1 /*
   2  * Copyright (c) 2014, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectionSet.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  31 #include "gc/g1/g1RootClosures.hpp"
  32 #include "gc/g1/g1StringDedup.hpp"
  33 #include "gc/g1/g1Trace.hpp"
  34 #include "gc/shared/taskqueue.inline.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "oops/access.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/prefetch.inline.hpp"
  39 
  40 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
  41                                            G1RedirtyCardsQueueSet* rdcqs,
  42                                            uint worker_id,
  43                                            size_t young_cset_length,
  44                                            size_t optional_cset_length)
  45   : _g1h(g1h),
  46     _task_queue(g1h->task_queue(worker_id)),
  47     _rdcq(rdcqs),
  48     _ct(g1h->card_table()),
  49     _closures(NULL),
  50     _plab_allocator(NULL),
  51     _age_table(false),
  52     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
  53     _scanner(g1h, this),
  54     _worker_id(worker_id),
  55     _last_enqueued_card(SIZE_MAX),
  56     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
  57     _stack_trim_lower_threshold(GCDrainStackTargetSize),
  58     _trim_ticks(),
  59     _surviving_young_words_base(NULL),
  60     _surviving_young_words(NULL),
  61     _surviving_words_length(young_cset_length + 1),
  62     _old_gen_is_full(false),
  63     _objarray_scan_chunk_size(ParGCArrayScanChunk),
  64     _objarray_length_offset_in_bytes(arrayOopDesc::length_offset_in_bytes()),
  65     _num_optional_regions(optional_cset_length),
  66     _numa(g1h->numa()),
  67     _obj_alloc_stat(NULL)
  68 {
  69   // We allocate number of young gen regions in the collection set plus one
  70   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
  71   // We also add a few elements at the beginning and at the end in
  72   // an attempt to eliminate cache contention
  73   const size_t padding_elem_num = (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t));
  74   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
  75 
  76   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  77   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
  78   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
  79 
  80   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
  81 
  82   // The dest for Young is used when the objects are aged enough to
  83   // need to be moved to the next space.
  84   _dest[G1HeapRegionAttr::Young] = G1HeapRegionAttr::Old;
  85   _dest[G1HeapRegionAttr::Old]   = G1HeapRegionAttr::Old;
  86 
  87   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
  88 
  89   _oops_into_optional_regions = new G1OopStarChunkedList[_num_optional_regions];
  90 
  91   initialize_numa_stats();
  92 }
  93 
  94 size_t G1ParScanThreadState::flush(size_t* surviving_young_words) {
  95   _rdcq.flush();
  96   flush_numa_stats();
  97   // Update allocation statistics.
  98   _plab_allocator->flush_and_retire_stats();
  99   _g1h->policy()->record_age_table(&_age_table);
 100 
 101   size_t sum = 0;
 102   for (uint i = 0; i < _surviving_words_length; i++) {
 103     surviving_young_words[i] += _surviving_young_words[i];
 104     sum += _surviving_young_words[i];
 105   }
 106   return sum;
 107 }
 108 
 109 G1ParScanThreadState::~G1ParScanThreadState() {
 110   delete _plab_allocator;
 111   delete _closures;
 112   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
 113   delete[] _oops_into_optional_regions;
 114   FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
 115 }
 116 
 117 size_t G1ParScanThreadState::lab_waste_words() const {
 118   return _plab_allocator->waste();
 119 }
 120 
 121 size_t G1ParScanThreadState::lab_undo_waste_words() const {
 122   return _plab_allocator->undo_waste();
 123 }
 124 
 125 #ifdef ASSERT
 126 void G1ParScanThreadState::verify_task(narrowOop* task) const {
 127   assert(task != NULL, "invariant");
 128   assert(UseCompressedOops, "sanity");
 129   oop p = RawAccess<>::oop_load(task);
 130   assert(_g1h->is_in_reserved(p),
 131          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
 132 }
 133 
 134 void G1ParScanThreadState::verify_task(oop* task) const {
 135   assert(task != NULL, "invariant");
 136   oop p = RawAccess<>::oop_load(task);
 137   assert(_g1h->is_in_reserved(p),
 138          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
 139 }
 140 
 141 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const {
 142   // Must be in the collection set--it's already been copied.
