1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_implementation/shared/gcTimer.hpp"
  29 #include "gc_implementation/shared/gcTraceTime.hpp"
  30 #include "gc_interface/collectedHeap.hpp"
  31 #include "gc_interface/collectedHeap.inline.hpp"
  32 #include "memory/referencePolicy.hpp"
  33 #include "memory/referenceProcessor.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/java.hpp"
  36 #include "runtime/jniHandles.hpp"
  37 
  38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  39 
  40 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  41 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  42 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
  43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  44 
  45 void referenceProcessor_init() {
  46   ReferenceProcessor::init_statics();
  47 }
  48 
  49 void ReferenceProcessor::init_statics() {
  50   // We need a monotonically non-decreasing time in ms but
  51   // os::javaTimeMillis() does not guarantee monotonicity.
  52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  53 
  54   // Initialize the soft ref timestamp clock.
  55   _soft_ref_timestamp_clock = now;
  56   // Also update the soft ref clock in j.l.r.SoftReference
  57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  58 
  59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  60   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  61                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  62   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  63     vm_exit_during_initialization("Could not allocate reference policy object");
  64   }
  65   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  66             RefDiscoveryPolicy == ReferentBasedDiscovery,
  67             "Unrecognized RefDiscoveryPolicy");
  68   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
  69 }
  70 
  71 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
  72 #ifdef ASSERT
  73   // Verify that we're not currently discovering refs
  74   assert(!verify_disabled || !_discovering_refs, "nested call?");
  75 
  76   if (check_no_refs) {
  77     // Verify that the discovered lists are empty
  78     verify_no_references_recorded();
  79   }
  80 #endif // ASSERT
  81 
  82   // Someone could have modified the value of the static
  83   // field in the j.l.r.SoftReference class that holds the
  84   // soft reference timestamp clock using reflection or
  85   // Unsafe between GCs. Unconditionally update the static
  86   // field in ReferenceProcessor here so that we use the new
  87   // value during reference discovery.
  88 
  89   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  90   _discovering_refs = true;
  91 }
  92 
  93 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  94                                        bool      mt_processing,
  95                                        uint      mt_processing_degree,
  96                                        bool      mt_discovery,
  97                                        uint      mt_discovery_degree,
  98                                        bool      atomic_discovery,
  99                                        BoolObjectClosure* is_alive_non_header)  :
 100   _discovering_refs(false),
 101   _enqueuing_is_done(false),
 102   _is_alive_non_header(is_alive_non_header),
 103   _processing_is_mt(mt_processing),
 104   _next_id(0)
 105 {
 106   _span = span;
 107   _discovery_is_atomic = atomic_discovery;
 108   _discovery_is_mt     = mt_discovery;
 109   _num_q               = MAX2(1U, mt_processing_degree);
 110   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 111   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 112             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 113 
 114   if (_discovered_refs == NULL) {
 115     vm_exit_during_initialization("Could not allocated RefProc Array");
 116   }
 117   _discoveredSoftRefs    = &_discovered_refs[0];
 118   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 119   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 120   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 121 
 122   // Initialize all entries to NULL
 123   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 124     _discovered_refs[i].set_head(NULL);
 125     _discovered_refs[i].set_length(0);
 126   }
 127 
 128   setup_policy(false /* default soft ref policy */);
 129 }
 130 
 131 #ifndef PRODUCT
 132 void ReferenceProcessor::verify_no_references_recorded() {
 133   guarantee(!_discovering_refs, "Discovering refs?");
 134   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 135     guarantee(_discovered_refs[i].is_empty(),
 136               "Found non-empty discovered list");
 137   }
 138 }
 139 #endif
 140 
 141 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 142   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 143     if (UseCompressedOops) {
 144       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 145     } else {
 146       f->do_oop((oop*)_discovered_refs[i].adr_head());
 147     }
 148   }
 149 }
 150 
 151 void ReferenceProcessor::update_soft_ref_master_clock() {
 152   // Update (advance) the soft ref master clock field. This must be done
 153   // after processing the soft ref list.
 154 
 155   // We need a monotonically non-decreasing time in ms but
 156   // os::javaTimeMillis() does not guarantee monotonicity.
 157   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 158   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 159   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 160 
 161   NOT_PRODUCT(
 162   if (now < _soft_ref_timestamp_clock) {
 163     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
 164             _soft_ref_timestamp_clock, now);
 165   }
 166   )
 167   // The values of now and _soft_ref_timestamp_clock are set using
 168   // javaTimeNanos(), which is guaranteed to be monotonically
 169   // non-decreasing provided the underlying platform provides such
 170   // a time source (and it is bug free).
 171   // In product mode, however, protect ourselves from non-monotonicity.
 172   if (now > _soft_ref_timestamp_clock) {
 173     _soft_ref_timestamp_clock = now;
 174     java_lang_ref_SoftReference::set_clock(now);
 175   }
 176   // Else leave clock stalled at its old value until time progresses
 177   // past clock value.
 178 }
 179 
 180 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
 181   size_t total = 0;
 182   for (uint i = 0; i < _max_num_q; ++i) {
 183     total += lists[i].length();
 184   }
 185   return total;
 186 }
 187 
 188 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 189   BoolObjectClosure*           is_alive,
 190   OopClosure*                  keep_alive,
 191   VoidClosure*                 complete_gc,
 192   AbstractRefProcTaskExecutor* task_executor,
 193   GCTimer*                     gc_timer,
 194   GCId                         gc_id) {
 195   NOT_PRODUCT(verify_ok_to_handle_reflists());
 196 
 197   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 198   // Stop treating discovered references specially.
