< prev index next >

src/hotspot/share/gc/g1/g1ParScanThreadState.cpp

Print this page
rev 60648 : [mq]: partial_arrays


  43                                            size_t young_cset_length,
  44                                            size_t optional_cset_length)
  45   : _g1h(g1h),
  46     _task_queue(g1h->task_queue(worker_id)),
  47     _rdcq(rdcqs),
  48     _ct(g1h->card_table()),
  49     _closures(NULL),
  50     _plab_allocator(NULL),
  51     _age_table(false),
  52     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
  53     _scanner(g1h, this),
  54     _worker_id(worker_id),
  55     _last_enqueued_card(SIZE_MAX),
  56     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
  57     _stack_trim_lower_threshold(GCDrainStackTargetSize),
  58     _trim_ticks(),
  59     _surviving_young_words_base(NULL),
  60     _surviving_young_words(NULL),
  61     _surviving_words_length(young_cset_length + 1),
  62     _old_gen_is_full(false),


  63     _num_optional_regions(optional_cset_length),
  64     _numa(g1h->numa()),
  65     _obj_alloc_stat(NULL)
  66 {
  67   // We allocate number of young gen regions in the collection set plus one
  68   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
  69   // We also add a few elements at the beginning and at the end in
  70   // an attempt to eliminate cache contention
  71   const size_t padding_elem_num = (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t));
  72   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
  73 
  74   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  75   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
  76   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
  77 
  78   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
  79 
  80   // The dest for Young is used when the objects are aged enough to
  81   // need to be moved to the next space.
  82   _dest[G1HeapRegionAttr::Young] = G1HeapRegionAttr::Old;


 182   } else {
 183     obj = do_copy_to_survivor_space(region_attr, obj, m);
 184   }
 185   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
 186 
 187   assert(obj != NULL, "Must be");
 188   if (HeapRegion::is_in_same_region(p, obj)) {
 189     return;
 190   }
 191   HeapRegion* from = _g1h->heap_region_containing(p);
 192   if (!from->is_young()) {
 193     enqueue_card_if_tracked(_g1h->region_attr(obj), p, obj);
 194   }
 195 }
 196 
 197 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
 198   oop from_obj = task.to_source_array();
 199 
 200   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
 201   assert(from_obj->is_objArray(), "must be obj array");
 202   objArrayOop from_obj_array = objArrayOop(from_obj);
 203   // The from-space object contains the real length.
 204   int length                 = from_obj_array->length();
 205 
 206   assert(from_obj->is_forwarded(), "must be forwarded");

 207   oop to_obj                 = from_obj->forwardee();
 208   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
 209   objArrayOop to_obj_array   = objArrayOop(to_obj);
 210   // We keep track of the next start index in the length field of the
 211   // to-space object.
 212   int next_index             = to_obj_array->length();
 213   assert(0 <= next_index && next_index < length,
 214          "invariant, next index: %d, length: %d", next_index, length);
 215 
 216   int start                  = next_index;
 217   int end                    = length;
 218   int remainder              = end - start;
 219   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
 220   if (remainder > 2 * ParGCArrayScanChunk) {
 221     end = start + ParGCArrayScanChunk;
 222     to_obj_array->set_length(end);
 223     // Push the remainder before we process the range in case another
 224     // worker has run out of things to do and can steal it.
 225     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
 226   } else {
 227     assert(length == end, "sanity");
 228     // We'll process the final range for this object. Restore the length
 229     // so that the heap remains parsable in case of evacuation failure.
 230     to_obj_array->set_length(end);
 231   }
 232 
 233   HeapRegion* hr = _g1h->heap_region_containing(to_obj);
 234   G1ScanInYoungSetter x(&_scanner, hr->is_young());
 235   // Process indexes [start,end). It will also process the header
 236   // along with the first chunk (i.e., the chunk with start == 0).
 237   // Note that at this point the length field of to_obj_array is not
 238   // correct given that we are using it to keep track of the next
 239   // start index. oop_iterate_range() (thankfully!) ignores the length
 240   // field and only relies on the start / end parameters.  It does
 241   // however return the size of the object which will be incorrect. So
 242   // we have to ignore it even if we wanted to use it.
 243   to_obj_array->oop_iterate_range(&_scanner, start, end);





































 244 }
 245 
 246 void G1ParScanThreadState::dispatch_task(ScannerTask task) {
 247   verify_task(task);
 248   if (task.is_narrow_oop_ptr()) {
 249     do_oop_evac(task.to_narrow_oop_ptr());
 250   } else if (task.is_oop_ptr()) {
 251     do_oop_evac(task.to_oop_ptr());
 252   } else {
 253     do_partial_array(task.to_partial_array_task());
 254   }
 255 }
 256 
 257 // Process tasks until overflow queue is empty and local queue
 258 // contains no more than threshold entries.  NOINLINE to prevent
 259 // inlining into steal_and_trim_queue.
 260 ATTRIBUTE_FLATTEN NOINLINE
 261 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
 262   ScannerTask task;
 263   do {