 143   oop p = task.to_source_array();
 144   assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
 145 }
 146 
 147 void G1ParScanThreadState::verify_task(ScannerTask task) const {
 148   if (task.is_narrow_oop_ptr()) {
 149     verify_task(task.to_narrow_oop_ptr());
 150   } else if (task.is_oop_ptr()) {
 151     verify_task(task.to_oop_ptr());
 152   } else if (task.is_partial_array_task()) {
 153     verify_task(task.to_partial_array_task());
 154   } else {
 155     ShouldNotReachHere();
 156   }
 157 }
 158 #endif // ASSERT
 159 
 160 template <class T> void G1ParScanThreadState::do_oop_evac(T* p) {
 161   // Reference should not be NULL here as such are never pushed to the task queue.
 162   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
 163 
 164   // Although we never intentionally push references outside of the collection
 165   // set, due to (benign) races in the claim mechanism during RSet scanning more
 166   // than one thread might claim the same card. So the same card may be
 167   // processed multiple times, and so we might get references into old gen here.
 168   // So we need to redo this check.
 169   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
 170   // References pushed onto the work stack should never point to a humongous region
 171   // as they are not added to the collection set due to above precondition.
 172   assert(!region_attr.is_humongous(),
 173          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
 174          p2i(obj), _g1h->addr_to_region(cast_from_oop<HeapWord*>(obj)), p2i(p));
 175 
 176   if (!region_attr.is_in_cset()) {
 177     // In this case somebody else already did all the work.
 178     return;
 179   }
 180 
 181   markWord m = obj->mark_raw();
 182   if (m.is_marked()) {
 183     obj = (oop) m.decode_pointer();
 184   } else {
 185     obj = do_copy_to_survivor_space(region_attr, obj, m);
 186   }
 187   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
 188 
 189   assert(obj != NULL, "Must be");
 190   if (HeapRegion::is_in_same_region(p, obj)) {
 191     return;
 192   }
 193   HeapRegion* from = _g1h->heap_region_containing(p);
 194   if (!from->is_young()) {
 195     enqueue_card_if_tracked(_g1h->region_attr(obj), p, obj);
 196   }
 197 }
 198 
 199 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
 200   oop from_obj = task.to_source_array();
 201 
 202   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
 203   assert(from_obj->is_objArray(), "must be obj array");
 204   assert(from_obj->is_forwarded(), "must be forwarded");
 205 
 206   oop to_obj = from_obj->forwardee();
 207   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
 208   assert(to_obj->is_objArray(), "must be obj array");
 209   objArrayOop to_array = objArrayOop(to_obj);
 210 
 211   // The next chunk index is in the length field of the to-space object.
 212   // Atomically increment by the chunk size to claim the associated chunk.
 213   char* to_addr = cast_from_oop<char*>(to_array);
 214   char* length_addr_raw = (to_addr + _objarray_length_offset_in_bytes);
 215   volatile int* length_addr = reinterpret_cast<int*>(length_addr_raw);
 216   int end = Atomic::add(length_addr, _objarray_scan_chunk_size, memory_order_relaxed);
 217 #ifdef ASSERT
 218   // The from-space object contains the real length.
 219   int length = objArrayOop(from_obj)->length();
 220   assert(end <= length, "invariant: end %d, length %d", end, length);
 221   assert(((length - end) % _objarray_scan_chunk_size) == 0,
 222          "invariant: end %d, length %d, chunk size %d",
 223          end, length, _objarray_scan_chunk_size);
 224 #endif // ASSERT
 225 
 226   HeapRegion* hr = _g1h->heap_region_containing(to_array);
 227   G1ScanInYoungSetter x(&_scanner, hr->is_young());
 228   // Process claimed chunk.  Note that the length field of
 229   // to_obj_array is not correct.  Fortunately, the iteration ignores
 230   // the length and just relies on start / end.  However, it does
 231   // return the (incorrect) length, but we ignore it.
