1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "runtime/atomic.hpp"
  78 #include "runtime/init.hpp"
  79 #include "runtime/orderAccess.inline.hpp"
  80 #include "runtime/vmThread.hpp"
  81 #include "utilities/globalDefinitions.hpp"
  82 #include "utilities/stack.inline.hpp"
  83 
  84 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  85 
  86 // INVARIANTS/NOTES
  87 //
  88 // All allocation activity covered by the G1CollectedHeap interface is
  89 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  90 // and allocate_new_tlab, which are the "entry" points to the
  91 // allocation code from the rest of the JVM.  (Note that this does not
  92 // apply to TLAB allocation, which is not part of this interface: it
  93 // is done by clients of this interface.)
  94 
  95 // Local to this file.
  96 
  97 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  98   bool _concurrent;
  99 public:
 100   RefineCardTableEntryClosure() : _concurrent(true) { }
 101 
 102   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 103     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, NULL);
 104     // This path is executed by the concurrent refine or mutator threads,
 105     // concurrently, and so we do not care if card_ptr contains references
 106     // that point into the collection set.
 107     assert(!oops_into_cset, "should be");
 108 
 109     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 110       // Caller will actually yield.
 111       return false;
 112     }
 113     // Otherwise, we finished successfully; return true.
 114     return true;
 115   }
 116 
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 122  private:
 123   size_t _num_dirtied;
 124   G1CollectedHeap* _g1h;
 125   G1SATBCardTableLoggingModRefBS* _g1_bs;
 126 
 127   HeapRegion* region_for_card(jbyte* card_ptr) const {
 128     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 129   }
 130 
 131   bool will_become_free(HeapRegion* hr) const {
 132     // A region will be freed by free_collection_set if the region is in the
 133     // collection set and has not had an evacuation failure.
 134     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 135   }
 136 
 137  public:
 138   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 139     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 140 
 141   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 142     HeapRegion* hr = region_for_card(card_ptr);
 143 
 144     // Should only dirty cards in regions that won't be freed.
 145     if (!will_become_free(hr)) {
 146       *card_ptr = CardTableModRefBS::dirty_card_val();
 147       _num_dirtied++;
 148     }
 149 
 150     return true;
 151   }
 152 
 153   size_t num_dirtied()   const { return _num_dirtied; }
 154 };
 155 
 156 
 157 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 158   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 159 }
 160 
 161 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 162   // The from card cache is not the memory that is actually committed. So we cannot
 163   // take advantage of the zero_filled parameter.
 164   reset_from_card_cache(start_idx, num_regions);
 165 }
 166 
 167 // Returns true if the reference points to an object that
 168 // can move in an incremental collection.
 169 bool G1CollectedHeap::is_scavengable(const void* p) {
 170   HeapRegion* hr = heap_region_containing(p);
 171   return !hr->is_pinned();
 172 }
 173 
 174 // Private methods.
 175 
 176 HeapRegion*
 177 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 178   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 179   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 180     if (!_secondary_free_list.is_empty()) {
 181       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 182                                       "secondary_free_list has %u entries",
 183                                       _secondary_free_list.length());
 184       // It looks as if there are free regions available on the
 185       // secondary_free_list. Let's move them to the free_list and try
 186       // again to allocate from it.
 187       append_secondary_free_list();
 188 
 189       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 190              "empty we should have moved at least one entry to the free_list");
 191       HeapRegion* res = _hrm.allocate_free_region(is_old);
 192       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 193                                       "allocated " HR_FORMAT " from secondary_free_list",
 194                                       HR_FORMAT_PARAMS(res));
 195       return res;
 196     }
 197 
 198     // Wait here until we get notified either when (a) there are no
 199     // more free regions coming or (b) some regions have been moved on
 200     // the secondary_free_list.
 201     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 202   }
 203 
 204   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 205                                   "could not allocate from secondary_free_list");
 206   return NULL;
 207 }
 208 
 209 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 210   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 211          "the only time we use this to allocate a humongous region is "
 212          "when we are allocating a single humongous region");
 213 
 214   HeapRegion* res;
 215   if (G1StressConcRegionFreeing) {
 216     if (!_secondary_free_list.is_empty()) {
 217       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 218                                       "forced to look at the secondary_free_list");
 219       res = new_region_try_secondary_free_list(is_old);
 220       if (res != NULL) {
 221         return res;
 222       }
 223     }
 224   }
 225 
 226   res = _hrm.allocate_free_region(is_old);
 227 
 228   if (res == NULL) {
 229     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 230                                     "res == NULL, trying the secondary_free_list");
 231     res = new_region_try_secondary_free_list(is_old);
 232   }
 233   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 234     // Currently, only attempts to allocate GC alloc regions set
 235     // do_expand to true. So, we should only reach here during a
 236     // safepoint. If this assumption changes we might have to
 237     // reconsider the use of _expand_heap_after_alloc_failure.
 238     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 239 
 240     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 241                               word_size * HeapWordSize);
 242 
 243     if (expand(word_size * HeapWordSize)) {
 244       // Given that expand() succeeded in expanding the heap, and we
 245       // always expand the heap by an amount aligned to the heap
 246       // region size, the free list should in theory not be empty.
 247       // In either case allocate_free_region() will check for NULL.
 248       res = _hrm.allocate_free_region(is_old);
 249     } else {
 250       _expand_heap_after_alloc_failure = false;
 251     }
 252   }
 253   return res;
 254 }
 255 
 256 HeapWord*
 257 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 258                                                            uint num_regions,
 259                                                            size_t word_size,
 260                                                            AllocationContext_t context) {
 261   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 262   assert(is_humongous(word_size), "word_size should be humongous");
 263   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 264 
 265   // Index of last region in the series.
 266   uint last = first + num_regions - 1;
 267 
 268   // We need to initialize the region(s) we just discovered. This is
 269   // a bit tricky given that it can happen concurrently with
 270   // refinement threads refining cards on these regions and
 271   // potentially wanting to refine the BOT as they are scanning
 272   // those cards (this can happen shortly after a cleanup; see CR
 273   // 6991377). So we have to set up the region(s) carefully and in
 274   // a specific order.
 275 
 276   // The word size sum of all the regions we will allocate.
 277   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 278   assert(word_size <= word_size_sum, "sanity");
 279 
 280   // This will be the "starts humongous" region.
 281   HeapRegion* first_hr = region_at(first);
 282   // The header of the new object will be placed at the bottom of
 283   // the first region.
 284   HeapWord* new_obj = first_hr->bottom();
 285   // This will be the new top of the new object.
 286   HeapWord* obj_top = new_obj + word_size;
 287 
 288   // First, we need to zero the header of the space that we will be
 289   // allocating. When we update top further down, some refinement
 290   // threads might try to scan the region. By zeroing the header we
 291   // ensure that any thread that will try to scan the region will
 292   // come across the zero klass word and bail out.
 293   //
 294   // NOTE: It would not have been correct to have used
 295   // CollectedHeap::fill_with_object() and make the space look like
 296   // an int array. The thread that is doing the allocation will
 297   // later update the object header to a potentially different array
 298   // type and, for a very short period of time, the klass and length
 299   // fields will be inconsistent. This could cause a refinement
 300   // thread to calculate the object size incorrectly.
 301   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 302 
 303   // Next, pad out the unused tail of the last region with filler
 304   // objects, for improved usage accounting.
 305   // How many words we use for filler objects.
 306   size_t word_fill_size = word_size_sum - word_size;
 307 
 308   // How many words memory we "waste" which cannot hold a filler object.
 309   size_t words_not_fillable = 0;
 310 
 311   if (word_fill_size >= min_fill_size()) {
 312     fill_with_objects(obj_top, word_fill_size);
 313   } else if (word_fill_size > 0) {
 314     // We have space to fill, but we cannot fit an object there.
 315     words_not_fillable = word_fill_size;
 316     word_fill_size = 0;
 317   }
 318 
 319   // We will set up the first region as "starts humongous". This
 320   // will also update the BOT covering all the regions to reflect
 321   // that there is a single object that starts at the bottom of the
 322   // first region.
 323   first_hr->set_starts_humongous(obj_top, word_fill_size);
 324   first_hr->set_allocation_context(context);
 325   // Then, if there are any, we will set up the "continues
 326   // humongous" regions.
 327   HeapRegion* hr = NULL;
 328   for (uint i = first + 1; i <= last; ++i) {
 329     hr = region_at(i);
 330     hr->set_continues_humongous(first_hr);
 331     hr->set_allocation_context(context);
 332   }
 333 
 334   // Up to this point no concurrent thread would have been able to
 335   // do any scanning on any region in this series. All the top
 336   // fields still point to bottom, so the intersection between
 337   // [bottom,top] and [card_start,card_end] will be empty. Before we
 338   // update the top fields, we'll do a storestore to make sure that
 339   // no thread sees the update to top before the zeroing of the
 340   // object header and the BOT initialization.
 341   OrderAccess::storestore();
 342 
 343   // Now, we will update the top fields of the "continues humongous"
 344   // regions except the last one.
 345   for (uint i = first; i < last; ++i) {
 346     hr = region_at(i);
 347     hr->set_top(hr->end());
 348   }
 349 
 350   hr = region_at(last);
 351   // If we cannot fit a filler object, we must set top to the end
 352   // of the humongous object, otherwise we cannot iterate the heap
 353   // and the BOT will not be complete.
 354   hr->set_top(hr->end() - words_not_fillable);
 355 
 356   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 357          "obj_top should be in last region");
 358 
 359   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 360 
 361   assert(words_not_fillable == 0 ||
 362          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 363          "Miscalculation in humongous allocation");
 364 
 365   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 366 
 367   for (uint i = first; i <= last; ++i) {
 368     hr = region_at(i);
 369     _humongous_set.add(hr);
 370     _hr_printer.alloc(hr);
 371   }
 372 
 373   return new_obj;
 374 }
 375 
 376 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 377   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 378   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 379 }
 380 
 381 // If could fit into free regions w/o expansion, try.
 382 // Otherwise, if can expand, do so.
 383 // Otherwise, if using ex regions might help, try with ex given back.
 384 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 385   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 386 
 387   _verifier->verify_region_sets_optional();
 388 
 389   uint first = G1_NO_HRM_INDEX;
 390   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 391 
 392   if (obj_regions == 1) {
 393     // Only one region to allocate, try to use a fast path by directly allocating
 394     // from the free lists. Do not try to expand here, we will potentially do that
 395     // later.
 396     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 397     if (hr != NULL) {
 398       first = hr->hrm_index();
 399     }
 400   } else {
 401     // We can't allocate humongous regions spanning more than one region while
 402     // cleanupComplete() is running, since some of the regions we find to be
 403     // empty might not yet be added to the free list. It is not straightforward
 404     // to know in which list they are on so that we can remove them. We only
 405     // need to do this if we need to allocate more than one region to satisfy the
 406     // current humongous allocation request. If we are only allocating one region
 407     // we use the one-region region allocation code (see above), that already
 408     // potentially waits for regions from the secondary free list.
 409     wait_while_free_regions_coming();
 410     append_secondary_free_list_if_not_empty_with_lock();
 411 
 412     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 413     // are lucky enough to find some.
 414     first = _hrm.find_contiguous_only_empty(obj_regions);
 415     if (first != G1_NO_HRM_INDEX) {
 416       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 417     }
 418   }
 419 
 420   if (first == G1_NO_HRM_INDEX) {
 421     // Policy: We could not find enough regions for the humongous object in the
 422     // free list. Look through the heap to find a mix of free and uncommitted regions.
 423     // If so, try expansion.
 424     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 425     if (first != G1_NO_HRM_INDEX) {
 426       // We found something. Make sure these regions are committed, i.e. expand
 427       // the heap. Alternatively we could do a defragmentation GC.
 428       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 429                                     word_size * HeapWordSize);
 430 
 431       _hrm.expand_at(first, obj_regions, workers());
 432       g1_policy()->record_new_heap_size(num_regions());
 433 
 434 #ifdef ASSERT
 435       for (uint i = first; i < first + obj_regions; ++i) {
 436         HeapRegion* hr = region_at(i);
 437         assert(hr->is_free(), "sanity");
 438         assert(hr->is_empty(), "sanity");
 439         assert(is_on_master_free_list(hr), "sanity");
 440       }
 441 #endif
 442       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 443     } else {
 444       // Policy: Potentially trigger a defragmentation GC.
 445     }
 446   }
 447 
 448   HeapWord* result = NULL;
 449   if (first != G1_NO_HRM_INDEX) {
 450     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 451                                                        word_size, context);
 452     assert(result != NULL, "it should always return a valid result");
 453 
 454     // A successful humongous object allocation changes the used space
 455     // information of the old generation so we need to recalculate the
 456     // sizes and update the jstat counters here.
 457     g1mm()->update_sizes();
 458   }
 459 
 460   _verifier->verify_region_sets_optional();
 461 
 462   return result;
 463 }
 464 
 465 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 466   assert_heap_not_locked_and_not_at_safepoint();
 467   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 468 
 469   uint dummy_gc_count_before;
 470   uint dummy_gclocker_retry_count = 0;
 471   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 472 }
 473 
 474 HeapWord*
 475 G1CollectedHeap::mem_allocate(size_t word_size,
 476                               bool*  gc_overhead_limit_was_exceeded) {
 477   assert_heap_not_locked_and_not_at_safepoint();
 478 
 479   // Loop until the allocation is satisfied, or unsatisfied after GC.
 480   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 481     uint gc_count_before;
 482 
 483     HeapWord* result = NULL;
 484     if (!is_humongous(word_size)) {
 485       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 486     } else {
 487       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 488     }
 489     if (result != NULL) {
 490       return result;
 491     }
 492 
 493     // Create the garbage collection operation...
 494     VM_G1CollectForAllocation op(gc_count_before, word_size);
 495     op.set_allocation_context(AllocationContext::current());
 496 
 497     // ...and get the VM thread to execute it.
 498     VMThread::execute(&op);
 499 
 500     if (op.prologue_succeeded() && op.pause_succeeded()) {
 501       // If the operation was successful we'll return the result even
 502       // if it is NULL. If the allocation attempt failed immediately
 503       // after a Full GC, it's unlikely we'll be able to allocate now.
 504       HeapWord* result = op.result();
 505       if (result != NULL && !is_humongous(word_size)) {
 506         // Allocations that take place on VM operations do not do any
 507         // card dirtying and we have to do it here. We only have to do
 508         // this for non-humongous allocations, though.
 509         dirty_young_block(result, word_size);
 510       }
 511       return result;
 512     } else {
 513       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 514         return NULL;
 515       }
 516       assert(op.result() == NULL,
 517              "the result should be NULL if the VM op did not succeed");
 518     }
 519 
 520     // Give a warning if we seem to be looping forever.
 521     if ((QueuedAllocationWarningCount > 0) &&
 522         (try_count % QueuedAllocationWarningCount == 0)) {
 523       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 524     }
 525   }
 526 
 527   ShouldNotReachHere();
 528   return NULL;
 529 }
 530 
 531 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 532                                                    AllocationContext_t context,
 533                                                    uint* gc_count_before_ret,
 534                                                    uint* gclocker_retry_count_ret) {
 535   // Make sure you read the note in attempt_allocation_humongous().
 536 
 537   assert_heap_not_locked_and_not_at_safepoint();
 538   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 539          "be called for humongous allocation requests");
 540 
 541   // We should only get here after the first-level allocation attempt
 542   // (attempt_allocation()) failed to allocate.
 543 
 544   // We will loop until a) we manage to successfully perform the
 545   // allocation or b) we successfully schedule a collection which
 546   // fails to perform the allocation. b) is the only case when we'll
 547   // return NULL.
 548   HeapWord* result = NULL;
 549   for (int try_count = 1; /* we'll return */; try_count += 1) {
 550     bool should_try_gc;
 551     uint gc_count_before;
 552 
 553     {
 554       MutexLockerEx x(Heap_lock);
 555       result = _allocator->attempt_allocation_locked(word_size, context);
 556       if (result != NULL) {
 557         return result;
 558       }
 559 
 560       if (GCLocker::is_active_and_needs_gc()) {
 561         if (g1_policy()->can_expand_young_list()) {
 562           // No need for an ergo verbose message here,
 563           // can_expand_young_list() does this when it returns true.
 564           result = _allocator->attempt_allocation_force(word_size, context);
 565           if (result != NULL) {
 566             return result;
 567           }
 568         }
 569         should_try_gc = false;
 570       } else {
 571         // The GCLocker may not be active but the GCLocker initiated
 572         // GC may not yet have been performed (GCLocker::needs_gc()
 573         // returns true). In this case we do not try this GC and
 574         // wait until the GCLocker initiated GC is performed, and
 575         // then retry the allocation.
 576         if (GCLocker::needs_gc()) {
 577           should_try_gc = false;
 578         } else {
 579           // Read the GC count while still holding the Heap_lock.
 580           gc_count_before = total_collections();
 581           should_try_gc = true;
 582         }
 583       }
 584     }
 585 
 586     if (should_try_gc) {
 587       bool succeeded;
 588       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 589                                    GCCause::_g1_inc_collection_pause);
 590       if (result != NULL) {
 591         assert(succeeded, "only way to get back a non-NULL result");
 592         return result;
 593       }
 594 
 595       if (succeeded) {
 596         // If we get here we successfully scheduled a collection which
 597         // failed to allocate. No point in trying to allocate
 598         // further. We'll just return NULL.
 599         MutexLockerEx x(Heap_lock);
 600         *gc_count_before_ret = total_collections();
 601         return NULL;
 602       }
 603     } else {
 604       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 605         MutexLockerEx x(Heap_lock);
 606         *gc_count_before_ret = total_collections();
 607         return NULL;
 608       }
 609       // The GCLocker is either active or the GCLocker initiated
 610       // GC has not yet been performed. Stall until it is and
 611       // then retry the allocation.
 612       GCLocker::stall_until_clear();
 613       (*gclocker_retry_count_ret) += 1;
 614     }
 615 
 616     // We can reach here if we were unsuccessful in scheduling a
 617     // collection (because another thread beat us to it) or if we were
 618     // stalled due to the GC locker. In either can we should retry the
 619     // allocation attempt in case another thread successfully
 620     // performed a collection and reclaimed enough space. We do the
 621     // first attempt (without holding the Heap_lock) here and the
 622     // follow-on attempt will be at the start of the next loop
 623     // iteration (after taking the Heap_lock).
 624     result = _allocator->attempt_allocation(word_size, context);
 625     if (result != NULL) {
 626       return result;
 627     }
 628 
 629     // Give a warning if we seem to be looping forever.
 630     if ((QueuedAllocationWarningCount > 0) &&
 631         (try_count % QueuedAllocationWarningCount == 0)) {
 632       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 633                       "retries %d times", try_count);
 634     }
 635   }
 636 
 637   ShouldNotReachHere();
 638   return NULL;
 639 }
 640 
 641 void G1CollectedHeap::begin_archive_alloc_range() {
 642   assert_at_safepoint(true /* should_be_vm_thread */);
 643   if (_archive_allocator == NULL) {
 644     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 645   }
 646 }
 647 
 648 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 649   // Allocations in archive regions cannot be of a size that would be considered
 650   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 651   // may be different at archive-restore time.
 652   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 653 }
 654 
 655 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 656   assert_at_safepoint(true /* should_be_vm_thread */);
 657   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 658   if (is_archive_alloc_too_large(word_size)) {
 659     return NULL;
 660   }
 661   return _archive_allocator->archive_mem_allocate(word_size);
 662 }
 663 
 664 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 665                                               size_t end_alignment_in_bytes) {
 666   assert_at_safepoint(true /* should_be_vm_thread */);
 667   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 668 
 669   // Call complete_archive to do the real work, filling in the MemRegion
 670   // array with the archive regions.
 671   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 672   delete _archive_allocator;
 673   _archive_allocator = NULL;
 674 }
 675 
 676 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 677   assert(ranges != NULL, "MemRegion array NULL");
 678   assert(count != 0, "No MemRegions provided");
 679   MemRegion reserved = _hrm.reserved();
 680   for (size_t i = 0; i < count; i++) {
 681     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 682       return false;
 683     }
 684   }
 685   return true;
 686 }
 687 
 688 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 689   assert(!is_init_completed(), "Expect to be called at JVM init time");
 690   assert(ranges != NULL, "MemRegion array NULL");
 691   assert(count != 0, "No MemRegions provided");
 692   MutexLockerEx x(Heap_lock);
 693 
 694   MemRegion reserved = _hrm.reserved();
 695   HeapWord* prev_last_addr = NULL;
 696   HeapRegion* prev_last_region = NULL;
 697 
 698   // Temporarily disable pretouching of heap pages. This interface is used
 699   // when mmap'ing archived heap data in, so pre-touching is wasted.
 700   FlagSetting fs(AlwaysPreTouch, false);
 701 
 702   // Enable archive object checking in G1MarkSweep. We have to let it know
 703   // about each archive range, so that objects in those ranges aren't marked.
 704   G1MarkSweep::enable_archive_object_check();
 705 
 706   // For each specified MemRegion range, allocate the corresponding G1
 707   // regions and mark them as archive regions. We expect the ranges in
 708   // ascending starting address order, without overlap.