 377   }
 378   return obj_ptr;
 379 }
 380 
 381 NOINLINE
 382 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
 383                                            HeapWord* obj_ptr,
 384                                            size_t word_sz,
 385                                            uint node_index) {
 386   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 387 }
 388 
 389 // Private inline function, for direct internal use and providing the
 390 // implementation of the public not-inline function.
 391 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
 392                                                     oop const old,
 393                                                     markWord const old_mark) {
 394   assert(region_attr.is_in_cset(),
 395          "Unexpected region attr type: %s", region_attr.get_type_str());
 396 
 397   const size_t word_sz = old->size();



 398 
 399   uint age = 0;
 400   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
 401   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 402   uint node_index = from_region->node_index();
 403 
 404   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
 405 
 406   // PLAB allocations should succeed most of the time, so we'll
 407   // normally check against NULL once and that's it.
 408   if (obj_ptr == NULL) {
 409     obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index);
 410     if (obj_ptr == NULL) {
 411       // This will either forward-to-self, or detect that someone else has
 412       // installed a forwarding pointer.
 413       return handle_evacuation_failure_par(old, old_mark);
 414     }
 415   }
 416 
 417   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");


 444 
 445     if (dest_attr.is_young()) {
 446       if (age < markWord::max_age) {
 447         age++;
 448       }
 449       if (old_mark.has_displaced_mark_helper()) {
 450         // In this case, we have to install the mark word first,
 451         // otherwise obj looks to be forwarded (the old mark word,
 452         // which contains the forward pointer, was copied)
 453         obj->set_mark_raw(old_mark);
 454         markWord new_mark = old_mark.displaced_mark_helper().set_age(age);
 455         old_mark.set_displaced_mark_helper(new_mark);
 456       } else {
 457         obj->set_mark_raw(old_mark.set_age(age));
 458       }
 459       _age_table.add(age, word_sz);
 460     } else {
 461       obj->set_mark_raw(old_mark);
 462     }
 463 
 464     if (G1StringDedup::is_enabled()) {















 465       const bool is_from_young = region_attr.is_young();
 466       const bool is_to_young = dest_attr.is_young();
 467       assert(is_from_young == from_region->is_young(),
 468              "sanity");
 469       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 470              "sanity");
 471       G1StringDedup::enqueue_from_evacuation(is_from_young,
 472                                              is_to_young,
 473                                              _worker_id,
 474                                              obj);
 475     }
 476 
 477     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 478       // We keep track of the next start index in the length field of
 479       // the to-space object. The actual length can be found in the
 480       // length field of the from-space object.
 481       arrayOop(obj)->set_length(0);
 482       do_partial_array(PartialArrayScanTask(old));
 483     } else {
 484       G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
 485       obj->oop_iterate_backwards(&_scanner);
 486     }
 487     return obj;

 488   } else {
 489     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 490     return forward_ptr;
 491   }
 492 }
 493 
 494 // Public not-inline entry point.
 495 ATTRIBUTE_FLATTEN
 496 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
 497                                                  oop old,
 498                                                  markWord old_mark) {
 499   return do_copy_to_survivor_space(region_attr, old, old_mark);
 500 }
 501 
 502 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 503   assert(worker_id < _n_workers, "out of bounds access");
 504   if (_states[worker_id] == NULL) {
 505     _states[worker_id] =
 506       new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length);
 507   }




  43                                            size_t young_cset_length,
  44                                            size_t optional_cset_length)
  45   : _g1h(g1h),
  46     _task_queue(g1h->task_queue(worker_id)),
  47     _rdcq(rdcqs),
  48     _ct(g1h->card_table()),
  49     _closures(NULL),
  50     _plab_allocator(NULL),
  51     _age_table(false),
  52     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
  53     _scanner(g1h, this),
  54     _worker_id(worker_id),
  55     _last_enqueued_card(SIZE_MAX),
  56     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
  57     _stack_trim_lower_threshold(GCDrainStackTargetSize),
  58     _trim_ticks(),
  59     _surviving_young_words_base(NULL),
  60     _surviving_young_words(NULL),
  61     _surviving_words_length(young_cset_length + 1),
  62     _old_gen_is_full(false),
  63     _objarray_scan_chunk_size(ParGCArrayScanChunk),
  64     _objarray_length_offset_in_bytes(arrayOopDesc::length_offset_in_bytes()),
  65     _num_optional_regions(optional_cset_length),
  66     _numa(g1h->numa()),
  67     _obj_alloc_stat(NULL)
  68 {
  69   // We allocate number of young gen regions in the collection set plus one
  70   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
  71   // We also add a few elements at the beginning and at the end in
  72   // an attempt to eliminate cache contention
  73   const size_t padding_elem_num = (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t));
  74   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
  75 
  76   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  77   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
  78   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
  79 
  80   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
  81 
  82   // The dest for Young is used when the objects are aged enough to
  83   // need to be moved to the next space.
  84   _dest[G1HeapRegionAttr::Young] = G1HeapRegionAttr::Old;