 232   to_array->oop_iterate_range(&_scanner, end - _objarray_scan_chunk_size, end);
 233 }
 234 
 235 oop G1ParScanThreadState::start_partial_objArray(G1HeapRegionAttr dest_attr,
 236                                                  oop from_obj,
 237                                                  oop to_obj) {
 238   assert(from_obj->is_objArray(), "precondition");
 239   assert(from_obj->is_forwarded(), "precondition");
 240   assert(from_obj->forwardee() == to_obj, "precondition");
 241   assert(from_obj != to_obj, "should not be scanning self-forwarded objects");
 242   assert(to_obj->is_objArray(), "precondition");
 243 
 244   objArrayOop to_array = objArrayOop(to_obj);
 245 
 246   int length = objArrayOop(from_obj)->length();
 247   int chunks = length / _objarray_scan_chunk_size;
 248   int end = length % _objarray_scan_chunk_size;
 249   assert(end <= length, "invariant");
 250   assert(((length - end) % _objarray_scan_chunk_size) == 0, "invariant");
 251   // The value of end can be 0, either because of a 0-length array or
 252   // because length is a multiple of the chunk size.  Both of those
 253   // are rare and handled in the normal course of the iteration, so
 254   // not worth doing anything special about here.
 255 
 256   // Set to's length to end of initial chunk.  Partial tasks use that
 257   // length field as the start of the next chunk to process.  Must be
 258   // done before enqueuing partial scan tasks, in case other threads
 259   // steal any of those tasks.
 260   to_array->set_length(end);
 261   // Push partial scan tasks for all but the initial chunk.  Pushed
 262   // before processing the initial chunk to allow other workers to
 263   // steal while we're processing.
 264   for (int i = 0; i < chunks; ++i) {
 265     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
 266   }
 267   G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
 268   // Process the initial chunk.  No need to process the type in the
 269   // klass, as it will already be handled by processing the built-in
 270   // module. The length of to_array is not correct, but fortunately
 271   // the iteration ignores that length field and relies on start/end.
 272   to_array->oop_iterate_range(&_scanner, 0, end);
 273   return to_array;
 274 }
 275 
 276 void G1ParScanThreadState::dispatch_task(ScannerTask task) {
 277   verify_task(task);
 278   if (task.is_narrow_oop_ptr()) {
 279     do_oop_evac(task.to_narrow_oop_ptr());
 280   } else if (task.is_oop_ptr()) {
 281     do_oop_evac(task.to_oop_ptr());
 282   } else {
 283     do_partial_array(task.to_partial_array_task());
 284   }
 285 }
 286 
 287 // Process tasks until overflow queue is empty and local queue
 288 // contains no more than threshold entries.  NOINLINE to prevent
 289 // inlining into steal_and_trim_queue.
 290 ATTRIBUTE_FLATTEN NOINLINE
 291 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
 292   ScannerTask task;
 293   do {
 294     while (_task_queue->pop_overflow(task)) {
 295       if (!_task_queue->try_push_to_taskqueue(task)) {
 296         dispatch_task(task);
 297       }
 298     }
 299     while (_task_queue->pop_local(task, threshold)) {
 300       dispatch_task(task);
 301     }
 302   } while (!_task_queue->overflow_empty());
 303 }
 304 
 305 ATTRIBUTE_FLATTEN
 306 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) {
 307   ScannerTask stolen_task;
 308   while (task_queues->steal(_worker_id, stolen_task)) {
 309     dispatch_task(stolen_task);
 310     // Processing stolen task may have added tasks to our queue.
 311     trim_queue();
 312   }
 313 }
 314 
 315 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
 316                                                       size_t word_sz,
 317                                                       bool previous_plab_refill_failed,
 318                                                       uint node_index) {
 319 
 320   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: %s region attr", dest->get_type_str());
 321 
 322   // Right now we only have two types of regions (young / old) so
 323   // let's keep the logic here simple. We can generalize it when necessary.
