/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1BarrierSet.hpp" #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CardTable.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1ConcurrentRefine.hpp" #include "gc/g1/g1DirtyCardQueue.hpp" #include "gc/g1/g1FromCardCache.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1HotCardCache.hpp" #include "gc/g1/g1OopClosures.inline.hpp" #include "gc/g1/g1RootClosures.hpp" #include "gc/g1/g1RemSet.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/shared/gcTraceTime.inline.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "jfr/jfrEvents.hpp" #include "memory/iterator.hpp" #include "memory/resourceArea.hpp" #include "oops/access.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/intHisto.hpp" #include "utilities/stack.inline.hpp" #include "utilities/ticks.hpp" // Collects information about the overall remembered set scan progress during an evacuation. class G1RemSetScanState : public CHeapObj { private: class G1ClearCardTableTask : public AbstractGangTask { G1CollectedHeap* _g1h; uint* _dirty_region_list; size_t _num_dirty_regions; size_t _chunk_length; size_t volatile _cur_dirty_regions; public: G1ClearCardTableTask(G1CollectedHeap* g1h, uint* dirty_region_list, size_t num_dirty_regions, size_t chunk_length) : AbstractGangTask("G1 Clear Card Table Task"), _g1h(g1h), _dirty_region_list(dirty_region_list), _num_dirty_regions(num_dirty_regions), _chunk_length(chunk_length), _cur_dirty_regions(0) { assert(chunk_length > 0, "must be"); } static size_t chunk_size() { return M; } void work(uint worker_id) { while (_cur_dirty_regions < _num_dirty_regions) { size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length; size_t max = MIN2(next + _chunk_length, _num_dirty_regions); for (size_t i = next; i < max; i++) { HeapRegion* r = _g1h->region_at(_dirty_region_list[i]); if (!r->is_survivor()) { r->clear_cardtable(); } } } } }; size_t _max_regions; // Scan progress for the remembered set of a single region. Transitions from // Unclaimed -> Claimed -> Complete. // At each of the transitions the thread that does the transition needs to perform // some special action once. This is the reason for the extra "Claimed" state. typedef jint G1RemsetIterState; static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet. static const G1RemsetIterState Claimed = 1; // The remembered set is currently being scanned. static const G1RemsetIterState Complete = 2; // The remembered set has been completely scanned. G1RemsetIterState volatile* _iter_states; // The current location where the next thread should continue scanning in a region's // remembered set. size_t volatile* _iter_claims; // Temporary buffer holding the regions we used to store remembered set scan duplicate // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region) uint* _dirty_region_buffer; typedef jbyte IsDirtyRegionState; static const IsDirtyRegionState Clean = 0; static const IsDirtyRegionState Dirty = 1; // Holds a flag for every region whether it is in the _dirty_region_buffer already // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools. IsDirtyRegionState* _in_dirty_region_buffer; size_t _cur_dirty_region; // Creates a snapshot of the current _top values at the start of collection to // filter out card marks that we do not want to scan. class G1ResetScanTopClosure : public HeapRegionClosure { private: HeapWord** _scan_top; public: G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { } virtual bool do_heap_region(HeapRegion* r) { uint hrm_index = r->hrm_index(); if (!r->in_collection_set() && r->is_old_or_humongous_or_archive() && !r->is_empty()) { _scan_top[hrm_index] = r->top(); } else { _scan_top[hrm_index] = NULL; } return false; } }; // For each region, contains the maximum top() value to be used during this garbage // collection. Subsumes common checks like filtering out everything but old and // humongous regions outside the collection set. // This is valid because we are not interested in scanning stray remembered set // entries from free or archive regions. HeapWord** _scan_top; public: