/* * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/classLoaderData.hpp" #include "gc/g1/concurrentMarkThread.inline.hpp" #include "gc/g1/g1Analytics.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1ConcurrentMark.inline.hpp" #include "gc/g1/g1MMUTracker.hpp" #include "gc/g1/g1Policy.hpp" #include "gc/g1/suspendibleThreadSet.hpp" #include "gc/g1/vm_operations_g1.hpp" #include "gc/shared/concurrentGCPhaseManager.hpp" #include "gc/shared/gcId.hpp" #include "gc/shared/gcTrace.hpp" #include "gc/shared/gcTraceTime.inline.hpp" #include "logging/log.hpp" #include "memory/resourceArea.hpp" #include "runtime/vmThread.hpp" // ======= Concurrent Mark Thread ======== // Check order in EXPAND_CURRENT_PHASES STATIC_ASSERT(ConcurrentGCPhaseManager::UNCONSTRAINED_PHASE < ConcurrentGCPhaseManager::IDLE_PHASE); #define EXPAND_CONCURRENT_PHASES(expander) \ expander(ANY, = ConcurrentGCPhaseManager::UNCONSTRAINED_PHASE, NULL) \ expander(IDLE, = ConcurrentGCPhaseManager::IDLE_PHASE, NULL) \ expander(CONCURRENT_CYCLE,, "Concurrent Cycle") \ expander(CLEAR_CLAIMED_MARKS,, "Concurrent Clear Claimed Marks") \ expander(SCAN_ROOT_REGIONS,, "Concurrent Scan Root Regions") \ expander(CONCURRENT_MARK,, "Concurrent Mark") \ expander(MARK_FROM_ROOTS,, "Concurrent Mark From Roots") \ expander(BEFORE_REMARK,, NULL) \ expander(CREATE_LIVE_DATA,, "Concurrent Create Live Data") \ expander(COMPLETE_CLEANUP,, "Concurrent Complete Cleanup") \ expander(CLEANUP_FOR_NEXT_MARK,, "Concurrent Cleanup for Next Mark") \ /* */ class G1ConcurrentPhase : public AllStatic { public: enum { #define CONCURRENT_PHASE_ENUM(tag, value, ignore_title) tag value, EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_ENUM) #undef CONCURRENT_PHASE_ENUM PHASE_ID_LIMIT }; }; // The CM thread is created when the G1 garbage collector is used ConcurrentMarkThread::ConcurrentMarkThread(G1ConcurrentMark* cm) : ConcurrentGCThread(), _cm(cm), _state(Idle), _requested_phase(G1ConcurrentPhase::ANY), _phase_manager(NULL), _vtime_accum(0.0), _vtime_mark_accum(0.0) { set_name("G1 Main Marker"); create_and_start(); } class CMCheckpointRootsFinalClosure: public VoidClosure { G1ConcurrentMark* _cm; public: CMCheckpointRootsFinalClosure(G1ConcurrentMark* cm) : _cm(cm) {} void do_void(){ _cm->checkpointRootsFinal(false); // !clear_all_soft_refs } }; class CMCleanUp: public VoidClosure { G1ConcurrentMark* _cm; public: CMCleanUp(G1ConcurrentMark* cm) : _cm(cm) {} void do_void(){ _cm->cleanup(); } }; // Marking pauses can be scheduled flexibly, so we might delay marking to meet MMU. void ConcurrentMarkThread::delay_to_keep_mmu(G1Policy* g1_policy, bool remark) { const G1Analytics* analytics = g1_policy->analytics(); if (g1_policy->adaptive_young_list_length()) { double now = os::elapsedTime(); double prediction_ms = remark ? analytics->predict_remark_time_ms() : analytics->predict_cleanup_time_ms(); G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker(); jlong sleep_time_ms = mmu_tracker->when_ms(now, prediction_ms); os::sleep(this, sleep_time_ms, false); } } class G1ConcPhaseTimer : public GCTraceConcTimeImpl { G1ConcurrentMark* _cm; public: G1ConcPhaseTimer(G1ConcurrentMark* cm, const char* title) : GCTraceConcTimeImpl(title), _cm(cm) { _cm->gc_timer_cm()->register_gc_concurrent_start(title); } ~G1ConcPhaseTimer() { _cm->gc_timer_cm()->register_gc_concurrent_end(); } }; // Returns the phase number for name, or a negative value if unknown. static int lookup_concurrent_phase(const char* name) { static const char* const names[] = { #define CONCURRENT_PHASE_NAME(tag, ignore_value, ignore_title) XSTR(tag), EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_NAME) #undef CONCURRENT_PHASE_NAME }; // Verify dense enum assumption. STATIC_ASSERT(G1ConcurrentPhase::PHASE_ID_LIMIT == ARRAY_SIZE(names)); for (uint i = 0; i < ARRAY_SIZE(names); ++i) { if (strcmp(name, names[i]) == 0) { return static_cast(i); } } return -1; } // The phase must be valid and must have a title. static const char* lookup_concurrent_phase_title(int phase) { static const char* const titles[] = { #define CONCURRENT_PHASE_TITLE(ignore_tag, ignore_value, title) title, EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_TITLE) #undef CONCURRENT_PHASE_TITLE }; // Verify dense enum assumption. STATIC_ASSERT(G1ConcurrentPhase::PHASE_ID_LIMIT == ARRAY_SIZE(titles)); assert(0 <= phase, "precondition"); assert((uint)phase < ARRAY_SIZE(titles), "precondition"); const char* title = titles[phase]; assert(title != NULL, "precondition"); return