1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvmtifiles/jvmtiEnv.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logConfiguration.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/metaspaceShared.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/instanceKlass.hpp"
  55 #include "oops/objArrayOop.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/symbol.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvm_misc.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/flags/jvmFlagConstraintList.hpp"
  68 #include "runtime/flags/jvmFlagRangeList.hpp"
  69 #include "runtime/flags/jvmFlagWriteableList.hpp"
  70 #include "runtime/deoptimization.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/handshake.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/javaCalls.hpp"
  78 #include "runtime/jniHandles.inline.hpp"
  79 #include "runtime/jniPeriodicChecker.hpp"
  80 #include "runtime/memprofiler.hpp"
  81 #include "runtime/mutexLocker.hpp"
  82 #include "runtime/objectMonitor.hpp"
  83 #include "runtime/orderAccess.hpp"
  84 #include "runtime/osThread.hpp"
  85 #include "runtime/prefetch.inline.hpp"
  86 #include "runtime/safepoint.hpp"
  87 #include "runtime/safepointMechanism.inline.hpp"
  88 #include "runtime/safepointVerifiers.hpp"
  89 #include "runtime/sharedRuntime.hpp"
  90 #include "runtime/statSampler.hpp"
  91 #include "runtime/stubRoutines.hpp"
  92 #include "runtime/sweeper.hpp"
  93 #include "runtime/task.hpp"
  94 #include "runtime/thread.inline.hpp"
  95 #include "runtime/threadCritical.hpp"
  96 #include "runtime/threadSMR.inline.hpp"
  97 #include "runtime/threadStatisticalInfo.hpp"
  98 #include "runtime/timer.hpp"
  99 #include "runtime/timerTrace.hpp"
 100 #include "runtime/vframe.inline.hpp"
 101 #include "runtime/vframeArray.hpp"
 102 #include "runtime/vframe_hp.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "runtime/vmOperations.hpp"
 105 #include "runtime/vm_version.hpp"
 106 #include "services/attachListener.hpp"
 107 #include "services/management.hpp"
 108 #include "services/memTracker.hpp"
 109 #include "services/threadService.hpp"
 110 #include "utilities/align.hpp"
 111 #include "utilities/copy.hpp"
 112 #include "utilities/defaultStream.hpp"
 113 #include "utilities/dtrace.hpp"
 114 #include "utilities/events.hpp"
 115 #include "utilities/macros.hpp"
 116 #include "utilities/preserveException.hpp"
 117 #include "utilities/singleWriterSynchronizer.hpp"
 118 #include "utilities/vmError.hpp"
 119 #if INCLUDE_JVMCI
 120 #include "jvmci/jvmciCompiler.hpp"
 121 #include "jvmci/jvmciRuntime.hpp"
 122 #include "logging/logHandle.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markOopDesc::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // This initial value ==> never claimed.
 242   _oops_do_parity = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   debug_only(_allow_allocation_count = 0;)
 254   NOT_PRODUCT(_allow_safepoint_count = 0;)
 255   NOT_PRODUCT(_skip_gcalot = false;)
 256   _jvmti_env_iteration_count = 0;
 257   set_allocated_bytes(0);
 258   _vm_operation_started_count = 0;
 259   _vm_operation_completed_count = 0;
 260   _current_pending_monitor = NULL;
 261   _current_pending_monitor_is_from_java = true;
 262   _current_waiting_monitor = NULL;
 263   _num_nested_signal = 0;
 264   omFreeList = NULL;
 265   omFreeCount = 0;
 266   omFreeProvision = 32;
 267   omInUseList = NULL;
 268   omInUseCount = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _SleepEvent  = ParkEvent::Allocate(this);
 297   _MuxEvent    = ParkEvent::Allocate(this);
 298 
 299 #ifdef CHECK_UNHANDLED_OOPS
 300   if (CheckUnhandledOops) {
 301     _unhandled_oops = new UnhandledOops(this);
 302   }
 303 #endif // CHECK_UNHANDLED_OOPS
 304 #ifdef ASSERT
 305   if (UseBiasedLocking) {
 306     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 307     assert(this == _real_malloc_address ||
 308            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 309            "bug in forced alignment of thread objects");
 310   }
 311 #endif // ASSERT
 312 
 313   // Notify the barrier set that a thread is being created. The initial
 314   // thread is created before the barrier set is available.  The call to
 315   // BarrierSet::on_thread_create() for this thread is therefore deferred
 316   // to BarrierSet::set_barrier_set().
 317   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 318   if (barrier_set != NULL) {
 319     barrier_set->on_thread_create(this);
 320   } else {
 321     // Only the main thread should be created before the barrier set
 322     // and that happens just before Thread::current is set. No other thread
 323     // can attach as the VM is not created yet, so they can't execute this code.
 324     // If the main thread creates other threads before the barrier set that is an error.
 325     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 326   }
 327 }
 328 
 329 void Thread::initialize_thread_current() {
 330 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 331   assert(_thr_current == NULL, "Thread::current already initialized");
 332   _thr_current = this;
 333 #endif
 334   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 335   ThreadLocalStorage::set_thread(this);
 336   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 337 }
 338 
 339 void Thread::clear_thread_current() {
 340   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 341 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 342   _thr_current = NULL;
 343 #endif
 344   ThreadLocalStorage::set_thread(NULL);
 345 }
 346 
 347 void Thread::record_stack_base_and_size() {
 348   // Note: at this point, Thread object is not yet initialized. Do not rely on
 349   // any members being initialized. Do not rely on Thread::current() being set.
 350   // If possible, refrain from doing anything which may crash or assert since
 351   // quite probably those crash dumps will be useless.
 352   set_stack_base(os::current_stack_base());
 353   set_stack_size(os::current_stack_size());
 354 
 355 #ifdef SOLARIS
 356   if (os::is_primordial_thread()) {
 357     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 358   }
 359 #endif
 360 
 361   // Set stack limits after thread is initialized.
 362   if (is_Java_thread()) {
 363     ((JavaThread*) this)->set_stack_overflow_limit();
 364     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 365   }
 366 }
 367 
 368 #if INCLUDE_NMT
 369 void Thread::register_thread_stack_with_NMT() {
 370   MemTracker::record_thread_stack(stack_end(), stack_size());
 371 }
 372 #endif // INCLUDE_NMT
 373 
 374 void Thread::call_run() {
 375   DEBUG_ONLY(_run_state = CALL_RUN;)
 376 
 377   // At this point, Thread object should be fully initialized and
 378   // Thread::current() should be set.
 379 
 380   assert(Thread::current_or_null() != NULL, "current thread is unset");
 381   assert(Thread::current_or_null() == this, "current thread is wrong");
 382 
 383   // Perform common initialization actions
 384 
 385   register_thread_stack_with_NMT();
 386 
 387   JFR_ONLY(Jfr::on_thread_start(this);)
 388 
 389   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 390     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 391     os::current_thread_id(), p2i(stack_base() - stack_size()),
 392     p2i(stack_base()), stack_size()/1024);
 393 
 394   // Perform <ChildClass> initialization actions
 395   DEBUG_ONLY(_run_state = PRE_RUN;)
 396   this->pre_run();
 397 
 398   // Invoke <ChildClass>::run()
 399   DEBUG_ONLY(_run_state = RUN;)
 400   this->run();
 401   // Returned from <ChildClass>::run(). Thread finished.
 402 
 403   // Perform common tear-down actions
 404 
 405   assert(Thread::current_or_null() != NULL, "current thread is unset");
 406   assert(Thread::current_or_null() == this, "current thread is wrong");
 407 
 408   // Perform <ChildClass> tear-down actions
 409   DEBUG_ONLY(_run_state = POST_RUN;)
 410   this->post_run();
 411 
 412   // Note: at this point the thread object may already have deleted itself,
 413   // so from here on do not dereference *this*. Not all thread types currently
 414   // delete themselves when they terminate. But no thread should ever be deleted
 415   // asynchronously with respect to its termination - that is what _run_state can
 416   // be used to check.
 417 
 418   assert(Thread::current_or_null() == NULL, "current thread still present");
 419 }
 420 
 421 Thread::~Thread() {
 422 
 423   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 424   // get started due to errors etc. Any active thread should at least reach post_run
 425   // before it is deleted (usually in post_run()).
 426   assert(_run_state == PRE_CALL_RUN ||
 427          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 428          "_run_state=%d", (int)_run_state);
 429 
 430   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 431   // set might not be available if we encountered errors during bootstrapping.
 432   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 433   if (barrier_set != NULL) {
 434     barrier_set->on_thread_destroy(this);
 435   }
 436 
 437   // stack_base can be NULL if the thread is never started or exited before
 438   // record_stack_base_and_size called. Although, we would like to ensure
 439   // that all started threads do call record_stack_base_and_size(), there is
 440   // not proper way to enforce that.
 441 #if INCLUDE_NMT
 442   if (_stack_base != NULL) {
 443     MemTracker::release_thread_stack(stack_end(), stack_size());
 444 #ifdef ASSERT
 445     set_stack_base(NULL);
 446 #endif
 447   }
 448 #endif // INCLUDE_NMT
 449 
 450   // deallocate data structures
 451   delete resource_area();
 452   // since the handle marks are using the handle area, we have to deallocated the root
 453   // handle mark before deallocating the thread's handle area,
 454   assert(last_handle_mark() != NULL, "check we have an element");
 455   delete last_handle_mark();
 456   assert(last_handle_mark() == NULL, "check we have reached the end");
 457 
 458   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 459   // We NULL out the fields for good hygiene.
 460   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 461   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 462   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 463 
 464   delete handle_area();
 465   delete metadata_handles();
 466 
 467   // SR_handler uses this as a termination indicator -
 468   // needs to happen before os::free_thread()
 469   delete _SR_lock;
 470   _SR_lock = NULL;
 471 
 472   // osthread() can be NULL, if creation of thread failed.
 473   if (osthread() != NULL) os::free_thread(osthread());
 474 
 475   // Clear Thread::current if thread is deleting itself and it has not
 476   // already been done. This must be done before the memory is deallocated.
 477   // Needed to ensure JNI correctly detects non-attached threads.
 478   if (this == Thread::current_or_null()) {
 479     Thread::clear_thread_current();
 480   }
 481 
 482   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 483 }
 484 
 485 #ifdef ASSERT
 486 // A JavaThread is considered "dangling" if it is not the current
 487 // thread, has been added the Threads list, the system is not at a
 488 // safepoint and the Thread is not "protected".
 489 //
 490 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 491   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 492          !((JavaThread *) thread)->on_thread_list() ||
 493          SafepointSynchronize::is_at_safepoint() ||
 494          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 495          "possibility of dangling Thread pointer");
 496 }
 497 #endif
 498 
 499 ThreadPriority Thread::get_priority(const Thread* const thread) {
 500   ThreadPriority priority;
 501   // Can return an error!
 502   (void)os::get_priority(thread, priority);
 503   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 504   return priority;
 505 }
 506 
 507 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 508   debug_only(check_for_dangling_thread_pointer(thread);)
 509   // Can return an error!
 510   (void)os::set_priority(thread, priority);
 511 }
 512 
 513 
 514 void Thread::start(Thread* thread) {
 515   // Start is different from resume in that its safety is guaranteed by context or
 516   // being called from a Java method synchronized on the Thread object.
 517   if (!DisableStartThread) {
 518     if (thread->is_Java_thread()) {
 519       // Initialize the thread state to RUNNABLE before starting this thread.
 520       // Can not set it after the thread started because we do not know the
 521       // exact thread state at that time. It could be in MONITOR_WAIT or
 522       // in SLEEPING or some other state.
 523       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 524                                           java_lang_Thread::RUNNABLE);
 525     }
 526     os::start_thread(thread);
 527   }
 528 }
 529 
 530 // Enqueue a VM_Operation to do the job for us - sometime later
 531 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 532   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 533   VMThread::execute(vm_stop);
 534 }
 535 
 536 
 537 // Check if an external suspend request has completed (or has been
 538 // cancelled). Returns true if the thread is externally suspended and
 539 // false otherwise.
 540 //
 541 // The bits parameter returns information about the code path through
 542 // the routine. Useful for debugging:
 543 //
 544 // set in is_ext_suspend_completed():
 545 // 0x00000001 - routine was entered
 546 // 0x00000010 - routine return false at end
 547 // 0x00000100 - thread exited (return false)
 548 // 0x00000200 - suspend request cancelled (return false)
 549 // 0x00000400 - thread suspended (return true)
 550 // 0x00001000 - thread is in a suspend equivalent state (return true)
 551 // 0x00002000 - thread is native and walkable (return true)
 552 // 0x00004000 - thread is native_trans and walkable (needed retry)
 553 //
 554 // set in wait_for_ext_suspend_completion():
 555 // 0x00010000 - routine was entered
 556 // 0x00020000 - suspend request cancelled before loop (return false)
 557 // 0x00040000 - thread suspended before loop (return true)
 558 // 0x00080000 - suspend request cancelled in loop (return false)
 559 // 0x00100000 - thread suspended in loop (return true)
 560 // 0x00200000 - suspend not completed during retry loop (return false)
 561 
 562 // Helper class for tracing suspend wait debug bits.
 563 //
 564 // 0x00000100 indicates that the target thread exited before it could
 565 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 566 // 0x00080000 each indicate a cancelled suspend request so they don't
 567 // count as wait failures either.
 568 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 569 
 570 class TraceSuspendDebugBits : public StackObj {
 571  private:
 572   JavaThread * jt;
 573   bool         is_wait;
 574   bool         called_by_wait;  // meaningful when !is_wait
 575   uint32_t *   bits;
 576 
 577  public:
 578   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 579                         uint32_t *_bits) {
 580     jt             = _jt;
 581     is_wait        = _is_wait;
 582     called_by_wait = _called_by_wait;
 583     bits           = _bits;
 584   }
 585 
 586   ~TraceSuspendDebugBits() {
 587     if (!is_wait) {
 588 #if 1
 589       // By default, don't trace bits for is_ext_suspend_completed() calls.
 590       // That trace is very chatty.
 591       return;
 592 #else
 593       if (!called_by_wait) {
 594         // If tracing for is_ext_suspend_completed() is enabled, then only
 595         // trace calls to it from wait_for_ext_suspend_completion()
 596         return;
 597       }
 598 #endif
 599     }
 600 
 601     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 602       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 603         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 604         ResourceMark rm;
 605 
 606         tty->print_cr(
 607                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 608                       jt->get_thread_name(), *bits);
 609 
 610         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 611       }
 612     }
 613   }
 614 };
 615 #undef DEBUG_FALSE_BITS
 616 
 617 
 618 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 619                                           uint32_t *bits) {
 620   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 621 
 622   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 623   bool do_trans_retry;           // flag to force the retry
 624 
 625   *bits |= 0x00000001;
 626 
 627   do {
 628     do_trans_retry = false;
 629 
 630     if (is_exiting()) {
 631       // Thread is in the process of exiting. This is always checked
 632       // first to reduce the risk of dereferencing a freed JavaThread.
