1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvmtifiles/jvmtiEnv.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logConfiguration.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.inline.hpp"
  49 #include "oops/instanceKlass.hpp"
  50 #include "oops/objArrayOop.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/symbol.hpp"
  53 #include "oops/verifyOopClosure.hpp"
  54 #include "prims/jvm_misc.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "prims/jvmtiThreadState.hpp"
  57 #include "prims/privilegedStack.hpp"
  58 #include "runtime/arguments.hpp"
  59 #include "runtime/atomic.inline.hpp"
  60 #include "runtime/biasedLocking.hpp"
  61 #include "runtime/commandLineFlagConstraintList.hpp"
  62 #include "runtime/commandLineFlagWriteableList.hpp"
  63 #include "runtime/commandLineFlagRangeList.hpp"
  64 #include "runtime/deoptimization.hpp"
  65 #include "runtime/fprofiler.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/jniPeriodicChecker.hpp"
  73 #include "runtime/timerTrace.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/safepoint.hpp"
  80 #include "runtime/sharedRuntime.hpp"
  81 #include "runtime/statSampler.hpp"
  82 #include "runtime/stubRoutines.hpp"
  83 #include "runtime/sweeper.hpp"
  84 #include "runtime/task.hpp"
  85 #include "runtime/thread.inline.hpp"
  86 #include "runtime/threadCritical.hpp"
  87 #include "runtime/vframe.hpp"
  88 #include "runtime/vframeArray.hpp"
  89 #include "runtime/vframe_hp.hpp"
  90 #include "runtime/vmThread.hpp"
  91 #include "runtime/vm_operations.hpp"
  92 #include "runtime/vm_version.hpp"
  93 #include "services/attachListener.hpp"
  94 #include "services/management.hpp"
  95 #include "services/memTracker.hpp"
  96 #include "services/threadService.hpp"
  97 #include "trace/traceMacros.hpp"
  98 #include "trace/tracing.hpp"
  99 #include "utilities/defaultStream.hpp"
 100 #include "utilities/dtrace.hpp"
 101 #include "utilities/events.hpp"
 102 #include "utilities/macros.hpp"
 103 #include "utilities/preserveException.hpp"
 104 #if INCLUDE_ALL_GCS
 105 #include "gc/cms/concurrentMarkSweepThread.hpp"
 106 #include "gc/g1/concurrentMarkThread.inline.hpp"
 107 #include "gc/parallel/pcTasks.hpp"
 108 #endif // INCLUDE_ALL_GCS
 109 #if INCLUDE_JVMCI
 110 #include "jvmci/jvmciCompiler.hpp"
 111 #include "jvmci/jvmciRuntime.hpp"
 112 #endif
 113 #ifdef COMPILER1
 114 #include "c1/c1_Compiler.hpp"
 115 #endif
 116 #ifdef COMPILER2
 117 #include "opto/c2compiler.hpp"
 118 #include "opto/idealGraphPrinter.hpp"
 119 #endif
 120 #if INCLUDE_RTM_OPT
 121 #include "runtime/rtmLocking.hpp"
 122 #endif
 123 
 124 // Initialization after module runtime initialization
 125 void universe_post_module_init();  // must happen after call_initPhase2
 126 
 127 #ifdef DTRACE_ENABLED
 128 
 129 // Only bother with this argument setup if dtrace is available
 130 
 131   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 132   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 133 
 134   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 135     {                                                                      \
 136       ResourceMark rm(this);                                               \
 137       int len = 0;                                                         \
 138       const char* name = (javathread)->get_thread_name();                  \
 139       len = strlen(name);                                                  \
 140       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 141         (char *) name, len,                                                \
 142         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 143         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 144         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 145     }
 146 
 147 #else //  ndef DTRACE_ENABLED
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)
 150 
 151 #endif // ndef DTRACE_ENABLED
 152 
 153 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 154 // Current thread is maintained as a thread-local variable
 155 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 156 #endif
 157 // Class hierarchy
 158 // - Thread
 159 //   - VMThread
 160 //   - WatcherThread
 161 //   - ConcurrentMarkSweepThread
 162 //   - JavaThread
 163 //     - CompilerThread
 164 
 165 // ======= Thread ========
 166 // Support for forcing alignment of thread objects for biased locking
 167 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 168   if (UseBiasedLocking) {
 169     const int alignment = markOopDesc::biased_lock_alignment;
 170     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 171     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 172                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 173                                                          AllocFailStrategy::RETURN_NULL);
 174     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 175     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 176            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 177            "JavaThread alignment code overflowed allocated storage");
 178     if (aligned_addr != real_malloc_addr) {
 179       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 180                               p2i(real_malloc_addr),
 181                               p2i(aligned_addr));
 182     }
 183     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 184     return aligned_addr;
 185   } else {
 186     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 187                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 188   }
 189 }
 190 
 191 void Thread::operator delete(void* p) {
 192   if (UseBiasedLocking) {
 193     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 194     FreeHeap(real_malloc_addr);
 195   } else {
 196     FreeHeap(p);
 197   }
 198 }
 199 
 200 
 201 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 202 // JavaThread
 203 
 204 
 205 Thread::Thread() {
 206   // stack and get_thread
 207   set_stack_base(NULL);
 208   set_stack_size(0);
 209   set_self_raw_id(0);
 210   set_lgrp_id(-1);
 211   DEBUG_ONLY(clear_suspendible_thread();)
 212 
 213   // allocated data structures
 214   set_osthread(NULL);
 215   set_resource_area(new (mtThread)ResourceArea());
 216   DEBUG_ONLY(_current_resource_mark = NULL;)
 217   set_handle_area(new (mtThread) HandleArea(NULL));
 218   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   _jvmti_env_iteration_count = 0;
 235   set_allocated_bytes(0);
 236   _vm_operation_started_count = 0;
 237   _vm_operation_completed_count = 0;
 238   _current_pending_monitor = NULL;
 239   _current_pending_monitor_is_from_java = true;
 240   _current_waiting_monitor = NULL;
 241   _num_nested_signal = 0;
 242   omFreeList = NULL;
 243   omFreeCount = 0;
 244   omFreeProvision = 32;
 245   omInUseList = NULL;
 246   omInUseCount = 0;
 247 
 248 #ifdef ASSERT
 249   _visited_for_critical_count = false;
 250 #endif
 251 
 252   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 253                          Monitor::_safepoint_check_sometimes);
 254   _suspend_flags = 0;
 255 
 256   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 257   _hashStateX = os::random();
 258   _hashStateY = 842502087;
 259   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 260   _hashStateW = 273326509;
 261 
 262   _OnTrap   = 0;
 263   _schedctl = NULL;
 264   _Stalled  = 0;
 265   _TypeTag  = 0x2BAD;
 266 
 267   // Many of the following fields are effectively final - immutable
 268   // Note that nascent threads can't use the Native Monitor-Mutex
 269   // construct until the _MutexEvent is initialized ...
 270   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 271   // we might instead use a stack of ParkEvents that we could provision on-demand.
 272   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 273   // and ::Release()
 274   _ParkEvent   = ParkEvent::Allocate(this);
 275   _SleepEvent  = ParkEvent::Allocate(this);
 276   _MutexEvent  = ParkEvent::Allocate(this);
 277   _MuxEvent    = ParkEvent::Allocate(this);
 278 
 279 #ifdef CHECK_UNHANDLED_OOPS
 280   if (CheckUnhandledOops) {
 281     _unhandled_oops = new UnhandledOops(this);
 282   }
 283 #endif // CHECK_UNHANDLED_OOPS
 284 #ifdef ASSERT
 285   if (UseBiasedLocking) {
 286     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 287     assert(this == _real_malloc_address ||
 288            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 289            "bug in forced alignment of thread objects");
 290   }
 291 #endif // ASSERT
 292 }
 293 
 294 void Thread::initialize_thread_current() {
 295 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 296   assert(_thr_current == NULL, "Thread::current already initialized");
 297   _thr_current = this;
 298 #endif
 299   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 300   ThreadLocalStorage::set_thread(this);
 301   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 302 }
 303 
 304 void Thread::clear_thread_current() {
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 307   _thr_current = NULL;
 308 #endif
 309   ThreadLocalStorage::set_thread(NULL);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323   // Set stack limits after thread is initialized.
 324   if (is_Java_thread()) {
 325     ((JavaThread*) this)->set_stack_overflow_limit();
 326     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 327   }
 328 #if INCLUDE_NMT
 329   // record thread's native stack, stack grows downward
 330   MemTracker::record_thread_stack(stack_end(), stack_size());
 331 #endif // INCLUDE_NMT
 332   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 333     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 334     os::current_thread_id(), p2i(stack_base() - stack_size()),
 335     p2i(stack_base()), stack_size()/1024);
 336 }
 337 
 338 
 339 Thread::~Thread() {
 340   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 341   ObjectSynchronizer::omFlush(this);
 342 
 343   EVENT_THREAD_DESTRUCT(this);
 344 
 345   // stack_base can be NULL if the thread is never started or exited before
 346   // record_stack_base_and_size called. Although, we would like to ensure
 347   // that all started threads do call record_stack_base_and_size(), there is
 348   // not proper way to enforce that.
 349 #if INCLUDE_NMT
 350   if (_stack_base != NULL) {
 351     MemTracker::release_thread_stack(stack_end(), stack_size());
 352 #ifdef ASSERT
 353     set_stack_base(NULL);
 354 #endif
 355   }
 356 #endif // INCLUDE_NMT
 357 
 358   // deallocate data structures
 359   delete resource_area();
 360   // since the handle marks are using the handle area, we have to deallocated the root
 361   // handle mark before deallocating the thread's handle area,
 362   assert(last_handle_mark() != NULL, "check we have an element");
 363   delete last_handle_mark();
 364   assert(last_handle_mark() == NULL, "check we have reached the end");
 365 
 366   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 367   // We NULL out the fields for good hygiene.
 368   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 369   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 370   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 371   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 372 
 373   delete handle_area();
 374   delete metadata_handles();
 375 
 376   // osthread() can be NULL, if creation of thread failed.
 377   if (osthread() != NULL) os::free_thread(osthread());
 378 
 379   delete _SR_lock;
 380 
 381   // clear Thread::current if thread is deleting itself.
 382   // Needed to ensure JNI correctly detects non-attached threads.
 383   if (this == Thread::current()) {
 384     clear_thread_current();
 385   }
 386 
 387   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 388 }
 389 
 390 // NOTE: dummy function for assertion purpose.
 391 void Thread::run() {
 392   ShouldNotReachHere();
 393 }
 394 
 395 #ifdef ASSERT
 396 // Private method to check for dangling thread pointer
 397 void check_for_dangling_thread_pointer(Thread *thread) {
 398   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 399          "possibility of dangling Thread pointer");
 400 }
 401 #endif
 402 
 403 ThreadPriority Thread::get_priority(const Thread* const thread) {
 404   ThreadPriority priority;
 405   // Can return an error!
 406   (void)os::get_priority(thread, priority);
 407   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 408   return priority;
 409 }
 410 
 411 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 412   debug_only(check_for_dangling_thread_pointer(thread);)
 413   // Can return an error!
 414   (void)os::set_priority(thread, priority);
 415 }
 416 
 417 
 418 void Thread::start(Thread* thread) {
 419   // Start is different from resume in that its safety is guaranteed by context or
 420   // being called from a Java method synchronized on the Thread object.
 421   if (!DisableStartThread) {
 422     if (thread->is_Java_thread()) {
 423       // Initialize the thread state to RUNNABLE before starting this thread.
 424       // Can not set it after the thread started because we do not know the
 425       // exact thread state at that time. It could be in MONITOR_WAIT or
 426       // in SLEEPING or some other state.
 427       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 428                                           java_lang_Thread::RUNNABLE);
 429     }
 430     os::start_thread(thread);
 431   }
 432 }
 433 
 434 // Enqueue a VM_Operation to do the job for us - sometime later
 435 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 436   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 437   VMThread::execute(vm_stop);
 438 }
 439 
 440 
 441 // Check if an external suspend request has completed (or has been
 442 // cancelled). Returns true if the thread is externally suspended and
 443 // false otherwise.
 444 //
 445 // The bits parameter returns information about the code path through
 446 // the routine. Useful for debugging:
 447 //
 448 // set in is_ext_suspend_completed():
 449 // 0x00000001 - routine was entered
 450 // 0x00000010 - routine return false at end
 451 // 0x00000100 - thread exited (return false)
 452 // 0x00000200 - suspend request cancelled (return false)
 453 // 0x00000400 - thread suspended (return true)
 454 // 0x00001000 - thread is in a suspend equivalent state (return true)
 455 // 0x00002000 - thread is native and walkable (return true)
 456 // 0x00004000 - thread is native_trans and walkable (needed retry)
 457 //
 458 // set in wait_for_ext_suspend_completion():
 459 // 0x00010000 - routine was entered
 460 // 0x00020000 - suspend request cancelled before loop (return false)
 461 // 0x00040000 - thread suspended before loop (return true)
 462 // 0x00080000 - suspend request cancelled in loop (return false)
 463 // 0x00100000 - thread suspended in loop (return true)
 464 // 0x00200000 - suspend not completed during retry loop (return false)
 465 
 466 // Helper class for tracing suspend wait debug bits.
 467 //
 468 // 0x00000100 indicates that the target thread exited before it could
 469 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 470 // 0x00080000 each indicate a cancelled suspend request so they don't
 471 // count as wait failures either.
 472 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 473 
 474 class TraceSuspendDebugBits : public StackObj {
 475  private:
 476   JavaThread * jt;
 477   bool         is_wait;
 478   bool         called_by_wait;  // meaningful when !is_wait
 479   uint32_t *   bits;
 480 
 481  public:
 482   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 483                         uint32_t *_bits) {
 484     jt             = _jt;
 485     is_wait        = _is_wait;
 486     called_by_wait = _called_by_wait;
 487     bits           = _bits;
 488   }
 489 
 490   ~TraceSuspendDebugBits() {
 491     if (!is_wait) {
 492 #if 1
 493       // By default, don't trace bits for is_ext_suspend_completed() calls.
 494       // That trace is very chatty.
 495       return;
 496 #else
 497       if (!called_by_wait) {
 498         // If tracing for is_ext_suspend_completed() is enabled, then only
 499         // trace calls to it from wait_for_ext_suspend_completion()
 500         return;
 501       }
 502 #endif
 503     }
 504 
 505     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 506       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 507         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 508         ResourceMark rm;
 509 
 510         tty->print_cr(
 511                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 512                       jt->get_thread_name(), *bits);
 513 
 514         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 515       }
 516     }
 517   }
 518 };
 519 #undef DEBUG_FALSE_BITS
 520 
 521 
 522 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 523                                           uint32_t *bits) {
 524   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 525 
 526   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 527   bool do_trans_retry;           // flag to force the retry
 528 
 529   *bits |= 0x00000001;
 530 
 531   do {
 532     do_trans_retry = false;
 533 
 534     if (is_exiting()) {
 535       // Thread is in the process of exiting. This is always checked
 536       // first to reduce the risk of dereferencing a freed JavaThread.
 537       *bits |= 0x00000100;
 538       return false;
 539     }
 540 
 541     if (!is_external_suspend()) {
 542       // Suspend request is cancelled. This is always checked before
 543       // is_ext_suspended() to reduce the risk of a rogue resume
 544       // confusing the thread that made the suspend request.
 545       *bits |= 0x00000200;
 546       return false;
 547     }
 548 
 549     if (is_ext_suspended()) {
 550       // thread is suspended
 551       *bits |= 0x00000400;
 552       return true;
 553     }
 554 
 555     // Now that we no longer do hard suspends of threads running
 556     // native code, the target thread can be changing thread state
 557     // while we are in this routine:
 558     //
 559     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 560     //
 561     // We save a copy of the thread state as observed at this moment
 562     // and make our decision about suspend completeness based on the
 563     // copy. This closes the race where the thread state is seen as
 564     // _thread_in_native_trans in the if-thread_blocked check, but is
 565     // seen as _thread_blocked in if-thread_in_native_trans check.
 566     JavaThreadState save_state = thread_state();
 567 
 568     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 569       // If the thread's state is _thread_blocked and this blocking
 570       // condition is known to be equivalent to a suspend, then we can
 571       // consider the thread to be externally suspended. This means that
 572       // the code that sets _thread_blocked has been modified to do
 573       // self-suspension if the blocking condition releases. We also
 574       // used to check for CONDVAR_WAIT here, but that is now covered by
 575       // the _thread_blocked with self-suspension check.
 576       //
 577       // Return true since we wouldn't be here unless there was still an
 578       // external suspend request.
 579       *bits |= 0x00001000;
 580       return true;
 581     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 582       // Threads running native code will self-suspend on native==>VM/Java
 583       // transitions. If its stack is walkable (should always be the case
 584       // unless this function is called before the actual java_suspend()
 585       // call), then the wait is done.
 586       *bits |= 0x00002000;
 587       return true;
 588     } else if (!called_by_wait && !did_trans_retry &&
 589                save_state == _thread_in_native_trans &&
 590                frame_anchor()->walkable()) {
 591       // The thread is transitioning from thread_in_native to another
 592       // thread state. check_safepoint_and_suspend_for_native_trans()
 593       // will force the thread to self-suspend. If it hasn't gotten
 594       // there yet we may have caught the thread in-between the native
 595       // code check above and the self-suspend. Lucky us. If we were
 596       // called by wait_for_ext_suspend_completion(), then it
 597       // will be doing the retries so we don't have to.
 598       //
 599       // Since we use the saved thread state in the if-statement above,
 600       // there is a chance that the thread has already transitioned to
 601       // _thread_blocked by the time we get here. In that case, we will
 602       // make a single unnecessary pass through the logic below. This
 603       // doesn't hurt anything since we still do the trans retry.
 604 
 605       *bits |= 0x00004000;
 606 
 607       // Once the thread leaves thread_in_native_trans for another
 608       // thread state, we break out of this retry loop. We shouldn't
 609       // need this flag to prevent us from getting back here, but
 610       // sometimes paranoia is good.
 611       did_trans_retry = true;
 612 
 613       // We wait for the thread to transition to a more usable state.
 614       for (int i = 1; i <= SuspendRetryCount; i++) {
 615         // We used to do an "os::yield_all(i)" call here with the intention
 616         // that yielding would increase on each retry. However, the parameter
 617         // is ignored on Linux which means the yield didn't scale up. Waiting
 618         // on the SR_lock below provides a much more predictable scale up for
 619         // the delay. It also provides a simple/direct point to check for any
 620         // safepoint requests from the VMThread
 621 
 622         // temporarily drops SR_lock while doing wait with safepoint check
 623         // (if we're a JavaThread - the WatcherThread can also call this)
 624         // and increase delay with each retry
 625         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 626 
 627         // check the actual thread state instead of what we saved above
 628         if (thread_state() != _thread_in_native_trans) {
 629           // the thread has transitioned to another thread state so
 630           // try all the checks (except this one) one more time.
 631           do_trans_retry = true;
 632           break;
 633         }
 634       } // end retry loop
 635 
 636 
 637     }
 638   } while (do_trans_retry);
 639 
 640   *bits |= 0x00000010;
 641   return false;
 642 }
 643 
 644 // Wait for an external suspend request to complete (or be cancelled).
 645 // Returns true if the thread is externally suspended and false otherwise.