title; } // Combine phase management and timing into one convenient utility. class G1ConcPhase : StackObj { G1ConcurrentMark* _cm; ConcurrentGCPhaseManager _manager; G1ConcPhaseTimer _timer; public: G1ConcPhase(int phase, ConcurrentMarkThread* thread) : _cm(thread->cm()), _manager(phase, thread->phase_manager()), _timer(_cm, lookup_concurrent_phase_title(phase)) { } ~G1ConcPhase() { // Deactivate the manager if marking aborted, to avoid blocking on // phase exit when the phase has been requested. if (_cm->has_aborted()) { _manager.deactivate(); } } }; bool ConcurrentMarkThread::request_concurrent_phase(const char* phase_name) { int phase = lookup_concurrent_phase(phase_name); if (phase < 0) return false; while (!ConcurrentGCPhaseManager::wait_for_phase(phase, &_phase_manager, &_requested_phase)) { assert(phase != G1ConcurrentPhase::ANY, "Wait for ANY phase must succeed"); if ((phase != G1ConcurrentPhase::IDLE) && !during_cycle()) { // If idle and the goal is !idle, start a collection. G1CollectedHeap::heap()->collect(GCCause::_wb_conc_mark); } } return true; } void ConcurrentMarkThread::run_service() { _vtime_start = os::elapsedVTime(); G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1Policy* g1_policy = g1h->g1_policy(); ConcurrentGCPhaseManager cpmanager(G1ConcurrentPhase::IDLE, &_phase_manager, &_requested_phase); while (!should_terminate()) { // wait until started is set. sleepBeforeNextCycle(); if (should_terminate()) { break; } cpmanager.set_phase(G1ConcurrentPhase::CONCURRENT_CYCLE, false /* force */); GCIdMark gc_id_mark; cm()->concurrent_cycle_start(); assert(GCId::current() != GCId::undefined(), "GC id should have been set up by the initial mark GC."); GCTraceConcTime(Info, gc) tt("Concurrent Cycle"); { ResourceMark rm; HandleMark hm; double cycle_start = os::elapsedVTime(); { G1ConcPhase p(G1ConcurrentPhase::CLEAR_CLAIMED_MARKS, this); ClassLoaderDataGraph::clear_claimed_marks(); } // We have to ensure that we finish scanning the root regions // before the next GC takes place. To ensure this we have to // make sure that we do not join the STS until the root regions // have been scanned. If we did then it's possible that a // subsequent GC could block us from joining the STS and proceed // without the root regions have been scanned which would be a // correctness issue. { G1ConcPhase p(G1ConcurrentPhase::SCAN_ROOT_REGIONS, this); _cm->scan_root_regions(); } // It would be nice to use the G1ConcPhase class here but // the "end" logging is inside the loop and not at the end of // a scope. Mimicking the same log output instead. { ConcurrentGCPhaseManager cm_cpmanager(G1ConcurrentPhase::CONCURRENT_MARK, phase_manager()); jlong mark_start = os::elapsed_counter(); const char* cm_title = lookup_concurrent_phase_title(G1ConcurrentPhase::CONCURRENT_MARK); log_info(gc, marking)("%s (%.3fs)", cm_title, TimeHelper::counter_to_seconds(mark_start)); for (uint iter = 1; !cm()->has_aborted(); ++iter) { // Concurrent marking. { G1ConcPhase p(G1ConcurrentPhase::MARK_FROM_ROOTS, this); _cm->mark_from_roots(); } if (cm()->has_aborted()) break; // Provide a control point after mark_from_roots. { ConcurrentGCPhaseManager pre_remark(G1ConcurrentPhase::BEFORE_REMARK, &cm_cpmanager); } if (cm()->has_aborted()) break; // Delay remark pause for MMU. double mark_end_time = os::elapsedVTime(); jlong mark_end = os::elapsed_counter(); _vtime_mark_accum += (mark_end_time - cycle_start); delay_to_keep_mmu(g1_policy, true /* remark */); if (cm()->has_aborted()) break; // Pause Remark. log_info(gc, marking)("%s (%.3fs, %.3fs) %.3fms", cm_title, TimeHelper::counter_to_seconds(mark_start), TimeHelper::counter_to_seconds(mark_end), TimeHelper::counter_to_millis(mark_end - mark_start)); CMCheckpointRootsFinalClosure final_cl(_cm); VM_CGC_Operation op(&final_cl, "Pause Remark"); VMThread::execute(&op); if (cm()->has_aborted()) { break; } else if (!cm()->restart_for_overflow()) { break; // Exit loop if no restart requested. } else { // Loop to restart for overflow. log_info(gc, marking)("%s Restart for Mark Stack Overflow (iteration #%u)", cm_title, iter); } } } if (!cm()->has_aborted()) { G1ConcPhase p(G1ConcurrentPhase::CREATE_LIVE_DATA, this); cm()->create_live_data(); } double end_time = os::elapsedVTime(); // Update the total virtual time before doing this, since it will try // to measure it to get the vtime for this marking. We purposely // neglect the presumably-short "completeCleanup" phase here. _vtime_accum = (end_time - _vtime_start); if (!cm()->has_aborted()) { delay_to_keep_mmu(g1_policy, false /* cleanup */); CMCleanUp cl_cl(_cm); VM_CGC_Operation op(&cl_cl, "Pause Cleanup"); VMThread::execute(&op); } else { // We don't want to update the marking status if a GC pause // is already underway. SuspendibleThreadSetJoiner sts_join; g1h->collector_state()->set_mark_in_progress(false); } // Check if cleanup set the free_regions_coming flag. If it // hasn't, we can just skip the next step. if (g1h->free_regions_coming()) { // The following will finish freeing up any regions that we // found to be empty during cleanup. We'll do this part // without joining the suspendible set. If an evacuation pause // takes place, then we would carry on freeing regions in // case they are needed by the pause. If a Full GC takes // place, it would wait for us to process the regions // reclaimed by cleanup. // Now do the concurrent cleanup operation. G1ConcPhase p(G1ConcurrentPhase::COMPLETE_CLEANUP, this); _cm->complete_cleanup(); // Notify anyone who's waiting that there are no more free // regions coming. We have to do this before we join the STS // (in fact, we should not attempt to join the STS in the // interval between finishing the cleanup pause and clearing // the free_regions_coming flag) otherwise we might deadlock: // a GC worker could be blocked waiting for the notification // whereas this thread will be blocked for the pause to finish // while it's trying to join the STS, which is conditional on // the GC workers finishing. g1h->reset_free_regions_coming(); } guarantee(cm()->cleanup_list_is_empty(), "at this point there should be no regions on the cleanup list"); // There is a tricky race before recording that the concurrent // cleanup has completed and a potential Full GC starting around // the same time. We want to make sure that the Full GC calls // abort() on concurrent mark after // record_concurrent_mark_cleanup_completed(), since abort() is // the method that will reset the concurrent mark state. If we // end up calling record_concurrent_mark_cleanup_completed() // after abort() then we might incorrectly undo some of the work // abort() did. Checking the has_aborted() flag after joining // the STS allows the correct ordering of the two methods. There // are two scenarios: // // a) If we reach here before the Full GC, the fact that we have // joined the STS means that the Full GC cannot start until we // leave the STS, so record_concurrent_mark_cleanup_completed() // will complete before abort() is called. // // b) If we reach here during the Full GC, we'll be held up from // joining the STS until the Full GC is done, which means that // abort() will have completed and has_aborted() will return // true to prevent us from calling // record_concurrent_mark_cleanup_completed() (and, in fact, it's // not needed any more as the concurrent mark state has been // already reset). { SuspendibleThreadSetJoiner sts_join; if (!cm()->has_aborted()) { g1_policy->record_concurrent_mark_cleanup_completed(); } else { log_info(gc, marking)("Concurrent Mark Abort"); } } // We now want to allow clearing of the marking bitmap to be // suspended by a collection pause. // We may have aborted just before the remark. Do not bother clearing the // bitmap then, as it has been done during mark abort. if (!cm()->has_aborted()) { G1ConcPhase p(G1ConcurrentPhase::CLEANUP_FOR_NEXT_MARK, this); _cm->cleanup_for_next_mark(); } else { assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear"); } } // Update the number of full collections that have been // completed. This will also notify the FullGCCount_lock in case a // Java thread is waiting for a full GC to happen (e.g., it // called System.gc() with +ExplicitGCInvokesConcurrent). { SuspendibleThreadSetJoiner sts_join; g1h->increment_old_marking_cycles_completed(true /* concurrent */); cm()->concurrent_cycle_end(); } cpmanager.set_phase(G1ConcurrentPhase::IDLE, cm()->has_aborted() /* force */); } _cm->root_regions()->cancel_scan(); } void ConcurrentMarkThread::stop_service() { MutexLockerEx ml(CGC_lock, Mutex::_no_safepoint_check_flag); CGC_lock->notify_all(); } void ConcurrentMarkThread::sleepBeforeNextCycle() { // We join here because we don't want to do the "shouldConcurrentMark()" // below while the world is otherwise stopped. assert(!in_progress(), "should have been cleared"); MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); while (!started() && !should_terminate()) { CGC_lock->wait(Mutex::_no_safepoint_check_flag); } if (started()) { set_in_progress(); } }