 633       *bits |= 0x00000100;
 634       return false;
 635     }
 636 
 637     if (!is_external_suspend()) {
 638       // Suspend request is cancelled. This is always checked before
 639       // is_ext_suspended() to reduce the risk of a rogue resume
 640       // confusing the thread that made the suspend request.
 641       *bits |= 0x00000200;
 642       return false;
 643     }
 644 
 645     if (is_ext_suspended()) {
 646       // thread is suspended
 647       *bits |= 0x00000400;
 648       return true;
 649     }
 650 
 651     // Now that we no longer do hard suspends of threads running
 652     // native code, the target thread can be changing thread state
 653     // while we are in this routine:
 654     //
 655     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 656     //
 657     // We save a copy of the thread state as observed at this moment
 658     // and make our decision about suspend completeness based on the
 659     // copy. This closes the race where the thread state is seen as
 660     // _thread_in_native_trans in the if-thread_blocked check, but is
 661     // seen as _thread_blocked in if-thread_in_native_trans check.
 662     JavaThreadState save_state = thread_state();
 663 
 664     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 665       // If the thread's state is _thread_blocked and this blocking
 666       // condition is known to be equivalent to a suspend, then we can
 667       // consider the thread to be externally suspended. This means that
 668       // the code that sets _thread_blocked has been modified to do
 669       // self-suspension if the blocking condition releases. We also
 670       // used to check for CONDVAR_WAIT here, but that is now covered by
 671       // the _thread_blocked with self-suspension check.
 672       //
 673       // Return true since we wouldn't be here unless there was still an
 674       // external suspend request.
 675       *bits |= 0x00001000;
 676       return true;
 677     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 678       // Threads running native code will self-suspend on native==>VM/Java
 679       // transitions. If its stack is walkable (should always be the case
 680       // unless this function is called before the actual java_suspend()
 681       // call), then the wait is done.
 682       *bits |= 0x00002000;
 683       return true;
 684     } else if (!called_by_wait && !did_trans_retry &&
 685                save_state == _thread_in_native_trans &&
 686                frame_anchor()->walkable()) {
 687       // The thread is transitioning from thread_in_native to another
 688       // thread state. check_safepoint_and_suspend_for_native_trans()
 689       // will force the thread to self-suspend. If it hasn't gotten
 690       // there yet we may have caught the thread in-between the native
 691       // code check above and the self-suspend. Lucky us. If we were
 692       // called by wait_for_ext_suspend_completion(), then it
 693       // will be doing the retries so we don't have to.
 694       //
 695       // Since we use the saved thread state in the if-statement above,
 696       // there is a chance that the thread has already transitioned to
 697       // _thread_blocked by the time we get here. In that case, we will
 698       // make a single unnecessary pass through the logic below. This
 699       // doesn't hurt anything since we still do the trans retry.
 700 
 701       *bits |= 0x00004000;
 702 
 703       // Once the thread leaves thread_in_native_trans for another
 704       // thread state, we break out of this retry loop. We shouldn't
 705       // need this flag to prevent us from getting back here, but
 706       // sometimes paranoia is good.
 707       did_trans_retry = true;
 708 
 709       // We wait for the thread to transition to a more usable state.
 710       for (int i = 1; i <= SuspendRetryCount; i++) {
 711         // We used to do an "os::yield_all(i)" call here with the intention
 712         // that yielding would increase on each retry. However, the parameter
 713         // is ignored on Linux which means the yield didn't scale up. Waiting
 714         // on the SR_lock below provides a much more predictable scale up for
 715         // the delay. It also provides a simple/direct point to check for any
 716         // safepoint requests from the VMThread
 717 
 718         // temporarily drops SR_lock while doing wait with safepoint check
 719         // (if we're a JavaThread - the WatcherThread can also call this)
 720         // and increase delay with each retry
 721         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 722 
 723         // check the actual thread state instead of what we saved above
 724         if (thread_state() != _thread_in_native_trans) {
 725           // the thread has transitioned to another thread state so
 726           // try all the checks (except this one) one more time.
 727           do_trans_retry = true;
 728           break;
 729         }
 730       } // end retry loop
 731 
 732 
 733     }
 734   } while (do_trans_retry);
 735 
 736   *bits |= 0x00000010;
 737   return false;
 738 }
 739 
 740 // Wait for an external suspend request to complete (or be cancelled).
 741 // Returns true if the thread is externally suspended and false otherwise.
 742 //
 743 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 744                                                  uint32_t *bits) {
 745   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 746                              false /* !called_by_wait */, bits);
 747 
 748   // local flag copies to minimize SR_lock hold time
 749   bool is_suspended;
 750   bool pending;
 751   uint32_t reset_bits;
 752 
 753   // set a marker so is_ext_suspend_completed() knows we are the caller
 754   *bits |= 0x00010000;
 755 
 756   // We use reset_bits to reinitialize the bits value at the top of
 757   // each retry loop. This allows the caller to make use of any
 758   // unused bits for their own marking purposes.
 759   reset_bits = *bits;
 760 
 761   {
 762     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 763     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 764                                             delay, bits);
 765     pending = is_external_suspend();
 766   }
 767   // must release SR_lock to allow suspension to complete
 768 
 769   if (!pending) {
 770     // A cancelled suspend request is the only false return from
 771     // is_ext_suspend_completed() that keeps us from entering the
 772     // retry loop.
 773     *bits |= 0x00020000;
 774     return false;
 775   }
 776 
 777   if (is_suspended) {
 778     *bits |= 0x00040000;
 779     return true;
 780   }
 781 
 782   for (int i = 1; i <= retries; i++) {
 783     *bits = reset_bits;  // reinit to only track last retry
 784 
 785     // We used to do an "os::yield_all(i)" call here with the intention
 786     // that yielding would increase on each retry. However, the parameter
 787     // is ignored on Linux which means the yield didn't scale up. Waiting
 788     // on the SR_lock below provides a much more predictable scale up for
 789     // the delay. It also provides a simple/direct point to check for any
 790     // safepoint requests from the VMThread
 791 
 792     {
 793       MutexLocker ml(SR_lock());
 794       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 795       // can also call this)  and increase delay with each retry
 796       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 797 
 798       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 799                                               delay, bits);
 800 
 801       // It is possible for the external suspend request to be cancelled
 802       // (by a resume) before the actual suspend operation is completed.
 803       // Refresh our local copy to see if we still need to wait.
 804       pending = is_external_suspend();
 805     }
 806 
 807     if (!pending) {
 808       // A cancelled suspend request is the only false return from
 809       // is_ext_suspend_completed() that keeps us from staying in the
 810       // retry loop.
 811       *bits |= 0x00080000;
 812       return false;
 813     }
 814 
 815     if (is_suspended) {
 816       *bits |= 0x00100000;
 817       return true;
 818     }
 819   } // end retry loop
 820 
 821   // thread did not suspend after all our retries
 822   *bits |= 0x00200000;
 823   return false;
 824 }
 825 
 826 // Called from API entry points which perform stack walking. If the
 827 // associated JavaThread is the current thread, then wait_for_suspend
 828 // is not used. Otherwise, it determines if we should wait for the
 829 // "other" thread to complete external suspension. (NOTE: in future
 830 // releases the suspension mechanism should be reimplemented so this
 831 // is not necessary.)
 832 //
 833 bool
 834 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 835   if (this != JavaThread::current()) {
 836     // "other" threads require special handling.
 837     if (wait_for_suspend) {
 838       // We are allowed to wait for the external suspend to complete
 839       // so give the other thread a chance to get suspended.
 840       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 841                                            SuspendRetryDelay, bits)) {
 842         // Didn't make it so let the caller know.
 843         return false;
 844       }
 845     }
 846     // We aren't allowed to wait for the external suspend to complete
 847     // so if the other thread isn't externally suspended we need to
 848     // let the caller know.
 849     else if (!is_ext_suspend_completed_with_lock(bits)) {
 850       return false;
 851     }
 852   }
 853 
 854   return true;
 855 }
 856 
 857 #ifndef PRODUCT
 858 void JavaThread::record_jump(address target, address instr, const char* file,
 859                              int line) {
 860 
 861   // This should not need to be atomic as the only way for simultaneous
 862   // updates is via interrupts. Even then this should be rare or non-existent
 863   // and we don't care that much anyway.
 864 
 865   int index = _jmp_ring_index;
 866   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 867   _jmp_ring[index]._target = (intptr_t) target;
 868   _jmp_ring[index]._instruction = (intptr_t) instr;
 869   _jmp_ring[index]._file = file;
 870   _jmp_ring[index]._line = line;
 871 }
 872 #endif // PRODUCT
 873 
 874 void Thread::interrupt(Thread* thread) {
 875   debug_only(check_for_dangling_thread_pointer(thread);)
 876   os::interrupt(thread);
 877 }
 878 
 879 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 880   debug_only(check_for_dangling_thread_pointer(thread);)
 881   // Note:  If clear_interrupted==false, this simply fetches and
 882   // returns the value of the field osthread()->interrupted().
 883   return os::is_interrupted(thread, clear_interrupted);
 884 }
 885 
 886 
 887 // GC Support
 888 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 889   int thread_parity = _oops_do_parity;
 890   if (thread_parity != strong_roots_parity) {
 891     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 892     if (res == thread_parity) {
 893       return true;
 894     } else {
 895       guarantee(res == strong_roots_parity, "Or else what?");
 896       return false;
 897     }
 898   }
 899   return false;
 900 }
 901 
 902 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 903   active_handles()->oops_do(f);
 904   // Do oop for ThreadShadow
 905   f->do_oop((oop*)&_pending_exception);
 906   handle_area()->oops_do(f);
 907 
 908   // We scan thread local monitor lists here, and the remaining global
 909   // monitors in ObjectSynchronizer::oops_do().
 910   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 911 }
 912 
 913 void Thread::metadata_handles_do(void f(Metadata*)) {
 914   // Only walk the Handles in Thread.
 915   if (metadata_handles() != NULL) {
 916     for (int i = 0; i< metadata_handles()->length(); i++) {
 917       f(metadata_handles()->at(i));
 918     }
 919   }
 920 }
 921 
 922 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 923   // get_priority assumes osthread initialized
 924   if (osthread() != NULL) {
 925     int os_prio;
 926     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 927       st->print("os_prio=%d ", os_prio);
 928     }
 929 
 930     st->print("cpu=%.2fms ",
 931               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 932               );
 933     st->print("elapsed=%.2fs ",
 934               _statistical_info.getElapsedTime() / 1000.0
 935               );
 936     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 937       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 938       st->print("allocated=" SIZE_FORMAT "%s ",
 939                 byte_size_in_proper_unit(allocated_bytes),
 940                 proper_unit_for_byte_size(allocated_bytes)
 941                 );
 942       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 943     }
 944 
 945     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 946     osthread()->print_on(st);
 947   }
 948   ThreadsSMRSupport::print_info_on(this, st);
 949   st->print(" ");
 950   debug_only(if (WizardMode) print_owned_locks_on(st);)
 951 }
 952 
 953 // Thread::print_on_error() is called by fatal error handler. Don't use
 954 // any lock or allocate memory.
 955 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 956   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 957 
 958   if (is_VM_thread())                 { st->print("VMThread"); }
 959   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 960   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 961   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 962   else                                { st->print("Thread"); }
 963 
 964   if (is_Named_thread()) {
 965     st->print(" \"%s\"", name());
 966   }
 967 
 968   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 969             p2i(stack_end()), p2i(stack_base()));
 970 
 971   if (osthread()) {
 972     st->print(" [id=%d]", osthread()->thread_id());
 973   }
 974 
 975   ThreadsSMRSupport::print_info_on(this, st);
 976 }
 977 
 978 void Thread::print_value_on(outputStream* st) const {
 979   if (is_Named_thread()) {
 980     st->print(" \"%s\" ", name());
 981   }
 982   st->print(INTPTR_FORMAT, p2i(this));   // print address
 983 }
 984 
 985 #ifdef ASSERT
 986 void Thread::print_owned_locks_on(outputStream* st) const {
 987   Monitor *cur = _owned_locks;
 988   if (cur == NULL) {
 989     st->print(" (no locks) ");
 990   } else {
 991     st->print_cr(" Locks owned:");
 992     while (cur) {
 993       cur->print_on(st);
 994       cur = cur->next();
 995     }
 996   }
 997 }
 998 
 999 static int ref_use_count  = 0;
1000 
1001 bool Thread::owns_locks_but_compiled_lock() const {
1002   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1003     if (cur != Compile_lock) return true;
1004   }
1005   return false;
1006 }
1007 
1008 
1009 #endif
1010 
1011 #ifndef PRODUCT
1012 
1013 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1014 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1015 // no locks which allow_vm_block's are held
1016 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1017   // Check if current thread is allowed to block at a safepoint
1018   if (!(_allow_safepoint_count == 0)) {
1019     fatal("Possible safepoint reached by thread that does not allow it");
1020   }
1021   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1022     fatal("LEAF method calling lock?");
1023   }
1024 
1025 #ifdef ASSERT
1026   if (potential_vm_operation && is_Java_thread()
1027       && !Universe::is_bootstrapping()) {
1028     // Make sure we do not hold any locks that the VM thread also uses.
1029     // This could potentially lead to deadlocks
1030     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1031       // Threads_lock is special, since the safepoint synchronization will not start before this is
1032       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1033       // since it is used to transfer control between JavaThreads and the VMThread
1034       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1035       if ((cur->allow_vm_block() &&
1036            cur != Threads_lock &&
1037            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1038            cur != VMOperationRequest_lock &&
1039            cur != VMOperationQueue_lock) ||
1040            cur->rank() == Mutex::special) {
1041         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1042       }
1043     }
1044   }
1045 
1046   if (GCALotAtAllSafepoints) {
1047     // We could enter a safepoint here and thus have a gc
1048     InterfaceSupport::check_gc_alot();
1049   }
1050 #endif
1051 }
1052 #endif
1053 
1054 bool Thread::is_in_stack(address adr) const {
1055   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1056   address end = os::current_stack_pointer();
1057   // Allow non Java threads to call this without stack_base
1058   if (_stack_base == NULL) return true;
1059   if (stack_base() >= adr && adr >= end) return true;
1060 
1061   return false;
1062 }
1063 
1064 bool Thread::is_in_usable_stack(address adr) const {
1065   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1066   size_t usable_stack_size = _stack_size - stack_guard_size;
1067 
1068   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1069 }
1070 
1071 
1072 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1073 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1074 // used for compilation in the future. If that change is made, the need for these methods
1075 // should be revisited, and they should be removed if possible.