 709   for (size_t i = 0; i < count; i++) {
 710     MemRegion curr_range = ranges[i];
 711     HeapWord* start_address = curr_range.start();
 712     size_t word_size = curr_range.word_size();
 713     HeapWord* last_address = curr_range.last();
 714     size_t commits = 0;
 715 
 716     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 717               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 718               p2i(start_address), p2i(last_address));
 719     guarantee(start_address > prev_last_addr,
 720               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 721               p2i(start_address), p2i(prev_last_addr));
 722     prev_last_addr = last_address;
 723 
 724     // Check for ranges that start in the same G1 region in which the previous
 725     // range ended, and adjust the start address so we don't try to allocate
 726     // the same region again. If the current range is entirely within that
 727     // region, skip it, just adjusting the recorded top.
 728     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 729     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 730       start_address = start_region->end();
 731       if (start_address > last_address) {
 732         increase_used(word_size * HeapWordSize);
 733         start_region->set_top(last_address + 1);
 734         continue;
 735       }
 736       start_region->set_top(start_address);
 737       curr_range = MemRegion(start_address, last_address + 1);
 738       start_region = _hrm.addr_to_region(start_address);
 739     }
 740 
 741     // Perform the actual region allocation, exiting if it fails.
 742     // Then note how much new space we have allocated.
 743     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 744       return false;
 745     }
 746     increase_used(word_size * HeapWordSize);
 747     if (commits != 0) {
 748       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 749                                 HeapRegion::GrainWords * HeapWordSize * commits);
 750 
 751     }
 752 
 753     // Mark each G1 region touched by the range as archive, add it to the old set,
 754     // and set the allocation context and top.
 755     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 756     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 757     prev_last_region = last_region;
 758 
 759     while (curr_region != NULL) {
 760       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 761              "Region already in use (index %u)", curr_region->hrm_index());
 762       curr_region->set_allocation_context(AllocationContext::system());
 763       curr_region->set_archive();
 764       _hr_printer.alloc(curr_region);
 765       _old_set.add(curr_region);
 766       if (curr_region != last_region) {
 767         curr_region->set_top(curr_region->end());
 768         curr_region = _hrm.next_region_in_heap(curr_region);
 769       } else {
 770         curr_region->set_top(last_address + 1);
 771         curr_region = NULL;
 772       }
 773     }
 774 
 775     // Notify mark-sweep of the archive range.
 776     G1MarkSweep::set_range_archive(curr_range, true);
 777   }
 778   return true;
 779 }
 780 
 781 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 782   assert(!is_init_completed(), "Expect to be called at JVM init time");
 783   assert(ranges != NULL, "MemRegion array NULL");
 784   assert(count != 0, "No MemRegions provided");
 785   MemRegion reserved = _hrm.reserved();
 786   HeapWord *prev_last_addr = NULL;
 787   HeapRegion* prev_last_region = NULL;
 788 
 789   // For each MemRegion, create filler objects, if needed, in the G1 regions
 790   // that contain the address range. The address range actually within the
 791   // MemRegion will not be modified. That is assumed to have been initialized
 792   // elsewhere, probably via an mmap of archived heap data.
 793   MutexLockerEx x(Heap_lock);
 794   for (size_t i = 0; i < count; i++) {
 795     HeapWord* start_address = ranges[i].start();
 796     HeapWord* last_address = ranges[i].last();
 797 
 798     assert(reserved.contains(start_address) && reserved.contains(last_address),
 799            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 800            p2i(start_address), p2i(last_address));
 801     assert(start_address > prev_last_addr,
 802            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 803            p2i(start_address), p2i(prev_last_addr));
 804 
 805     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 806     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 807     HeapWord* bottom_address = start_region->bottom();
 808 
 809     // Check for a range beginning in the same region in which the
 810     // previous one ended.
 811     if (start_region == prev_last_region) {
 812       bottom_address = prev_last_addr + 1;
 813     }
 814 
 815     // Verify that the regions were all marked as archive regions by
 816     // alloc_archive_regions.
 817     HeapRegion* curr_region = start_region;
 818     while (curr_region != NULL) {
 819       guarantee(curr_region->is_archive(),
 820                 "Expected archive region at index %u", curr_region->hrm_index());
 821       if (curr_region != last_region) {
 822         curr_region = _hrm.next_region_in_heap(curr_region);
 823       } else {
 824         curr_region = NULL;
 825       }
 826     }
 827 
 828     prev_last_addr = last_address;
 829     prev_last_region = last_region;
 830 
 831     // Fill the memory below the allocated range with dummy object(s),
 832     // if the region bottom does not match the range start, or if the previous
 833     // range ended within the same G1 region, and there is a gap.
 834     if (start_address != bottom_address) {
 835       size_t fill_size = pointer_delta(start_address, bottom_address);
 836       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 837       increase_used(fill_size * HeapWordSize);
 838     }
 839   }
 840 }
 841 
 842 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 843                                                      uint* gc_count_before_ret,
 844                                                      uint* gclocker_retry_count_ret) {
 845   assert_heap_not_locked_and_not_at_safepoint();
 846   assert(!is_humongous(word_size), "attempt_allocation() should not "
 847          "be called for humongous allocation requests");
 848 
 849   AllocationContext_t context = AllocationContext::current();
 850   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 851 
 852   if (result == NULL) {
 853     result = attempt_allocation_slow(word_size,
 854                                      context,
 855                                      gc_count_before_ret,
 856                                      gclocker_retry_count_ret);
 857   }
 858   assert_heap_not_locked();
 859   if (result != NULL) {
 860     dirty_young_block(result, word_size);
 861   }
 862   return result;
 863 }
 864 
 865 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 866   assert(!is_init_completed(), "Expect to be called at JVM init time");
 867   assert(ranges != NULL, "MemRegion array NULL");
 868   assert(count != 0, "No MemRegions provided");
 869   MemRegion reserved = _hrm.reserved();
 870   HeapWord* prev_last_addr = NULL;
 871   HeapRegion* prev_last_region = NULL;
 872   size_t size_used = 0;
 873   size_t uncommitted_regions = 0;
 874 
 875   // For each Memregion, free the G1 regions that constitute it, and
 876   // notify mark-sweep that the range is no longer to be considered 'archive.'
 877   MutexLockerEx x(Heap_lock);
 878   for (size_t i = 0; i < count; i++) {
 879     HeapWord* start_address = ranges[i].start();
 880     HeapWord* last_address = ranges[i].last();
 881 
 882     assert(reserved.contains(start_address) && reserved.contains(last_address),
 883            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 884            p2i(start_address), p2i(last_address));
 885     assert(start_address > prev_last_addr,
 886            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 887            p2i(start_address), p2i(prev_last_addr));
 888     size_used += ranges[i].byte_size();
 889     prev_last_addr = last_address;
 890 
 891     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 892     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 893 
 894     // Check for ranges that start in the same G1 region in which the previous
 895     // range ended, and adjust the start address so we don't try to free
 896     // the same region again. If the current range is entirely within that
 897     // region, skip it.
 898     if (start_region == prev_last_region) {
 899       start_address = start_region->end();
 900       if (start_address > last_address) {
 901         continue;
 902       }
 903       start_region = _hrm.addr_to_region(start_address);
 904     }
 905     prev_last_region = last_region;
 906 
 907     // After verifying that each region was marked as an archive region by
 908     // alloc_archive_regions, set it free and empty and uncommit it.
 909     HeapRegion* curr_region = start_region;
 910     while (curr_region != NULL) {
 911       guarantee(curr_region->is_archive(),
 912                 "Expected archive region at index %u", curr_region->hrm_index());
 913       uint curr_index = curr_region->hrm_index();
 914       _old_set.remove(curr_region);
 915       curr_region->set_free();
 916       curr_region->set_top(curr_region->bottom());
 917       if (curr_region != last_region) {
 918         curr_region = _hrm.next_region_in_heap(curr_region);
 919       } else {
 920         curr_region = NULL;
 921       }
 922       _hrm.shrink_at(curr_index, 1);
 923       uncommitted_regions++;
 924     }
 925 
 926     // Notify mark-sweep that this is no longer an archive range.
 927     G1MarkSweep::set_range_archive(ranges[i], false);
 928   }
 929 
 930   if (uncommitted_regions != 0) {
 931     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 932                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 933   }
 934   decrease_used(size_used);
 935 }
 936 
 937 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 938                                                         uint* gc_count_before_ret,
 939                                                         uint* gclocker_retry_count_ret) {
 940   // The structure of this method has a lot of similarities to
 941   // attempt_allocation_slow(). The reason these two were not merged
 942   // into a single one is that such a method would require several "if
 943   // allocation is not humongous do this, otherwise do that"
 944   // conditional paths which would obscure its flow. In fact, an early
 945   // version of this code did use a unified method which was harder to
 946   // follow and, as a result, it had subtle bugs that were hard to
 947   // track down. So keeping these two methods separate allows each to
 948   // be more readable. It will be good to keep these two in sync as
 949   // much as possible.
 950 
 951   assert_heap_not_locked_and_not_at_safepoint();
 952   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 953          "should only be called for humongous allocations");
 954 
 955   // Humongous objects can exhaust the heap quickly, so we should check if we
 956   // need to start a marking cycle at each humongous object allocation. We do
 957   // the check before we do the actual allocation. The reason for doing it
 958   // before the allocation is that we avoid having to keep track of the newly
 959   // allocated memory while we do a GC.
 960   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 961                                            word_size)) {
 962     collect(GCCause::_g1_humongous_allocation);
 963   }
 964 
 965   // We will loop until a) we manage to successfully perform the
 966   // allocation or b) we successfully schedule a collection which
 967   // fails to perform the allocation. b) is the only case when we'll
 968   // return NULL.
 969   HeapWord* result = NULL;
 970   for (int try_count = 1; /* we'll return */; try_count += 1) {
 971     bool should_try_gc;
 972     uint gc_count_before;
 973 
 974     {
 975       MutexLockerEx x(Heap_lock);
 976 
 977       // Given that humongous objects are not allocated in young
 978       // regions, we'll first try to do the allocation without doing a
 979       // collection hoping that there's enough space in the heap.
 980       result = humongous_obj_allocate(word_size, AllocationContext::current());
 981       if (result != NULL) {
 982         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 983         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 984         return result;
 985       }
 986 
 987       if (GCLocker::is_active_and_needs_gc()) {
 988         should_try_gc = false;
 989       } else {
 990          // The GCLocker may not be active but the GCLocker initiated
 991         // GC may not yet have been performed (GCLocker::needs_gc()
 992         // returns true). In this case we do not try this GC and
 993         // wait until the GCLocker initiated GC is performed, and
 994         // then retry the allocation.
 995         if (GCLocker::needs_gc()) {
 996           should_try_gc = false;
 997         } else {
 998           // Read the GC count while still holding the Heap_lock.
 999           gc_count_before = total_collections();
1000           should_try_gc = true;
1001         }
1002       }
1003     }
1004 
1005     if (should_try_gc) {
1006       // If we failed to allocate the humongous object, we should try to
1007       // do a collection pause (if we're allowed) in case it reclaims
1008       // enough space for the allocation to succeed after the pause.
1009 
1010       bool succeeded;
1011       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1012                                    GCCause::_g1_humongous_allocation);
1013       if (result != NULL) {
1014         assert(succeeded, "only way to get back a non-NULL result");
1015         return result;
1016       }
1017 
1018       if (succeeded) {
1019         // If we get here we successfully scheduled a collection which
1020         // failed to allocate. No point in trying to allocate
1021         // further. We'll just return NULL.
1022         MutexLockerEx x(Heap_lock);
1023         *gc_count_before_ret = total_collections();
1024         return NULL;
1025       }
1026     } else {
1027       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1028         MutexLockerEx x(Heap_lock);
1029         *gc_count_before_ret = total_collections();
1030         return NULL;
1031       }
1032       // The GCLocker is either active or the GCLocker initiated
1033       // GC has not yet been performed. Stall until it is and
1034       // then retry the allocation.
1035       GCLocker::stall_until_clear();
1036       (*gclocker_retry_count_ret) += 1;
1037     }
1038 
1039     // We can reach here if we were unsuccessful in scheduling a
1040     // collection (because another thread beat us to it) or if we were
1041     // stalled due to the GC locker. In either can we should retry the
1042     // allocation attempt in case another thread successfully
1043     // performed a collection and reclaimed enough space.  Give a
1044     // warning if we seem to be looping forever.
1045 
1046     if ((QueuedAllocationWarningCount > 0) &&
1047         (try_count % QueuedAllocationWarningCount == 0)) {
1048       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1049                       "retries %d times", try_count);
1050     }
1051   }
1052 
1053   ShouldNotReachHere();
1054   return NULL;
1055 }
1056 
1057 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1058                                                            AllocationContext_t context,
1059                                                            bool expect_null_mutator_alloc_region) {
1060   assert_at_safepoint(true /* should_be_vm_thread */);
1061   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1062          "the current alloc region was unexpectedly found to be non-NULL");
1063 
1064   if (!is_humongous(word_size)) {
1065     return _allocator->attempt_allocation_locked(word_size, context);
1066   } else {
1067     HeapWord* result = humongous_obj_allocate(word_size, context);
1068     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1069       collector_state()->set_initiate_conc_mark_if_possible(true);
1070     }
1071     return result;
1072   }
1073 
1074   ShouldNotReachHere();
1075 }
1076 
1077 class PostMCRemSetClearClosure: public HeapRegionClosure {
1078   G1CollectedHeap* _g1h;
1079   ModRefBarrierSet* _mr_bs;
1080 public:
1081   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1082     _g1h(g1h), _mr_bs(mr_bs) {}
1083 
1084   bool doHeapRegion(HeapRegion* r) {
1085     HeapRegionRemSet* hrrs = r->rem_set();
1086 
1087     _g1h->reset_gc_time_stamps(r);
1088 
1089     if (r->is_continues_humongous()) {
1090       // We'll assert that the strong code root list and RSet is empty
1091       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1092       assert(hrrs->occupied() == 0, "RSet should be empty");
1093     } else {
1094       hrrs->clear();
1095     }
1096     // You might think here that we could clear just the cards
1097     // corresponding to the used region.  But no: if we leave a dirty card
1098     // in a region we might allocate into, then it would prevent that card
1099     // from being enqueued, and cause it to be missed.
1100     // Re: the performance cost: we shouldn't be doing full GC anyway!
1101     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1102 
1103     return false;
1104   }
1105 };
1106 
1107 void G1CollectedHeap::clear_rsets_post_compaction() {
1108   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1109   heap_region_iterate(&rs_clear);
1110 }
1111 
1112 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1113   G1CollectedHeap*   _g1h;
1114   UpdateRSOopClosure _cl;
1115 public:
1116   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1117     _cl(g1->g1_rem_set(), worker_i),
1118     _g1h(g1)
1119   { }
1120 
1121   bool doHeapRegion(HeapRegion* r) {
1122     if (!r->is_continues_humongous()) {
1123       _cl.set_from(r);
1124       r->oop_iterate(&_cl);
1125     }
1126     return false;
1127   }
1128 };
1129 
1130 class ParRebuildRSTask: public AbstractGangTask {
1131   G1CollectedHeap* _g1;
1132   HeapRegionClaimer _hrclaimer;
1133 
1134 public:
1135   ParRebuildRSTask(G1CollectedHeap* g1) :
1136       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1137 
1138   void work(uint worker_id) {
1139     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1140     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1141   }
1142 };
1143 
1144 class PostCompactionPrinterClosure: public HeapRegionClosure {
1145 private:
1146   G1HRPrinter* _hr_printer;
1147 public:
1148   bool doHeapRegion(HeapRegion* hr) {
1149     assert(!hr->is_young(), "not expecting to find young regions");
1150     _hr_printer->post_compaction(hr);
1151     return false;
1152   }
1153 
1154   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1155     : _hr_printer(hr_printer) { }
1156 };
1157 
1158 void G1CollectedHeap::print_hrm_post_compaction() {
1159   if (_hr_printer.is_active()) {
1160     PostCompactionPrinterClosure cl(hr_printer());
1161     heap_region_iterate(&cl);
1162   }
1163 
1164 }
1165 
1166 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1167                                          bool clear_all_soft_refs) {
1168   assert_at_safepoint(true /* should_be_vm_thread */);
1169 
1170   if (GCLocker::check_active_before_gc()) {
1171     return false;
1172   }
1173 
1174   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1175   gc_timer->register_gc_start();
1176 
1177   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1178   GCIdMark gc_id_mark;
1179   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1180 
1181   SvcGCMarker sgcm(SvcGCMarker::FULL);
1182   ResourceMark rm;
1183 
1184   print_heap_before_gc();
1185   print_heap_regions();
1186   trace_heap_before_gc(gc_tracer);
1187 
1188   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1189 
1190   _verifier->verify_region_sets_optional();
1191 
1192   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1193                            collector_policy()->should_clear_all_soft_refs();
1194 
1195   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1196 
1197   {
1198     IsGCActiveMark x;
1199 
1200     // Timing
1201     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1202     GCTraceCPUTime tcpu;
1203 
1204     {
1205       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1206       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1207       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1208 
1209       G1HeapTransition heap_transition(this);
1210       g1_policy()->record_full_collection_start();
1211 
1212       // Note: When we have a more flexible GC logging framework that
1213       // allows us to add optional attributes to a GC log record we
1214       // could consider timing and reporting how long we wait in the
1215       // following two methods.
1216       wait_while_free_regions_coming();
1217       // If we start the compaction before the CM threads finish
1218       // scanning the root regions we might trip them over as we'll
1219       // be moving objects / updating references. So let's wait until
1220       // they are done. By telling them to abort, they should complete
1221       // early.
1222       _cm->root_regions()->abort();
1223       _cm->root_regions()->wait_until_scan_finished();
1224       append_secondary_free_list_if_not_empty_with_lock();
1225 
1226       gc_prologue(true);
1227       increment_total_collections(true /* full gc */);
1228       increment_old_marking_cycles_started();
1229 
1230       assert(used() == recalculate_used(), "Should be equal");
1231 
1232       _verifier->verify_before_gc();
1233 
1234       _verifier->check_bitmaps("Full GC Start");
1235       pre_full_gc_dump(gc_timer);
1236 
1237 #if defined(COMPILER2) || INCLUDE_JVMCI
1238       DerivedPointerTable::clear();
1239 #endif
1240 
1241       // Disable discovery and empty the discovered lists
1242       // for the CM ref processor.
1243       ref_processor_cm()->disable_discovery();
1244       ref_processor_cm()->abandon_partial_discovery();
1245       ref_processor_cm()->verify_no_references_recorded();
1246 
1247       // Abandon current iterations of concurrent marking and concurrent
1248       // refinement, if any are in progress.
1249       concurrent_mark()->abort();
1250 
1251       // Make sure we'll choose a new allocation region afterwards.
1252       _allocator->release_mutator_alloc_region();
1253       _allocator->abandon_gc_alloc_regions();
1254       g1_rem_set()->cleanupHRRS();
1255 
1256       // We may have added regions to the current incremental collection
1257       // set between the last GC or pause and now. We need to clear the
1258       // incremental collection set and then start rebuilding it afresh
1259       // after this full GC.
1260       abandon_collection_set(collection_set());
1261 
1262       tear_down_region_sets(false /* free_list_only */);
1263       collector_state()->set_gcs_are_young(true);
1264 
1265       // See the comments in g1CollectedHeap.hpp and
1266       // G1CollectedHeap::ref_processing_init() about
1267       // how reference processing currently works in G1.
1268 
1269       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1270       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1271 
1272       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1273       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1274 
1275       ref_processor_stw()->enable_discovery();
1276       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1277 
1278       // Do collection work
1279       {
1280         HandleMark hm;  // Discard invalid handles created during gc
1281         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1282       }
1283 
1284       assert(num_free_regions() == 0, "we should not have added any free regions");
1285       rebuild_region_sets(false /* free_list_only */);
1286 
1287       // Enqueue any discovered reference objects that have
1288       // not been removed from the discovered lists.
1289       ref_processor_stw()->enqueue_discovered_references();
1290 
1291 #if defined(COMPILER2) || INCLUDE_JVMCI
1292       DerivedPointerTable::update_pointers();
1293 #endif
1294 
1295       MemoryService::track_memory_usage();
1296 
1297       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1298       ref_processor_stw()->verify_no_references_recorded();
1299 
1300       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1301       ClassLoaderDataGraph::purge();
1302       MetaspaceAux::verify_metrics();
1303 
1304       // Note: since we've just done a full GC, concurrent
1305       // marking is no longer active. Therefore we need not
1306       // re-enable reference discovery for the CM ref processor.
1307       // That will be done at the start of the next marking cycle.
1308       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1309       ref_processor_cm()->verify_no_references_recorded();
1310 
1311       reset_gc_time_stamp();
1312       // Since everything potentially moved, we will clear all remembered
1313       // sets, and clear all cards.  Later we will rebuild remembered
1314       // sets. We will also reset the GC time stamps of the regions.
1315       clear_rsets_post_compaction();
1316       check_gc_time_stamps();
1317 
1318       resize_if_necessary_after_full_collection();
1319 
1320       // We should do this after we potentially resize the heap so
1321       // that all the COMMIT / UNCOMMIT events are generated before
1322       // the compaction events.
1323       print_hrm_post_compaction();
1324 
1325       if (_hot_card_cache->use_cache()) {
1326         _hot_card_cache->reset_card_counts();
1327         _hot_card_cache->reset_hot_cache();
1328       }
1329 
1330       // Rebuild remembered sets of all regions.
