/* * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_UTILITIES_BITMAP_HPP #define SHARE_UTILITIES_BITMAP_HPP #include "memory/allocation.hpp" #include "runtime/atomic.hpp" // Forward decl; class BitMapClosure; // Operations for bitmaps represented as arrays of unsigned integers. // Bits are numbered from 0 to size-1. // The "abstract" base BitMap class. // // The constructor and destructor are protected to prevent // creation of BitMap instances outside of the BitMap class. // // The BitMap class doesn't use virtual calls on purpose, // this ensures that we don't get a vtable unnecessarily. // // The allocation of the backing storage for the BitMap are handled by // the subclasses. BitMap doesn't allocate or delete backing storage. class BitMap { friend class BitMap2D; public: typedef size_t idx_t; // Type used for bit and word indices. typedef uintptr_t bm_word_t; // Element type of array that represents the // bitmap, with BitsPerWord bits per element. // If this were to fail, there are lots of places that would need repair. STATIC_ASSERT((sizeof(bm_word_t) * BitsPerByte) == BitsPerWord); // Hints for range sizes. typedef enum { unknown_range, small_range, large_range } RangeSizeHint; private: bm_word_t* _map; // First word in bitmap idx_t _size; // Size of bitmap (in bits) // The maximum allowable size of a bitmap, in words or bits. // Limit max_size_in_bits so aligning up to a word boundary never overflows. static idx_t max_size_in_words() { return raw_to_words_align_down(~idx_t(0)); } static idx_t max_size_in_bits() { return max_size_in_words() * BitsPerWord; } // Assumes relevant validity checking for bit has already been done. static idx_t raw_to_words_align_up(idx_t bit) { return raw_to_words_align_down(bit + (BitsPerWord - 1)); } // Assumes relevant validity checking for bit has already been done. static idx_t raw_to_words_align_down(idx_t bit) { return bit >> LogBitsPerWord; } // Word-aligns bit and converts it to a word offset. // precondition: bit <= size() idx_t to_words_align_up(idx_t bit) const { verify_limit(bit); return raw_to_words_align_up(bit); } // Word-aligns bit and converts it to a word offset. // precondition: bit <= size() inline idx_t to_words_align_down(idx_t bit) const { verify_limit(bit); return raw_to_words_align_down(bit); } // Helper for get_next_{zero,one}_bit variants. // - flip designates whether searching for 1s or 0s. Must be one of // find_{zeros,ones}_flip. // - aligned_right is true if r_index is a priori on a bm_word_t boundary. template inline idx_t get_next_bit_impl(idx_t l_index, idx_t r_index) const; // Values for get_next_bit_impl flip parameter. static const bm_word_t find_ones_flip = 0; static const bm_word_t find_zeros_flip = ~(bm_word_t)0; // Threshold for performing small range operation, even when large range // operation was requested. Measured in words. static const size_t small_range_words = 32; static bool is_small_range_of_words(idx_t beg_full_word, idx_t end_full_word); protected: // Return the position of bit within the word that contains it (e.g., if // bitmap words are 32 bits, return a number 0 <= n <= 31). static idx_t bit_in_word(idx_t bit) { return bit & (BitsPerWord - 1); } // Return a mask that will select the specified bit, when applied to the word // containing the bit. static bm_word_t bit_mask(idx_t bit) { return (bm_word_t)1 << bit_in_word(bit); } // Return the bit number of the first bit in the specified word. static idx_t bit_index(idx_t word) { return word << LogBitsPerWord; } // Return the array of bitmap words, or a specific word from it. bm_word_t* map() { return _map; } const bm_word_t* map() const { return _map; } bm_word_t map(idx_t word) const { return _map[word]; } // Return a pointer to the word containing the specified bit. bm_word_t* word_addr(idx_t bit) { return map() + to_words_align_down(bit); } const bm_word_t* word_addr(idx_t bit) const { return map() + to_words_align_down(bit); } // Set a word to a