G1RemSetScanState() : _max_regions(0), _iter_states(NULL), _iter_claims(NULL), _dirty_region_buffer(NULL), _in_dirty_region_buffer(NULL), _cur_dirty_region(0), _scan_top(NULL) { } ~G1RemSetScanState() { if (_iter_states != NULL) { FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states); } if (_iter_claims != NULL) { FREE_C_HEAP_ARRAY(size_t, _iter_claims); } if (_dirty_region_buffer != NULL) { FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer); } if (_in_dirty_region_buffer != NULL) { FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer); } if (_scan_top != NULL) { FREE_C_HEAP_ARRAY(HeapWord*, _scan_top); } } void initialize(uint max_regions) { assert(_iter_states == NULL, "Must not be initialized twice"); assert(_iter_claims == NULL, "Must not be initialized twice"); _max_regions = max_regions; _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC); _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC); _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC); _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC); _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC); } void reset() { for (uint i = 0; i < _max_regions; i++) { _iter_states[i] = Unclaimed; _scan_top[i] = NULL; } G1ResetScanTopClosure cl(_scan_top); G1CollectedHeap::heap()->heap_region_iterate(&cl); memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t)); memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState)); _cur_dirty_region = 0; } // Attempt to claim the remembered set of the region for iteration. Returns true // if this call caused the transition from Unclaimed to Claimed. inline bool claim_iter(uint region) { assert(region < _max_regions, "Tried to access invalid region %u", region); if (_iter_states[region] != Unclaimed) { return false; } G1RemsetIterState res = Atomic::cmpxchg(Claimed, &_iter_states[region], Unclaimed); return (res == Unclaimed); } // Try to atomically sets the iteration state to "complete". Returns true for the // thread that caused the transition. inline bool set_iter_complete(uint region) { if (iter_is_complete(region)) { return false; } G1RemsetIterState res = Atomic::cmpxchg(Complete, &_iter_states[region], Claimed); return (res == Claimed); } // Returns true if the region's iteration is complete. inline bool iter_is_complete(uint region) const { assert(region < _max_regions, "Tried to access invalid region %u", region); return _iter_states[region] == Complete; } // The current position within the remembered set of the given region. inline size_t iter_claimed(uint region) const { assert(region < _max_regions, "Tried to access invalid region %u", region); return _iter_claims[region]; } // Claim the next block of cards within the remembered set of the region with // step size. inline size_t iter_claimed_next(uint region, size_t step) { return Atomic::add(step, &_iter_claims[region]) - step; } void add_dirty_region(uint region) { if (_in_dirty_region_buffer[region] == Dirty) { return; } bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean; if (marked_as_dirty) { size_t allocated = Atomic::add(1u, &_cur_dirty_region) - 1; _dirty_region_buffer[allocated] = region; } } HeapWord* scan_top(uint region_idx) const { return _scan_top[region_idx]; } // Clear the card table of "dirty" regions. void clear_card_table(WorkGang* workers) { if (_cur_dirty_region == 0) { return; } size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size(); uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers()); size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion; // Iterate over the dirty cards region list. G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length); log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " " "units of work for " SIZE_FORMAT " regions.", cl.name(), num_workers, num_chunks, _cur_dirty_region); workers->run_task(&cl, num_workers); #ifndef PRODUCT G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup(); #endif } }; G1RemSet::G1RemSet(G1CollectedHeap* g1h, G1CardTable* ct, G1HotCardCache* hot_card_cache) : _scan_state(new G1RemSetScanState()), _prev_period_summary(), _g1h(g1h), _num_conc_refined_cards(0), _ct(ct), _g1p(_g1h->g1_policy()), _hot_card_cache(hot_card_cache) { } G1RemSet::~G1RemSet() { if (_scan_state != NULL) { delete _scan_state; } } uint G1RemSet::num_par_rem_sets() { return G1DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads() + MAX2(ConcGCThreads, ParallelGCThreads); } void G1RemSet::initialize(size_t capacity, uint max_regions) { G1FromCardCache::initialize(num_par_rem_sets(), max_regions); _scan_state->initialize(max_regions); } G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state, G1ScanObjsDuringScanRSClosure* scan_obj_on_card, G1ParScanThreadState* pss, G1GCPhaseTimes::GCParPhases phase, uint worker_i) : _g1h(G1CollectedHeap::heap()), _ct(_g1h->card_table()), _pss(pss), _scan_objs_on_card_cl(scan_obj_on_card), _scan_state(scan_state), _phase(phase), _worker_i(worker_i), _cards_scanned(0), _cards_claimed(0), _cards_skipped(0), _rem_set_root_scan_time(), _rem_set_trim_partially_time(), _strong_code_root_scan_time(), _strong_code_trim_partially_time() { } void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){ _ct->set_card_claimed(card_index); _scan_state->add_dirty_region(region_idx_for_card); } void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) { HeapRegion* const card_region = _g1h->region_at(region_idx_for_card); assert(!card_region->is_young(), "Should not scan card in young region %u", region_idx_for_card); card_region->oops_on_card_seq_iterate_careful(mr, _scan_objs_on_card_cl); _scan_objs_on_card_cl->trim_queue_partially(); _cards_scanned++; } void G1ScanRSForRegionClosure::scan_rem_set_roots(HeapRegion* r) { EventGCPhaseParallel event; uint const region_idx = r->hrm_index(); if (_scan_state->claim_iter(region_idx)) { // If we ever free the collection set concurrently, we should also // clear the card table concurrently therefore we won't need to // add regions of the collection set to the dirty cards region. _scan_state->add_dirty_region(region_idx); } if (r->rem_set()->cardset_is_empty()) { return; } // We claim cards in blocks so as to reduce the contention. size_t const block_size = G1RSetScanBlockSize; HeapRegionRemSetIterator iter(r->rem_set()); size_t card_index; size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size); for (size_t current_card = 0; iter.has_next(card_index); current_card++) { if (current_card >= claimed_card_block + block_size) { claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size); } if (current_card < claimed_card_block) { _cards_skipped++; continue; } _cards_claimed++; HeapWord* const card_start = _g1h->bot()->address_for_index_raw(card_index); uint const region_idx_for_card = _g1h->addr_to_region(card_start); #ifdef ASSERT HeapRegion* hr = _g1h->region_at_or_null(region_idx_for_card); assert(hr == NULL || hr->is_in_reserved(card_start), "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index()); #endif HeapWord* const top = _scan_state->scan_top(region_idx_for_card); if (card_start >= top) { continue; } // If the card is dirty, then G1 will scan it during Update RS. if (_ct->is_card_claimed(card_index) || _ct->is_card_dirty(card_index)) { continue; } // We claim lazily (so races are possible but they're benign), which reduces the // number of duplicate scans (the rsets of the regions in the cset can intersect). // Claim the card after checking bounds above: the remembered set may contain // random cards into current survivor, and we would then have an incorrectly // claimed card in survivor space. Card table clear does not reset the card table // of survivor space regions. claim_card(card_index, region_idx_for_card); MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top)); scan_card(mr, region_idx_for_card); } event.commit(GCId::current(), _worker_i, G1GCPhaseTimes::phase_name(_phase)); } void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) { EventGCPhaseParallel event; r->strong_code_roots_do(_pss->closures()->weak_codeblobs()); event.commit(GCId::current(), _worker_i, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::CodeRoots)); } bool G1ScanRSForRegionClosure::do_heap_region(HeapRegion* r) { assert(r->in_collection_set(), "Should only be called on elements of the collection set but region %u is not.", r->hrm_index()); uint const region_idx = r->hrm_index(); // Do