 646 //
 647 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 648                                                  uint32_t *bits) {
 649   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 650                              false /* !called_by_wait */, bits);
 651 
 652   // local flag copies to minimize SR_lock hold time
 653   bool is_suspended;
 654   bool pending;
 655   uint32_t reset_bits;
 656 
 657   // set a marker so is_ext_suspend_completed() knows we are the caller
 658   *bits |= 0x00010000;
 659 
 660   // We use reset_bits to reinitialize the bits value at the top of
 661   // each retry loop. This allows the caller to make use of any
 662   // unused bits for their own marking purposes.
 663   reset_bits = *bits;
 664 
 665   {
 666     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 667     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 668                                             delay, bits);
 669     pending = is_external_suspend();
 670   }
 671   // must release SR_lock to allow suspension to complete
 672 
 673   if (!pending) {
 674     // A cancelled suspend request is the only false return from
 675     // is_ext_suspend_completed() that keeps us from entering the
 676     // retry loop.
 677     *bits |= 0x00020000;
 678     return false;
 679   }
 680 
 681   if (is_suspended) {
 682     *bits |= 0x00040000;
 683     return true;
 684   }
 685 
 686   for (int i = 1; i <= retries; i++) {
 687     *bits = reset_bits;  // reinit to only track last retry
 688 
 689     // We used to do an "os::yield_all(i)" call here with the intention
 690     // that yielding would increase on each retry. However, the parameter
 691     // is ignored on Linux which means the yield didn't scale up. Waiting
 692     // on the SR_lock below provides a much more predictable scale up for
 693     // the delay. It also provides a simple/direct point to check for any
 694     // safepoint requests from the VMThread
 695 
 696     {
 697       MutexLocker ml(SR_lock());
 698       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 699       // can also call this)  and increase delay with each retry
 700       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 701 
 702       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 703                                               delay, bits);
 704 
 705       // It is possible for the external suspend request to be cancelled
 706       // (by a resume) before the actual suspend operation is completed.
 707       // Refresh our local copy to see if we still need to wait.
 708       pending = is_external_suspend();
 709     }
 710 
 711     if (!pending) {
 712       // A cancelled suspend request is the only false return from
 713       // is_ext_suspend_completed() that keeps us from staying in the
 714       // retry loop.
 715       *bits |= 0x00080000;
 716       return false;
 717     }
 718 
 719     if (is_suspended) {
 720       *bits |= 0x00100000;
 721       return true;
 722     }
 723   } // end retry loop
 724 
 725   // thread did not suspend after all our retries
 726   *bits |= 0x00200000;
 727   return false;
 728 }
 729 
 730 #ifndef PRODUCT
 731 void JavaThread::record_jump(address target, address instr, const char* file,
 732                              int line) {
 733 
 734   // This should not need to be atomic as the only way for simultaneous
 735   // updates is via interrupts. Even then this should be rare or non-existent
 736   // and we don't care that much anyway.
 737 
 738   int index = _jmp_ring_index;
 739   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 740   _jmp_ring[index]._target = (intptr_t) target;
 741   _jmp_ring[index]._instruction = (intptr_t) instr;
 742   _jmp_ring[index]._file = file;
 743   _jmp_ring[index]._line = line;
 744 }
 745 #endif // PRODUCT
 746 
 747 // Called by flat profiler
 748 // Callers have already called wait_for_ext_suspend_completion
 749 // The assertion for that is currently too complex to put here:
 750 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 751   bool gotframe = false;
 752   // self suspension saves needed state.
 753   if (has_last_Java_frame() && _anchor.walkable()) {
 754     *_fr = pd_last_frame();
 755     gotframe = true;
 756   }
 757   return gotframe;
 758 }
 759 
 760 void Thread::interrupt(Thread* thread) {
 761   debug_only(check_for_dangling_thread_pointer(thread);)
 762   os::interrupt(thread);
 763 }
 764 
 765 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 766   debug_only(check_for_dangling_thread_pointer(thread);)
 767   // Note:  If clear_interrupted==false, this simply fetches and
 768   // returns the value of the field osthread()->interrupted().
 769   return os::is_interrupted(thread, clear_interrupted);
 770 }
 771 
 772 
 773 // GC Support
 774 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 775   jint thread_parity = _oops_do_parity;
 776   if (thread_parity != strong_roots_parity) {
 777     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 778     if (res == thread_parity) {
 779       return true;
 780     } else {
 781       guarantee(res == strong_roots_parity, "Or else what?");
 782       return false;
 783     }
 784   }
 785   return false;
 786 }
 787 
 788 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 789   active_handles()->oops_do(f);
 790   // Do oop for ThreadShadow
 791   f->do_oop((oop*)&_pending_exception);
 792   handle_area()->oops_do(f);
 793 }
 794 
 795 void Thread::metadata_handles_do(void f(Metadata*)) {
 796   // Only walk the Handles in Thread.
 797   if (metadata_handles() != NULL) {
 798     for (int i = 0; i< metadata_handles()->length(); i++) {
 799       f(metadata_handles()->at(i));
 800     }
 801   }
 802 }
 803 
 804 void Thread::print_on(outputStream* st) const {
 805   // get_priority assumes osthread initialized
 806   if (osthread() != NULL) {
 807     int os_prio;
 808     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 809       st->print("os_prio=%d ", os_prio);
 810     }
 811     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 812     ext().print_on(st);
 813     osthread()->print_on(st);
 814   }
 815   debug_only(if (WizardMode) print_owned_locks_on(st);)
 816 }
 817 
 818 // Thread::print_on_error() is called by fatal error handler. Don't use
 819 // any lock or allocate memory.
 820 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 821   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 822 
 823   if (is_VM_thread())                 { st->print("VMThread"); }
 824   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 825   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 826   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 827   else                                { st->print("Thread"); }
 828 
 829   if (is_Named_thread()) {
 830     st->print(" \"%s\"", name());
 831   }
 832 
 833   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 834             p2i(stack_end()), p2i(stack_base()));
 835 
 836   if (osthread()) {
 837     st->print(" [id=%d]", osthread()->thread_id());
 838   }
 839 }
 840 
 841 #ifdef ASSERT
 842 void Thread::print_owned_locks_on(outputStream* st) const {
 843   Monitor *cur = _owned_locks;
 844   if (cur == NULL) {
 845     st->print(" (no locks) ");
 846   } else {
 847     st->print_cr(" Locks owned:");
 848     while (cur) {
 849       cur->print_on(st);
 850       cur = cur->next();
 851     }
 852   }
 853 }
 854 
 855 static int ref_use_count  = 0;
 856 
 857 bool Thread::owns_locks_but_compiled_lock() const {
 858   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 859     if (cur != Compile_lock) return true;
 860   }
 861   return false;
 862 }
 863 
 864 
 865 #endif
 866 
 867 #ifndef PRODUCT
 868 
 869 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 870 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 871 // no threads which allow_vm_block's are held
 872 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 873   // Check if current thread is allowed to block at a safepoint
 874   if (!(_allow_safepoint_count == 0)) {
 875     fatal("Possible safepoint reached by thread that does not allow it");
 876   }
 877   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 878     fatal("LEAF method calling lock?");
 879   }
 880 
 881 #ifdef ASSERT
 882   if (potential_vm_operation && is_Java_thread()
 883       && !Universe::is_bootstrapping()) {
 884     // Make sure we do not hold any locks that the VM thread also uses.
 885     // This could potentially lead to deadlocks
 886     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 887       // Threads_lock is special, since the safepoint synchronization will not start before this is
 888       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 889       // since it is used to transfer control between JavaThreads and the VMThread
 890       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 891       if ((cur->allow_vm_block() &&
 892            cur != Threads_lock &&
 893            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 894            cur != VMOperationRequest_lock &&
 895            cur != VMOperationQueue_lock) ||
 896            cur->rank() == Mutex::special) {
 897         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 898       }
 899     }
 900   }
 901 
 902   if (GCALotAtAllSafepoints) {
 903     // We could enter a safepoint here and thus have a gc
 904     InterfaceSupport::check_gc_alot();
 905   }
 906 #endif
 907 }
 908 #endif
 909 
 910 bool Thread::is_in_stack(address adr) const {
 911   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 912   address end = os::current_stack_pointer();
 913   // Allow non Java threads to call this without stack_base
 914   if (_stack_base == NULL) return true;
 915   if (stack_base() >= adr && adr >= end) return true;
 916 
 917   return false;
 918 }
 919 
 920 bool Thread::is_in_usable_stack(address adr) const {
 921   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 922   size_t usable_stack_size = _stack_size - stack_guard_size;
 923 
 924   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 925 }
 926 
 927 
 928 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 929 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 930 // used for compilation in the future. If that change is made, the need for these methods
 931 // should be revisited, and they should be removed if possible.
 932 
 933 bool Thread::is_lock_owned(address adr) const {
 934   return on_local_stack(adr);
 935 }
 936 
 937 bool Thread::set_as_starting_thread() {
 938   // NOTE: this must be called inside the main thread.
 939   return os::create_main_thread((JavaThread*)this);
 940 }
 941 
 942 static void initialize_class(Symbol* class_name, TRAPS) {
 943   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 944   InstanceKlass::cast(klass)->initialize(CHECK);
 945 }
 946 
 947 
 948 // Creates the initial ThreadGroup
 949 static Handle create_initial_thread_group(TRAPS) {
 950   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 951   instanceKlassHandle klass (THREAD, k);
 952 
 953   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 954   {
 955     JavaValue result(T_VOID);
 956     JavaCalls::call_special(&result,
 957                             system_instance,
 958                             klass,
 959                             vmSymbols::object_initializer_name(),
 960                             vmSymbols::void_method_signature(),
 961                             CHECK_NH);
 962   }
 963   Universe::set_system_thread_group(system_instance());
 964 
 965   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 966   {
 967     JavaValue result(T_VOID);
 968     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 969     JavaCalls::call_special(&result,
 970                             main_instance,
 971                             klass,
 972                             vmSymbols::object_initializer_name(),
 973                             vmSymbols::threadgroup_string_void_signature(),
 974                             system_instance,
 975                             string,
 976                             CHECK_NH);
 977   }
 978   return main_instance;
 979 }
 980 
 981 // Creates the initial Thread
 982 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 983                                  TRAPS) {
 984   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 985   instanceKlassHandle klass (THREAD, k);
 986   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 987 
 988   java_lang_Thread::set_thread(thread_oop(), thread);
 989   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 990   thread->set_threadObj(thread_oop());
 991 
 992   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 993 
 994   JavaValue result(T_VOID);
 995   JavaCalls::call_special(&result, thread_oop,
 996                           klass,
 997                           vmSymbols::object_initializer_name(),
 998                           vmSymbols::threadgroup_string_void_signature(),
 999                           thread_group,
1000                           string,
1001                           CHECK_NULL);
1002   return thread_oop();
1003 }
1004 
1005 char java_runtime_name[128] = "";
1006 char java_runtime_version[128] = "";
1007 
1008 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1009 static const char* get_java_runtime_name(TRAPS) {
1010   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1011                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1012   fieldDescriptor fd;
1013   bool found = k != NULL &&
1014                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1015                                                         vmSymbols::string_signature(), &fd);
1016   if (found) {
1017     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1018     if (name_oop == NULL) {
1019       return NULL;
1020     }
1021     const char* name = java_lang_String::as_utf8_string(name_oop,
1022                                                         java_runtime_name,
1023                                                         sizeof(java_runtime_name));
1024     return name;
1025   } else {
1026     return NULL;
1027   }
1028 }
1029 
1030 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1031 static const char* get_java_runtime_version(TRAPS) {
1032   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1033                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1034   fieldDescriptor fd;
1035   bool found = k != NULL &&
1036                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1037                                                         vmSymbols::string_signature(), &fd);
1038   if (found) {
1039     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1040     if (name_oop == NULL) {
1041       return NULL;
1042     }
1043     const char* name = java_lang_String::as_utf8_string(name_oop,
1044                                                         java_runtime_version,
1045                                                         sizeof(java_runtime_version));
1046     return name;
1047   } else {
1048     return NULL;
1049   }
1050 }
1051 
1052 // General purpose hook into Java code, run once when the VM is initialized.
1053 // The Java library method itself may be changed independently from the VM.
1054 static void call_postVMInitHook(TRAPS) {
1055   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1056   instanceKlassHandle klass (THREAD, k);
1057   if (klass.not_null()) {
1058     JavaValue result(T_VOID);
1059     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1060                            vmSymbols::void_method_signature(),
1061                            CHECK);
1062   }
1063 }
1064 
1065 static void reset_vm_info_property(TRAPS) {
1066   // the vm info string
1067   ResourceMark rm(THREAD);
1068   const char *vm_info = VM_Version::vm_info_string();
1069 
1070   // java.lang.System class
1071   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1072   instanceKlassHandle klass (THREAD, k);
1073 
1074   // setProperty arguments
1075   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1076   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1077 
1078   // return value
1079   JavaValue r(T_OBJECT);
1080 
1081   // public static String setProperty(String key, String value);
1082   JavaCalls::call_static(&r,
1083                          klass,
1084                          vmSymbols::setProperty_name(),
1085                          vmSymbols::string_string_string_signature(),
1086                          key_str,
1087                          value_str,
1088                          CHECK);
1089 }
1090 
1091 
1092 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1093                                     bool daemon, TRAPS) {
1094   assert(thread_group.not_null(), "thread group should be specified");
1095   assert(threadObj() == NULL, "should only create Java thread object once");
1096 
1097   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1098   instanceKlassHandle klass (THREAD, k);
1099   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1100 
1101   java_lang_Thread::set_thread(thread_oop(), this);
1102   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1103   set_threadObj(thread_oop());
1104 
1105   JavaValue result(T_VOID);
1106   if (thread_name != NULL) {
1107     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1108     // Thread gets assigned specified name and null target
1109     JavaCalls::call_special(&result,
1110                             thread_oop,
1111                             klass,
1112                             vmSymbols::object_initializer_name(),
1113                             vmSymbols::threadgroup_string_void_signature(),
1114                             thread_group, // Argument 1
1115                             name,         // Argument 2
1116                             THREAD);
1117   } else {
1118     // Thread gets assigned name "Thread-nnn" and null target
1119     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1120     JavaCalls::call_special(&result,
1121                             thread_oop,
1122                             klass,
1123                             vmSymbols::object_initializer_name(),
1124                             vmSymbols::threadgroup_runnable_void_signature(),
1125                             thread_group, // Argument 1
1126                             Handle(),     // Argument 2
1127                             THREAD);
1128   }
1129 
1130 
1131   if (daemon) {
1132     java_lang_Thread::set_daemon(thread_oop());
1133   }
1134 
1135   if (HAS_PENDING_EXCEPTION) {
1136     return;
1137   }
1138 
1139   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1140   Handle threadObj(THREAD, this->threadObj());
1141 
1142   JavaCalls::call_special(&result,
1143                           thread_group,
1144                           group,
1145                           vmSymbols::add_method_name(),
1146                           vmSymbols::thread_void_signature(),
1147                           threadObj,          // Arg 1
1148                           THREAD);
1149 }
1150 
1151 // NamedThread --  non-JavaThread subclasses with multiple
1152 // uniquely named instances should derive from this.
1153 NamedThread::NamedThread() : Thread() {
1154   _name = NULL;
1155   _processed_thread = NULL;
1156   _gc_id = GCId::undefined();
1157 }
1158 
1159 NamedThread::~NamedThread() {
1160   if (_name != NULL) {
1161     FREE_C_HEAP_ARRAY(char, _name);
1162     _name = NULL;
1163   }
1164 }
1165 
1166 void NamedThread::set_name(const char* format, ...) {
1167   guarantee(_name == NULL, "Only get to set name once.");
1168   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1169   guarantee(_name != NULL, "alloc failure");
1170   va_list ap;
1171   va_start(ap, format);
1172   jio_vsnprintf(_name, max_name_len, format, ap);
1173   va_end(ap);
1174 }
1175 
1176 void NamedThread::initialize_named_thread() {
1177   set_native_thread_name(name());
1178 }
1179 
1180 void NamedThread::print_on(outputStream* st) const {
1181   st->print("\"%s\" ", name());
1182   Thread::print_on(st);
1183   st->cr();
1184 }
1185 
1186 
1187 // ======= WatcherThread ========
1188 
1189 // The watcher thread exists to simulate timer interrupts.  It should
1190 // be replaced by an abstraction over whatever native support for
1191 // timer interrupts exists on the platform.
1192 
1193 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1194 bool WatcherThread::_startable = false;
1195 volatile bool  WatcherThread::_should_terminate = false;
1196 
1197 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1198   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1199   if (os::create_thread(this, os::watcher_thread)) {
1200     _watcher_thread = this;
1201 
1202     // Set the watcher thread to the highest OS priority which should not be
1203     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1204     // is created. The only normal thread using this priority is the reference
1205     // handler thread, which runs for very short intervals only.
1206     // If the VMThread's priority is not lower than the WatcherThread profiling
1207     // will be inaccurate.
1208     os::set_priority(this, MaxPriority);
1209     if (!DisableStartThread) {
1210       os::start_thread(this);
1211     }
1212   }
1213 }
1214 
1215 int WatcherThread::sleep() const {
1216   // The WatcherThread does not participate in the safepoint protocol
1217   // for the PeriodicTask_lock because it is not a JavaThread.
1218   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1219 
1220   if (_should_terminate) {
1221     // check for termination before we do any housekeeping or wait
1222     return 0;  // we did not sleep.
1223   }
1224 
1225   // remaining will be zero if there are no tasks,
1226   // causing the WatcherThread to sleep until a task is
1227   // enrolled
1228   int remaining = PeriodicTask::time_to_wait();
1229   int time_slept = 0;
1230 
1231   // we expect this to timeout - we only ever get unparked when
1232   // we should terminate or when a new task has been enrolled
1233   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1234 
1235   jlong time_before_loop = os::javaTimeNanos();
1236 
1237   while (true) {
1238     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1239                                             remaining);
1240     jlong now = os::javaTimeNanos();
1241 
1242     if (remaining == 0) {
1243       // if we didn't have any tasks we could have waited for a long time
1244       // consider the time_slept zero and reset time_before_loop
1245       time_slept = 0;
1246       time_before_loop = now;
1247     } else {
1248       // need to recalculate since we might have new tasks in _tasks
1249       time_slept = (int) ((now - time_before_loop) / 1000000);
1250     }
1251 
1252     // Change to task list or spurious wakeup of some kind
1253     if (timedout || _should_terminate) {
1254       break;
1255     }
1256 
1257     remaining = PeriodicTask::time_to_wait();
1258     if (remaining == 0) {
1259       // Last task was just disenrolled so loop around and wait until
1260       // another task gets enrolled
1261       continue;
1262     }
1263 
1264     remaining -= time_slept;
1265     if (remaining <= 0) {
1266       break;
1267     }
1268   }
1269 
1270   return time_slept;
1271 }
1272 
1273 void WatcherThread::run() {
1274   assert(this == watcher_thread(), "just checking");
1275 
1276   this->record_stack_base_and_size();
1277   this->set_native_thread_name(this->name());
1278   this->set_active_handles(JNIHandleBlock::allocate_block());
1279   while (true) {
1280     assert(watcher_thread() == Thread::current(), "thread consistency check");
1281     assert(watcher_thread() == this, "thread consistency check");
1282 
1283     // Calculate how long it'll be until the next PeriodicTask work
1284     // should be done, and sleep that amount of time.