1076 
1077 bool Thread::is_lock_owned(address adr) const {
1078   return on_local_stack(adr);
1079 }
1080 
1081 bool Thread::set_as_starting_thread() {
1082   assert(_starting_thread == NULL, "already initialized: "
1083          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1084   // NOTE: this must be called inside the main thread.
1085   DEBUG_ONLY(_starting_thread = this;)
1086   return os::create_main_thread((JavaThread*)this);
1087 }
1088 
1089 static void initialize_class(Symbol* class_name, TRAPS) {
1090   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1091   InstanceKlass::cast(klass)->initialize(CHECK);
1092 }
1093 
1094 
1095 // Creates the initial ThreadGroup
1096 static Handle create_initial_thread_group(TRAPS) {
1097   Handle system_instance = JavaCalls::construct_new_instance(
1098                             SystemDictionary::ThreadGroup_klass(),
1099                             vmSymbols::void_method_signature(),
1100                             CHECK_NH);
1101   Universe::set_system_thread_group(system_instance());
1102 
1103   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1104   Handle main_instance = JavaCalls::construct_new_instance(
1105                             SystemDictionary::ThreadGroup_klass(),
1106                             vmSymbols::threadgroup_string_void_signature(),
1107                             system_instance,
1108                             string,
1109                             CHECK_NH);
1110   return main_instance;
1111 }
1112 
1113 // Creates the initial Thread
1114 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1115                                  TRAPS) {
1116   InstanceKlass* ik = SystemDictionary::Thread_klass();
1117   assert(ik->is_initialized(), "must be");
1118   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1119 
1120   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1121   // constructor calls Thread.current(), which must be set here for the
1122   // initial thread.
1123   java_lang_Thread::set_thread(thread_oop(), thread);
1124   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1125   thread->set_threadObj(thread_oop());
1126 
1127   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1128 
1129   JavaValue result(T_VOID);
1130   JavaCalls::call_special(&result, thread_oop,
1131                           ik,
1132                           vmSymbols::object_initializer_name(),
1133                           vmSymbols::threadgroup_string_void_signature(),
1134                           thread_group,
1135                           string,
1136                           CHECK_NULL);
1137   return thread_oop();
1138 }
1139 
1140 char java_runtime_name[128] = "";
1141 char java_runtime_version[128] = "";
1142 
1143 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1144 static const char* get_java_runtime_name(TRAPS) {
1145   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1146                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1147   fieldDescriptor fd;
1148   bool found = k != NULL &&
1149                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1150                                                         vmSymbols::string_signature(), &fd);
1151   if (found) {
1152     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1153     if (name_oop == NULL) {
1154       return NULL;
1155     }
1156     const char* name = java_lang_String::as_utf8_string(name_oop,
1157                                                         java_runtime_name,
1158                                                         sizeof(java_runtime_name));
1159     return name;
1160   } else {
1161     return NULL;
1162   }
1163 }
1164 
1165 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1166 static const char* get_java_runtime_version(TRAPS) {
1167   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1168                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1169   fieldDescriptor fd;
1170   bool found = k != NULL &&
1171                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1172                                                         vmSymbols::string_signature(), &fd);
1173   if (found) {
1174     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1175     if (name_oop == NULL) {
1176       return NULL;
1177     }
1178     const char* name = java_lang_String::as_utf8_string(name_oop,
1179                                                         java_runtime_version,
1180                                                         sizeof(java_runtime_version));
1181     return name;
1182   } else {
1183     return NULL;
1184   }
1185 }
1186 
1187 // General purpose hook into Java code, run once when the VM is initialized.
1188 // The Java library method itself may be changed independently from the VM.
1189 static void call_postVMInitHook(TRAPS) {
1190   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1191   if (klass != NULL) {
1192     JavaValue result(T_VOID);
1193     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1194                            vmSymbols::void_method_signature(),
1195                            CHECK);
1196   }
1197 }
1198 
1199 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1200                                     bool daemon, TRAPS) {
1201   assert(thread_group.not_null(), "thread group should be specified");
1202   assert(threadObj() == NULL, "should only create Java thread object once");
1203 
1204   InstanceKlass* ik = SystemDictionary::Thread_klass();
1205   assert(ik->is_initialized(), "must be");
1206   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1207 
1208   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1209   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1210   // constructor calls Thread.current(), which must be set here.
1211   java_lang_Thread::set_thread(thread_oop(), this);
1212   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1213   set_threadObj(thread_oop());
1214 
1215   JavaValue result(T_VOID);
1216   if (thread_name != NULL) {
1217     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1218     // Thread gets assigned specified name and null target
1219     JavaCalls::call_special(&result,
1220                             thread_oop,
1221                             ik,
1222                             vmSymbols::object_initializer_name(),
1223                             vmSymbols::threadgroup_string_void_signature(),
1224                             thread_group,
1225                             name,
1226                             THREAD);
1227   } else {
1228     // Thread gets assigned name "Thread-nnn" and null target
1229     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1230     JavaCalls::call_special(&result,
1231                             thread_oop,
1232                             ik,
1233                             vmSymbols::object_initializer_name(),
1234                             vmSymbols::threadgroup_runnable_void_signature(),
1235                             thread_group,
1236                             Handle(),
1237                             THREAD);
1238   }
1239 
1240 
1241   if (daemon) {
1242     java_lang_Thread::set_daemon(thread_oop());
1243   }
1244 
1245   if (HAS_PENDING_EXCEPTION) {
1246     return;
1247   }
1248 
1249   Klass* group =  SystemDictionary::ThreadGroup_klass();
1250   Handle threadObj(THREAD, this->threadObj());
1251 
1252   JavaCalls::call_special(&result,
1253                           thread_group,
1254                           group,
1255                           vmSymbols::add_method_name(),
1256                           vmSymbols::thread_void_signature(),
1257                           threadObj,          // Arg 1
1258                           THREAD);
1259 }
1260 
1261 // List of all NonJavaThreads and safe iteration over that list.
1262 
1263 class NonJavaThread::List {
1264 public:
1265   NonJavaThread* volatile _head;
1266   SingleWriterSynchronizer _protect;
1267 
1268   List() : _head(NULL), _protect() {}
1269 };
1270 
1271 NonJavaThread::List NonJavaThread::_the_list;
1272 
1273 NonJavaThread::Iterator::Iterator() :
1274   _protect_enter(_the_list._protect.enter()),
1275   _current(OrderAccess::load_acquire(&_the_list._head))
1276 {}
1277 
1278 NonJavaThread::Iterator::~Iterator() {
1279   _the_list._protect.exit(_protect_enter);
1280 }
1281 
1282 void NonJavaThread::Iterator::step() {
1283   assert(!end(), "precondition");
1284   _current = OrderAccess::load_acquire(&_current->_next);
1285 }
1286 
1287 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1288   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1289 }
1290 
1291 NonJavaThread::~NonJavaThread() { }
1292 
1293 void NonJavaThread::add_to_the_list() {
1294   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1295   _next = _the_list._head;
1296   OrderAccess::release_store(&_the_list._head, this);
1297 }
1298 
1299 void NonJavaThread::remove_from_the_list() {
1300   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1301   NonJavaThread* volatile* p = &_the_list._head;
1302   for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1303     if (t == this) {
1304       *p = this->_next;
1305       // Wait for any in-progress iterators.  Concurrent synchronize is
1306       // not allowed, so do it while holding the list lock.
1307       _the_list._protect.synchronize();
1308       break;
1309     }
1310   }
1311 }
1312 
1313 void NonJavaThread::pre_run() {
1314   assert(BarrierSet::barrier_set() != NULL, "invariant");
1315   add_to_the_list();
1316 
1317   // This is slightly odd in that NamedThread is a subclass, but
1318   // in fact name() is defined in Thread
1319   assert(this->name() != NULL, "thread name was not set before it was started");
1320   this->set_native_thread_name(this->name());
1321 }
1322 
1323 void NonJavaThread::post_run() {
1324   JFR_ONLY(Jfr::on_thread_exit(this);)
1325   remove_from_the_list();
1326   // Ensure thread-local-storage is cleared before termination.
1327   Thread::clear_thread_current();
1328 }
1329 
1330 // NamedThread --  non-JavaThread subclasses with multiple
1331 // uniquely named instances should derive from this.
1332 NamedThread::NamedThread() :
1333   NonJavaThread(),
1334   _name(NULL),
1335   _processed_thread(NULL),
1336   _gc_id(GCId::undefined())
1337 {}
1338 
1339 NamedThread::~NamedThread() {
1340   if (_name != NULL) {
1341     FREE_C_HEAP_ARRAY(char, _name);
1342     _name = NULL;
1343   }
1344 }
1345 
1346 void NamedThread::set_name(const char* format, ...) {
1347   guarantee(_name == NULL, "Only get to set name once.");
1348   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1349   guarantee(_name != NULL, "alloc failure");
1350   va_list ap;
1351   va_start(ap, format);
1352   jio_vsnprintf(_name, max_name_len, format, ap);
1353   va_end(ap);
1354 }
1355 
1356 void NamedThread::print_on(outputStream* st) const {
1357   st->print("\"%s\" ", name());
1358   Thread::print_on(st);
1359   st->cr();
1360 }
1361 
1362 
1363 // ======= WatcherThread ========
1364 
1365 // The watcher thread exists to simulate timer interrupts.  It should
1366 // be replaced by an abstraction over whatever native support for
1367 // timer interrupts exists on the platform.
1368 
1369 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1370 bool WatcherThread::_startable = false;
1371 volatile bool  WatcherThread::_should_terminate = false;
1372 
1373 WatcherThread::WatcherThread() : NonJavaThread() {
1374   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1375   if (os::create_thread(this, os::watcher_thread)) {
1376     _watcher_thread = this;
1377 
1378     // Set the watcher thread to the highest OS priority which should not be
1379     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1380     // is created. The only normal thread using this priority is the reference
1381     // handler thread, which runs for very short intervals only.
1382     // If the VMThread's priority is not lower than the WatcherThread profiling
1383     // will be inaccurate.
1384     os::set_priority(this, MaxPriority);
1385     if (!DisableStartThread) {
1386       os::start_thread(this);
1387     }
1388   }
1389 }
1390 
1391 int WatcherThread::sleep() const {
1392   // The WatcherThread does not participate in the safepoint protocol
1393   // for the PeriodicTask_lock because it is not a JavaThread.
1394   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1395 
1396   if (_should_terminate) {
1397     // check for termination before we do any housekeeping or wait
1398     return 0;  // we did not sleep.
1399   }
1400 
1401   // remaining will be zero if there are no tasks,
1402   // causing the WatcherThread to sleep until a task is
1403   // enrolled
1404   int remaining = PeriodicTask::time_to_wait();
1405   int time_slept = 0;
1406 
1407   // we expect this to timeout - we only ever get unparked when
1408   // we should terminate or when a new task has been enrolled
1409   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1410 
1411   jlong time_before_loop = os::javaTimeNanos();
1412 
1413   while (true) {
1414     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1415                                             remaining);
1416     jlong now = os::javaTimeNanos();
1417 
1418     if (remaining == 0) {
1419       // if we didn't have any tasks we could have waited for a long time
1420       // consider the time_slept zero and reset time_before_loop
1421       time_slept = 0;
1422       time_before_loop = now;
1423     } else {
1424       // need to recalculate since we might have new tasks in _tasks
1425       time_slept = (int) ((now - time_before_loop) / 1000000);
1426     }
1427 
1428     // Change to task list or spurious wakeup of some kind
1429     if (timedout || _should_terminate) {
1430       break;
1431     }
1432 
1433     remaining = PeriodicTask::time_to_wait();
1434     if (remaining == 0) {
1435       // Last task was just disenrolled so loop around and wait until
1436       // another task gets enrolled
1437       continue;
1438     }
1439 
1440     remaining -= time_slept;
1441     if (remaining <= 0) {
1442       break;
1443     }
1444   }
1445 
1446   return time_slept;
1447 }
1448 
1449 void WatcherThread::run() {
1450   assert(this == watcher_thread(), "just checking");
1451 
1452   this->set_active_handles(JNIHandleBlock::allocate_block());
1453   while (true) {
1454     assert(watcher_thread() == Thread::current(), "thread consistency check");
1455     assert(watcher_thread() == this, "thread consistency check");
1456 
1457     // Calculate how long it'll be until the next PeriodicTask work
1458     // should be done, and sleep that amount of time.
1459     int time_waited = sleep();
1460 
1461     if (VMError::is_error_reported()) {
1462       // A fatal error has happened, the error handler(VMError::report_and_die)
1463       // should abort JVM after creating an error log file. However in some
1464       // rare cases, the error handler itself might deadlock. Here periodically
1465       // check for error reporting timeouts, and if it happens, just proceed to
1466       // abort the VM.
1467 
1468       // This code is in WatcherThread because WatcherThread wakes up
1469       // periodically so the fatal error handler doesn't need to do anything;
1470       // also because the WatcherThread is less likely to crash than other
1471       // threads.
1472 
1473       for (;;) {
1474         // Note: we use naked sleep in this loop because we want to avoid using
1475         // any kind of VM infrastructure which may be broken at this point.
1476         if (VMError::check_timeout()) {
1477           // We hit error reporting timeout. Error reporting was interrupted and
1478           // will be wrapping things up now (closing files etc). Give it some more
1479           // time, then quit the VM.
1480           os::naked_short_sleep(200);
1481           // Print a message to stderr.
1482           fdStream err(defaultStream::output_fd());
1483           err.print_raw_cr("# [ timer expired, abort... ]");
1484           // skip atexit/vm_exit/vm_abort hooks
1485           os::die();
1486         }
1487 
1488         // Wait a second, then recheck for timeout.
1489         os::naked_short_sleep(999);
1490       }
1491     }
1492 
1493     if (_should_terminate) {
1494       // check for termination before posting the next tick
1495       break;
1496     }
1497 
1498     PeriodicTask::real_time_tick(time_waited);
1499   }
1500 
1501   // Signal that it is terminated
1502   {
1503     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1504     _watcher_thread = NULL;
1505     Terminator_lock->notify();
1506   }
1507 }
1508 
1509 void WatcherThread::start() {
1510   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1511 
1512   if (watcher_thread() == NULL && _startable) {
1513     _should_terminate = false;
1514     // Create the single instance of WatcherThread
1515     new WatcherThread();
1516   }
1517 }
1518 
1519 void WatcherThread::make_startable() {
1520   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1521   _startable = true;
1522 }
1523 
1524 void WatcherThread::stop() {
1525   {
1526     // Follow normal safepoint aware lock enter protocol since the
1527     // WatcherThread is stopped by another JavaThread.