an early out if we know we are complete. if (_scan_state->iter_is_complete(region_idx)) { return false; } { G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time); scan_rem_set_roots(r); } if (_scan_state->set_iter_complete(region_idx)) { G1EvacPhaseWithTrimTimeTracker timer(_pss, _strong_code_root_scan_time, _strong_code_trim_partially_time); // Scan the strong code root list attached to the current region scan_strong_code_roots(r); } return false; } void G1RemSet::scan_rem_set(G1ParScanThreadState* pss, uint worker_i) { G1ScanObjsDuringScanRSClosure scan_cl(_g1h, pss); G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, pss, G1GCPhaseTimes::ScanRS, worker_i); _g1h->collection_set_iterate_from(&cl, worker_i); G1GCPhaseTimes* p = _g1p->phase_times(); p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, cl.rem_set_root_scan_time().seconds()); p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, cl.rem_set_trim_partially_time().seconds()); p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScanRSScannedCards); p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ScanRSClaimedCards); p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::ScanRSSkippedCards); p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time().seconds()); p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, cl.strong_code_root_trim_partially_time().seconds()); } // Closure used for updating rem sets. Only called during an evacuation pause. class G1RefineCardClosure: public G1CardTableEntryClosure { G1RemSet* _g1rs; G1ScanObjsDuringUpdateRSClosure* _update_rs_cl; size_t _cards_scanned; size_t _cards_skipped; public: G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) : _g1rs(g1h->g1_rem_set()), _update_rs_cl(update_rs_cl), _cards_scanned(0), _cards_skipped(0) {} bool do_card_ptr(jbyte* card_ptr, uint worker_i) { // The only time we care about recording cards that // contain references that point into the collection set // is during RSet updating within an evacuation pause. // In this case worker_i should be the id of a GC worker thread. assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause"); bool card_scanned = _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl); if (card_scanned) { _update_rs_cl->trim_queue_partially(); _cards_scanned++; } else { _cards_skipped++; } return true; } size_t cards_scanned() const { return _cards_scanned; } size_t cards_skipped() const { return _cards_skipped; } }; void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) { G1GCPhaseTimes* p = _g1p->phase_times(); // Apply closure to log entries in the HCC. if (G1HotCardCache::default_use_cache()) { G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::ScanHCC, worker_i); G1ScanObjsDuringUpdateRSClosure scan_hcc_cl(_g1h, pss); G1RefineCardClosure refine_card_cl(_g1h, &scan_hcc_cl); _g1h->iterate_hcc_closure(&refine_card_cl, worker_i); } // Now apply the closure to all remaining log entries. { G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::UpdateRS, worker_i); G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1h, pss); G1RefineCardClosure refine_card_cl(_g1h, &update_rs_cl); _g1h->iterate_dirty_card_closure(&refine_card_cl, worker_i); p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_scanned(), G1GCPhaseTimes::UpdateRSScannedCards); p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_skipped(), G1GCPhaseTimes::UpdateRSSkippedCards); } } void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss, uint worker_i) { update_rem_set(pss, worker_i); scan_rem_set(pss, worker_i);; } void G1RemSet::prepare_for_oops_into_collection_set_do() { G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); dcqs.concatenate_logs(); _scan_state->reset(); } void G1RemSet::cleanup_after_oops_into_collection_set_do() { G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times(); // Set all cards back to clean. double start = os::elapsedTime(); _scan_state->clear_card_table(_g1h->workers()); phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0); } inline void check_card_ptr(jbyte* card_ptr, G1CardTable* ct) { #ifdef ASSERT G1CollectedHeap* g1h = G1CollectedHeap::heap(); assert(g1h->is_in_exact(ct->addr_for(card_ptr)), "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap", p2i(card_ptr), ct->index_for(ct->addr_for(card_ptr)), p2i(ct->addr_for(card_ptr)), g1h->addr_to_region(ct->addr_for(card_ptr))); #endif } void G1RemSet::refine_card_concurrently(jbyte* card_ptr, uint worker_i) { assert(!