1285     int time_waited = sleep();
1286 
1287     if (is_error_reported()) {
1288       // A fatal error has happened, the error handler(VMError::report_and_die)
1289       // should abort JVM after creating an error log file. However in some
1290       // rare cases, the error handler itself might deadlock. Here we try to
1291       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1292       //
1293       // This code is in WatcherThread because WatcherThread wakes up
1294       // periodically so the fatal error handler doesn't need to do anything;
1295       // also because the WatcherThread is less likely to crash than other
1296       // threads.
1297 
1298       for (;;) {
1299         if (!ShowMessageBoxOnError
1300             && (OnError == NULL || OnError[0] == '\0')
1301             && Arguments::abort_hook() == NULL) {
1302           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1303           fdStream err(defaultStream::output_fd());
1304           err.print_raw_cr("# [ timer expired, abort... ]");
1305           // skip atexit/vm_exit/vm_abort hooks
1306           os::die();
1307         }
1308 
1309         // Wake up 5 seconds later, the fatal handler may reset OnError or
1310         // ShowMessageBoxOnError when it is ready to abort.
1311         os::sleep(this, 5 * 1000, false);
1312       }
1313     }
1314 
1315     if (_should_terminate) {
1316       // check for termination before posting the next tick
1317       break;
1318     }
1319 
1320     PeriodicTask::real_time_tick(time_waited);
1321   }
1322 
1323   // Signal that it is terminated
1324   {
1325     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1326     _watcher_thread = NULL;
1327     Terminator_lock->notify();
1328   }
1329 }
1330 
1331 void WatcherThread::start() {
1332   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1333 
1334   if (watcher_thread() == NULL && _startable) {
1335     _should_terminate = false;
1336     // Create the single instance of WatcherThread
1337     new WatcherThread();
1338   }
1339 }
1340 
1341 void WatcherThread::make_startable() {
1342   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1343   _startable = true;
1344 }
1345 
1346 void WatcherThread::stop() {
1347   {
1348     // Follow normal safepoint aware lock enter protocol since the
1349     // WatcherThread is stopped by another JavaThread.
1350     MutexLocker ml(PeriodicTask_lock);
1351     _should_terminate = true;
1352 
1353     WatcherThread* watcher = watcher_thread();
1354     if (watcher != NULL) {
1355       // unpark the WatcherThread so it can see that it should terminate
1356       watcher->unpark();
1357     }
1358   }
1359 
1360   MutexLocker mu(Terminator_lock);
1361 
1362   while (watcher_thread() != NULL) {
1363     // This wait should make safepoint checks, wait without a timeout,
1364     // and wait as a suspend-equivalent condition.
1365     //
1366     // Note: If the FlatProfiler is running, then this thread is waiting
1367     // for the WatcherThread to terminate and the WatcherThread, via the
1368     // FlatProfiler task, is waiting for the external suspend request on
1369     // this thread to complete. wait_for_ext_suspend_completion() will
1370     // eventually timeout, but that takes time. Making this wait a
1371     // suspend-equivalent condition solves that timeout problem.
1372     //
1373     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1374                           Mutex::_as_suspend_equivalent_flag);
1375   }
1376 }
1377 
1378 void WatcherThread::unpark() {
1379   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1380   PeriodicTask_lock->notify();
1381 }
1382 
1383 void WatcherThread::print_on(outputStream* st) const {
1384   st->print("\"%s\" ", name());
1385   Thread::print_on(st);
1386   st->cr();
1387 }
1388 
1389 // ======= JavaThread ========
1390 
1391 #if INCLUDE_JVMCI
1392 
1393 jlong* JavaThread::_jvmci_old_thread_counters;
1394 
1395 bool jvmci_counters_include(JavaThread* thread) {
1396   oop threadObj = thread->threadObj();
1397   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1398 }
1399 
1400 void JavaThread::collect_counters(typeArrayOop array) {
1401   if (JVMCICounterSize > 0) {
1402     MutexLocker tl(Threads_lock);
1403     for (int i = 0; i < array->length(); i++) {
1404       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1405     }
1406     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1407       if (jvmci_counters_include(tp)) {
1408         for (int i = 0; i < array->length(); i++) {
1409           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1410         }
1411       }
1412     }
1413   }
1414 }
1415 
1416 #endif // INCLUDE_JVMCI
1417 
1418 // A JavaThread is a normal Java thread
1419 
1420 void JavaThread::initialize() {
1421   // Initialize fields
1422 
1423   set_saved_exception_pc(NULL);
1424   set_threadObj(NULL);
1425   _anchor.clear();
1426   set_entry_point(NULL);
1427   set_jni_functions(jni_functions());
1428   set_callee_target(NULL);
1429   set_vm_result(NULL);
1430   set_vm_result_2(NULL);
1431   set_vframe_array_head(NULL);
1432   set_vframe_array_last(NULL);
1433   set_deferred_locals(NULL);
1434   set_deopt_mark(NULL);
1435   set_deopt_compiled_method(NULL);
1436   clear_must_deopt_id();
1437   set_monitor_chunks(NULL);
1438   set_next(NULL);
1439   set_thread_state(_thread_new);
1440   _terminated = _not_terminated;
1441   _privileged_stack_top = NULL;
1442   _array_for_gc = NULL;
1443   _suspend_equivalent = false;
1444   _in_deopt_handler = 0;
1445   _doing_unsafe_access = false;
1446   _stack_guard_state = stack_guard_unused;
1447 #if INCLUDE_JVMCI
1448   _pending_monitorenter = false;
1449   _pending_deoptimization = -1;
1450   _pending_failed_speculation = NULL;
1451   _pending_transfer_to_interpreter = false;
1452   _adjusting_comp_level = false;
1453   _jvmci._alternate_call_target = NULL;
1454   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1455   if (JVMCICounterSize > 0) {
1456     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1457     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1458   } else {
1459     _jvmci_counters = NULL;
1460   }
1461 #endif // INCLUDE_JVMCI
1462   _reserved_stack_activation = NULL;  // stack base not known yet
1463   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1464   _exception_pc  = 0;
1465   _exception_handler_pc = 0;
1466   _is_method_handle_return = 0;
1467   _jvmti_thread_state= NULL;
1468   _should_post_on_exceptions_flag = JNI_FALSE;
1469   _jvmti_get_loaded_classes_closure = NULL;
1470   _interp_only_mode    = 0;
1471   _special_runtime_exit_condition = _no_async_condition;
1472   _pending_async_exception = NULL;
1473   _thread_stat = NULL;
1474   _thread_stat = new ThreadStatistics();
1475   _blocked_on_compilation = false;
1476   _jni_active_critical = 0;
1477   _pending_jni_exception_check_fn = NULL;
1478   _do_not_unlock_if_synchronized = false;
1479   _cached_monitor_info = NULL;
1480   _parker = Parker::Allocate(this);
1481 
1482 #ifndef PRODUCT
1483   _jmp_ring_index = 0;
1484   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1485     record_jump(NULL, NULL, NULL, 0);
1486   }
1487 #endif // PRODUCT
1488 
1489   set_thread_profiler(NULL);
1490   if (FlatProfiler::is_active()) {
1491     // This is where we would decide to either give each thread it's own profiler
1492     // or use one global one from FlatProfiler,
1493     // or up to some count of the number of profiled threads, etc.
1494     ThreadProfiler* pp = new ThreadProfiler();
1495     pp->engage();
1496     set_thread_profiler(pp);
1497   }
1498 
1499   // Setup safepoint state info for this thread
1500   ThreadSafepointState::create(this);
1501 
1502   debug_only(_java_call_counter = 0);
1503 
1504   // JVMTI PopFrame support
1505   _popframe_condition = popframe_inactive;
1506   _popframe_preserved_args = NULL;
1507   _popframe_preserved_args_size = 0;
1508   _frames_to_pop_failed_realloc = 0;
1509 
1510   pd_initialize();
1511 }
1512 
1513 #if INCLUDE_ALL_GCS
1514 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1515 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1516 #endif // INCLUDE_ALL_GCS
1517 
1518 JavaThread::JavaThread(bool is_attaching_via_jni) :
1519                        Thread()
1520 #if INCLUDE_ALL_GCS
1521                        , _satb_mark_queue(&_satb_mark_queue_set),
1522                        _dirty_card_queue(&_dirty_card_queue_set)
1523 #endif // INCLUDE_ALL_GCS
1524 {
1525   initialize();
1526   if (is_attaching_via_jni) {
1527     _jni_attach_state = _attaching_via_jni;
1528   } else {
1529     _jni_attach_state = _not_attaching_via_jni;
1530   }
1531   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1532 }
1533 
1534 bool JavaThread::reguard_stack(address cur_sp) {
1535   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1536       && _stack_guard_state != stack_guard_reserved_disabled) {
1537     return true; // Stack already guarded or guard pages not needed.
1538   }
1539 
1540   if (register_stack_overflow()) {
1541     // For those architectures which have separate register and
1542     // memory stacks, we must check the register stack to see if
1543     // it has overflowed.
1544     return false;
1545   }
1546 
1547   // Java code never executes within the yellow zone: the latter is only
1548   // there to provoke an exception during stack banging.  If java code
1549   // is executing there, either StackShadowPages should be larger, or
1550   // some exception code in c1, c2 or the interpreter isn't unwinding
1551   // when it should.
1552   guarantee(cur_sp > stack_reserved_zone_base(),
1553             "not enough space to reguard - increase StackShadowPages");
1554   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1555     enable_stack_yellow_reserved_zone();
1556     if (reserved_stack_activation() != stack_base()) {
1557       set_reserved_stack_activation(stack_base());
1558     }
1559   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1560     set_reserved_stack_activation(stack_base());
1561     enable_stack_reserved_zone();
1562   }
1563   return true;
1564 }
1565 
1566 bool JavaThread::reguard_stack(void) {
1567   return reguard_stack(os::current_stack_pointer());
1568 }
1569 
1570 
1571 void JavaThread::block_if_vm_exited() {
1572   if (_terminated == _vm_exited) {
1573     // _vm_exited is set at safepoint, and Threads_lock is never released
1574     // we will block here forever
1575     Threads_lock->lock_without_safepoint_check();
1576     ShouldNotReachHere();
1577   }
1578 }
1579 
1580 
1581 // Remove this ifdef when C1 is ported to the compiler interface.
1582 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1583 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1584 
1585 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1586                        Thread()
1587 #if INCLUDE_ALL_GCS
1588                        , _satb_mark_queue(&_satb_mark_queue_set),
1589                        _dirty_card_queue(&_dirty_card_queue_set)
1590 #endif // INCLUDE_ALL_GCS
1591 {
1592   initialize();
1593   _jni_attach_state = _not_attaching_via_jni;
1594   set_entry_point(entry_point);
1595   // Create the native thread itself.
1596   // %note runtime_23
1597   os::ThreadType thr_type = os::java_thread;
1598   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1599                                                      os::java_thread;
1600   os::create_thread(this, thr_type, stack_sz);
1601   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1602   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1603   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1604   // the exception consists of creating the exception object & initializing it, initialization
1605   // will leave the VM via a JavaCall and then all locks must be unlocked).
1606   //
1607   // The thread is still suspended when we reach here. Thread must be explicit started
1608   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1609   // by calling Threads:add. The reason why this is not done here, is because the thread
1610   // object must be fully initialized (take a look at JVM_Start)
1611 }
1612 
1613 JavaThread::~JavaThread() {
1614 
1615   // JSR166 -- return the parker to the free list
1616   Parker::Release(_parker);
1617   _parker = NULL;
1618 
1619   // Free any remaining  previous UnrollBlock
1620   vframeArray* old_array = vframe_array_last();
1621 
1622   if (old_array != NULL) {
1623     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1624     old_array->set_unroll_block(NULL);
1625     delete old_info;
1626     delete old_array;
1627   }
1628 
1629   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1630   if (deferred != NULL) {
1631     // This can only happen if thread is destroyed before deoptimization occurs.
1632     assert(deferred->length() != 0, "empty array!");
1633     do {
1634       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1635       deferred->remove_at(0);
1636       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1637       delete dlv;
1638     } while (deferred->length() != 0);
1639     delete deferred;
1640   }
1641 
1642   // All Java related clean up happens in exit
1643   ThreadSafepointState::destroy(this);
1644   if (_thread_profiler != NULL) delete _thread_profiler;
1645   if (_thread_stat != NULL) delete _thread_stat;
1646 
1647 #if INCLUDE_JVMCI
1648   if (JVMCICounterSize > 0) {
1649     if (jvmci_counters_include(this)) {
1650       for (int i = 0; i < JVMCICounterSize; i++) {
1651         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1652       }
1653     }
1654     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1655   }
1656 #endif // INCLUDE_JVMCI
1657 }
1658 
1659 
1660 // The first routine called by a new Java thread
1661 void JavaThread::run() {
1662   // initialize thread-local alloc buffer related fields
1663   this->initialize_tlab();
1664 
1665   // used to test validity of stack trace backs
1666   this->record_base_of_stack_pointer();
1667 
1668   // Record real stack base and size.
1669   this->record_stack_base_and_size();
1670 
1671   this->create_stack_guard_pages();
1672 
1673   this->cache_global_variables();
1674 
1675   // Thread is now sufficient initialized to be handled by the safepoint code as being
1676   // in the VM. Change thread state from _thread_new to _thread_in_vm
1677   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1678 
1679   assert(JavaThread::current() == this, "sanity check");
1680   assert(!Thread::current()->owns_locks(), "sanity check");
1681 
1682   DTRACE_THREAD_PROBE(start, this);
1683 
1684   // This operation might block. We call that after all safepoint checks for a new thread has
1685   // been completed.
1686   this->set_active_handles(JNIHandleBlock::allocate_block());
1687 
1688   if (JvmtiExport::should_post_thread_life()) {
1689     JvmtiExport::post_thread_start(this);
1690   }
1691 
1692   EventThreadStart event;
1693   if (event.should_commit()) {
1694     event.set_thread(THREAD_TRACE_ID(this));
1695     event.commit();
1696   }
1697 
1698   // We call another function to do the rest so we are sure that the stack addresses used
1699   // from there will be lower than the stack base just computed
1700   thread_main_inner();
1701 
1702   // Note, thread is no longer valid at this point!
1703 }
1704 
1705 
1706 void JavaThread::thread_main_inner() {
1707   assert(JavaThread::current() == this, "sanity check");
1708   assert(this->threadObj() != NULL, "just checking");
1709 
1710   // Execute thread entry point unless this thread has a pending exception
1711   // or has been stopped before starting.
1712   // Note: Due to JVM_StopThread we can have pending exceptions already!
1713   if (!this->has_pending_exception() &&
1714       !java_lang_Thread::is_stillborn(this->threadObj())) {
1715     {
1716       ResourceMark rm(this);
1717       this->set_native_thread_name(this->get_thread_name());
1718     }
1719     HandleMark hm(this);
1720     this->entry_point()(this, this);
1721   }
1722 
1723   DTRACE_THREAD_PROBE(stop, this);
1724 
1725   this->exit(false);
1726   delete this;
1727 }
1728 
1729 
1730 static void ensure_join(JavaThread* thread) {
1731   // We do not need to grap the Threads_lock, since we are operating on ourself.
1732   Handle threadObj(thread, thread->threadObj());
1733   assert(threadObj.not_null(), "java thread object must exist");
1734   ObjectLocker lock(threadObj, thread);
1735   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1736   thread->clear_pending_exception();
1737   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1738   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1739   // Clear the native thread instance - this makes isAlive return false and allows the join()
1740   // to complete once we've done the notify_all below
1741   java_lang_Thread::set_thread(threadObj(), NULL);
1742   lock.notify_all(thread);
1743   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1744   thread->clear_pending_exception();
1745 }
1746 
1747 
1748 // For any new cleanup additions, please check to see if they need to be applied to
1749 // cleanup_failed_attach_current_thread as well.
1750 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1751   assert(this == JavaThread::current(), "thread consistency check");
1752 
1753   HandleMark hm(this);
1754   Handle uncaught_exception(this, this->pending_exception());
1755   this->clear_pending_exception();
1756   Handle threadObj(this, this->threadObj());
1757   assert(threadObj.not_null(), "Java thread object should be created");
1758 
1759   if (get_thread_profiler() != NULL) {
1760     get_thread_profiler()->disengage();
1761     ResourceMark rm;
1762     get_thread_profiler()->print(get_thread_name());
1763   }
1764 
1765 
1766   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1767   {
1768     EXCEPTION_MARK;
1769 
1770     CLEAR_PENDING_EXCEPTION;
1771   }
1772   if (!destroy_vm) {
1773     if (uncaught_exception.not_null()) {
1774       EXCEPTION_MARK;
1775       // Call method Thread.dispatchUncaughtException().
1776       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1777       JavaValue result(T_VOID);
1778       JavaCalls::call_virtual(&result,
1779                               threadObj, thread_klass,
1780                               vmSymbols::dispatchUncaughtException_name(),
1781                               vmSymbols::throwable_void_signature(),
1782                               uncaught_exception,
1783                               THREAD);
1784       if (HAS_PENDING_EXCEPTION) {
1785         ResourceMark rm(this);
1786         jio_fprintf(defaultStream::error_stream(),
1787                     "\nException: %s thrown from the UncaughtExceptionHandler"
1788                     " in thread \"%s\"\n",
1789                     pending_exception()->klass()->external_name(),
1790                     get_thread_name());
1791         CLEAR_PENDING_EXCEPTION;
1792       }
1793     }
1794 
1795     // Called before the java thread exit since we want to read info
1796     // from java_lang_Thread object
1797     EventThreadEnd event;
1798     if (event.should_commit()) {
1799       event.set_thread(THREAD_TRACE_ID(this));
1800       event.commit();
1801     }
1802 
1803     // Call after last event on thread
1804     EVENT_THREAD_EXIT(this);
1805 
1806     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1807     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1808     // is deprecated anyhow.
1809     if (!is_Compiler_thread()) {
1810       int count = 3;
1811       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1812         EXCEPTION_MARK;
1813         JavaValue result(T_VOID);
1814         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1815         JavaCalls::call_virtual(&result,
1816                                 threadObj, thread_klass,
1817                                 vmSymbols::exit_method_name(),
1818                                 vmSymbols::void_method_signature(),
1819                                 THREAD);
1820         CLEAR_PENDING_EXCEPTION;
1821       }
1822     }
1823     // notify JVMTI
1824     if (JvmtiExport::should_post_thread_life()) {
1825       JvmtiExport::post_thread_end(this);
1826     }
1827 
1828     // We have notified the agents that we are exiting, before we go on,
1829     // we must check for a pending external suspend request and honor it
1830     // in order to not surprise the thread that made the suspend request.
1831     while (true) {
1832       {
1833         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1834         if (!is_external_suspend()) {
1835           set_terminated(_thread_exiting);
1836           ThreadService::current_thread_exiting(this);
1837           break;
1838         }
1839         // Implied else:
1840         // Things get a little tricky here. We have a pending external
1841         // suspend request, but we are holding the SR_lock so we
1842         // can't just self-suspend. So we temporarily drop the lock
1843         // and then self-suspend.
1844       }
1845 
1846       ThreadBlockInVM tbivm(this);
1847       java_suspend_self();
1848 
1849       // We're done with this suspend request, but we have to loop around
1850       // and check again. Eventually we will get SR_lock without a pending
1851       // external suspend request and will be able to mark ourselves as
1852       // exiting.