 199   disable_discovery();
 200 
 201   // If discovery was concurrent, someone could have modified
 202   // the value of the static field in the j.l.r.SoftReference
 203   // class that holds the soft reference timestamp clock using
 204   // reflection or Unsafe between when discovery was enabled and
 205   // now. Unconditionally update the static field in ReferenceProcessor
 206   // here so that we use the new value during processing of the
 207   // discovered soft refs.
 208 
 209   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 210 
 211   bool trace_time = PrintGCDetails && PrintReferenceGC;
 212 
 213   // Soft references
 214   size_t soft_count = 0;
 215   {
 216     GCTraceTime tt("SoftReference", trace_time, false, gc_timer, gc_id);
 217     soft_count =
 218       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 219                                  is_alive, keep_alive, complete_gc, task_executor);
 220   }
 221 
 222   update_soft_ref_master_clock();
 223 
 224   // Weak references
 225   size_t weak_count = 0;
 226   {
 227     GCTraceTime tt("WeakReference", trace_time, false, gc_timer, gc_id);
 228     weak_count =
 229       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 230                                  is_alive, keep_alive, complete_gc, task_executor);
 231   }
 232 
 233   // Final references
 234   size_t final_count = 0;
 235   {
 236     GCTraceTime tt("FinalReference", trace_time, false, gc_timer, gc_id);
 237     final_count =
 238       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 239                                  is_alive, keep_alive, complete_gc, task_executor);
 240   }
 241 
 242   // Phantom references
 243   size_t phantom_count = 0;
 244   {
 245     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer, gc_id);
 246     phantom_count =
 247       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 248                                  is_alive, keep_alive, complete_gc, task_executor);
 249   }
 250 
 251   // Weak global JNI references. It would make more sense (semantically) to
 252   // traverse these simultaneously with the regular weak references above, but
 253   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 254   // thus use JNI weak references to circumvent the phantom references and
 255   // resurrect a "post-mortem" object.
 256   {
 257     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer, gc_id);
 258     if (task_executor != NULL) {
 259       task_executor->set_single_threaded_mode();
 260     }
 261     process_phaseJNI(is_alive, keep_alive, complete_gc);
 262   }
 263 
 264   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
 265 }
 266 
 267 #ifndef PRODUCT
 268 // Calculate the number of jni handles.
 269 uint ReferenceProcessor::count_jni_refs() {
 270   class AlwaysAliveClosure: public BoolObjectClosure {
 271   public:
 272     virtual bool do_object_b(oop obj) { return true; }
 273   };
 274 
 275   class CountHandleClosure: public OopClosure {
 276   private:
 277     int _count;
 278   public:
 279     CountHandleClosure(): _count(0) {}
 280     void do_oop(oop* unused)       { _count++; }
 281     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 282     int count() { return _count; }
 283   };
 284   CountHandleClosure global_handle_count;
 285   AlwaysAliveClosure always_alive;
 286   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 287   return global_handle_count.count();
 288 }
 289 #endif
 290 
 291 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 292                                           OopClosure*        keep_alive,
 293                                           VoidClosure*       complete_gc) {
 294 #ifndef PRODUCT
 295   if (PrintGCDetails && PrintReferenceGC) {
 296     unsigned int count = count_jni_refs();
 297     gclog_or_tty->print(", %u refs", count);
 298   }
 299 #endif
 300   JNIHandles::weak_oops_do(is_alive, keep_alive);
 301   complete_gc->do_void();
 302 }
 303 
 304 
 305 template <class T>
 306 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 307                                    AbstractRefProcTaskExecutor* task_executor) {
 308 
 309   // Remember old value of pending references list
 310   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 311   T old_pending_list_value = *pending_list_addr;
 312 
 313   // Enqueue references that are not made active again, and
 314   // clear the decks for the next collection (cycle).
 315   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 316   // Do the post-barrier on pending_list_addr missed in
 317   // enqueue_discovered_reflist.
 318   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 319 
 320   // Stop treating discovered references specially.
 321   ref->disable_discovery();
 322 
 323   // Return true if new pending references were added
 324   return old_pending_list_value != *pending_list_addr;
 325 }
 326 
 327 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 328   NOT_PRODUCT(verify_ok_to_handle_reflists());
 329   if (UseCompressedOops) {
 330     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 331   } else {
 332     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 333   }
 334 }
 335 
 336 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 337                                                     HeapWord* pending_list_addr) {
 338   // Given a list of refs linked through the "discovered" field
 339   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 340   // thus distinguishing them from active References, then
 341   // prepend them to the pending list.
 342   //
 343   // The Java threads will see the Reference objects linked together through
 344   // the discovered field. Instead of trying to do the write barrier updates
 345   // in all places in the reference processor where we manipulate the discovered
 346   // field we make sure to do the barrier here where we anyway iterate through
 347   // all linked Reference objects. Note that it is important to not dirty any
 348   // cards during reference processing since this will cause card table
 349   // verification to fail for G1.
 350   //
 351   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
 352   // the "next" field is used to chain the pending list, not the discovered
 353   // field.
 354   if (TraceReferenceGC && PrintGCDetails) {
 355     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 356                            INTPTR_FORMAT, (address)refs_list.head());
 357   }
 358 
 359   oop obj = NULL;
 360   oop next_d = refs_list.head();
 361   if (pending_list_uses_discovered_field()) { // New behavior
 362     // Walk down the list, self-looping the next field
 363     // so that the References are not considered active.
 364     while (obj != next_d) {
 365       obj = next_d;
 366       assert(obj->is_instanceRef(), "should be reference object");
 367       next_d = java_lang_ref_Reference::discovered(obj);
 368       if (TraceReferenceGC && PrintGCDetails) {
 369         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 370                                (void *)obj, (void *)next_d);
 371       }
 372       assert(java_lang_ref_Reference::next(obj) == NULL,
 373              "Reference not active; should not be discovered");
 374       // Self-loop next, so as to make Ref not active.