1331       uint n_workers =
1332         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1333                                                 workers()->active_workers(),
1334                                                 Threads::number_of_non_daemon_threads());
1335       workers()->update_active_workers(n_workers);
1336       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1337 
1338       ParRebuildRSTask rebuild_rs_task(this);
1339       workers()->run_task(&rebuild_rs_task);
1340 
1341       // Rebuild the strong code root lists for each region
1342       rebuild_strong_code_roots();
1343 
1344       if (true) { // FIXME
1345         MetaspaceGC::compute_new_size();
1346       }
1347 
1348 #ifdef TRACESPINNING
1349       ParallelTaskTerminator::print_termination_counts();
1350 #endif
1351 
1352       // Discard all rset updates
1353       JavaThread::dirty_card_queue_set().abandon_logs();
1354       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1355 
1356       // At this point there should be no regions in the
1357       // entire heap tagged as young.
1358       assert(check_young_list_empty(), "young list should be empty at this point");
1359 
1360       // Update the number of full collections that have been completed.
1361       increment_old_marking_cycles_completed(false /* concurrent */);
1362 
1363       _hrm.verify_optional();
1364       _verifier->verify_region_sets_optional();
1365 
1366       _verifier->verify_after_gc();
1367 
1368       // Clear the previous marking bitmap, if needed for bitmap verification.
1369       // Note we cannot do this when we clear the next marking bitmap in
1370       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1371       // objects marked during a full GC against the previous bitmap.
1372       // But we need to clear it before calling check_bitmaps below since
1373       // the full GC has compacted objects and updated TAMS but not updated
1374       // the prev bitmap.
1375       if (G1VerifyBitmaps) {
1376         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1377         _cm->clear_prev_bitmap(workers());
1378       }
1379       _verifier->check_bitmaps("Full GC End");
1380 
1381       // Start a new incremental collection set for the next pause
1382       collection_set()->start_incremental_building();
1383 
1384       clear_cset_fast_test();
1385 
1386       _allocator->init_mutator_alloc_region();
1387 
1388       g1_policy()->record_full_collection_end();
1389 
1390       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1391       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1392       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1393       // before any GC notifications are raised.
1394       g1mm()->update_sizes();
1395 
1396       gc_epilogue(true);
1397 
1398       heap_transition.print();
1399 
1400       print_heap_after_gc();
1401       print_heap_regions();
1402       trace_heap_after_gc(gc_tracer);
1403 
1404       post_full_gc_dump(gc_timer);
1405     }
1406 
1407     gc_timer->register_gc_end();
1408     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1409   }
1410 
1411   return true;
1412 }
1413 
1414 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1415   // Currently, there is no facility in the do_full_collection(bool) API to notify
1416   // the caller that the collection did not succeed (e.g., because it was locked
1417   // out by the GC locker). So, right now, we'll ignore the return value.
1418   bool dummy = do_full_collection(true,                /* explicit_gc */
1419                                   clear_all_soft_refs);
1420 }
1421 
1422 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1423   // Include bytes that will be pre-allocated to support collections, as "used".
1424   const size_t used_after_gc = used();
1425   const size_t capacity_after_gc = capacity();
1426   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1427 
1428   // This is enforced in arguments.cpp.
1429   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1430          "otherwise the code below doesn't make sense");
1431 
1432   // We don't have floating point command-line arguments
1433   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1434   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1435   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1436   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1437 
1438   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1439   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1440 
1441   // We have to be careful here as these two calculations can overflow
1442   // 32-bit size_t's.
1443   double used_after_gc_d = (double) used_after_gc;
1444   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1445   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1446 
1447   // Let's make sure that they are both under the max heap size, which
1448   // by default will make them fit into a size_t.
1449   double desired_capacity_upper_bound = (double) max_heap_size;
1450   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1451                                     desired_capacity_upper_bound);
1452   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1453                                     desired_capacity_upper_bound);
1454 
1455   // We can now safely turn them into size_t's.
1456   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1457   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1458 
1459   // This assert only makes sense here, before we adjust them
1460   // with respect to the min and max heap size.
1461   assert(minimum_desired_capacity <= maximum_desired_capacity,
1462          "minimum_desired_capacity = " SIZE_FORMAT ", "
1463          "maximum_desired_capacity = " SIZE_FORMAT,
1464          minimum_desired_capacity, maximum_desired_capacity);
1465 
1466   // Should not be greater than the heap max size. No need to adjust
1467   // it with respect to the heap min size as it's a lower bound (i.e.,
1468   // we'll try to make the capacity larger than it, not smaller).
1469   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1470   // Should not be less than the heap min size. No need to adjust it
1471   // with respect to the heap max size as it's an upper bound (i.e.,
1472   // we'll try to make the capacity smaller than it, not greater).
1473   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1474 
1475   if (capacity_after_gc < minimum_desired_capacity) {
1476     // Don't expand unless it's significant
1477     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1478 
1479     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1480                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1481                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1482 
1483     expand(expand_bytes, _workers);
1484 
1485     // No expansion, now see if we want to shrink
1486   } else if (capacity_after_gc > maximum_desired_capacity) {
1487     // Capacity too large, compute shrinking size
1488     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1489 
1490     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1491                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1492                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1493 
1494     shrink(shrink_bytes);
1495   }
1496 }
1497 
1498 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1499                                                             AllocationContext_t context,
1500                                                             bool do_gc,
1501                                                             bool clear_all_soft_refs,
1502                                                             bool expect_null_mutator_alloc_region,
1503                                                             bool* gc_succeeded) {
1504   *gc_succeeded = true;
1505   // Let's attempt the allocation first.
1506   HeapWord* result =
1507     attempt_allocation_at_safepoint(word_size,
1508                                     context,
1509                                     expect_null_mutator_alloc_region);
1510   if (result != NULL) {
1511     assert(*gc_succeeded, "sanity");
1512     return result;
1513   }
1514 
1515   // In a G1 heap, we're supposed to keep allocation from failing by
1516   // incremental pauses.  Therefore, at least for now, we'll favor
1517   // expansion over collection.  (This might change in the future if we can
1518   // do something smarter than full collection to satisfy a failed alloc.)
1519   result = expand_and_allocate(word_size, context);
1520   if (result != NULL) {
1521     assert(*gc_succeeded, "sanity");
1522     return result;
1523   }
1524 
1525   if (do_gc) {
1526     // Expansion didn't work, we'll try to do a Full GC.
1527     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1528                                        clear_all_soft_refs);
1529   }
1530 
1531   return NULL;
1532 }
1533 
1534 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1535                                                      AllocationContext_t context,
1536                                                      bool* succeeded) {
1537   assert_at_safepoint(true /* should_be_vm_thread */);
1538 
1539   // Attempts to allocate followed by Full GC.
1540   HeapWord* result =
1541     satisfy_failed_allocation_helper(word_size,
1542                                      context,
1543                                      true,  /* do_gc */
1544                                      false, /* clear_all_soft_refs */
1545                                      false, /* expect_null_mutator_alloc_region */
1546                                      succeeded);
1547 
1548   if (result != NULL || !*succeeded) {
1549     return result;
1550   }
1551 
1552   // Attempts to allocate followed by Full GC that will collect all soft references.
1553   result = satisfy_failed_allocation_helper(word_size,
1554                                             context,
1555                                             true, /* do_gc */
1556                                             true, /* clear_all_soft_refs */
1557                                             true, /* expect_null_mutator_alloc_region */
1558                                             succeeded);
1559 
1560   if (result != NULL || !*succeeded) {
1561     return result;
1562   }
1563 
1564   // Attempts to allocate, no GC
1565   result = satisfy_failed_allocation_helper(word_size,
1566                                             context,
1567                                             false, /* do_gc */
1568                                             false, /* clear_all_soft_refs */
1569                                             true,  /* expect_null_mutator_alloc_region */
1570                                             succeeded);
1571 
1572   if (result != NULL) {
1573     assert(*succeeded, "sanity");
1574     return result;
1575   }
1576 
1577   assert(!collector_policy()->should_clear_all_soft_refs(),
1578          "Flag should have been handled and cleared prior to this point");
1579 
1580   // What else?  We might try synchronous finalization later.  If the total
1581   // space available is large enough for the allocation, then a more
1582   // complete compaction phase than we've tried so far might be
1583   // appropriate.
1584   assert(*succeeded, "sanity");
1585   return NULL;
1586 }
1587 
1588 // Attempting to expand the heap sufficiently
1589 // to support an allocation of the given "word_size".  If
1590 // successful, perform the allocation and return the address of the
1591 // allocated block, or else "NULL".
1592 
1593 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1594   assert_at_safepoint(true /* should_be_vm_thread */);
1595 
1596   _verifier->verify_region_sets_optional();
1597 
1598   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1599   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1600                             word_size * HeapWordSize);
1601 
1602 
1603   if (expand(expand_bytes, _workers)) {
1604     _hrm.verify_optional();
1605     _verifier->verify_region_sets_optional();
1606     return attempt_allocation_at_safepoint(word_size,
1607                                            context,
1608                                            false /* expect_null_mutator_alloc_region */);
1609   }
1610   return NULL;
1611 }
1612 
1613 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1614   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1615   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1616                                        HeapRegion::GrainBytes);
1617 
1618   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1619                             expand_bytes, aligned_expand_bytes);
1620 
1621   if (is_maximal_no_gc()) {
1622     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1623     return false;
1624   }
1625 
1626   double expand_heap_start_time_sec = os::elapsedTime();
1627   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1628   assert(regions_to_expand > 0, "Must expand by at least one region");
1629 
1630   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1631   if (expand_time_ms != NULL) {
1632     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1633   }
1634 
1635   if (expanded_by > 0) {
1636     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1637     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1638     g1_policy()->record_new_heap_size(num_regions());
1639   } else {
1640     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1641 
1642     // The expansion of the virtual storage space was unsuccessful.
1643     // Let's see if it was because we ran out of swap.
1644     if (G1ExitOnExpansionFailure &&
1645         _hrm.available() >= regions_to_expand) {
1646       // We had head room...
1647       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1648     }
1649   }
1650   return regions_to_expand > 0;
1651 }
1652 
1653 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1654   size_t aligned_shrink_bytes =
1655     ReservedSpace::page_align_size_down(shrink_bytes);
1656   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1657                                          HeapRegion::GrainBytes);
1658   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1659 
1660   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1661   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1662 
1663 
1664   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1665                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1666   if (num_regions_removed > 0) {
1667     g1_policy()->record_new_heap_size(num_regions());
1668   } else {
1669     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1670   }
1671 }
1672 
1673 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1674   _verifier->verify_region_sets_optional();
1675 
1676   // We should only reach here at the end of a Full GC which means we
1677   // should not not be holding to any GC alloc regions. The method
1678   // below will make sure of that and do any remaining clean up.
1679   _allocator->abandon_gc_alloc_regions();
1680 
1681   // Instead of tearing down / rebuilding the free lists here, we
1682   // could instead use the remove_all_pending() method on free_list to
1683   // remove only the ones that we need to remove.
1684   tear_down_region_sets(true /* free_list_only */);
1685   shrink_helper(shrink_bytes);
1686   rebuild_region_sets(true /* free_list_only */);
1687 
1688   _hrm.verify_optional();
1689   _verifier->verify_region_sets_optional();
1690 }
1691 
1692 // Public methods.
1693 
1694 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1695   CollectedHeap(),
1696   _collector_policy(collector_policy),
1697   _g1_policy(create_g1_policy()),
1698   _collection_set(this, _g1_policy),
1699   _dirty_card_queue_set(false),
1700   _is_alive_closure_cm(this),
1701   _is_alive_closure_stw(this),
1702   _ref_processor_cm(NULL),
1703   _ref_processor_stw(NULL),
1704   _bot(NULL),
1705   _hot_card_cache(NULL),
1706   _g1_rem_set(NULL),
1707   _cg1r(NULL),
1708   _g1mm(NULL),
1709   _refine_cte_cl(NULL),
1710   _preserved_marks_set(true /* in_c_heap */),
1711   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1712   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1713   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1714   _humongous_reclaim_candidates(),
1715   _has_humongous_reclaim_candidates(false),
1716   _archive_allocator(NULL),
1717   _free_regions_coming(false),
1718   _gc_time_stamp(0),
1719   _summary_bytes_used(0),
1720   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1721   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1722   _expand_heap_after_alloc_failure(true),
1723   _old_marking_cycles_started(0),
1724   _old_marking_cycles_completed(0),
1725   _in_cset_fast_test(),
1726   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1727   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1728 
1729   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1730                           /* are_GC_task_threads */true,
1731                           /* are_ConcurrentGC_threads */false);
1732   _workers->initialize_workers();
1733   _verifier = new G1HeapVerifier(this);
1734 
1735   _allocator = G1Allocator::create_allocator(this);
1736 
1737   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1738 
1739   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1740 
1741   // Override the default _filler_array_max_size so that no humongous filler
1742   // objects are created.
1743   _filler_array_max_size = _humongous_object_threshold_in_words;
1744 
1745   uint n_queues = ParallelGCThreads;
1746   _task_queues = new RefToScanQueueSet(n_queues);
1747 
1748   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1749 
1750   for (uint i = 0; i < n_queues; i++) {
1751     RefToScanQueue* q = new RefToScanQueue();
1752     q->initialize();
1753     _task_queues->register_queue(i, q);
1754     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1755   }
1756 
1757   // Initialize the G1EvacuationFailureALot counters and flags.
1758   NOT_PRODUCT(reset_evacuation_should_fail();)
1759 
1760   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1761 }
1762 
1763 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1764                                                                  size_t size,
1765                                                                  size_t translation_factor) {
1766   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1767   // Allocate a new reserved space, preferring to use large pages.
1768   ReservedSpace rs(size, preferred_page_size);
1769   G1RegionToSpaceMapper* result  =
1770     G1RegionToSpaceMapper::create_mapper(rs,
1771                                          size,
1772                                          rs.alignment(),
1773                                          HeapRegion::GrainBytes,
1774                                          translation_factor,
1775                                          mtGC);
1776 
1777   os::trace_page_sizes_for_requested_size(description,
1778                                           size,
1779                                           preferred_page_size,
1780                                           rs.alignment(),
1781                                           rs.base(),
1782                                           rs.size());
1783 
1784   return result;
1785 }
1786 
1787 jint G1CollectedHeap::initialize() {
1788   CollectedHeap::pre_initialize();
1789   os::enable_vtime();
1790 
1791   // Necessary to satisfy locking discipline assertions.
1792 
1793   MutexLocker x(Heap_lock);
1794 
1795   // While there are no constraints in the GC code that HeapWordSize
1796   // be any particular value, there are multiple other areas in the
1797   // system which believe this to be true (e.g. oop->object_size in some
1798   // cases incorrectly returns the size in wordSize units rather than
1799   // HeapWordSize).
1800   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1801 
1802   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1803   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1804   size_t heap_alignment = collector_policy()->heap_alignment();
1805 
1806   // Ensure that the sizes are properly aligned.
1807   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1808   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1809   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1810 
1811   _refine_cte_cl = new RefineCardTableEntryClosure();
1812 
1813   jint ecode = JNI_OK;
1814   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1815   if (_cg1r == NULL) {
1816     return ecode;
1817   }
1818 
1819   // Reserve the maximum.
1820 
1821   // When compressed oops are enabled, the preferred heap base
1822   // is calculated by subtracting the requested size from the
1823   // 32Gb boundary and using the result as the base address for
1824   // heap reservation. If the requested size is not aligned to
1825   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1826   // into the ReservedHeapSpace constructor) then the actual
1827   // base of the reserved heap may end up differing from the
1828   // address that was requested (i.e. the preferred heap base).
1829   // If this happens then we could end up using a non-optimal
1830   // compressed oops mode.
1831 
1832   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1833                                                  heap_alignment);
1834 
1835   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1836 
1837   // Create the barrier set for the entire reserved region.
1838   G1SATBCardTableLoggingModRefBS* bs
1839     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1840   bs->initialize();
1841   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1842   set_barrier_set(bs);
1843 
1844   // Create the hot card cache.
1845   _hot_card_cache = new G1HotCardCache(this);
1846 
1847   // Also create a G1 rem set.
1848   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1849 
1850   // Carve out the G1 part of the heap.
1851   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1852   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1853   G1RegionToSpaceMapper* heap_storage =
1854     G1RegionToSpaceMapper::create_mapper(g1_rs,
1855                                          g1_rs.size(),
1856                                          page_size,
1857                                          HeapRegion::GrainBytes,
1858                                          1,
1859                                          mtJavaHeap);
1860   os::trace_page_sizes("Heap",
1861                        collector_policy()->min_heap_byte_size(),
1862                        max_byte_size,
1863                        page_size,
1864                        heap_rs.base(),
1865                        heap_rs.size());
1866   heap_storage->set_mapping_changed_listener(&_listener);
1867 
1868   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1869   G1RegionToSpaceMapper* bot_storage =
1870     create_aux_memory_mapper("Block Offset Table",
1871                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1872                              G1BlockOffsetTable::heap_map_factor());
1873 
1874   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1875   G1RegionToSpaceMapper* cardtable_storage =
1876     create_aux_memory_mapper("Card Table",
1877                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1878                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1879 
1880   G1RegionToSpaceMapper* card_counts_storage =
1881     create_aux_memory_mapper("Card Counts Table",
1882                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1883                              G1CardCounts::heap_map_factor());
1884 
1885   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1886   G1RegionToSpaceMapper* prev_bitmap_storage =
1887     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1888   G1RegionToSpaceMapper* next_bitmap_storage =
1889     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1890 
1891   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1892   g1_barrier_set()->initialize(cardtable_storage);
1893   // Do later initialization work for concurrent refinement.
1894   _hot_card_cache->initialize(card_counts_storage);
1895 
1896   // 6843694 - ensure that the maximum region index can fit
1897   // in the remembered set structures.
1898   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1899   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1900 
1901   g1_rem_set()->initialize(max_capacity(), max_regions());
1902 
1903   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1904   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1905   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1906             "too many cards per region");
1907 
1908   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1909 
1910   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1911 
1912   {
1913     HeapWord* start = _hrm.reserved().start();
1914     HeapWord* end = _hrm.reserved().end();
1915     size_t granularity = HeapRegion::GrainBytes;
1916 
1917     _in_cset_fast_test.initialize(start, end, granularity);
1918     _humongous_reclaim_candidates.initialize(start, end, granularity);
1919   }
1920 
1921   // Create the G1ConcurrentMark data structure and thread.
1922   // (Must do this late, so that "max_regions" is defined.)
1923   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1924   if (_cm == NULL || !_cm->completed_initialization()) {
1925     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1926     return JNI_ENOMEM;
1927   }
1928   _cmThread = _cm->cmThread();
1929 
1930   // Now expand into the initial heap size.
1931   if (!expand(init_byte_size, _workers)) {
1932     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1933     return JNI_ENOMEM;
1934   }
1935 
1936   // Perform any initialization actions delegated to the policy.
1937   g1_policy()->init(this, &_collection_set);
1938 
1939   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1940                                                SATB_Q_FL_lock,
1941                                                G1SATBProcessCompletedThreshold,
1942                                                Shared_SATB_Q_lock);
1943 
1944   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1945                                                 DirtyCardQ_CBL_mon,
1946                                                 DirtyCardQ_FL_lock,
1947                                                 (int)concurrent_g1_refine()->yellow_zone(),
1948                                                 (int)concurrent_g1_refine()->red_zone(),
1949                                                 Shared_DirtyCardQ_lock,
1950                                                 NULL,  // fl_owner
1951                                                 true); // init_free_ids
1952 
1953   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1954                                     DirtyCardQ_CBL_mon,
1955                                     DirtyCardQ_FL_lock,
1956                                     -1, // never trigger processing
1957                                     -1, // no limit on length
1958                                     Shared_DirtyCardQ_lock,
1959                                     &JavaThread::dirty_card_queue_set());
1960 
1961   // Here we allocate the dummy HeapRegion that is required by the
1962   // G1AllocRegion class.
1963   HeapRegion* dummy_region = _hrm.get_dummy_region();
1964 
1965   // We'll re-use the same region whether the alloc region will
1966   // require BOT updates or not and, if it doesn't, then a non-young
1967   // region will complain that it cannot support allocations without
1968   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1969   dummy_region->set_eden();
1970   // Make sure it's full.
1971   dummy_region->set_top(dummy_region->end());
1972   G1AllocRegion::setup(this, dummy_region);
1973 
1974   _allocator->init_mutator_alloc_region();
1975 
1976   // Do create of the monitoring and management support so that
1977   // values in the heap have been properly initialized.
1978   _g1mm = new G1MonitoringSupport(this);
1979 
1980   G1StringDedup::initialize();
1981 
1982   _preserved_marks_set.init(ParallelGCThreads);
1983 
1984   _collection_set.initialize(max_regions());
1985 
1986   return JNI_OK;
1987 }
1988 
1989 void G1CollectedHeap::stop() {
1990   // Stop all concurrent threads. We do this to make sure these threads
1991   // do not continue to execute and access resources (e.g. logging)
1992   // that are destroyed during shutdown.
1993   _cg1r->stop();
1994   _cmThread->stop();
1995   if (G1StringDedup::is_enabled()) {
1996     G1StringDedup::stop();
1997   }
1998 }
1999 
2000 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2001   return HeapRegion::max_region_size();
2002 }
2003 
2004 void G1CollectedHeap::post_initialize() {
2005   ref_processing_init();
2006 }
2007 
2008 void G1CollectedHeap::ref_processing_init() {
2009   // Reference processing in G1 currently works as follows:
2010   //
2011   // * There are two reference processor instances. One is
2012   //   used to record and process discovered references
2013   //   during concurrent marking; the other is used to
2014   //   record and process references during STW pauses
2015   //   (both full and incremental).