1853     }
1854     // no more external suspends are allowed at this point
1855   } else {
1856     // before_exit() has already posted JVMTI THREAD_END events
1857   }
1858 
1859   // Notify waiters on thread object. This has to be done after exit() is called
1860   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1861   // group should have the destroyed bit set before waiters are notified).
1862   ensure_join(this);
1863   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1864 
1865   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1866   // held by this thread must be released. The spec does not distinguish
1867   // between JNI-acquired and regular Java monitors. We can only see
1868   // regular Java monitors here if monitor enter-exit matching is broken.
1869   //
1870   // Optionally release any monitors for regular JavaThread exits. This
1871   // is provided as a work around for any bugs in monitor enter-exit
1872   // matching. This can be expensive so it is not enabled by default.
1873   //
1874   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1875   // ObjectSynchronizer::release_monitors_owned_by_thread().
1876   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1877     // Sanity check even though JNI DetachCurrentThread() would have
1878     // returned JNI_ERR if there was a Java frame. JavaThread exit
1879     // should be done executing Java code by the time we get here.
1880     assert(!this->has_last_Java_frame(),
1881            "should not have a Java frame when detaching or exiting");
1882     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1883     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1884   }
1885 
1886   // These things needs to be done while we are still a Java Thread. Make sure that thread
1887   // is in a consistent state, in case GC happens
1888   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1889 
1890   if (active_handles() != NULL) {
1891     JNIHandleBlock* block = active_handles();
1892     set_active_handles(NULL);
1893     JNIHandleBlock::release_block(block);
1894   }
1895 
1896   if (free_handle_block() != NULL) {
1897     JNIHandleBlock* block = free_handle_block();
1898     set_free_handle_block(NULL);
1899     JNIHandleBlock::release_block(block);
1900   }
1901 
1902   // These have to be removed while this is still a valid thread.
1903   remove_stack_guard_pages();
1904 
1905   if (UseTLAB) {
1906     tlab().make_parsable(true);  // retire TLAB
1907   }
1908 
1909   if (JvmtiEnv::environments_might_exist()) {
1910     JvmtiExport::cleanup_thread(this);
1911   }
1912 
1913   // We must flush any deferred card marks before removing a thread from
1914   // the list of active threads.
1915   Universe::heap()->flush_deferred_store_barrier(this);
1916   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1917 
1918 #if INCLUDE_ALL_GCS
1919   // We must flush the G1-related buffers before removing a thread
1920   // from the list of active threads. We must do this after any deferred
1921   // card marks have been flushed (above) so that any entries that are
1922   // added to the thread's dirty card queue as a result are not lost.
1923   if (UseG1GC) {
1924     flush_barrier_queues();
1925   }
1926 #endif // INCLUDE_ALL_GCS
1927 
1928   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1929     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1930     os::current_thread_id());
1931 
1932   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1933   Threads::remove(this);
1934 }
1935 
1936 #if INCLUDE_ALL_GCS
1937 // Flush G1-related queues.
1938 void JavaThread::flush_barrier_queues() {
1939   satb_mark_queue().flush();
1940   dirty_card_queue().flush();
1941 }
1942 
1943 void JavaThread::initialize_queues() {
1944   assert(!SafepointSynchronize::is_at_safepoint(),
1945          "we should not be at a safepoint");
1946 
1947   SATBMarkQueue& satb_queue = satb_mark_queue();
1948   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1949   // The SATB queue should have been constructed with its active
1950   // field set to false.
1951   assert(!satb_queue.is_active(), "SATB queue should not be active");
1952   assert(satb_queue.is_empty(), "SATB queue should be empty");
1953   // If we are creating the thread during a marking cycle, we should
1954   // set the active field of the SATB queue to true.
1955   if (satb_queue_set.is_active()) {
1956     satb_queue.set_active(true);
1957   }
1958 
1959   DirtyCardQueue& dirty_queue = dirty_card_queue();
1960   // The dirty card queue should have been constructed with its
1961   // active field set to true.
1962   assert(dirty_queue.is_active(), "dirty card queue should be active");
1963 }
1964 #endif // INCLUDE_ALL_GCS
1965 
1966 void JavaThread::cleanup_failed_attach_current_thread() {
1967   if (get_thread_profiler() != NULL) {
1968     get_thread_profiler()->disengage();
1969     ResourceMark rm;
1970     get_thread_profiler()->print(get_thread_name());
1971   }
1972 
1973   if (active_handles() != NULL) {
1974     JNIHandleBlock* block = active_handles();
1975     set_active_handles(NULL);
1976     JNIHandleBlock::release_block(block);
1977   }
1978 
1979   if (free_handle_block() != NULL) {
1980     JNIHandleBlock* block = free_handle_block();
1981     set_free_handle_block(NULL);
1982     JNIHandleBlock::release_block(block);
1983   }
1984 
1985   // These have to be removed while this is still a valid thread.
1986   remove_stack_guard_pages();
1987 
1988   if (UseTLAB) {
1989     tlab().make_parsable(true);  // retire TLAB, if any
1990   }
1991 
1992 #if INCLUDE_ALL_GCS
1993   if (UseG1GC) {
1994     flush_barrier_queues();
1995   }
1996 #endif // INCLUDE_ALL_GCS
1997 
1998   Threads::remove(this);
1999   delete this;
2000 }
2001 
2002 
2003 
2004 
2005 JavaThread* JavaThread::active() {
2006   Thread* thread = Thread::current();
2007   if (thread->is_Java_thread()) {
2008     return (JavaThread*) thread;
2009   } else {
2010     assert(thread->is_VM_thread(), "this must be a vm thread");
2011     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2012     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2013     assert(ret->is_Java_thread(), "must be a Java thread");
2014     return ret;
2015   }
2016 }
2017 
2018 bool JavaThread::is_lock_owned(address adr) const {
2019   if (Thread::is_lock_owned(adr)) return true;
2020 
2021   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2022     if (chunk->contains(adr)) return true;
2023   }
2024 
2025   return false;
2026 }
2027 
2028 
2029 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2030   chunk->set_next(monitor_chunks());
2031   set_monitor_chunks(chunk);
2032 }
2033 
2034 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2035   guarantee(monitor_chunks() != NULL, "must be non empty");
2036   if (monitor_chunks() == chunk) {
2037     set_monitor_chunks(chunk->next());
2038   } else {
2039     MonitorChunk* prev = monitor_chunks();
2040     while (prev->next() != chunk) prev = prev->next();
2041     prev->set_next(chunk->next());
2042   }
2043 }
2044 
2045 // JVM support.
2046 
2047 // Note: this function shouldn't block if it's called in
2048 // _thread_in_native_trans state (such as from
2049 // check_special_condition_for_native_trans()).
2050 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2051 
2052   if (has_last_Java_frame() && has_async_condition()) {
2053     // If we are at a polling page safepoint (not a poll return)
2054     // then we must defer async exception because live registers
2055     // will be clobbered by the exception path. Poll return is
2056     // ok because the call we a returning from already collides
2057     // with exception handling registers and so there is no issue.
2058     // (The exception handling path kills call result registers but
2059     //  this is ok since the exception kills the result anyway).
2060 
2061     if (is_at_poll_safepoint()) {
2062       // if the code we are returning to has deoptimized we must defer
2063       // the exception otherwise live registers get clobbered on the
2064       // exception path before deoptimization is able to retrieve them.
2065       //
2066       RegisterMap map(this, false);
2067       frame caller_fr = last_frame().sender(&map);
2068       assert(caller_fr.is_compiled_frame(), "what?");
2069       if (caller_fr.is_deoptimized_frame()) {
2070         log_info(exceptions)("deferred async exception at compiled safepoint");
2071         return;
2072       }
2073     }
2074   }
2075 
2076   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2077   if (condition == _no_async_condition) {
2078     // Conditions have changed since has_special_runtime_exit_condition()
2079     // was called:
2080     // - if we were here only because of an external suspend request,
2081     //   then that was taken care of above (or cancelled) so we are done
2082     // - if we were here because of another async request, then it has
2083     //   been cleared between the has_special_runtime_exit_condition()
2084     //   and now so again we are done
2085     return;
2086   }
2087 
2088   // Check for pending async. exception
2089   if (_pending_async_exception != NULL) {
2090     // Only overwrite an already pending exception, if it is not a threadDeath.
2091     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2092 
2093       // We cannot call Exceptions::_throw(...) here because we cannot block
2094       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2095 
2096       if (log_is_enabled(Info, exceptions)) {
2097         ResourceMark rm;
2098         outputStream* logstream = Log(exceptions)::info_stream();
2099         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2100           if (has_last_Java_frame()) {
2101             frame f = last_frame();
2102            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2103           }
2104         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2105       }
2106       _pending_async_exception = NULL;
2107       clear_has_async_exception();
2108     }
2109   }
2110 
2111   if (check_unsafe_error &&
2112       condition == _async_unsafe_access_error && !has_pending_exception()) {
2113     condition = _no_async_condition;  // done
2114     switch (thread_state()) {
2115     case _thread_in_vm: {
2116       JavaThread* THREAD = this;
2117       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2118     }
2119     case _thread_in_native: {
2120       ThreadInVMfromNative tiv(this);
2121       JavaThread* THREAD = this;
2122       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2123     }
2124     case _thread_in_Java: {
2125       ThreadInVMfromJava tiv(this);
2126       JavaThread* THREAD = this;
2127       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2128     }
2129     default:
2130       ShouldNotReachHere();
2131     }
2132   }
2133 
2134   assert(condition == _no_async_condition || has_pending_exception() ||
2135          (!check_unsafe_error && condition == _async_unsafe_access_error),
2136          "must have handled the async condition, if no exception");
2137 }
2138 
2139 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2140   //
2141   // Check for pending external suspend. Internal suspend requests do
2142   // not use handle_special_runtime_exit_condition().
2143   // If JNIEnv proxies are allowed, don't self-suspend if the target
2144   // thread is not the current thread. In older versions of jdbx, jdbx
2145   // threads could call into the VM with another thread's JNIEnv so we
2146   // can be here operating on behalf of a suspended thread (4432884).
2147   bool do_self_suspend = is_external_suspend_with_lock();
2148   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2149     //
2150     // Because thread is external suspended the safepoint code will count
2151     // thread as at a safepoint. This can be odd because we can be here
2152     // as _thread_in_Java which would normally transition to _thread_blocked
2153     // at a safepoint. We would like to mark the thread as _thread_blocked
2154     // before calling java_suspend_self like all other callers of it but
2155     // we must then observe proper safepoint protocol. (We can't leave
2156     // _thread_blocked with a safepoint in progress). However we can be
2157     // here as _thread_in_native_trans so we can't use a normal transition
2158     // constructor/destructor pair because they assert on that type of
2159     // transition. We could do something like:
2160     //
2161     // JavaThreadState state = thread_state();
2162     // set_thread_state(_thread_in_vm);
2163     // {
2164     //   ThreadBlockInVM tbivm(this);
2165     //   java_suspend_self()
2166     // }
2167     // set_thread_state(_thread_in_vm_trans);
2168     // if (safepoint) block;
2169     // set_thread_state(state);
2170     //
2171     // but that is pretty messy. Instead we just go with the way the
2172     // code has worked before and note that this is the only path to
2173     // java_suspend_self that doesn't put the thread in _thread_blocked
2174     // mode.
2175 
2176     frame_anchor()->make_walkable(this);
2177     java_suspend_self();
2178 
2179     // We might be here for reasons in addition to the self-suspend request
2180     // so check for other async requests.
2181   }
2182 
2183   if (check_asyncs) {
2184     check_and_handle_async_exceptions();
2185   }
2186 }
2187 
2188 void JavaThread::send_thread_stop(oop java_throwable)  {
2189   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2190   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2191   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2192 
2193   // Do not throw asynchronous exceptions against the compiler thread
2194   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2195   if (!can_call_java()) return;
2196 
2197   {
2198     // Actually throw the Throwable against the target Thread - however
2199     // only if there is no thread death exception installed already.
2200     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2201       // If the topmost frame is a runtime stub, then we are calling into
2202       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2203       // must deoptimize the caller before continuing, as the compiled  exception handler table
2204       // may not be valid
2205       if (has_last_Java_frame()) {
2206         frame f = last_frame();
2207         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2208           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2209           RegisterMap reg_map(this, UseBiasedLocking);
2210           frame compiled_frame = f.sender(&reg_map);
2211           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2212             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2213           }
2214         }
2215       }
2216 
2217       // Set async. pending exception in thread.
2218       set_pending_async_exception(java_throwable);
2219 
2220       if (log_is_enabled(Info, exceptions)) {
2221          ResourceMark rm;
2222         log_info(exceptions)("Pending Async. exception installed of type: %s",
2223                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2224       }
2225       // for AbortVMOnException flag
2226       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2227     }
2228   }
2229 
2230 
2231   // Interrupt thread so it will wake up from a potential wait()
2232   Thread::interrupt(this);
2233 }
2234 
2235 // External suspension mechanism.
2236 //
2237 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2238 // to any VM_locks and it is at a transition
2239 // Self-suspension will happen on the transition out of the vm.
2240 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2241 //
2242 // Guarantees on return:
2243 //   + Target thread will not execute any new bytecode (that's why we need to
2244 //     force a safepoint)
2245 //   + Target thread will not enter any new monitors
2246 //
2247 void JavaThread::java_suspend() {
2248   { MutexLocker mu(Threads_lock);
2249     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2250       return;
2251     }
2252   }
2253 
2254   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2255     if (!is_external_suspend()) {
2256       // a racing resume has cancelled us; bail out now
2257       return;
2258     }
2259 
2260     // suspend is done
2261     uint32_t debug_bits = 0;
2262     // Warning: is_ext_suspend_completed() may temporarily drop the
2263     // SR_lock to allow the thread to reach a stable thread state if
2264     // it is currently in a transient thread state.
2265     if (is_ext_suspend_completed(false /* !called_by_wait */,
2266                                  SuspendRetryDelay, &debug_bits)) {
2267       return;
2268     }
2269   }
2270 
2271   VM_ForceSafepoint vm_suspend;
2272   VMThread::execute(&vm_suspend);
2273 }
2274 
2275 // Part II of external suspension.
2276 // A JavaThread self suspends when it detects a pending external suspend
2277 // request. This is usually on transitions. It is also done in places
2278 // where continuing to the next transition would surprise the caller,
2279 // e.g., monitor entry.
2280 //
2281 // Returns the number of times that the thread self-suspended.
2282 //
2283 // Note: DO NOT call java_suspend_self() when you just want to block current
2284 //       thread. java_suspend_self() is the second stage of cooperative
2285 //       suspension for external suspend requests and should only be used
2286 //       to complete an external suspend request.
2287 //
2288 int JavaThread::java_suspend_self() {
2289   int ret = 0;
2290 
2291   // we are in the process of exiting so don't suspend
2292   if (is_exiting()) {
2293     clear_external_suspend();
2294     return ret;
2295   }
2296 
2297   assert(_anchor.walkable() ||
2298          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2299          "must have walkable stack");
2300 
2301   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2302 
2303   assert(!this->is_ext_suspended(),
2304          "a thread trying to self-suspend should not already be suspended");
2305 
2306   if (this->is_suspend_equivalent()) {
2307     // If we are self-suspending as a result of the lifting of a
2308     // suspend equivalent condition, then the suspend_equivalent
2309     // flag is not cleared until we set the ext_suspended flag so
2310     // that wait_for_ext_suspend_completion() returns consistent
2311     // results.
2312     this->clear_suspend_equivalent();
2313   }
2314 
2315   // A racing resume may have cancelled us before we grabbed SR_lock
2316   // above. Or another external suspend request could be waiting for us
2317   // by the time we return from SR_lock()->wait(). The thread
2318   // that requested the suspension may already be trying to walk our
2319   // stack and if we return now, we can change the stack out from under
2320   // it. This would be a "bad thing (TM)" and cause the stack walker
2321   // to crash. We stay self-suspended until there are no more pending
2322   // external suspend requests.
2323   while (is_external_suspend()) {
2324     ret++;
2325     this->set_ext_suspended();
2326 
2327     // _ext_suspended flag is cleared by java_resume()
2328     while (is_ext_suspended()) {
2329       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2330     }
2331   }
2332 
2333   return ret;
2334 }
2335 
2336 #ifdef ASSERT
2337 // verify the JavaThread has not yet been published in the Threads::list, and
2338 // hence doesn't need protection from concurrent access at this stage
2339 void JavaThread::verify_not_published() {
2340   if (!Threads_lock->owned_by_self()) {
2341     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2342     assert(!Threads::includes(this),
2343            "java thread shouldn't have been published yet!");
2344   } else {
2345     assert(!Threads::includes(this),
2346            "java thread shouldn't have been published yet!");
2347   }
2348 }
2349 #endif
2350 
2351 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2352 // progress or when _suspend_flags is non-zero.
2353 // Current thread needs to self-suspend if there is a suspend request and/or
2354 // block if a safepoint is in progress.
2355 // Async exception ISN'T checked.
2356 // Note only the ThreadInVMfromNative transition can call this function
2357 // directly and when thread state is _thread_in_native_trans
2358 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2359   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2360 
2361   JavaThread *curJT = JavaThread::current();
2362   bool do_self_suspend = thread->is_external_suspend();
2363 
2364   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2365 
2366   // If JNIEnv proxies are allowed, don't self-suspend if the target
2367   // thread is not the current thread. In older versions of jdbx, jdbx
2368   // threads could call into the VM with another thread's JNIEnv so we
2369   // can be here operating on behalf of a suspended thread (4432884).
2370   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2371     JavaThreadState state = thread->thread_state();
2372 
2373     // We mark this thread_blocked state as a suspend-equivalent so
2374     // that a caller to is_ext_suspend_completed() won't be confused.
2375     // The suspend-equivalent state is cleared by java_suspend_self().
2376     thread->set_suspend_equivalent();
2377 
2378     // If the safepoint code sees the _thread_in_native_trans state, it will
2379     // wait until the thread changes to other thread state. There is no
2380     // guarantee on how soon we can obtain the SR_lock and complete the
2381     // self-suspend request. It would be a bad idea to let safepoint wait for
2382     // too long. Temporarily change the state to _thread_blocked to
2383     // let the VM thread know that this thread is ready for GC. The problem
2384     // of changing thread state is that safepoint could happen just after
2385     // java_suspend_self() returns after being resumed, and VM thread will
2386     // see the _thread_blocked state. We must check for safepoint
2387     // after restoring the state and make sure we won't leave while a safepoint
2388     // is in progress.
2389     thread->set_thread_state(_thread_blocked);
2390     thread->java_suspend_self();
2391     thread->set_thread_state(state);
2392     // Make sure new state is seen by VM thread
2393     if (os::is_MP()) {
2394       if (UseMembar) {
2395         // Force a fence between the write above and read below
2396         OrderAccess::fence();
2397       } else {
2398         // Must use this rather than serialization page in particular on Windows
2399         InterfaceSupport::serialize_memory(thread);
2400       }
2401     }
2402   }
2403 
2404   if (SafepointSynchronize::do_call_back()) {
2405     // If we are safepointing, then block the caller which may not be
2406     // the same as the target thread (see above).
