info string
 983   ResourceMark rm(THREAD);
 984   const char *vm_info = VM_Version::vm_info_string();
 985 
 986   // java.lang.System class
 987   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 988   instanceKlassHandle klass (THREAD, k);
 989 
 990   // setProperty arguments
 991   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 992   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 993 
 994   // return value
 995   JavaValue r(T_OBJECT);
 996 
 997   // public static String setProperty(String key, String value);
 998   JavaCalls::call_static(&r,
 999                          klass,
1000                          vmSymbolHandles::setProperty_name(),
1001                          vmSymbolHandles::string_string_string_signature(),
1002                          key_str,
1003                          value_str,
1004                          CHECK);
1005 }
1006 
1007 
1008 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1009   assert(thread_group.not_null(), "thread group should be specified");
1010   assert(threadObj() == NULL, "should only create Java thread object once");
1011 
1012   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
1013   instanceKlassHandle klass (THREAD, k);
1014   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1015 
1016   java_lang_Thread::set_thread(thread_oop(), this);
1017   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1018   set_threadObj(thread_oop());
1019 
1020   JavaValue result(T_VOID);
1021   if (thread_name != NULL) {
1022     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1023     // Thread gets assigned specified name and null target
1024     JavaCalls::call_special(&result,
1025                             thread_oop,
1026                             klass,
1027                             vmSymbolHandles::object_initializer_name(),
1028                             vmSymbolHandles::threadgroup_string_void_signature(),
1029                             thread_group, // Argument 1
1030                             name,         // Argument 2
1031                             THREAD);
1032   } else {
1033     // Thread gets assigned name "Thread-nnn" and null target
1034     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1035     JavaCalls::call_special(&result,
1036                             thread_oop,
1037                             klass,
1038                             vmSymbolHandles::object_initializer_name(),
1039                             vmSymbolHandles::threadgroup_runnable_void_signature(),
1040                             thread_group, // Argument 1
1041                             Handle(),     // Argument 2
1042                             THREAD);
1043   }
1044 
1045 
1046   if (daemon) {
1047       java_lang_Thread::set_daemon(thread_oop());
1048   }
1049 
1050   if (HAS_PENDING_EXCEPTION) {
1051     return;
1052   }
1053 
1054   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1055   Handle threadObj(this, this->threadObj());
1056 
1057   JavaCalls::call_special(&result,
1058                          thread_group,
1059                          group,
1060                          vmSymbolHandles::add_method_name(),
1061                          vmSymbolHandles::thread_void_signature(),
1062                          threadObj,          // Arg 1
1063                          THREAD);
1064 
1065 
1066 }
1067 
1068 // NamedThread --  non-JavaThread subclasses with multiple
1069 // uniquely named instances should derive from this.
1070 NamedThread::NamedThread() : Thread() {
1071   _name = NULL;
1072   _processed_thread = NULL;
1073 }
1074 
1075 NamedThread::~NamedThread() {
1076   if (_name != NULL) {
1077     FREE_C_HEAP_ARRAY(char, _name);
1078     _name = NULL;
1079   }
1080 }
1081 
1082 void NamedThread::set_name(const char* format, ...) {
1083   guarantee(_name == NULL, "Only get to set name once.");
1084   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1085   guarantee(_name != NULL, "alloc failure");
1086   va_list ap;
1087   va_start(ap, format);
1088   jio_vsnprintf(_name, max_name_len, format, ap);
1089   va_end(ap);
1090 }
1091 
1092 // ======= WatcherThread ========
1093 
1094 // The watcher thread exists to simulate timer interrupts.  It should
1095 // be replaced by an abstraction over whatever native support for
1096 // timer interrupts exists on the platform.
1097 
1098 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1099 volatile bool  WatcherThread::_should_terminate = false;
1100 
1101 WatcherThread::WatcherThread() : Thread() {
1102   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1103   if (os::create_thread(this, os::watcher_thread)) {
1104     _watcher_thread = this;
1105 
1106     // Set the watcher thread to the highest OS priority which should not be
1107     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1108     // is created. The only normal thread using this priority is the reference
1109     // handler thread, which runs for very short intervals only.
1110     // If the VMThread's priority is not lower than the WatcherThread profiling
1111     // will be inaccurate.
1112     os::set_priority(this, MaxPriority);
1113     if (!DisableStartThread) {
1114       os::start_thread(this);
1115     }
1116   }
1117 }
1118 
1119 void WatcherThread::run() {
1120   assert(this == watcher_thread(), "just checking");
1121 
1122   this->record_stack_base_and_size();
1123   this->initialize_thread_local_storage();
1124   this->set_active_handles(JNIHandleBlock::allocate_block());
1125   while(!_should_terminate) {
1126     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1127     assert(watcher_thread() == this,  "thread consistency check");
1128 
1129     // Calculate how long it'll be until the next PeriodicTask work
1130     // should be done, and sleep that amount of time.
1131     size_t time_to_wait = PeriodicTask::time_to_wait();
1132 
1133     // we expect this to timeout - we only ever get unparked when
1134     // we should terminate
1135     {
1136       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1137 
1138       jlong prev_time = os::javaTimeNanos();
1139       for (;;) {
1140         int res= _SleepEvent->park(time_to_wait);
1141         if (res == OS_TIMEOUT || _should_terminate)
1142           break;
1143         // spurious wakeup of some kind
1144         jlong now = os::javaTimeNanos();
1145         time_to_wait -= (now - prev_time) / 1000000;
1146         if (time_to_wait <= 0)
1147           break;
1148         prev_time = now;
1149       }
1150     }
1151 
1152     if (is_error_reported()) {
1153       // A fatal error has happened, the error handler(VMError::report_and_die)
1154       // should abort JVM after creating an error log file. However in some
1155       // rare cases, the error handler itself might deadlock. Here we try to
1156       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1157       //
1158       // This code is in WatcherThread because WatcherThread wakes up
1159       // periodically so the fatal error handler doesn't need to do anything;
1160       // also because the WatcherThread is less likely to crash than other
1161       // threads.
1162 
1163       for (;;) {
1164         if (!ShowMessageBoxOnError
1165          && (OnError == NULL || OnError[0] == '\0')
1166          && Arguments::abort_hook() == NULL) {
1167              os::sleep(this, 2 * 60 * 1000, false);
1168              fdStream err(defaultStream::output_fd());
1169              err.print_raw_cr("# [ timer expired, abort... ]");
1170              // skip atexit/vm_exit/vm_abort hooks
1171              os::die();
1172         }
1173 
1174         // Wake up 5 seconds later, the fatal handler may reset OnError or
1175         // ShowMessageBoxOnError when it is ready to abort.
1176         os::sleep(this, 5 * 1000, false);
1177       }
1178     }
1179 
1180     PeriodicTask::real_time_tick(time_to_wait);
1181 
1182     // If we have no more tasks left due to dynamic disenrollment,
1183     // shut down the thread since we don't currently support dynamic enrollment
1184     if (PeriodicTask::num_tasks() == 0) {
1185       _should_terminate = true;
1186     }
1187   }
1188 
1189   // Signal that it is terminated
1190   {
1191     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1192     _watcher_thread = NULL;
1193     Terminator_lock->notify();
1194   }
1195 
1196   // Thread destructor usually does this..
1197   ThreadLocalStorage::set_thread(NULL);
1198 }
1199 
1200 void WatcherThread::start() {
1201   if (watcher_thread() == NULL) {
1202     _should_terminate = false;
1203     // Create the single instance of WatcherThread
1204     new WatcherThread();
1205   }
1206 }
1207 
1208 void WatcherThread::stop() {
1209   // it is ok to take late safepoints here, if needed
1210   MutexLocker mu(Terminator_lock);
1211   _should_terminate = true;
1212   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1213 
1214   Thread* watcher = watcher_thread();
1215   if (watcher != NULL)
1216     watcher->_SleepEvent->unpark();
1217 
1218   while(watcher_thread() != NULL) {
1219     // This wait should make safepoint checks, wait without a timeout,
1220     // and wait as a suspend-equivalent condition.
1221     //
1222     // Note: If the FlatProfiler is running, then this thread is waiting
1223     // for the WatcherThread to terminate and the WatcherThread, via the
1224     // FlatProfiler task, is waiting for the external suspend request on
1225     // this thread to complete. wait_for_ext_suspend_completion() will
1226     // eventually timeout, but that takes time. Making this wait a
1227     // suspend-equivalent condition solves that timeout problem.
1228     //
1229     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1230                           Mutex::_as_suspend_equivalent_flag);
1231   }
1232 }
1233 
1234 void WatcherThread::print_on(outputStream* st) const {
1235   st->print("\"%s\" ", name());
1236   Thread::print_on(st);
1237   st->cr();
1238 }
1239 
1240 // ======= JavaThread ========
1241 
1242 // A JavaThread is a normal Java thread
1243 
1244 void JavaThread::initialize() {
1245   // Initialize fields
1246 
1247   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1248   set_claimed_par_id(-1);
1249 
1250   set_saved_exception_pc(NULL);
1251   set_threadObj(NULL);
1252   _anchor.clear();
1253   set_entry_point(NULL);
1254   set_jni_functions(jni_functions());
1255   set_callee_target(NULL);
1256   set_vm_result(NULL);
1257   set_vm_result_2(NULL);
1258   set_vframe_array_head(NULL);
1259   set_vframe_array_last(NULL);
1260   set_deferred_locals(NULL);
1261   set_deopt_mark(NULL);
1262   set_deopt_nmethod(NULL);
1263   clear_must_deopt_id();
1264   set_monitor_chunks(NULL);
1265   set_next(NULL);
1266   set_thread_state(_thread_new);
1267   _terminated = _not_terminated;
1268   _privileged_stack_top = NULL;
1269   _array_for_gc = NULL;
1270   _suspend_equivalent = false;
1271   _in_deopt_handler = 0;
1272   _doing_unsafe_access = false;
1273   _stack_guard_state = stack_guard_unused;
1274   _exception_oop = NULL;
1275   _exception_pc  = 0;
1276   _exception_handler_pc = 0;
1277   _exception_stack_size = 0;
1278   _is_method_handle_return = 0;
1279   _jvmti_thread_state= NULL;
1280   _should_post_on_exceptions_flag = JNI_FALSE;
1281   _jvmti_get_loaded_classes_closure = NULL;
1282   _interp_only_mode    = 0;
1283   _special_runtime_exit_condition = _no_async_condition;
1284   _pending_async_exception = NULL;
1285   _is_compiling = false;
1286   _thread_stat = NULL;
1287   _thread_stat = new ThreadStatistics();
1288   _blocked_on_compilation = false;
1289   _jni_active_critical = 0;
1290   _do_not_unlock_if_synchronized = false;
1291   _cached_monitor_info = NULL;
1292   _parker = Parker::Allocate(this) ;
1293 
1294 #ifndef PRODUCT
1295   _jmp_ring_index = 0;
1296   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1297     record_jump(NULL, NULL, NULL, 0);
1298   }
1299 #endif /* PRODUCT */
1300 
1301   set_thread_profiler(NULL);
1302   if (FlatProfiler::is_active()) {
1303     // This is where we would decide to either give each thread it's own profiler
1304     // or use one global one from FlatProfiler,
1305     // or up to some count of the number of profiled threads, etc.
1306     ThreadProfiler* pp = new ThreadProfiler();
1307     pp->engage();
1308     set_thread_profiler(pp);
1309   }
1310 
1311   // Setup safepoint state info for this thread
1312   ThreadSafepointState::create(this);
1313 
1314   debug_only(_java_call_counter = 0);
1315 
1316   // JVMTI PopFrame support
1317   _popframe_condition = popframe_inactive;
1318   _popframe_preserved_args = NULL;
1319   _popframe_preserved_args_size = 0;
1320 
1321   pd_initialize();
1322 }
1323 
1324 #ifndef SERIALGC
1325 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1326 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1327 #endif // !SERIALGC
1328 
1329 JavaThread::JavaThread(bool is_attaching) :
1330   Thread()
1331 #ifndef SERIALGC
1332   , _satb_mark_queue(&_satb_mark_queue_set),
1333   _dirty_card_queue(&_dirty_card_queue_set)
1334 #endif // !SERIALGC
1335 {
1336   initialize();
1337   _is_attaching = is_attaching;
1338   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1339 }
1340 
1341 bool JavaThread::reguard_stack(address cur_sp) {
1342   if (_stack_guard_state != stack_guard_yellow_disabled) {
1343     return true; // Stack already guarded or guard pages not needed.
1344   }
1345 
1346   if (register_stack_overflow()) {
1347     // For those architectures which have separate register and
1348     // memory stacks, we must check the register stack to see if
1349     // it has overflowed.
1350     return false;
1351   }
1352 
1353   // Java code never executes within the yellow zone: the latter is only
1354   // there to provoke an exception during stack banging.  If java code
1355   // is executing there, either StackShadowPages should be larger, or
1356   // some exception code in c1, c2 or the interpreter isn't unwinding
1357   // when it should.
1358   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1359 
1360   enable_stack_yellow_zone();
1361   return true;
1362 }
1363 
1364 bool JavaThread::reguard_stack(void) {
1365   return reguard_stack(os::current_stack_pointer());
1366 }
1367 
1368 
1369 void JavaThread::block_if_vm_exited() {
1370   if (_terminated == _vm_exited) {
1371     // _vm_exited is set at safepoint, and Threads_lock is never released
1372     // we will block here forever
1373     Threads_lock->lock_without_safepoint_check();
1374     ShouldNotReachHere();
1375   }
1376 }
1377 
1378 
1379 // Remove this ifdef when C1 is ported to the compiler interface.