2016   // * Both ref processors need to 'span' the entire heap as
2017   //   the regions in the collection set may be dotted around.
2018   //
2019   // * For the concurrent marking ref processor:
2020   //   * Reference discovery is enabled at initial marking.
2021   //   * Reference discovery is disabled and the discovered
2022   //     references processed etc during remarking.
2023   //   * Reference discovery is MT (see below).
2024   //   * Reference discovery requires a barrier (see below).
2025   //   * Reference processing may or may not be MT
2026   //     (depending on the value of ParallelRefProcEnabled
2027   //     and ParallelGCThreads).
2028   //   * A full GC disables reference discovery by the CM
2029   //     ref processor and abandons any entries on it's
2030   //     discovered lists.
2031   //
2032   // * For the STW processor:
2033   //   * Non MT discovery is enabled at the start of a full GC.
2034   //   * Processing and enqueueing during a full GC is non-MT.
2035   //   * During a full GC, references are processed after marking.
2036   //
2037   //   * Discovery (may or may not be MT) is enabled at the start
2038   //     of an incremental evacuation pause.
2039   //   * References are processed near the end of a STW evacuation pause.
2040   //   * For both types of GC:
2041   //     * Discovery is atomic - i.e. not concurrent.
2042   //     * Reference discovery will not need a barrier.
2043 
2044   MemRegion mr = reserved_region();
2045 
2046   // Concurrent Mark ref processor
2047   _ref_processor_cm =
2048     new ReferenceProcessor(mr,    // span
2049                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2050                                 // mt processing
2051                            ParallelGCThreads,
2052                                 // degree of mt processing
2053                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2054                                 // mt discovery
2055                            MAX2(ParallelGCThreads, ConcGCThreads),
2056                                 // degree of mt discovery
2057                            false,
2058                                 // Reference discovery is not atomic
2059                            &_is_alive_closure_cm);
2060                                 // is alive closure
2061                                 // (for efficiency/performance)
2062 
2063   // STW ref processor
2064   _ref_processor_stw =
2065     new ReferenceProcessor(mr,    // span
2066                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2067                                 // mt processing
2068                            ParallelGCThreads,
2069                                 // degree of mt processing
2070                            (ParallelGCThreads > 1),
2071                                 // mt discovery
2072                            ParallelGCThreads,
2073                                 // degree of mt discovery
2074                            true,
2075                                 // Reference discovery is atomic
2076                            &_is_alive_closure_stw);
2077                                 // is alive closure
2078                                 // (for efficiency/performance)
2079 }
2080 
2081 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2082   return _collector_policy;
2083 }
2084 
2085 size_t G1CollectedHeap::capacity() const {
2086   return _hrm.length() * HeapRegion::GrainBytes;
2087 }
2088 
2089 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2090   hr->reset_gc_time_stamp();
2091 }
2092 
2093 #ifndef PRODUCT
2094 
2095 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2096 private:
2097   unsigned _gc_time_stamp;
2098   bool _failures;
2099 
2100 public:
2101   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2102     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2103 
2104   virtual bool doHeapRegion(HeapRegion* hr) {
2105     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2106     if (_gc_time_stamp != region_gc_time_stamp) {
2107       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2108                             region_gc_time_stamp, _gc_time_stamp);
2109       _failures = true;
2110     }
2111     return false;
2112   }
2113 
2114   bool failures() { return _failures; }
2115 };
2116 
2117 void G1CollectedHeap::check_gc_time_stamps() {
2118   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2119   heap_region_iterate(&cl);
2120   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2121 }
2122 #endif // PRODUCT
2123 
2124 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2125   _hot_card_cache->drain(cl, worker_i);
2126 }
2127 
2128 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2129   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2130   size_t n_completed_buffers = 0;
2131   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2132     n_completed_buffers++;
2133   }
2134   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2135   dcqs.clear_n_completed_buffers();
2136   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2137 }
2138 
2139 // Computes the sum of the storage used by the various regions.
2140 size_t G1CollectedHeap::used() const {
2141   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2142   if (_archive_allocator != NULL) {
2143     result += _archive_allocator->used();
2144   }
2145   return result;
2146 }
2147 
2148 size_t G1CollectedHeap::used_unlocked() const {
2149   return _summary_bytes_used;
2150 }
2151 
2152 class SumUsedClosure: public HeapRegionClosure {
2153   size_t _used;
2154 public:
2155   SumUsedClosure() : _used(0) {}
2156   bool doHeapRegion(HeapRegion* r) {
2157     _used += r->used();
2158     return false;
2159   }
2160   size_t result() { return _used; }
2161 };
2162 
2163 size_t G1CollectedHeap::recalculate_used() const {
2164   double recalculate_used_start = os::elapsedTime();
2165 
2166   SumUsedClosure blk;
2167   heap_region_iterate(&blk);
2168 
2169   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2170   return blk.result();
2171 }
2172 
2173 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2174   switch (cause) {
2175     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2176     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2177     case GCCause::_update_allocation_context_stats_inc: return true;
2178     case GCCause::_wb_conc_mark:                        return true;
2179     default :                                           return false;
2180   }
2181 }
2182 
2183 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2184   switch (cause) {
2185     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2186     case GCCause::_g1_humongous_allocation: return true;
2187     default:                                return is_user_requested_concurrent_full_gc(cause);
2188   }
2189 }
2190 
2191 #ifndef PRODUCT
2192 void G1CollectedHeap::allocate_dummy_regions() {
2193   // Let's fill up most of the region
2194   size_t word_size = HeapRegion::GrainWords - 1024;
2195   // And as a result the region we'll allocate will be humongous.
2196   guarantee(is_humongous(word_size), "sanity");
2197 
2198   // _filler_array_max_size is set to humongous object threshold
2199   // but temporarily change it to use CollectedHeap::fill_with_object().
2200   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2201 
2202   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2203     // Let's use the existing mechanism for the allocation
2204     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2205                                                  AllocationContext::system());
2206     if (dummy_obj != NULL) {
2207       MemRegion mr(dummy_obj, word_size);
2208       CollectedHeap::fill_with_object(mr);
2209     } else {
2210       // If we can't allocate once, we probably cannot allocate
2211       // again. Let's get out of the loop.
2212       break;
2213     }
2214   }
2215 }
2216 #endif // !PRODUCT
2217 
2218 void G1CollectedHeap::increment_old_marking_cycles_started() {
2219   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2220          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2221          "Wrong marking cycle count (started: %d, completed: %d)",
2222          _old_marking_cycles_started, _old_marking_cycles_completed);
2223 
2224   _old_marking_cycles_started++;
2225 }
2226 
2227 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2228   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2229 
2230   // We assume that if concurrent == true, then the caller is a
2231   // concurrent thread that was joined the Suspendible Thread
2232   // Set. If there's ever a cheap way to check this, we should add an
2233   // assert here.
2234 
2235   // Given that this method is called at the end of a Full GC or of a
2236   // concurrent cycle, and those can be nested (i.e., a Full GC can
2237   // interrupt a concurrent cycle), the number of full collections
2238   // completed should be either one (in the case where there was no
2239   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2240   // behind the number of full collections started.
2241 
2242   // This is the case for the inner caller, i.e. a Full GC.
2243   assert(concurrent ||
2244          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2245          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2246          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2247          "is inconsistent with _old_marking_cycles_completed = %u",
2248          _old_marking_cycles_started, _old_marking_cycles_completed);
2249 
2250   // This is the case for the outer caller, i.e. the concurrent cycle.
2251   assert(!concurrent ||
2252          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2253          "for outer caller (concurrent cycle): "
2254          "_old_marking_cycles_started = %u "
2255          "is inconsistent with _old_marking_cycles_completed = %u",
2256          _old_marking_cycles_started, _old_marking_cycles_completed);
2257 
2258   _old_marking_cycles_completed += 1;
2259 
2260   // We need to clear the "in_progress" flag in the CM thread before
2261   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2262   // is set) so that if a waiter requests another System.gc() it doesn't
2263   // incorrectly see that a marking cycle is still in progress.
2264   if (concurrent) {
2265     _cmThread->set_idle();
2266   }
2267 
2268   // This notify_all() will ensure that a thread that called
2269   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2270   // and it's waiting for a full GC to finish will be woken up. It is
2271   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2272   FullGCCount_lock->notify_all();
2273 }
2274 
2275 void G1CollectedHeap::collect(GCCause::Cause cause) {
2276   assert_heap_not_locked();
2277 
2278   uint gc_count_before;
2279   uint old_marking_count_before;
2280   uint full_gc_count_before;
2281   bool retry_gc;
2282 
2283   do {
2284     retry_gc = false;
2285 
2286     {
2287       MutexLocker ml(Heap_lock);
2288 
2289       // Read the GC count while holding the Heap_lock
2290       gc_count_before = total_collections();
2291       full_gc_count_before = total_full_collections();
2292       old_marking_count_before = _old_marking_cycles_started;
2293     }
2294 
2295     if (should_do_concurrent_full_gc(cause)) {
2296       // Schedule an initial-mark evacuation pause that will start a
2297       // concurrent cycle. We're setting word_size to 0 which means that
2298       // we are not requesting a post-GC allocation.
2299       VM_G1IncCollectionPause op(gc_count_before,
2300                                  0,     /* word_size */
2301                                  true,  /* should_initiate_conc_mark */
2302                                  g1_policy()->max_pause_time_ms(),
2303                                  cause);
2304       op.set_allocation_context(AllocationContext::current());
2305 
2306       VMThread::execute(&op);
2307       if (!op.pause_succeeded()) {
2308         if (old_marking_count_before == _old_marking_cycles_started) {
2309           retry_gc = op.should_retry_gc();
2310         } else {
2311           // A Full GC happened while we were trying to schedule the
2312           // initial-mark GC. No point in starting a new cycle given
2313           // that the whole heap was collected anyway.
2314         }
2315 
2316         if (retry_gc) {
2317           if (GCLocker::is_active_and_needs_gc()) {
2318             GCLocker::stall_until_clear();
2319           }
2320         }
2321       }
2322     } else {
2323       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2324           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2325 
2326         // Schedule a standard evacuation pause. We're setting word_size
2327         // to 0 which means that we are not requesting a post-GC allocation.
2328         VM_G1IncCollectionPause op(gc_count_before,
2329                                    0,     /* word_size */
2330                                    false, /* should_initiate_conc_mark */
2331                                    g1_policy()->max_pause_time_ms(),
2332                                    cause);
2333         VMThread::execute(&op);
2334       } else {
2335         // Schedule a Full GC.
2336         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2337         VMThread::execute(&op);
2338       }
2339     }
2340   } while (retry_gc);
2341 }
2342 
2343 bool G1CollectedHeap::is_in(const void* p) const {
2344   if (_hrm.reserved().contains(p)) {
2345     // Given that we know that p is in the reserved space,
2346     // heap_region_containing() should successfully
2347     // return the containing region.
2348     HeapRegion* hr = heap_region_containing(p);
2349     return hr->is_in(p);
2350   } else {
2351     return false;
2352   }
2353 }
2354 
2355 #ifdef ASSERT
2356 bool G1CollectedHeap::is_in_exact(const void* p) const {
2357   bool contains = reserved_region().contains(p);
2358   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2359   if (contains && available) {
2360     return true;
2361   } else {
2362     return false;
2363   }
2364 }
2365 #endif
2366 
2367 bool G1CollectedHeap::obj_in_cs(oop obj) {
2368   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2369   return r != NULL && r->in_collection_set();
2370 }
2371 
2372 // Iteration functions.
2373 
2374 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2375 
2376 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2377   ExtendedOopClosure* _cl;
2378 public:
2379   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2380   bool doHeapRegion(HeapRegion* r) {
2381     if (!r->is_continues_humongous()) {
2382       r->oop_iterate(_cl);
2383     }
2384     return false;
2385   }
2386 };
2387 
2388 // Iterates an ObjectClosure over all objects within a HeapRegion.
2389 
2390 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2391   ObjectClosure* _cl;
2392 public:
2393   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2394   bool doHeapRegion(HeapRegion* r) {
2395     if (!r->is_continues_humongous()) {
2396       r->object_iterate(_cl);
2397     }
2398     return false;
2399   }
2400 };
2401 
2402 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2403   IterateObjectClosureRegionClosure blk(cl);
2404   heap_region_iterate(&blk);
2405 }
2406 
2407 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2408   _hrm.iterate(cl);
2409 }
2410 
2411 void
2412 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2413                                          uint worker_id,
2414                                          HeapRegionClaimer *hrclaimer,
2415                                          bool concurrent) const {
2416   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2417 }
2418 
2419 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2420   _collection_set.iterate(cl);
2421 }
2422 
2423 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2424   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2425 }
2426 
2427 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2428   HeapRegion* result = _hrm.next_region_in_heap(from);
2429   while (result != NULL && result->is_pinned()) {
2430     result = _hrm.next_region_in_heap(result);
2431   }
2432   return result;
2433 }
2434 
2435 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2436   HeapRegion* hr = heap_region_containing(addr);
2437   return hr->block_start(addr);
2438 }
2439 
2440 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2441   HeapRegion* hr = heap_region_containing(addr);
2442   return hr->block_size(addr);
2443 }
2444 
2445 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2446   HeapRegion* hr = heap_region_containing(addr);
2447   return hr->block_is_obj(addr);
2448 }
2449 
2450 bool G1CollectedHeap::supports_tlab_allocation() const {
2451   return true;
2452 }
2453 
2454 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2455   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2456 }
2457 
2458 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2459   return _eden.length() * HeapRegion::GrainBytes;
2460 }
2461 
2462 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2463 // must be equal to the humongous object limit.
2464 size_t G1CollectedHeap::max_tlab_size() const {
2465   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2466 }
2467 
2468 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2469   AllocationContext_t context = AllocationContext::current();
2470   return _allocator->unsafe_max_tlab_alloc(context);
2471 }
2472 
2473 size_t G1CollectedHeap::max_capacity() const {
2474   return _hrm.reserved().byte_size();
2475 }
2476 
2477 jlong G1CollectedHeap::millis_since_last_gc() {
2478   // See the notes in GenCollectedHeap::millis_since_last_gc()
2479   // for more information about the implementation.
2480   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2481     _g1_policy->collection_pause_end_millis();
2482   if (ret_val < 0) {
2483     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2484       ". returning zero instead.", ret_val);
2485     return 0;
2486   }
2487   return ret_val;
2488 }
2489 
2490 void G1CollectedHeap::prepare_for_verify() {
2491   _verifier->prepare_for_verify();
2492 }
2493 
2494 void G1CollectedHeap::verify(VerifyOption vo) {
2495   _verifier->verify(vo);
2496 }
2497 
2498 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2499   return true;
2500 }
2501 
2502 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2503   return _cmThread->request_concurrent_phase(phase);
2504 }
2505 
2506 class PrintRegionClosure: public HeapRegionClosure {
2507   outputStream* _st;
2508 public:
2509   PrintRegionClosure(outputStream* st) : _st(st) {}
2510   bool doHeapRegion(HeapRegion* r) {
2511     r->print_on(_st);
2512     return false;
2513   }
2514 };
2515 
2516 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2517                                        const HeapRegion* hr,
2518                                        const VerifyOption vo) const {
2519   switch (vo) {
2520   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2521   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2522   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2523   default:                            ShouldNotReachHere();
2524   }
2525   return false; // keep some compilers happy
2526 }
2527 
2528 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2529                                        const VerifyOption vo) const {
2530   switch (vo) {
2531   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2532   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2533   case VerifyOption_G1UseMarkWord: {
2534     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2535     return !obj->is_gc_marked() && !hr->is_archive();
2536   }
2537   default:                            ShouldNotReachHere();
2538   }
2539   return false; // keep some compilers happy
2540 }
2541 
2542 void G1CollectedHeap::print_heap_regions() const {
2543   Log(gc, heap, region) log;
2544   if (log.is_trace()) {
2545     ResourceMark rm;
2546     print_regions_on(log.trace_stream());
2547   }
2548 }
2549 
2550 void G1CollectedHeap::print_on(outputStream* st) const {
2551   st->print(" %-20s", "garbage-first heap");
2552   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2553             capacity()/K, used_unlocked()/K);
2554   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2555             p2i(_hrm.reserved().start()),
2556             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2557             p2i(_hrm.reserved().end()));
2558   st->cr();
2559   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2560   uint young_regions = young_regions_count();
2561   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2562             (size_t) young_regions * HeapRegion::GrainBytes / K);
2563   uint survivor_regions = survivor_regions_count();
2564   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2565             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2566   st->cr();
2567   MetaspaceAux::print_on(st);
2568 }
2569 
2570 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2571   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2572                "HS=humongous(starts), HC=humongous(continues), "
2573                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2574                "AC=allocation context, "
2575                "TAMS=top-at-mark-start (previous, next)");
2576   PrintRegionClosure blk(st);
2577   heap_region_iterate(&blk);
2578 }
2579 
2580 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2581   print_on(st);
2582 
2583   // Print the per-region information.
2584   print_regions_on(st);
2585 }
2586 
2587 void G1CollectedHeap::print_on_error(outputStream* st) const {
2588   this->CollectedHeap::print_on_error(st);
2589 
2590   if (_cm != NULL) {
2591     st->cr();
2592     _cm->print_on_error(st);
2593   }
2594 }
2595 
2596 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2597   workers()->print_worker_threads_on(st);
2598   _cmThread->print_on(st);
2599   st->cr();
2600   _cm->print_worker_threads_on(st);
2601   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2602   if (G1StringDedup::is_enabled()) {
2603     G1StringDedup::print_worker_threads_on(st);
2604   }
2605 }
2606 
2607 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2608   workers()->threads_do(tc);
2609   tc->do_thread(_cmThread);
2610   _cm->threads_do(tc);
2611   _cg1r->threads_do(tc); // also iterates over the sample thread
2612   if (G1StringDedup::is_enabled()) {
2613     G1StringDedup::threads_do(tc);
2614   }
2615 }
2616 
2617 void G1CollectedHeap::print_tracing_info() const {
2618   g1_rem_set()->print_summary_info();
2619   concurrent_mark()->print_summary_info();
2620 }
2621 
2622 #ifndef PRODUCT
2623 // Helpful for debugging RSet issues.
2624 
2625 class PrintRSetsClosure : public HeapRegionClosure {
2626 private:
2627   const char* _msg;
2628   size_t _occupied_sum;
2629 
2630 public:
2631   bool doHeapRegion(HeapRegion* r) {
2632     HeapRegionRemSet* hrrs = r->rem_set();
2633     size_t occupied = hrrs->occupied();
2634     _occupied_sum += occupied;
2635 
2636     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2637     if (occupied == 0) {
2638       tty->print_cr("  RSet is empty");
2639     } else {
2640       hrrs->print();
2641     }
2642     tty->print_cr("----------");
2643     return false;
2644   }
2645 
2646   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2647     tty->cr();
2648     tty->print_cr("========================================");
2649     tty->print_cr("%s", msg);
2650     tty->cr();
2651   }
2652 
2653   ~PrintRSetsClosure() {
2654     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2655     tty->print_cr("========================================");
2656     tty->cr();
2657   }
2658 };
2659 
2660 void G1CollectedHeap::print_cset_rsets() {
2661   PrintRSetsClosure cl("Printing CSet RSets");
2662   collection_set_iterate(&cl);
2663 }
2664 
2665 void G1CollectedHeap::print_all_rsets() {
2666   PrintRSetsClosure cl("Printing All RSets");;
2667   heap_region_iterate(&cl);
2668 }
2669 #endif // PRODUCT
2670 
2671 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2672 
2673   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2674   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2675   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2676 
2677   size_t eden_capacity_bytes =
2678     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2679 
2680   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2681   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2682                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2683 }
2684 
2685 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2686   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2687                        stats->unused(), stats->used(), stats->region_end_waste(),
2688                        stats->regions_filled(), stats->direct_allocated(),
2689                        stats->failure_used(), stats->failure_waste());
2690 }
2691 
2692 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2693   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2694   gc_tracer->report_gc_heap_summary(when, heap_summary);
2695 
2696   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2697   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2698 }
2699 
2700 G1CollectedHeap* G1CollectedHeap::heap() {
2701   CollectedHeap* heap = Universe::heap();
2702   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2703   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2704   return (G1CollectedHeap*)heap;
2705 }
2706 
2707 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2708   // always_do_update_barrier = false;
2709   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2710   // Fill TLAB's and such
2711   accumulate_statistics_all_tlabs();
2712   ensure_parsability(true);
2713 
2714   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2715 }
2716 
2717 void G1CollectedHeap::gc_epilogue(bool full) {
2718   // we are at the end of the GC. Total collections has already been increased.
2719   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2720 
2721   // FIXME: what is this about?
2722   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2723   // is set.