 184   } else {
 185     obj = do_copy_to_survivor_space(region_attr, obj, m);
 186   }
 187   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
 188 
 189   assert(obj != NULL, "Must be");
 190   if (HeapRegion::is_in_same_region(p, obj)) {
 191     return;
 192   }
 193   HeapRegion* from = _g1h->heap_region_containing(p);
 194   if (!from->is_young()) {
 195     enqueue_card_if_tracked(_g1h->region_attr(obj), p, obj);
 196   }
 197 }
 198 
 199 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
 200   oop from_obj = task.to_source_array();
 201 
 202   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
 203   assert(from_obj->is_objArray(), "must be obj array");




 204   assert(from_obj->is_forwarded(), "must be forwarded");
 205 
 206   oop to_obj = from_obj->forwardee();
 207   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
 208   assert(to_obj->is_objArray(), "must be obj array");
 209   objArrayOop to_array = objArrayOop(to_obj);
 210 
 211   // The next chunk index is in the length field of the to-space object.
 212   // Atomically increment by the chunk size to claim the associated chunk.
 213   char* to_addr = cast_from_oop<char*>(to_array);
 214   char* length_addr_raw = (to_addr + _objarray_length_offset_in_bytes);
 215   volatile int* length_addr = reinterpret_cast<int*>(length_addr_raw);
 216   int end = Atomic::add(length_addr, _objarray_scan_chunk_size, memory_order_relaxed);
 217 #ifdef ASSERT
 218   // The from-space object contains the real length.
 219   int length = objArrayOop(from_obj)->length();
 220   assert(end <= length, "invariant: end %d, length %d", end, length);
 221   assert(((length - end) % _objarray_scan_chunk_size) == 0,
 222          "invariant: end %d, length %d, chunk size %d",
 223          end, length, _objarray_scan_chunk_size);
 224 #endif // ASSERT






 225 
 226   HeapRegion* hr = _g1h->heap_region_containing(to_array);
 227   G1ScanInYoungSetter x(&_scanner, hr->is_young());
 228   // Process claimed chunk.  Note that the length field of
 229   // to_obj_array is not correct.  Fortunately, the iteration ignores
 230   // the length and just relies on start / end.  However, it does
 231   // return the (incorrect) length, but we ignore it.
 232   to_array->oop_iterate_range(&_scanner, end - _objarray_scan_chunk_size, end);
 233 }
 234 
 235 oop G1ParScanThreadState::start_partial_objArray(G1HeapRegionAttr dest_attr,
 236                                                  oop from_obj,
 237                                                  oop to_obj) {
 238   assert(from_obj->is_objArray(), "precondition");
 239   assert(from_obj->is_forwarded(), "precondition");
 240   assert(from_obj->forwardee() == to_obj, "precondition");
 241   assert(from_obj != to_obj, "should not be scanning self-forwarded objects");
 242   assert(to_obj->is_objArray(), "precondition");
 243 
 244   objArrayOop to_array = objArrayOop(to_obj);
 245 
 246   int length = objArrayOop(from_obj)->length();
 247   int chunks = length / _objarray_scan_chunk_size;
 248   int end = length % _objarray_scan_chunk_size;
 249   assert(end <= length, "invariant");
 250   assert(((length - end) % _objarray_scan_chunk_size) == 0, "invariant");
 251   // The value of end can be 0, either because of a 0-length array or
 252   // because length is a multiple of the chunk size.  Both of those
 253   // are rare and handled in the normal course of the iteration, so
 254   // not worth doing anything special about here.
 255 
 256   // Set to's length to end of initial chunk.  Partial tasks use that
 257   // length field as the start of the next chunk to process.  Must be
 258   // done before enqueuing partial scan tasks, in case other threads
 259   // steal any of those tasks.
 260   to_array->set_length(end);
 261   // Push partial scan tasks for all but the initial chunk.  Pushed
 262   // before processing the initial chunk to allow other workers to
 263   // steal while we're processing.
 264   for (int i = 0; i < chunks; ++i) {
 265     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
 266   }
 267   G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
 268   // Process the initial chunk.  No need to process the type in the
 269   // klass, as it will already be handled by processing the built-in
 270   // module. The length of to_array is not correct, but fortunately
 271   // the iteration ignores that length field and relies on start/end.
 272   to_array->oop_iterate_range(&_scanner, 0, end);
 273   return to_array;
 274 }
 275 
 276 void G1ParScanThreadState::dispatch_task(ScannerTask task) {
 277   verify_task(task);
 278   if (task.is_narrow_oop_ptr()) {
 279     do_oop_evac(task.to_narrow_oop_ptr());
 280   } else if (task.is_oop_ptr()) {
 281     do_oop_evac(task.to_oop_ptr());
 282   } else {
 283     do_partial_array(task.to_partial_array_task());
 284   }
 285 }
 286 
 287 // Process tasks until overflow queue is empty and local queue
 288 // contains no more than threshold entries.  NOINLINE to prevent
 289 // inlining into steal_and_trim_queue.
 290 ATTRIBUTE_FLATTEN NOINLINE
 291 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
 292   ScannerTask task;
 293   do {