1380 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1381 
1382 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1383   Thread()
1384 #ifndef SERIALGC
1385   , _satb_mark_queue(&_satb_mark_queue_set),
1386   _dirty_card_queue(&_dirty_card_queue_set)
1387 #endif // !SERIALGC
1388 {
1389   if (TraceThreadEvents) {
1390     tty->print_cr("creating thread %p", this);
1391   }
1392   initialize();
1393   _is_attaching = false;
1394   set_entry_point(entry_point);
1395   // Create the native thread itself.
1396   // %note runtime_23
1397   os::ThreadType thr_type = os::java_thread;
1398   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1399                                                      os::java_thread;
1400   os::create_thread(this, thr_type, stack_sz);
1401 
1402   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1403   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1404   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1405   // the exception consists of creating the exception object & initializing it, initialization
1406   // will leave the VM via a JavaCall and then all locks must be unlocked).
1407   //
1408   // The thread is still suspended when we reach here. Thread must be explicit started
1409   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1410   // by calling Threads:add. The reason why this is not done here, is because the thread
1411   // object must be fully initialized (take a look at JVM_Start)
1412 }
1413 
1414 JavaThread::~JavaThread() {
1415   if (TraceThreadEvents) {
1416       tty->print_cr("terminate thread %p", this);
1417   }
1418 
1419   // JSR166 -- return the parker to the free list
1420   Parker::Release(_parker);
1421   _parker = NULL ;
1422 
1423   // Free any remaining  previous UnrollBlock
1424   vframeArray* old_array = vframe_array_last();
1425 
1426   if (old_array != NULL) {
1427     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1428     old_array->set_unroll_block(NULL);
1429     delete old_info;
1430     delete old_array;
1431   }
1432 
1433   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1434   if (deferred != NULL) {
1435     // This can only happen if thread is destroyed before deoptimization occurs.
1436     assert(deferred->length() != 0, "empty array!");
1437     do {
1438       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1439       deferred->remove_at(0);
1440       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1441       delete dlv;
1442     } while (deferred->length() != 0);
1443     delete deferred;
1444   }
1445 
1446   // All Java related clean up happens in exit
1447   ThreadSafepointState::destroy(this);
1448   if (_thread_profiler != NULL) delete _thread_profiler;
1449   if (_thread_stat != NULL) delete _thread_stat;
1450 }
1451 
1452 
1453 // The first routine called by a new Java thread
1454 void JavaThread::run() {
1455   // initialize thread-local alloc buffer related fields
1456   this->initialize_tlab();
1457 
1458   // used to test validitity of stack trace backs
1459   this->record_base_of_stack_pointer();
1460 
1461   // Record real stack base and size.
1462   this->record_stack_base_and_size();
1463 
1464   // Initialize thread local storage; set before calling MutexLocker
1465   this->initialize_thread_local_storage();
1466 
1467   this->create_stack_guard_pages();
1468 
1469   this->cache_global_variables();
1470 
1471   // Thread is now sufficient initialized to be handled by the safepoint code as being
1472   // in the VM. Change thread state from _thread_new to _thread_in_vm
1473   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1474 
1475   assert(JavaThread::current() == this, "sanity check");
1476   assert(!Thread::current()->owns_locks(), "sanity check");
1477 
1478   DTRACE_THREAD_PROBE(start, this);
1479 
1480   // This operation might block. We call that after all safepoint checks for a new thread has
1481   // been completed.
1482   this->set_active_handles(JNIHandleBlock::allocate_block());
1483 
1484   if (JvmtiExport::should_post_thread_life()) {
1485     JvmtiExport::post_thread_start(this);
1486   }
1487 
1488   // We call another function to do the rest so we are sure that the stack addresses used
1489   // from there will be lower than the stack base just computed
1490   thread_main_inner();
1491 
1492   // Note, thread is no longer valid at this point!
1493 }
1494 
1495 
1496 void JavaThread::thread_main_inner() {
1497   assert(JavaThread::current() == this, "sanity check");
1498   assert(this->threadObj() != NULL, "just checking");
1499 
1500   // Execute thread entry point. If this thread is being asked to restart,
1501   // or has been stopped before starting, do not reexecute entry point.
1502   // Note: Due to JVM_StopThread we can have pending exceptions already!
1503   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1504     // enter the thread's entry point only if we have no pending exceptions
1505     HandleMark hm(this);
1506     this->entry_point()(this, this);
1507   }
1508 
1509   DTRACE_THREAD_PROBE(stop, this);
1510 
1511   this->exit(false);
1512   delete this;
1513 }
1514 
1515 
1516 static void ensure_join(JavaThread* thread) {
1517   // We do not need to grap the Threads_lock, since we are operating on ourself.
1518   Handle threadObj(thread, thread->threadObj());
1519   assert(threadObj.not_null(), "java thread object must exist");
1520   ObjectLocker lock(threadObj, thread);
1521   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1522   thread->clear_pending_exception();
1523   // It is of profound importance that we set the stillborn bit and reset the thread object,
1524   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1525   // false. So in case another thread is doing a join on this thread , it will detect that the thread
1526   // is dead when it gets notified.
1527   java_lang_Thread::set_stillborn(threadObj());
1528   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1529   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1530   java_lang_Thread::set_thread(threadObj(), NULL);
1531   lock.notify_all(thread);
1532   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1533   thread->clear_pending_exception();
1534 }
1535 
1536 
1537 // For any new cleanup additions, please check to see if they need to be applied to
1538 // cleanup_failed_attach_current_thread as well.
1539 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1540   assert(this == JavaThread::current(),  "thread consistency check");
1541   if (!InitializeJavaLangSystem) return;
1542 
1543   HandleMark hm(this);
1544   Handle uncaught_exception(this, this->pending_exception());
1545   this->clear_pending_exception();
1546   Handle threadObj(this, this->threadObj());
1547   assert(threadObj.not_null(), "Java thread object should be created");
1548 
1549   if (get_thread_profiler() != NULL) {
1550     get_thread_profiler()->disengage();
1551     ResourceMark rm;
1552     get_thread_profiler()->print(get_thread_name());
1553   }
1554 
1555 
1556   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1557   {
1558     EXCEPTION_MARK;
1559 
1560     CLEAR_PENDING_EXCEPTION;
1561   }
1562   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1563   // has to be fixed by a runtime query method
1564   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1565     // JSR-166: change call from from ThreadGroup.uncaughtException to
1566     // java.lang.Thread.dispatchUncaughtException
1567     if (uncaught_exception.not_null()) {
1568       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1569       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1570         (address)uncaught_exception(), (address)threadObj(), (address)group());
1571       {
1572         EXCEPTION_MARK;
1573         // Check if the method Thread.dispatchUncaughtException() exists. If so
1574         // call it.  Otherwise we have an older library without the JSR-166 changes,
1575         // so call ThreadGroup.uncaughtException()
1576         KlassHandle recvrKlass(THREAD, threadObj->klass());
1577         CallInfo callinfo;
1578         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1579         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1580                                            vmSymbolHandles::dispatchUncaughtException_name(),
1581                                            vmSymbolHandles::throwable_void_signature(),
1582                                            KlassHandle(), false, false, THREAD);
1583         CLEAR_PENDING_EXCEPTION;
1584         methodHandle method = callinfo.selected_method();
1585         if (method.not_null()) {
1586           JavaValue result(T_VOID);
1587           JavaCalls::call_virtual(&result,
1588                                   threadObj, thread_klass,
1589                                   vmSymbolHandles::dispatchUncaughtException_name(),
1590                                   vmSymbolHandles::throwable_void_signature(),
1591                                   uncaught_exception,
1592                                   THREAD);
1593         } else {
1594           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1595           JavaValue result(T_VOID);
1596           JavaCalls::call_virtual(&result,
1597                                   group, thread_group,
1598                                   vmSymbolHandles::uncaughtException_name(),
1599                                   vmSymbolHandles::thread_throwable_void_signature(),
1600                                   threadObj,           // Arg 1
1601                                   uncaught_exception,  // Arg 2
1602                                   THREAD);
1603         }
1604         CLEAR_PENDING_EXCEPTION;
1605       }
1606     }
1607 
1608     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1609     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1610     // is deprecated anyhow.
1611     { int count = 3;
1612       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1613         EXCEPTION_MARK;
1614         JavaValue result(T_VOID);
1615         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1616         JavaCalls::call_virtual(&result,
1617                               threadObj, thread_klass,
1618                               vmSymbolHandles::exit_method_name(),
1619                               vmSymbolHandles::void_method_signature(),
1620                               THREAD);
1621         CLEAR_PENDING_EXCEPTION;
1622       }
1623     }
1624 
1625     // notify JVMTI
1626     if (JvmtiExport::should_post_thread_life()) {
1627       JvmtiExport::post_thread_end(this);
1628     }
1629 
1630     // We have notified the agents that we are exiting, before we go on,
1631     // we must check for a pending external suspend request and honor it
1632     // in order to not surprise the thread that made the suspend request.
1633     while (true) {
1634       {
1635         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1636         if (!is_external_suspend()) {
1637           set_terminated(_thread_exiting);
1638           ThreadService::current_thread_exiting(this);
1639           break;
1640         }
1641         // Implied else:
1642         // Things get a little tricky here. We have a pending external
1643         // suspend request, but we are holding the SR_lock so we
1644         // can't just self-suspend. So we temporarily drop the lock
1645         // and then self-suspend.
1646       }
1647 
1648       ThreadBlockInVM tbivm(this);
1649       java_suspend_self();
1650 
1651       // We're done with this suspend request, but we have to loop around
1652       // and check again. Eventually we will get SR_lock without a pending
1653       // external suspend request and will be able to mark ourselves as
1654       // exiting.
1655     }
1656     // no more external suspends are allowed at this point
1657   } else {
1658     // before_exit() has already posted JVMTI THREAD_END events
1659   }
1660 
1661   // Notify waiters on thread object. This has to be done after exit() is called
1662   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1663   // group should have the destroyed bit set before waiters are notified).
1664   ensure_join(this);
1665   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1666 
1667   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1668   // held by this thread must be released.  A detach operation must only
1669   // get here if there are no Java frames on the stack.  Therefore, any
1670   // owned monitors at this point MUST be JNI-acquired monitors which are
1671   // pre-inflated and in the monitor cache.
1672   //
1673   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1674   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1675     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1676     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1677     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1678   }
1679 
1680   // These things needs to be done while we are still a Java Thread. Make sure that thread
1681   // is in a consistent state, in case GC happens
1682   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1683 
1684   if (active_handles() != NULL) {
1685     JNIHandleBlock* block = active_handles();
1686     set_active_handles(NULL);
1687     JNIHandleBlock::release_block(block);
1688   }
1689 
1690   if (free_handle_block() != NULL) {
1691     JNIHandleBlock* block = free_handle_block();
1692     set_free_handle_block(NULL);
1693     JNIHandleBlock::release_block(block);
1694   }
1695 
1696   // These have to be removed while this is still a valid thread.
1697   remove_stack_guard_pages();
1698 
1699   if (UseTLAB) {
1700     tlab().make_parsable(true);  // retire TLAB
1701   }
1702 
1703   if (JvmtiEnv::environments_might_exist()) {
1704     MutexLocker mu(JvmtiThreadState_lock);
1705     if (jvmti_thread_state() != NULL) {
1706       JvmtiExport::cleanup_thread(this);
1707     }
1708   }
1709 
1710 #ifndef SERIALGC
1711   // We must flush G1-related buffers before removing a thread from
1712   // the list of active threads.
1713   if (UseG1GC) {
1714     flush_barrier_queues();
1715   }
1716 #endif
1717 
1718   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1719   Threads::remove(this);
1720 }
1721 
1722 #ifndef SERIALGC
1723 // Flush G1-related queues.
1724 void JavaThread::flush_barrier_queues() {
1725   satb_mark_queue().flush();
1726   dirty_card_queue().flush();
1727 }
1728 
1729 void JavaThread::initialize_queues() {
1730   assert(!SafepointSynchronize::is_at_safepoint(),
1731          "we should not be at a safepoint");
1732 
1733   ObjPtrQueue& satb_queue = satb_mark_queue();
1734   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1735   // The SATB queue should have been constructed with its active
1736   // field set to false.
1737   assert(!satb_queue.is_active(), "SATB queue should not be active");
1738   assert(satb_queue.is_empty(), "SATB queue should be empty");
1739   // If we are creating the thread during a marking cycle, we should
1740   // set the active field of the SATB queue to true.
1741   if (satb_queue_set.is_active()) {
1742     satb_queue.set_active(true);
1743   }
1744 
1745   DirtyCardQueue& dirty_queue = dirty_card_queue();
1746   // The dirty card queue should have been constructed with its
1747   // active field set to true.
1748   assert(dirty_queue.is_active(), "dirty card queue should be active");
1749 }
1750 #endif // !SERIALGC
1751 
1752 void JavaThread::cleanup_failed_attach_current_thread() {
1753   if (get_thread_profiler() != NULL) {
1754     get_thread_profiler()->disengage();
1755     ResourceMark rm;
1756     get_thread_profiler()->print(get_thread_name());
1757   }
1758 
1759   if (active_handles() != NULL) {
1760     JNIHandleBlock* block = active_handles();
1761     set_active_handles(NULL);
1762     JNIHandleBlock::release_block(block);
1763   }
1764 
1765   if (free_handle_block() != NULL) {
1766     JNIHandleBlock* block = free_handle_block();
1767     set_free_handle_block(NULL);
1768     JNIHandleBlock::release_block(block);
1769   }
1770 
1771   // These have to be removed while this is still a valid thread.