2724 #if defined(COMPILER2) || INCLUDE_JVMCI
2725   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2726 #endif
2727   // always_do_update_barrier = true;
2728 
2729   resize_all_tlabs();
2730   allocation_context_stats().update(full);
2731 
2732   // We have just completed a GC. Update the soft reference
2733   // policy with the new heap occupancy
2734   Universe::update_heap_info_at_gc();
2735 }
2736 
2737 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2738                                                uint gc_count_before,
2739                                                bool* succeeded,
2740                                                GCCause::Cause gc_cause) {
2741   assert_heap_not_locked_and_not_at_safepoint();
2742   VM_G1IncCollectionPause op(gc_count_before,
2743                              word_size,
2744                              false, /* should_initiate_conc_mark */
2745                              g1_policy()->max_pause_time_ms(),
2746                              gc_cause);
2747 
2748   op.set_allocation_context(AllocationContext::current());
2749   VMThread::execute(&op);
2750 
2751   HeapWord* result = op.result();
2752   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2753   assert(result == NULL || ret_succeeded,
2754          "the result should be NULL if the VM did not succeed");
2755   *succeeded = ret_succeeded;
2756 
2757   assert_heap_not_locked();
2758   return result;
2759 }
2760 
2761 void
2762 G1CollectedHeap::doConcurrentMark() {
2763   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2764   if (!_cmThread->in_progress()) {
2765     _cmThread->set_started();
2766     CGC_lock->notify();
2767   }
2768 }
2769 
2770 size_t G1CollectedHeap::pending_card_num() {
2771   size_t extra_cards = 0;
2772   JavaThread *curr = Threads::first();
2773   while (curr != NULL) {
2774     DirtyCardQueue& dcq = curr->dirty_card_queue();
2775     extra_cards += dcq.size();
2776     curr = curr->next();
2777   }
2778   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2779   size_t buffer_size = dcqs.buffer_size();
2780   size_t buffer_num = dcqs.completed_buffers_num();
2781 
2782   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
2783   // in bytes - not the number of 'entries'. We need to convert
2784   // into a number of cards.
2785   return (buffer_size * buffer_num + extra_cards) / oopSize;
2786 }
2787 
2788 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2789  private:
2790   size_t _total_humongous;
2791   size_t _candidate_humongous;
2792 
2793   DirtyCardQueue _dcq;
2794 
2795   // We don't nominate objects with many remembered set entries, on
2796   // the assumption that such objects are likely still live.
2797   bool is_remset_small(HeapRegion* region) const {
2798     HeapRegionRemSet* const rset = region->rem_set();
2799     return G1EagerReclaimHumongousObjectsWithStaleRefs
2800       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2801       : rset->is_empty();
2802   }
2803 
2804   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2805     assert(region->is_starts_humongous(), "Must start a humongous object");
2806 
2807     oop obj = oop(region->bottom());
2808 
2809     // Dead objects cannot be eager reclaim candidates. Due to class
2810     // unloading it is unsafe to query their classes so we return early.
2811     if (heap->is_obj_dead(obj, region)) {
2812       return false;
2813     }
2814 
2815     // Candidate selection must satisfy the following constraints
2816     // while concurrent marking is in progress:
2817     //
2818     // * In order to maintain SATB invariants, an object must not be
2819     // reclaimed if it was allocated before the start of marking and
2820     // has not had its references scanned.  Such an object must have
2821     // its references (including type metadata) scanned to ensure no
2822     // live objects are missed by the marking process.  Objects
2823     // allocated after the start of concurrent marking don't need to
2824     // be scanned.
2825     //
2826     // * An object must not be reclaimed if it is on the concurrent
2827     // mark stack.  Objects allocated after the start of concurrent
2828     // marking are never pushed on the mark stack.
2829     //
2830     // Nominating only objects allocated after the start of concurrent
2831     // marking is sufficient to meet both constraints.  This may miss
2832     // some objects that satisfy the constraints, but the marking data
2833     // structures don't support efficiently performing the needed
2834     // additional tests or scrubbing of the mark stack.
2835     //
2836     // However, we presently only nominate is_typeArray() objects.
2837     // A humongous object containing references induces remembered
2838     // set entries on other regions.  In order to reclaim such an
2839     // object, those remembered sets would need to be cleaned up.
2840     //
2841     // We also treat is_typeArray() objects specially, allowing them
2842     // to be reclaimed even if allocated before the start of
2843     // concurrent mark.  For this we rely on mark stack insertion to
2844     // exclude is_typeArray() objects, preventing reclaiming an object
2845     // that is in the mark stack.  We also rely on the metadata for
2846     // such objects to be built-in and so ensured to be kept live.
2847     // Frequent allocation and drop of large binary blobs is an
2848     // important use case for eager reclaim, and this special handling
2849     // may reduce needed headroom.
2850 
2851     return obj->is_typeArray() && is_remset_small(region);
2852   }
2853 
2854  public:
2855   RegisterHumongousWithInCSetFastTestClosure()
2856   : _total_humongous(0),
2857     _candidate_humongous(0),
2858     _dcq(&JavaThread::dirty_card_queue_set()) {
2859   }
2860 
2861   virtual bool doHeapRegion(HeapRegion* r) {
2862     if (!r->is_starts_humongous()) {
2863       return false;
2864     }
2865     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2866 
2867     bool is_candidate = humongous_region_is_candidate(g1h, r);
2868     uint rindex = r->hrm_index();
2869     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2870     if (is_candidate) {
2871       _candidate_humongous++;
2872       g1h->register_humongous_region_with_cset(rindex);
2873       // Is_candidate already filters out humongous object with large remembered sets.
2874       // If we have a humongous object with a few remembered sets, we simply flush these
2875       // remembered set entries into the DCQS. That will result in automatic
2876       // re-evaluation of their remembered set entries during the following evacuation
2877       // phase.
2878       if (!r->rem_set()->is_empty()) {
2879         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2880                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2881         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2882         HeapRegionRemSetIterator hrrs(r->rem_set());
2883         size_t card_index;
2884         while (hrrs.has_next(card_index)) {
2885           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2886           // The remembered set might contain references to already freed
2887           // regions. Filter out such entries to avoid failing card table
2888           // verification.
2889           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2890             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2891               *card_ptr = CardTableModRefBS::dirty_card_val();
2892               _dcq.enqueue(card_ptr);
2893             }
2894           }
2895         }
2896         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2897                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2898                hrrs.n_yielded(), r->rem_set()->occupied());
2899         r->rem_set()->clear_locked();
2900       }
2901       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2902     }
2903     _total_humongous++;
2904 
2905     return false;
2906   }
2907 
2908   size_t total_humongous() const { return _total_humongous; }
2909   size_t candidate_humongous() const { return _candidate_humongous; }
2910 
2911   void flush_rem_set_entries() { _dcq.flush(); }
2912 };
2913 
2914 void G1CollectedHeap::register_humongous_regions_with_cset() {
2915   if (!G1EagerReclaimHumongousObjects) {
2916     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2917     return;
2918   }
2919   double time = os::elapsed_counter();
2920 
2921   // Collect reclaim candidate information and register candidates with cset.
2922   RegisterHumongousWithInCSetFastTestClosure cl;
2923   heap_region_iterate(&cl);
2924 
2925   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2926   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2927                                                                   cl.total_humongous(),
2928                                                                   cl.candidate_humongous());
2929   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2930 
2931   // Finally flush all remembered set entries to re-check into the global DCQS.
2932   cl.flush_rem_set_entries();
2933 }
2934 
2935 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2936   public:
2937     bool doHeapRegion(HeapRegion* hr) {
2938       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2939         hr->verify_rem_set();
2940       }
2941       return false;
2942     }
2943 };
2944 
2945 uint G1CollectedHeap::num_task_queues() const {
2946   return _task_queues->size();
2947 }
2948 
2949 #if TASKQUEUE_STATS
2950 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2951   st->print_raw_cr("GC Task Stats");
2952   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2953   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2954 }
2955 
2956 void G1CollectedHeap::print_taskqueue_stats() const {
2957   if (!log_is_enabled(Trace, gc, task, stats)) {
2958     return;
2959   }
2960   Log(gc, task, stats) log;
2961   ResourceMark rm;
2962   outputStream* st = log.trace_stream();
2963 
2964   print_taskqueue_stats_hdr(st);
2965 
2966   TaskQueueStats totals;
2967   const uint n = num_task_queues();
2968   for (uint i = 0; i < n; ++i) {
2969     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2970     totals += task_queue(i)->stats;
2971   }
2972   st->print_raw("tot "); totals.print(st); st->cr();
2973 
2974   DEBUG_ONLY(totals.verify());
2975 }
2976 
2977 void G1CollectedHeap::reset_taskqueue_stats() {
2978   const uint n = num_task_queues();
2979   for (uint i = 0; i < n; ++i) {
2980     task_queue(i)->stats.reset();
2981   }
2982 }
2983 #endif // TASKQUEUE_STATS
2984 
2985 void G1CollectedHeap::wait_for_root_region_scanning() {
2986   double scan_wait_start = os::elapsedTime();
2987   // We have to wait until the CM threads finish scanning the
2988   // root regions as it's the only way to ensure that all the
2989   // objects on them have been correctly scanned before we start
2990   // moving them during the GC.
2991   bool waited = _cm->root_regions()->wait_until_scan_finished();
2992   double wait_time_ms = 0.0;
2993   if (waited) {
2994     double scan_wait_end = os::elapsedTime();
2995     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2996   }
2997   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2998 }
2999 
3000 class G1PrintCollectionSetClosure : public HeapRegionClosure {
3001 private:
3002   G1HRPrinter* _hr_printer;
3003 public:
3004   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
3005 
3006   virtual bool doHeapRegion(HeapRegion* r) {
3007     _hr_printer->cset(r);
3008     return false;
3009   }
3010 };
3011 
3012 bool
3013 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3014   assert_at_safepoint(true /* should_be_vm_thread */);
3015   guarantee(!is_gc_active(), "collection is not reentrant");
3016 
3017   if (GCLocker::check_active_before_gc()) {
3018     return false;
3019   }
3020 
3021   _gc_timer_stw->register_gc_start();
3022 
3023   GCIdMark gc_id_mark;
3024   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3025 
3026   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3027   ResourceMark rm;
3028 
3029   g1_policy()->note_gc_start();
3030 
3031   wait_for_root_region_scanning();
3032 
3033   print_heap_before_gc();
3034   print_heap_regions();
3035   trace_heap_before_gc(_gc_tracer_stw);
3036 
3037   _verifier->verify_region_sets_optional();
3038   _verifier->verify_dirty_young_regions();
3039 
3040   // We should not be doing initial mark unless the conc mark thread is running
3041   if (!_cmThread->should_terminate()) {
3042     // This call will decide whether this pause is an initial-mark
3043     // pause. If it is, during_initial_mark_pause() will return true
3044     // for the duration of this pause.
3045     g1_policy()->decide_on_conc_mark_initiation();
3046   }
3047 
3048   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3049   assert(!collector_state()->during_initial_mark_pause() ||
3050           collector_state()->gcs_are_young(), "sanity");
3051 
3052   // We also do not allow mixed GCs during marking.
3053   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3054 
3055   // Record whether this pause is an initial mark. When the current
3056   // thread has completed its logging output and it's safe to signal
3057   // the CM thread, the flag's value in the policy has been reset.
3058   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3059 
3060   // Inner scope for scope based logging, timers, and stats collection
3061   {
3062     EvacuationInfo evacuation_info;
3063 
3064     if (collector_state()->during_initial_mark_pause()) {
3065       // We are about to start a marking cycle, so we increment the
3066       // full collection counter.
3067       increment_old_marking_cycles_started();
3068       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3069     }
3070 
3071     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3072 
3073     GCTraceCPUTime tcpu;
3074 
3075     FormatBuffer<> gc_string("Pause ");
3076     if (collector_state()->during_initial_mark_pause()) {
3077       gc_string.append("Initial Mark");
3078     } else if (collector_state()->gcs_are_young()) {
3079       gc_string.append("Young");
3080     } else {
3081       gc_string.append("Mixed");
3082     }
3083     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3084 
3085     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3086                                                                   workers()->active_workers(),
3087                                                                   Threads::number_of_non_daemon_threads());
3088     workers()->update_active_workers(active_workers);
3089     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3090 
3091     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3092     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3093 
3094     // If the secondary_free_list is not empty, append it to the
3095     // free_list. No need to wait for the cleanup operation to finish;
3096     // the region allocation code will check the secondary_free_list
3097     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3098     // set, skip this step so that the region allocation code has to
3099     // get entries from the secondary_free_list.
3100     if (!G1StressConcRegionFreeing) {
3101       append_secondary_free_list_if_not_empty_with_lock();
3102     }
3103 
3104     G1HeapTransition heap_transition(this);
3105     size_t heap_used_bytes_before_gc = used();
3106 
3107     // Don't dynamically change the number of GC threads this early.  A value of
3108     // 0 is used to indicate serial work.  When parallel work is done,
3109     // it will be set.
3110 
3111     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3112       IsGCActiveMark x;
3113 
3114       gc_prologue(false);
3115       increment_total_collections(false /* full gc */);
3116       increment_gc_time_stamp();
3117 
3118       if (VerifyRememberedSets) {
3119         log_info(gc, verify)("[Verifying RemSets before GC]");
3120         VerifyRegionRemSetClosure v_cl;
3121         heap_region_iterate(&v_cl);
3122       }
3123 
3124       _verifier->verify_before_gc();
3125 
3126       _verifier->check_bitmaps("GC Start");
3127 
3128 #if defined(COMPILER2) || INCLUDE_JVMCI
3129       DerivedPointerTable::clear();
3130 #endif
3131 
3132       // Please see comment in g1CollectedHeap.hpp and
3133       // G1CollectedHeap::ref_processing_init() to see how
3134       // reference processing currently works in G1.
3135 
3136       // Enable discovery in the STW reference processor
3137       if (g1_policy()->should_process_references()) {
3138         ref_processor_stw()->enable_discovery();
3139       } else {
3140         ref_processor_stw()->disable_discovery();
3141       }
3142 
3143       {
3144         // We want to temporarily turn off discovery by the
3145         // CM ref processor, if necessary, and turn it back on
3146         // on again later if we do. Using a scoped
3147         // NoRefDiscovery object will do this.
3148         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3149 
3150         // Forget the current alloc region (we might even choose it to be part
3151         // of the collection set!).
3152         _allocator->release_mutator_alloc_region();
3153 
3154         // This timing is only used by the ergonomics to handle our pause target.
3155         // It is unclear why this should not include the full pause. We will
3156         // investigate this in CR 7178365.
3157         //
3158         // Preserving the old comment here if that helps the investigation:
3159         //
3160         // The elapsed time induced by the start time below deliberately elides
3161         // the possible verification above.
3162         double sample_start_time_sec = os::elapsedTime();
3163 
3164         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3165 
3166         if (collector_state()->during_initial_mark_pause()) {
3167           concurrent_mark()->checkpointRootsInitialPre();
3168         }
3169 
3170         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3171 
3172         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3173 
3174         // Make sure the remembered sets are up to date. This needs to be
3175         // done before register_humongous_regions_with_cset(), because the
3176         // remembered sets are used there to choose eager reclaim candidates.
3177         // If the remembered sets are not up to date we might miss some
3178         // entries that need to be handled.
3179         g1_rem_set()->cleanupHRRS();
3180 
3181         register_humongous_regions_with_cset();
3182 
3183         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3184 
3185         // We call this after finalize_cset() to
3186         // ensure that the CSet has been finalized.
3187         _cm->verify_no_cset_oops();
3188 
3189         if (_hr_printer.is_active()) {
3190           G1PrintCollectionSetClosure cl(&_hr_printer);
3191           _collection_set.iterate(&cl);
3192         }
3193 
3194         // Initialize the GC alloc regions.
3195         _allocator->init_gc_alloc_regions(evacuation_info);
3196 
3197         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3198         pre_evacuate_collection_set();
3199 
3200         // Actually do the work...
3201         evacuate_collection_set(evacuation_info, &per_thread_states);
3202 
3203         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3204 
3205         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3206         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3207 
3208         eagerly_reclaim_humongous_regions();
3209 
3210         record_obj_copy_mem_stats();
3211         _survivor_evac_stats.adjust_desired_plab_sz();
3212         _old_evac_stats.adjust_desired_plab_sz();
3213 
3214         // Start a new incremental collection set for the next pause.
3215         collection_set()->start_incremental_building();
3216 
3217         clear_cset_fast_test();
3218 
3219         guarantee(_eden.length() == 0, "eden should have been cleared");
3220         g1_policy()->transfer_survivors_to_cset(survivor());
3221 
3222         if (evacuation_failed()) {
3223           set_used(recalculate_used());
3224           if (_archive_allocator != NULL) {
3225             _archive_allocator->clear_used();
3226           }
3227           for (uint i = 0; i < ParallelGCThreads; i++) {
3228             if (_evacuation_failed_info_array[i].has_failed()) {
3229               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3230             }
3231           }
3232         } else {
3233           // The "used" of the the collection set have already been subtracted
3234           // when they were freed.  Add in the bytes evacuated.
3235           increase_used(g1_policy()->bytes_copied_during_gc());
3236         }
3237 
3238         if (collector_state()->during_initial_mark_pause()) {
3239           // We have to do this before we notify the CM threads that
3240           // they can start working to make sure that all the
3241           // appropriate initialization is done on the CM object.
3242           concurrent_mark()->checkpointRootsInitialPost();
3243           collector_state()->set_mark_in_progress(true);
3244           // Note that we don't actually trigger the CM thread at
3245           // this point. We do that later when we're sure that
3246           // the current thread has completed its logging output.
3247         }
3248 
3249         allocate_dummy_regions();
3250 
3251         _allocator->init_mutator_alloc_region();
3252 
3253         {
3254           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3255           if (expand_bytes > 0) {
3256             size_t bytes_before = capacity();
3257             // No need for an ergo logging here,
3258             // expansion_amount() does this when it returns a value > 0.
3259             double expand_ms;
3260             if (!expand(expand_bytes, _workers, &expand_ms)) {
3261               // We failed to expand the heap. Cannot do anything about it.
3262             }
3263             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3264           }
3265         }
3266 
3267         // We redo the verification but now wrt to the new CSet which
3268         // has just got initialized after the previous CSet was freed.
3269         _cm->verify_no_cset_oops();
3270 
3271         // This timing is only used by the ergonomics to handle our pause target.
3272         // It is unclear why this should not include the full pause. We will
3273         // investigate this in CR 7178365.
3274         double sample_end_time_sec = os::elapsedTime();
3275         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3276         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3277         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3278 
3279         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3280         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3281 
3282         MemoryService::track_memory_usage();
3283 
3284         // In prepare_for_verify() below we'll need to scan the deferred
3285         // update buffers to bring the RSets up-to-date if
3286         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3287         // the update buffers we'll probably need to scan cards on the
3288         // regions we just allocated to (i.e., the GC alloc
3289         // regions). However, during the last GC we called
3290         // set_saved_mark() on all the GC alloc regions, so card
3291         // scanning might skip the [saved_mark_word()...top()] area of
3292         // those regions (i.e., the area we allocated objects into
3293         // during the last GC). But it shouldn't. Given that
3294         // saved_mark_word() is conditional on whether the GC time stamp
3295         // on the region is current or not, by incrementing the GC time
3296         // stamp here we invalidate all the GC time stamps on all the
3297         // regions and saved_mark_word() will simply return top() for
3298         // all the regions. This is a nicer way of ensuring this rather
3299         // than iterating over the regions and fixing them. In fact, the
3300         // GC time stamp increment here also ensures that
3301         // saved_mark_word() will return top() between pauses, i.e.,
3302         // during concurrent refinement. So we don't need the
3303         // is_gc_active() check to decided which top to use when
3304         // scanning cards (see CR 7039627).
3305         increment_gc_time_stamp();
3306 
3307         if (VerifyRememberedSets) {
3308           log_info(gc, verify)("[Verifying RemSets after GC]");
3309           VerifyRegionRemSetClosure v_cl;
3310           heap_region_iterate(&v_cl);
3311         }
3312 
3313         _verifier->verify_after_gc();
3314         _verifier->check_bitmaps("GC End");
3315 
3316         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3317         ref_processor_stw()->verify_no_references_recorded();
3318 
3319         // CM reference discovery will be re-enabled if necessary.
3320       }
3321 
3322 #ifdef TRACESPINNING
3323       ParallelTaskTerminator::print_termination_counts();
3324 #endif
3325 
3326       gc_epilogue(false);
3327     }
3328 
3329     // Print the remainder of the GC log output.
3330     if (evacuation_failed()) {
3331       log_info(gc)("To-space exhausted");
3332     }
3333 
3334     g1_policy()->print_phases();
3335     heap_transition.print();
3336 
3337     // It is not yet to safe to tell the concurrent mark to
3338     // start as we have some optional output below. We don't want the
3339     // output from the concurrent mark thread interfering with this
3340     // logging output either.
3341 
3342     _hrm.verify_optional();
3343     _verifier->verify_region_sets_optional();
3344 
3345     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3346     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3347 
3348     print_heap_after_gc();
3349     print_heap_regions();
3350     trace_heap_after_gc(_gc_tracer_stw);
3351 
3352     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3353     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3354     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3355     // before any GC notifications are raised.
3356     g1mm()->update_sizes();
3357 
3358     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3359     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3360     _gc_timer_stw->register_gc_end();
3361     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3362   }
3363   // It should now be safe to tell the concurrent mark thread to start
3364   // without its logging output interfering with the logging output
3365   // that came from the pause.