1528     MutexLocker ml(PeriodicTask_lock);
1529     _should_terminate = true;
1530 
1531     WatcherThread* watcher = watcher_thread();
1532     if (watcher != NULL) {
1533       // unpark the WatcherThread so it can see that it should terminate
1534       watcher->unpark();
1535     }
1536   }
1537 
1538   MutexLocker mu(Terminator_lock);
1539 
1540   while (watcher_thread() != NULL) {
1541     // This wait should make safepoint checks, wait without a timeout,
1542     // and wait as a suspend-equivalent condition.
1543     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1544                           Mutex::_as_suspend_equivalent_flag);
1545   }
1546 }
1547 
1548 void WatcherThread::unpark() {
1549   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1550   PeriodicTask_lock->notify();
1551 }
1552 
1553 void WatcherThread::print_on(outputStream* st) const {
1554   st->print("\"%s\" ", name());
1555   Thread::print_on(st);
1556   st->cr();
1557 }
1558 
1559 // ======= JavaThread ========
1560 
1561 #if INCLUDE_JVMCI
1562 
1563 jlong* JavaThread::_jvmci_old_thread_counters;
1564 
1565 bool jvmci_counters_include(JavaThread* thread) {
1566   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1567 }
1568 
1569 void JavaThread::collect_counters(typeArrayOop array) {
1570   if (JVMCICounterSize > 0) {
1571     JavaThreadIteratorWithHandle jtiwh;
1572     for (int i = 0; i < array->length(); i++) {
1573       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1574     }
1575     for (; JavaThread *tp = jtiwh.next(); ) {
1576       if (jvmci_counters_include(tp)) {
1577         for (int i = 0; i < array->length(); i++) {
1578           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1579         }
1580       }
1581     }
1582   }
1583 }
1584 
1585 #endif // INCLUDE_JVMCI
1586 
1587 // A JavaThread is a normal Java thread
1588 
1589 void JavaThread::initialize() {
1590   // Initialize fields
1591 
1592   set_saved_exception_pc(NULL);
1593   set_threadObj(NULL);
1594   _anchor.clear();
1595   set_entry_point(NULL);
1596   set_jni_functions(jni_functions());
1597   set_callee_target(NULL);
1598   set_vm_result(NULL);
1599   set_vm_result_2(NULL);
1600   set_vframe_array_head(NULL);
1601   set_vframe_array_last(NULL);
1602   set_deferred_locals(NULL);
1603   set_deopt_mark(NULL);
1604   set_deopt_compiled_method(NULL);
1605   clear_must_deopt_id();
1606   set_monitor_chunks(NULL);
1607   set_next(NULL);
1608   _on_thread_list = false;
1609   set_thread_state(_thread_new);
1610   _terminated = _not_terminated;
1611   _array_for_gc = NULL;
1612   _suspend_equivalent = false;
1613   _in_deopt_handler = 0;
1614   _doing_unsafe_access = false;
1615   _stack_guard_state = stack_guard_unused;
1616 #if INCLUDE_JVMCI
1617   _pending_monitorenter = false;
1618   _pending_deoptimization = -1;
1619   _pending_failed_speculation = 0;
1620   _pending_transfer_to_interpreter = false;
1621   _adjusting_comp_level = false;
1622   _in_retryable_allocation = false;
1623   _jvmci._alternate_call_target = NULL;
1624   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1625   if (JVMCICounterSize > 0) {
1626     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1627     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1628   } else {
1629     _jvmci_counters = NULL;
1630   }
1631 #endif // INCLUDE_JVMCI
1632   _reserved_stack_activation = NULL;  // stack base not known yet
1633   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1634   _exception_pc  = 0;
1635   _exception_handler_pc = 0;
1636   _is_method_handle_return = 0;
1637   _jvmti_thread_state= NULL;
1638   _should_post_on_exceptions_flag = JNI_FALSE;
1639   _interp_only_mode    = 0;
1640   _special_runtime_exit_condition = _no_async_condition;
1641   _pending_async_exception = NULL;
1642   _thread_stat = NULL;
1643   _thread_stat = new ThreadStatistics();
1644   _blocked_on_compilation = false;
1645   _jni_active_critical = 0;
1646   _pending_jni_exception_check_fn = NULL;
1647   _do_not_unlock_if_synchronized = false;
1648   _cached_monitor_info = NULL;
1649   _parker = Parker::Allocate(this);
1650 
1651 #ifndef PRODUCT
1652   _jmp_ring_index = 0;
1653   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1654     record_jump(NULL, NULL, NULL, 0);
1655   }
1656 #endif // PRODUCT
1657 
1658   // Setup safepoint state info for this thread
1659   ThreadSafepointState::create(this);
1660 
1661   debug_only(_java_call_counter = 0);
1662 
1663   // JVMTI PopFrame support
1664   _popframe_condition = popframe_inactive;
1665   _popframe_preserved_args = NULL;
1666   _popframe_preserved_args_size = 0;
1667   _frames_to_pop_failed_realloc = 0;
1668 
1669   if (SafepointMechanism::uses_thread_local_poll()) {
1670     SafepointMechanism::initialize_header(this);
1671   }
1672 
1673   _class_to_be_initialized = NULL;
1674 
1675   pd_initialize();
1676 }
1677 
1678 JavaThread::JavaThread(bool is_attaching_via_jni) :
1679                        Thread() {
1680   initialize();
1681   if (is_attaching_via_jni) {
1682     _jni_attach_state = _attaching_via_jni;
1683   } else {
1684     _jni_attach_state = _not_attaching_via_jni;
1685   }
1686   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1687 }
1688 
1689 bool JavaThread::reguard_stack(address cur_sp) {
1690   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1691       && _stack_guard_state != stack_guard_reserved_disabled) {
1692     return true; // Stack already guarded or guard pages not needed.
1693   }
1694 
1695   if (register_stack_overflow()) {
1696     // For those architectures which have separate register and
1697     // memory stacks, we must check the register stack to see if
1698     // it has overflowed.
1699     return false;
1700   }
1701 
1702   // Java code never executes within the yellow zone: the latter is only
1703   // there to provoke an exception during stack banging.  If java code
1704   // is executing there, either StackShadowPages should be larger, or
1705   // some exception code in c1, c2 or the interpreter isn't unwinding
1706   // when it should.
1707   guarantee(cur_sp > stack_reserved_zone_base(),
1708             "not enough space to reguard - increase StackShadowPages");
1709   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1710     enable_stack_yellow_reserved_zone();
1711     if (reserved_stack_activation() != stack_base()) {
1712       set_reserved_stack_activation(stack_base());
1713     }
1714   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1715     set_reserved_stack_activation(stack_base());
1716     enable_stack_reserved_zone();
1717   }
1718   return true;
1719 }
1720 
1721 bool JavaThread::reguard_stack(void) {
1722   return reguard_stack(os::current_stack_pointer());
1723 }
1724 
1725 
1726 void JavaThread::block_if_vm_exited() {
1727   if (_terminated == _vm_exited) {
1728     // _vm_exited is set at safepoint, and Threads_lock is never released
1729     // we will block here forever
1730     Threads_lock->lock_without_safepoint_check();
1731     ShouldNotReachHere();
1732   }
1733 }
1734 
1735 
1736 // Remove this ifdef when C1 is ported to the compiler interface.
1737 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1738 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1739 
1740 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1741                        Thread() {
1742   initialize();
1743   _jni_attach_state = _not_attaching_via_jni;
1744   set_entry_point(entry_point);
1745   // Create the native thread itself.
1746   // %note runtime_23
1747   os::ThreadType thr_type = os::java_thread;
1748   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1749                                                      os::java_thread;
1750   os::create_thread(this, thr_type, stack_sz);
1751   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1752   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1753   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1754   // the exception consists of creating the exception object & initializing it, initialization
1755   // will leave the VM via a JavaCall and then all locks must be unlocked).
1756   //
1757   // The thread is still suspended when we reach here. Thread must be explicit started
1758   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1759   // by calling Threads:add. The reason why this is not done here, is because the thread
1760   // object must be fully initialized (take a look at JVM_Start)
1761 }
1762 
1763 JavaThread::~JavaThread() {
1764 
1765   // JSR166 -- return the parker to the free list
1766   Parker::Release(_parker);
1767   _parker = NULL;
1768 
1769   // Free any remaining  previous UnrollBlock
1770   vframeArray* old_array = vframe_array_last();
1771 
1772   if (old_array != NULL) {
1773     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1774     old_array->set_unroll_block(NULL);
1775     delete old_info;
1776     delete old_array;
1777   }
1778 
1779   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1780   if (deferred != NULL) {
1781     // This can only happen if thread is destroyed before deoptimization occurs.
1782     assert(deferred->length() != 0, "empty array!");
1783     do {
1784       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1785       deferred->remove_at(0);
1786       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1787       delete dlv;
1788     } while (deferred->length() != 0);
1789     delete deferred;
1790   }
1791 
1792   // All Java related clean up happens in exit
1793   ThreadSafepointState::destroy(this);
1794   if (_thread_stat != NULL) delete _thread_stat;
1795 
1796 #if INCLUDE_JVMCI
1797   if (JVMCICounterSize > 0) {
1798     if (jvmci_counters_include(this)) {
1799       for (int i = 0; i < JVMCICounterSize; i++) {
1800         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1801       }
1802     }
1803     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1804   }
1805 #endif // INCLUDE_JVMCI
1806 }
1807 
1808 
1809 // First JavaThread specific code executed by a new Java thread.
1810 void JavaThread::pre_run() {
1811   // empty - see comments in run()
1812 }
1813 
1814 // The main routine called by a new Java thread. This isn't overridden
1815 // by subclasses, instead different subclasses define a different "entry_point"
1816 // which defines the actual logic for that kind of thread.
1817 void JavaThread::run() {
1818   // initialize thread-local alloc buffer related fields
1819   this->initialize_tlab();
1820 
1821   // Used to test validity of stack trace backs.
1822   // This can't be moved into pre_run() else we invalidate
1823   // the requirement that thread_main_inner is lower on
1824   // the stack. Consequently all the initialization logic
1825   // stays here in run() rather than pre_run().
1826   this->record_base_of_stack_pointer();
1827 
1828   this->create_stack_guard_pages();
1829 
1830   this->cache_global_variables();
1831 
1832   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1833   // in the VM. Change thread state from _thread_new to _thread_in_vm
1834   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1835 
1836   assert(JavaThread::current() == this, "sanity check");
1837   assert(!Thread::current()->owns_locks(), "sanity check");
1838 
1839   DTRACE_THREAD_PROBE(start, this);
1840 
1841   // This operation might block. We call that after all safepoint checks for a new thread has
1842   // been completed.
1843   this->set_active_handles(JNIHandleBlock::allocate_block());
1844 
1845   if (JvmtiExport::should_post_thread_life()) {
1846     JvmtiExport::post_thread_start(this);
1847 
1848   }
1849 
1850   // We call another function to do the rest so we are sure that the stack addresses used
1851   // from there will be lower than the stack base just computed.
1852   thread_main_inner();
1853 }
1854 
1855 void JavaThread::thread_main_inner() {
1856   assert(JavaThread::current() == this, "sanity check");
1857   assert(this->threadObj() != NULL, "just checking");
1858 
1859   // Execute thread entry point unless this thread has a pending exception
1860   // or has been stopped before starting.
1861   // Note: Due to JVM_StopThread we can have pending exceptions already!
1862   if (!this->has_pending_exception() &&
1863       !java_lang_Thread::is_stillborn(this->threadObj())) {
1864     {
1865       ResourceMark rm(this);
1866       this->set_native_thread_name(this->get_thread_name());
1867     }
1868     HandleMark hm(this);
1869     this->entry_point()(this, this);
1870   }
1871 
1872   DTRACE_THREAD_PROBE(stop, this);
1873 
1874   // Cleanup is handled in post_run()
1875 }
1876 
1877 // Shared teardown for all JavaThreads
1878 void JavaThread::post_run() {
1879   this->exit(false);
1880   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1881   // for any shared tear-down.
1882   this->smr_delete();
1883 }
1884 
1885 static void ensure_join(JavaThread* thread) {
1886   // We do not need to grab the Threads_lock, since we are operating on ourself.
1887   Handle threadObj(thread, thread->threadObj());
1888   assert(threadObj.not_null(), "java thread object must exist");
1889   ObjectLocker lock(threadObj, thread);
1890   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1891   thread->clear_pending_exception();
1892   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1893   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1894   // Clear the native thread instance - this makes isAlive return false and allows the join()
1895   // to complete once we've done the notify_all below
1896   java_lang_Thread::set_thread(threadObj(), NULL);
1897   lock.notify_all(thread);
1898   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1899   thread->clear_pending_exception();
1900 }
1901 
1902 static bool is_daemon(oop threadObj) {
1903   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1904 }
1905 
1906 // For any new cleanup additions, please check to see if they need to be applied to
1907 // cleanup_failed_attach_current_thread as well.
1908 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1909   assert(this == JavaThread::current(), "thread consistency check");
1910 
1911   elapsedTimer _timer_exit_phase1;
1912   elapsedTimer _timer_exit_phase2;
1913   elapsedTimer _timer_exit_phase3;
1914   elapsedTimer _timer_exit_phase4;
1915 
1916   if (log_is_enabled(Debug, os, thread, timer)) {
1917     _timer_exit_phase1.start();
1918   }
1919 
1920   HandleMark hm(this);
1921   Handle uncaught_exception(this, this->pending_exception());
1922   this->clear_pending_exception();
1923   Handle threadObj(this, this->threadObj());
1924   assert(threadObj.not_null(), "Java thread object should be created");
1925 
1926   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1927   {
1928     EXCEPTION_MARK;
1929 
1930     CLEAR_PENDING_EXCEPTION;
1931   }
1932   if (!destroy_vm) {
1933     if (uncaught_exception.not_null()) {
1934       EXCEPTION_MARK;
1935       // Call method Thread.dispatchUncaughtException().
1936       Klass* thread_klass = SystemDictionary::Thread_klass();
1937       JavaValue result(T_VOID);
1938       JavaCalls::call_virtual(&result,
1939                               threadObj, thread_klass,
1940                               vmSymbols::dispatchUncaughtException_name(),
1941                               vmSymbols::throwable_void_signature(),
1942                               uncaught_exception,
1943                               THREAD);
1944       if (HAS_PENDING_EXCEPTION) {
1945         ResourceMark rm(this);
1946         jio_fprintf(defaultStream::error_stream(),
1947                     "\nException: %s thrown from the UncaughtExceptionHandler"
1948                     " in thread \"%s\"\n",
1949                     pending_exception()->klass()->external_name(),
1950                     get_thread_name());
1951         CLEAR_PENDING_EXCEPTION;
1952       }
1953     }
1954     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1955 
1956     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1957     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1958     // is deprecated anyhow.