2407     SafepointSynchronize::block(curJT);
2408   }
2409 
2410   if (thread->is_deopt_suspend()) {
2411     thread->clear_deopt_suspend();
2412     RegisterMap map(thread, false);
2413     frame f = thread->last_frame();
2414     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2415       f = f.sender(&map);
2416     }
2417     if (f.id() == thread->must_deopt_id()) {
2418       thread->clear_must_deopt_id();
2419       f.deoptimize(thread);
2420     } else {
2421       fatal("missed deoptimization!");
2422     }
2423   }
2424 }
2425 
2426 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2427 // progress or when _suspend_flags is non-zero.
2428 // Current thread needs to self-suspend if there is a suspend request and/or
2429 // block if a safepoint is in progress.
2430 // Also check for pending async exception (not including unsafe access error).
2431 // Note only the native==>VM/Java barriers can call this function and when
2432 // thread state is _thread_in_native_trans.
2433 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2434   check_safepoint_and_suspend_for_native_trans(thread);
2435 
2436   if (thread->has_async_exception()) {
2437     // We are in _thread_in_native_trans state, don't handle unsafe
2438     // access error since that may block.
2439     thread->check_and_handle_async_exceptions(false);
2440   }
2441 }
2442 
2443 // This is a variant of the normal
2444 // check_special_condition_for_native_trans with slightly different
2445 // semantics for use by critical native wrappers.  It does all the
2446 // normal checks but also performs the transition back into
2447 // thread_in_Java state.  This is required so that critical natives
2448 // can potentially block and perform a GC if they are the last thread
2449 // exiting the GCLocker.
2450 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2451   check_special_condition_for_native_trans(thread);
2452 
2453   // Finish the transition
2454   thread->set_thread_state(_thread_in_Java);
2455 
2456   if (thread->do_critical_native_unlock()) {
2457     ThreadInVMfromJavaNoAsyncException tiv(thread);
2458     GCLocker::unlock_critical(thread);
2459     thread->clear_critical_native_unlock();
2460   }
2461 }
2462 
2463 // We need to guarantee the Threads_lock here, since resumes are not
2464 // allowed during safepoint synchronization
2465 // Can only resume from an external suspension
2466 void JavaThread::java_resume() {
2467   assert_locked_or_safepoint(Threads_lock);
2468 
2469   // Sanity check: thread is gone, has started exiting or the thread
2470   // was not externally suspended.
2471   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2472     return;
2473   }
2474 
2475   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2476 
2477   clear_external_suspend();
2478 
2479   if (is_ext_suspended()) {
2480     clear_ext_suspended();
2481     SR_lock()->notify_all();
2482   }
2483 }
2484 
2485 size_t JavaThread::_stack_red_zone_size = 0;
2486 size_t JavaThread::_stack_yellow_zone_size = 0;
2487 size_t JavaThread::_stack_reserved_zone_size = 0;
2488 size_t JavaThread::_stack_shadow_zone_size = 0;
2489 
2490 void JavaThread::create_stack_guard_pages() {
2491   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2492   address low_addr = stack_end();
2493   size_t len = stack_guard_zone_size();
2494 
2495   int must_commit = os::must_commit_stack_guard_pages();
2496   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2497 
2498   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2499     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2500     return;
2501   }
2502 
2503   if (os::guard_memory((char *) low_addr, len)) {
2504     _stack_guard_state = stack_guard_enabled;
2505   } else {
2506     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2507       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2508     if (os::uncommit_memory((char *) low_addr, len)) {
2509       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2510     }
2511     return;
2512   }
2513 
2514   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2515     PTR_FORMAT "-" PTR_FORMAT ".",
2516     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2517 }
2518 
2519 void JavaThread::remove_stack_guard_pages() {
2520   assert(Thread::current() == this, "from different thread");
2521   if (_stack_guard_state == stack_guard_unused) return;
2522   address low_addr = stack_end();
2523   size_t len = stack_guard_zone_size();
2524 
2525   if (os::must_commit_stack_guard_pages()) {
2526     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2527       _stack_guard_state = stack_guard_unused;
2528     } else {
2529       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2530         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2531       return;
2532     }
2533   } else {
2534     if (_stack_guard_state == stack_guard_unused) return;
2535     if (os::unguard_memory((char *) low_addr, len)) {
2536       _stack_guard_state = stack_guard_unused;
2537     } else {
2538       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2539         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2540       return;
2541     }
2542   }
2543 
2544   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2545     PTR_FORMAT "-" PTR_FORMAT ".",
2546     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2547 }
2548 
2549 void JavaThread::enable_stack_reserved_zone() {
2550   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2551   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2552 
2553   // The base notation is from the stack's point of view, growing downward.
2554   // We need to adjust it to work correctly with guard_memory()
2555   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2556 
2557   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2558   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2559 
2560   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2561     _stack_guard_state = stack_guard_enabled;
2562   } else {
2563     warning("Attempt to guard stack reserved zone failed.");
2564   }
2565   enable_register_stack_guard();
2566 }
2567 
2568 void JavaThread::disable_stack_reserved_zone() {
2569   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2570   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2571 
2572   // Simply return if called for a thread that does not use guard pages.
2573   if (_stack_guard_state == stack_guard_unused) return;
2574 
2575   // The base notation is from the stack's point of view, growing downward.
2576   // We need to adjust it to work correctly with guard_memory()
2577   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2578 
2579   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2580     _stack_guard_state = stack_guard_reserved_disabled;
2581   } else {
2582     warning("Attempt to unguard stack reserved zone failed.");
2583   }
2584   disable_register_stack_guard();
2585 }
2586 
2587 void JavaThread::enable_stack_yellow_reserved_zone() {
2588   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2589   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2590 
2591   // The base notation is from the stacks point of view, growing downward.
2592   // We need to adjust it to work correctly with guard_memory()
2593   address base = stack_red_zone_base();
2594 
2595   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2596   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2597 
2598   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2599     _stack_guard_state = stack_guard_enabled;
2600   } else {
2601     warning("Attempt to guard stack yellow zone failed.");
2602   }
2603   enable_register_stack_guard();
2604 }
2605 
2606 void JavaThread::disable_stack_yellow_reserved_zone() {
2607   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2608   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2609 
2610   // Simply return if called for a thread that does not use guard pages.
2611   if (_stack_guard_state == stack_guard_unused) return;
2612 
2613   // The base notation is from the stacks point of view, growing downward.
2614   // We need to adjust it to work correctly with guard_memory()
2615   address base = stack_red_zone_base();
2616 
2617   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2618     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2619   } else {
2620     warning("Attempt to unguard stack yellow zone failed.");
2621   }
2622   disable_register_stack_guard();
2623 }
2624 
2625 void JavaThread::enable_stack_red_zone() {
2626   // The base notation is from the stacks point of view, growing downward.
2627   // We need to adjust it to work correctly with guard_memory()
2628   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2629   address base = stack_red_zone_base() - stack_red_zone_size();
2630 
2631   guarantee(base < stack_base(), "Error calculating stack red zone");
2632   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2633 
2634   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2635     warning("Attempt to guard stack red zone failed.");
2636   }
2637 }
2638 
2639 void JavaThread::disable_stack_red_zone() {
2640   // The base notation is from the stacks point of view, growing downward.
2641   // We need to adjust it to work correctly with guard_memory()
2642   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2643   address base = stack_red_zone_base() - stack_red_zone_size();
2644   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2645     warning("Attempt to unguard stack red zone failed.");
2646   }
2647 }
2648 
2649 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2650   // ignore is there is no stack
2651   if (!has_last_Java_frame()) return;
2652   // traverse the stack frames. Starts from top frame.
2653   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2654     frame* fr = fst.current();
2655     f(fr, fst.register_map());
2656   }
2657 }
2658 
2659 
2660 #ifndef PRODUCT
2661 // Deoptimization
2662 // Function for testing deoptimization
2663 void JavaThread::deoptimize() {
2664   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2665   StackFrameStream fst(this, UseBiasedLocking);
2666   bool deopt = false;           // Dump stack only if a deopt actually happens.
2667   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2668   // Iterate over all frames in the thread and deoptimize
2669   for (; !fst.is_done(); fst.next()) {
2670     if (fst.current()->can_be_deoptimized()) {
2671 
2672       if (only_at) {
2673         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2674         // consists of comma or carriage return separated numbers so
2675         // search for the current bci in that string.
2676         address pc = fst.current()->pc();
2677         nmethod* nm =  (nmethod*) fst.current()->cb();
2678         ScopeDesc* sd = nm->scope_desc_at(pc);
2679         char buffer[8];
2680         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2681         size_t len = strlen(buffer);
2682         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2683         while (found != NULL) {
2684           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2685               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2686             // Check that the bci found is bracketed by terminators.
2687             break;
2688           }
2689           found = strstr(found + 1, buffer);
2690         }
2691         if (!found) {
2692           continue;
2693         }
2694       }
2695 
2696       if (DebugDeoptimization && !deopt) {
2697         deopt = true; // One-time only print before deopt
2698         tty->print_cr("[BEFORE Deoptimization]");
2699         trace_frames();
2700         trace_stack();
2701       }
2702       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2703     }
2704   }
2705 
2706   if (DebugDeoptimization && deopt) {
2707     tty->print_cr("[AFTER Deoptimization]");
2708     trace_frames();
2709   }
2710 }
2711 
2712 
2713 // Make zombies
2714 void JavaThread::make_zombies() {
2715   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2716     if (fst.current()->can_be_deoptimized()) {
2717       // it is a Java nmethod
2718       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2719       nm->make_not_entrant();
2720     }
2721   }
2722 }
2723 #endif // PRODUCT
2724 
2725 
2726 void JavaThread::deoptimized_wrt_marked_nmethods() {
2727   if (!has_last_Java_frame()) return;
2728   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2729   StackFrameStream fst(this, UseBiasedLocking);
2730   for (; !fst.is_done(); fst.next()) {
2731     if (fst.current()->should_be_deoptimized()) {
2732       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2733     }
2734   }
2735 }
2736 
2737 
2738 // If the caller is a NamedThread, then remember, in the current scope,
2739 // the given JavaThread in its _processed_thread field.
2740 class RememberProcessedThread: public StackObj {
2741   NamedThread* _cur_thr;
2742  public:
2743   RememberProcessedThread(JavaThread* jthr) {
2744     Thread* thread = Thread::current();
2745     if (thread->is_Named_thread()) {
2746       _cur_thr = (NamedThread *)thread;
2747       _cur_thr->set_processed_thread(jthr);
2748     } else {
2749       _cur_thr = NULL;
2750     }
2751   }
2752 
2753   ~RememberProcessedThread() {
2754     if (_cur_thr) {
2755       _cur_thr->set_processed_thread(NULL);
2756     }
2757   }
2758 };
2759 
2760 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2761   // Verify that the deferred card marks have been flushed.
2762   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2763 
2764   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2765   // since there may be more than one thread using each ThreadProfiler.
2766 
2767   // Traverse the GCHandles
2768   Thread::oops_do(f, cf);
2769 
2770   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2771 
2772   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2773          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2774 
2775   if (has_last_Java_frame()) {
2776     // Record JavaThread to GC thread
2777     RememberProcessedThread rpt(this);
2778 
2779     // Traverse the privileged stack
2780     if (_privileged_stack_top != NULL) {
2781       _privileged_stack_top->oops_do(f);
2782     }
2783 
2784     // traverse the registered growable array
2785     if (_array_for_gc != NULL) {
2786       for (int index = 0; index < _array_for_gc->length(); index++) {
2787         f->do_oop(_array_for_gc->adr_at(index));
2788       }
2789     }
2790 
2791     // Traverse the monitor chunks
2792     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2793       chunk->oops_do(f);
2794     }
2795 
2796     // Traverse the execution stack
2797     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2798       fst.current()->oops_do(f, cf, fst.register_map());
2799     }
2800   }
2801 
2802   // callee_target is never live across a gc point so NULL it here should
2803   // it still contain a methdOop.
2804 
2805   set_callee_target(NULL);
2806 
2807   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2808   // If we have deferred set_locals there might be oops waiting to be
2809   // written
2810   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2811   if (list != NULL) {
2812     for (int i = 0; i < list->length(); i++) {
2813       list->at(i)->oops_do(f);
2814     }
2815   }
2816 
2817   // Traverse instance variables at the end since the GC may be moving things
2818   // around using this function
2819   f->do_oop((oop*) &_threadObj);
2820   f->do_oop((oop*) &_vm_result);
2821   f->do_oop((oop*) &_exception_oop);
2822   f->do_oop((oop*) &_pending_async_exception);
2823 
2824   if (jvmti_thread_state() != NULL) {
2825     jvmti_thread_state()->oops_do(f);
2826   }
2827 }
2828 
2829 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2830   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2831          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2832 
2833   if (has_last_Java_frame()) {
2834     // Traverse the execution stack
2835     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2836       fst.current()->nmethods_do(cf);
2837     }
2838   }
2839 }
2840 
2841 void JavaThread::metadata_do(void f(Metadata*)) {
2842   if (has_last_Java_frame()) {
2843     // Traverse the execution stack to call f() on the methods in the stack
2844     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2845       fst.current()->metadata_do(f);
2846     }
2847   } else if (is_Compiler_thread()) {
2848     // need to walk ciMetadata in current compile tasks to keep alive.
2849     CompilerThread* ct = (CompilerThread*)this;
2850     if (ct->env() != NULL) {
2851       ct->env()->metadata_do(f);
2852     }
2853     if (ct->task() != NULL) {
2854       ct->task()->metadata_do(f);
2855     }
2856   }
2857 }
2858 
2859 // Printing
2860 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2861   switch (_thread_state) {
2862   case _thread_uninitialized:     return "_thread_uninitialized";
2863   case _thread_new:               return "_thread_new";
2864   case _thread_new_trans:         return "_thread_new_trans";
2865   case _thread_in_native:         return "_thread_in_native";
2866   case _thread_in_native_trans:   return "_thread_in_native_trans";
2867   case _thread_in_vm:             return "_thread_in_vm";
2868   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2869   case _thread_in_Java:           return "_thread_in_Java";
2870   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2871   case _thread_blocked:           return "_thread_blocked";
2872   case _thread_blocked_trans:     return "_thread_blocked_trans";
2873   default:                        return "unknown thread state";
2874   }
2875 }
2876 
2877 #ifndef PRODUCT
2878 void JavaThread::print_thread_state_on(outputStream *st) const {
2879   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2880 };
2881 void JavaThread::print_thread_state() const {
2882   print_thread_state_on(tty);
2883 }
2884 #endif // PRODUCT
2885 
2886 // Called by Threads::print() for VM_PrintThreads operation
2887 void JavaThread::print_on(outputStream *st) const {
2888   st->print_raw("\"");
2889   st->print_raw(get_thread_name());
2890   st->print_raw("\" ");
2891   oop thread_oop = threadObj();
2892   if (thread_oop != NULL) {
2893     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2894     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2895     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2896   }
2897   Thread::print_on(st);
2898   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2899   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2900   if (thread_oop != NULL) {
2901     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2902   }
2903 #ifndef PRODUCT
2904   print_thread_state_on(st);
2905   _safepoint_state->print_on(st);
2906 #endif // PRODUCT
2907   if (is_Compiler_thread()) {
2908     CompilerThread* ct = (CompilerThread*)this;
2909     if (ct->task() != NULL) {
2910       st->print("   Compiling: ");
2911       ct->task()->print(st, NULL, true, false);
2912     } else {
2913       st->print("   No compile task");
2914     }
2915     st->cr();
2916   }
2917 }
2918 
2919 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2920   st->print("%s", get_thread_name_string(buf, buflen));
2921 }
2922 
2923 // Called by fatal error handler. The difference between this and
2924 // JavaThread::print() is that we can't grab lock or allocate memory.
2925 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2926   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2927   oop thread_obj = threadObj();
2928   if (thread_obj != NULL) {
2929     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2930   }
2931   st->print(" [");
2932   st->print("%s", _get_thread_state_name(_thread_state));
2933   if (osthread()) {
2934     st->print(", id=%d", osthread()->thread_id());
2935   }
2936   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2937             p2i(stack_end()), p2i(stack_base()));
2938   st->print("]");
2939   return;
2940 }
2941 
2942 // Verification
2943 
2944 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2945 
2946 void JavaThread::verify() {
2947   // Verify oops in the thread.
2948   oops_do(&VerifyOopClosure::verify_oop, NULL);
2949 
2950   // Verify the stack frames.
2951   frames_do(frame_verify);
2952 }
2953 
2954 // CR 6300358 (sub-CR 2137150)
2955 // Most callers of this method assume that it can't return NULL but a
2956 // thread may not have a name whilst it is in the process of attaching to
2957 // the VM - see CR 6412693, and there are places where a JavaThread can be
2958 // seen prior to having it's threadObj set (eg JNI attaching threads and
2959 // if vm exit occurs during initialization). These cases can all be accounted
2960 // for such that this method never returns NULL.
2961 const char* JavaThread::get_thread_name() const {
2962 #ifdef ASSERT
2963   // early safepoints can hit while current thread does not yet have TLS
2964   if (!SafepointSynchronize::is_at_safepoint()) {
2965     Thread *cur = Thread::current();
2966     if (!(cur->is_Java_thread() && cur == this)) {
2967       // Current JavaThreads are allowed to get their own name without
2968       // the Threads_lock.
2969       assert_locked_or_safepoint(Threads_lock);
2970     }
2971   }
2972 #endif // ASSERT
2973   return get_thread_name_string();
2974 }
2975 
2976 // Returns a non-NULL representation of this thread's name, or a suitable
2977 // descriptive string if there is no set name
2978 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2979   const char* name_str;
2980   oop thread_obj = threadObj();
2981   if (thread_obj != NULL) {
2982     oop name = java_lang_Thread::name(thread_obj);
2983     if (name != NULL) {
2984       if (buf == NULL) {
2985         name_str = java_lang_String::as_utf8_string(name);
2986       } else {
2987         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2988       }
2989     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2990       name_str = "<no-name - thread is attaching>";
2991     } else {
2992       name_str = Thread::name();
2993     }
2994   } else {
2995     name_str = Thread::name();
2996   }
2997   assert(name_str != NULL, "unexpected NULL thread name");
2998   return name_str;
2999 }
3000 
3001 
3002 const char* JavaThread::get_threadgroup_name() const {
3003   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3004   oop thread_obj = threadObj();
3005   if (thread_obj != NULL) {
3006     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3007     if (thread_group != NULL) {
3008       // ThreadGroup.name can be null
3009       return java_lang_ThreadGroup::name(thread_group);
3010     }
3011   }
3012   return NULL;
3013 }
3014 
3015 const char* JavaThread::get_parent_name() const {
3016   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3017   oop thread_obj = threadObj();
3018   if (thread_obj != NULL) {
3019     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3020     if (thread_group != NULL) {
3021       oop parent = java_lang_ThreadGroup::parent(thread_group);
3022       if (parent != NULL) {
3023         // ThreadGroup.name can be null
3024         return java_lang_ThreadGroup::name(parent);
3025       }
3026     }
3027   }
3028   return NULL;
3029 }
3030 
3031 ThreadPriority JavaThread::java_priority() const {
3032   oop thr_oop = threadObj();
3033   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3034   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3035   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3036   return priority;
3037 }
3038 
3039 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3040 
3041   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3042   // Link Java Thread object <-> C++ Thread
3043 
3044   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3045   // and put it into a new Handle.  The Handle "thread_oop" can then
3046   // be used to pass the C++ thread object to other methods.