 407   }
 408   return obj_ptr;
 409 }
 410 
 411 NOINLINE
 412 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
 413                                            HeapWord* obj_ptr,
 414                                            size_t word_sz,
 415                                            uint node_index) {
 416   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 417 }
 418 
 419 // Private inline function, for direct internal use and providing the
 420 // implementation of the public not-inline function.
 421 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
 422                                                     oop const old,
 423                                                     markWord const old_mark) {
 424   assert(region_attr.is_in_cset(),
 425          "Unexpected region attr type: %s", region_attr.get_type_str());
 426 
 427   // Get the klass once.  We'll need it again later, and this avoids
 428   // re-decoding when it's compressed.
 429   Klass* klass = old->klass();
 430   const size_t word_sz = old->size_given_klass(klass);
 431 
 432   uint age = 0;
 433   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
 434   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 435   uint node_index = from_region->node_index();
 436 
 437   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
 438 
 439   // PLAB allocations should succeed most of the time, so we'll
 440   // normally check against NULL once and that's it.
 441   if (obj_ptr == NULL) {
 442     obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index);
 443     if (obj_ptr == NULL) {
 444       // This will either forward-to-self, or detect that someone else has
 445       // installed a forwarding pointer.
 446       return handle_evacuation_failure_par(old, old_mark);
 447     }
 448   }
 449 
 450   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");


 477 
 478     if (dest_attr.is_young()) {
 479       if (age < markWord::max_age) {
 480         age++;
 481       }
 482       if (old_mark.has_displaced_mark_helper()) {
 483         // In this case, we have to install the mark word first,
 484         // otherwise obj looks to be forwarded (the old mark word,
 485         // which contains the forward pointer, was copied)
 486         obj->set_mark_raw(old_mark);
 487         markWord new_mark = old_mark.displaced_mark_helper().set_age(age);
 488         old_mark.set_displaced_mark_helper(new_mark);
 489       } else {
 490         obj->set_mark_raw(old_mark.set_age(age));
 491       }
 492       _age_table.add(age, word_sz);
 493     } else {
 494       obj->set_mark_raw(old_mark);
 495     }
 496 
 497     // Most objects are not arrays, so do one array check rather than both
 498     // typeArray and objArray checks for each object.
 499     if (klass->is_array_klass()) {
 500       if (klass->is_typeArray_klass()) {
 501         // Nothing needs to be done for typeArrays.  Body doesn't contain
 502         // any oops to scan, and the type in the klass will already be handled
 503         // by processing the built-in module.
 504         return obj;
 505       } else if (klass->is_objArray_klass()) {
 506         // Do special handling for objArray.
 507         return start_partial_objArray(dest_attr, old, obj);
 508       }
 509       // Not a special array, so fall through to generic handling.
 510     }
 511 
 512     if (G1StringDedup::is_enabled() && (klass == SystemDictionary::String_klass())) {
 513       const bool is_from_young = region_attr.is_young();
 514       const bool is_to_young = dest_attr.is_young();
 515       assert(is_from_young == from_region->is_young(),
 516              "sanity");
 517       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 518              "sanity");
 519       G1StringDedup::enqueue_from_evacuation(is_from_young,
 520                                              is_to_young,
 521                                              _worker_id,
 522                                              obj);
 523     }
 524 







 525     G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
 526     obj->oop_iterate_backwards(&_scanner);

 527     return obj;
 528 
 529   } else {
 530     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 531     return forward_ptr;
 532   }
 533 }
 534 
 535 // Public not-inline entry point.
 536 ATTRIBUTE_FLATTEN
 537 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
 538                                                  oop old,
 539                                                  markWord old_mark) {
 540   return do_copy_to_survivor_space(region_attr, old, old_mark);
 541 }
 542 
 543 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 544   assert(worker_id < _n_workers, "out of bounds access");
 545   if (_states[worker_id] == NULL) {
 546     _states[worker_id] =
 547       new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length);
 548   }


< prev index next >