 375       java_lang_ref_Reference::set_next_raw(obj, obj);
 376       if (next_d != obj) {
 377         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 378       } else {
 379         // This is the last object.
 380         // Swap refs_list into pending_list_addr and
 381         // set obj's discovered to what we read from pending_list_addr.
 382         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 383         // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
 384         java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 385         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 386       }
 387     }
 388   } else { // Old behavior
 389     // Walk down the list, copying the discovered field into
 390     // the next field and clearing the discovered field.
 391     while (obj != next_d) {
 392       obj = next_d;
 393       assert(obj->is_instanceRef(), "should be reference object");
 394       next_d = java_lang_ref_Reference::discovered(obj);
 395       if (TraceReferenceGC && PrintGCDetails) {
 396         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 397                                (void *)obj, (void *)next_d);
 398       }
 399       assert(java_lang_ref_Reference::next(obj) == NULL,
 400              "The reference should not be enqueued");
 401       if (next_d == obj) {  // obj is last
 402         // Swap refs_list into pending_list_addr and
 403         // set obj's next to what we read from pending_list_addr.
 404         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 405         // Need oop_check on pending_list_addr above;
 406         // see special oop-check code at the end of
 407         // enqueue_discovered_reflists() further below.
 408         if (old == NULL) {
 409           // obj should be made to point to itself, since
 410           // pending list was empty.
 411           java_lang_ref_Reference::set_next(obj, obj);
 412         } else {
 413           java_lang_ref_Reference::set_next(obj, old);
 414         }
 415       } else {
 416         java_lang_ref_Reference::set_next(obj, next_d);
 417       }
 418       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 419     }
 420   }
 421 }
 422 
 423 // Parallel enqueue task
 424 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 425 public:
 426   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 427                      DiscoveredList      discovered_refs[],
 428                      HeapWord*           pending_list_addr,
 429                      int                 n_queues)
 430     : EnqueueTask(ref_processor, discovered_refs,
 431                   pending_list_addr, n_queues)
 432   { }
 433 
 434   virtual void work(unsigned int work_id) {
 435     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 436     // Simplest first cut: static partitioning.
 437     int index = work_id;
 438     // The increment on "index" must correspond to the maximum number of queues
 439     // (n_queues) with which that ReferenceProcessor was created.  That
 440     // is because of the "clever" way the discovered references lists were
 441     // allocated and are indexed into.
 442     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 443     for (int j = 0;
 444          j < ReferenceProcessor::number_of_subclasses_of_ref();
 445          j++, index += _n_queues) {
 446       _ref_processor.enqueue_discovered_reflist(
 447         _refs_lists[index], _pending_list_addr);
 448       _refs_lists[index].set_head(NULL);
 449       _refs_lists[index].set_length(0);
 450     }
 451   }
 452 };
 453 
 454 // Enqueue references that are not made active again
 455 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 456   AbstractRefProcTaskExecutor* task_executor) {
 457   if (_processing_is_mt && task_executor != NULL) {
 458     // Parallel code
 459     RefProcEnqueueTask tsk(*this, _discovered_refs,
 460                            pending_list_addr, _max_num_q);
 461     task_executor->execute(tsk);
 462   } else {
 463     // Serial code: call the parent class's implementation
 464     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 465       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 466       _discovered_refs[i].set_head(NULL);
 467       _discovered_refs[i].set_length(0);
 468     }
 469   }
 470 }
 471 
 472 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 473   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 474   oop discovered = java_lang_ref_Reference::discovered(_ref);
 475   assert(_discovered_addr && discovered->is_oop_or_null(),
 476          err_msg("Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)));
 477   _next = discovered;
 478   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 479   _referent = java_lang_ref_Reference::referent(_ref);
 480   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 481          "Wrong oop found in java.lang.Reference object");
 482   assert(allow_null_referent ?
 483              _referent->is_oop_or_null()
 484            : _referent->is_oop(),
 485          err_msg("Expected an oop%s for referent field at " PTR_FORMAT,
 486                  (allow_null_referent ? " or NULL" : ""),
 487                  p2i(_referent)));
 488 }
 489 
 490 void DiscoveredListIterator::remove() {
 491   assert(_ref->is_oop(), "Dropping a bad reference");
 492   oop_store_raw(_discovered_addr, NULL);
 493 
 494   // First _prev_next ref actually points into DiscoveredList (gross).
 495   oop new_next;
 496   if (_next == _ref) {
 497     // At the end of the list, we should make _prev point to itself.
 498     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 499     // and _prev will be NULL.
 500     new_next = _prev;
 501   } else {
 502     new_next = _next;
 503   }
 504   // Remove Reference object from discovered list. Note that G1 does not need a
 505   // pre-barrier here because we know the Reference has already been found/marked,
 506   // that's how it ended up in the discovered list in the first place.
 507   oop_store_raw(_prev_next, new_next);
 508   NOT_PRODUCT(_removed++);
 509   _refs_list.dec_length(1);
 510 }
 511 
 512 // Make the Reference object active again.
 513 void DiscoveredListIterator::make_active() {
 514   // The pre barrier for G1 is probably just needed for the old
 515   // reference processing behavior. Should we guard this with
 516   // ReferenceProcessor::pending_list_uses_discovered_field() ?
 517   if (UseG1GC) {
 518     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
 519     if (UseCompressedOops) {
 520       oopDesc::bs()->write_ref_field_pre((narrowOop*)next_addr, NULL);
 521     } else {
 522       oopDesc::bs()->write_ref_field_pre((oop*)next_addr, NULL);
 523     }
 524   }
 525   java_lang_ref_Reference::set_next_raw(_ref, NULL);
 526 }
 527 
 528 void DiscoveredListIterator::clear_referent() {
 529   oop_store_raw(_referent_addr, NULL);
 530 }
 531 
 532 // NOTE: process_phase*() are largely similar, and at a high level
 533 // merely iterate over the extant list applying a predicate to
 534 // each of its elements and possibly removing that element from the
 535 // list and applying some further closures to that element.