1959     if (!is_Compiler_thread()) {
1960       int count = 3;
1961       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1962         EXCEPTION_MARK;
1963         JavaValue result(T_VOID);
1964         Klass* thread_klass = SystemDictionary::Thread_klass();
1965         JavaCalls::call_virtual(&result,
1966                                 threadObj, thread_klass,
1967                                 vmSymbols::exit_method_name(),
1968                                 vmSymbols::void_method_signature(),
1969                                 THREAD);
1970         CLEAR_PENDING_EXCEPTION;
1971       }
1972     }
1973     // notify JVMTI
1974     if (JvmtiExport::should_post_thread_life()) {
1975       JvmtiExport::post_thread_end(this);
1976     }
1977 
1978     // We have notified the agents that we are exiting, before we go on,
1979     // we must check for a pending external suspend request and honor it
1980     // in order to not surprise the thread that made the suspend request.
1981     while (true) {
1982       {
1983         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1984         if (!is_external_suspend()) {
1985           set_terminated(_thread_exiting);
1986           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1987           break;
1988         }
1989         // Implied else:
1990         // Things get a little tricky here. We have a pending external
1991         // suspend request, but we are holding the SR_lock so we
1992         // can't just self-suspend. So we temporarily drop the lock
1993         // and then self-suspend.
1994       }
1995 
1996       ThreadBlockInVM tbivm(this);
1997       java_suspend_self();
1998 
1999       // We're done with this suspend request, but we have to loop around
2000       // and check again. Eventually we will get SR_lock without a pending
2001       // external suspend request and will be able to mark ourselves as
2002       // exiting.
2003     }
2004     // no more external suspends are allowed at this point
2005   } else {
2006     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2007     // before_exit() has already posted JVMTI THREAD_END events
2008   }
2009 
2010   if (log_is_enabled(Debug, os, thread, timer)) {
2011     _timer_exit_phase1.stop();
2012     _timer_exit_phase2.start();
2013   }
2014   // Notify waiters on thread object. This has to be done after exit() is called
2015   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2016   // group should have the destroyed bit set before waiters are notified).
2017   ensure_join(this);
2018   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2019 
2020   if (log_is_enabled(Debug, os, thread, timer)) {
2021     _timer_exit_phase2.stop();
2022     _timer_exit_phase3.start();
2023   }
2024   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2025   // held by this thread must be released. The spec does not distinguish
2026   // between JNI-acquired and regular Java monitors. We can only see
2027   // regular Java monitors here if monitor enter-exit matching is broken.
2028   //
2029   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2030   // ObjectSynchronizer::release_monitors_owned_by_thread().
2031   if (exit_type == jni_detach) {
2032     // Sanity check even though JNI DetachCurrentThread() would have
2033     // returned JNI_ERR if there was a Java frame. JavaThread exit
2034     // should be done executing Java code by the time we get here.
2035     assert(!this->has_last_Java_frame(),
2036            "should not have a Java frame when detaching or exiting");
2037     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2038     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2039   }
2040 
2041   // These things needs to be done while we are still a Java Thread. Make sure that thread
2042   // is in a consistent state, in case GC happens
2043   JFR_ONLY(Jfr::on_thread_exit(this);)
2044 
2045   if (active_handles() != NULL) {
2046     JNIHandleBlock* block = active_handles();
2047     set_active_handles(NULL);
2048     JNIHandleBlock::release_block(block);
2049   }
2050 
2051   if (free_handle_block() != NULL) {
2052     JNIHandleBlock* block = free_handle_block();
2053     set_free_handle_block(NULL);
2054     JNIHandleBlock::release_block(block);
2055   }
2056 
2057   // These have to be removed while this is still a valid thread.
2058   remove_stack_guard_pages();
2059 
2060   if (UseTLAB) {
2061     tlab().retire();
2062   }
2063 
2064   if (JvmtiEnv::environments_might_exist()) {
2065     JvmtiExport::cleanup_thread(this);
2066   }
2067 
2068   // We must flush any deferred card marks and other various GC barrier
2069   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2070   // before removing a thread from the list of active threads.
2071   BarrierSet::barrier_set()->on_thread_detach(this);
2072 
2073   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2074     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2075     os::current_thread_id());
2076 
2077   if (log_is_enabled(Debug, os, thread, timer)) {
2078     _timer_exit_phase3.stop();
2079     _timer_exit_phase4.start();
2080   }
2081   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2082   Threads::remove(this);
2083 
2084   if (log_is_enabled(Debug, os, thread, timer)) {
2085     _timer_exit_phase4.stop();
2086     ResourceMark rm(this);
2087     log_debug(os, thread, timer)("name='%s'"
2088                                  ", exit-phase1=" JLONG_FORMAT
2089                                  ", exit-phase2=" JLONG_FORMAT
2090                                  ", exit-phase3=" JLONG_FORMAT
2091                                  ", exit-phase4=" JLONG_FORMAT,
2092                                  get_thread_name(),
2093                                  _timer_exit_phase1.milliseconds(),
2094                                  _timer_exit_phase2.milliseconds(),
2095                                  _timer_exit_phase3.milliseconds(),
2096                                  _timer_exit_phase4.milliseconds());
2097   }
2098 }
2099 
2100 void JavaThread::cleanup_failed_attach_current_thread() {
2101   if (active_handles() != NULL) {
2102     JNIHandleBlock* block = active_handles();
2103     set_active_handles(NULL);
2104     JNIHandleBlock::release_block(block);
2105   }
2106 
2107   if (free_handle_block() != NULL) {
2108     JNIHandleBlock* block = free_handle_block();
2109     set_free_handle_block(NULL);
2110     JNIHandleBlock::release_block(block);
2111   }
2112 
2113   // These have to be removed while this is still a valid thread.
2114   remove_stack_guard_pages();
2115 
2116   if (UseTLAB) {
2117     tlab().retire();
2118   }
2119 
2120   BarrierSet::barrier_set()->on_thread_detach(this);
2121 
2122   Threads::remove(this);
2123   this->smr_delete();
2124 }
2125 
2126 JavaThread* JavaThread::active() {
2127   Thread* thread = Thread::current();
2128   if (thread->is_Java_thread()) {
2129     return (JavaThread*) thread;
2130   } else {
2131     assert(thread->is_VM_thread(), "this must be a vm thread");
2132     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2133     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2134     assert(ret->is_Java_thread(), "must be a Java thread");
2135     return ret;
2136   }
2137 }
2138 
2139 bool JavaThread::is_lock_owned(address adr) const {
2140   if (Thread::is_lock_owned(adr)) return true;
2141 
2142   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2143     if (chunk->contains(adr)) return true;
2144   }
2145 
2146   return false;
2147 }
2148 
2149 
2150 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2151   chunk->set_next(monitor_chunks());
2152   set_monitor_chunks(chunk);
2153 }
2154 
2155 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2156   guarantee(monitor_chunks() != NULL, "must be non empty");
2157   if (monitor_chunks() == chunk) {
2158     set_monitor_chunks(chunk->next());
2159   } else {
2160     MonitorChunk* prev = monitor_chunks();
2161     while (prev->next() != chunk) prev = prev->next();
2162     prev->set_next(chunk->next());
2163   }
2164 }
2165 
2166 // JVM support.
2167 
2168 // Note: this function shouldn't block if it's called in
2169 // _thread_in_native_trans state (such as from
2170 // check_special_condition_for_native_trans()).
2171 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2172 
2173   if (has_last_Java_frame() && has_async_condition()) {
2174     // If we are at a polling page safepoint (not a poll return)
2175     // then we must defer async exception because live registers
2176     // will be clobbered by the exception path. Poll return is
2177     // ok because the call we a returning from already collides
2178     // with exception handling registers and so there is no issue.
2179     // (The exception handling path kills call result registers but
2180     //  this is ok since the exception kills the result anyway).
2181 
2182     if (is_at_poll_safepoint()) {
2183       // if the code we are returning to has deoptimized we must defer
2184       // the exception otherwise live registers get clobbered on the
2185       // exception path before deoptimization is able to retrieve them.
2186       //
2187       RegisterMap map(this, false);
2188       frame caller_fr = last_frame().sender(&map);
2189       assert(caller_fr.is_compiled_frame(), "what?");
2190       if (caller_fr.is_deoptimized_frame()) {
2191         log_info(exceptions)("deferred async exception at compiled safepoint");
2192         return;
2193       }
2194     }
2195   }
2196 
2197   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2198   if (condition == _no_async_condition) {
2199     // Conditions have changed since has_special_runtime_exit_condition()
2200     // was called:
2201     // - if we were here only because of an external suspend request,
2202     //   then that was taken care of above (or cancelled) so we are done
2203     // - if we were here because of another async request, then it has
2204     //   been cleared between the has_special_runtime_exit_condition()
2205     //   and now so again we are done
2206     return;
2207   }
2208 
2209   // Check for pending async. exception
2210   if (_pending_async_exception != NULL) {
2211     // Only overwrite an already pending exception, if it is not a threadDeath.
2212     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2213 
2214       // We cannot call Exceptions::_throw(...) here because we cannot block
2215       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2216 
2217       LogTarget(Info, exceptions) lt;
2218       if (lt.is_enabled()) {
2219         ResourceMark rm;
2220         LogStream ls(lt);
2221         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2222           if (has_last_Java_frame()) {
2223             frame f = last_frame();
2224            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2225           }
2226         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2227       }
2228       _pending_async_exception = NULL;
2229       clear_has_async_exception();
2230     }
2231   }
2232 
2233   if (check_unsafe_error &&
2234       condition == _async_unsafe_access_error && !has_pending_exception()) {
2235     condition = _no_async_condition;  // done
2236     switch (thread_state()) {
2237     case _thread_in_vm: {
2238       JavaThread* THREAD = this;
2239       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2240     }
2241     case _thread_in_native: {
2242       ThreadInVMfromNative tiv(this);
2243       JavaThread* THREAD = this;
2244       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2245     }
2246     case _thread_in_Java: {
2247       ThreadInVMfromJava tiv(this);
2248       JavaThread* THREAD = this;
2249       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2250     }
2251     default:
2252       ShouldNotReachHere();
2253     }
2254   }
2255 
2256   assert(condition == _no_async_condition || has_pending_exception() ||
2257          (!check_unsafe_error && condition == _async_unsafe_access_error),
2258          "must have handled the async condition, if no exception");
2259 }
2260 
2261 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2262   //
2263   // Check for pending external suspend. Internal suspend requests do
2264   // not use handle_special_runtime_exit_condition().
2265   // If JNIEnv proxies are allowed, don't self-suspend if the target
2266   // thread is not the current thread. In older versions of jdbx, jdbx
2267   // threads could call into the VM with another thread's JNIEnv so we
2268   // can be here operating on behalf of a suspended thread (4432884).
2269   bool do_self_suspend = is_external_suspend_with_lock();
2270   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2271     //
2272     // Because thread is external suspended the safepoint code will count
2273     // thread as at a safepoint. This can be odd because we can be here
2274     // as _thread_in_Java which would normally transition to _thread_blocked
2275     // at a safepoint. We would like to mark the thread as _thread_blocked
2276     // before calling java_suspend_self like all other callers of it but
2277     // we must then observe proper safepoint protocol. (We can't leave
2278     // _thread_blocked with a safepoint in progress). However we can be
2279     // here as _thread_in_native_trans so we can't use a normal transition
2280     // constructor/destructor pair because they assert on that type of
2281     // transition. We could do something like:
2282     //
2283     // JavaThreadState state = thread_state();
2284     // set_thread_state(_thread_in_vm);
2285     // {
2286     //   ThreadBlockInVM tbivm(this);
2287     //   java_suspend_self()
2288     // }
2289     // set_thread_state(_thread_in_vm_trans);
2290     // if (safepoint) block;
2291     // set_thread_state(state);
2292     //
2293     // but that is pretty messy. Instead we just go with the way the
2294     // code has worked before and note that this is the only path to
2295     // java_suspend_self that doesn't put the thread in _thread_blocked
2296     // mode.
2297 
2298     frame_anchor()->make_walkable(this);
2299     java_suspend_self();
2300 
2301     // We might be here for reasons in addition to the self-suspend request
2302     // so check for other async requests.
2303   }
2304 
2305   if (check_asyncs) {
2306     check_and_handle_async_exceptions();
2307   }
2308 
2309   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2310 }
2311 
2312 void JavaThread::send_thread_stop(oop java_throwable)  {
2313   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2314   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2315   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2316 
2317   // Do not throw asynchronous exceptions against the compiler thread
2318   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2319   if (!can_call_java()) return;
2320 
2321   {
2322     // Actually throw the Throwable against the target Thread - however
2323     // only if there is no thread death exception installed already.
2324     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2325       // If the topmost frame is a runtime stub, then we are calling into
2326       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2327       // must deoptimize the caller before continuing, as the compiled  exception handler table
2328       // may not be valid
2329       if (has_last_Java_frame()) {
2330         frame f = last_frame();
2331         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2332           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2333           RegisterMap reg_map(this, UseBiasedLocking);
2334           frame compiled_frame = f.sender(&reg_map);
2335           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2336             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2337           }
2338         }
2339       }
2340 
2341       // Set async. pending exception in thread.
2342       set_pending_async_exception(java_throwable);
2343 
2344       if (log_is_enabled(Info, exceptions)) {
2345          ResourceMark rm;
2346         log_info(exceptions)("Pending Async. exception installed of type: %s",
2347                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2348       }
2349       // for AbortVMOnException flag
2350       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2351     }
2352   }
2353 
2354 
2355   // Interrupt thread so it will wake up from a potential wait()
2356   Thread::interrupt(this);
2357 }
2358 
2359 // External suspension mechanism.
2360 //
2361 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2362 // to any VM_locks and it is at a transition
2363 // Self-suspension will happen on the transition out of the vm.
2364 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2365 //
2366 // Guarantees on return:
2367 //   + Target thread will not execute any new bytecode (that's why we need to
2368 //     force a safepoint)
2369 //   + Target thread will not enter any new monitors
2370 //
2371 void JavaThread::java_suspend() {
2372   ThreadsListHandle tlh;
2373   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2374     return;
2375   }
2376 
2377   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2378     if (!is_external_suspend()) {
2379       // a racing resume has cancelled us; bail out now
2380       return;
2381     }
2382 
2383     // suspend is done
2384     uint32_t debug_bits = 0;
2385     // Warning: is_ext_suspend_completed() may temporarily drop the
2386     // SR_lock to allow the thread to reach a stable thread state if
2387     // it is currently in a transient thread state.