3366 
3367   if (should_start_conc_mark) {
3368     // CAUTION: after the doConcurrentMark() call below,
3369     // the concurrent marking thread(s) could be running
3370     // concurrently with us. Make sure that anything after
3371     // this point does not assume that we are the only GC thread
3372     // running. Note: of course, the actual marking work will
3373     // not start until the safepoint itself is released in
3374     // SuspendibleThreadSet::desynchronize().
3375     doConcurrentMark();
3376   }
3377 
3378   return true;
3379 }
3380 
3381 void G1CollectedHeap::remove_self_forwarding_pointers() {
3382   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3383   workers()->run_task(&rsfp_task);
3384 }
3385 
3386 void G1CollectedHeap::restore_after_evac_failure() {
3387   double remove_self_forwards_start = os::elapsedTime();
3388 
3389   remove_self_forwarding_pointers();
3390   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3391   _preserved_marks_set.restore(&task_executor);
3392 
3393   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3394 }
3395 
3396 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3397   if (!_evacuation_failed) {
3398     _evacuation_failed = true;
3399   }
3400 
3401   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3402   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3403 }
3404 
3405 bool G1ParEvacuateFollowersClosure::offer_termination() {
3406   G1ParScanThreadState* const pss = par_scan_state();
3407   start_term_time();
3408   const bool res = terminator()->offer_termination();
3409   end_term_time();
3410   return res;
3411 }
3412 
3413 void G1ParEvacuateFollowersClosure::do_void() {
3414   G1ParScanThreadState* const pss = par_scan_state();
3415   pss->trim_queue();
3416   do {
3417     pss->steal_and_trim_queue(queues());
3418   } while (!offer_termination());
3419 }
3420 
3421 class G1ParTask : public AbstractGangTask {
3422 protected:
3423   G1CollectedHeap*         _g1h;
3424   G1ParScanThreadStateSet* _pss;
3425   RefToScanQueueSet*       _queues;
3426   G1RootProcessor*         _root_processor;
3427   ParallelTaskTerminator   _terminator;
3428   uint                     _n_workers;
3429 
3430 public:
3431   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3432     : AbstractGangTask("G1 collection"),
3433       _g1h(g1h),
3434       _pss(per_thread_states),
3435       _queues(task_queues),
3436       _root_processor(root_processor),
3437       _terminator(n_workers, _queues),
3438       _n_workers(n_workers)
3439   {}
3440 
3441   void work(uint worker_id) {
3442     if (worker_id >= _n_workers) return;  // no work needed this round
3443 
3444     double start_sec = os::elapsedTime();
3445     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3446 
3447     {
3448       ResourceMark rm;
3449       HandleMark   hm;
3450 
3451       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3452 
3453       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3454       pss->set_ref_processor(rp);
3455 
3456       double start_strong_roots_sec = os::elapsedTime();
3457 
3458       _root_processor->evacuate_roots(pss->closures(), worker_id);
3459 
3460       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3461 
3462       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3463       // treating the nmethods visited to act as roots for concurrent marking.
3464       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3465       // objects copied by the current evacuation.
3466       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3467                                                                              pss->closures()->weak_codeblobs(),
3468                                                                              worker_id);
3469 
3470       _pss->add_cards_scanned(worker_id, cards_scanned);
3471 
3472       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3473 
3474       double term_sec = 0.0;
3475       size_t evac_term_attempts = 0;
3476       {
3477         double start = os::elapsedTime();
3478         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3479         evac.do_void();
3480 
3481         evac_term_attempts = evac.term_attempts();
3482         term_sec = evac.term_time();
3483         double elapsed_sec = os::elapsedTime() - start;
3484         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3485         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3486         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3487       }
3488 
3489       assert(pss->queue_is_empty(), "should be empty");
3490 
3491       if (log_is_enabled(Debug, gc, task, stats)) {
3492         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3493         size_t lab_waste;
3494         size_t lab_undo_waste;
3495         pss->waste(lab_waste, lab_undo_waste);
3496         _g1h->print_termination_stats(worker_id,
3497                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3498                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3499                                       term_sec * 1000.0,                          /* evac term time */
3500                                       evac_term_attempts,                         /* evac term attempts */
3501                                       lab_waste,                                  /* alloc buffer waste */
3502                                       lab_undo_waste                              /* undo waste */
3503                                       );
3504       }
3505 
3506       // Close the inner scope so that the ResourceMark and HandleMark
3507       // destructors are executed here and are included as part of the
3508       // "GC Worker Time".
3509     }
3510     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3511   }
3512 };
3513 
3514 void G1CollectedHeap::print_termination_stats_hdr() {
3515   log_debug(gc, task, stats)("GC Termination Stats");
3516   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3517   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3518   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3519 }
3520 
3521 void G1CollectedHeap::print_termination_stats(uint worker_id,
3522                                               double elapsed_ms,
3523                                               double strong_roots_ms,
3524                                               double term_ms,
3525                                               size_t term_attempts,
3526                                               size_t alloc_buffer_waste,
3527                                               size_t undo_waste) const {
3528   log_debug(gc, task, stats)
3529               ("%3d %9.2f %9.2f %6.2f "
3530                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3531                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3532                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3533                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3534                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3535                alloc_buffer_waste * HeapWordSize / K,
3536                undo_waste * HeapWordSize / K);
3537 }
3538 
3539 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
3540 private:
3541   BoolObjectClosure* _is_alive;
3542   int _initial_string_table_size;
3543   int _initial_symbol_table_size;
3544 
3545   bool  _process_strings;
3546   int _strings_processed;
3547   int _strings_removed;
3548 
3549   bool  _process_symbols;
3550   int _symbols_processed;
3551   int _symbols_removed;
3552 
3553 public:
3554   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
3555     AbstractGangTask("String/Symbol Unlinking"),
3556     _is_alive(is_alive),
3557     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3558     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
3559 
3560     _initial_string_table_size = StringTable::the_table()->table_size();
3561     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3562     if (process_strings) {
3563       StringTable::clear_parallel_claimed_index();
3564     }
3565     if (process_symbols) {
3566       SymbolTable::clear_parallel_claimed_index();
3567     }
3568   }
3569 
3570   ~G1StringSymbolTableUnlinkTask() {
3571     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3572               "claim value %d after unlink less than initial string table size %d",
3573               StringTable::parallel_claimed_index(), _initial_string_table_size);
3574     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3575               "claim value %d after unlink less than initial symbol table size %d",
3576               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3577 
3578     log_info(gc, stringtable)(
3579         "Cleaned string and symbol table, "
3580         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3581         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3582         strings_processed(), strings_removed(),
3583         symbols_processed(), symbols_removed());
3584   }
3585 
3586   void work(uint worker_id) {
3587     int strings_processed = 0;
3588     int strings_removed = 0;
3589     int symbols_processed = 0;
3590     int symbols_removed = 0;
3591     if (_process_strings) {
3592       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3593       Atomic::add(strings_processed, &_strings_processed);
3594       Atomic::add(strings_removed, &_strings_removed);
3595     }
3596     if (_process_symbols) {
3597       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3598       Atomic::add(symbols_processed, &_symbols_processed);
3599       Atomic::add(symbols_removed, &_symbols_removed);
3600     }
3601   }
3602 
3603   size_t strings_processed() const { return (size_t)_strings_processed; }
3604   size_t strings_removed()   const { return (size_t)_strings_removed; }
3605 
3606   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3607   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3608 };
3609 
3610 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3611 private:
3612   static Monitor* _lock;
3613 
3614   BoolObjectClosure* const _is_alive;
3615   const bool               _unloading_occurred;
3616   const uint               _num_workers;
3617 
3618   // Variables used to claim nmethods.
3619   CompiledMethod* _first_nmethod;
3620   volatile CompiledMethod* _claimed_nmethod;
3621 
3622   // The list of nmethods that need to be processed by the second pass.
3623   volatile CompiledMethod* _postponed_list;
3624   volatile uint            _num_entered_barrier;
3625 
3626  public:
3627   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3628       _is_alive(is_alive),
3629       _unloading_occurred(unloading_occurred),
3630       _num_workers(num_workers),
3631       _first_nmethod(NULL),
3632       _claimed_nmethod(NULL),
3633       _postponed_list(NULL),
3634       _num_entered_barrier(0)
3635   {
3636     CompiledMethod::increase_unloading_clock();
3637     // Get first alive nmethod
3638     CompiledMethodIterator iter = CompiledMethodIterator();
3639     if(iter.next_alive()) {
3640       _first_nmethod = iter.method();
3641     }
3642     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3643   }
3644 
3645   ~G1CodeCacheUnloadingTask() {
3646     CodeCache::verify_clean_inline_caches();
3647 
3648     CodeCache::set_needs_cache_clean(false);
3649     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3650 
3651     CodeCache::verify_icholder_relocations();
3652   }
3653 
3654  private:
3655   void add_to_postponed_list(CompiledMethod* nm) {
3656       CompiledMethod* old;
3657       do {
3658         old = (CompiledMethod*)_postponed_list;
3659         nm->set_unloading_next(old);
3660       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3661   }
3662 
3663   void clean_nmethod(CompiledMethod* nm) {
3664     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3665 
3666     if (postponed) {
3667       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3668       add_to_postponed_list(nm);
3669     }
3670 
3671     // Mark that this thread has been cleaned/unloaded.
3672     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3673     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3674   }
3675 
3676   void clean_nmethod_postponed(CompiledMethod* nm) {
3677     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3678   }
3679 
3680   static const int MaxClaimNmethods = 16;
3681 
3682   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3683     CompiledMethod* first;
3684     CompiledMethodIterator last;
3685 
3686     do {
3687       *num_claimed_nmethods = 0;
3688 
3689       first = (CompiledMethod*)_claimed_nmethod;
3690       last = CompiledMethodIterator(first);
3691 
3692       if (first != NULL) {
3693 
3694         for (int i = 0; i < MaxClaimNmethods; i++) {
3695           if (!last.next_alive()) {
3696             break;
3697           }
3698           claimed_nmethods[i] = last.method();
3699           (*num_claimed_nmethods)++;
3700         }
3701       }
3702 
3703     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3704   }
3705 
3706   CompiledMethod* claim_postponed_nmethod() {
3707     CompiledMethod* claim;
3708     CompiledMethod* next;
3709 
3710     do {
3711       claim = (CompiledMethod*)_postponed_list;
3712       if (claim == NULL) {
3713         return NULL;
3714       }
3715 
3716       next = claim->unloading_next();
3717 
3718     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3719 
3720     return claim;
3721   }
3722 
3723  public:
3724   // Mark that we're done with the first pass of nmethod cleaning.
3725   void barrier_mark(uint worker_id) {
3726     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3727     _num_entered_barrier++;
3728     if (_num_entered_barrier == _num_workers) {
3729       ml.notify_all();
3730     }
3731   }
3732 
3733   // See if we have to wait for the other workers to
3734   // finish their first-pass nmethod cleaning work.
3735   void barrier_wait(uint worker_id) {
3736     if (_num_entered_barrier < _num_workers) {
3737       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3738       while (_num_entered_barrier < _num_workers) {
3739           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3740       }
3741     }
3742   }
3743 
3744   // Cleaning and unloading of nmethods. Some work has to be postponed
3745   // to the second pass, when we know which nmethods survive.
3746   void work_first_pass(uint worker_id) {
3747     // The first nmethods is claimed by the first worker.
3748     if (worker_id == 0 && _first_nmethod != NULL) {
3749       clean_nmethod(_first_nmethod);
3750       _first_nmethod = NULL;
3751     }
3752 
3753     int num_claimed_nmethods;
3754     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3755 
3756     while (true) {
3757       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3758 
3759       if (num_claimed_nmethods == 0) {
3760         break;
3761       }
3762 
3763       for (int i = 0; i < num_claimed_nmethods; i++) {
3764         clean_nmethod(claimed_nmethods[i]);
3765       }
3766     }
3767   }
3768 
3769   void work_second_pass(uint worker_id) {
3770     CompiledMethod* nm;
3771     // Take care of postponed nmethods.
3772     while ((nm = claim_postponed_nmethod()) != NULL) {
3773       clean_nmethod_postponed(nm);
3774     }
3775   }
3776 };
3777 
3778 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3779 
3780 class G1KlassCleaningTask : public StackObj {
3781   BoolObjectClosure*                      _is_alive;
3782   volatile jint                           _clean_klass_tree_claimed;
3783   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3784 
3785  public:
3786   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3787       _is_alive(is_alive),
3788       _clean_klass_tree_claimed(0),
3789       _klass_iterator() {
3790   }
3791 
3792  private:
3793   bool claim_clean_klass_tree_task() {
3794     if (_clean_klass_tree_claimed) {
3795       return false;
3796     }
3797 
3798     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3799   }
3800 
3801   InstanceKlass* claim_next_klass() {
3802     Klass* klass;
3803     do {
3804       klass =_klass_iterator.next_klass();
3805     } while (klass != NULL && !klass->is_instance_klass());
3806 
3807     // this can be null so don't call InstanceKlass::cast
3808     return static_cast<InstanceKlass*>(klass);
3809   }
3810 
3811 public:
3812 
3813   void clean_klass(InstanceKlass* ik) {
3814     ik->clean_weak_instanceklass_links(_is_alive);
3815   }
3816 
3817   void work() {
3818     ResourceMark rm;
3819 
3820     // One worker will clean the subklass/sibling klass tree.
3821     if (claim_clean_klass_tree_task()) {
3822       Klass::clean_subklass_tree(_is_alive);
3823     }
3824 
3825     // All workers will help cleaning the classes,
3826     InstanceKlass* klass;
3827     while ((klass = claim_next_klass()) != NULL) {
3828       clean_klass(klass);
3829     }
3830   }
3831 };
3832 
3833 // To minimize the remark pause times, the tasks below are done in parallel.
3834 class G1ParallelCleaningTask : public AbstractGangTask {
3835 private:
3836   G1StringSymbolTableUnlinkTask _string_symbol_task;
3837   G1CodeCacheUnloadingTask      _code_cache_task;
3838   G1KlassCleaningTask           _klass_cleaning_task;
3839 
3840 public:
3841   // The constructor is run in the VMThread.
3842   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
3843       AbstractGangTask("Parallel Cleaning"),
3844       _string_symbol_task(is_alive, process_strings, process_symbols),
3845       _code_cache_task(num_workers, is_alive, unloading_occurred),
3846       _klass_cleaning_task(is_alive) {
3847   }
3848 
3849   // The parallel work done by all worker threads.
3850   void work(uint worker_id) {
3851     // Do first pass of code cache cleaning.
3852     _code_cache_task.work_first_pass(worker_id);
3853 
3854     // Let the threads mark that the first pass is done.
3855     _code_cache_task.barrier_mark(worker_id);
3856 
3857     // Clean the Strings and Symbols.
3858     _string_symbol_task.work(worker_id);
3859 
3860     // Wait for all workers to finish the first code cache cleaning pass.
3861     _code_cache_task.barrier_wait(worker_id);
3862 
3863     // Do the second code cache cleaning work, which realize on
3864     // the liveness information gathered during the first pass.
3865     _code_cache_task.work_second_pass(worker_id);
3866 
3867     // Clean all klasses that were not unloaded.
3868     _klass_cleaning_task.work();
3869   }
3870 };
3871 
3872 
3873 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
3874                                         bool process_strings,
3875                                         bool process_symbols,
3876                                         bool class_unloading_occurred) {
3877   uint n_workers = workers()->active_workers();
3878 
3879   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
3880                                         n_workers, class_unloading_occurred);
3881   workers()->run_task(&g1_unlink_task);
3882 }
3883 
3884 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
3885                                                      bool process_strings, bool process_symbols) {
3886   { // Timing scope
3887     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
3888     workers()->run_task(&g1_unlink_task);
3889   }
3890 }
3891 
3892 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3893  private:
3894   DirtyCardQueueSet* _queue;
3895   G1CollectedHeap* _g1h;
3896  public:
3897   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3898     _queue(queue), _g1h(g1h) { }
3899 
3900   virtual void work(uint worker_id) {
3901     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3902     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3903 
3904     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3905     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3906 
3907     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3908   }
3909 };
3910 
3911 void G1CollectedHeap::redirty_logged_cards() {
3912   double redirty_logged_cards_start = os::elapsedTime();
3913 
3914   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3915   dirty_card_queue_set().reset_for_par_iteration();
3916   workers()->run_task(&redirty_task);
3917 
3918   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3919   dcq.merge_bufferlists(&dirty_card_queue_set());
3920   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3921 
3922   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3923 }
3924 
3925 // Weak Reference Processing support
3926 
3927 // An always "is_alive" closure that is used to preserve referents.
3928 // If the object is non-null then it's alive.  Used in the preservation
3929 // of referent objects that are pointed to by reference objects
3930 // discovered by the CM ref processor.
3931 class G1AlwaysAliveClosure: public BoolObjectClosure {
3932   G1CollectedHeap* _g1;
3933 public:
3934   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3935   bool do_object_b(oop p) {
3936     if (p != NULL) {
3937       return true;
3938     }
3939     return false;
3940   }
3941 };
3942 
3943 bool G1STWIsAliveClosure::do_object_b(oop p) {
3944   // An object is reachable if it is outside the collection set,
3945   // or is inside and copied.
3946   return !_g1->is_in_cset(p) || p->is_forwarded();
3947 }
3948 
3949 // Non Copying Keep Alive closure
3950 class G1KeepAliveClosure: public OopClosure {
3951   G1CollectedHeap* _g1;
3952 public:
3953   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3954   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3955   void do_oop(oop* p) {
3956     oop obj = *p;
3957     assert(obj != NULL, "the caller should have filtered out NULL values");
3958 
3959     const InCSetState cset_state = _g1->in_cset_state(obj);
3960     if (!cset_state.is_in_cset_or_humongous()) {
3961       return;
3962     }
3963     if (cset_state.is_in_cset()) {
3964       assert( obj->is_forwarded(), "invariant" );
3965       *p = obj->forwardee();
3966     } else {
3967       assert(!obj->is_forwarded(), "invariant" );
3968       assert(cset_state.is_humongous(),
3969              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3970       _g1->set_humongous_is_live(obj);
3971     }
3972   }
3973 };
3974 
3975 // Copying Keep Alive closure - can be called from both
3976 // serial and parallel code as long as different worker
3977 // threads utilize different G1ParScanThreadState instances
3978 // and different queues.
3979 
3980 class G1CopyingKeepAliveClosure: public OopClosure {
3981   G1CollectedHeap*         _g1h;
3982   OopClosure*              _copy_non_heap_obj_cl;
3983   G1ParScanThreadState*    _par_scan_state;
3984 
3985 public:
3986   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3987                             OopClosure* non_heap_obj_cl,
3988                             G1ParScanThreadState* pss):
3989     _g1h(g1h),
3990     _copy_non_heap_obj_cl(non_heap_obj_cl),
3991     _par_scan_state(pss)
3992   {}
3993 
3994   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3995   virtual void do_oop(      oop* p) { do_oop_work(p); }
3996 
3997   template <class T> void do_oop_work(T* p) {
3998     oop obj = oopDesc::load_decode_heap_oop(p);
3999 
4000     if (_g1h->is_in_cset_or_humongous(obj)) {
4001       // If the referent object has been forwarded (either copied
4002       // to a new location or to itself in the event of an
4003       // evacuation failure) then we need to update the reference
4004       // field and, if both reference and referent are in the G1
4005       // heap, update the RSet for the referent.
4006       //
4007       // If the referent has not been forwarded then we have to keep
4008       // it alive by policy. Therefore we have copy the referent.
4009       //
4010       // If the reference field is in the G1 heap then we can push
4011       // on the PSS queue. When the queue is drained (after each
4012       // phase of reference processing) the object and it's followers
4013       // will be copied, the reference field set to point to the
4014       // new location, and the RSet updated. Otherwise we need to
4015       // use the the non-heap or metadata closures directly to copy
4016       // the referent object and update the pointer, while avoiding
4017       // updating the RSet.
4018 
4019       if (_g1h->is_in_g1_reserved(p)) {
4020         _par_scan_state->push_on_queue(p);
4021       } else {
4022         assert(!Metaspace::contains((const void*)p),
4023                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4024         _copy_non_heap_obj_cl->do_oop(p);
4025       }
4026     }
4027   }
4028 };
4029 
4030 // Serial drain queue closure. Called as the 'complete_gc'
4031 // closure for each discovered list in some of the
4032 // reference processing phases.
4033 
4034 class G1STWDrainQueueClosure: public VoidClosure {
4035 protected:
4036   G1CollectedHeap* _g1h;
4037   G1ParScanThreadState* _par_scan_state;
4038 
4039   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4040 
4041 public:
4042   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4043     _g1h(g1h),
4044     _par_scan_state(pss)
4045   { }
4046 
4047   void do_void() {
4048     G1ParScanThreadState* const pss = par_scan_state();
4049     pss->trim_queue();
4050   }
4051 };
4052 
4053 // Parallel Reference Processing closures
4054 
4055 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4056 // processing during G1 evacuation pauses.
4057 
4058 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4059 private:
4060   G1CollectedHeap*          _g1h;
4061   G1ParScanThreadStateSet*  _pss;
4062   RefToScanQueueSet*        _queues;
4063   WorkGang*                 _workers;
4064   uint                      _active_workers;
4065 
4066 public:
4067   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4068                            G1ParScanThreadStateSet* per_thread_states,
4069                            WorkGang* workers,
4070                            RefToScanQueueSet *task_queues,
4071                            uint n_workers) :
4072     _g1h(g1h),
4073     _pss(per_thread_states),
4074     _queues(task_queues),
4075     _workers(workers),
4076     _active_workers(n_workers)
4077   {
4078     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4079   }
4080 
4081   // Executes the given task using concurrent marking worker threads.