 536 // We should consider the possibility of replacing these
 537 // process_phase*() methods by abstracting them into
 538 // a single general iterator invocation that receives appropriate
 539 // closures that accomplish this work.
 540 
 541 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 542 // referents are not alive, but that should be kept alive for policy reasons.
 543 // Keep alive the transitive closure of all such referents.
 544 void
 545 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 546                                    ReferencePolicy*   policy,
 547                                    BoolObjectClosure* is_alive,
 548                                    OopClosure*        keep_alive,
 549                                    VoidClosure*       complete_gc) {
 550   assert(policy != NULL, "Must have a non-NULL policy");
 551   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 552   // Decide which softly reachable refs should be kept alive.
 553   while (iter.has_next()) {
 554     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 555     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 556     if (referent_is_dead &&
 557         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 558       if (TraceReferenceGC) {
 559         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 560                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
 561       }
 562       // Remove Reference object from list
 563       iter.remove();
 564       // Make the Reference object active again
 565       iter.make_active();
 566       // keep the referent around
 567       iter.make_referent_alive();
 568       iter.move_to_next();
 569     } else {
 570       iter.next();
 571     }
 572   }
 573   // Close the reachable set
 574   complete_gc->do_void();
 575   NOT_PRODUCT(
 576     if (PrintGCDetails && TraceReferenceGC) {
 577       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 578         "discovered Refs by policy, from list " INTPTR_FORMAT,
 579         iter.removed(), iter.processed(), (address)refs_list.head());
 580     }
 581   )
 582 }
 583 
 584 // Traverse the list and remove any Refs that are not active, or
 585 // whose referents are either alive or NULL.
 586 void
 587 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 588                              BoolObjectClosure* is_alive,
 589                              OopClosure*        keep_alive) {
 590   assert(discovery_is_atomic(), "Error");
 591   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 592   while (iter.has_next()) {
 593     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 594     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 595     assert(next == NULL, "Should not discover inactive Reference");
 596     if (iter.is_referent_alive()) {
 597       if (TraceReferenceGC) {
 598         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 599                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
 600       }
 601       // The referent is reachable after all.
 602       // Remove Reference object from list.
 603       iter.remove();
 604       // Update the referent pointer as necessary: Note that this
 605       // should not entail any recursive marking because the
 606       // referent must already have been traversed.
 607       iter.make_referent_alive();
 608       iter.move_to_next();
 609     } else {
 610       iter.next();
 611     }
 612   }
 613   NOT_PRODUCT(
 614     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 615       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 616         "Refs in discovered list " INTPTR_FORMAT,
 617         iter.removed(), iter.processed(), (address)refs_list.head());
 618     }
 619   )
 620 }
 621 
 622 void
 623 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 624                                                   BoolObjectClosure* is_alive,
 625                                                   OopClosure*        keep_alive,
 626                                                   VoidClosure*       complete_gc) {
 627   assert(!discovery_is_atomic(), "Error");
 628   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 629   while (iter.has_next()) {
 630     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 631     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 632     oop next = java_lang_ref_Reference::next(iter.obj());
 633     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 634          next != NULL)) {
 635       assert(next->is_oop_or_null(), err_msg("Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next)));
 636       // Remove Reference object from list
 637       iter.remove();
 638       // Trace the cohorts
 639       iter.make_referent_alive();
 640       if (UseCompressedOops) {
 641         keep_alive->do_oop((narrowOop*)next_addr);
 642       } else {
 643         keep_alive->do_oop((oop*)next_addr);
 644       }
 645       iter.move_to_next();
 646     } else {
 647       iter.next();
 648     }
 649   }
 650   // Now close the newly reachable set
 651   complete_gc->do_void();
 652   NOT_PRODUCT(
 653     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 654       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 655         "Refs in discovered list " INTPTR_FORMAT,
 656         iter.removed(), iter.processed(), (address)refs_list.head());
 657     }
 658   )
 659 }
 660 
 661 // Traverse the list and process the referents, by either
 662 // clearing them or keeping them (and their reachable
 663 // closure) alive.
 664 void
 665 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 666                                    bool               clear_referent,
 667                                    BoolObjectClosure* is_alive,
 668                                    OopClosure*        keep_alive,
 669                                    VoidClosure*       complete_gc) {
 670   ResourceMark rm;
 671   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 672   while (iter.has_next()) {
 673     iter.update_discovered();
 674     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 675     if (clear_referent) {
 676       // NULL out referent pointer
 677       iter.clear_referent();
 678     } else {
 679       // keep the referent around
 680       iter.make_referent_alive();
 681     }
 682     if (TraceReferenceGC) {
 683       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 684                              clear_referent ? "cleared " : "",
 685                              (void *)iter.obj(), iter.obj()->klass()->internal_name());
 686     }
 687     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 688     iter.next();
 689   }
 690   // Remember to update the next pointer of the last ref.