1772   remove_stack_guard_pages();
1773 
1774   if (UseTLAB) {
1775     tlab().make_parsable(true);  // retire TLAB, if any
1776   }
1777 
1778 #ifndef SERIALGC
1779   if (UseG1GC) {
1780     flush_barrier_queues();
1781   }
1782 #endif
1783 
1784   Threads::remove(this);
1785   delete this;
1786 }
1787 
1788 
1789 
1790 
1791 JavaThread* JavaThread::active() {
1792   Thread* thread = ThreadLocalStorage::thread();
1793   assert(thread != NULL, "just checking");
1794   if (thread->is_Java_thread()) {
1795     return (JavaThread*) thread;
1796   } else {
1797     assert(thread->is_VM_thread(), "this must be a vm thread");
1798     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1799     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1800     assert(ret->is_Java_thread(), "must be a Java thread");
1801     return ret;
1802   }
1803 }
1804 
1805 bool JavaThread::is_lock_owned(address adr) const {
1806   if (Thread::is_lock_owned(adr)) return true;
1807 
1808   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1809     if (chunk->contains(adr)) return true;
1810   }
1811 
1812   return false;
1813 }
1814 
1815 
1816 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1817   chunk->set_next(monitor_chunks());
1818   set_monitor_chunks(chunk);
1819 }
1820 
1821 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1822   guarantee(monitor_chunks() != NULL, "must be non empty");
1823   if (monitor_chunks() == chunk) {
1824     set_monitor_chunks(chunk->next());
1825   } else {
1826     MonitorChunk* prev = monitor_chunks();
1827     while (prev->next() != chunk) prev = prev->next();
1828     prev->set_next(chunk->next());
1829   }
1830 }
1831 
1832 // JVM support.
1833 
1834 // Note: this function shouldn't block if it's called in
1835 // _thread_in_native_trans state (such as from
1836 // check_special_condition_for_native_trans()).
1837 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1838 
1839   if (has_last_Java_frame() && has_async_condition()) {
1840     // If we are at a polling page safepoint (not a poll return)
1841     // then we must defer async exception because live registers
1842     // will be clobbered by the exception path. Poll return is
1843     // ok because the call we a returning from already collides
1844     // with exception handling registers and so there is no issue.
1845     // (The exception handling path kills call result registers but
1846     //  this is ok since the exception kills the result anyway).
1847 
1848     if (is_at_poll_safepoint()) {
1849       // if the code we are returning to has deoptimized we must defer
1850       // the exception otherwise live registers get clobbered on the
1851       // exception path before deoptimization is able to retrieve them.
1852       //
1853       RegisterMap map(this, false);
1854       frame caller_fr = last_frame().sender(&map);
1855       assert(caller_fr.is_compiled_frame(), "what?");
1856       if (caller_fr.is_deoptimized_frame()) {
1857         if (TraceExceptions) {
1858           ResourceMark rm;
1859           tty->print_cr("deferred async exception at compiled safepoint");
1860         }
1861         return;
1862       }
1863     }
1864   }
1865 
1866   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1867   if (condition == _no_async_condition) {
1868     // Conditions have changed since has_special_runtime_exit_condition()
1869     // was called:
1870     // - if we were here only because of an external suspend request,
1871     //   then that was taken care of above (or cancelled) so we are done
1872     // - if we were here because of another async request, then it has
1873     //   been cleared between the has_special_runtime_exit_condition()
1874     //   and now so again we are done
1875     return;
1876   }
1877 
1878   // Check for pending async. exception
1879   if (_pending_async_exception != NULL) {
1880     // Only overwrite an already pending exception, if it is not a threadDeath.
1881     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1882 
1883       // We cannot call Exceptions::_throw(...) here because we cannot block
1884       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1885 
1886       if (TraceExceptions) {
1887         ResourceMark rm;
1888         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1889         if (has_last_Java_frame() ) {
1890           frame f = last_frame();
1891           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1892         }
1893         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1894       }
1895       _pending_async_exception = NULL;
1896       clear_has_async_exception();
1897     }
1898   }
1899 
1900   if (check_unsafe_error &&
1901       condition == _async_unsafe_access_error && !has_pending_exception()) {
1902     condition = _no_async_condition;  // done
1903     switch (thread_state()) {
1904     case _thread_in_vm:
1905       {
1906         JavaThread* THREAD = this;
1907         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1908       }
1909     case _thread_in_native:
1910       {
1911         ThreadInVMfromNative tiv(this);
1912         JavaThread* THREAD = this;
1913         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1914       }
1915     case _thread_in_Java:
1916       {
1917         ThreadInVMfromJava tiv(this);
1918         JavaThread* THREAD = this;
1919         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1920       }
1921     default:
1922       ShouldNotReachHere();
1923     }
1924   }
1925 
1926   assert(condition == _no_async_condition || has_pending_exception() ||
1927          (!check_unsafe_error && condition == _async_unsafe_access_error),
1928          "must have handled the async condition, if no exception");
1929 }
1930 
1931 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1932   //
1933   // Check for pending external suspend. Internal suspend requests do
1934   // not use handle_special_runtime_exit_condition().
1935   // If JNIEnv proxies are allowed, don't self-suspend if the target
1936   // thread is not the current thread. In older versions of jdbx, jdbx
1937   // threads could call into the VM with another thread's JNIEnv so we
1938   // can be here operating on behalf of a suspended thread (4432884).
1939   bool do_self_suspend = is_external_suspend_with_lock();
1940   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1941     //
1942     // Because thread is external suspended the safepoint code will count
1943     // thread as at a safepoint. This can be odd because we can be here
1944     // as _thread_in_Java which would normally transition to _thread_blocked
1945     // at a safepoint. We would like to mark the thread as _thread_blocked
1946     // before calling java_suspend_self like all other callers of it but
1947     // we must then observe proper safepoint protocol. (We can't leave
1948     // _thread_blocked with a safepoint in progress). However we can be
1949     // here as _thread_in_native_trans so we can't use a normal transition
1950     // constructor/destructor pair because they assert on that type of
1951     // transition. We could do something like:
1952     //
1953     // JavaThreadState state = thread_state();
1954     // set_thread_state(_thread_in_vm);
1955     // {
1956     //   ThreadBlockInVM tbivm(this);
1957     //   java_suspend_self()
1958     // }
1959     // set_thread_state(_thread_in_vm_trans);
1960     // if (safepoint) block;
1961     // set_thread_state(state);
1962     //
1963     // but that is pretty messy. Instead we just go with the way the
1964     // code has worked before and note that this is the only path to
1965     // java_suspend_self that doesn't put the thread in _thread_blocked
1966     // mode.
1967 
1968     frame_anchor()->make_walkable(this);
1969     java_suspend_self();
1970 
1971     // We might be here for reasons in addition to the self-suspend request
1972     // so check for other async requests.
1973   }
1974 
1975   if (check_asyncs) {
1976     check_and_handle_async_exceptions();
1977   }
1978 }
1979 
1980 void JavaThread::send_thread_stop(oop java_throwable)  {
1981   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1982   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1983   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1984 
1985   // Do not throw asynchronous exceptions against the compiler thread
1986   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1987   if (is_Compiler_thread()) return;
1988 
1989   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1990   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1991     java_lang_Thread::set_stillborn(threadObj());
1992   }
1993 
1994   {
1995     // Actually throw the Throwable against the target Thread - however
1996     // only if there is no thread death exception installed already.
1997     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1998       // If the topmost frame is a runtime stub, then we are calling into
1999       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2000       // must deoptimize the caller before continuing, as the compiled  exception handler table
2001       // may not be valid
2002       if (has_last_Java_frame()) {
2003         frame f = last_frame();
2004         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2005           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2006           RegisterMap reg_map(this, UseBiasedLocking);
2007           frame compiled_frame = f.sender(&reg_map);
2008           if (compiled_frame.can_be_deoptimized()) {
2009             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2010           }
2011         }
2012       }
2013 
2014       // Set async. pending exception in thread.
2015       set_pending_async_exception(java_throwable);
2016 
2017       if (TraceExceptions) {
2018        ResourceMark rm;
2019        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2020       }
2021       // for AbortVMOnException flag
2022       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2023     }
2024   }
2025 
2026 
2027   // Interrupt thread so it will wake up from a potential wait()
2028   Thread::interrupt(this);
2029 }
2030 
2031 // External suspension mechanism.
2032 //
2033 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2034 // to any VM_locks and it is at a transition
2035 // Self-suspension will happen on the transition out of the vm.
2036 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2037 //
2038 // Guarantees on return:
2039 //   + Target thread will not execute any new bytecode (that's why we need to
2040 //     force a safepoint)
2041 //   + Target thread will not enter any new monitors
2042 //
2043 void JavaThread::java_suspend() {
2044   { MutexLocker mu(Threads_lock);
2045     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2046        return;
2047     }
2048   }
2049 
2050   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2051     if (!is_external_suspend()) {
2052       // a racing resume has cancelled us; bail out now
2053       return;
2054     }
2055 
2056     // suspend is done
2057     uint32_t debug_bits = 0;
2058     // Warning: is_ext_suspend_completed() may temporarily drop the
2059     // SR_lock to allow the thread to reach a stable thread state if
2060     // it is currently in a transient thread state.
2061     if (is_ext_suspend_completed(false /* !called_by_wait */,
2062                                  SuspendRetryDelay, &debug_bits) ) {
2063       return;
2064     }
2065   }
2066 
2067   VM_ForceSafepoint vm_suspend;
2068   VMThread::execute(&vm_suspend);
2069 }
2070 
2071 // Part II of external suspension.
2072 // A JavaThread self suspends when it detects a pending external suspend
2073 // request. This is usually on transitions. It is also done in places
2074 // where continuing to the next transition would surprise the caller,
2075 // e.g., monitor entry.
2076 //
2077 // Returns the number of times that the thread self-suspended.
2078 //
2079 // Note: DO NOT call java_suspend_self() when you just want to block current
2080 //       thread. java_suspend_self() is the second stage of cooperative
2081 //       suspension for external suspend requests and should only be used
2082 //       to complete an external suspend request.
2083 //
2084 int JavaThread::java_suspend_self() {
2085   int ret = 0;
2086 
2087   // we are in the process of exiting so don't suspend
2088   if (is_exiting()) {
2089      clear_external_suspend();
2090      return ret;
2091   }
2092 
2093   assert(_anchor.walkable() ||
2094     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2095     "must have walkable stack");
2096 
2097   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2098 
2099   assert(!this->is_ext_suspended(),
2100     "a thread trying to self-suspend should not already be suspended");
2101 
2102   if (this->is_suspend_equivalent()) {
2103     // If we are self-suspending as a result of the lifting of a
2104     // suspend equivalent condition, then the suspend_equivalent
2105     // flag is not cleared until we set the ext_suspended flag so
2106     // that wait_for_ext_suspend_completion() returns consistent
2107     // results.
2108     this->clear_suspend_equivalent();
2109   }
2110 
2111   // A racing resume may have cancelled us before we grabbed SR_lock
2112   // above. Or another external suspend request could be waiting for us
2113   // by the time we return from SR_lock()->wait(). The thread
2114   // that requested the suspension may already be trying to walk our
2115   // stack and if we return now, we can change the stack out from under
2116   // it. This would be a "bad thing (TM)" and cause the stack walker
2117   // to crash. We stay self-suspended until there are no more pending
2118   // external suspend requests.
2119   while (is_external_suspend()) {
2120     ret++;
2121     this->set_ext_suspended();
2122 
2123     // _ext_suspended flag is cleared by java_resume()
2124     while (is_ext_suspended()) {
2125       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2126     }
2127   }
2128 
2129   return ret;
2130 }
2131 
2132 #ifdef ASSERT
2133 // verify the JavaThread has not yet been published in the Threads::list, and
2134 // hence doesn't need protection from concurrent access at this stage
2135 void JavaThread::verify_not_published() {
2136   if (!Threads_lock->owned_by_self()) {
2137    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2138    assert( !Threads::includes(this),
2139            "java thread shouldn't have been published yet!");
2140   }
2141   else {
2142    assert( !Threads::includes(this),
2143            "java thread shouldn't have been published yet!");
2144   }
2145 }
2146 #endif
2147 
2148 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2149 // progress or when _suspend_flags is non-zero.
2150 // Current thread needs to self-suspend if there is a suspend request and/or
2151 // block if a safepoint is in progress.
2152 // Async exception ISN'T checked.
2153 // Note only the ThreadInVMfromNative transition can call this function
2154 // directly and when thread state is _thread_in_native_trans
2155 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2156   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2157 
2158   JavaThread *curJT = JavaThread::current();
2159   bool do_self_suspend = thread->is_external_suspend();
2160 
2161   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2162 
2163   // If JNIEnv proxies are allowed, don't self-suspend if the target
2164   // thread is not the current thread. In older versions of jdbx, jdbx
2165   // threads could call into the VM with another thread's JNIEnv so we
2166   // can be here operating on behalf of a suspended thread (4432884).
2167   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2168     JavaThreadState state = thread->thread_state();
2169 
2170     // We mark this thread_blocked state as a suspend-equivalent so
2171     // that a caller to is_ext_suspend_completed() won't be confused.
2172     // The suspend-equivalent state is cleared by java_suspend_self().
2173     thread->set_suspend_equivalent();
2174 
2175     // If the safepoint code sees the _thread_in_native_trans state, it will
2176     // wait until the thread changes to other thread state. There is no
2177     // guarantee on how soon we can obtain the SR_lock and complete the
2178     // self-suspend request. It would be a bad idea to let safepoint wait for
2179     // too long. Temporarily change the state to _thread_blocked to
2180     // let the VM thread know that this thread is ready for GC. The problem
2181     // of changing thread state is that safepoint could happen just after
2182     // java_suspend_self() returns after being resumed, and VM thread will
2183     // see the _thread_blocked state. We must check for safepoint
2184     // after restoring the state and make sure we won't leave while a safepoint
2185     // is in progress.