specified value or to all ones; clear a word. void set_word (idx_t word, bm_word_t val) { _map[word] = val; } void set_word (idx_t word) { set_word(word, ~(bm_word_t)0); } void clear_word(idx_t word) { _map[word] = 0; } static inline const bm_word_t load_word_ordered(const volatile bm_word_t* const addr, atomic_memory_order memory_order); // Utilities for ranges of bits. Ranges are half-open [beg, end). // Ranges within a single word. bm_word_t inverted_bit_mask_for_range(idx_t beg, idx_t end) const; void set_range_within_word (idx_t beg, idx_t end); void clear_range_within_word (idx_t beg, idx_t end); void par_put_range_within_word (idx_t beg, idx_t end, bool value); // Ranges spanning entire words. void set_range_of_words (idx_t beg, idx_t end); void clear_range_of_words (idx_t beg, idx_t end); void set_large_range_of_words (idx_t beg, idx_t end); void clear_large_range_of_words (idx_t beg, idx_t end); static void clear_range_of_words(bm_word_t* map, idx_t beg, idx_t end); // Verification. // Verify size_in_bits does not exceed max_size_in_bits(). static void verify_size(idx_t size_in_bits) NOT_DEBUG_RETURN; // Verify bit is less than size(). void verify_index(idx_t bit) const NOT_DEBUG_RETURN; // Verify bit is not greater than size(). void verify_limit(idx_t bit) const NOT_DEBUG_RETURN; // Verify [beg,end) is a valid range, e.g. beg <= end <= size(). void verify_range(idx_t beg, idx_t end) const NOT_DEBUG_RETURN; // Statistics. static const idx_t* _pop_count_table; static void init_pop_count_table(); static idx_t num_set_bits(bm_word_t w); static idx_t num_set_bits_from_table(unsigned char c); // Allocation Helpers. // Allocates and clears the bitmap memory. template static bm_word_t* allocate(const Allocator&, idx_t size_in_bits, bool clear = true); // Reallocates and clears the new bitmap memory. template static bm_word_t* reallocate(const Allocator&, bm_word_t* map, idx_t old_size_in_bits, idx_t new_size_in_bits, bool clear = true); // Free the bitmap memory. template static void free(const Allocator&, bm_word_t* map, idx_t size_in_bits); // Protected functions, that are used by BitMap sub-classes that support them. // Resize the backing bitmap memory. // // Old bits are transfered to the new memory // and the extended memory is cleared. template void resize(const Allocator& allocator, idx_t new_size_in_bits, bool clear); // Set up and clear the bitmap memory. // // Precondition: The bitmap was default constructed and has // not yet had memory allocated via resize or (re)initialize. template void initialize(const Allocator& allocator, idx_t size_in_bits, bool clear); // Set up and clear the bitmap memory. // // Can be called on previously initialized bitmaps. template void reinitialize(const Allocator& allocator, idx_t new_size_in_bits, bool clear); // Set the map and size. void update(bm_word_t* map, idx_t size) { _map = map; _size = size; } // Protected constructor and destructor. BitMap(bm_word_t* map, idx_t size_in_bits) : _map(map), _size(size_in_bits) { verify_size(size_in_bits); } ~BitMap() {} public: // Pretouch the entire range of memory this BitMap covers. void pretouch(); // Accessing static idx_t calc_size_in_words(size_t size_in_bits) { verify_size(size_in_bits); return raw_to_words_align_up(size_in_bits); } idx_t size() const { return _size; } idx_t size_in_words() const { return calc_size_in_words(size()); } idx_t size_in_bytes() const { return size_in_words() * BytesPerWord; } bool at(idx_t index) const { verify_index(index); return (*word_addr(index) & bit_mask(index)) != 0; } // memory_order must be memory_order_relaxed or memory_order_acquire. bool par_at(idx_t index, atomic_memory_order memory_order = memory_order_acquire) const; // Set or clear the specified bit. inline void set_bit(idx_t bit); inline void clear_bit(idx_t bit); // Attempts to change a bit to a desired value. The operation returns true if // this thread changed the value of the bit. It was changed with a RMW