4082   virtual void execute(ProcessTask& task);
4083   virtual void execute(EnqueueTask& task);
4084 };
4085 
4086 // Gang task for possibly parallel reference processing
4087 
4088 class G1STWRefProcTaskProxy: public AbstractGangTask {
4089   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4090   ProcessTask&     _proc_task;
4091   G1CollectedHeap* _g1h;
4092   G1ParScanThreadStateSet* _pss;
4093   RefToScanQueueSet* _task_queues;
4094   ParallelTaskTerminator* _terminator;
4095 
4096 public:
4097   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4098                         G1CollectedHeap* g1h,
4099                         G1ParScanThreadStateSet* per_thread_states,
4100                         RefToScanQueueSet *task_queues,
4101                         ParallelTaskTerminator* terminator) :
4102     AbstractGangTask("Process reference objects in parallel"),
4103     _proc_task(proc_task),
4104     _g1h(g1h),
4105     _pss(per_thread_states),
4106     _task_queues(task_queues),
4107     _terminator(terminator)
4108   {}
4109 
4110   virtual void work(uint worker_id) {
4111     // The reference processing task executed by a single worker.
4112     ResourceMark rm;
4113     HandleMark   hm;
4114 
4115     G1STWIsAliveClosure is_alive(_g1h);
4116 
4117     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4118     pss->set_ref_processor(NULL);
4119 
4120     // Keep alive closure.
4121     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4122 
4123     // Complete GC closure
4124     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4125 
4126     // Call the reference processing task's work routine.
4127     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4128 
4129     // Note we cannot assert that the refs array is empty here as not all
4130     // of the processing tasks (specifically phase2 - pp2_work) execute
4131     // the complete_gc closure (which ordinarily would drain the queue) so
4132     // the queue may not be empty.
4133   }
4134 };
4135 
4136 // Driver routine for parallel reference processing.
4137 // Creates an instance of the ref processing gang
4138 // task and has the worker threads execute it.
4139 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4140   assert(_workers != NULL, "Need parallel worker threads.");
4141 
4142   ParallelTaskTerminator terminator(_active_workers, _queues);
4143   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4144 
4145   _workers->run_task(&proc_task_proxy);
4146 }
4147 
4148 // Gang task for parallel reference enqueueing.
4149 
4150 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4151   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4152   EnqueueTask& _enq_task;
4153 
4154 public:
4155   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4156     AbstractGangTask("Enqueue reference objects in parallel"),
4157     _enq_task(enq_task)
4158   { }
4159 
4160   virtual void work(uint worker_id) {
4161     _enq_task.work(worker_id);
4162   }
4163 };
4164 
4165 // Driver routine for parallel reference enqueueing.
4166 // Creates an instance of the ref enqueueing gang
4167 // task and has the worker threads execute it.
4168 
4169 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4170   assert(_workers != NULL, "Need parallel worker threads.");
4171 
4172   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4173 
4174   _workers->run_task(&enq_task_proxy);
4175 }
4176 
4177 // End of weak reference support closures
4178 
4179 // Abstract task used to preserve (i.e. copy) any referent objects
4180 // that are in the collection set and are pointed to by reference
4181 // objects discovered by the CM ref processor.
4182 
4183 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4184 protected:
4185   G1CollectedHeap*         _g1h;
4186   G1ParScanThreadStateSet* _pss;
4187   RefToScanQueueSet*       _queues;
4188   ParallelTaskTerminator   _terminator;
4189   uint                     _n_workers;
4190 
4191 public:
4192   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4193     AbstractGangTask("ParPreserveCMReferents"),
4194     _g1h(g1h),
4195     _pss(per_thread_states),
4196     _queues(task_queues),
4197     _terminator(workers, _queues),
4198     _n_workers(workers)
4199   {
4200     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4201   }
4202 
4203   void work(uint worker_id) {
4204     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4205 
4206     ResourceMark rm;
4207     HandleMark   hm;
4208 
4209     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4210     pss->set_ref_processor(NULL);
4211     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4212 
4213     // Is alive closure
4214     G1AlwaysAliveClosure always_alive(_g1h);
4215 
4216     // Copying keep alive closure. Applied to referent objects that need
4217     // to be copied.
4218     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4219 
4220     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4221 
4222     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4223     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4224 
4225     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4226     // So this must be true - but assert just in case someone decides to
4227     // change the worker ids.
4228     assert(worker_id < limit, "sanity");
4229     assert(!rp->discovery_is_atomic(), "check this code");
4230 
4231     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4232     for (uint idx = worker_id; idx < limit; idx += stride) {
4233       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4234 
4235       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4236       while (iter.has_next()) {
4237         // Since discovery is not atomic for the CM ref processor, we
4238         // can see some null referent objects.
4239         iter.load_ptrs(DEBUG_ONLY(true));
4240         oop ref = iter.obj();
4241 
4242         // This will filter nulls.
4243         if (iter.is_referent_alive()) {
4244           iter.make_referent_alive();
4245         }
4246         iter.move_to_next();
4247       }
4248     }
4249 
4250     // Drain the queue - which may cause stealing
4251     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4252     drain_queue.do_void();
4253     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4254     assert(pss->queue_is_empty(), "should be");
4255   }
4256 };
4257 
4258 void G1CollectedHeap::process_weak_jni_handles() {
4259   double ref_proc_start = os::elapsedTime();
4260 
4261   G1STWIsAliveClosure is_alive(this);
4262   G1KeepAliveClosure keep_alive(this);
4263   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4264 
4265   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4266   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4267 }
4268 
4269 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4270   // Any reference objects, in the collection set, that were 'discovered'
4271   // by the CM ref processor should have already been copied (either by
4272   // applying the external root copy closure to the discovered lists, or
4273   // by following an RSet entry).
4274   //
4275   // But some of the referents, that are in the collection set, that these
4276   // reference objects point to may not have been copied: the STW ref
4277   // processor would have seen that the reference object had already
4278   // been 'discovered' and would have skipped discovering the reference,
4279   // but would not have treated the reference object as a regular oop.
4280   // As a result the copy closure would not have been applied to the
4281   // referent object.
4282   //
4283   // We need to explicitly copy these referent objects - the references
4284   // will be processed at the end of remarking.
4285   //
4286   // We also need to do this copying before we process the reference
4287   // objects discovered by the STW ref processor in case one of these
4288   // referents points to another object which is also referenced by an
4289   // object discovered by the STW ref processor.
4290   double preserve_cm_referents_time = 0.0;
4291 
4292   // To avoid spawning task when there is no work to do, check that
4293   // a concurrent cycle is active and that some references have been
4294   // discovered.
4295   if (concurrent_mark()->cmThread()->during_cycle() &&
4296       ref_processor_cm()->has_discovered_references()) {
4297     double preserve_cm_referents_start = os::elapsedTime();
4298     uint no_of_gc_workers = workers()->active_workers();
4299     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4300                                                    per_thread_states,
4301                                                    no_of_gc_workers,
4302                                                    _task_queues);
4303     workers()->run_task(&keep_cm_referents);
4304     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4305   }
4306 
4307   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4308 }
4309 
4310 // Weak Reference processing during an evacuation pause (part 1).
4311 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4312   double ref_proc_start = os::elapsedTime();
4313 
4314   ReferenceProcessor* rp = _ref_processor_stw;
4315   assert(rp->discovery_enabled(), "should have been enabled");
4316 
4317   // Closure to test whether a referent is alive.
4318   G1STWIsAliveClosure is_alive(this);
4319 
4320   // Even when parallel reference processing is enabled, the processing
4321   // of JNI refs is serial and performed serially by the current thread
4322   // rather than by a worker. The following PSS will be used for processing
4323   // JNI refs.
4324 
4325   // Use only a single queue for this PSS.
4326   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4327   pss->set_ref_processor(NULL);
4328   assert(pss->queue_is_empty(), "pre-condition");
4329 
4330   // Keep alive closure.
4331   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4332 
4333   // Serial Complete GC closure
4334   G1STWDrainQueueClosure drain_queue(this, pss);
4335 
4336   // Setup the soft refs policy...
4337   rp->setup_policy(false);
4338 
4339   ReferenceProcessorStats stats;
4340   if (!rp->processing_is_mt()) {
4341     // Serial reference processing...
4342     stats = rp->process_discovered_references(&is_alive,
4343                                               &keep_alive,
4344                                               &drain_queue,
4345                                               NULL,
4346                                               _gc_timer_stw);
4347   } else {
4348     uint no_of_gc_workers = workers()->active_workers();
4349 
4350     // Parallel reference processing
4351     assert(no_of_gc_workers <= rp->max_num_q(),
4352            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4353            no_of_gc_workers,  rp->max_num_q());
4354 
4355     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4356     stats = rp->process_discovered_references(&is_alive,
4357                                               &keep_alive,
4358                                               &drain_queue,
4359                                               &par_task_executor,
4360                                               _gc_timer_stw);
4361   }
4362 
4363   _gc_tracer_stw->report_gc_reference_stats(stats);
4364 
4365   // We have completed copying any necessary live referent objects.
4366   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4367 
4368   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4369   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4370 }
4371 
4372 // Weak Reference processing during an evacuation pause (part 2).
4373 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4374   double ref_enq_start = os::elapsedTime();
4375 
4376   ReferenceProcessor* rp = _ref_processor_stw;
4377   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4378 
4379   // Now enqueue any remaining on the discovered lists on to
4380   // the pending list.
4381   if (!rp->processing_is_mt()) {
4382     // Serial reference processing...
4383     rp->enqueue_discovered_references();
4384   } else {
4385     // Parallel reference enqueueing
4386 
4387     uint n_workers = workers()->active_workers();
4388 
4389     assert(n_workers <= rp->max_num_q(),
4390            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4391            n_workers,  rp->max_num_q());
4392 
4393     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4394     rp->enqueue_discovered_references(&par_task_executor);
4395   }
4396 
4397   rp->verify_no_references_recorded();
4398   assert(!rp->discovery_enabled(), "should have been disabled");
4399 
4400   // FIXME
4401   // CM's reference processing also cleans up the string and symbol tables.
4402   // Should we do that here also? We could, but it is a serial operation
4403   // and could significantly increase the pause time.
4404 
4405   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4406   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4407 }
4408 
4409 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4410   double merge_pss_time_start = os::elapsedTime();
4411   per_thread_states->flush();
4412   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4413 }
4414 
4415 void G1CollectedHeap::pre_evacuate_collection_set() {
4416   _expand_heap_after_alloc_failure = true;
4417   _evacuation_failed = false;
4418 
4419   // Disable the hot card cache.
4420   _hot_card_cache->reset_hot_cache_claimed_index();
4421   _hot_card_cache->set_use_cache(false);
4422 
4423   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4424   _preserved_marks_set.assert_empty();
4425 }
4426 
4427 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4428   // Should G1EvacuationFailureALot be in effect for this GC?
4429   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4430 
4431   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4432 
4433   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4434 
4435   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4436   if (collector_state()->during_initial_mark_pause()) {
4437     double start_clear_claimed_marks = os::elapsedTime();
4438 
4439     ClassLoaderDataGraph::clear_claimed_marks();
4440 
4441     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4442     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4443   }
4444 
4445   double start_par_time_sec = os::elapsedTime();
4446   double end_par_time_sec;
4447 
4448   {
4449     const uint n_workers = workers()->active_workers();
4450     G1RootProcessor root_processor(this, n_workers);
4451     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4452 
4453     print_termination_stats_hdr();
4454 
4455     workers()->run_task(&g1_par_task);
4456     end_par_time_sec = os::elapsedTime();
4457 
4458     // Closing the inner scope will execute the destructor
4459     // for the G1RootProcessor object. We record the current
4460     // elapsed time before closing the scope so that time
4461     // taken for the destructor is NOT included in the
4462     // reported parallel time.
4463   }
4464 
4465   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4466   phase_times->record_par_time(par_time_ms);
4467 
4468   double code_root_fixup_time_ms =
4469         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4470   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4471 }
4472 
4473 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4474   // Process any discovered reference objects - we have
4475   // to do this _before_ we retire the GC alloc regions
4476   // as we may have to copy some 'reachable' referent
4477   // objects (and their reachable sub-graphs) that were
4478   // not copied during the pause.
4479   if (g1_policy()->should_process_references()) {
4480     preserve_cm_referents(per_thread_states);
4481     process_discovered_references(per_thread_states);
4482   } else {
4483     ref_processor_stw()->verify_no_references_recorded();
4484     process_weak_jni_handles();
4485   }
4486 
4487   if (G1StringDedup::is_enabled()) {
4488     double fixup_start = os::elapsedTime();
4489 
4490     G1STWIsAliveClosure is_alive(this);
4491     G1KeepAliveClosure keep_alive(this);
4492     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4493 
4494     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4495     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4496   }
4497 
4498   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4499 
4500   if (evacuation_failed()) {
4501     restore_after_evac_failure();
4502 
4503     // Reset the G1EvacuationFailureALot counters and flags
4504     // Note: the values are reset only when an actual
4505     // evacuation failure occurs.
4506     NOT_PRODUCT(reset_evacuation_should_fail();)
4507   }
4508 
4509   _preserved_marks_set.assert_empty();
4510 
4511   // Enqueue any remaining references remaining on the STW
4512   // reference processor's discovered lists. We need to do
4513   // this after the card table is cleaned (and verified) as
4514   // the act of enqueueing entries on to the pending list
4515   // will log these updates (and dirty their associated
4516   // cards). We need these updates logged to update any
4517   // RSets.
4518   if (g1_policy()->should_process_references()) {
4519     enqueue_discovered_references(per_thread_states);
4520   } else {
4521     g1_policy()->phase_times()->record_ref_enq_time(0);
4522   }
4523 
4524   _allocator->release_gc_alloc_regions(evacuation_info);
4525 
4526   merge_per_thread_state_info(per_thread_states);
4527 
4528   // Reset and re-enable the hot card cache.
4529   // Note the counts for the cards in the regions in the
4530   // collection set are reset when the collection set is freed.
4531   _hot_card_cache->reset_hot_cache();
4532   _hot_card_cache->set_use_cache(true);
4533 
4534   purge_code_root_memory();
4535 
4536   redirty_logged_cards();
4537 #if defined(COMPILER2) || INCLUDE_JVMCI
4538   DerivedPointerTable::update_pointers();
4539 #endif
4540   g1_policy()->print_age_table();
4541 }
4542 
4543 void G1CollectedHeap::record_obj_copy_mem_stats() {
4544   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4545 
4546   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4547                                                create_g1_evac_summary(&_old_evac_stats));
4548 }
4549 
4550 void G1CollectedHeap::free_region(HeapRegion* hr,
4551                                   FreeRegionList* free_list,
4552                                   bool skip_remset,
4553                                   bool skip_hot_card_cache,
4554                                   bool locked) {
4555   assert(!hr->is_free(), "the region should not be free");
4556   assert(!hr->is_empty(), "the region should not be empty");
4557   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4558   assert(free_list != NULL, "pre-condition");
4559 
4560   if (G1VerifyBitmaps) {
4561     MemRegion mr(hr->bottom(), hr->end());
4562     concurrent_mark()->clearRangePrevBitmap(mr);
4563   }
4564 
4565   // Clear the card counts for this region.
4566   // Note: we only need to do this if the region is not young
4567   // (since we don't refine cards in young regions).
4568   if (!skip_hot_card_cache && !hr->is_young()) {
4569     _hot_card_cache->reset_card_counts(hr);
4570   }
4571   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4572   free_list->add_ordered(hr);
4573 }
4574 
4575 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4576                                             FreeRegionList* free_list,
4577                                             bool skip_remset) {
4578   assert(hr->is_humongous(), "this is only for humongous regions");
4579   assert(free_list != NULL, "pre-condition");
4580   hr->clear_humongous();
4581   free_region(hr, free_list, skip_remset);
4582 }
4583 
4584 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4585                                            const uint humongous_regions_removed) {
4586   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4587     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4588     _old_set.bulk_remove(old_regions_removed);
4589     _humongous_set.bulk_remove(humongous_regions_removed);
4590   }
4591 
4592 }
4593 
4594 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4595   assert(list != NULL, "list can't be null");
4596   if (!list->is_empty()) {
4597     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4598     _hrm.insert_list_into_free_list(list);
4599   }
4600 }
4601 
4602 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4603   decrease_used(bytes);
4604 }
4605 
4606 class G1ParScrubRemSetTask: public AbstractGangTask {
4607 protected:
4608   G1RemSet* _g1rs;
4609   HeapRegionClaimer _hrclaimer;
4610 
4611 public:
4612   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4613     AbstractGangTask("G1 ScrubRS"),
4614     _g1rs(g1_rs),
4615     _hrclaimer(num_workers) {
4616   }
4617 
4618   void work(uint worker_id) {
4619     _g1rs->scrub(worker_id, &_hrclaimer);
4620   }
4621 };
4622 
4623 void G1CollectedHeap::scrub_rem_set() {
4624   uint num_workers = workers()->active_workers();
4625   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4626   workers()->run_task(&g1_par_scrub_rs_task);
4627 }
4628 
4629 class G1FreeCollectionSetTask : public AbstractGangTask {
4630 private:
4631 
4632   // Closure applied to all regions in the collection set to do work that needs to
4633   // be done serially in a single thread.
4634   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4635   private:
4636     EvacuationInfo* _evacuation_info;
4637     const size_t* _surviving_young_words;
4638 
4639     // Bytes used in successfully evacuated regions before the evacuation.
4640     size_t _before_used_bytes;
4641     // Bytes used in unsucessfully evacuated regions before the evacuation
4642     size_t _after_used_bytes;
4643 
4644     size_t _bytes_allocated_in_old_since_last_gc;
4645 
4646     size_t _failure_used_words;
4647     size_t _failure_waste_words;
4648 
4649     FreeRegionList _local_free_list;
4650   public:
4651     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4652       HeapRegionClosure(),
4653       _evacuation_info(evacuation_info),
4654       _surviving_young_words(surviving_young_words),
4655       _before_used_bytes(0),
4656       _after_used_bytes(0),
4657       _bytes_allocated_in_old_since_last_gc(0),
4658       _failure_used_words(0),
4659       _failure_waste_words(0),
4660       _local_free_list("Local Region List for CSet Freeing") {
4661     }
4662 
4663     virtual bool doHeapRegion(HeapRegion* r) {
4664       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4665 
4666       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4667       g1h->clear_in_cset(r);
4668 
4669       if (r->is_young()) {
4670         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4671                "Young index %d is wrong for region %u of type %s with %u young regions",
4672                r->young_index_in_cset(),
4673                r->hrm_index(),
4674                r->get_type_str(),
4675                g1h->collection_set()->young_region_length());
4676         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4677         r->record_surv_words_in_group(words_survived);
4678       }
4679 
4680       if (!r->evacuation_failed()) {
4681         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4682         _before_used_bytes += r->used();
4683         g1h->free_region(r,
4684                          &_local_free_list,
4685                          true, /* skip_remset */
4686                          true, /* skip_hot_card_cache */
4687                          true  /* locked */);
4688       } else {
4689         r->uninstall_surv_rate_group();
4690         r->set_young_index_in_cset(-1);
4691         r->set_evacuation_failed(false);
4692         // When moving a young gen region to old gen, we "allocate" that whole region
4693         // there. This is in addition to any already evacuated objects. Notify the
4694         // policy about that.
4695         // Old gen regions do not cause an additional allocation: both the objects
4696         // still in the region and the ones already moved are accounted for elsewhere.
4697         if (r->is_young()) {
4698           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4699         }
4700         // The region is now considered to be old.
4701         r->set_old();
4702         // Do some allocation statistics accounting. Regions that failed evacuation
4703         // are always made old, so there is no need to update anything in the young
4704         // gen statistics, but we need to update old gen statistics.
4705         size_t used_words = r->marked_bytes() / HeapWordSize;
4706 
4707         _failure_used_words += used_words;
4708         _failure_waste_words += HeapRegion::GrainWords - used_words;
4709 
4710         g1h->old_set_add(r);
4711         _after_used_bytes += r->used();
4712       }
4713       return false;
4714     }
4715 
4716     void complete_work() {
4717       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4718 
4719       _evacuation_info->set_regions_freed(_local_free_list.length());
4720       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4721 
4722       g1h->prepend_to_freelist(&_local_free_list);
4723       g1h->decrement_summary_bytes(_before_used_bytes);
4724 
4725       G1Policy* policy = g1h->g1_policy();
4726       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4727 
4728       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4729     }
4730   };
4731 
4732   G1CollectionSet* _collection_set;
4733   G1SerialFreeCollectionSetClosure _cl;
4734   const size_t* _surviving_young_words;
4735 
4736   size_t _rs_lengths;
4737 
4738   volatile jint _serial_work_claim;
4739 
4740   struct WorkItem {
4741     uint region_idx;
4742     bool is_young;
4743     bool evacuation_failed;
4744 
4745     WorkItem(HeapRegion* r) {
4746       region_idx = r->hrm_index();
4747       is_young = r->is_young();
4748       evacuation_failed = r->evacuation_failed();
4749     }
4750   };
4751 
4752   volatile size_t _parallel_work_claim;
4753   size_t _num_work_items;
4754   WorkItem* _work_items;
4755 
4756   void do_serial_work() {
4757     // Need to grab the lock to be allowed to modify the old region list.