2186     thread->set_thread_state(_thread_blocked);
2187     thread->java_suspend_self();
2188     thread->set_thread_state(state);
2189     // Make sure new state is seen by VM thread
2190     if (os::is_MP()) {
2191       if (UseMembar) {
2192         // Force a fence between the write above and read below
2193         OrderAccess::fence();
2194       } else {
2195         // Must use this rather than serialization page in particular on Windows
2196         InterfaceSupport::serialize_memory(thread);
2197       }
2198     }
2199   }
2200 
2201   if (SafepointSynchronize::do_call_back()) {
2202     // If we are safepointing, then block the caller which may not be
2203     // the same as the target thread (see above).
2204     SafepointSynchronize::block(curJT);
2205   }
2206 
2207   if (thread->is_deopt_suspend()) {
2208     thread->clear_deopt_suspend();
2209     RegisterMap map(thread, false);
2210     frame f = thread->last_frame();
2211     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2212       f = f.sender(&map);
2213     }
2214     if (f.id() == thread->must_deopt_id()) {
2215       thread->clear_must_deopt_id();
2216       f.deoptimize(thread);
2217     } else {
2218       fatal("missed deoptimization!");
2219     }
2220   }
2221 }
2222 
2223 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2224 // progress or when _suspend_flags is non-zero.
2225 // Current thread needs to self-suspend if there is a suspend request and/or
2226 // block if a safepoint is in progress.
2227 // Also check for pending async exception (not including unsafe access error).
2228 // Note only the native==>VM/Java barriers can call this function and when
2229 // thread state is _thread_in_native_trans.
2230 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2231   check_safepoint_and_suspend_for_native_trans(thread);
2232 
2233   if (thread->has_async_exception()) {
2234     // We are in _thread_in_native_trans state, don't handle unsafe
2235     // access error since that may block.
2236     thread->check_and_handle_async_exceptions(false);
2237   }
2238 }
2239 
2240 // We need to guarantee the Threads_lock here, since resumes are not
2241 // allowed during safepoint synchronization
2242 // Can only resume from an external suspension
2243 void JavaThread::java_resume() {
2244   assert_locked_or_safepoint(Threads_lock);
2245 
2246   // Sanity check: thread is gone, has started exiting or the thread
2247   // was not externally suspended.
2248   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2249     return;
2250   }
2251 
2252   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2253 
2254   clear_external_suspend();
2255 
2256   if (is_ext_suspended()) {
2257     clear_ext_suspended();
2258     SR_lock()->notify_all();
2259   }
2260 }
2261 
2262 void JavaThread::create_stack_guard_pages() {
2263   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2264   address low_addr = stack_base() - stack_size();
2265   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2266 
2267   int allocate = os::allocate_stack_guard_pages();
2268   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2269 
2270   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2271     warning("Attempt to allocate stack guard pages failed.");
2272     return;
2273   }
2274 
2275   if (os::guard_memory((char *) low_addr, len)) {
2276     _stack_guard_state = stack_guard_enabled;
2277   } else {
2278     warning("Attempt to protect stack guard pages failed.");
2279     if (os::uncommit_memory((char *) low_addr, len)) {
2280       warning("Attempt to deallocate stack guard pages failed.");
2281     }
2282   }
2283 }
2284 
2285 void JavaThread::remove_stack_guard_pages() {
2286   if (_stack_guard_state == stack_guard_unused) return;
2287   address low_addr = stack_base() - stack_size();
2288   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2289 
2290   if (os::allocate_stack_guard_pages()) {
2291     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2292       _stack_guard_state = stack_guard_unused;
2293     } else {
2294       warning("Attempt to deallocate stack guard pages failed.");
2295     }
2296   } else {
2297     if (_stack_guard_state == stack_guard_unused) return;
2298     if (os::unguard_memory((char *) low_addr, len)) {
2299       _stack_guard_state = stack_guard_unused;
2300     } else {
2301         warning("Attempt to unprotect stack guard pages failed.");
2302     }
2303   }
2304 }
2305 
2306 void JavaThread::enable_stack_yellow_zone() {
2307   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2308   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2309 
2310   // The base notation is from the stacks point of view, growing downward.
2311   // We need to adjust it to work correctly with guard_memory()
2312   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2313 
2314   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2315   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2316 
2317   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2318     _stack_guard_state = stack_guard_enabled;
2319   } else {
2320     warning("Attempt to guard stack yellow zone failed.");
2321   }
2322   enable_register_stack_guard();
2323 }
2324 
2325 void JavaThread::disable_stack_yellow_zone() {
2326   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2327   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2328 
2329   // Simply return if called for a thread that does not use guard pages.
2330   if (_stack_guard_state == stack_guard_unused) return;
2331 
2332   // The base notation is from the stacks point of view, growing downward.
2333   // We need to adjust it to work correctly with guard_memory()
2334   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2335 
2336   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2337     _stack_guard_state = stack_guard_yellow_disabled;
2338   } else {
2339     warning("Attempt to unguard stack yellow zone failed.");
2340   }
2341   disable_register_stack_guard();
2342 }
2343 
2344 void JavaThread::enable_stack_red_zone() {
2345   // The base notation is from the stacks point of view, growing downward.
2346   // We need to adjust it to work correctly with guard_memory()
2347   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2348   address base = stack_red_zone_base() - stack_red_zone_size();
2349 
2350   guarantee(base < stack_base(),"Error calculating stack red zone");
2351   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2352 
2353   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2354     warning("Attempt to guard stack red zone failed.");
2355   }
2356 }
2357 
2358 void JavaThread::disable_stack_red_zone() {
2359   // The base notation is from the stacks point of view, growing downward.
2360   // We need to adjust it to work correctly with guard_memory()
2361   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2362   address base = stack_red_zone_base() - stack_red_zone_size();
2363   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2364     warning("Attempt to unguard stack red zone failed.");
2365   }
2366 }
2367 
2368 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2369   // ignore is there is no stack
2370   if (!has_last_Java_frame()) return;
2371   // traverse the stack frames. Starts from top frame.
2372   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2373     frame* fr = fst.current();
2374     f(fr, fst.register_map());
2375   }
2376 }
2377 
2378 
2379 #ifndef PRODUCT
2380 // Deoptimization
2381 // Function for testing deoptimization
2382 void JavaThread::deoptimize() {
2383   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2384   StackFrameStream fst(this, UseBiasedLocking);
2385   bool deopt = false;           // Dump stack only if a deopt actually happens.
2386   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2387   // Iterate over all frames in the thread and deoptimize
2388   for(; !fst.is_done(); fst.next()) {
2389     if(fst.current()->can_be_deoptimized()) {
2390 
2391       if (only_at) {
2392         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2393         // consists of comma or carriage return separated numbers so
2394         // search for the current bci in that string.
2395         address pc = fst.current()->pc();
2396         nmethod* nm =  (nmethod*) fst.current()->cb();
2397         ScopeDesc* sd = nm->scope_desc_at( pc);
2398         char buffer[8];
2399         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2400         size_t len = strlen(buffer);
2401         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2402         while (found != NULL) {
2403           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2404               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2405             // Check that the bci found is bracketed by terminators.
2406             break;
2407           }
2408           found = strstr(found + 1, buffer);
2409         }
2410         if (!found) {
2411           continue;
2412         }
2413       }
2414 
2415       if (DebugDeoptimization && !deopt) {
2416         deopt = true; // One-time only print before deopt
2417         tty->print_cr("[BEFORE Deoptimization]");
2418         trace_frames();
2419         trace_stack();
2420       }
2421       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2422     }
2423   }
2424 
2425   if (DebugDeoptimization && deopt) {
2426     tty->print_cr("[AFTER Deoptimization]");
2427     trace_frames();
2428   }
2429 }
2430 
2431 
2432 // Make zombies
2433 void JavaThread::make_zombies() {
2434   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2435     if (fst.current()->can_be_deoptimized()) {
2436       // it is a Java nmethod
2437       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2438       nm->make_not_entrant();
2439     }
2440   }
2441 }
2442 #endif // PRODUCT
2443 
2444 
2445 void JavaThread::deoptimized_wrt_marked_nmethods() {
2446   if (!has_last_Java_frame()) return;
2447   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2448   StackFrameStream fst(this, UseBiasedLocking);
2449   for(; !fst.is_done(); fst.next()) {
2450     if (fst.current()->should_be_deoptimized()) {
2451       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2452     }
2453   }
2454 }
2455 
2456 
2457 // GC support
2458 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2459 
2460 void JavaThread::gc_epilogue() {
2461   frames_do(frame_gc_epilogue);
2462 }
2463 
2464 
2465 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2466 
2467 void JavaThread::gc_prologue() {
2468   frames_do(frame_gc_prologue);
2469 }
2470 
2471 // If the caller is a NamedThread, then remember, in the current scope,
2472 // the given JavaThread in its _processed_thread field.
2473 class RememberProcessedThread: public StackObj {
2474   NamedThread* _cur_thr;
2475 public:
2476   RememberProcessedThread(JavaThread* jthr) {
2477     Thread* thread = Thread::current();
2478     if (thread->is_Named_thread()) {
2479       _cur_thr = (NamedThread *)thread;
2480       _cur_thr->set_processed_thread(jthr);
2481     } else {
2482       _cur_thr = NULL;
2483     }
2484   }
2485 
2486   ~RememberProcessedThread() {
2487     if (_cur_thr) {
2488       _cur_thr->set_processed_thread(NULL);
2489     }
2490   }
2491 };
2492 
2493 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2494   // Verify that the deferred card marks have been flushed.
2495   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2496 
2497   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2498   // since there may be more than one thread using each ThreadProfiler.
2499 
2500   // Traverse the GCHandles
2501   Thread::oops_do(f, cf);
2502 
2503   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2504           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2505 
2506   if (has_last_Java_frame()) {
2507     // Record JavaThread to GC thread
2508     RememberProcessedThread rpt(this);
2509 
2510     // Traverse the privileged stack
2511     if (_privileged_stack_top != NULL) {
2512       _privileged_stack_top->oops_do(f);
2513     }
2514 
2515     // traverse the registered growable array
2516     if (_array_for_gc != NULL) {
2517       for (int index = 0; index < _array_for_gc->length(); index++) {
2518         f->do_oop(_array_for_gc->adr_at(index));
2519       }
2520     }
2521 
2522     // Traverse the monitor chunks
2523     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2524       chunk->oops_do(f);
2525     }
2526 
2527     // Traverse the execution stack
2528     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2529       fst.current()->oops_do(f, cf, fst.register_map());
2530     }
2531   }
2532 
2533   // callee_target is never live across a gc point so NULL it here should
2534   // it still contain a methdOop.
2535 
2536   set_callee_target(NULL);
2537 
2538   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2539   // If we have deferred set_locals there might be oops waiting to be
2540   // written
2541   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2542   if (list != NULL) {
2543     for (int i = 0; i < list->length(); i++) {
2544       list->at(i)->oops_do(f);
2545     }
2546   }
2547 
2548   // Traverse instance variables at the end since the GC may be moving things
2549   // around using this function
2550   f->do_oop((oop*) &_threadObj);
2551   f->do_oop((oop*) &_vm_result);
2552   f->do_oop((oop*) &_vm_result_2);
2553   f->do_oop((oop*) &_exception_oop);
2554   f->do_oop((oop*) &_pending_async_exception);
2555 
2556   if (jvmti_thread_state() != NULL) {
2557     jvmti_thread_state()->oops_do(f);
2558   }
2559 }
2560 
2561 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2562   Thread::nmethods_do(cf);  // (super method is a no-op)
2563 
2564   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2565           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2566 
2567   if (has_last_Java_frame()) {
2568     // Traverse the execution stack
2569     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2570       fst.current()->nmethods_do(cf);
2571     }
2572   }
2573 }
2574 
2575 // Printing
2576 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2577   switch (_thread_state) {
2578   case _thread_uninitialized:     return "_thread_uninitialized";
2579   case _thread_new:               return "_thread_new";
2580   case _thread_new_trans:         return "_thread_new_trans";
2581   case _thread_in_native:         return "_thread_in_native";
2582   case _thread_in_native_trans:   return "_thread_in_native_trans";
2583   case _thread_in_vm:             return "_thread_in_vm";
2584   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2585   case _thread_in_Java:           return "_thread_in_Java";
2586   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2587   case _thread_blocked:           return "_thread_blocked";
2588   case _thread_blocked_trans:     return "_thread_blocked_trans";
2589   default:                        return "unknown thread state";
2590   }
2591 }
2592 
2593 #ifndef PRODUCT
2594 void JavaThread::print_thread_state_on(outputStream *st) const {
2595   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2596 };
2597 void JavaThread::print_thread_state() const {
2598   print_thread_state_on(tty);
2599 };
2600 #endif // PRODUCT
2601 
2602 // Called by Threads::print() for VM_PrintThreads operation
2603 void JavaThread::print_on(outputStream *st) const {
2604   st->print("\"%s\" ", get_thread_name());
2605   oop thread_oop = threadObj();
2606   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2607   Thread::print_on(st);
2608   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2609   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2610   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2611     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2612   }
2613 #ifndef PRODUCT
2614   print_thread_state_on(st);
2615   _safepoint_state->print_on(st);
2616 #endif // PRODUCT
2617 }
2618 
2619 // Called by fatal error handler. The difference between this and
2620 // JavaThread::print() is that we can't grab lock or allocate memory.