 324   if (dest->is_young()) {
 325     bool plab_refill_in_old_failed = false;
 326     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
 327                                                         word_sz,
 328                                                         &plab_refill_in_old_failed,
 329                                                         node_index);
 330     // Make sure that we won't attempt to copy any other objects out
 331     // of a survivor region (given that apparently we cannot allocate
 332     // any new ones) to avoid coming into this slow path again and again.
 333     // Only consider failed PLAB refill here: failed inline allocations are
 334     // typically large, so not indicative of remaining space.
 335     if (previous_plab_refill_failed) {
 336       _tenuring_threshold = 0;
 337     }
 338 
 339     if (obj_ptr != NULL) {
 340       dest->set_old();
 341     } else {
 342       // We just failed to allocate in old gen. The same idea as explained above
 343       // for making survivor gen unavailable for allocation applies for old gen.
 344       _old_gen_is_full = plab_refill_in_old_failed;
 345     }
 346     return obj_ptr;
 347   } else {
 348     _old_gen_is_full = previous_plab_refill_failed;
 349     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
 350     // no other space to try.
 351     return NULL;
 352   }
 353 }
 354 
 355 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
 356   if (region_attr.is_young()) {
 357     age = !m.has_displaced_mark_helper() ? m.age()
 358                                          : m.displaced_mark_helper().age();
 359     if (age < _tenuring_threshold) {
 360       return region_attr;
 361     }
 362   }
 363   return dest(region_attr);
 364 }
 365 
 366 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
 367                                                   oop const old, size_t word_sz, uint age,
 368                                                   HeapWord * const obj_ptr, uint node_index) const {
 369   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
 370   if (alloc_buf->contains(obj_ptr)) {
 371     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
 372                                                              dest_attr.type() == G1HeapRegionAttr::Old,
 373                                                              alloc_buf->word_sz() * HeapWordSize);
 374   } else {
 375     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
 376                                                               dest_attr.type() == G1HeapRegionAttr::Old);
 377   }
 378 }
 379 
 380 NOINLINE
 381 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
 382                                                    oop old,
 383                                                    size_t word_sz,
 384                                                    uint age,
 385                                                    uint node_index) {
 386   HeapWord* obj_ptr = NULL;
 387   // Try slow-path allocation unless we're allocating old and old is already full.
 388   if (!(dest_attr->is_old() && _old_gen_is_full)) {
 389     bool plab_refill_failed = false;
 390     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
 391                                                            word_sz,
 392                                                            &plab_refill_failed,
 393                                                            node_index);
 394     if (obj_ptr == NULL) {
 395       obj_ptr = allocate_in_next_plab(dest_attr,
 396                                       word_sz,
 397                                       plab_refill_failed,
 398                                       node_index);
 399     }
 400   }
 401   if (obj_ptr != NULL) {
 402     update_numa_stats(node_index);
 403     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 404       // The events are checked individually as part of the actual commit
 405       report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index);
 406     }
 407   }
 408   return obj_ptr;
 409 }
 410 
 411 NOINLINE
 412 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
 413                                            HeapWord* obj_ptr,
 414                                            size_t word_sz,
 415                                            uint node_index) {
 416   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 417 }
 418 
 419 // Private inline function, for direct internal use and providing the
 420 // implementation of the public not-inline function.
 421 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
 422                                                     oop const old,
 423                                                     markWord const old_mark) {
 424   assert(region_attr.is_in_cset(),
 425          "Unexpected region attr type: %s", region_attr.get_type_str());
 426 
 427   // Get the klass once.  We'll need it again later, and this avoids
 428   // re-decoding when it's compressed.
 429   Klass* klass = old->klass();
 430   const size_t word_sz = old->size_given_klass(klass);
 431 
 432   uint age = 0;
 433   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
 434   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 435   uint node_index = from_region->node_index();
 436 
 437   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
 438 
 439   // PLAB allocations should succeed most of the time, so we'll
 440   // normally check against NULL once and that's it.