2388     if (is_ext_suspend_completed(false /* !called_by_wait */,
2389                                  SuspendRetryDelay, &debug_bits)) {
2390       return;
2391     }
2392   }
2393 
2394   if (Thread::current() == this) {
2395     // Safely self-suspend.
2396     // If we don't do this explicitly it will implicitly happen
2397     // before we transition back to Java, and on some other thread-state
2398     // transition paths, but not as we exit a JVM TI SuspendThread call.
2399     // As SuspendThread(current) must not return (until resumed) we must
2400     // self-suspend here.
2401     ThreadBlockInVM tbivm(this);
2402     java_suspend_self();
2403   } else {
2404     VM_ThreadSuspend vm_suspend;
2405     VMThread::execute(&vm_suspend);
2406   }
2407 }
2408 
2409 // Part II of external suspension.
2410 // A JavaThread self suspends when it detects a pending external suspend
2411 // request. This is usually on transitions. It is also done in places
2412 // where continuing to the next transition would surprise the caller,
2413 // e.g., monitor entry.
2414 //
2415 // Returns the number of times that the thread self-suspended.
2416 //
2417 // Note: DO NOT call java_suspend_self() when you just want to block current
2418 //       thread. java_suspend_self() is the second stage of cooperative
2419 //       suspension for external suspend requests and should only be used
2420 //       to complete an external suspend request.
2421 //
2422 int JavaThread::java_suspend_self() {
2423   int ret = 0;
2424 
2425   // we are in the process of exiting so don't suspend
2426   if (is_exiting()) {
2427     clear_external_suspend();
2428     return ret;
2429   }
2430 
2431   assert(_anchor.walkable() ||
2432          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2433          "must have walkable stack");
2434 
2435   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2436 
2437   assert(!this->is_ext_suspended(),
2438          "a thread trying to self-suspend should not already be suspended");
2439 
2440   if (this->is_suspend_equivalent()) {
2441     // If we are self-suspending as a result of the lifting of a
2442     // suspend equivalent condition, then the suspend_equivalent
2443     // flag is not cleared until we set the ext_suspended flag so
2444     // that wait_for_ext_suspend_completion() returns consistent
2445     // results.
2446     this->clear_suspend_equivalent();
2447   }
2448 
2449   // A racing resume may have cancelled us before we grabbed SR_lock
2450   // above. Or another external suspend request could be waiting for us
2451   // by the time we return from SR_lock()->wait(). The thread
2452   // that requested the suspension may already be trying to walk our
2453   // stack and if we return now, we can change the stack out from under
2454   // it. This would be a "bad thing (TM)" and cause the stack walker
2455   // to crash. We stay self-suspended until there are no more pending
2456   // external suspend requests.
2457   while (is_external_suspend()) {
2458     ret++;
2459     this->set_ext_suspended();
2460 
2461     // _ext_suspended flag is cleared by java_resume()
2462     while (is_ext_suspended()) {
2463       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2464     }
2465   }
2466 
2467   return ret;
2468 }
2469 
2470 #ifdef ASSERT
2471 // Verify the JavaThread has not yet been published in the Threads::list, and
2472 // hence doesn't need protection from concurrent access at this stage.
2473 void JavaThread::verify_not_published() {
2474   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2475   // since an unpublished JavaThread doesn't participate in the
2476   // Thread-SMR protocol for keeping a ThreadsList alive.
2477   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2478 }
2479 #endif
2480 
2481 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2482 // progress or when _suspend_flags is non-zero.
2483 // Current thread needs to self-suspend if there is a suspend request and/or
2484 // block if a safepoint is in progress.
2485 // Async exception ISN'T checked.
2486 // Note only the ThreadInVMfromNative transition can call this function
2487 // directly and when thread state is _thread_in_native_trans
2488 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2489   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2490 
2491   JavaThread *curJT = JavaThread::current();
2492   bool do_self_suspend = thread->is_external_suspend();
2493 
2494   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2495 
2496   // If JNIEnv proxies are allowed, don't self-suspend if the target
2497   // thread is not the current thread. In older versions of jdbx, jdbx
2498   // threads could call into the VM with another thread's JNIEnv so we
2499   // can be here operating on behalf of a suspended thread (4432884).
2500   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2501     JavaThreadState state = thread->thread_state();
2502 
2503     // We mark this thread_blocked state as a suspend-equivalent so
2504     // that a caller to is_ext_suspend_completed() won't be confused.
2505     // The suspend-equivalent state is cleared by java_suspend_self().
2506     thread->set_suspend_equivalent();
2507 
2508     // If the safepoint code sees the _thread_in_native_trans state, it will
2509     // wait until the thread changes to other thread state. There is no
2510     // guarantee on how soon we can obtain the SR_lock and complete the
2511     // self-suspend request. It would be a bad idea to let safepoint wait for
2512     // too long. Temporarily change the state to _thread_blocked to
2513     // let the VM thread know that this thread is ready for GC. The problem
2514     // of changing thread state is that safepoint could happen just after
2515     // java_suspend_self() returns after being resumed, and VM thread will
2516     // see the _thread_blocked state. We must check for safepoint
2517     // after restoring the state and make sure we won't leave while a safepoint
2518     // is in progress.
2519     thread->set_thread_state(_thread_blocked);
2520     thread->java_suspend_self();
2521     thread->set_thread_state(state);
2522 
2523     InterfaceSupport::serialize_thread_state_with_handler(thread);
2524   }
2525 
2526   SafepointMechanism::block_if_requested(curJT);
2527 
2528   if (thread->is_deopt_suspend()) {
2529     thread->clear_deopt_suspend();
2530     RegisterMap map(thread, false);
2531     frame f = thread->last_frame();
2532     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2533       f = f.sender(&map);
2534     }
2535     if (f.id() == thread->must_deopt_id()) {
2536       thread->clear_must_deopt_id();
2537       f.deoptimize(thread);
2538     } else {
2539       fatal("missed deoptimization!");
2540     }
2541   }
2542 
2543   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2544 }
2545 
2546 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2547 // progress or when _suspend_flags is non-zero.
2548 // Current thread needs to self-suspend if there is a suspend request and/or
2549 // block if a safepoint is in progress.
2550 // Also check for pending async exception (not including unsafe access error).
2551 // Note only the native==>VM/Java barriers can call this function and when
2552 // thread state is _thread_in_native_trans.
2553 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2554   check_safepoint_and_suspend_for_native_trans(thread);
2555 
2556   if (thread->has_async_exception()) {
2557     // We are in _thread_in_native_trans state, don't handle unsafe
2558     // access error since that may block.
2559     thread->check_and_handle_async_exceptions(false);
2560   }
2561 }
2562 
2563 // This is a variant of the normal
2564 // check_special_condition_for_native_trans with slightly different
2565 // semantics for use by critical native wrappers.  It does all the
2566 // normal checks but also performs the transition back into
2567 // thread_in_Java state.  This is required so that critical natives
2568 // can potentially block and perform a GC if they are the last thread
2569 // exiting the GCLocker.
2570 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2571   check_special_condition_for_native_trans(thread);
2572 
2573   // Finish the transition
2574   thread->set_thread_state(_thread_in_Java);
2575 
2576   if (thread->do_critical_native_unlock()) {
2577     ThreadInVMfromJavaNoAsyncException tiv(thread);
2578     GCLocker::unlock_critical(thread);
2579     thread->clear_critical_native_unlock();
2580   }
2581 }
2582 
2583 // We need to guarantee the Threads_lock here, since resumes are not
2584 // allowed during safepoint synchronization
2585 // Can only resume from an external suspension
2586 void JavaThread::java_resume() {
2587   assert_locked_or_safepoint(Threads_lock);
2588 
2589   // Sanity check: thread is gone, has started exiting or the thread
2590   // was not externally suspended.
2591   ThreadsListHandle tlh;
2592   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2593     return;
2594   }
2595 
2596   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2597 
2598   clear_external_suspend();
2599 
2600   if (is_ext_suspended()) {
2601     clear_ext_suspended();
2602     SR_lock()->notify_all();
2603   }
2604 }
2605 
2606 size_t JavaThread::_stack_red_zone_size = 0;
2607 size_t JavaThread::_stack_yellow_zone_size = 0;
2608 size_t JavaThread::_stack_reserved_zone_size = 0;
2609 size_t JavaThread::_stack_shadow_zone_size = 0;
2610 
2611 void JavaThread::create_stack_guard_pages() {
2612   if (!os::uses_stack_guard_pages() ||
2613       _stack_guard_state != stack_guard_unused ||
2614       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2615       log_info(os, thread)("Stack guard page creation for thread "
2616                            UINTX_FORMAT " disabled", os::current_thread_id());
2617     return;
2618   }
2619   address low_addr = stack_end();
2620   size_t len = stack_guard_zone_size();
2621 
2622   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2623   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2624 
2625   int must_commit = os::must_commit_stack_guard_pages();
2626   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2627 
2628   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2629     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2630     return;
2631   }
2632 
2633   if (os::guard_memory((char *) low_addr, len)) {
2634     _stack_guard_state = stack_guard_enabled;
2635   } else {
2636     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2637       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2638     if (os::uncommit_memory((char *) low_addr, len)) {
2639       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2640     }
2641     return;
2642   }
2643 
2644   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2645     PTR_FORMAT "-" PTR_FORMAT ".",
2646     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2647 }
2648 
2649 void JavaThread::remove_stack_guard_pages() {
2650   assert(Thread::current() == this, "from different thread");
2651   if (_stack_guard_state == stack_guard_unused) return;
2652   address low_addr = stack_end();
2653   size_t len = stack_guard_zone_size();
2654 
2655   if (os::must_commit_stack_guard_pages()) {
2656     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2657       _stack_guard_state = stack_guard_unused;
2658     } else {
2659       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2660         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2661       return;
2662     }
2663   } else {
2664     if (_stack_guard_state == stack_guard_unused) return;
2665     if (os::unguard_memory((char *) low_addr, len)) {
2666       _stack_guard_state = stack_guard_unused;
2667     } else {
2668       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2669         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2670       return;
2671     }
2672   }
2673 
2674   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2675     PTR_FORMAT "-" PTR_FORMAT ".",
2676     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2677 }
2678 
2679 void JavaThread::enable_stack_reserved_zone() {
2680   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2681 
2682   // The base notation is from the stack's point of view, growing downward.
2683   // We need to adjust it to work correctly with guard_memory()
2684   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2685 
2686   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2687   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2688 
2689   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2690     _stack_guard_state = stack_guard_enabled;
2691   } else {
2692     warning("Attempt to guard stack reserved zone failed.");
2693   }
2694   enable_register_stack_guard();
2695 }
2696 
2697 void JavaThread::disable_stack_reserved_zone() {
2698   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2699 
2700   // Simply return if called for a thread that does not use guard pages.
2701   if (_stack_guard_state != stack_guard_enabled) return;
2702 
2703   // The base notation is from the stack's point of view, growing downward.
2704   // We need to adjust it to work correctly with guard_memory()
2705   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2706 
2707   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2708     _stack_guard_state = stack_guard_reserved_disabled;
2709   } else {
2710     warning("Attempt to unguard stack reserved zone failed.");
2711   }
2712   disable_register_stack_guard();
2713 }
2714 
2715 void JavaThread::enable_stack_yellow_reserved_zone() {
2716   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2717   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2718 
2719   // The base notation is from the stacks point of view, growing downward.
2720   // We need to adjust it to work correctly with guard_memory()
2721   address base = stack_red_zone_base();
2722 
2723   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2724   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2725 
2726   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2727     _stack_guard_state = stack_guard_enabled;
2728   } else {
2729     warning("Attempt to guard stack yellow zone failed.");
2730   }
2731   enable_register_stack_guard();
2732 }
2733 
2734 void JavaThread::disable_stack_yellow_reserved_zone() {
2735   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2736   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2737 
2738   // Simply return if called for a thread that does not use guard pages.
2739   if (_stack_guard_state == stack_guard_unused) return;
2740 
2741   // The base notation is from the stacks point of view, growing downward.
2742   // We need to adjust it to work correctly with guard_memory()
2743   address base = stack_red_zone_base();
2744 
2745   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2746     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2747   } else {
2748     warning("Attempt to unguard stack yellow zone failed.");
2749   }
2750   disable_register_stack_guard();
2751 }
2752 
2753 void JavaThread::enable_stack_red_zone() {
2754   // The base notation is from the stacks point of view, growing downward.
2755   // We need to adjust it to work correctly with guard_memory()
2756   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2757   address base = stack_red_zone_base() - stack_red_zone_size();
2758 
2759   guarantee(base < stack_base(), "Error calculating stack red zone");
2760   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2761 
2762   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2763     warning("Attempt to guard stack red zone failed.");
2764   }
2765 }
2766 
2767 void JavaThread::disable_stack_red_zone() {
2768   // The base notation is from the stacks point of view, growing downward.
2769   // We need to adjust it to work correctly with guard_memory()
2770   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2771   address base = stack_red_zone_base() - stack_red_zone_size();
2772   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2773     warning("Attempt to unguard stack red zone failed.");
2774   }
2775 }
2776 
2777 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2778   // ignore is there is no stack
2779   if (!has_last_Java_frame()) return;
2780   // traverse the stack frames. Starts from top frame.
2781   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2782     frame* fr = fst.current();
2783     f(fr, fst.register_map());
2784   }
2785 }
2786 
2787 
2788 #ifndef PRODUCT
2789 // Deoptimization
2790 // Function for testing deoptimization
2791 void JavaThread::deoptimize() {
2792   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2793   StackFrameStream fst(this, UseBiasedLocking);
2794   bool deopt = false;           // Dump stack only if a deopt actually happens.
2795   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2796   // Iterate over all frames in the thread and deoptimize
2797   for (; !fst.is_done(); fst.next()) {
2798     if (fst.current()->can_be_deoptimized()) {
2799 
2800       if (only_at) {
2801         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2802         // consists of comma or carriage return separated numbers so
2803         // search for the current bci in that string.
2804         address pc = fst.current()->pc();
2805         nmethod* nm =  (nmethod*) fst.current()->cb();
2806         ScopeDesc* sd = nm->scope_desc_at(pc);
2807         char buffer[8];
2808         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2809         size_t len = strlen(buffer);
2810         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2811         while (found != NULL) {
2812           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2813               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2814             // Check that the bci found is bracketed by terminators.