 691   iter.update_discovered();
 692   // Close the reachable set
 693   complete_gc->do_void();
 694 }
 695 
 696 void
 697 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 698   oop obj = NULL;
 699   oop next = refs_list.head();
 700   while (next != obj) {
 701     obj = next;
 702     next = java_lang_ref_Reference::discovered(obj);
 703     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 704   }
 705   refs_list.set_head(NULL);
 706   refs_list.set_length(0);
 707 }
 708 
 709 void
 710 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 711   clear_discovered_references(refs_list);
 712 }
 713 
 714 void ReferenceProcessor::abandon_partial_discovery() {
 715   // loop over the lists
 716   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 717     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 718       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
 719     }
 720     abandon_partial_discovered_list(_discovered_refs[i]);
 721   }
 722 }
 723 
 724 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 725 public:
 726   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 727                     DiscoveredList      refs_lists[],
 728                     ReferencePolicy*    policy,
 729                     bool                marks_oops_alive)
 730     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 731       _policy(policy)
 732   { }
 733   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 734                     OopClosure& keep_alive,
 735                     VoidClosure& complete_gc)
 736   {
 737     Thread* thr = Thread::current();
 738     int refs_list_index = ((WorkerThread*)thr)->id();
 739     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 740                                   &is_alive, &keep_alive, &complete_gc);
 741   }
 742 private:
 743   ReferencePolicy* _policy;
 744 };
 745 
 746 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 747 public:
 748   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 749                     DiscoveredList      refs_lists[],
 750                     bool                marks_oops_alive)
 751     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 752   { }
 753   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 754                     OopClosure& keep_alive,
 755                     VoidClosure& complete_gc)
 756   {
 757     _ref_processor.process_phase2(_refs_lists[i],
 758                                   &is_alive, &keep_alive, &complete_gc);
 759   }
 760 };
 761 
 762 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 763 public:
 764   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 765                     DiscoveredList      refs_lists[],
 766                     bool                clear_referent,
 767                     bool                marks_oops_alive)
 768     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 769       _clear_referent(clear_referent)
 770   { }
 771   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 772                     OopClosure& keep_alive,
 773                     VoidClosure& complete_gc)
 774   {
 775     // Don't use "refs_list_index" calculated in this way because
 776     // balance_queues() has moved the Ref's into the first n queues.
 777     // Thread* thr = Thread::current();
 778     // int refs_list_index = ((WorkerThread*)thr)->id();
 779     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 780     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 781                                   &is_alive, &keep_alive, &complete_gc);
 782   }
 783 private:
 784   bool _clear_referent;
 785 };
 786 
 787 // Balances reference queues.
 788 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 789 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 790 // corresponding to the active workers will be processed.
 791 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 792 {
 793   // calculate total length
 794   size_t total_refs = 0;
 795   if (TraceReferenceGC && PrintGCDetails) {
 796     gclog_or_tty->print_cr("\nBalance ref_lists ");
 797   }
 798 
 799   for (uint i = 0; i < _max_num_q; ++i) {
 800     total_refs += ref_lists[i].length();
 801     if (TraceReferenceGC && PrintGCDetails) {
 802       gclog_or_tty->print("%d ", ref_lists[i].length());
 803     }
 804   }
 805   if (TraceReferenceGC && PrintGCDetails) {
 806     gclog_or_tty->print_cr(" = %d", total_refs);
 807   }
 808   size_t avg_refs = total_refs / _num_q + 1;
 809   uint to_idx = 0;
 810   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 811     bool move_all = false;
 812     if (from_idx >= _num_q) {
 813       move_all = ref_lists[from_idx].length() > 0;
 814     }
 815     while ((ref_lists[from_idx].length() > avg_refs) ||
 816            move_all) {
 817       assert(to_idx < _num_q, "Sanity Check!");
 818       if (ref_lists[to_idx].length() < avg_refs) {
 819         // move superfluous refs
 820         size_t refs_to_move;
 821         // Move all the Ref's if the from queue will not be processed.
 822         if (move_all) {
 823           refs_to_move = MIN2(ref_lists[from_idx].length(),
 824                               avg_refs - ref_lists[to_idx].length());
 825         } else {
 826           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 827                               avg_refs - ref_lists[to_idx].length());
 828         }
 829 
 830         assert(refs_to_move > 0, "otherwise the code below will fail");
 831 
 832         oop move_head = ref_lists[from_idx].head();
 833         oop move_tail = move_head;
 834         oop new_head  = move_head;
 835         // find an element to split the list on
 836         for (size_t j = 0; j < refs_to_move; ++j) {
 837           move_tail = new_head;
 838           new_head = java_lang_ref_Reference::discovered(new_head);
 839         }
 840 
 841         // Add the chain to the to list.
 842         if (ref_lists[to_idx].head() == NULL) {
 843           // to list is empty. Make a loop at the end.
 844           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 845         } else {
 846           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 847         }
 848         ref_lists[to_idx].set_head(move_head);
 849         ref_lists[to_idx].inc_length(refs_to_move);
 850 
 851         // Remove the chain from the from list.
 852         if (move_tail == new_head) {
 853           // We found the end of the from list.
 854           ref_lists[from_idx].set_head(NULL);
 855         } else {
 856           ref_lists[from_idx].set_head(new_head);
 857         }
 858         ref_lists[from_idx].dec_length(refs_to_move);
 859         if (ref_lists[from_idx].length() == 0) {
 860           break;
 861         }
 862       } else {
 863         to_idx = (to_idx + 1) % _num_q;
 864       }
 865     }
 866   }
 867 #ifdef ASSERT
 868   size_t balanced_total_refs = 0;
 869   for (uint i = 0; i < _max_num_q; ++i) {
 870     balanced_total_refs += ref_lists[i].length();
 871     if (TraceReferenceGC && PrintGCDetails) {
 872       gclog_or_tty->print("%d ", ref_lists[i].length());
 873     }
 874   }
 875   if (TraceReferenceGC && PrintGCDetails) {
 876     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 877     gclog_or_tty->flush();
 878   }
 879   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 880 #endif
 881 }
 882 
 883 void ReferenceProcessor::balance_all_queues() {
 884   balance_queues(_discoveredSoftRefs);
 885   balance_queues(_discoveredWeakRefs);
 886   balance_queues(_discoveredFinalRefs);
 887   balance_queues(_discoveredPhantomRefs);
 888 }
 889 
 890 size_t
 891 ReferenceProcessor::process_discovered_reflist(
 892   DiscoveredList               refs_lists[],
 893   ReferencePolicy*             policy,
 894   bool                         clear_referent,
 895   BoolObjectClosure*           is_alive,
 896   OopClosure*                  keep_alive,
 897   VoidClosure*                 complete_gc,
 898   AbstractRefProcTaskExecutor* task_executor)
 899 {
 900   bool mt_processing = task_executor != NULL && _processing_is_mt;
 901   // If discovery used MT and a dynamic number of GC threads, then
 902   // the queues must be balanced for correctness if fewer than the
 903   // maximum number of queues were used.  The number of queue used
 904   // during discovery may be different than the number to be used
 905   // for processing so don't depend of _num_q < _max_num_q as part
 906   // of the test.