operation // using the specified memory_order. The operation returns false if the change // could not be set due to the bit already being observed in the desired state. // The atomic access that observed the bit in the desired state has acquire // semantics, unless memory_order is memory_order_relaxed or memory_order_release. inline bool par_set_bit(idx_t bit, atomic_memory_order memory_order = memory_order_conservative); inline bool par_clear_bit(idx_t bit, atomic_memory_order memory_order = memory_order_conservative); // Put the given value at the given index. The parallel version // will CAS the value into the bitmap and is quite a bit slower. // The parallel version also returns a value indicating if the // calling thread was the one that changed the value of the bit. void at_put(idx_t index, bool value); bool par_at_put(idx_t index, bool value); // Update a range of bits. Ranges are half-open [beg, end). void set_range (idx_t beg, idx_t end); void clear_range (idx_t beg, idx_t end); void set_large_range (idx_t beg, idx_t end); void clear_large_range (idx_t beg, idx_t end); void at_put_range(idx_t beg, idx_t end, bool value); void par_at_put_range(idx_t beg, idx_t end, bool value); void at_put_large_range(idx_t beg, idx_t end, bool value); void par_at_put_large_range(idx_t beg, idx_t end, bool value); // Update a range of bits, using a hint about the size. Currently only // inlines the predominant case of a 1-bit range. Works best when hint is a // compile-time constant. void set_range(idx_t beg, idx_t end, RangeSizeHint hint); void clear_range(idx_t beg, idx_t end, RangeSizeHint hint); void par_set_range(idx_t beg, idx_t end, RangeSizeHint hint); void par_clear_range (idx_t beg, idx_t end, RangeSizeHint hint); // Clearing void clear_large(); inline void clear(); // Iteration support. Returns "true" if the iteration completed, false // if the iteration terminated early (because the closure "blk" returned // false). bool iterate(BitMapClosure* blk, idx_t leftIndex, idx_t rightIndex); bool iterate(BitMapClosure* blk) { // call the version that takes an interval return iterate(blk, 0, size()); } // Looking for 1's and 0's at indices equal to or greater than "l_index", // stopping if none has been found before "r_index", and returning // "r_index" (which must be at most "size") in that case. idx_t get_next_one_offset (idx_t l_index, idx_t r_index) const; idx_t get_next_zero_offset(idx_t l_index, idx_t r_index) const; idx_t get_next_one_offset(idx_t offset) const { return get_next_one_offset(offset, size()); } idx_t get_next_zero_offset(idx_t offset) const { return get_next_zero_offset(offset, size()); } // Like "get_next_one_offset", except requires that "r_index" is // aligned to bitsizeof(bm_word_t). idx_t get_next_one_offset_aligned_right(idx_t l_index, idx_t r_index) const; // Returns the number of bits set in the bitmap. idx_t count_one_bits() const; // Set operations. void set_union(const BitMap& bits); void set_difference(const BitMap& bits); void set_intersection(const BitMap& bits); // Returns true iff "this" is a superset of "bits". bool contains(const BitMap& bits) const; // Returns true iff "this and "bits" have a non-empty intersection. bool intersects(const BitMap& bits) const; // Returns result of whether this map changed // during the operation bool set_union_with_result(const BitMap& bits); bool set_difference_with_result(const BitMap& bits); bool set_intersection_with_result(const BitMap& bits); void set_from(const BitMap& bits); bool is_same(const BitMap& bits) const; // Test if all bits are set or cleared bool is_full() const; bool is_empty() const; void write_to(bm_word_t* buffer, size_t buffer_size_in_bytes) const; void print_on_error(outputStream* st, const char* prefix) const; #ifndef PRODUCT public: // Printing void print_on(outputStream* st) const; #endif }; // A concrete implementation of the the "abstract" BitMap class. // // The BitMapView is used when the backing storage