 441   if (obj_ptr == NULL) {
 442     obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index);
 443     if (obj_ptr == NULL) {
 444       // This will either forward-to-self, or detect that someone else has
 445       // installed a forwarding pointer.
 446       return handle_evacuation_failure_par(old, old_mark);
 447     }
 448   }
 449 
 450   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 451   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 452 
 453 #ifndef PRODUCT
 454   // Should this evacuation fail?
 455   if (_g1h->evacuation_should_fail()) {
 456     // Doing this after all the allocation attempts also tests the
 457     // undo_allocation() method too.
 458     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 459     return handle_evacuation_failure_par(old, old_mark);
 460   }
 461 #endif // !PRODUCT
 462 
 463   // We're going to allocate linearly, so might as well prefetch ahead.
 464   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 465 
 466   const oop obj = oop(obj_ptr);
 467   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
 468   if (forward_ptr == NULL) {
 469     Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
 470 
 471     {
 472       const uint young_index = from_region->young_index_in_cset();
 473       assert((from_region->is_young() && young_index >  0) ||
 474              (!from_region->is_young() && young_index == 0), "invariant" );
 475       _surviving_young_words[young_index] += word_sz;
 476     }
 477 
 478     if (dest_attr.is_young()) {
 479       if (age < markWord::max_age) {
 480         age++;
 481       }
 482       if (old_mark.has_displaced_mark_helper()) {
 483         // In this case, we have to install the mark word first,
 484         // otherwise obj looks to be forwarded (the old mark word,
 485         // which contains the forward pointer, was copied)
 486         obj->set_mark_raw(old_mark);
 487         markWord new_mark = old_mark.displaced_mark_helper().set_age(age);
 488         old_mark.set_displaced_mark_helper(new_mark);
 489       } else {
 490         obj->set_mark_raw(old_mark.set_age(age));
 491       }
 492       _age_table.add(age, word_sz);
 493     } else {
 494       obj->set_mark_raw(old_mark);
 495     }
 496 
 497     // Most objects are not arrays, so do one array check rather than both
 498     // typeArray and objArray checks for each object.
 499     if (klass->is_array_klass()) {
 500       if (klass->is_typeArray_klass()) {
 501         // Nothing needs to be done for typeArrays.  Body doesn't contain
 502         // any oops to scan, and the type in the klass will already be handled
 503         // by processing the built-in module.
 504         return obj;
 505       } else if (klass->is_objArray_klass()) {
 506         // Do special handling for objArray.
 507         return start_partial_objArray(dest_attr, old, obj);
 508       }
 509       // Not a special array, so fall through to generic handling.
 510     }
 511 
 512     if (G1StringDedup::is_enabled() && (klass == SystemDictionary::String_klass())) {
 513       const bool is_from_young = region_attr.is_young();
 514       const bool is_to_young = dest_attr.is_young();
 515       assert(is_from_young == from_region->is_young(),
 516              "sanity");
 517       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 518              "sanity");
 519       G1StringDedup::enqueue_from_evacuation(is_from_young,
 520                                              is_to_young,
 521                                              _worker_id,
 522                                              obj);
 523     }
 524 
 525     G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
 526     obj->oop_iterate_backwards(&_scanner);
 527     return obj;
 528 
 529   } else {
 530     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 531     return forward_ptr;
 532   }
 533 }
 534 
 535 // Public not-inline entry point.