 907   bool must_balance = _discovery_is_mt;
 908 
 909   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 910       must_balance) {
 911     balance_queues(refs_lists);
 912   }
 913 
 914   size_t total_list_count = total_count(refs_lists);
 915 
 916   if (PrintReferenceGC && PrintGCDetails) {
 917     gclog_or_tty->print(", %u refs", total_list_count);
 918   }
 919 
 920   // Phase 1 (soft refs only):
 921   // . Traverse the list and remove any SoftReferences whose
 922   //   referents are not alive, but that should be kept alive for
 923   //   policy reasons. Keep alive the transitive closure of all
 924   //   such referents.
 925   if (policy != NULL) {
 926     if (mt_processing) {
 927       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 928       task_executor->execute(phase1);
 929     } else {
 930       for (uint i = 0; i < _max_num_q; i++) {
 931         process_phase1(refs_lists[i], policy,
 932                        is_alive, keep_alive, complete_gc);
 933       }
 934     }
 935   } else { // policy == NULL
 936     assert(refs_lists != _discoveredSoftRefs,
 937            "Policy must be specified for soft references.");
 938   }
 939 
 940   // Phase 2:
 941   // . Traverse the list and remove any refs whose referents are alive.
 942   if (mt_processing) {
 943     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 944     task_executor->execute(phase2);
 945   } else {
 946     for (uint i = 0; i < _max_num_q; i++) {
 947       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 948     }
 949   }
 950 
 951   // Phase 3:
 952   // . Traverse the list and process referents as appropriate.
 953   if (mt_processing) {
 954     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 955     task_executor->execute(phase3);
 956   } else {
 957     for (uint i = 0; i < _max_num_q; i++) {
 958       process_phase3(refs_lists[i], clear_referent,
 959                      is_alive, keep_alive, complete_gc);
 960     }
 961   }
 962 
 963   return total_list_count;
 964 }
 965 
 966 void ReferenceProcessor::clean_up_discovered_references() {
 967   // loop over the lists
 968   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 969     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 970       gclog_or_tty->print_cr(
 971         "\nScrubbing %s discovered list of Null referents",
 972         list_name(i));
 973     }
 974     clean_up_discovered_reflist(_discovered_refs[i]);
 975   }
 976 }
 977 
 978 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
 979   assert(!discovery_is_atomic(), "Else why call this method?");
 980   DiscoveredListIterator iter(refs_list, NULL, NULL);
 981   while (iter.has_next()) {
 982     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 983     oop next = java_lang_ref_Reference::next(iter.obj());
 984     assert(next->is_oop_or_null(), err_msg("Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next)));
 985     // If referent has been cleared or Reference is not active,
 986     // drop it.
 987     if (iter.referent() == NULL || next != NULL) {
 988       debug_only(
 989         if (PrintGCDetails && TraceReferenceGC) {
 990           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
 991             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
 992             " and referent: " INTPTR_FORMAT,
 993             (void *)iter.obj(), (void *)next, (void *)iter.referent());
 994         }
 995       )
 996       // Remove Reference object from list
 997       iter.remove();
 998       iter.move_to_next();
 999     } else {
1000       iter.next();
1001     }
1002   }
1003   NOT_PRODUCT(
1004     if (PrintGCDetails && TraceReferenceGC) {
1005       gclog_or_tty->print(
1006         " Removed %d Refs with NULL referents out of %d discovered Refs",
1007         iter.removed(), iter.processed());
1008     }
1009   )
1010 }
1011 
1012 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
1013   uint id = 0;
1014   // Determine the queue index to use for this object.
1015   if (_discovery_is_mt) {
1016     // During a multi-threaded discovery phase,
1017     // each thread saves to its "own" list.
1018     Thread* thr = Thread::current();
1019     id = thr->as_Worker_thread()->id();
1020   } else {
1021     // single-threaded discovery, we save in round-robin
1022     // fashion to each of the lists.
1023     if (_processing_is_mt) {
1024       id = next_id();
1025     }
1026   }
1027   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
1028 
1029   // Get the discovered queue to which we will add
1030   DiscoveredList* list = NULL;
1031   switch (rt) {
1032     case REF_OTHER:
1033       // Unknown reference type, no special treatment
1034       break;
1035     case REF_SOFT:
1036       list = &_discoveredSoftRefs[id];
1037       break;
1038     case REF_WEAK:
1039       list = &_discoveredWeakRefs[id];
1040       break;
1041     case REF_FINAL:
1042       list = &_discoveredFinalRefs[id];
1043       break;
1044     case REF_PHANTOM:
1045       list = &_discoveredPhantomRefs[id];
1046       break;
1047     case REF_NONE:
1048       // we should not reach here if we are an InstanceRefKlass
1049     default:
1050       ShouldNotReachHere();
1051   }
1052   if (TraceReferenceGC && PrintGCDetails) {
1053     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1054   }
1055   return list;
1056 }
1057 
1058 inline void
1059 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1060                                               oop             obj,
1061                                               HeapWord*       discovered_addr) {
1062   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1063   // First we must make sure this object is only enqueued once. CAS in a non null
1064   // discovered_addr.