2621 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2622   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2623   oop thread_obj = threadObj();
2624   if (thread_obj != NULL) {
2625      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2626   }
2627   st->print(" [");
2628   st->print("%s", _get_thread_state_name(_thread_state));
2629   if (osthread()) {
2630     st->print(", id=%d", osthread()->thread_id());
2631   }
2632   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2633             _stack_base - _stack_size, _stack_base);
2634   st->print("]");
2635   return;
2636 }
2637 
2638 // Verification
2639 
2640 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2641 
2642 void JavaThread::verify() {
2643   // Verify oops in the thread.
2644   oops_do(&VerifyOopClosure::verify_oop, NULL);
2645 
2646   // Verify the stack frames.
2647   frames_do(frame_verify);
2648 }
2649 
2650 // CR 6300358 (sub-CR 2137150)
2651 // Most callers of this method assume that it can't return NULL but a
2652 // thread may not have a name whilst it is in the process of attaching to
2653 // the VM - see CR 6412693, and there are places where a JavaThread can be
2654 // seen prior to having it's threadObj set (eg JNI attaching threads and
2655 // if vm exit occurs during initialization). These cases can all be accounted
2656 // for such that this method never returns NULL.
2657 const char* JavaThread::get_thread_name() const {
2658 #ifdef ASSERT
2659   // early safepoints can hit while current thread does not yet have TLS
2660   if (!SafepointSynchronize::is_at_safepoint()) {
2661     Thread *cur = Thread::current();
2662     if (!(cur->is_Java_thread() && cur == this)) {
2663       // Current JavaThreads are allowed to get their own name without
2664       // the Threads_lock.
2665       assert_locked_or_safepoint(Threads_lock);
2666     }
2667   }
2668 #endif // ASSERT
2669     return get_thread_name_string();
2670 }
2671 
2672 // Returns a non-NULL representation of this thread's name, or a suitable
2673 // descriptive string if there is no set name
2674 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2675   const char* name_str;
2676   oop thread_obj = threadObj();
2677   if (thread_obj != NULL) {
2678     typeArrayOop name = java_lang_Thread::name(thread_obj);
2679     if (name != NULL) {
2680       if (buf == NULL) {
2681         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2682       }
2683       else {
2684         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2685       }
2686     }
2687     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2688       name_str = "<no-name - thread is attaching>";
2689     }
2690     else {
2691       name_str = Thread::name();
2692     }
2693   }
2694   else {
2695     name_str = Thread::name();
2696   }
2697   assert(name_str != NULL, "unexpected NULL thread name");
2698   return name_str;
2699 }
2700 
2701 
2702 const char* JavaThread::get_threadgroup_name() const {
2703   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2704   oop thread_obj = threadObj();
2705   if (thread_obj != NULL) {
2706     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2707     if (thread_group != NULL) {
2708       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2709       // ThreadGroup.name can be null
2710       if (name != NULL) {
2711         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2712         return str;
2713       }
2714     }
2715   }
2716   return NULL;
2717 }
2718 
2719 const char* JavaThread::get_parent_name() const {
2720   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2721   oop thread_obj = threadObj();
2722   if (thread_obj != NULL) {
2723     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2724     if (thread_group != NULL) {
2725       oop parent = java_lang_ThreadGroup::parent(thread_group);
2726       if (parent != NULL) {
2727         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2728         // ThreadGroup.name can be null
2729         if (name != NULL) {
2730           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2731           return str;
2732         }
2733       }
2734     }
2735   }
2736   return NULL;
2737 }
2738 
2739 ThreadPriority JavaThread::java_priority() const {
2740   oop thr_oop = threadObj();
2741   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2742   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2743   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2744   return priority;
2745 }
2746 
2747 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2748 
2749   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2750   // Link Java Thread object <-> C++ Thread
2751 
2752   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2753   // and put it into a new Handle.  The Handle "thread_oop" can then
2754   // be used to pass the C++ thread object to other methods.
2755 
2756   // Set the Java level thread object (jthread) field of the
2757   // new thread (a JavaThread *) to C++ thread object using the
2758   // "thread_oop" handle.
2759 
2760   // Set the thread field (a JavaThread *) of the
2761   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2762 
2763   Handle thread_oop(Thread::current(),
2764                     JNIHandles::resolve_non_null(jni_thread));
2765   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2766     "must be initialized");
2767   set_threadObj(thread_oop());
2768   java_lang_Thread::set_thread(thread_oop(), this);
2769 
2770   if (prio == NoPriority) {
2771     prio = java_lang_Thread::priority(thread_oop());
2772     assert(prio != NoPriority, "A valid priority should be present");
2773   }
2774 
2775   // Push the Java priority down to the native thread; needs Threads_lock
2776   Thread::set_priority(this, prio);
2777 
2778   // Add the new thread to the Threads list and set it in motion.
2779   // We must have threads lock in order to call Threads::add.
2780   // It is crucial that we do not block before the thread is
2781   // added to the Threads list for if a GC happens, then the java_thread oop
2782   // will not be visited by GC.
2783   Threads::add(this);
2784 }
2785 
2786 oop JavaThread::current_park_blocker() {
2787   // Support for JSR-166 locks
2788   oop thread_oop = threadObj();
2789   if (thread_oop != NULL &&
2790       JDK_Version::current().supports_thread_park_blocker()) {
2791     return java_lang_Thread::park_blocker(thread_oop);
2792   }
2793   return NULL;
2794 }
2795 
2796 
2797 void JavaThread::print_stack_on(outputStream* st) {
2798   if (!has_last_Java_frame()) return;
2799   ResourceMark rm;
2800   HandleMark   hm;
2801 
2802   RegisterMap reg_map(this);
2803   vframe* start_vf = last_java_vframe(&reg_map);
2804   int count = 0;
2805   for (vframe* f = start_vf; f; f = f->sender() ) {
2806     if (f->is_java_frame()) {
2807       javaVFrame* jvf = javaVFrame::cast(f);
2808       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2809 
2810       // Print out lock information
2811       if (JavaMonitorsInStackTrace) {
2812         jvf->print_lock_info_on(st, count);
2813       }
2814     } else {
2815       // Ignore non-Java frames
2816     }
2817 
2818     // Bail-out case for too deep stacks
2819     count++;
2820     if (MaxJavaStackTraceDepth == count) return;
2821   }
2822 }
2823 
2824 
2825 // JVMTI PopFrame support
2826 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2827   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2828   if (in_bytes(size_in_bytes) != 0) {
2829     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2830     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2831     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2832   }
2833 }
2834 
2835 void* JavaThread::popframe_preserved_args() {
2836   return _popframe_preserved_args;
2837 }
2838 
2839 ByteSize JavaThread::popframe_preserved_args_size() {
2840   return in_ByteSize(_popframe_preserved_args_size);
2841 }
2842 
2843 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2844   int sz = in_bytes(popframe_preserved_args_size());
2845   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2846   return in_WordSize(sz / wordSize);
2847 }
2848 
2849 void JavaThread::popframe_free_preserved_args() {
2850   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2851   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2852   _popframe_preserved_args = NULL;
2853   _popframe_preserved_args_size = 0;
2854 }
2855 
2856 #ifndef PRODUCT
2857 
2858 void JavaThread::trace_frames() {
2859   tty->print_cr("[Describe stack]");
2860   int frame_no = 1;
2861   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2862     tty->print("  %d. ", frame_no++);
2863     fst.current()->print_value_on(tty,this);
2864     tty->cr();
2865   }
2866 }
2867 
2868 
2869 void JavaThread::trace_stack_from(vframe* start_vf) {
2870   ResourceMark rm;
2871   int vframe_no = 1;
2872   for (vframe* f = start_vf; f; f = f->sender() ) {
2873     if (f->is_java_frame()) {
2874       javaVFrame::cast(f)->print_activation(vframe_no++);
2875     } else {
2876       f->print();
2877     }
2878     if (vframe_no > StackPrintLimit) {
2879       tty->print_cr("...<more frames>...");
2880       return;
2881     }
2882   }
2883 }
2884 
2885 
2886 void JavaThread::trace_stack() {
2887   if (!has_last_Java_frame()) return;
2888   ResourceMark rm;
2889   HandleMark   hm;
2890   RegisterMap reg_map(this);
2891   trace_stack_from(last_java_vframe(&reg_map));
2892 }
2893 
2894 
2895 #endif // PRODUCT
2896 
2897 
2898 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2899   assert(reg_map != NULL, "a map must be given");
2900   frame f = last_frame();
2901   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2902     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2903   }
2904   return NULL;
2905 }
2906 
2907 
2908 klassOop JavaThread::security_get_caller_class(int depth) {
2909   vframeStream vfst(this);
2910   vfst.security_get_caller_frame(depth);
2911   if (!vfst.at_end()) {
2912     return vfst.method()->method_holder();
2913   }
2914   return NULL;
2915 }
2916 
2917 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2918   assert(thread->is_Compiler_thread(), "must be compiler thread");
2919   CompileBroker::compiler_thread_loop();
2920 }
2921 
2922 // Create a CompilerThread
2923 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2924 : JavaThread(&compiler_thread_entry) {
2925   _env   = NULL;
2926   _log   = NULL;
2927   _task  = NULL;
2928   _queue = queue;
2929   _counters = counters;
2930   _buffer_blob = NULL;
2931 
2932 #ifndef PRODUCT
2933   _ideal_graph_printer = NULL;
2934 #endif
2935 }
2936 
2937 
2938 // ======= Threads ========
2939 
2940 // The Threads class links together all active threads, and provides
2941 // operations over all threads.  It is protected by its own Mutex
2942 // lock, which is also used in other contexts to protect thread
2943 // operations from having the thread being operated on from exiting
2944 // and going away unexpectedly (e.g., safepoint synchronization)
2945 
2946 JavaThread* Threads::_thread_list = NULL;
2947 int         Threads::_number_of_threads = 0;
2948 int         Threads::_number_of_non_daemon_threads = 0;
2949 int         Threads::_return_code = 0;
2950 size_t      JavaThread::_stack_size_at_create = 0;
2951 
2952 // All JavaThreads
2953 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2954 
2955 void os_stream();
2956 
2957 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2958 void Threads::threads_do(ThreadClosure* tc) {
2959   assert_locked_or_safepoint(Threads_lock);
2960   // ALL_JAVA_THREADS iterates through all JavaThreads
2961   ALL_JAVA_THREADS(p) {
2962     tc->do_thread(p);
2963   }
2964   // Someday we could have a table or list of all non-JavaThreads.
2965   // For now, just manually iterate through them.
2966   tc->do_thread(VMThread::vm_thread());
2967   Universe::heap()->gc_threads_do(tc);
2968   WatcherThread *wt = WatcherThread::watcher_thread();
2969   // Strictly speaking, the following NULL check isn't sufficient to make sure
2970   // the data for WatcherThread is still valid upon being examined. However,
2971   // considering that WatchThread terminates when the VM is on the way to
2972   // exit at safepoint, the chance of the above is extremely small. The right
2973   // way to prevent termination of WatcherThread would be to acquire
2974   // Terminator_lock, but we can't do that without violating the lock rank
2975   // checking in some cases.
2976   if (wt != NULL)
2977     tc->do_thread(wt);
2978 
2979   // If CompilerThreads ever become non-JavaThreads, add them here
2980 }
2981 
2982 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2983 
2984   extern void JDK_Version_init();
2985 
2986   // Check version
2987   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2988 
2989   // Initialize the output stream module
2990   ostream_init();
2991 
2992   // Process java launcher properties.
2993   Arguments::process_sun_java_launcher_properties(args);
2994 
2995   // Initialize the os module before using TLS
2996   os::init();
2997 
2998   // Initialize system properties.
2999   Arguments::init_system_properties();
3000 
3001   // So that JDK version can be used as a discrimintor when parsing arguments
3002   JDK_Version_init();
3003 
3004   // Update/Initialize System properties after JDK version number is known
3005   Arguments::init_version_specific_system_properties();
3006 
3007   // Parse arguments
3008   jint parse_result = Arguments::parse(args);
3009   if (parse_result != JNI_OK) return parse_result;
3010 
3011   if (PauseAtStartup) {
3012     os::pause();
3013   }
3014 
3015   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3016 
3017   // Record VM creation timing statistics
3018   TraceVmCreationTime create_vm_timer;
3019   create_vm_timer.start();
3020 
3021   // Timing (must come after argument parsing)
3022   TraceTime timer("Create VM", TraceStartupTime);
3023 
3024   // Initialize the os module after parsing the args
3025   jint os_init_2_result = os::init_2();
3026   if (os_init_2_result != JNI_OK) return os_init_2_result;
3027 
3028   // Initialize output stream logging
3029   ostream_init_log();
3030 
3031   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3032   // Must be before create_vm_init_agents()
3033   if (Arguments::init_libraries_at_startup()) {
3034     convert_vm_init_libraries_to_agents();
3035   }
3036 
3037   // Launch -agentlib/-agentpath and converted -Xrun agents
3038   if (Arguments::init_agents_at_startup()) {
3039     create_vm_init_agents();
3040   }
3041 
3042   // Initialize Threads state
3043   _thread_list = NULL;
3044   _number_of_threads = 0;
3045   _number_of_non_daemon_threads = 0;
3046 
3047   // Initialize TLS
3048   ThreadLocalStorage::init();
3049 
3050   // Initialize global data structures and create system classes in heap
3051   vm_init_globals();
3052 
3053   // Attach the main thread to this os thread
3054   JavaThread* main_thread = new JavaThread();
3055   main_thread->set_thread_state(_thread_in_vm);
3056   // must do this before set_active_handles and initialize_thread_local_storage
3057   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3058   // change the stack size recorded here to one based on the java thread
3059   // stacksize. This adjusted size is what is used to figure the placement
3060   // of the guard pages.