2815             break;
2816           }
2817           found = strstr(found + 1, buffer);
2818         }
2819         if (!found) {
2820           continue;
2821         }
2822       }
2823 
2824       if (DebugDeoptimization && !deopt) {
2825         deopt = true; // One-time only print before deopt
2826         tty->print_cr("[BEFORE Deoptimization]");
2827         trace_frames();
2828         trace_stack();
2829       }
2830       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2831     }
2832   }
2833 
2834   if (DebugDeoptimization && deopt) {
2835     tty->print_cr("[AFTER Deoptimization]");
2836     trace_frames();
2837   }
2838 }
2839 
2840 
2841 // Make zombies
2842 void JavaThread::make_zombies() {
2843   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2844     if (fst.current()->can_be_deoptimized()) {
2845       // it is a Java nmethod
2846       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2847       nm->make_not_entrant();
2848     }
2849   }
2850 }
2851 #endif // PRODUCT
2852 
2853 
2854 void JavaThread::deoptimized_wrt_marked_nmethods() {
2855   if (!has_last_Java_frame()) return;
2856   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2857   StackFrameStream fst(this, UseBiasedLocking);
2858   for (; !fst.is_done(); fst.next()) {
2859     if (fst.current()->should_be_deoptimized()) {
2860       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2861     }
2862   }
2863 }
2864 
2865 
2866 // If the caller is a NamedThread, then remember, in the current scope,
2867 // the given JavaThread in its _processed_thread field.
2868 class RememberProcessedThread: public StackObj {
2869   NamedThread* _cur_thr;
2870  public:
2871   RememberProcessedThread(JavaThread* jthr) {
2872     Thread* thread = Thread::current();
2873     if (thread->is_Named_thread()) {
2874       _cur_thr = (NamedThread *)thread;
2875       _cur_thr->set_processed_thread(jthr);
2876     } else {
2877       _cur_thr = NULL;
2878     }
2879   }
2880 
2881   ~RememberProcessedThread() {
2882     if (_cur_thr) {
2883       _cur_thr->set_processed_thread(NULL);
2884     }
2885   }
2886 };
2887 
2888 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2889   // Verify that the deferred card marks have been flushed.
2890   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2891 
2892   // Traverse the GCHandles
2893   Thread::oops_do(f, cf);
2894 
2895   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2896          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2897 
2898   if (has_last_Java_frame()) {
2899     // Record JavaThread to GC thread
2900     RememberProcessedThread rpt(this);
2901 
2902     // traverse the registered growable array
2903     if (_array_for_gc != NULL) {
2904       for (int index = 0; index < _array_for_gc->length(); index++) {
2905         f->do_oop(_array_for_gc->adr_at(index));
2906       }
2907     }
2908 
2909     // Traverse the monitor chunks
2910     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2911       chunk->oops_do(f);
2912     }
2913 
2914     // Traverse the execution stack
2915     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2916       fst.current()->oops_do(f, cf, fst.register_map());
2917     }
2918   }
2919 
2920   // callee_target is never live across a gc point so NULL it here should
2921   // it still contain a methdOop.
2922 
2923   set_callee_target(NULL);
2924 
2925   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2926   // If we have deferred set_locals there might be oops waiting to be
2927   // written
2928   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2929   if (list != NULL) {
2930     for (int i = 0; i < list->length(); i++) {
2931       list->at(i)->oops_do(f);
2932     }
2933   }
2934 
2935   // Traverse instance variables at the end since the GC may be moving things
2936   // around using this function
2937   f->do_oop((oop*) &_threadObj);
2938   f->do_oop((oop*) &_vm_result);
2939   f->do_oop((oop*) &_exception_oop);
2940   f->do_oop((oop*) &_pending_async_exception);
2941 
2942   if (jvmti_thread_state() != NULL) {
2943     jvmti_thread_state()->oops_do(f);
2944   }
2945 }
2946 
2947 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2948   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2949          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2950 
2951   if (has_last_Java_frame()) {
2952     // Traverse the execution stack
2953     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2954       fst.current()->nmethods_do(cf);
2955     }
2956   }
2957 }
2958 
2959 void JavaThread::metadata_do(void f(Metadata*)) {
2960   if (has_last_Java_frame()) {
2961     // Traverse the execution stack to call f() on the methods in the stack
2962     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2963       fst.current()->metadata_do(f);
2964     }
2965   } else if (is_Compiler_thread()) {
2966     // need to walk ciMetadata in current compile tasks to keep alive.
2967     CompilerThread* ct = (CompilerThread*)this;
2968     if (ct->env() != NULL) {
2969       ct->env()->metadata_do(f);
2970     }
2971     CompileTask* task = ct->task();
2972     if (task != NULL) {
2973       task->metadata_do(f);
2974     }
2975   }
2976 }
2977 
2978 // Printing
2979 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2980   switch (_thread_state) {
2981   case _thread_uninitialized:     return "_thread_uninitialized";
2982   case _thread_new:               return "_thread_new";
2983   case _thread_new_trans:         return "_thread_new_trans";
2984   case _thread_in_native:         return "_thread_in_native";
2985   case _thread_in_native_trans:   return "_thread_in_native_trans";
2986   case _thread_in_vm:             return "_thread_in_vm";
2987   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2988   case _thread_in_Java:           return "_thread_in_Java";
2989   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2990   case _thread_blocked:           return "_thread_blocked";
2991   case _thread_blocked_trans:     return "_thread_blocked_trans";
2992   default:                        return "unknown thread state";
2993   }
2994 }
2995 
2996 #ifndef PRODUCT
2997 void JavaThread::print_thread_state_on(outputStream *st) const {
2998   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2999 };
3000 void JavaThread::print_thread_state() const {
3001   print_thread_state_on(tty);
3002 }
3003 #endif // PRODUCT
3004 
3005 // Called by Threads::print() for VM_PrintThreads operation
3006 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3007   st->print_raw("\"");
3008   st->print_raw(get_thread_name());
3009   st->print_raw("\" ");
3010   oop thread_oop = threadObj();
3011   if (thread_oop != NULL) {
3012     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3013     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3014     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3015   }
3016   Thread::print_on(st, print_extended_info);
3017   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3018   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3019   if (thread_oop != NULL) {
3020     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3021   }
3022 #ifndef PRODUCT
3023   _safepoint_state->print_on(st);
3024 #endif // PRODUCT
3025   if (is_Compiler_thread()) {
3026     CompileTask *task = ((CompilerThread*)this)->task();
3027     if (task != NULL) {
3028       st->print("   Compiling: ");
3029       task->print(st, NULL, true, false);
3030     } else {
3031       st->print("   No compile task");
3032     }
3033     st->cr();
3034   }
3035 }
3036 
3037 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3038   st->print("%s", get_thread_name_string(buf, buflen));
3039 }
3040 
3041 // Called by fatal error handler. The difference between this and
3042 // JavaThread::print() is that we can't grab lock or allocate memory.
3043 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3044   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3045   oop thread_obj = threadObj();
3046   if (thread_obj != NULL) {
3047     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3048   }
3049   st->print(" [");
3050   st->print("%s", _get_thread_state_name(_thread_state));
3051   if (osthread()) {
3052     st->print(", id=%d", osthread()->thread_id());
3053   }
3054   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3055             p2i(stack_end()), p2i(stack_base()));
3056   st->print("]");
3057 
3058   ThreadsSMRSupport::print_info_on(this, st);
3059   return;
3060 }
3061 
3062 // Verification
3063 
3064 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3065 
3066 void JavaThread::verify() {
3067   // Verify oops in the thread.
3068   oops_do(&VerifyOopClosure::verify_oop, NULL);
3069 
3070   // Verify the stack frames.
3071   frames_do(frame_verify);
3072 }
3073 
3074 // CR 6300358 (sub-CR 2137150)
3075 // Most callers of this method assume that it can't return NULL but a
3076 // thread may not have a name whilst it is in the process of attaching to
3077 // the VM - see CR 6412693, and there are places where a JavaThread can be
3078 // seen prior to having it's threadObj set (eg JNI attaching threads and
3079 // if vm exit occurs during initialization). These cases can all be accounted
3080 // for such that this method never returns NULL.
3081 const char* JavaThread::get_thread_name() const {
3082 #ifdef ASSERT
3083   // early safepoints can hit while current thread does not yet have TLS
3084   if (!SafepointSynchronize::is_at_safepoint()) {
3085     Thread *cur = Thread::current();
3086     if (!(cur->is_Java_thread() && cur == this)) {
3087       // Current JavaThreads are allowed to get their own name without
3088       // the Threads_lock.
3089       assert_locked_or_safepoint(Threads_lock);
3090     }
3091   }
3092 #endif // ASSERT
3093   return get_thread_name_string();
3094 }
3095 
3096 // Returns a non-NULL representation of this thread's name, or a suitable
3097 // descriptive string if there is no set name
3098 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3099   const char* name_str;
3100   oop thread_obj = threadObj();
3101   if (thread_obj != NULL) {
3102     oop name = java_lang_Thread::name(thread_obj);
3103     if (name != NULL) {
3104       if (buf == NULL) {
3105         name_str = java_lang_String::as_utf8_string(name);
3106       } else {
3107         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3108       }
3109     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3110       name_str = "<no-name - thread is attaching>";
3111     } else {
3112       name_str = Thread::name();
3113     }
3114   } else {
3115     name_str = Thread::name();
3116   }
3117   assert(name_str != NULL, "unexpected NULL thread name");
3118   return name_str;
3119 }
3120 
3121 
3122 const char* JavaThread::get_threadgroup_name() const {
3123   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3124   oop thread_obj = threadObj();
3125   if (thread_obj != NULL) {
3126     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3127     if (thread_group != NULL) {
3128       // ThreadGroup.name can be null
3129       return java_lang_ThreadGroup::name(thread_group);
3130     }
3131   }
3132   return NULL;
3133 }
3134 
3135 const char* JavaThread::get_parent_name() const {
3136   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3137   oop thread_obj = threadObj();
3138   if (thread_obj != NULL) {
3139     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3140     if (thread_group != NULL) {
3141       oop parent = java_lang_ThreadGroup::parent(thread_group);
3142       if (parent != NULL) {
3143         // ThreadGroup.name can be null
3144         return java_lang_ThreadGroup::name(parent);
3145       }
3146     }
3147   }
3148   return NULL;
3149 }
3150 
3151 ThreadPriority JavaThread::java_priority() const {
3152   oop thr_oop = threadObj();
3153   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3154   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3155   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3156   return priority;
3157 }
3158 
3159 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3160 
3161   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3162   // Link Java Thread object <-> C++ Thread
3163 
3164   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3165   // and put it into a new Handle.  The Handle "thread_oop" can then
3166   // be used to pass the C++ thread object to other methods.
3167 
3168   // Set the Java level thread object (jthread) field of the
3169   // new thread (a JavaThread *) to C++ thread object using the
3170   // "thread_oop" handle.
3171 
3172   // Set the thread field (a JavaThread *) of the
3173   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3174 
3175   Handle thread_oop(Thread::current(),
3176                     JNIHandles::resolve_non_null(jni_thread));
3177   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3178          "must be initialized");
3179   set_threadObj(thread_oop());
3180   java_lang_Thread::set_thread(thread_oop(), this);
3181 
3182   if (prio == NoPriority) {
3183     prio = java_lang_Thread::priority(thread_oop());
3184     assert(prio != NoPriority, "A valid priority should be present");
3185   }
3186 
3187   // Push the Java priority down to the native thread; needs Threads_lock
3188   Thread::set_priority(this, prio);
3189 
3190   // Add the new thread to the Threads list and set it in motion.
3191   // We must have threads lock in order to call Threads::add.
3192   // It is crucial that we do not block before the thread is
3193   // added to the Threads list for if a GC happens, then the java_thread oop
3194   // will not be visited by GC.
3195   Threads::add(this);
3196 }
3197 
3198 oop JavaThread::current_park_blocker() {
3199   // Support for JSR-166 locks
3200   oop thread_oop = threadObj();
3201   if (thread_oop != NULL &&
3202       JDK_Version::current().supports_thread_park_blocker()) {
3203     return java_lang_Thread::park_blocker(thread_oop);
3204   }
3205   return NULL;
3206 }
3207 
3208 
3209 void JavaThread::print_stack_on(outputStream* st) {
3210   if (!has_last_Java_frame()) return;
3211   ResourceMark rm;
3212   HandleMark   hm;
3213 
3214   RegisterMap reg_map(this);
3215   vframe* start_vf = last_java_vframe(&reg_map);
3216   int count = 0;
3217   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3218     if (f->is_java_frame()) {
3219       javaVFrame* jvf = javaVFrame::cast(f);
3220       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3221 
3222       // Print out lock information
3223       if (JavaMonitorsInStackTrace) {
3224         jvf->print_lock_info_on(st, count);
3225       }
3226     } else {
3227       // Ignore non-Java frames
3228     }
3229 
3230     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3231     count++;
3232     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3233   }
3234 }
3235 
3236 
3237 // JVMTI PopFrame support
3238 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3239   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3240   if (in_bytes(size_in_bytes) != 0) {
3241     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3242     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3243     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3244   }
3245 }
3246 
3247 void* JavaThread::popframe_preserved_args() {
3248   return _popframe_preserved_args;
3249 }
3250 
3251 ByteSize JavaThread::popframe_preserved_args_size() {
3252   return in_ByteSize(_popframe_preserved_args_size);
3253 }
3254 
3255 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3256   int sz = in_bytes(popframe_preserved_args_size());
3257   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3258   return in_WordSize(sz / wordSize);
3259 }
3260 
3261 void JavaThread::popframe_free_preserved_args() {
3262   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3263   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3264   _popframe_preserved_args = NULL;
3265   _popframe_preserved_args_size = 0;
3266 }
3267 
3268 #ifndef PRODUCT
3269 
3270 void JavaThread::trace_frames() {
3271   tty->print_cr("[Describe stack]");
3272   int frame_no = 1;
3273   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3274     tty->print("  %d. ", frame_no++);
3275     fst.current()->print_value_on(tty, this);
3276     tty->cr();
3277   }
3278 }
3279 
3280 class PrintAndVerifyOopClosure: public OopClosure {
3281  protected:
3282   template <class T> inline void do_oop_work(T* p) {
3283     oop obj = RawAccess<>::oop_load(p);
3284     if (obj == NULL) return;
3285     tty->print(INTPTR_FORMAT ": ", p2i(p));
3286     if (oopDesc::is_oop_or_null(obj)) {
3287       if (obj->is_objArray()) {
3288         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3289       } else {
3290         obj->print();
3291       }
3292     } else {
3293       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3294     }
3295     tty->cr();
3296   }
3297  public:
3298   virtual void do_oop(oop* p) { do_oop_work(p); }
3299   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3300 };
3301 
3302 
3303 static void oops_print(frame* f, const RegisterMap *map) {
3304   PrintAndVerifyOopClosure print;
3305   f->print_value();
3306   f->oops_do(&print, NULL, (RegisterMap*)map);
3307 }
3308 
3309 // Print our all the locations that contain oops and whether they are
3310 // valid or not.  This useful when trying to find the oldest frame
3311 // where an oop has gone bad since the frame walk is from youngest to
3312 // oldest.