_g1h->is_gc_active(), "Only call concurrently"); // Construct the region representing the card. HeapWord* start = _ct->addr_for(card_ptr); // And find the region containing it. HeapRegion* r = _g1h->heap_region_containing_or_null(start); // If this is a (stale) card into an uncommitted region, exit. if (r == NULL) { return; } check_card_ptr(card_ptr, _ct); // If the card is no longer dirty, nothing to do. if (*card_ptr != G1CardTable::dirty_card_val()) { return; } // This check is needed for some uncommon cases where we should // ignore the card. // // The region could be young. Cards for young regions are // distinctly marked (set to g1_young_gen), so the post-barrier will // filter them out. However, that marking is performed // concurrently. A write to a young object could occur before the // card has been marked young, slipping past the filter. // // The card could be stale, because the region has been freed since // the card was recorded. In this case the region type could be // anything. If (still) free or (reallocated) young, just ignore // it. If (reallocated) old or humongous, the later card trimming // and additional checks in iteration may detect staleness. At // worst, we end up processing a stale card unnecessarily. // // In the normal (non-stale) case, the synchronization between the // enqueueing of the card and processing it here will have ensured // we see the up-to-date region type here. if (!r->is_old_or_humongous_or_archive()) { return; } // The result from the hot card cache insert call is either: // * pointer to the current card // (implying that the current card is not 'hot'), // * null // (meaning we had inserted the card ptr into the "hot" card cache, // which had some headroom), // * a pointer to a "hot" card that was evicted from the "hot" cache. // if (_hot_card_cache->use_cache()) { assert(!SafepointSynchronize::is_at_safepoint(), "sanity"); const jbyte* orig_card_ptr = card_ptr; card_ptr = _hot_card_cache->insert(card_ptr); if (card_ptr == NULL) { // There was no eviction. Nothing to do. return; } else if (card_ptr != orig_card_ptr) { // Original card was inserted and an old card was evicted. start = _ct->addr_for(card_ptr); r = _g1h->heap_region_containing(start); // Check whether the region formerly in the cache should be // ignored, as discussed earlier for the original card. The // region could have been freed while in the cache. if (!r->is_old_or_humongous_or_archive()) { return; } } // Else we still have the original card. } // Trim the region designated by the card to what's been allocated // in the region. The card could be stale, or the card could cover // (part of) an object at the end of the allocated space and extend // beyond the end of allocation. // Non-humongous objects are only allocated in the old-gen during // GC, so if region is old then top is stable. Humongous object // allocation sets top last; if top has not yet been set, this is // a stale card and we'll end up with an empty intersection. If // this is not a stale card, the synchronization between the // enqueuing of the card and processing it here will have ensured // we see the up-to-date top here. HeapWord* scan_limit = r->top(); if (scan_limit <= start) { // If the trimmed region is empty, the card must be stale. return; } // Okay to clean and process the card now. There are still some // stale card cases that may be detected by iteration and dealt with // as iteration failure. *const_cast(card_ptr) = G1CardTable::clean_card_val(); // This fence serves two purposes. First, the card must be cleaned // before processing the contents. Second, we can't proceed with // processing until after the read of top, for synchronization with // possibly concurrent humongous object allocation. It's okay that // reading top and reading type were racy wrto each other. We need // both set, in any