is managed externally. class BitMapView : public BitMap { public: BitMapView() : BitMap(NULL, 0) {} BitMapView(bm_word_t* map, idx_t size_in_bits) : BitMap(map, size_in_bits) {} }; // A BitMap with storage in a ResourceArea. class ResourceBitMap : public BitMap { public: ResourceBitMap() : BitMap(NULL, 0) {} // Conditionally clears the bitmap memory. ResourceBitMap(idx_t size_in_bits, bool clear = true); // Resize the backing bitmap memory. // // Old bits are transfered to the new memory // and the extended memory is cleared. void resize(idx_t new_size_in_bits); // Set up and clear the bitmap memory. // // Precondition: The bitmap was default constructed and has // not yet had memory allocated via resize or initialize. void initialize(idx_t size_in_bits); // Set up and clear the bitmap memory. // // Can be called on previously initialized bitmaps. void reinitialize(idx_t size_in_bits); }; // A BitMap with storage in a specific Arena. class ArenaBitMap : public BitMap { public: // Clears the bitmap memory. ArenaBitMap(Arena* arena, idx_t size_in_bits); private: // Don't allow copy or assignment. ArenaBitMap(const ArenaBitMap&); ArenaBitMap& operator=(const ArenaBitMap&); }; // A BitMap with storage in the CHeap. class CHeapBitMap : public BitMap { private: // Don't allow copy or assignment, to prevent the // allocated memory from leaking out to other instances. CHeapBitMap(const CHeapBitMap&); CHeapBitMap& operator=(const CHeapBitMap&); // NMT memory type MEMFLAGS _flags; public: CHeapBitMap(MEMFLAGS flags = mtInternal) : BitMap(NULL, 0), _flags(flags) {} // Clears the bitmap memory. CHeapBitMap(idx_t size_in_bits, MEMFLAGS flags = mtInternal, bool clear = true); ~CHeapBitMap(); // Resize the backing bitmap memory. // // Old bits are transfered to the new memory // and the extended memory is (optionally) cleared. void resize(idx_t new_size_in_bits, bool clear = true); // Set up and (optionally) clear the bitmap memory. // // Precondition: The bitmap was default constructed and has // not yet had memory allocated via resize or initialize. void initialize(idx_t size_in_bits, bool clear = true); // Set up and (optionally) clear the bitmap memory. // // Can be called on previously initialized bitmaps. void reinitialize(idx_t size_in_bits, bool clear = true); }; // Convenience class wrapping BitMap which provides multiple bits per slot. class BitMap2D { public: typedef BitMap::idx_t idx_t; // Type used for bit and word indices. typedef BitMap::bm_word_t bm_word_t; // Element type of array that // represents the bitmap. private: ResourceBitMap _map; idx_t _bits_per_slot; idx_t bit_index(idx_t slot_index, idx_t bit_within_slot_index) const { return slot_index * _bits_per_slot + bit_within_slot_index; } void verify_bit_within_slot_index(idx_t index) const { assert(index < _bits_per_slot, "bit_within_slot index out of bounds"); } public: // Construction. bits_per_slot must be greater than 0. BitMap2D(idx_t bits_per_slot) : _map(), _bits_per_slot(bits_per_slot) {} // Allocates necessary data structure in resource area. bits_per_slot must be greater than 0. BitMap2D(idx_t size_in_slots, idx_t bits_per_slot) : _map(size_in_slots * bits_per_slot), _bits_per_slot(bits_per_slot) {} idx_t size_in_bits() { return _map.size(); } bool is_valid_index(idx_t slot_index, idx_t bit_within_slot_index); bool at(idx_t slot_index, idx_t bit_within_slot_index) const; void set_bit(idx_t slot_index, idx_t bit_within_slot_index); void clear_bit(idx_t slot_index, idx_t bit_within_slot_index); void at_put(idx_t slot_index, idx_t bit_within_slot_index, bool value); void at_put_grow(idx_t slot_index, idx_t bit_within_slot_index, bool value); }; // Closure for iterating over BitMaps class BitMapClosure { public: // Callback when bit in map is set. Should normally return "true"; // return of false indicates that the bitmap iteration should terminate. virtual bool do_bit(BitMap::idx_t index) = 0; }; #endif // SHARE_UTILITIES_BITMAP_HPP