3047 
3048   // Set the Java level thread object (jthread) field of the
3049   // new thread (a JavaThread *) to C++ thread object using the
3050   // "thread_oop" handle.
3051 
3052   // Set the thread field (a JavaThread *) of the
3053   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3054 
3055   Handle thread_oop(Thread::current(),
3056                     JNIHandles::resolve_non_null(jni_thread));
3057   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3058          "must be initialized");
3059   set_threadObj(thread_oop());
3060   java_lang_Thread::set_thread(thread_oop(), this);
3061 
3062   if (prio == NoPriority) {
3063     prio = java_lang_Thread::priority(thread_oop());
3064     assert(prio != NoPriority, "A valid priority should be present");
3065   }
3066 
3067   // Push the Java priority down to the native thread; needs Threads_lock
3068   Thread::set_priority(this, prio);
3069 
3070   prepare_ext();
3071 
3072   // Add the new thread to the Threads list and set it in motion.
3073   // We must have threads lock in order to call Threads::add.
3074   // It is crucial that we do not block before the thread is
3075   // added to the Threads list for if a GC happens, then the java_thread oop
3076   // will not be visited by GC.
3077   Threads::add(this);
3078 }
3079 
3080 oop JavaThread::current_park_blocker() {
3081   // Support for JSR-166 locks
3082   oop thread_oop = threadObj();
3083   if (thread_oop != NULL &&
3084       JDK_Version::current().supports_thread_park_blocker()) {
3085     return java_lang_Thread::park_blocker(thread_oop);
3086   }
3087   return NULL;
3088 }
3089 
3090 
3091 void JavaThread::print_stack_on(outputStream* st) {
3092   if (!has_last_Java_frame()) return;
3093   ResourceMark rm;
3094   HandleMark   hm;
3095 
3096   RegisterMap reg_map(this);
3097   vframe* start_vf = last_java_vframe(&reg_map);
3098   int count = 0;
3099   for (vframe* f = start_vf; f; f = f->sender()) {
3100     if (f->is_java_frame()) {
3101       javaVFrame* jvf = javaVFrame::cast(f);
3102       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3103 
3104       // Print out lock information
3105       if (JavaMonitorsInStackTrace) {
3106         jvf->print_lock_info_on(st, count);
3107       }
3108     } else {
3109       // Ignore non-Java frames
3110     }
3111 
3112     // Bail-out case for too deep stacks
3113     count++;
3114     if (MaxJavaStackTraceDepth == count) return;
3115   }
3116 }
3117 
3118 
3119 // JVMTI PopFrame support
3120 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3121   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3122   if (in_bytes(size_in_bytes) != 0) {
3123     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3124     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3125     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3126   }
3127 }
3128 
3129 void* JavaThread::popframe_preserved_args() {
3130   return _popframe_preserved_args;
3131 }
3132 
3133 ByteSize JavaThread::popframe_preserved_args_size() {
3134   return in_ByteSize(_popframe_preserved_args_size);
3135 }
3136 
3137 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3138   int sz = in_bytes(popframe_preserved_args_size());
3139   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3140   return in_WordSize(sz / wordSize);
3141 }
3142 
3143 void JavaThread::popframe_free_preserved_args() {
3144   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3145   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3146   _popframe_preserved_args = NULL;
3147   _popframe_preserved_args_size = 0;
3148 }
3149 
3150 #ifndef PRODUCT
3151 
3152 void JavaThread::trace_frames() {
3153   tty->print_cr("[Describe stack]");
3154   int frame_no = 1;
3155   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3156     tty->print("  %d. ", frame_no++);
3157     fst.current()->print_value_on(tty, this);
3158     tty->cr();
3159   }
3160 }
3161 
3162 class PrintAndVerifyOopClosure: public OopClosure {
3163  protected:
3164   template <class T> inline void do_oop_work(T* p) {
3165     oop obj = oopDesc::load_decode_heap_oop(p);
3166     if (obj == NULL) return;
3167     tty->print(INTPTR_FORMAT ": ", p2i(p));
3168     if (obj->is_oop_or_null()) {
3169       if (obj->is_objArray()) {
3170         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3171       } else {
3172         obj->print();
3173       }
3174     } else {
3175       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3176     }
3177     tty->cr();
3178   }
3179  public:
3180   virtual void do_oop(oop* p) { do_oop_work(p); }
3181   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3182 };
3183 
3184 
3185 static void oops_print(frame* f, const RegisterMap *map) {
3186   PrintAndVerifyOopClosure print;
3187   f->print_value();
3188   f->oops_do(&print, NULL, (RegisterMap*)map);
3189 }
3190 
3191 // Print our all the locations that contain oops and whether they are
3192 // valid or not.  This useful when trying to find the oldest frame
3193 // where an oop has gone bad since the frame walk is from youngest to
3194 // oldest.
3195 void JavaThread::trace_oops() {
3196   tty->print_cr("[Trace oops]");
3197   frames_do(oops_print);
3198 }
3199 
3200 
3201 #ifdef ASSERT
3202 // Print or validate the layout of stack frames
3203 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3204   ResourceMark rm;
3205   PRESERVE_EXCEPTION_MARK;
3206   FrameValues values;
3207   int frame_no = 0;
3208   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3209     fst.current()->describe(values, ++frame_no);
3210     if (depth == frame_no) break;
3211   }
3212   if (validate_only) {
3213     values.validate();
3214   } else {
3215     tty->print_cr("[Describe stack layout]");
3216     values.print(this);
3217   }
3218 }
3219 #endif
3220 
3221 void JavaThread::trace_stack_from(vframe* start_vf) {
3222   ResourceMark rm;
3223   int vframe_no = 1;
3224   for (vframe* f = start_vf; f; f = f->sender()) {
3225     if (f->is_java_frame()) {
3226       javaVFrame::cast(f)->print_activation(vframe_no++);
3227     } else {
3228       f->print();
3229     }
3230     if (vframe_no > StackPrintLimit) {
3231       tty->print_cr("...<more frames>...");
3232       return;
3233     }
3234   }
3235 }
3236 
3237 
3238 void JavaThread::trace_stack() {
3239   if (!has_last_Java_frame()) return;
3240   ResourceMark rm;
3241   HandleMark   hm;
3242   RegisterMap reg_map(this);
3243   trace_stack_from(last_java_vframe(&reg_map));
3244 }
3245 
3246 
3247 #endif // PRODUCT
3248 
3249 
3250 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3251   assert(reg_map != NULL, "a map must be given");
3252   frame f = last_frame();
3253   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3254     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3255   }
3256   return NULL;
3257 }
3258 
3259 
3260 Klass* JavaThread::security_get_caller_class(int depth) {
3261   vframeStream vfst(this);
3262   vfst.security_get_caller_frame(depth);
3263   if (!vfst.at_end()) {
3264     return vfst.method()->method_holder();
3265   }
3266   return NULL;
3267 }
3268 
3269 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3270   assert(thread->is_Compiler_thread(), "must be compiler thread");
3271   CompileBroker::compiler_thread_loop();
3272 }
3273 
3274 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3275   NMethodSweeper::sweeper_loop();
3276 }
3277 
3278 // Create a CompilerThread
3279 CompilerThread::CompilerThread(CompileQueue* queue,
3280                                CompilerCounters* counters)
3281                                : JavaThread(&compiler_thread_entry) {
3282   _env   = NULL;
3283   _log   = NULL;
3284   _task  = NULL;
3285   _queue = queue;
3286   _counters = counters;
3287   _buffer_blob = NULL;
3288   _compiler = NULL;
3289 
3290 #ifndef PRODUCT
3291   _ideal_graph_printer = NULL;
3292 #endif
3293 }
3294 
3295 bool CompilerThread::can_call_java() const {
3296   return _compiler != NULL && _compiler->is_jvmci();
3297 }
3298 
3299 // Create sweeper thread
3300 CodeCacheSweeperThread::CodeCacheSweeperThread()
3301 : JavaThread(&sweeper_thread_entry) {
3302   _scanned_compiled_method = NULL;
3303 }
3304 
3305 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3306   JavaThread::oops_do(f, cf);
3307   if (_scanned_compiled_method != NULL && cf != NULL) {
3308     // Safepoints can occur when the sweeper is scanning an nmethod so
3309     // process it here to make sure it isn't unloaded in the middle of
3310     // a scan.
3311     cf->do_code_blob(_scanned_compiled_method);
3312   }
3313 }
3314 
3315 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3316   JavaThread::nmethods_do(cf);
3317   if (_scanned_compiled_method != NULL && cf != NULL) {
3318     // Safepoints can occur when the sweeper is scanning an nmethod so
3319     // process it here to make sure it isn't unloaded in the middle of
3320     // a scan.
3321     cf->do_code_blob(_scanned_compiled_method);
3322   }
3323 }
3324 
3325 
3326 // ======= Threads ========
3327 
3328 // The Threads class links together all active threads, and provides
3329 // operations over all threads.  It is protected by its own Mutex
3330 // lock, which is also used in other contexts to protect thread
3331 // operations from having the thread being operated on from exiting
3332 // and going away unexpectedly (e.g., safepoint synchronization)
3333 
3334 JavaThread* Threads::_thread_list = NULL;
3335 int         Threads::_number_of_threads = 0;
3336 int         Threads::_number_of_non_daemon_threads = 0;
3337 int         Threads::_return_code = 0;
3338 int         Threads::_thread_claim_parity = 0;
3339 size_t      JavaThread::_stack_size_at_create = 0;
3340 #ifdef ASSERT
3341 bool        Threads::_vm_complete = false;
3342 #endif
3343 
3344 // All JavaThreads
3345 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3346 
3347 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3348 void Threads::threads_do(ThreadClosure* tc) {
3349   assert_locked_or_safepoint(Threads_lock);
3350   // ALL_JAVA_THREADS iterates through all JavaThreads
3351   ALL_JAVA_THREADS(p) {
3352     tc->do_thread(p);
3353   }
3354   // Someday we could have a table or list of all non-JavaThreads.
3355   // For now, just manually iterate through them.
3356   tc->do_thread(VMThread::vm_thread());
3357   Universe::heap()->gc_threads_do(tc);
3358   WatcherThread *wt = WatcherThread::watcher_thread();
3359   // Strictly speaking, the following NULL check isn't sufficient to make sure
3360   // the data for WatcherThread is still valid upon being examined. However,
3361   // considering that WatchThread terminates when the VM is on the way to
3362   // exit at safepoint, the chance of the above is extremely small. The right
3363   // way to prevent termination of WatcherThread would be to acquire
3364   // Terminator_lock, but we can't do that without violating the lock rank
3365   // checking in some cases.
3366   if (wt != NULL) {
3367     tc->do_thread(wt);
3368   }
3369 
3370   // If CompilerThreads ever become non-JavaThreads, add them here
3371 }
3372 
3373 // The system initialization in the library has three phases.
3374 //
3375 // Phase 1: java.lang.System class initialization
3376 //     java.lang.System is a primordial class loaded and initialized
3377 //     by the VM early during startup.  java.lang.System.<clinit>
3378 //     only does registerNatives and keeps the rest of the class
3379 //     initialization work later until thread initialization completes.
3380 //
3381 //     System.initPhase1 initializes the system properties, the static
3382 //     fields in, out, and err. Set up java signal handlers, OS-specific
3383 //     system settings, and thread group of the main thread.
3384 static void call_initPhase1(TRAPS) {
3385   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3386   instanceKlassHandle klass (THREAD, k);
3387 
3388   JavaValue result(T_VOID);
3389   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3390                                          vmSymbols::void_method_signature(), CHECK);
3391 }
3392 
3393 // Phase 2. Module system initialization
3394 //     This will initialize the module system.  Only java.base classes
3395 //     can be loaded until phase 2 completes.
3396 //
3397 //     Call System.initPhase2 after the compiler initialization and jsr292
3398 //     classes get initialized because module initialization runs a lot of java
3399 //     code, that for performance reasons, should be compiled.  Also, this will
3400 //     enable the startup code to use lambda and other language features in this
3401 //     phase and onward.
3402 //
3403 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3404 static void call_initPhase2(TRAPS) {
3405   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3406 
3407   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3408   instanceKlassHandle klass (THREAD, k);
3409 
3410   JavaValue result(T_VOID);
3411   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3412                                          vmSymbols::void_method_signature(), CHECK);
3413   universe_post_module_init();
3414 }
3415 
3416 // Phase 3. final setup - set security manager, system class loader and TCCL
3417 //
3418 //     This will instantiate and set the security manager, set the system class
3419 //     loader as well as the thread context class loader.  The security manager
3420 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3421 //     other modules or the application's classpath.
3422 static void call_initPhase3(TRAPS) {
3423   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3424   instanceKlassHandle klass (THREAD, k);
3425 
3426   JavaValue result(T_VOID);
3427   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3428                                          vmSymbols::void_method_signature(), CHECK);
3429 }
3430 
3431 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3432   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3433 
3434   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3435     create_vm_init_libraries();
3436   }
3437 
3438   initialize_class(vmSymbols::java_lang_String(), CHECK);
3439 
3440   // Inject CompactStrings value after the static initializers for String ran.
3441   java_lang_String::set_compact_strings(CompactStrings);
3442 
3443   // Initialize java_lang.System (needed before creating the thread)
3444   initialize_class(vmSymbols::java_lang_System(), CHECK);
3445   // The VM creates & returns objects of this class. Make sure it's initialized.
3446   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3447   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3448   Handle thread_group = create_initial_thread_group(CHECK);
3449   Universe::set_main_thread_group(thread_group());
3450   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3451   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3452   main_thread->set_threadObj(thread_object);
3453   // Set thread status to running since main thread has
3454   // been started and running.
3455   java_lang_Thread::set_thread_status(thread_object,
3456                                       java_lang_Thread::RUNNABLE);
3457 
3458   // The VM creates objects of this class.
3459   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3460 
3461   // The VM preresolves methods to these classes. Make sure that they get initialized
3462   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3463   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3464 
3465   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3466   call_initPhase1(CHECK);
3467 
3468   // get the Java runtime name after java.lang.System is initialized
3469   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3470   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3471 
3472   // an instance of OutOfMemory exception has been allocated earlier
3473   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3474   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3475   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3476   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3477   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3478   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3479   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3480   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3481 }
3482 
3483 void Threads::initialize_jsr292_core_classes(TRAPS) {
3484   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3485 
3486   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3487   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3488   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3489 }
3490 
3491 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3492   extern void JDK_Version_init();
3493 
3494   // Preinitialize version info.
3495   VM_Version::early_initialize();
3496 
3497   // Check version
3498   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3499 
3500   // Initialize library-based TLS
3501   ThreadLocalStorage::init();
3502 
3503   // Initialize the output stream module
3504   ostream_init();
3505 
3506   // Process java launcher properties.
3507   Arguments::process_sun_java_launcher_properties(args);
3508 
3509   // Initialize the os module
3510   os::init();
3511 
3512   // Record VM creation timing statistics
3513   TraceVmCreationTime create_vm_timer;
3514   create_vm_timer.start();
3515 
3516   // Initialize system properties.
3517   Arguments::init_system_properties();
3518 
3519   // So that JDK version can be used as a discriminator when parsing arguments
3520   JDK_Version_init();
3521 
3522   // Update/Initialize System properties after JDK version number is known
3523   Arguments::init_version_specific_system_properties();
3524 
3525   // Make sure to initialize log configuration *before* parsing arguments
3526   LogConfiguration::initialize(create_vm_timer.begin_time());
3527 
3528   // Parse arguments
3529   jint parse_result = Arguments::parse(args);
3530   if (parse_result != JNI_OK) return parse_result;
3531 
3532   os::init_before_ergo();
3533 
3534   jint ergo_result = Arguments::apply_ergo();
3535   if (ergo_result != JNI_OK) return ergo_result;
3536 
3537   // Final check of all ranges after ergonomics which may change values.
3538   if (!CommandLineFlagRangeList::check_ranges()) {
3539     return JNI_EINVAL;
3540   }
3541 
3542   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3543   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3544   if (!constraint_result) {
3545     return JNI_EINVAL;
3546   }
3547 
3548   CommandLineFlagWriteableList::mark_startup();
3549 
3550   if (PauseAtStartup) {
3551     os::pause();
3552   }
3553 
3554   HOTSPOT_VM_INIT_BEGIN();
3555 
3556   // Timing (must come after argument parsing)
3557   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3558 
3559   // Initialize the os module after parsing the args
3560   jint os_init_2_result = os::init_2();
3561   if (os_init_2_result != JNI_OK) return os_init_2_result;
3562 
3563   jint adjust_after_os_result = Arguments::adjust_after_os();
3564   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3565 
3566   // Initialize output stream logging
3567   ostream_init_log();
3568 
3569   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3570   // Must be before create_vm_init_agents()
3571   if (Arguments::init_libraries_at_startup()) {
3572     convert_vm_init_libraries_to_agents();
3573   }
3574 
3575   // Launch -agentlib/-agentpath and converted -Xrun agents
3576   if (Arguments::init_agents_at_startup()) {
3577     create_vm_init_agents();
3578   }
3579 
3580   // Initialize Threads state
3581   _thread_list = NULL;
3582   _number_of_threads = 0;
3583   _number_of_non_daemon_threads = 0;
3584 
3585   // Initialize global data structures and create system classes in heap
3586   vm_init_globals();
3587 
3588 #if INCLUDE_JVMCI
3589   if (JVMCICounterSize > 0) {
3590     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3591     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3592   } else {
3593     JavaThread::_jvmci_old_thread_counters = NULL;
3594   }
3595 #endif // INCLUDE_JVMCI
3596 
3597   // Attach the main thread to this os thread
3598   JavaThread* main_thread = new JavaThread();
3599   main_thread->set_thread_state(_thread_in_vm);
3600   main_thread->initialize_thread_current();
3601   // must do this before set_active_handles
3602   main_thread->record_stack_base_and_size();
3603   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3604 
3605   if (!main_thread->set_as_starting_thread()) {
3606     vm_shutdown_during_initialization(
3607                                       "Failed necessary internal allocation. Out of swap space");
3608     delete main_thread;
3609     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3610     return JNI_ENOMEM;
3611   }
3612 
3613   // Enable guard page *after* os::create_main_thread(), otherwise it would
3614   // crash Linux VM, see notes in os_linux.cpp.
3615   main_thread->create_stack_guard_pages();
3616 
3617   // Initialize Java-Level synchronization subsystem
3618   ObjectMonitor::Initialize();
3619 
3620   // Initialize global modules
3621   jint status = init_globals();
3622   if (status != JNI_OK) {
3623     delete main_thread;
3624     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3625     return status;
3626   }
3627 
3628   if (TRACE_INITIALIZE() != JNI_OK) {
3629     vm_exit_during_initialization("Failed to initialize tracing backend");
3630   }
3631 
3632   // Should be done after the heap is fully created
3633   main_thread->cache_global_variables();
3634 
3635   HandleMark hm;
3636 
3637   { MutexLocker mu(Threads_lock);
3638     Threads::add(main_thread);
3639   }
3640 
3641   // Any JVMTI raw monitors entered in onload will transition into
3642   // real raw monitor. VM is setup enough here for raw monitor enter.