order, to proceed. OrderAccess::fence(); // Don't use addr_for(card_ptr + 1) which can ask for // a card beyond the heap. HeapWord* end = start + G1CardTable::card_size_in_words; MemRegion dirty_region(start, MIN2(scan_limit, end)); assert(!dirty_region.is_empty(), "sanity"); G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_i); bool card_processed = r->oops_on_card_seq_iterate_careful(dirty_region, &conc_refine_cl); // If unable to process the card then we encountered an unparsable // part of the heap (e.g. a partially allocated object) while // processing a stale card. Despite the card being stale, redirty // and re-enqueue, because we've already cleaned the card. Without // this we could incorrectly discard a non-stale card. if (!card_processed) { // The card might have gotten re-dirtied and re-enqueued while we // worked. (In fact, it's pretty likely.) if (*card_ptr != G1CardTable::dirty_card_val()) { *card_ptr = G1CardTable::dirty_card_val(); MutexLockerEx x(Shared_DirtyCardQ_lock, Mutex::_no_safepoint_check_flag); G1DirtyCardQueue* sdcq = G1BarrierSet::dirty_card_queue_set().shared_dirty_card_queue(); sdcq->enqueue(card_ptr); } } else { _num_conc_refined_cards++; // Unsynchronized update, only used for logging. } } bool G1RemSet::refine_card_during_gc(jbyte* card_ptr, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) { assert(_g1h->is_gc_active(), "Only call during GC"); // Construct the region representing the card. HeapWord* card_start = _ct->addr_for(card_ptr); // And find the region containing it. uint const card_region_idx = _g1h->addr_to_region(card_start); HeapWord* scan_limit = _scan_state->scan_top(card_region_idx); if (scan_limit == NULL) { // This is a card into an uncommitted region. We need to bail out early as we // should not access the corresponding card table entry. return false; } check_card_ptr(card_ptr, _ct); // If the card is no longer dirty, nothing to do. This covers cards that were already // scanned as parts of the remembered sets. if (*card_ptr != G1CardTable::dirty_card_val()) { return false; } // We claim lazily (so races are possible but they're benign), which reduces the // number of potential duplicate scans (multiple threads may enqueue the same card twice). *card_ptr = G1CardTable::clean_card_val() | G1CardTable::claimed_card_val(); _scan_state->add_dirty_region(card_region_idx); if (scan_limit <= card_start) { // If the card starts above the area in the region containing objects to scan, skip it. return false; } // Don't use addr_for(card_ptr + 1) which can ask for // a card beyond the heap. HeapWord* card_end = card_start + G1CardTable::card_size_in_words; MemRegion dirty_region(card_start, MIN2(scan_limit, card_end)); assert(!dirty_region.is_empty(), "sanity"); HeapRegion* const card_region = _g1h->region_at(card_region_idx); assert(!card_region->is_young(), "Should not scan card in young region %u", card_region_idx); bool card_processed = card_region->oops_on_card_seq_iterate_careful(dirty_region, update_rs_cl); assert(card_processed, "must be"); return true; } void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) { if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) && (period_count % G1SummarizeRSetStatsPeriod == 0)) { G1RemSetSummary current(this); _prev_period_summary.subtract_from(¤t); Log(gc, remset) log; log.trace("%s", header); ResourceMark rm; LogStream ls(log.trace()); _prev_period_summary.print_on(&ls); _prev_period_summary.set(¤t); } } void G1RemSet::print_summary_info() { Log(gc, remset, exit) log; if (log.is_trace()) { log.trace(" Cumulative RS summary"); G1RemSetSummary current(this); ResourceMark rm; LogStream ls(log.trace()); current.print_on(&ls); } } class G1RebuildRemSetTask: public AbstractGangTask { // Aggregate the counting data that was constructed concurrently // with marking. class G1RebuildRemSetHeapRegionClosure : public HeapRegionClosure { G1ConcurrentMark* _cm; G1RebuildRemSetClosure _update_cl; // Applies _update_cl to the references of the given object, limiting objArrays // to the given MemRegion. Returns the amount of words actually scanned. size_t scan_for_references(oop const obj, MemRegion