3061   main_thread->record_stack_base_and_size();
3062   main_thread->initialize_thread_local_storage();
3063 
3064   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3065 
3066   if (!main_thread->set_as_starting_thread()) {
3067     vm_shutdown_during_initialization(
3068       "Failed necessary internal allocation. Out of swap space");
3069     delete main_thread;
3070     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3071     return JNI_ENOMEM;
3072   }
3073 
3074   // Enable guard page *after* os::create_main_thread(), otherwise it would
3075   // crash Linux VM, see notes in os_linux.cpp.
3076   main_thread->create_stack_guard_pages();
3077 
3078   // Initialize Java-Level synchronization subsystem
3079   ObjectMonitor::Initialize() ;
3080 
3081   // Initialize global modules
3082   jint status = init_globals();
3083   if (status != JNI_OK) {
3084     delete main_thread;
3085     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3086     return status;
3087   }
3088 
3089   // Should be done after the heap is fully created
3090   main_thread->cache_global_variables();
3091 
3092   HandleMark hm;
3093 
3094   { MutexLocker mu(Threads_lock);
3095     Threads::add(main_thread);
3096   }
3097 
3098   // Any JVMTI raw monitors entered in onload will transition into
3099   // real raw monitor. VM is setup enough here for raw monitor enter.
3100   JvmtiExport::transition_pending_onload_raw_monitors();
3101 
3102   if (VerifyBeforeGC &&
3103       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3104     Universe::heap()->prepare_for_verify();
3105     Universe::verify();   // make sure we're starting with a clean slate
3106   }
3107 
3108   // Create the VMThread
3109   { TraceTime timer("Start VMThread", TraceStartupTime);
3110     VMThread::create();
3111     Thread* vmthread = VMThread::vm_thread();
3112 
3113     if (!os::create_thread(vmthread, os::vm_thread))
3114       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3115 
3116     // Wait for the VM thread to become ready, and VMThread::run to initialize
3117     // Monitors can have spurious returns, must always check another state flag
3118     {
3119       MutexLocker ml(Notify_lock);
3120       os::start_thread(vmthread);
3121       while (vmthread->active_handles() == NULL) {
3122         Notify_lock->wait();
3123       }
3124     }
3125   }
3126 
3127   assert (Universe::is_fully_initialized(), "not initialized");
3128   EXCEPTION_MARK;
3129 
3130   // At this point, the Universe is initialized, but we have not executed
3131   // any byte code.  Now is a good time (the only time) to dump out the
3132   // internal state of the JVM for sharing.
3133 
3134   if (DumpSharedSpaces) {
3135     Universe::heap()->preload_and_dump(CHECK_0);
3136     ShouldNotReachHere();
3137   }
3138 
3139   // Always call even when there are not JVMTI environments yet, since environments
3140   // may be attached late and JVMTI must track phases of VM execution
3141   JvmtiExport::enter_start_phase();
3142 
3143   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3144   JvmtiExport::post_vm_start();
3145 
3146   {
3147     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3148 
3149     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3150       create_vm_init_libraries();
3151     }
3152 
3153     if (InitializeJavaLangString) {
3154       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3155     } else {
3156       warning("java.lang.String not initialized");
3157     }
3158 
3159     if (AggressiveOpts) {
3160       {
3161         // Forcibly initialize java/util/HashMap and mutate the private
3162         // static final "frontCacheEnabled" field before we start creating instances
3163 #ifdef ASSERT
3164         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3165         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3166 #endif
3167         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3168         KlassHandle k = KlassHandle(THREAD, k_o);
3169         guarantee(k.not_null(), "Must find java/util/HashMap");
3170         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3171         ik->initialize(CHECK_0);
3172         fieldDescriptor fd;
3173         // Possible we might not find this field; if so, don't break
3174         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3175           k()->bool_field_put(fd.offset(), true);
3176         }
3177       }
3178 
3179       if (UseStringCache) {
3180         // Forcibly initialize java/lang/StringValue and mutate the private
3181         // static final "stringCacheEnabled" field before we start creating instances
3182         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3183         // Possible that StringValue isn't present: if so, silently don't break
3184         if (k_o != NULL) {
3185           KlassHandle k = KlassHandle(THREAD, k_o);
3186           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3187           ik->initialize(CHECK_0);
3188           fieldDescriptor fd;
3189           // Possible we might not find this field: if so, silently don't break
3190           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3191             k()->bool_field_put(fd.offset(), true);
3192           }
3193         }
3194       }
3195     }
3196 
3197     // Initialize java_lang.System (needed before creating the thread)
3198     if (InitializeJavaLangSystem) {
3199       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3200       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3201       Handle thread_group = create_initial_thread_group(CHECK_0);
3202       Universe::set_main_thread_group(thread_group());
3203       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3204       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3205       main_thread->set_threadObj(thread_object);
3206       // Set thread status to running since main thread has
3207       // been started and running.
3208       java_lang_Thread::set_thread_status(thread_object,
3209                                           java_lang_Thread::RUNNABLE);
3210 
3211       // The VM preresolve methods to these classes. Make sure that get initialized
3212       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3213       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3214       // The VM creates & returns objects of this class. Make sure it's initialized.
3215       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3216       call_initializeSystemClass(CHECK_0);
3217     } else {
3218       warning("java.lang.System not initialized");
3219     }
3220 
3221     // an instance of OutOfMemory exception has been allocated earlier
3222     if (InitializeJavaLangExceptionsErrors) {
3223       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3224       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3225       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3226       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3227       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3228       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3229       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3230     } else {
3231       warning("java.lang.OutOfMemoryError has not been initialized");
3232       warning("java.lang.NullPointerException has not been initialized");
3233       warning("java.lang.ClassCastException has not been initialized");
3234       warning("java.lang.ArrayStoreException has not been initialized");
3235       warning("java.lang.ArithmeticException has not been initialized");
3236       warning("java.lang.StackOverflowError has not been initialized");
3237     }
3238   }
3239 
3240   // See        : bugid 4211085.
3241   // Background : the static initializer of java.lang.Compiler tries to read
3242   //              property"java.compiler" and read & write property "java.vm.info".
3243   //              When a security manager is installed through the command line
3244   //              option "-Djava.security.manager", the above properties are not
3245   //              readable and the static initializer for java.lang.Compiler fails
3246   //              resulting in a NoClassDefFoundError.  This can happen in any
3247   //              user code which calls methods in java.lang.Compiler.
3248   // Hack :       the hack is to pre-load and initialize this class, so that only
3249   //              system domains are on the stack when the properties are read.
3250   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3251   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3252   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3253   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3254   //              Once that is done, we should remove this hack.
3255   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3256 
3257   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3258   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3259   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3260   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3261   // This should also be taken out as soon as 4211383 gets fixed.
3262   reset_vm_info_property(CHECK_0);
3263 
3264   quicken_jni_functions();
3265 
3266   // Set flag that basic initialization has completed. Used by exceptions and various
3267   // debug stuff, that does not work until all basic classes have been initialized.
3268   set_init_completed();
3269 
3270   HS_DTRACE_PROBE(hotspot, vm__init__end);
3271 
3272   // record VM initialization completion time
3273   Management::record_vm_init_completed();
3274 
3275   // Compute system loader. Note that this has to occur after set_init_completed, since
3276   // valid exceptions may be thrown in the process.
3277   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3278   // set_init_completed has just been called, causing exceptions not to be shortcut
3279   // anymore. We call vm_exit_during_initialization directly instead.
3280   SystemDictionary::compute_java_system_loader(THREAD);
3281   if (HAS_PENDING_EXCEPTION) {
3282     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3283   }
3284 
3285 #ifdef KERNEL
3286   if (JDK_Version::is_gte_jdk17x_version()) {
3287     set_jkernel_boot_classloader_hook(THREAD);
3288   }
3289 #endif // KERNEL
3290 
3291 #ifndef SERIALGC
3292   // Support for ConcurrentMarkSweep. This should be cleaned up
3293   // and better encapsulated. The ugly nested if test would go away
3294   // once things are properly refactored. XXX YSR
3295   if (UseConcMarkSweepGC || UseG1GC) {
3296     if (UseConcMarkSweepGC) {
3297       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3298     } else {
3299       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3300     }
3301     if (HAS_PENDING_EXCEPTION) {
3302       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3303     }
3304   }
3305 #endif // SERIALGC
3306 
3307   // Always call even when there are not JVMTI environments yet, since environments
3308   // may be attached late and JVMTI must track phases of VM execution
3309   JvmtiExport::enter_live_phase();
3310 
3311   // Signal Dispatcher needs to be started before VMInit event is posted
3312   os::signal_init();
3313 
3314   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3315   if (!DisableAttachMechanism) {
3316     if (StartAttachListener || AttachListener::init_at_startup()) {
3317       AttachListener::init();
3318     }
3319   }
3320 
3321   // Launch -Xrun agents
3322   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3323   // back-end can launch with -Xdebug -Xrunjdwp.
3324   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3325     create_vm_init_libraries();
3326   }
3327 
3328   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3329   JvmtiExport::post_vm_initialized();
3330 
3331   Chunk::start_chunk_pool_cleaner_task();
3332 
3333   // initialize compiler(s)
3334   CompileBroker::compilation_init();
3335 
3336   Management::initialize(THREAD);
3337   if (HAS_PENDING_EXCEPTION) {
3338     // management agent fails to start possibly due to
3339     // configuration problem and is responsible for printing
3340     // stack trace if appropriate. Simply exit VM.
3341     vm_exit(1);
3342   }
3343 
3344   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3345   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3346   if (MemProfiling)                   MemProfiler::engage();
3347   StatSampler::engage();
3348   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3349 
3350   BiasedLocking::init();
3351 
3352 
3353   // Start up the WatcherThread if there are any periodic tasks
3354   // NOTE:  All PeriodicTasks should be registered by now. If they
3355   //   aren't, late joiners might appear to start slowly (we might
3356   //   take a while to process their first tick).
3357   if (PeriodicTask::num_tasks() > 0) {
3358     WatcherThread::start();
3359   }
3360 
3361   // Give os specific code one last chance to start
3362   os::init_3();
3363 
3364   create_vm_timer.end();
3365   return JNI_OK;
3366 }
3367 
3368 // type for the Agent_OnLoad and JVM_OnLoad entry points
3369 extern "C" {
3370   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3371 }
3372 // Find a command line agent library and return its entry point for
3373 //         -agentlib:  -agentpath:   -Xrun
3374 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3375 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3376   OnLoadEntry_t on_load_entry = NULL;
3377   void *library = agent->os_lib();  // check if we have looked it up before
3378 
3379   if (library == NULL) {
3380     char buffer[JVM_MAXPATHLEN];
3381     char ebuf[1024];
3382     const char *name = agent->name();
3383     const char *msg = "Could not find agent library ";
3384 
3385     if (agent->is_absolute_path()) {
3386       library = os::dll_load(name, ebuf, sizeof ebuf);
3387       if (library == NULL) {
3388         const char *sub_msg = " in absolute path, with error: ";
3389         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3390         char *buf = NEW_C_HEAP_ARRAY(char, len);
3391         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3392         // If we can't find the agent, exit.
3393         vm_exit_during_initialization(buf, NULL);
3394         FREE_C_HEAP_ARRAY(char, buf);
3395       }
3396     } else {
3397       // Try to load the agent from the standard dll directory
3398       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3399       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3400 #ifdef KERNEL
3401       // Download instrument dll
3402       if (library == NULL && strcmp(name, "instrument") == 0) {
3403         char *props = Arguments::get_kernel_properties();
3404         char *home  = Arguments::get_java_home();
3405         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3406                       " sun.jkernel.DownloadManager -download client_jvm";
3407         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3408         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3409         jio_snprintf(cmd, length, fmt, home, props);
3410         int status = os::fork_and_exec(cmd);
3411         FreeHeap(props);
3412         if (status == -1) {
3413           warning(cmd);
3414           vm_exit_during_initialization("fork_and_exec failed: %s",
3415                                          strerror(errno));
3416         }
3417         FREE_C_HEAP_ARRAY(char, cmd);
3418         // when this comes back the instrument.dll should be where it belongs.
3419         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3420       }
3421 #endif // KERNEL
3422       if (library == NULL) { // Try the local directory
3423         char ns[1] = {0};
3424         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3425         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3426         if (library == NULL) {
3427           const char *sub_msg = " on the library path, with error: ";
3428           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3429           char *buf = NEW_C_HEAP_ARRAY(char, len);
3430           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3431           // If we can't find the agent, exit.
3432           vm_exit_during_initialization(buf, NULL);
3433           FREE_C_HEAP_ARRAY(char, buf);
3434         }
3435       }
3436     }
3437     agent->set_os_lib(library);
3438   }
3439 
3440   // Find the OnLoad function.