3643   JvmtiExport::transition_pending_onload_raw_monitors();
3644 
3645   // Create the VMThread
3646   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3647 
3648   VMThread::create();
3649     Thread* vmthread = VMThread::vm_thread();
3650 
3651     if (!os::create_thread(vmthread, os::vm_thread)) {
3652       vm_exit_during_initialization("Cannot create VM thread. "
3653                                     "Out of system resources.");
3654     }
3655 
3656     // Wait for the VM thread to become ready, and VMThread::run to initialize
3657     // Monitors can have spurious returns, must always check another state flag
3658     {
3659       MutexLocker ml(Notify_lock);
3660       os::start_thread(vmthread);
3661       while (vmthread->active_handles() == NULL) {
3662         Notify_lock->wait();
3663       }
3664     }
3665   }
3666 
3667   assert(Universe::is_fully_initialized(), "not initialized");
3668   if (VerifyDuringStartup) {
3669     // Make sure we're starting with a clean slate.
3670     VM_Verify verify_op;
3671     VMThread::execute(&verify_op);
3672   }
3673 
3674   Thread* THREAD = Thread::current();
3675 
3676   // At this point, the Universe is initialized, but we have not executed
3677   // any byte code.  Now is a good time (the only time) to dump out the
3678   // internal state of the JVM for sharing.
3679   if (DumpSharedSpaces) {
3680     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3681     ShouldNotReachHere();
3682   }
3683 
3684   // Always call even when there are not JVMTI environments yet, since environments
3685   // may be attached late and JVMTI must track phases of VM execution
3686   JvmtiExport::enter_early_start_phase();
3687 
3688   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3689   JvmtiExport::post_early_vm_start();
3690 
3691   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3692 
3693   // We need this for ClassDataSharing - the initial vm.info property is set
3694   // with the default value of CDS "sharing" which may be reset through
3695   // command line options.
3696   reset_vm_info_property(CHECK_JNI_ERR);
3697 
3698   quicken_jni_functions();
3699 
3700   // No more stub generation allowed after that point.
3701   StubCodeDesc::freeze();
3702 
3703   // Set flag that basic initialization has completed. Used by exceptions and various
3704   // debug stuff, that does not work until all basic classes have been initialized.
3705   set_init_completed();
3706 
3707   LogConfiguration::post_initialize();
3708   Metaspace::post_initialize();
3709 
3710   HOTSPOT_VM_INIT_END();
3711 
3712   // record VM initialization completion time
3713 #if INCLUDE_MANAGEMENT
3714   Management::record_vm_init_completed();
3715 #endif // INCLUDE_MANAGEMENT
3716 
3717   // Signal Dispatcher needs to be started before VMInit event is posted
3718   os::signal_init();
3719 
3720   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3721   if (!DisableAttachMechanism) {
3722     AttachListener::vm_start();
3723     if (StartAttachListener || AttachListener::init_at_startup()) {
3724       AttachListener::init();
3725     }
3726   }
3727 
3728   // Launch -Xrun agents
3729   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3730   // back-end can launch with -Xdebug -Xrunjdwp.
3731   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3732     create_vm_init_libraries();
3733   }
3734 
3735   if (CleanChunkPoolAsync) {
3736     Chunk::start_chunk_pool_cleaner_task();
3737   }
3738 
3739   // initialize compiler(s)
3740 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3741   CompileBroker::compilation_init(CHECK_JNI_ERR);
3742 #endif
3743 
3744   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3745   // It is done after compilers are initialized, because otherwise compilations of
3746   // signature polymorphic MH intrinsics can be missed
3747   // (see SystemDictionary::find_method_handle_intrinsic).
3748   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3749 
3750   // This will initialize the module system.  Only java.base classes can be
3751   // loaded until phase 2 completes
3752   call_initPhase2(CHECK_JNI_ERR);
3753 
3754   // Always call even when there are not JVMTI environments yet, since environments
3755   // may be attached late and JVMTI must track phases of VM execution
3756   JvmtiExport::enter_start_phase();
3757 
3758   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3759   JvmtiExport::post_vm_start();
3760 
3761   // Final system initialization including security manager and system class loader
3762   call_initPhase3(CHECK_JNI_ERR);
3763 
3764   // cache the system class loader
3765   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3766 
3767 #if INCLUDE_JVMCI
3768   if (EnableJVMCI && UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation)) {
3769     // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3770     // compilations via JVMCI will not actually block until JVMCI is initialized.
3771     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3772   }
3773 #endif
3774 
3775   // Always call even when there are not JVMTI environments yet, since environments
3776   // may be attached late and JVMTI must track phases of VM execution
3777   JvmtiExport::enter_live_phase();
3778 
3779   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3780   JvmtiExport::post_vm_initialized();
3781 
3782   if (TRACE_START() != JNI_OK) {
3783     vm_exit_during_initialization("Failed to start tracing backend.");
3784   }
3785 
3786 #if INCLUDE_MANAGEMENT
3787   Management::initialize(THREAD);
3788 
3789   if (HAS_PENDING_EXCEPTION) {
3790     // management agent fails to start possibly due to
3791     // configuration problem and is responsible for printing
3792     // stack trace if appropriate. Simply exit VM.
3793     vm_exit(1);
3794   }
3795 #endif // INCLUDE_MANAGEMENT
3796 
3797   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3798   if (MemProfiling)                   MemProfiler::engage();
3799   StatSampler::engage();
3800   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3801 
3802   BiasedLocking::init();
3803 
3804 #if INCLUDE_RTM_OPT
3805   RTMLockingCounters::init();
3806 #endif
3807 
3808   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3809     call_postVMInitHook(THREAD);
3810     // The Java side of PostVMInitHook.run must deal with all
3811     // exceptions and provide means of diagnosis.
3812     if (HAS_PENDING_EXCEPTION) {
3813       CLEAR_PENDING_EXCEPTION;
3814     }
3815   }
3816 
3817   {
3818     MutexLocker ml(PeriodicTask_lock);
3819     // Make sure the WatcherThread can be started by WatcherThread::start()
3820     // or by dynamic enrollment.
3821     WatcherThread::make_startable();
3822     // Start up the WatcherThread if there are any periodic tasks
3823     // NOTE:  All PeriodicTasks should be registered by now. If they
3824     //   aren't, late joiners might appear to start slowly (we might
3825     //   take a while to process their first tick).
3826     if (PeriodicTask::num_tasks() > 0) {
3827       WatcherThread::start();
3828     }
3829   }
3830 
3831   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3832 
3833   create_vm_timer.end();
3834 #ifdef ASSERT
3835   _vm_complete = true;
3836 #endif
3837   return JNI_OK;
3838 }
3839 
3840 // type for the Agent_OnLoad and JVM_OnLoad entry points
3841 extern "C" {
3842   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3843 }
3844 // Find a command line agent library and return its entry point for
3845 //         -agentlib:  -agentpath:   -Xrun
3846 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3847 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3848                                     const char *on_load_symbols[],
3849                                     size_t num_symbol_entries) {
3850   OnLoadEntry_t on_load_entry = NULL;
3851   void *library = NULL;
3852 
3853   if (!agent->valid()) {
3854     char buffer[JVM_MAXPATHLEN];
3855     char ebuf[1024] = "";
3856     const char *name = agent->name();
3857     const char *msg = "Could not find agent library ";
3858 
3859     // First check to see if agent is statically linked into executable
3860     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3861       library = agent->os_lib();
3862     } else if (agent->is_absolute_path()) {
3863       library = os::dll_load(name, ebuf, sizeof ebuf);
3864       if (library == NULL) {
3865         const char *sub_msg = " in absolute path, with error: ";
3866         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3867         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3868         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3869         // If we can't find the agent, exit.
3870         vm_exit_during_initialization(buf, NULL);
3871         FREE_C_HEAP_ARRAY(char, buf);
3872       }
3873     } else {
3874       // Try to load the agent from the standard dll directory
3875       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3876                              name)) {
3877         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3878       }
3879       if (library == NULL) { // Try the local directory
3880         char ns[1] = {0};
3881         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3882           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3883         }
3884         if (library == NULL) {
3885           const char *sub_msg = " on the library path, with error: ";
3886           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3887           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3888           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3889           // If we can't find the agent, exit.
3890           vm_exit_during_initialization(buf, NULL);
3891           FREE_C_HEAP_ARRAY(char, buf);
3892         }
3893       }
3894     }
3895     agent->set_os_lib(library);
3896     agent->set_valid();
3897   }
3898 
3899   // Find the OnLoad function.
3900   on_load_entry =
3901     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3902                                                           false,
3903                                                           on_load_symbols,
3904                                                           num_symbol_entries));
3905   return on_load_entry;
3906 }
3907 
3908 // Find the JVM_OnLoad entry point
3909 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3910   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3911   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3912 }
3913 
3914 // Find the Agent_OnLoad entry point
3915 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3916   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3917   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3918 }
3919 
3920 // For backwards compatibility with -Xrun
3921 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3922 // treated like -agentpath:
3923 // Must be called before agent libraries are created
3924 void Threads::convert_vm_init_libraries_to_agents() {
3925   AgentLibrary* agent;
3926   AgentLibrary* next;
3927 
3928   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3929     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3930     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3931 
3932     // If there is an JVM_OnLoad function it will get called later,
3933     // otherwise see if there is an Agent_OnLoad
3934     if (on_load_entry == NULL) {
3935       on_load_entry = lookup_agent_on_load(agent);
3936       if (on_load_entry != NULL) {
3937         // switch it to the agent list -- so that Agent_OnLoad will be called,
3938         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3939         Arguments::convert_library_to_agent(agent);
3940       } else {
3941         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3942       }
3943     }
3944   }
3945 }
3946 
3947 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3948 // Invokes Agent_OnLoad
3949 // Called very early -- before JavaThreads exist
3950 void Threads::create_vm_init_agents() {
3951   extern struct JavaVM_ main_vm;
3952   AgentLibrary* agent;
3953 
3954   JvmtiExport::enter_onload_phase();
3955 
3956   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3957     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3958 
3959     if (on_load_entry != NULL) {
3960       // Invoke the Agent_OnLoad function
3961       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3962       if (err != JNI_OK) {
3963         vm_exit_during_initialization("agent library failed to init", agent->name());
3964       }
3965     } else {
3966       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3967     }
3968   }
3969   JvmtiExport::enter_primordial_phase();
3970 }
3971 
3972 extern "C" {
3973   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3974 }
3975 
3976 void Threads::shutdown_vm_agents() {
3977   // Send any Agent_OnUnload notifications
3978   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3979   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3980   extern struct JavaVM_ main_vm;
3981   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3982 
3983     // Find the Agent_OnUnload function.
3984     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3985                                                    os::find_agent_function(agent,
3986                                                    false,
3987                                                    on_unload_symbols,
3988                                                    num_symbol_entries));
3989 
3990     // Invoke the Agent_OnUnload function
3991     if (unload_entry != NULL) {
3992       JavaThread* thread = JavaThread::current();
3993       ThreadToNativeFromVM ttn(thread);
3994       HandleMark hm(thread);
3995       (*unload_entry)(&main_vm);
3996     }
3997   }
3998 }
3999 
4000 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4001 // Invokes JVM_OnLoad
4002 void Threads::create_vm_init_libraries() {
4003   extern struct JavaVM_ main_vm;
4004   AgentLibrary* agent;
4005 
4006   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4007     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4008 
4009     if (on_load_entry != NULL) {
4010       // Invoke the JVM_OnLoad function
4011       JavaThread* thread = JavaThread::current();
4012       ThreadToNativeFromVM ttn(thread);
4013       HandleMark hm(thread);
4014       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4015       if (err != JNI_OK) {
4016         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4017       }
4018     } else {
4019       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4020     }
4021   }
4022 }
4023 
4024 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4025   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4026 
4027   JavaThread* java_thread = NULL;
4028   // Sequential search for now.  Need to do better optimization later.
4029   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4030     oop tobj = thread->threadObj();
4031     if (!thread->is_exiting() &&
4032         tobj != NULL &&
4033         java_tid == java_lang_Thread::thread_id(tobj)) {
4034       java_thread = thread;
4035       break;
4036     }
4037   }
4038   return java_thread;
4039 }
4040 
4041 
4042 // Last thread running calls java.lang.Shutdown.shutdown()
4043 void JavaThread::invoke_shutdown_hooks() {
4044   HandleMark hm(this);
4045 
4046   // We could get here with a pending exception, if so clear it now.
4047   if (this->has_pending_exception()) {
4048     this->clear_pending_exception();
4049   }
4050 
4051   EXCEPTION_MARK;
4052   Klass* k =
4053     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4054                                       THREAD);
4055   if (k != NULL) {
4056     // SystemDictionary::resolve_or_null will return null if there was
4057     // an exception.  If we cannot load the Shutdown class, just don't
4058     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4059     // and finalizers (if runFinalizersOnExit is set) won't be run.
4060     // Note that if a shutdown hook was registered or runFinalizersOnExit
4061     // was called, the Shutdown class would have already been loaded
4062     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4063     instanceKlassHandle shutdown_klass (THREAD, k);
4064     JavaValue result(T_VOID);
4065     JavaCalls::call_static(&result,
4066                            shutdown_klass,
4067                            vmSymbols::shutdown_method_name(),
4068                            vmSymbols::void_method_signature(),
4069                            THREAD);
4070   }
4071   CLEAR_PENDING_EXCEPTION;
4072 }
4073 
4074 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4075 // the program falls off the end of main(). Another VM exit path is through
4076 // vm_exit() when the program calls System.exit() to return a value or when
4077 // there is a serious error in VM. The two shutdown paths are not exactly
4078 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4079 // and VM_Exit op at VM level.
4080 //
4081 // Shutdown sequence:
4082 //   + Shutdown native memory tracking if it is on
4083 //   + Wait until we are the last non-daemon thread to execute
4084 //     <-- every thing is still working at this moment -->
4085 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4086 //        shutdown hooks, run finalizers if finalization-on-exit
4087 //   + Call before_exit(), prepare for VM exit
4088 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4089 //        currently the only user of this mechanism is File.deleteOnExit())
4090 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4091 //        post thread end and vm death events to JVMTI,
4092 //        stop signal thread
4093 //   + Call JavaThread::exit(), it will:
4094 //      > release JNI handle blocks, remove stack guard pages
4095 //      > remove this thread from Threads list
4096 //     <-- no more Java code from this thread after this point -->
4097 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4098 //     the compiler threads at safepoint
4099 //     <-- do not use anything that could get blocked by Safepoint -->
4100 //   + Disable tracing at JNI/JVM barriers
4101 //   + Set _vm_exited flag for threads that are still running native code
4102 //   + Delete this thread
4103 //   + Call exit_globals()
4104 //      > deletes tty
4105 //      > deletes PerfMemory resources
4106 //   + Return to caller
4107 
4108 bool Threads::destroy_vm() {
4109   JavaThread* thread = JavaThread::current();
4110 
4111 #ifdef ASSERT
4112   _vm_complete = false;
4113 #endif
4114   // Wait until we are the last non-daemon thread to execute
4115   { MutexLocker nu(Threads_lock);
4116     while (Threads::number_of_non_daemon_threads() > 1)
4117       // This wait should make safepoint checks, wait without a timeout,
4118       // and wait as a suspend-equivalent condition.
4119       //
4120       // Note: If the FlatProfiler is running and this thread is waiting
4121       // for another non-daemon thread to finish, then the FlatProfiler
4122       // is waiting for the external suspend request on this thread to
4123       // complete. wait_for_ext_suspend_completion() will eventually
4124       // timeout, but that takes time. Making this wait a suspend-
4125       // equivalent condition solves that timeout problem.
4126       //
4127       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4128                          Mutex::_as_suspend_equivalent_flag);
4129   }
4130 
4131   // Hang forever on exit if we are reporting an error.
4132   if (ShowMessageBoxOnError && is_error_reported()) {
4133     os::infinite_sleep();
4134   }
4135   os::wait_for_keypress_at_exit();
4136 
4137   // run Java level shutdown hooks
4138   thread->invoke_shutdown_hooks();
4139 
4140   before_exit(thread);
4141 
4142   thread->exit(true);
4143 
4144   // Stop VM thread.
4145   {
4146     // 4945125 The vm thread comes to a safepoint during exit.
4147     // GC vm_operations can get caught at the safepoint, and the
4148     // heap is unparseable if they are caught. Grab the Heap_lock
4149     // to prevent this. The GC vm_operations will not be able to
4150     // queue until after the vm thread is dead. After this point,
4151     // we'll never emerge out of the safepoint before the VM exits.
4152 
4153     MutexLocker ml(Heap_lock);
4154 
4155     VMThread::wait_for_vm_thread_exit();
4156     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4157     VMThread::destroy();
4158   }
4159 
4160   // clean up ideal graph printers
4161 #if defined(COMPILER2) && !defined(PRODUCT)
4162   IdealGraphPrinter::clean_up();
4163 #endif
4164 
4165   // Now, all Java threads are gone except daemon threads. Daemon threads
4166   // running Java code or in VM are stopped by the Safepoint. However,
4167   // daemon threads executing native code are still running.  But they
4168   // will be stopped at native=>Java/VM barriers. Note that we can't
4169   // simply kill or suspend them, as it is inherently deadlock-prone.
4170 
4171   VM_Exit::set_vm_exited();
4172 
4173   notify_vm_shutdown();
4174 
4175   delete thread;
4176 
4177 #if INCLUDE_JVMCI
4178   if (JVMCICounterSize > 0) {
4179     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4180   }
4181 #endif
4182 
4183   // exit_globals() will delete tty
4184   exit_globals();
4185 
4186   LogConfiguration::finalize();
4187 
4188   return true;
4189 }
4190 
4191 
4192 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4193   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4194   return is_supported_jni_version(version);
4195 }
4196 
4197 
4198 jboolean Threads::is_supported_jni_version(jint version) {
4199   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4200   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4201   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4202   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4203   if (version == JNI_VERSION_9) return JNI_TRUE;
4204   return JNI_FALSE;
4205 }
4206 
4207 
4208 void Threads::add(JavaThread* p, bool force_daemon) {
4209   // The threads lock must be owned at this point
4210   assert_locked_or_safepoint(Threads_lock);
4211 
4212   // See the comment for this method in thread.hpp for its purpose and
4213   // why it is called here.
4214   p->initialize_queues();
4215   p->set_next(_thread_list);
4216   _thread_list = p;
4217   _number_of_threads++;
4218   oop threadObj = p->threadObj();
4219   bool daemon = true;
4220   // Bootstrapping problem: threadObj can be null for initial
4221   // JavaThread (or for threads attached via JNI)
4222   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4223     _number_of_non_daemon_threads++;
4224     daemon = false;
4225   }
4226 
4227   ThreadService::add_thread(p, daemon);
4228 
4229   // Possible GC point.
4230   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4231 }
4232 
4233 void Threads::remove(JavaThread* p) {
4234   // Extra scope needed for Thread_lock, so we can check
4235   // that we do not remove thread without safepoint code notice
4236   { MutexLocker ml(Threads_lock);
4237 
4238     assert(includes(p), "p must be present");
4239 
4240     JavaThread* current = _thread_list;
4241     JavaThread* prev    = NULL;
4242 
4243     while (current != p) {
4244       prev    = current;
4245       current = current->next();
4246     }
4247 
4248     if (prev) {
4249       prev->set_next(current->next());
4250     } else {
4251       _thread_list = p->next();
4252     }
4253     _number_of_threads--;
4254     oop threadObj = p->threadObj();
4255     bool daemon = true;
4256     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4257       _number_of_non_daemon_threads--;
4258       daemon = false;
4259 
4260       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4261       // on destroy_vm will wake up.