1065   oop current_head = refs_list.head();
1066   // The last ref must have its discovered field pointing to itself.
1067   oop next_discovered = (current_head != NULL) ? current_head : obj;
1068 
1069   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
1070                                                     NULL);
1071   if (retest == NULL) {
1072     // This thread just won the right to enqueue the object.
1073     // We have separate lists for enqueueing, so no synchronization
1074     // is necessary.
1075     refs_list.set_head(obj);
1076     refs_list.inc_length(1);
1077 
1078     if (TraceReferenceGC) {
1079       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
1080                              (void *)obj, obj->klass()->internal_name());
1081     }
1082   } else {
1083     // If retest was non NULL, another thread beat us to it:
1084     // The reference has already been discovered...
1085     if (TraceReferenceGC) {
1086       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1087                              (void *)obj, obj->klass()->internal_name());
1088     }
1089   }
1090 }
1091 
1092 #ifndef PRODUCT
1093 // Non-atomic (i.e. concurrent) discovery might allow us
1094 // to observe j.l.References with NULL referents, being those
1095 // cleared concurrently by mutators during (or after) discovery.
1096 void ReferenceProcessor::verify_referent(oop obj) {
1097   bool da = discovery_is_atomic();
1098   oop referent = java_lang_ref_Reference::referent(obj);
1099   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1100          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1101                  INTPTR_FORMAT " during %satomic discovery ",
1102                  (void *)referent, (void *)obj, da ? "" : "non-"));
1103 }
1104 #endif
1105 
1106 // We mention two of several possible choices here:
1107 // #0: if the reference object is not in the "originating generation"
1108 //     (or part of the heap being collected, indicated by our "span"
1109 //     we don't treat it specially (i.e. we scan it as we would
1110 //     a normal oop, treating its references as strong references).
1111 //     This means that references can't be discovered unless their
1112 //     referent is also in the same span. This is the simplest,
1113 //     most "local" and most conservative approach, albeit one
1114 //     that may cause weak references to be enqueued least promptly.
1115 //     We call this choice the "ReferenceBasedDiscovery" policy.
1116 // #1: the reference object may be in any generation (span), but if
1117 //     the referent is in the generation (span) being currently collected
1118 //     then we can discover the reference object, provided
1119 //     the object has not already been discovered by
1120 //     a different concurrently running collector (as may be the
1121 //     case, for instance, if the reference object is in CMS and
1122 //     the referent in DefNewGeneration), and provided the processing
1123 //     of this reference object by the current collector will
1124 //     appear atomic to every other collector in the system.
1125 //     (Thus, for instance, a concurrent collector may not
1126 //     discover references in other generations even if the
1127 //     referent is in its own generation). This policy may,
1128 //     in certain cases, enqueue references somewhat sooner than
1129 //     might Policy #0 above, but at marginally increased cost
1130 //     and complexity in processing these references.
1131 //     We call this choice the "RefeferentBasedDiscovery" policy.
1132 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1133   // Make sure we are discovering refs (rather than processing discovered refs).
1134   if (!_discovering_refs || !RegisterReferences) {
1135     return false;
1136   }
1137   // We only discover active references.
1138   oop next = java_lang_ref_Reference::next(obj);
1139   if (next != NULL) {   // Ref is no longer active
1140     return false;
1141   }
1142 
1143   HeapWord* obj_addr = (HeapWord*)obj;
1144   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1145       !_span.contains(obj_addr)) {
1146     // Reference is not in the originating generation;
1147     // don't treat it specially (i.e. we want to scan it as a normal
1148     // object with strong references).
1149     return false;
1150   }
1151 
1152   // We only discover references whose referents are not (yet)
1153   // known to be strongly reachable.
1154   if (is_alive_non_header() != NULL) {
1155     verify_referent(obj);
1156     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1157       return false;  // referent is reachable
1158     }
1159   }
1160   if (rt == REF_SOFT) {
1161     // For soft refs we can decide now if these are not
1162     // current candidates for clearing, in which case we
1163     // can mark through them now, rather than delaying that
1164     // to the reference-processing phase. Since all current
1165     // time-stamp policies advance the soft-ref clock only
1166     // at a major collection cycle, this is always currently
1167     // accurate.
1168     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1169       return false;
1170     }
1171   }
1172 
1173   ResourceMark rm;      // Needed for tracing.
1174 
1175   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1176   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1177   assert(discovered->is_oop_or_null(), err_msg("Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)));
1178   if (discovered != NULL) {
1179     // The reference has already been discovered...
1180     if (TraceReferenceGC) {
1181       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1182                              (void *)obj, obj->klass()->internal_name());
1183     }
1184     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1185       // assumes that an object is not processed twice;
1186       // if it's been already discovered it must be on another
1187       // generation's discovered list; so we won't discover it.
1188       return false;
1189     } else {
1190       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1191              "Unrecognized policy");
1192       // Check assumption that an object is not potentially
1193       // discovered twice except by concurrent collectors that potentially
1194       // trace the same Reference object twice.
1195       assert(UseConcMarkSweepGC || UseG1GC,
1196              "Only possible with a concurrent marking collector");
1197       return true;
1198     }
1199   }
1200 
1201   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1202     verify_referent(obj);
1203     // Discover if and only if EITHER:
1204     // .. reference is in our span, OR
1205     // .. we are an atomic collector and referent is in our span
1206     if (_span.contains(obj_addr) ||
1207         (discovery_is_atomic() &&
1208          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1209       // should_enqueue = true;
1210     } else {
1211       return false;
1212     }
1213   } else {
1214     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1215            _span.contains(obj_addr), "code inconsistency");
1216   }
1217 
1218   // Get the right type of discovered queue head.