3441   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3442     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3443     if (on_load_entry != NULL) break;
3444   }
3445   return on_load_entry;
3446 }
3447 
3448 // Find the JVM_OnLoad entry point
3449 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3450   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3451   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3452 }
3453 
3454 // Find the Agent_OnLoad entry point
3455 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3456   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3457   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3458 }
3459 
3460 // For backwards compatibility with -Xrun
3461 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3462 // treated like -agentpath:
3463 // Must be called before agent libraries are created
3464 void Threads::convert_vm_init_libraries_to_agents() {
3465   AgentLibrary* agent;
3466   AgentLibrary* next;
3467 
3468   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3469     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3470     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3471 
3472     // If there is an JVM_OnLoad function it will get called later,
3473     // otherwise see if there is an Agent_OnLoad
3474     if (on_load_entry == NULL) {
3475       on_load_entry = lookup_agent_on_load(agent);
3476       if (on_load_entry != NULL) {
3477         // switch it to the agent list -- so that Agent_OnLoad will be called,
3478         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3479         Arguments::convert_library_to_agent(agent);
3480       } else {
3481         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3482       }
3483     }
3484   }
3485 }
3486 
3487 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3488 // Invokes Agent_OnLoad
3489 // Called very early -- before JavaThreads exist
3490 void Threads::create_vm_init_agents() {
3491   extern struct JavaVM_ main_vm;
3492   AgentLibrary* agent;
3493 
3494   JvmtiExport::enter_onload_phase();
3495   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3496     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3497 
3498     if (on_load_entry != NULL) {
3499       // Invoke the Agent_OnLoad function
3500       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3501       if (err != JNI_OK) {
3502         vm_exit_during_initialization("agent library failed to init", agent->name());
3503       }
3504     } else {
3505       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3506     }
3507   }
3508   JvmtiExport::enter_primordial_phase();
3509 }
3510 
3511 extern "C" {
3512   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3513 }
3514 
3515 void Threads::shutdown_vm_agents() {
3516   // Send any Agent_OnUnload notifications
3517   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3518   extern struct JavaVM_ main_vm;
3519   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3520 
3521     // Find the Agent_OnUnload function.
3522     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3523       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3524                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3525 
3526       // Invoke the Agent_OnUnload function
3527       if (unload_entry != NULL) {
3528         JavaThread* thread = JavaThread::current();
3529         ThreadToNativeFromVM ttn(thread);
3530         HandleMark hm(thread);
3531         (*unload_entry)(&main_vm);
3532         break;
3533       }
3534     }
3535   }
3536 }
3537 
3538 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3539 // Invokes JVM_OnLoad
3540 void Threads::create_vm_init_libraries() {
3541   extern struct JavaVM_ main_vm;
3542   AgentLibrary* agent;
3543 
3544   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3545     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3546 
3547     if (on_load_entry != NULL) {
3548       // Invoke the JVM_OnLoad function
3549       JavaThread* thread = JavaThread::current();
3550       ThreadToNativeFromVM ttn(thread);
3551       HandleMark hm(thread);
3552       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3553       if (err != JNI_OK) {
3554         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3555       }
3556     } else {
3557       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3558     }
3559   }
3560 }
3561 
3562 // Last thread running calls java.lang.Shutdown.shutdown()
3563 void JavaThread::invoke_shutdown_hooks() {
3564   HandleMark hm(this);
3565 
3566   // We could get here with a pending exception, if so clear it now.
3567   if (this->has_pending_exception()) {
3568     this->clear_pending_exception();
3569   }
3570 
3571   EXCEPTION_MARK;
3572   klassOop k =
3573     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3574                                       THREAD);
3575   if (k != NULL) {
3576     // SystemDictionary::resolve_or_null will return null if there was
3577     // an exception.  If we cannot load the Shutdown class, just don't
3578     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3579     // and finalizers (if runFinalizersOnExit is set) won't be run.
3580     // Note that if a shutdown hook was registered or runFinalizersOnExit
3581     // was called, the Shutdown class would have already been loaded
3582     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3583     instanceKlassHandle shutdown_klass (THREAD, k);
3584     JavaValue result(T_VOID);
3585     JavaCalls::call_static(&result,
3586                            shutdown_klass,
3587                            vmSymbolHandles::shutdown_method_name(),
3588                            vmSymbolHandles::void_method_signature(),
3589                            THREAD);
3590   }
3591   CLEAR_PENDING_EXCEPTION;
3592 }
3593 
3594 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3595 // the program falls off the end of main(). Another VM exit path is through
3596 // vm_exit() when the program calls System.exit() to return a value or when
3597 // there is a serious error in VM. The two shutdown paths are not exactly
3598 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3599 // and VM_Exit op at VM level.
3600 //
3601 // Shutdown sequence:
3602 //   + Wait until we are the last non-daemon thread to execute
3603 //     <-- every thing is still working at this moment -->
3604 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3605 //        shutdown hooks, run finalizers if finalization-on-exit
3606 //   + Call before_exit(), prepare for VM exit
3607 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3608 //        currently the only user of this mechanism is File.deleteOnExit())
3609 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3610 //        post thread end and vm death events to JVMTI,
3611 //        stop signal thread
3612 //   + Call JavaThread::exit(), it will:
3613 //      > release JNI handle blocks, remove stack guard pages
3614 //      > remove this thread from Threads list
3615 //     <-- no more Java code from this thread after this point -->
3616 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3617 //     the compiler threads at safepoint
3618 //     <-- do not use anything that could get blocked by Safepoint -->
3619 //   + Disable tracing at JNI/JVM barriers
3620 //   + Set _vm_exited flag for threads that are still running native code
3621 //   + Delete this thread
3622 //   + Call exit_globals()
3623 //      > deletes tty
3624 //      > deletes PerfMemory resources
3625 //   + Return to caller
3626 
3627 bool Threads::destroy_vm() {
3628   JavaThread* thread = JavaThread::current();
3629 
3630   // Wait until we are the last non-daemon thread to execute
3631   { MutexLocker nu(Threads_lock);
3632     while (Threads::number_of_non_daemon_threads() > 1 )
3633       // This wait should make safepoint checks, wait without a timeout,
3634       // and wait as a suspend-equivalent condition.
3635       //
3636       // Note: If the FlatProfiler is running and this thread is waiting
3637       // for another non-daemon thread to finish, then the FlatProfiler
3638       // is waiting for the external suspend request on this thread to
3639       // complete. wait_for_ext_suspend_completion() will eventually
3640       // timeout, but that takes time. Making this wait a suspend-
3641       // equivalent condition solves that timeout problem.
3642       //
3643       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3644                          Mutex::_as_suspend_equivalent_flag);
3645   }
3646 
3647   // Hang forever on exit if we are reporting an error.
3648   if (ShowMessageBoxOnError && is_error_reported()) {
3649     os::infinite_sleep();
3650   }
3651 
3652   if (JDK_Version::is_jdk12x_version()) {
3653     // We are the last thread running, so check if finalizers should be run.
3654     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3655     HandleMark rm(thread);
3656     Universe::run_finalizers_on_exit();
3657   } else {
3658     // run Java level shutdown hooks
3659     thread->invoke_shutdown_hooks();
3660   }
3661 
3662   before_exit(thread);
3663 
3664   thread->exit(true);
3665 
3666   // Stop VM thread.
3667   {
3668     // 4945125 The vm thread comes to a safepoint during exit.
3669     // GC vm_operations can get caught at the safepoint, and the
3670     // heap is unparseable if they are caught. Grab the Heap_lock
3671     // to prevent this. The GC vm_operations will not be able to
3672     // queue until after the vm thread is dead.
3673     MutexLocker ml(Heap_lock);
3674 
3675     VMThread::wait_for_vm_thread_exit();
3676     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3677     VMThread::destroy();
3678   }
3679 
3680   // clean up ideal graph printers
3681 #if defined(COMPILER2) && !defined(PRODUCT)
3682   IdealGraphPrinter::clean_up();
3683 #endif
3684 
3685   // Now, all Java threads are gone except daemon threads. Daemon threads
3686   // running Java code or in VM are stopped by the Safepoint. However,
3687   // daemon threads executing native code are still running.  But they
3688   // will be stopped at native=>Java/VM barriers. Note that we can't
3689   // simply kill or suspend them, as it is inherently deadlock-prone.
3690 
3691 #ifndef PRODUCT
3692   // disable function tracing at JNI/JVM barriers
3693   TraceJNICalls = false;
3694   TraceJVMCalls = false;
3695   TraceRuntimeCalls = false;
3696 #endif
3697 
3698   VM_Exit::set_vm_exited();
3699 
3700   notify_vm_shutdown();
3701 
3702   delete thread;
3703 
3704   // exit_globals() will delete tty
3705   exit_globals();
3706 
3707   return true;
3708 }
3709 
3710 
3711 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3712   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3713   return is_supported_jni_version(version);
3714 }
3715 
3716 
3717 jboolean Threads::is_supported_jni_version(jint version) {
3718   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3719   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3720   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3721   return JNI_FALSE;
3722 }
3723 
3724 
3725 void Threads::add(JavaThread* p, bool force_daemon) {
3726   // The threads lock must be owned at this point
3727   assert_locked_or_safepoint(Threads_lock);
3728 
3729   // See the comment for this method in thread.hpp for its purpose and
3730   // why it is called here.
3731   p->initialize_queues();
3732   p->set_next(_thread_list);
3733   _thread_list = p;
3734   _number_of_threads++;
3735   oop threadObj = p->threadObj();
3736   bool daemon = true;
3737   // Bootstrapping problem: threadObj can be null for initial
3738   // JavaThread (or for threads attached via JNI)
3739   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3740     _number_of_non_daemon_threads++;
3741     daemon = false;
3742   }
3743 
3744   ThreadService::add_thread(p, daemon);
3745 
3746   // Possible GC point.
3747   Events::log("Thread added: " INTPTR_FORMAT, p);
3748 }
3749 
3750 void Threads::remove(JavaThread* p) {
3751   // Extra scope needed for Thread_lock, so we can check
3752   // that we do not remove thread without safepoint code notice
3753   { MutexLocker ml(Threads_lock);
3754 
3755     assert(includes(p), "p must be present");
3756 
3757     JavaThread* current = _thread_list;
3758     JavaThread* prev    = NULL;
3759 
3760     while (current != p) {
3761       prev    = current;
3762       current = current->next();
3763     }
3764 
3765     if (prev) {
3766       prev->set_next(current->next());
3767     } else {
3768       _thread_list = p->next();
3769     }
3770     _number_of_threads--;
3771     oop threadObj = p->threadObj();
3772     bool daemon = true;
3773     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3774       _number_of_non_daemon_threads--;
3775       daemon = false;
3776 
3777       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3778       // on destroy_vm will wake up.
3779       if (number_of_non_daemon_threads() == 1)
3780         Threads_lock->notify_all();
3781     }
3782     ThreadService::remove_thread(p, daemon);
3783 
3784     // Make sure that safepoint code disregard this thread. This is needed since
3785     // the thread might mess around with locks after this point. This can cause it
3786     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3787     // of this thread since it is removed from the queue.
3788     p->set_terminated_value();
3789   } // unlock Threads_lock
3790 
3791   // Since Events::log uses a lock, we grab it outside the Threads_lock
3792   Events::log("Thread exited: " INTPTR_FORMAT, p);
3793 }
3794 
3795 // Threads_lock must be held when this is called (or must be called during a safepoint)
3796 bool Threads::includes(JavaThread* p) {
3797   assert(Threads_lock->is_locked(), "sanity check");
3798   ALL_JAVA_THREADS(q) {
3799     if (q == p ) {
3800       return true;
3801     }
3802   }
3803   return false;
3804 }
3805 
3806 // Operations on the Threads list for GC.  These are not explicitly locked,
3807 // but the garbage collector must provide a safe context for them to run.
3808 // In particular, these things should never be called when the Threads_lock
3809 // is held by some other thread. (Note: the Safepoint abstraction also
3810 // uses the Threads_lock to gurantee this property. It also makes sure that
3811 // all threads gets blocked when exiting or starting).
3812 
3813 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3814   ALL_JAVA_THREADS(p) {
3815     p->oops_do(f, cf);
3816   }
3817   VMThread::vm_thread()->oops_do(f, cf);
3818 }
3819 
3820 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3821   // Introduce a mechanism allowing parallel threads to claim threads as
3822   // root groups.  Overhead should be small enough to use all the time,
3823   // even in sequential code.
3824   SharedHeap* sh = SharedHeap::heap();
3825   bool is_par = (sh->n_par_threads() > 0);
3826   int cp = SharedHeap::heap()->strong_roots_parity();
3827   ALL_JAVA_THREADS(p) {
3828     if (p->claim_oops_do(is_par, cp)) {
3829       p->oops_do(f, cf);
3830     }
3831   }
3832   VMThread* vmt = VMThread::vm_thread();
3833   if (vmt->claim_oops_do(is_par, cp))
3834     vmt->oops_do(f, cf);
3835 }
3836 
3837 #ifndef SERIALGC
3838 // Used by ParallelScavenge
3839 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3840   ALL_JAVA_THREADS(p) {
3841     q->enqueue(new ThreadRootsTask(p));
3842   }
3843   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3844 }
3845 
3846 // Used by Parallel Old
3847 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3848   ALL_JAVA_THREADS(p) {
3849     q->enqueue(new ThreadRootsMarkingTask(p));
3850   }
3851   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3852 }
3853 #endif // SERIALGC
3854 
3855 void Threads::nmethods_do(CodeBlobClosure* cf) {
3856   ALL_JAVA_THREADS(p) {
3857     p->nmethods_do(cf);
3858   }
3859   VMThread::vm_thread()->nmethods_do(cf);
3860 }
3861 
3862 void Threads::gc_epilogue() {
3863   ALL_JAVA_THREADS(p) {
3864     p->gc_epilogue();
3865   }
3866 }
3867 
3868 void Threads::gc_prologue() {
3869   ALL_JAVA_THREADS(p) {
3870     p->gc_prologue();
3871   }
3872 }
3873 
3874 void Threads::deoptimized_wrt_marked_nmethods() {
3875   ALL_JAVA_THREADS(p) {
3876     p->deoptimized_wrt_marked_nmethods();
3877   }
3878 }
3879 
3880 
3881 // Get count Java threads that are waiting to enter the specified monitor.