4262       if (number_of_non_daemon_threads() == 1) {
4263         Threads_lock->notify_all();
4264       }
4265     }
4266     ThreadService::remove_thread(p, daemon);
4267 
4268     // Make sure that safepoint code disregard this thread. This is needed since
4269     // the thread might mess around with locks after this point. This can cause it
4270     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4271     // of this thread since it is removed from the queue.
4272     p->set_terminated_value();
4273   } // unlock Threads_lock
4274 
4275   // Since Events::log uses a lock, we grab it outside the Threads_lock
4276   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4277 }
4278 
4279 // Threads_lock must be held when this is called (or must be called during a safepoint)
4280 bool Threads::includes(JavaThread* p) {
4281   assert(Threads_lock->is_locked(), "sanity check");
4282   ALL_JAVA_THREADS(q) {
4283     if (q == p) {
4284       return true;
4285     }
4286   }
4287   return false;
4288 }
4289 
4290 // Operations on the Threads list for GC.  These are not explicitly locked,
4291 // but the garbage collector must provide a safe context for them to run.
4292 // In particular, these things should never be called when the Threads_lock
4293 // is held by some other thread. (Note: the Safepoint abstraction also
4294 // uses the Threads_lock to guarantee this property. It also makes sure that
4295 // all threads gets blocked when exiting or starting).
4296 
4297 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4298   ALL_JAVA_THREADS(p) {
4299     p->oops_do(f, cf);
4300   }
4301   VMThread::vm_thread()->oops_do(f, cf);
4302 }
4303 
4304 void Threads::change_thread_claim_parity() {
4305   // Set the new claim parity.
4306   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4307          "Not in range.");
4308   _thread_claim_parity++;
4309   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4310   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4311          "Not in range.");
4312 }
4313 
4314 #ifdef ASSERT
4315 void Threads::assert_all_threads_claimed() {
4316   ALL_JAVA_THREADS(p) {
4317     const int thread_parity = p->oops_do_parity();
4318     assert((thread_parity == _thread_claim_parity),
4319            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4320   }
4321 }
4322 #endif // ASSERT
4323 
4324 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4325   int cp = Threads::thread_claim_parity();
4326   ALL_JAVA_THREADS(p) {
4327     if (p->claim_oops_do(is_par, cp)) {
4328       p->oops_do(f, cf);
4329     }
4330   }
4331   VMThread* vmt = VMThread::vm_thread();
4332   if (vmt->claim_oops_do(is_par, cp)) {
4333     vmt->oops_do(f, cf);
4334   }
4335 }
4336 
4337 #if INCLUDE_ALL_GCS
4338 // Used by ParallelScavenge
4339 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4340   ALL_JAVA_THREADS(p) {
4341     q->enqueue(new ThreadRootsTask(p));
4342   }
4343   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4344 }
4345 
4346 // Used by Parallel Old
4347 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4348   ALL_JAVA_THREADS(p) {
4349     q->enqueue(new ThreadRootsMarkingTask(p));
4350   }
4351   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4352 }
4353 #endif // INCLUDE_ALL_GCS
4354 
4355 void Threads::nmethods_do(CodeBlobClosure* cf) {
4356   ALL_JAVA_THREADS(p) {
4357     // This is used by the code cache sweeper to mark nmethods that are active
4358     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4359     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4360     if(!p->is_Code_cache_sweeper_thread()) {
4361       p->nmethods_do(cf);
4362     }
4363   }
4364 }
4365 
4366 void Threads::metadata_do(void f(Metadata*)) {
4367   ALL_JAVA_THREADS(p) {
4368     p->metadata_do(f);
4369   }
4370 }
4371 
4372 class ThreadHandlesClosure : public ThreadClosure {
4373   void (*_f)(Metadata*);
4374  public:
4375   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4376   virtual void do_thread(Thread* thread) {
4377     thread->metadata_handles_do(_f);
4378   }
4379 };
4380 
4381 void Threads::metadata_handles_do(void f(Metadata*)) {
4382   // Only walk the Handles in Thread.
4383   ThreadHandlesClosure handles_closure(f);
4384   threads_do(&handles_closure);
4385 }
4386 
4387 void Threads::deoptimized_wrt_marked_nmethods() {
4388   ALL_JAVA_THREADS(p) {
4389     p->deoptimized_wrt_marked_nmethods();
4390   }
4391 }
4392 
4393 
4394 // Get count Java threads that are waiting to enter the specified monitor.
4395 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4396                                                          address monitor,
4397                                                          bool doLock) {
4398   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4399          "must grab Threads_lock or be at safepoint");
4400   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4401 
4402   int i = 0;
4403   {
4404     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4405     ALL_JAVA_THREADS(p) {
4406       if (!p->can_call_java()) continue;
4407 
4408       address pending = (address)p->current_pending_monitor();
4409       if (pending == monitor) {             // found a match
4410         if (i < count) result->append(p);   // save the first count matches
4411         i++;
4412       }
4413     }
4414   }
4415   return result;
4416 }
4417 
4418 
4419 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4420                                                       bool doLock) {
4421   assert(doLock ||
4422          Threads_lock->owned_by_self() ||
4423          SafepointSynchronize::is_at_safepoint(),
4424          "must grab Threads_lock or be at safepoint");
4425 
4426   // NULL owner means not locked so we can skip the search
4427   if (owner == NULL) return NULL;
4428 
4429   {
4430     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4431     ALL_JAVA_THREADS(p) {
4432       // first, see if owner is the address of a Java thread
4433       if (owner == (address)p) return p;
4434     }
4435   }
4436   // Cannot assert on lack of success here since this function may be
4437   // used by code that is trying to report useful problem information
4438   // like deadlock detection.
4439   if (UseHeavyMonitors) return NULL;
4440 
4441   // If we didn't find a matching Java thread and we didn't force use of
4442   // heavyweight monitors, then the owner is the stack address of the
4443   // Lock Word in the owning Java thread's stack.
4444   //
4445   JavaThread* the_owner = NULL;
4446   {
4447     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4448     ALL_JAVA_THREADS(q) {
4449       if (q->is_lock_owned(owner)) {
4450         the_owner = q;
4451         break;
4452       }
4453     }
4454   }
4455   // cannot assert on lack of success here; see above comment
4456   return the_owner;
4457 }
4458 
4459 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4460 void Threads::print_on(outputStream* st, bool print_stacks,
4461                        bool internal_format, bool print_concurrent_locks) {
4462   char buf[32];
4463   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4464 
4465   st->print_cr("Full thread dump %s (%s %s):",
4466                Abstract_VM_Version::vm_name(),
4467                Abstract_VM_Version::vm_release(),
4468                Abstract_VM_Version::vm_info_string());
4469   st->cr();
4470 
4471 #if INCLUDE_SERVICES
4472   // Dump concurrent locks
4473   ConcurrentLocksDump concurrent_locks;
4474   if (print_concurrent_locks) {
4475     concurrent_locks.dump_at_safepoint();
4476   }
4477 #endif // INCLUDE_SERVICES
4478 
4479   ALL_JAVA_THREADS(p) {
4480     ResourceMark rm;
4481     p->print_on(st);
4482     if (print_stacks) {
4483       if (internal_format) {
4484         p->trace_stack();
4485       } else {
4486         p->print_stack_on(st);
4487       }
4488     }
4489     st->cr();
4490 #if INCLUDE_SERVICES
4491     if (print_concurrent_locks) {
4492       concurrent_locks.print_locks_on(p, st);
4493     }
4494 #endif // INCLUDE_SERVICES
4495   }
4496 
4497   VMThread::vm_thread()->print_on(st);
4498   st->cr();
4499   Universe::heap()->print_gc_threads_on(st);
4500   WatcherThread* wt = WatcherThread::watcher_thread();
4501   if (wt != NULL) {
4502     wt->print_on(st);
4503     st->cr();
4504   }
4505   st->flush();
4506 }
4507 
4508 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4509                              int buflen, bool* found_current) {
4510   if (this_thread != NULL) {
4511     bool is_current = (current == this_thread);
4512     *found_current = *found_current || is_current;
4513     st->print("%s", is_current ? "=>" : "  ");
4514 
4515     st->print(PTR_FORMAT, p2i(this_thread));
4516     st->print(" ");
4517     this_thread->print_on_error(st, buf, buflen);
4518     st->cr();
4519   }
4520 }
4521 
4522 class PrintOnErrorClosure : public ThreadClosure {
4523   outputStream* _st;
4524   Thread* _current;
4525   char* _buf;
4526   int _buflen;
4527   bool* _found_current;
4528  public:
4529   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4530                       int buflen, bool* found_current) :
4531    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4532 
4533   virtual void do_thread(Thread* thread) {
4534     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4535   }
4536 };
4537 
4538 // Threads::print_on_error() is called by fatal error handler. It's possible
4539 // that VM is not at safepoint and/or current thread is inside signal handler.
4540 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4541 // memory (even in resource area), it might deadlock the error handler.
4542 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4543                              int buflen) {
4544   bool found_current = false;
4545   st->print_cr("Java Threads: ( => current thread )");
4546   ALL_JAVA_THREADS(thread) {
4547     print_on_error(thread, st, current, buf, buflen, &found_current);
4548   }
4549   st->cr();
4550 
4551   st->print_cr("Other Threads:");
4552   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4553   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4554 
4555   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4556   Universe::heap()->gc_threads_do(&print_closure);
4557 
4558   if (!found_current) {
4559     st->cr();
4560     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4561     current->print_on_error(st, buf, buflen);
4562     st->cr();
4563   }
4564   st->cr();
4565   st->print_cr("Threads with active compile tasks:");
4566   print_threads_compiling(st, buf, buflen);
4567 }
4568 
4569 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4570   ALL_JAVA_THREADS(thread) {
4571     if (thread->is_Compiler_thread()) {
4572       CompilerThread* ct = (CompilerThread*) thread;
4573       if (ct->task() != NULL) {
4574         thread->print_name_on_error(st, buf, buflen);
4575         ct->task()->print(st, NULL, true, true);
4576       }
4577     }
4578   }
4579 }
4580 
4581 
4582 // Internal SpinLock and Mutex
4583 // Based on ParkEvent
4584 
4585 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4586 //
4587 // We employ SpinLocks _only for low-contention, fixed-length
4588 // short-duration critical sections where we're concerned
4589 // about native mutex_t or HotSpot Mutex:: latency.
4590 // The mux construct provides a spin-then-block mutual exclusion
4591 // mechanism.
4592 //
4593 // Testing has shown that contention on the ListLock guarding gFreeList
4594 // is common.  If we implement ListLock as a simple SpinLock it's common
4595 // for the JVM to devolve to yielding with little progress.  This is true
4596 // despite the fact that the critical sections protected by ListLock are
4597 // extremely short.
4598 //
4599 // TODO-FIXME: ListLock should be of type SpinLock.
4600 // We should make this a 1st-class type, integrated into the lock
4601 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4602 // should have sufficient padding to avoid false-sharing and excessive
4603 // cache-coherency traffic.
4604 
4605 
4606 typedef volatile int SpinLockT;
4607 
4608 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4609   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4610     return;   // normal fast-path return
4611   }
4612 
4613   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4614   TEVENT(SpinAcquire - ctx);
4615   int ctr = 0;
4616   int Yields = 0;
4617   for (;;) {
4618     while (*adr != 0) {
4619       ++ctr;
4620       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4621         if (Yields > 5) {
4622           os::naked_short_sleep(1);
4623         } else {
4624           os::naked_yield();
4625           ++Yields;
4626         }
4627       } else {
4628         SpinPause();
4629       }
4630     }
4631     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4632   }
4633 }
4634 
4635 void Thread::SpinRelease(volatile int * adr) {
4636   assert(*adr != 0, "invariant");
4637   OrderAccess::fence();      // guarantee at least release consistency.
4638   // Roach-motel semantics.
4639   // It's safe if subsequent LDs and STs float "up" into the critical section,
4640   // but prior LDs and STs within the critical section can't be allowed
4641   // to reorder or float past the ST that releases the lock.
4642   // Loads and stores in the critical section - which appear in program
4643   // order before the store that releases the lock - must also appear
4644   // before the store that releases the lock in memory visibility order.
4645   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4646   // the ST of 0 into the lock-word which releases the lock, so fence
4647   // more than covers this on all platforms.
4648   *adr = 0;
4649 }
4650 
4651 // muxAcquire and muxRelease:
4652 //
4653 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4654 //    The LSB of the word is set IFF the lock is held.
4655 //    The remainder of the word points to the head of a singly-linked list
4656 //    of threads blocked on the lock.
4657 //
4658 // *  The current implementation of muxAcquire-muxRelease uses its own
4659 //    dedicated Thread._MuxEvent instance.  If we're interested in
4660 //    minimizing the peak number of extant ParkEvent instances then
4661 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4662 //    as certain invariants were satisfied.  Specifically, care would need
4663 //    to be taken with regards to consuming unpark() "permits".
4664 //    A safe rule of thumb is that a thread would never call muxAcquire()
4665 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4666 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4667 //    consume an unpark() permit intended for monitorenter, for instance.
4668 //    One way around this would be to widen the restricted-range semaphore
4669 //    implemented in park().  Another alternative would be to provide
4670 //    multiple instances of the PlatformEvent() for each thread.  One
4671 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4672 //
4673 // *  Usage:
4674 //    -- Only as leaf locks
4675 //    -- for short-term locking only as muxAcquire does not perform
4676 //       thread state transitions.
4677 //
4678 // Alternatives:
4679 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4680 //    but with parking or spin-then-park instead of pure spinning.
4681 // *  Use Taura-Oyama-Yonenzawa locks.
4682 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4683 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4684 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4685 //    acquiring threads use timers (ParkTimed) to detect and recover from
4686 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4687 //    boundaries by using placement-new.
4688 // *  Augment MCS with advisory back-link fields maintained with CAS().
4689 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4690 //    The validity of the backlinks must be ratified before we trust the value.
4691 //    If the backlinks are invalid the exiting thread must back-track through the
4692 //    the forward links, which are always trustworthy.
4693 // *  Add a successor indication.  The LockWord is currently encoded as
4694 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4695 //    to provide the usual futile-wakeup optimization.
4696 //    See RTStt for details.
4697 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4698 //
4699 
4700 
4701 typedef volatile intptr_t MutexT;      // Mux Lock-word
4702 enum MuxBits { LOCKBIT = 1 };
4703 
4704 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4705   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4706   if (w == 0) return;
4707   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4708     return;
4709   }
4710 
4711   TEVENT(muxAcquire - Contention);
4712   ParkEvent * const Self = Thread::current()->_MuxEvent;
4713   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4714   for (;;) {
4715     int its = (os::is_MP() ? 100 : 0) + 1;
4716 
4717     // Optional spin phase: spin-then-park strategy
4718     while (--its >= 0) {
4719       w = *Lock;
4720       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4721         return;
4722       }
4723     }
4724 
4725     Self->reset();
4726     Self->OnList = intptr_t(Lock);
4727     // The following fence() isn't _strictly necessary as the subsequent
4728     // CAS() both serializes execution and ratifies the fetched *Lock value.
4729     OrderAccess::fence();
4730     for (;;) {
4731       w = *Lock;
4732       if ((w & LOCKBIT) == 0) {
4733         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4734           Self->OnList = 0;   // hygiene - allows stronger asserts
4735           return;
4736         }
4737         continue;      // Interference -- *Lock changed -- Just retry
4738       }
4739       assert(w & LOCKBIT, "invariant");
4740       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4741       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4742     }
4743 
4744     while (Self->OnList != 0) {
4745       Self->park();
4746     }
4747   }
4748 }
4749 
4750 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4751   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4752   if (w == 0) return;
4753   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4754     return;
4755   }
4756 
4757   TEVENT(muxAcquire - Contention);
4758   ParkEvent * ReleaseAfter = NULL;
4759   if (ev == NULL) {
4760     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4761   }
4762   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4763   for (;;) {
4764     guarantee(ev->OnList == 0, "invariant");
4765     int its = (os::is_MP() ? 100 : 0) + 1;
4766 
4767     // Optional spin phase: spin-then-park strategy
4768     while (--its >= 0) {
4769       w = *Lock;
4770       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4771         if (ReleaseAfter != NULL) {
4772           ParkEvent::Release(ReleaseAfter);
4773         }
4774         return;
4775       }
4776     }
4777 
4778     ev->reset();
4779     ev->OnList = intptr_t(Lock);
4780     // The following fence() isn't _strictly necessary as the subsequent
4781     // CAS() both serializes execution and ratifies the fetched *Lock value.
4782     OrderAccess::fence();
4783     for (;;) {
4784       w = *Lock;
4785       if ((w & LOCKBIT) == 0) {
4786         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4787           ev->OnList = 0;
4788           // We call ::Release while holding the outer lock, thus
4789           // artificially lengthening the critical section.
4790           // Consider deferring the ::Release() until the subsequent unlock(),
4791           // after we've dropped the outer lock.
4792           if (ReleaseAfter != NULL) {
4793             ParkEvent::Release(ReleaseAfter);
4794           }
4795           return;
4796         }
4797         continue;      // Interference -- *Lock changed -- Just retry
4798       }
4799       assert(w & LOCKBIT, "invariant");
4800       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4801       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4802     }
4803 
4804     while (ev->OnList != 0) {
4805       ev->park();
4806     }
4807   }
4808 }
4809 
4810 // Release() must extract a successor from the list and then wake that thread.
4811 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4812 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4813 // Release() would :
4814 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4815 // (B) Extract a successor from the private list "in-hand"
4816 // (C) attempt to CAS() the residual back into *Lock over null.
4817 //     If there were any newly arrived threads and the CAS() would fail.
4818 //     In that case Release() would detach the RATs, re-merge the list in-hand
4819 //     with the RATs and repeat as needed.  Alternately, Release() might
4820 //     detach and extract a successor, but then pass the residual list to the wakee.
4821 //     The wakee would be responsible for reattaching and remerging before it
4822 //     competed for the lock.
4823 //
4824 // Both "pop" and DMR are immune from ABA corruption -- there can be
4825 // multiple concurrent pushers, but only one popper or detacher.
4826 // This implementation pops from the head of the list.  This is unfair,
4827 // but tends to provide excellent throughput as hot threads remain hot.
4828 // (We wake recently run threads first).
4829 //
4830 // All paths through muxRelease() will execute a CAS.
4831 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4832 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4833 // executed within the critical section are complete and globally visible before the
4834 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4835 void Thread::muxRelease(volatile intptr_t * Lock)  {
4836   for (;;) {
4837     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4838     assert(w & LOCKBIT, "invariant");
4839     if (w == LOCKBIT) return;
4840     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4841     assert(List != NULL, "invariant");
4842     assert(List->OnList == intptr_t(Lock), "invariant");
4843     ParkEvent * const nxt = List->ListNext;
4844     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4845 
4846     // The following CAS() releases the lock and pops the head element.
4847     // The CAS() also ratifies the previously fetched lock-word value.
4848     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4849       continue;
4850     }
4851     List->OnList = 0;
4852     OrderAccess::fence();
4853     List->unpark();
4854     return;
4855   }
4856 }
4857 
4858 
4859 void Threads::verify() {
4860   ALL_JAVA_THREADS(p) {
4861     p->verify();
4862   }
4863   VMThread* thread = VMThread::vm_thread();
4864   if (thread != NULL) thread->verify();
4865 }