mr) { size_t const obj_size = obj->size(); // All non-objArrays and objArrays completely within the mr // can be scanned without passing the mr. if (!obj->is_objArray() || mr.contains(MemRegion((HeapWord*)obj, obj_size))) { obj->oop_iterate(&_update_cl); return obj_size; } // This path is for objArrays crossing the given MemRegion. Only scan the // area within the MemRegion. obj->oop_iterate(&_update_cl, mr); return mr.intersection(MemRegion((HeapWord*)obj, obj_size)).word_size(); } // A humongous object is live (with respect to the scanning) either // a) it is marked on the bitmap as such // b) its TARS is larger than TAMS, i.e. has been allocated during marking. bool is_humongous_live(oop const humongous_obj, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* tars) const { return bitmap->is_marked(humongous_obj) || (tars > tams); } // Iterator over the live objects within the given MemRegion. class LiveObjIterator : public StackObj { const G1CMBitMap* const _bitmap; const HeapWord* _tams; const MemRegion _mr; HeapWord* _current; bool is_below_tams() const { return _current < _tams; } bool is_live(HeapWord* obj) const { return !is_below_tams() || _bitmap->is_marked(obj); } HeapWord* bitmap_limit() const { return MIN2(const_cast(_tams), _mr.end()); } void move_if_below_tams() { if (is_below_tams() && has_next()) { _current = _bitmap->get_next_marked_addr(_current, bitmap_limit()); } } public: LiveObjIterator(const G1CMBitMap* const bitmap, const HeapWord* tams, const MemRegion mr, HeapWord* first_oop_into_mr) : _bitmap(bitmap), _tams(tams), _mr(mr), _current(first_oop_into_mr) { assert(_current <= _mr.start(), "First oop " PTR_FORMAT " should extend into mr [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(first_oop_into_mr), p2i(mr.start()), p2i(mr.end())); // Step to the next live object within the MemRegion if needed. if (is_live(_current)) { // Non-objArrays were scanned by the previous part of that region. if (_current < mr.start() && !oop(_current)->is_objArray()) { _current += oop(_current)->size(); // We might have positioned _current on a non-live object. Reposition to the next // live one if needed. move_if_below_tams(); } } else { // The object at _current can only be dead if below TAMS, so we can use the bitmap. // immediately. _current = _bitmap->get_next_marked_addr(_current, bitmap_limit()); assert(_current == _mr.end() || is_live(_current), "Current " PTR_FORMAT " should be live (%s) or beyond the end of the MemRegion (" PTR_FORMAT ")", p2i(_current), BOOL_TO_STR(is_live(_current)), p2i(_mr.end())); } } void move_to_next() { _current += next()->size(); move_if_below_tams(); } oop next() const { oop result = oop(_current); assert(is_live(_current), "Object " PTR_FORMAT " must be live TAMS " PTR_FORMAT " below %d mr " PTR_FORMAT " " PTR_FORMAT " outside %d", p2i(_current), p2i(_tams), _tams > _current, p2i(_mr.start()), p2i(_mr.end()), _mr.contains(result)); return result; } bool has_next() const { return _current < _mr.end(); } }; // Rebuild remembered sets in the part of the region specified by mr and hr. // Objects between the bottom of the region and the TAMS are checked for liveness // using the given bitmap. Objects between TAMS and TARS are assumed to be live. // Returns the number of live words between bottom and TAMS. size_t rebuild_rem_set_in_region(const G1CMBitMap* const bitmap, HeapWord* const top_at_mark_start, HeapWord* const top_at_rebuild_start, HeapRegion* hr, MemRegion mr) { size_t marked_words = 0; if (hr->is_humongous()) { oop const humongous_obj = oop(hr->humongous_start_region()->bottom()); if (is_humongous_live(humongous_obj, bitmap, top_at_mark_start, top_at_rebuild_start)) { // We need to scan both [bottom, TAMS) and [TAMS, top_at_rebuild_start); // however in case of humongous objects it is sufficient to scan the encompassing // area (top_at_rebuild_start is always larger or equal to TAMS) as one of the // two areas will be zero sized. I.e. TAMS is either // the same as bottom or top(_at_rebuild_start). There is no way TAMS has a different // value: this would mean that TAMS points somewhere into the object. assert(hr->top() == top_at_mark_start || hr->top() == top_at_rebuild_start, "More than one object in the humongous region?"); humongous_obj->oop_iterate(&_update_cl, mr); return top_at_mark_start != hr->bottom() ? mr.intersection(MemRegion((HeapWord*)humongous_obj, humongous_obj->size())).byte_size() : 0; } else { return 0; } } for (LiveObjIterator it(bitmap, top_at_mark_start, mr, hr->block_start(mr.start())); it.has_next(); it.move_to_next()) { oop obj = it.next(); size_t scanned_size = scan_for_references(obj, mr); if ((HeapWord*)obj < top_at_mark_start) { marked_words += scanned_size; } } return marked_words * HeapWordSize; } public: G1RebuildRemSetHeapRegionClosure(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint worker_id) : HeapRegionClosure(), _cm(cm), _update_cl(g1h, worker_id) { } bool do_heap_region(HeapRegion* hr) { if (_cm->has_aborted()) { return true; } uint const region_idx = hr->hrm_index(); DEBUG_ONLY(HeapWord* const top_at_rebuild_start_check = _cm->top_at_rebuild_start(region_idx);) assert(top_at_rebuild_start_check == NULL || top_at_rebuild_start_check > hr->bottom(), "A TARS (" PTR_FORMAT ") == bottom() (" PTR_FORMAT ") indicates the old region %u is empty (%s)", p2i(top_at_rebuild_start_check), p2i(hr->bottom()), region_idx, hr->get_type_str()); size_t total_marked_bytes = 0; size_t const chunk_size_in_words = G1RebuildRemSetChunkSize / HeapWordSize; HeapWord* const top_at_mark_start = hr->prev_top_at_mark_start(); HeapWord* cur = hr->bottom(); while (cur < hr->end()) { // After every iteration (yield point) we need to check whether the region's // TARS changed due to e.g. eager reclaim. HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx); if (top_at_rebuild_start == NULL) { return false; } MemRegion next_chunk = MemRegion(hr->bottom(), top_at_rebuild_start).intersection(MemRegion(cur, chunk_size_in_words)); if (next_chunk.is_empty()) { break; } const Ticks start = Ticks::now(); size_t marked_bytes = rebuild_rem_set_in_region(_cm->prev_mark_bitmap(), top_at_mark_start, top_at_rebuild_start, hr, next_chunk); Tickspan time = Ticks::now() - start; log_trace(gc, remset, tracking)("Rebuilt region %u " "live " SIZE_FORMAT " " "time %.3fms " "marked bytes " SIZE_FORMAT " " "bot " PTR_FORMAT " " "TAMS " PTR_FORMAT " " "TARS " PTR_FORMAT, region_idx, _cm->liveness(region_idx) * HeapWordSize, time.seconds() * 1000.0, marked_bytes, p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start)); if (marked_bytes > 0) { total_marked_bytes += marked_bytes; } cur += chunk_size_in_words; _cm->do_yield_check(); if (_cm->has_aborted()) { return true; } } // In the final iteration of the loop the region might have been eagerly reclaimed. // Simply filter out those regions. We can not just use region type because there // might have already been new allocations into these regions. DEBUG_ONLY(HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);) assert(top_at_rebuild_start == NULL || total_marked_bytes == hr->marked_bytes(), "Marked bytes " SIZE_FORMAT " for region %u (%s) in [bottom, TAMS) do not match calculated marked bytes " SIZE_FORMAT " " "(" PTR_FORMAT " " PTR_FORMAT " " PTR_FORMAT ")", total_marked_bytes, hr->hrm_index(), hr->get_type_str(), hr->marked_bytes(), p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start)); // Abort state may have changed after the yield check. return _cm->has_aborted(); } }; HeapRegionClaimer _hr_claimer; G1ConcurrentMark* _cm; uint _worker_id_offset; public: G1RebuildRemSetTask(G1ConcurrentMark* cm, uint n_workers, uint worker_id_offset) : AbstractGangTask("G1 Rebuild Remembered Set"), _hr_claimer(n_workers), _cm(cm), _worker_id_offset(worker_id_offset) { } void work(uint worker_id) { SuspendibleThreadSetJoiner sts_join; G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1RebuildRemSetHeapRegionClosure cl(g1h, _cm, _worker_id_offset + worker_id); g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hr_claimer, worker_id); } }; void G1RemSet::rebuild_rem_set(G1ConcurrentMark* cm, WorkGang* workers, uint worker_id_offset) { uint num_workers = workers->active_workers(); G1RebuildRemSetTask cl(cm, num_workers, worker_id_offset); workers->run_task(&cl, num_workers); }