3882 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3883   address monitor, bool doLock) {
3884   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3885     "must grab Threads_lock or be at safepoint");
3886   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3887 
3888   int i = 0;
3889   {
3890     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3891     ALL_JAVA_THREADS(p) {
3892       if (p->is_Compiler_thread()) continue;
3893 
3894       address pending = (address)p->current_pending_monitor();
3895       if (pending == monitor) {             // found a match
3896         if (i < count) result->append(p);   // save the first count matches
3897         i++;
3898       }
3899     }
3900   }
3901   return result;
3902 }
3903 
3904 
3905 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3906   assert(doLock ||
3907          Threads_lock->owned_by_self() ||
3908          SafepointSynchronize::is_at_safepoint(),
3909          "must grab Threads_lock or be at safepoint");
3910 
3911   // NULL owner means not locked so we can skip the search
3912   if (owner == NULL) return NULL;
3913 
3914   {
3915     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3916     ALL_JAVA_THREADS(p) {
3917       // first, see if owner is the address of a Java thread
3918       if (owner == (address)p) return p;
3919     }
3920   }
3921   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3922   if (UseHeavyMonitors) return NULL;
3923 
3924   //
3925   // If we didn't find a matching Java thread and we didn't force use of
3926   // heavyweight monitors, then the owner is the stack address of the
3927   // Lock Word in the owning Java thread's stack.
3928   //
3929   JavaThread* the_owner = NULL;
3930   {
3931     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3932     ALL_JAVA_THREADS(q) {
3933       if (q->is_lock_owned(owner)) {
3934         the_owner = q;
3935         break;
3936       }
3937     }
3938   }
3939   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3940   return the_owner;
3941 }
3942 
3943 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3944 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3945   char buf[32];
3946   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3947 
3948   st->print_cr("Full thread dump %s (%s %s):",
3949                 Abstract_VM_Version::vm_name(),
3950                 Abstract_VM_Version::vm_release(),
3951                 Abstract_VM_Version::vm_info_string()
3952                );
3953   st->cr();
3954 
3955 #ifndef SERIALGC
3956   // Dump concurrent locks
3957   ConcurrentLocksDump concurrent_locks;
3958   if (print_concurrent_locks) {
3959     concurrent_locks.dump_at_safepoint();
3960   }
3961 #endif // SERIALGC
3962 
3963   ALL_JAVA_THREADS(p) {
3964     ResourceMark rm;
3965     p->print_on(st);
3966     if (print_stacks) {
3967       if (internal_format) {
3968         p->trace_stack();
3969       } else {
3970         p->print_stack_on(st);
3971       }
3972     }
3973     st->cr();
3974 #ifndef SERIALGC
3975     if (print_concurrent_locks) {
3976       concurrent_locks.print_locks_on(p, st);
3977     }
3978 #endif // SERIALGC
3979   }
3980 
3981   VMThread::vm_thread()->print_on(st);
3982   st->cr();
3983   Universe::heap()->print_gc_threads_on(st);
3984   WatcherThread* wt = WatcherThread::watcher_thread();
3985   if (wt != NULL) wt->print_on(st);
3986   st->cr();
3987   CompileBroker::print_compiler_threads_on(st);
3988   st->flush();
3989 }
3990 
3991 // Threads::print_on_error() is called by fatal error handler. It's possible
3992 // that VM is not at safepoint and/or current thread is inside signal handler.
3993 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3994 // memory (even in resource area), it might deadlock the error handler.
3995 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3996   bool found_current = false;
3997   st->print_cr("Java Threads: ( => current thread )");
3998   ALL_JAVA_THREADS(thread) {
3999     bool is_current = (current == thread);
4000     found_current = found_current || is_current;
4001 
4002     st->print("%s", is_current ? "=>" : "  ");
4003 
4004     st->print(PTR_FORMAT, thread);
4005     st->print(" ");
4006     thread->print_on_error(st, buf, buflen);
4007     st->cr();
4008   }
4009   st->cr();
4010 
4011   st->print_cr("Other Threads:");
4012   if (VMThread::vm_thread()) {
4013     bool is_current = (current == VMThread::vm_thread());
4014     found_current = found_current || is_current;
4015     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4016 
4017     st->print(PTR_FORMAT, VMThread::vm_thread());
4018     st->print(" ");
4019     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4020     st->cr();
4021   }
4022   WatcherThread* wt = WatcherThread::watcher_thread();
4023   if (wt != NULL) {
4024     bool is_current = (current == wt);
4025     found_current = found_current || is_current;
4026     st->print("%s", is_current ? "=>" : "  ");
4027 
4028     st->print(PTR_FORMAT, wt);
4029     st->print(" ");
4030     wt->print_on_error(st, buf, buflen);
4031     st->cr();
4032   }
4033   if (!found_current) {
4034     st->cr();
4035     st->print("=>" PTR_FORMAT " (exited) ", current);
4036     current->print_on_error(st, buf, buflen);
4037     st->cr();
4038   }
4039 }
4040 
4041 // Internal SpinLock and Mutex
4042 // Based on ParkEvent
4043 
4044 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4045 //
4046 // We employ SpinLocks _only for low-contention, fixed-length
4047 // short-duration critical sections where we're concerned
4048 // about native mutex_t or HotSpot Mutex:: latency.
4049 // The mux construct provides a spin-then-block mutual exclusion
4050 // mechanism.
4051 //
4052 // Testing has shown that contention on the ListLock guarding gFreeList
4053 // is common.  If we implement ListLock as a simple SpinLock it's common
4054 // for the JVM to devolve to yielding with little progress.  This is true
4055 // despite the fact that the critical sections protected by ListLock are
4056 // extremely short.
4057 //
4058 // TODO-FIXME: ListLock should be of type SpinLock.
4059 // We should make this a 1st-class type, integrated into the lock
4060 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4061 // should have sufficient padding to avoid false-sharing and excessive
4062 // cache-coherency traffic.
4063 
4064 
4065 typedef volatile int SpinLockT ;
4066 
4067 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4068   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4069      return ;   // normal fast-path return
4070   }
4071 
4072   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4073   TEVENT (SpinAcquire - ctx) ;
4074   int ctr = 0 ;
4075   int Yields = 0 ;
4076   for (;;) {
4077      while (*adr != 0) {
4078         ++ctr ;
4079         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4080            if (Yields > 5) {
4081              // Consider using a simple NakedSleep() instead.
4082              // Then SpinAcquire could be called by non-JVM threads
4083              Thread::current()->_ParkEvent->park(1) ;
4084            } else {
4085              os::NakedYield() ;
4086              ++Yields ;
4087            }
4088         } else {
4089            SpinPause() ;
4090         }
4091      }
4092      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4093   }
4094 }
4095 
4096 void Thread::SpinRelease (volatile int * adr) {
4097   assert (*adr != 0, "invariant") ;
4098   OrderAccess::fence() ;      // guarantee at least release consistency.
4099   // Roach-motel semantics.
4100   // It's safe if subsequent LDs and STs float "up" into the critical section,
4101   // but prior LDs and STs within the critical section can't be allowed
4102   // to reorder or float past the ST that releases the lock.
4103   *adr = 0 ;
4104 }
4105 
4106 // muxAcquire and muxRelease:
4107 //
4108 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4109 //    The LSB of the word is set IFF the lock is held.
4110 //    The remainder of the word points to the head of a singly-linked list
4111 //    of threads blocked on the lock.
4112 //
4113 // *  The current implementation of muxAcquire-muxRelease uses its own
4114 //    dedicated Thread._MuxEvent instance.  If we're interested in
4115 //    minimizing the peak number of extant ParkEvent instances then
4116 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4117 //    as certain invariants were satisfied.  Specifically, care would need
4118 //    to be taken with regards to consuming unpark() "permits".
4119 //    A safe rule of thumb is that a thread would never call muxAcquire()
4120 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4121 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4122 //    consume an unpark() permit intended for monitorenter, for instance.
4123 //    One way around this would be to widen the restricted-range semaphore
4124 //    implemented in park().  Another alternative would be to provide
4125 //    multiple instances of the PlatformEvent() for each thread.  One
4126 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4127 //
4128 // *  Usage:
4129 //    -- Only as leaf locks
4130 //    -- for short-term locking only as muxAcquire does not perform
4131 //       thread state transitions.
4132 //
4133 // Alternatives:
4134 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4135 //    but with parking or spin-then-park instead of pure spinning.
4136 // *  Use Taura-Oyama-Yonenzawa locks.
4137 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4138 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4139 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4140 //    acquiring threads use timers (ParkTimed) to detect and recover from
4141 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4142 //    boundaries by using placement-new.
4143 // *  Augment MCS with advisory back-link fields maintained with CAS().
4144 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4145 //    The validity of the backlinks must be ratified before we trust the value.
4146 //    If the backlinks are invalid the exiting thread must back-track through the
4147 //    the forward links, which are always trustworthy.
4148 // *  Add a successor indication.  The LockWord is currently encoded as
4149 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4150 //    to provide the usual futile-wakeup optimization.
4151 //    See RTStt for details.
4152 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4153 //
4154 
4155 
4156 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4157 enum MuxBits { LOCKBIT = 1 } ;
4158 
4159 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4160   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4161   if (w == 0) return ;
4162   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4163      return ;
4164   }
4165 
4166   TEVENT (muxAcquire - Contention) ;
4167   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4168   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4169   for (;;) {
4170      int its = (os::is_MP() ? 100 : 0) + 1 ;
4171 
4172      // Optional spin phase: spin-then-park strategy
4173      while (--its >= 0) {
4174        w = *Lock ;
4175        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4176           return ;
4177        }
4178      }
4179 
4180      Self->reset() ;
4181      Self->OnList = intptr_t(Lock) ;
4182      // The following fence() isn't _strictly necessary as the subsequent
4183      // CAS() both serializes execution and ratifies the fetched *Lock value.
4184      OrderAccess::fence();
4185      for (;;) {
4186         w = *Lock ;
4187         if ((w & LOCKBIT) == 0) {
4188             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4189                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4190                 return ;
4191             }
4192             continue ;      // Interference -- *Lock changed -- Just retry
4193         }
4194         assert (w & LOCKBIT, "invariant") ;
4195         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4196         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4197      }
4198 
4199      while (Self->OnList != 0) {
4200         Self->park() ;
4201      }
4202   }
4203 }
4204 
4205 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4206   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4207   if (w == 0) return ;
4208   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4209     return ;
4210   }
4211 
4212   TEVENT (muxAcquire - Contention) ;
4213   ParkEvent * ReleaseAfter = NULL ;
4214   if (ev == NULL) {
4215     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4216   }
4217   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4218   for (;;) {
4219     guarantee (ev->OnList == 0, "invariant") ;
4220     int its = (os::is_MP() ? 100 : 0) + 1 ;
4221 
4222     // Optional spin phase: spin-then-park strategy
4223     while (--its >= 0) {
4224       w = *Lock ;
4225       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4226         if (ReleaseAfter != NULL) {
4227           ParkEvent::Release (ReleaseAfter) ;
4228         }
4229         return ;
4230       }
4231     }
4232 
4233     ev->reset() ;
4234     ev->OnList = intptr_t(Lock) ;
4235     // The following fence() isn't _strictly necessary as the subsequent
4236     // CAS() both serializes execution and ratifies the fetched *Lock value.
4237     OrderAccess::fence();
4238     for (;;) {
4239       w = *Lock ;
4240       if ((w & LOCKBIT) == 0) {
4241         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4242           ev->OnList = 0 ;
4243           // We call ::Release while holding the outer lock, thus
4244           // artificially lengthening the critical section.
4245           // Consider deferring the ::Release() until the subsequent unlock(),
4246           // after we've dropped the outer lock.
4247           if (ReleaseAfter != NULL) {
4248             ParkEvent::Release (ReleaseAfter) ;
4249           }
4250           return ;
4251         }
4252         continue ;      // Interference -- *Lock changed -- Just retry
4253       }
4254       assert (w & LOCKBIT, "invariant") ;
4255       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4256       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4257     }
4258 
4259     while (ev->OnList != 0) {
4260       ev->park() ;
4261     }
4262   }
4263 }
4264 
4265 // Release() must extract a successor from the list and then wake that thread.
4266 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4267 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4268 // Release() would :
4269 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4270 // (B) Extract a successor from the private list "in-hand"
4271 // (C) attempt to CAS() the residual back into *Lock over null.
4272 //     If there were any newly arrived threads and the CAS() would fail.
4273 //     In that case Release() would detach the RATs, re-merge the list in-hand
4274 //     with the RATs and repeat as needed.  Alternately, Release() might
4275 //     detach and extract a successor, but then pass the residual list to the wakee.
4276 //     The wakee would be responsible for reattaching and remerging before it
4277 //     competed for the lock.
4278 //
4279 // Both "pop" and DMR are immune from ABA corruption -- there can be
4280 // multiple concurrent pushers, but only one popper or detacher.
4281 // This implementation pops from the head of the list.  This is unfair,
4282 // but tends to provide excellent throughput as hot threads remain hot.
4283 // (We wake recently run threads first).
4284 
4285 void Thread::muxRelease (volatile intptr_t * Lock)  {
4286   for (;;) {
4287     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4288     assert (w & LOCKBIT, "invariant") ;
4289     if (w == LOCKBIT) return ;
4290     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4291     assert (List != NULL, "invariant") ;
4292     assert (List->OnList == intptr_t(Lock), "invariant") ;
4293     ParkEvent * nxt = List->ListNext ;
4294 
4295     // The following CAS() releases the lock and pops the head element.
4296     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4297       continue ;
4298     }
4299     List->OnList = 0 ;
4300     OrderAccess::fence() ;
4301     List->unpark () ;
4302     return ;
4303   }
4304 }
4305 
4306 
4307 void Threads::verify() {
4308   ALL_JAVA_THREADS(p) {
4309     p->verify();
4310   }
4311   VMThread* thread = VMThread::vm_thread();
4312   if (thread != NULL) thread->verify();
4313 }