4758     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4759     _collection_set->iterate(&_cl);
4760   }
4761 
4762   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4763     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4764 
4765     HeapRegion* r = g1h->region_at(region_idx);
4766     assert(!g1h->is_on_master_free_list(r), "sanity");
4767 
4768     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4769 
4770     if (!is_young) {
4771       g1h->_hot_card_cache->reset_card_counts(r);
4772     }
4773 
4774     if (!evacuation_failed) {
4775       r->rem_set()->clear_locked();
4776     }
4777   }
4778 
4779   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4780   private:
4781     size_t _cur_idx;
4782     WorkItem* _work_items;
4783   public:
4784     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4785 
4786     virtual bool doHeapRegion(HeapRegion* r) {
4787       _work_items[_cur_idx++] = WorkItem(r);
4788       return false;
4789     }
4790   };
4791 
4792   void prepare_work() {
4793     G1PrepareFreeCollectionSetClosure cl(_work_items);
4794     _collection_set->iterate(&cl);
4795   }
4796 
4797   void complete_work() {
4798     _cl.complete_work();
4799 
4800     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4801     policy->record_max_rs_lengths(_rs_lengths);
4802     policy->cset_regions_freed();
4803   }
4804 public:
4805   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4806     AbstractGangTask("G1 Free Collection Set"),
4807     _cl(evacuation_info, surviving_young_words),
4808     _collection_set(collection_set),
4809     _surviving_young_words(surviving_young_words),
4810     _serial_work_claim(0),
4811     _rs_lengths(0),
4812     _parallel_work_claim(0),
4813     _num_work_items(collection_set->region_length()),
4814     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4815     prepare_work();
4816   }
4817 
4818   ~G1FreeCollectionSetTask() {
4819     complete_work();
4820     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4821   }
4822 
4823   // Chunk size for work distribution. The chosen value has been determined experimentally
4824   // to be a good tradeoff between overhead and achievable parallelism.
4825   static uint chunk_size() { return 32; }
4826 
4827   virtual void work(uint worker_id) {
4828     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4829 
4830     // Claim serial work.
4831     if (_serial_work_claim == 0) {
4832       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4833       if (value == 0) {
4834         double serial_time = os::elapsedTime();
4835         do_serial_work();
4836         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4837       }
4838     }
4839 
4840     // Start parallel work.
4841     double young_time = 0.0;
4842     bool has_young_time = false;
4843     double non_young_time = 0.0;
4844     bool has_non_young_time = false;
4845 
4846     while (true) {
4847       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4848       size_t cur = end - chunk_size();
4849 
4850       if (cur >= _num_work_items) {
4851         break;
4852       }
4853 
4854       double start_time = os::elapsedTime();
4855 
4856       end = MIN2(end, _num_work_items);
4857 
4858       for (; cur < end; cur++) {
4859         bool is_young = _work_items[cur].is_young;
4860 
4861         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4862 
4863         double end_time = os::elapsedTime();
4864         double time_taken = end_time - start_time;
4865         if (is_young) {
4866           young_time += time_taken;
4867           has_young_time = true;
4868         } else {
4869           non_young_time += time_taken;
4870           has_non_young_time = true;
4871         }
4872         start_time = end_time;
4873       }
4874     }
4875 
4876     if (has_young_time) {
4877       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4878     }
4879     if (has_non_young_time) {
4880       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4881     }
4882   }
4883 };
4884 
4885 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4886   _eden.clear();
4887 
4888   double free_cset_start_time = os::elapsedTime();
4889 
4890   {
4891     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4892     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4893 
4894     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4895 
4896     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4897                         cl.name(),
4898                         num_workers,
4899                         _collection_set.region_length());
4900     workers()->run_task(&cl, num_workers);
4901   }
4902   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4903 
4904   collection_set->clear();
4905 }
4906 
4907 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4908  private:
4909   FreeRegionList* _free_region_list;
4910   HeapRegionSet* _proxy_set;
4911   uint _humongous_regions_removed;
4912   size_t _freed_bytes;
4913  public:
4914 
4915   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4916     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
4917   }
4918 
4919   virtual bool doHeapRegion(HeapRegion* r) {
4920     if (!r->is_starts_humongous()) {
4921       return false;
4922     }
4923 
4924     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4925 
4926     oop obj = (oop)r->bottom();
4927     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4928 
4929     // The following checks whether the humongous object is live are sufficient.
4930     // The main additional check (in addition to having a reference from the roots
4931     // or the young gen) is whether the humongous object has a remembered set entry.
4932     //
4933     // A humongous object cannot be live if there is no remembered set for it
4934     // because:
4935     // - there can be no references from within humongous starts regions referencing
4936     // the object because we never allocate other objects into them.
4937     // (I.e. there are no intra-region references that may be missed by the
4938     // remembered set)
4939     // - as soon there is a remembered set entry to the humongous starts region
4940     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4941     // until the end of a concurrent mark.
4942     //
4943     // It is not required to check whether the object has been found dead by marking
4944     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4945     // all objects allocated during that time are considered live.
4946     // SATB marking is even more conservative than the remembered set.
4947     // So if at this point in the collection there is no remembered set entry,
4948     // nobody has a reference to it.
4949     // At the start of collection we flush all refinement logs, and remembered sets
4950     // are completely up-to-date wrt to references to the humongous object.
4951     //
4952     // Other implementation considerations:
4953     // - never consider object arrays at this time because they would pose
4954     // considerable effort for cleaning up the the remembered sets. This is
4955     // required because stale remembered sets might reference locations that
4956     // are currently allocated into.
4957     uint region_idx = r->hrm_index();
4958     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4959         !r->rem_set()->is_empty()) {
4960       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4961                                region_idx,
4962                                (size_t)obj->size() * HeapWordSize,
4963                                p2i(r->bottom()),
4964                                r->rem_set()->occupied(),
4965                                r->rem_set()->strong_code_roots_list_length(),
4966                                next_bitmap->isMarked(r->bottom()),
4967                                g1h->is_humongous_reclaim_candidate(region_idx),
4968                                obj->is_typeArray()
4969                               );
4970       return false;
4971     }
4972 
4973     guarantee(obj->is_typeArray(),
4974               "Only eagerly reclaiming type arrays is supported, but the object "
4975               PTR_FORMAT " is not.", p2i(r->bottom()));
4976 
4977     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4978                              region_idx,
4979                              (size_t)obj->size() * HeapWordSize,
4980                              p2i(r->bottom()),
4981                              r->rem_set()->occupied(),
4982                              r->rem_set()->strong_code_roots_list_length(),
4983                              next_bitmap->isMarked(r->bottom()),
4984                              g1h->is_humongous_reclaim_candidate(region_idx),
4985                              obj->is_typeArray()
4986                             );
4987 
4988     // Need to clear mark bit of the humongous object if already set.
4989     if (next_bitmap->isMarked(r->bottom())) {
4990       next_bitmap->clear(r->bottom());
4991     }
4992     do {
4993       HeapRegion* next = g1h->next_region_in_humongous(r);
4994       _freed_bytes += r->used();
4995       r->set_containing_set(NULL);
4996       _humongous_regions_removed++;
4997       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4998       r = next;
4999     } while (r != NULL);
5000 
5001     return false;
5002   }
5003 
5004   uint humongous_free_count() {
5005     return _humongous_regions_removed;
5006   }
5007 
5008   size_t bytes_freed() const {
5009     return _freed_bytes;
5010   }
5011 };
5012 
5013 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5014   assert_at_safepoint(true);
5015 
5016   if (!G1EagerReclaimHumongousObjects ||
5017       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5018     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5019     return;
5020   }
5021 
5022   double start_time = os::elapsedTime();
5023 
5024   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5025 
5026   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5027   heap_region_iterate(&cl);
5028 
5029   remove_from_old_sets(0, cl.humongous_free_count());
5030 
5031   G1HRPrinter* hrp = hr_printer();
5032   if (hrp->is_active()) {
5033     FreeRegionListIterator iter(&local_cleanup_list);
5034     while (iter.more_available()) {
5035       HeapRegion* hr = iter.get_next();
5036       hrp->cleanup(hr);
5037     }
5038   }
5039 
5040   prepend_to_freelist(&local_cleanup_list);
5041   decrement_summary_bytes(cl.bytes_freed());
5042 
5043   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5044                                                                     cl.humongous_free_count());
5045 }
5046 
5047 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5048 public:
5049   virtual bool doHeapRegion(HeapRegion* r) {
5050     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5051     G1CollectedHeap::heap()->clear_in_cset(r);
5052     r->set_young_index_in_cset(-1);
5053     return false;
5054   }
5055 };
5056 
5057 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5058   G1AbandonCollectionSetClosure cl;
5059   collection_set->iterate(&cl);
5060 
5061   collection_set->clear();
5062   collection_set->stop_incremental_building();
5063 }
5064 
5065 void G1CollectedHeap::set_free_regions_coming() {
5066   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5067 
5068   assert(!free_regions_coming(), "pre-condition");
5069   _free_regions_coming = true;
5070 }
5071 
5072 void G1CollectedHeap::reset_free_regions_coming() {
5073   assert(free_regions_coming(), "pre-condition");
5074 
5075   {
5076     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5077     _free_regions_coming = false;
5078     SecondaryFreeList_lock->notify_all();
5079   }
5080 
5081   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5082 }
5083 
5084 void G1CollectedHeap::wait_while_free_regions_coming() {
5085   // Most of the time we won't have to wait, so let's do a quick test
5086   // first before we take the lock.
5087   if (!free_regions_coming()) {
5088     return;
5089   }
5090 
5091   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5092 
5093   {
5094     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5095     while (free_regions_coming()) {
5096       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5097     }
5098   }
5099 
5100   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5101 }
5102 
5103 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5104   return _allocator->is_retained_old_region(hr);
5105 }
5106 
5107 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5108   _eden.add(hr);
5109   _g1_policy->set_region_eden(hr);
5110 }
5111 
5112 #ifdef ASSERT
5113 
5114 class NoYoungRegionsClosure: public HeapRegionClosure {
5115 private:
5116   bool _success;
5117 public:
5118   NoYoungRegionsClosure() : _success(true) { }
5119   bool doHeapRegion(HeapRegion* r) {
5120     if (r->is_young()) {
5121       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5122                             p2i(r->bottom()), p2i(r->end()));
5123       _success = false;
5124     }
5125     return false;
5126   }
5127   bool success() { return _success; }
5128 };
5129 
5130 bool G1CollectedHeap::check_young_list_empty() {
5131   bool ret = (young_regions_count() == 0);
5132 
5133   NoYoungRegionsClosure closure;
5134   heap_region_iterate(&closure);
5135   ret = ret && closure.success();
5136 
5137   return ret;
5138 }
5139 
5140 #endif // ASSERT
5141 
5142 class TearDownRegionSetsClosure : public HeapRegionClosure {
5143 private:
5144   HeapRegionSet *_old_set;
5145 
5146 public:
5147   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5148 
5149   bool doHeapRegion(HeapRegion* r) {
5150     if (r->is_old()) {
5151       _old_set->remove(r);
5152     } else if(r->is_young()) {
5153       r->uninstall_surv_rate_group();
5154     } else {
5155       // We ignore free regions, we'll empty the free list afterwards.
5156       // We ignore humongous regions, we're not tearing down the
5157       // humongous regions set.
5158       assert(r->is_free() || r->is_humongous(),
5159              "it cannot be another type");
5160     }
5161     return false;
5162   }
5163 
5164   ~TearDownRegionSetsClosure() {
5165     assert(_old_set->is_empty(), "post-condition");
5166   }
5167 };
5168 
5169 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5170   assert_at_safepoint(true /* should_be_vm_thread */);
5171 
5172   if (!free_list_only) {
5173     TearDownRegionSetsClosure cl(&_old_set);
5174     heap_region_iterate(&cl);
5175 
5176     // Note that emptying the _young_list is postponed and instead done as
5177     // the first step when rebuilding the regions sets again. The reason for
5178     // this is that during a full GC string deduplication needs to know if
5179     // a collected region was young or old when the full GC was initiated.
5180   }
5181   _hrm.remove_all_free_regions();
5182 }
5183 
5184 void G1CollectedHeap::increase_used(size_t bytes) {
5185   _summary_bytes_used += bytes;
5186 }
5187 
5188 void G1CollectedHeap::decrease_used(size_t bytes) {
5189   assert(_summary_bytes_used >= bytes,
5190          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5191          _summary_bytes_used, bytes);
5192   _summary_bytes_used -= bytes;
5193 }
5194 
5195 void G1CollectedHeap::set_used(size_t bytes) {
5196   _summary_bytes_used = bytes;
5197 }
5198 
5199 class RebuildRegionSetsClosure : public HeapRegionClosure {
5200 private:
5201   bool            _free_list_only;
5202   HeapRegionSet*   _old_set;
5203   HeapRegionManager*   _hrm;
5204   size_t          _total_used;
5205 
5206 public:
5207   RebuildRegionSetsClosure(bool free_list_only,
5208                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5209     _free_list_only(free_list_only),
5210     _old_set(old_set), _hrm(hrm), _total_used(0) {
5211     assert(_hrm->num_free_regions() == 0, "pre-condition");
5212     if (!free_list_only) {
5213       assert(_old_set->is_empty(), "pre-condition");
5214     }
5215   }
5216 
5217   bool doHeapRegion(HeapRegion* r) {
5218     if (r->is_empty()) {
5219       // Add free regions to the free list
5220       r->set_free();
5221       r->set_allocation_context(AllocationContext::system());
5222       _hrm->insert_into_free_list(r);
5223     } else if (!_free_list_only) {
5224 
5225       if (r->is_humongous()) {
5226         // We ignore humongous regions. We left the humongous set unchanged.
5227       } else {
5228         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5229         // We now consider all regions old, so register as such. Leave
5230         // archive regions set that way, however, while still adding
5231         // them to the old set.
5232         if (!r->is_archive()) {
5233           r->set_old();
5234         }
5235         _old_set->add(r);
5236       }
5237       _total_used += r->used();
5238     }
5239 
5240     return false;
5241   }
5242 
5243   size_t total_used() {
5244     return _total_used;
5245   }
5246 };
5247 
5248 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5249   assert_at_safepoint(true /* should_be_vm_thread */);
5250 
5251   if (!free_list_only) {
5252     _eden.clear();
5253     _survivor.clear();
5254   }
5255 
5256   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5257   heap_region_iterate(&cl);
5258 
5259   if (!free_list_only) {
5260     set_used(cl.total_used());
5261     if (_archive_allocator != NULL) {
5262       _archive_allocator->clear_used();
5263     }
5264   }
5265   assert(used_unlocked() == recalculate_used(),
5266          "inconsistent used_unlocked(), "
5267          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5268          used_unlocked(), recalculate_used());
5269 }
5270 
5271 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5272   _refine_cte_cl->set_concurrent(concurrent);
5273 }
5274 
5275 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5276   HeapRegion* hr = heap_region_containing(p);
5277   return hr->is_in(p);
5278 }
5279 
5280 // Methods for the mutator alloc region
5281 
5282 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5283                                                       bool force) {
5284   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5285   assert(!force || g1_policy()->can_expand_young_list(),
5286          "if force is true we should be able to expand the young list");
5287   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5288   if (force || should_allocate) {
5289     HeapRegion* new_alloc_region = new_region(word_size,
5290                                               false /* is_old */,
5291                                               false /* do_expand */);
5292     if (new_alloc_region != NULL) {
5293       set_region_short_lived_locked(new_alloc_region);
5294       _hr_printer.alloc(new_alloc_region, !should_allocate);
5295       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5296       return new_alloc_region;
5297     }
5298   }
5299   return NULL;
5300 }
5301 
5302 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5303                                                   size_t allocated_bytes) {
5304   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5305   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5306 
5307   collection_set()->add_eden_region(alloc_region);
5308   increase_used(allocated_bytes);
5309   _hr_printer.retire(alloc_region);
5310   // We update the eden sizes here, when the region is retired,
5311   // instead of when it's allocated, since this is the point that its
5312   // used space has been recored in _summary_bytes_used.
5313   g1mm()->update_eden_size();
5314 }
5315 
5316 // Methods for the GC alloc regions
5317 
5318 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5319   if (dest.is_old()) {
5320     return true;
5321   } else {
5322     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5323   }
5324 }
5325 
5326 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5327   assert(FreeList_lock->owned_by_self(), "pre-condition");
5328 
5329   if (!has_more_regions(dest)) {
5330     return NULL;
5331   }
5332 
5333   const bool is_survivor = dest.is_young();
5334 
5335   HeapRegion* new_alloc_region = new_region(word_size,
5336                                             !is_survivor,
5337                                             true /* do_expand */);
5338   if (new_alloc_region != NULL) {
5339     // We really only need to do this for old regions given that we
5340     // should never scan survivors. But it doesn't hurt to do it
5341     // for survivors too.
5342     new_alloc_region->record_timestamp();
5343     if (is_survivor) {
5344       new_alloc_region->set_survivor();
5345       _survivor.add(new_alloc_region);
5346       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5347     } else {
5348       new_alloc_region->set_old();
5349       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5350     }
5351     _hr_printer.alloc(new_alloc_region);
5352     bool during_im = collector_state()->during_initial_mark_pause();
5353     new_alloc_region->note_start_of_copying(during_im);
5354     return new_alloc_region;
5355   }
5356   return NULL;
5357 }
5358 
5359 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5360                                              size_t allocated_bytes,
5361                                              InCSetState dest) {
5362   bool during_im = collector_state()->during_initial_mark_pause();
5363   alloc_region->note_end_of_copying(during_im);
5364   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5365   if (dest.is_old()) {
5366     _old_set.add(alloc_region);
5367   }
5368   _hr_printer.retire(alloc_region);
5369 }
5370 
5371 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5372   bool expanded = false;
5373   uint index = _hrm.find_highest_free(&expanded);
5374 
5375   if (index != G1_NO_HRM_INDEX) {
5376     if (expanded) {
5377       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5378                                 HeapRegion::GrainWords * HeapWordSize);
5379     }
5380     _hrm.allocate_free_regions_starting_at(index, 1);
5381     return region_at(index);
5382   }
5383   return NULL;
5384 }
5385 
5386 // Optimized nmethod scanning
5387 
5388 class RegisterNMethodOopClosure: public OopClosure {
5389   G1CollectedHeap* _g1h;
5390   nmethod* _nm;
5391 
5392   template <class T> void do_oop_work(T* p) {
5393     T heap_oop = oopDesc::load_heap_oop(p);
5394     if (!oopDesc::is_null(heap_oop)) {
5395       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5396       HeapRegion* hr = _g1h->heap_region_containing(obj);
5397       assert(!hr->is_continues_humongous(),
5398              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5399              " starting at " HR_FORMAT,
5400              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5401 
5402       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5403       hr->add_strong_code_root_locked(_nm);
5404     }
5405   }
5406 
5407 public:
5408   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5409     _g1h(g1h), _nm(nm) {}
5410 
5411   void do_oop(oop* p)       { do_oop_work(p); }
5412   void do_oop(narrowOop* p) { do_oop_work(p); }
5413 };
5414 
5415 class UnregisterNMethodOopClosure: public OopClosure {
5416   G1CollectedHeap* _g1h;
5417   nmethod* _nm;
5418 
5419   template <class T> void do_oop_work(T* p) {
5420     T heap_oop = oopDesc::load_heap_oop(p);
5421     if (!oopDesc::is_null(heap_oop)) {
5422       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5423       HeapRegion* hr = _g1h->heap_region_containing(obj);
5424       assert(!hr->is_continues_humongous(),
5425              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5426              " starting at " HR_FORMAT,
5427              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5428 
5429       hr->remove_strong_code_root(_nm);
5430     }
5431   }
5432 
5433 public:
5434   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5435     _g1h(g1h), _nm(nm) {}
5436 
5437   void do_oop(oop* p)       { do_oop_work(p); }
5438   void do_oop(narrowOop* p) { do_oop_work(p); }
5439 };
5440 
5441 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5442   CollectedHeap::register_nmethod(nm);
5443 
5444   guarantee(nm != NULL, "sanity");
5445   RegisterNMethodOopClosure reg_cl(this, nm);
5446   nm->oops_do(&reg_cl);
5447 }
5448 
5449 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5450   CollectedHeap::unregister_nmethod(nm);
5451 
5452   guarantee(nm != NULL, "sanity");
5453   UnregisterNMethodOopClosure reg_cl(this, nm);
5454   nm->oops_do(&reg_cl, true);
5455 }
5456 
5457 void G1CollectedHeap::purge_code_root_memory() {
5458   double purge_start = os::elapsedTime();
5459   G1CodeRootSet::purge();
5460   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5461   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5462 }
5463 
5464 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5465   G1CollectedHeap* _g1h;
5466 
5467 public:
5468   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5469     _g1h(g1h) {}
5470 
5471   void do_code_blob(CodeBlob* cb) {
5472     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5473     if (nm == NULL) {
5474       return;
5475     }
5476 
5477     if (ScavengeRootsInCode) {
5478       _g1h->register_nmethod(nm);
5479     }
5480   }
5481 };
5482 
5483 void G1CollectedHeap::rebuild_strong_code_roots() {
5484   RebuildStrongCodeRootClosure blob_cl(this);
5485   CodeCache::blobs_do(&blob_cl);
5486 }