 536 ATTRIBUTE_FLATTEN
 537 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
 538                                                  oop old,
 539                                                  markWord old_mark) {
 540   return do_copy_to_survivor_space(region_attr, old, old_mark);
 541 }
 542 
 543 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 544   assert(worker_id < _n_workers, "out of bounds access");
 545   if (_states[worker_id] == NULL) {
 546     _states[worker_id] =
 547       new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length);
 548   }
 549   return _states[worker_id];
 550 }
 551 
 552 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 553   assert(_flushed, "thread local state from the per thread states should have been flushed");
 554   return _surviving_young_words_total;
 555 }
 556 
 557 void G1ParScanThreadStateSet::flush() {
 558   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 559 
 560   for (uint worker_id = 0; worker_id < _n_workers; ++worker_id) {
 561     G1ParScanThreadState* pss = _states[worker_id];
 562 
 563     if (pss == NULL) {
 564       continue;
 565     }
 566 
 567     G1GCPhaseTimes* p = _g1h->phase_times();
 568 
 569     // Need to get the following two before the call to G1ParThreadScanState::flush()
 570     // because it resets the PLAB allocator where we get this info from.
 571     size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize;
 572     size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize;
 573     size_t copied_bytes = pss->flush(_surviving_young_words_total) * HeapWordSize;
 574 
 575     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes);
 576     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes);
 577     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes);
 578 
 579     delete pss;
 580     _states[worker_id] = NULL;
 581   }
 582   _flushed = true;
 583 }
 584 
 585 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
 586   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 587     G1ParScanThreadState* pss = _states[worker_index];
 588 
 589     if (pss == NULL) {
 590       continue;
 591     }
 592 
 593     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
 594     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
 595   }
 596 }
 597 
 598 NOINLINE
 599 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) {
 600   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 601 
 602   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
 603   if (forward_ptr == NULL) {
 604     // Forward-to-self succeeded. We are the "owner" of the object.
 605     HeapRegion* r = _g1h->heap_region_containing(old);
 606 
 607     if (!r->evacuation_failed()) {
 608       r->set_evacuation_failed(true);
 609      _g1h->hr_printer()->evac_failure(r);
 610     }
 611 
 612     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 613 
 614     G1ScanInYoungSetter x(&_scanner, r->is_young());
 615     old->oop_iterate_backwards(&_scanner);
 616 
 617     return old;
 618   } else {
 619     // Forward-to-self failed. Either someone else managed to allocate
 620     // space for this object (old != forward_ptr) or they beat us in
 621     // self-forwarding it (old == forward_ptr).
 622     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
 623            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 624            "should not be in the CSet",
 625            p2i(old), p2i(forward_ptr));
 626     return forward_ptr;
 627   }
 628 }
 629 
 630 void G1ParScanThreadState::initialize_numa_stats() {
 631   if (_numa->is_enabled()) {
 632     LogTarget(Info, gc, heap, numa) lt;
 633 
 634     if (lt.is_enabled()) {
 635       uint num_nodes = _numa->num_active_nodes();
 636       // Record only if there are multiple active nodes.
 637       _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC);
 638       memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes);
 639     }
 640   }
 641 }
 642 
 643 void G1ParScanThreadState::flush_numa_stats() {
 644   if (_obj_alloc_stat != NULL) {
 645     uint node_index = _numa->index_of_current_thread();
 646     _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat);
 647   }
 648 }
 649 
 650 void G1ParScanThreadState::update_numa_stats(uint node_index) {
 651   if (_obj_alloc_stat != NULL) {
 652     _obj_alloc_stat[node_index]++;
 653   }
 654 }
 655 
 656 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
 657                                                  G1RedirtyCardsQueueSet* rdcqs,
 658                                                  uint n_workers,
 659                                                  size_t young_cset_length,
 660                                                  size_t optional_cset_length) :
 661     _g1h(g1h),
 662     _rdcqs(rdcqs),
 663     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
 664     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length + 1, mtGC)),
 665     _young_cset_length(young_cset_length),
 666     _optional_cset_length(optional_cset_length),
 667     _n_workers(n_workers),
 668     _flushed(false) {
 669   for (uint i = 0; i < n_workers; ++i) {
 670     _states[i] = NULL;
 671   }
 672   memset(_surviving_young_words_total, 0, (young_cset_length + 1) * sizeof(size_t));
 673 }
 674 
 675 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
 676   assert(_flushed, "thread local state from the per thread states should have been flushed");
 677   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
 678   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
 679 }