1219   DiscoveredList* list = get_discovered_list(rt);
1220   if (list == NULL) {
1221     return false;   // nothing special needs to be done
1222   }
1223 
1224   if (_discovery_is_mt) {
1225     add_to_discovered_list_mt(*list, obj, discovered_addr);
1226   } else {
1227     // We do a raw store here: the field will be visited later when processing
1228     // the discovered references.
1229     oop current_head = list->head();
1230     // The last ref must have its discovered field pointing to itself.
1231     oop next_discovered = (current_head != NULL) ? current_head : obj;
1232 
1233     assert(discovered == NULL, "control point invariant");
1234     oop_store_raw(discovered_addr, next_discovered);
1235     list->set_head(obj);
1236     list->inc_length(1);
1237 
1238     if (TraceReferenceGC) {
1239       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1240                                 (void *)obj, obj->klass()->internal_name());
1241     }
1242   }
1243   assert(obj->is_oop(), "Discovered a bad reference");
1244   verify_referent(obj);
1245   return true;
1246 }
1247 
1248 // Preclean the discovered references by removing those
1249 // whose referents are alive, and by marking from those that
1250 // are not active. These lists can be handled here
1251 // in any order and, indeed, concurrently.
1252 void ReferenceProcessor::preclean_discovered_references(
1253   BoolObjectClosure* is_alive,
1254   OopClosure* keep_alive,
1255   VoidClosure* complete_gc,
1256   YieldClosure* yield,
1257   GCTimer* gc_timer,
1258   GCId     gc_id) {
1259 
1260   NOT_PRODUCT(verify_ok_to_handle_reflists());
1261 
1262   // Soft references
1263   {
1264     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1265               false, gc_timer, gc_id);
1266     for (uint i = 0; i < _max_num_q; i++) {
1267       if (yield->should_return()) {
1268         return;
1269       }
1270       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1271                                   keep_alive, complete_gc, yield);
1272     }
1273   }
1274 
1275   // Weak references
1276   {
1277     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1278               false, gc_timer, gc_id);
1279     for (uint i = 0; i < _max_num_q; i++) {
1280       if (yield->should_return()) {
1281         return;
1282       }
1283       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1284                                   keep_alive, complete_gc, yield);
1285     }
1286   }
1287 
1288   // Final references
1289   {
1290     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1291               false, gc_timer, gc_id);
1292     for (uint i = 0; i < _max_num_q; i++) {
1293       if (yield->should_return()) {
1294         return;
1295       }
1296       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1297                                   keep_alive, complete_gc, yield);
1298     }
1299   }
1300 
1301   // Phantom references
1302   {
1303     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1304               false, gc_timer, gc_id);
1305     for (uint i = 0; i < _max_num_q; i++) {
1306       if (yield->should_return()) {
1307         return;
1308       }
1309       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1310                                   keep_alive, complete_gc, yield);
1311     }
1312   }
1313 }
1314 
1315 // Walk the given discovered ref list, and remove all reference objects
1316 // whose referents are still alive, whose referents are NULL or which
1317 // are not active (have a non-NULL next field). NOTE: When we are
1318 // thus precleaning the ref lists (which happens single-threaded today),
1319 // we do not disable refs discovery to honor the correct semantics of
1320 // java.lang.Reference. As a result, we need to be careful below
1321 // that ref removal steps interleave safely with ref discovery steps
1322 // (in this thread).
1323 void
1324 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1325                                                 BoolObjectClosure* is_alive,
1326                                                 OopClosure*        keep_alive,
1327                                                 VoidClosure*       complete_gc,
1328                                                 YieldClosure*      yield) {
1329   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1330   while (iter.has_next()) {
1331     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1332     oop obj = iter.obj();
1333     oop next = java_lang_ref_Reference::next(obj);
1334     if (iter.referent() == NULL || iter.is_referent_alive() ||
1335         next != NULL) {
1336       // The referent has been cleared, or is alive, or the Reference is not
1337       // active; we need to trace and mark its cohort.
1338       if (TraceReferenceGC) {
1339         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1340                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
1341       }
1342       // Remove Reference object from list
1343       iter.remove();
1344       // Keep alive its cohort.
1345       iter.make_referent_alive();
1346       if (UseCompressedOops) {
1347         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1348         keep_alive->do_oop(next_addr);
1349       } else {
1350         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1351         keep_alive->do_oop(next_addr);
1352       }
1353       iter.move_to_next();
1354     } else {
1355       iter.next();
1356     }
1357   }
1358   // Close the reachable set
1359   complete_gc->do_void();
1360 
1361   NOT_PRODUCT(
1362     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1363       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1364         "Refs in discovered list " INTPTR_FORMAT,
1365         iter.removed(), iter.processed(), (address)refs_list.head());
1366     }
1367   )
1368 }
1369 
1370 const char* ReferenceProcessor::list_name(uint i) {
1371    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
1372           "Out of bounds index");
1373 
1374    int j = i / _max_num_q;
1375    switch (j) {
1376      case 0: return "SoftRef";
1377      case 1: return "WeakRef";
1378      case 2: return "FinalRef";
1379      case 3: return "PhantomRef";
1380    }
1381    ShouldNotReachHere();
1382    return NULL;
1383 }
1384 
1385 #ifndef PRODUCT
1386 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1387   // empty for now
1388 }
1389 #endif
1390 
1391 #ifndef PRODUCT
1392 void ReferenceProcessor::clear_discovered_references() {
1393   guarantee(!_discovering_refs, "Discovering refs?");
1394   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1395     clear_discovered_references(_discovered_refs[i]);
1396   }
1397 }
1398 
1399 #endif // PRODUCT