3313 void JavaThread::trace_oops() {
3314   tty->print_cr("[Trace oops]");
3315   frames_do(oops_print);
3316 }
3317 
3318 
3319 #ifdef ASSERT
3320 // Print or validate the layout of stack frames
3321 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3322   ResourceMark rm;
3323   PRESERVE_EXCEPTION_MARK;
3324   FrameValues values;
3325   int frame_no = 0;
3326   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3327     fst.current()->describe(values, ++frame_no);
3328     if (depth == frame_no) break;
3329   }
3330   if (validate_only) {
3331     values.validate();
3332   } else {
3333     tty->print_cr("[Describe stack layout]");
3334     values.print(this);
3335   }
3336 }
3337 #endif
3338 
3339 void JavaThread::trace_stack_from(vframe* start_vf) {
3340   ResourceMark rm;
3341   int vframe_no = 1;
3342   for (vframe* f = start_vf; f; f = f->sender()) {
3343     if (f->is_java_frame()) {
3344       javaVFrame::cast(f)->print_activation(vframe_no++);
3345     } else {
3346       f->print();
3347     }
3348     if (vframe_no > StackPrintLimit) {
3349       tty->print_cr("...<more frames>...");
3350       return;
3351     }
3352   }
3353 }
3354 
3355 
3356 void JavaThread::trace_stack() {
3357   if (!has_last_Java_frame()) return;
3358   ResourceMark rm;
3359   HandleMark   hm;
3360   RegisterMap reg_map(this);
3361   trace_stack_from(last_java_vframe(&reg_map));
3362 }
3363 
3364 
3365 #endif // PRODUCT
3366 
3367 
3368 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3369   assert(reg_map != NULL, "a map must be given");
3370   frame f = last_frame();
3371   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3372     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3373   }
3374   return NULL;
3375 }
3376 
3377 
3378 Klass* JavaThread::security_get_caller_class(int depth) {
3379   vframeStream vfst(this);
3380   vfst.security_get_caller_frame(depth);
3381   if (!vfst.at_end()) {
3382     return vfst.method()->method_holder();
3383   }
3384   return NULL;
3385 }
3386 
3387 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3388   assert(thread->is_Compiler_thread(), "must be compiler thread");
3389   CompileBroker::compiler_thread_loop();
3390 }
3391 
3392 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3393   NMethodSweeper::sweeper_loop();
3394 }
3395 
3396 // Create a CompilerThread
3397 CompilerThread::CompilerThread(CompileQueue* queue,
3398                                CompilerCounters* counters)
3399                                : JavaThread(&compiler_thread_entry) {
3400   _env   = NULL;
3401   _log   = NULL;
3402   _task  = NULL;
3403   _queue = queue;
3404   _counters = counters;
3405   _buffer_blob = NULL;
3406   _compiler = NULL;
3407 
3408   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3409   resource_area()->bias_to(mtCompiler);
3410 
3411 #ifndef PRODUCT
3412   _ideal_graph_printer = NULL;
3413 #endif
3414 }
3415 
3416 CompilerThread::~CompilerThread() {
3417   // Delete objects which were allocated on heap.
3418   delete _counters;
3419 }
3420 
3421 bool CompilerThread::can_call_java() const {
3422   return _compiler != NULL && _compiler->is_jvmci();
3423 }
3424 
3425 // Create sweeper thread
3426 CodeCacheSweeperThread::CodeCacheSweeperThread()
3427 : JavaThread(&sweeper_thread_entry) {
3428   _scanned_compiled_method = NULL;
3429 }
3430 
3431 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3432   JavaThread::oops_do(f, cf);
3433   if (_scanned_compiled_method != NULL && cf != NULL) {
3434     // Safepoints can occur when the sweeper is scanning an nmethod so
3435     // process it here to make sure it isn't unloaded in the middle of
3436     // a scan.
3437     cf->do_code_blob(_scanned_compiled_method);
3438   }
3439 }
3440 
3441 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3442   JavaThread::nmethods_do(cf);
3443   if (_scanned_compiled_method != NULL && cf != NULL) {
3444     // Safepoints can occur when the sweeper is scanning an nmethod so
3445     // process it here to make sure it isn't unloaded in the middle of
3446     // a scan.
3447     cf->do_code_blob(_scanned_compiled_method);
3448   }
3449 }
3450 
3451 
3452 // ======= Threads ========
3453 
3454 // The Threads class links together all active threads, and provides
3455 // operations over all threads. It is protected by the Threads_lock,
3456 // which is also used in other global contexts like safepointing.
3457 // ThreadsListHandles are used to safely perform operations on one
3458 // or more threads without the risk of the thread exiting during the
3459 // operation.
3460 //
3461 // Note: The Threads_lock is currently more widely used than we
3462 // would like. We are actively migrating Threads_lock uses to other
3463 // mechanisms in order to reduce Threads_lock contention.
3464 
3465 JavaThread* Threads::_thread_list = NULL;
3466 int         Threads::_number_of_threads = 0;
3467 int         Threads::_number_of_non_daemon_threads = 0;
3468 int         Threads::_return_code = 0;
3469 int         Threads::_thread_claim_parity = 0;
3470 size_t      JavaThread::_stack_size_at_create = 0;
3471 
3472 #ifdef ASSERT
3473 bool        Threads::_vm_complete = false;
3474 #endif
3475 
3476 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3477   Prefetch::read((void*)addr, prefetch_interval);
3478   return *addr;
3479 }
3480 
3481 // Possibly the ugliest for loop the world has seen. C++ does not allow
3482 // multiple types in the declaration section of the for loop. In this case
3483 // we are only dealing with pointers and hence can cast them. It looks ugly
3484 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3485 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3486     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3487              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3488              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3489              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3490              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3491          MACRO_current_p != MACRO_end;                                                                                    \
3492          MACRO_current_p++,                                                                                               \
3493              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3494 
3495 // All JavaThreads
3496 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3497 
3498 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3499 void Threads::non_java_threads_do(ThreadClosure* tc) {
3500   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3501   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3502     tc->do_thread(njti.current());
3503   }
3504 }
3505 
3506 // All JavaThreads
3507 void Threads::java_threads_do(ThreadClosure* tc) {
3508   assert_locked_or_safepoint(Threads_lock);
3509   // ALL_JAVA_THREADS iterates through all JavaThreads.
3510   ALL_JAVA_THREADS(p) {
3511     tc->do_thread(p);
3512   }
3513 }
3514 
3515 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3516   assert_locked_or_safepoint(Threads_lock);
3517   java_threads_do(tc);
3518   tc->do_thread(VMThread::vm_thread());
3519 }
3520 
3521 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3522 void Threads::threads_do(ThreadClosure* tc) {
3523   assert_locked_or_safepoint(Threads_lock);
3524   java_threads_do(tc);
3525   non_java_threads_do(tc);
3526 }
3527 
3528 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3529   int cp = Threads::thread_claim_parity();
3530   ALL_JAVA_THREADS(p) {
3531     if (p->claim_oops_do(is_par, cp)) {
3532       tc->do_thread(p);
3533     }
3534   }
3535   VMThread* vmt = VMThread::vm_thread();
3536   if (vmt->claim_oops_do(is_par, cp)) {
3537     tc->do_thread(vmt);
3538   }
3539 }
3540 
3541 // The system initialization in the library has three phases.
3542 //
3543 // Phase 1: java.lang.System class initialization
3544 //     java.lang.System is a primordial class loaded and initialized
3545 //     by the VM early during startup.  java.lang.System.<clinit>
3546 //     only does registerNatives and keeps the rest of the class
3547 //     initialization work later until thread initialization completes.
3548 //
3549 //     System.initPhase1 initializes the system properties, the static
3550 //     fields in, out, and err. Set up java signal handlers, OS-specific
3551 //     system settings, and thread group of the main thread.
3552 static void call_initPhase1(TRAPS) {
3553   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3554   JavaValue result(T_VOID);
3555   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3556                                          vmSymbols::void_method_signature(), CHECK);
3557 }
3558 
3559 // Phase 2. Module system initialization
3560 //     This will initialize the module system.  Only java.base classes
3561 //     can be loaded until phase 2 completes.
3562 //
3563 //     Call System.initPhase2 after the compiler initialization and jsr292
3564 //     classes get initialized because module initialization runs a lot of java
3565 //     code, that for performance reasons, should be compiled.  Also, this will
3566 //     enable the startup code to use lambda and other language features in this
3567 //     phase and onward.
3568 //
3569 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3570 static void call_initPhase2(TRAPS) {
3571   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3572 
3573   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3574 
3575   JavaValue result(T_INT);
3576   JavaCallArguments args;
3577   args.push_int(DisplayVMOutputToStderr);
3578   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3579   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3580                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3581   if (result.get_jint() != JNI_OK) {
3582     vm_exit_during_initialization(); // no message or exception
3583   }
3584 
3585   universe_post_module_init();
3586 }
3587 
3588 // Phase 3. final setup - set security manager, system class loader and TCCL
3589 //
3590 //     This will instantiate and set the security manager, set the system class
3591 //     loader as well as the thread context class loader.  The security manager
3592 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3593 //     other modules or the application's classpath.
3594 static void call_initPhase3(TRAPS) {
3595   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3596   JavaValue result(T_VOID);
3597   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3598                                          vmSymbols::void_method_signature(), CHECK);
3599 }
3600 
3601 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3602   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3603 
3604   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3605     create_vm_init_libraries();
3606   }
3607 
3608   initialize_class(vmSymbols::java_lang_String(), CHECK);
3609 
3610   // Inject CompactStrings value after the static initializers for String ran.
3611   java_lang_String::set_compact_strings(CompactStrings);
3612 
3613   // Initialize java_lang.System (needed before creating the thread)
3614   initialize_class(vmSymbols::java_lang_System(), CHECK);
3615   // The VM creates & returns objects of this class. Make sure it's initialized.
3616   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3617   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3618   Handle thread_group = create_initial_thread_group(CHECK);
3619   Universe::set_main_thread_group(thread_group());
3620   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3621   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3622   main_thread->set_threadObj(thread_object);
3623   // Set thread status to running since main thread has
3624   // been started and running.
3625   java_lang_Thread::set_thread_status(thread_object,
3626                                       java_lang_Thread::RUNNABLE);
3627 
3628   // The VM creates objects of this class.
3629   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3630 
3631   // The VM preresolves methods to these classes. Make sure that they get initialized
3632   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3633   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3634 
3635   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3636   call_initPhase1(CHECK);
3637 
3638   // get the Java runtime name after java.lang.System is initialized
3639   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3640   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3641 
3642   // an instance of OutOfMemory exception has been allocated earlier
3643   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3644   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3645   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3646   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3647   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3648   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3649   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3650   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3651 }
3652 
3653 void Threads::initialize_jsr292_core_classes(TRAPS) {
3654   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3655 
3656   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3657   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3658   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3659   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3660 }
3661 
3662 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3663   extern void JDK_Version_init();
3664 
3665   // Preinitialize version info.
3666   VM_Version::early_initialize();
3667 
3668   // Check version
3669   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3670 
3671   // Initialize library-based TLS
3672   ThreadLocalStorage::init();
3673 
3674   // Initialize the output stream module
3675   ostream_init();
3676 
3677   // Process java launcher properties.
3678   Arguments::process_sun_java_launcher_properties(args);
3679 
3680   // Initialize the os module
3681   os::init();
3682 
3683   // Record VM creation timing statistics
3684   TraceVmCreationTime create_vm_timer;
3685   create_vm_timer.start();
3686 
3687   // Initialize system properties.
3688   Arguments::init_system_properties();
3689 
3690   // So that JDK version can be used as a discriminator when parsing arguments
3691   JDK_Version_init();
3692 
3693   // Update/Initialize System properties after JDK version number is known
3694   Arguments::init_version_specific_system_properties();
3695 
3696   // Make sure to initialize log configuration *before* parsing arguments
3697   LogConfiguration::initialize(create_vm_timer.begin_time());
3698 
3699   // Parse arguments
3700   // Note: this internally calls os::init_container_support()
3701   jint parse_result = Arguments::parse(args);
3702   if (parse_result != JNI_OK) return parse_result;
3703 
3704   os::init_before_ergo();
3705 
3706   jint ergo_result = Arguments::apply_ergo();
3707   if (ergo_result != JNI_OK) return ergo_result;
3708 
3709   // Final check of all ranges after ergonomics which may change values.
3710   if (!JVMFlagRangeList::check_ranges()) {
3711     return JNI_EINVAL;
3712   }
3713 
3714   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3715   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3716   if (!constraint_result) {
3717     return JNI_EINVAL;
3718   }
3719 
3720   JVMFlagWriteableList::mark_startup();
3721 
3722   if (PauseAtStartup) {
3723     os::pause();
3724   }
3725 
3726   HOTSPOT_VM_INIT_BEGIN();
3727 
3728   // Timing (must come after argument parsing)
3729   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3730 
3731   // Initialize the os module after parsing the args
3732   jint os_init_2_result = os::init_2();
3733   if (os_init_2_result != JNI_OK) return os_init_2_result;
3734 
3735 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3736   // Initialize assert poison page mechanism.
3737   if (ShowRegistersOnAssert) {
3738     initialize_assert_poison();
3739   }
3740 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3741 
3742   SafepointMechanism::initialize();
3743 
3744   jint adjust_after_os_result = Arguments::adjust_after_os();
3745   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3746 
3747   // Initialize output stream logging
3748   ostream_init_log();
3749 
3750   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3751   // Must be before create_vm_init_agents()
3752   if (Arguments::init_libraries_at_startup()) {
3753     convert_vm_init_libraries_to_agents();
3754   }
3755 
3756   // Launch -agentlib/-agentpath and converted -Xrun agents
3757   if (Arguments::init_agents_at_startup()) {
3758     create_vm_init_agents();
3759   }
3760 
3761   // Initialize Threads state
3762   _thread_list = NULL;
3763   _number_of_threads = 0;
3764   _number_of_non_daemon_threads = 0;
3765 
3766   // Initialize global data structures and create system classes in heap
3767   vm_init_globals();
3768 
3769 #if INCLUDE_JVMCI
3770   if (JVMCICounterSize > 0) {
3771     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3772     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3773   } else {
3774     JavaThread::_jvmci_old_thread_counters = NULL;
3775   }
3776 #endif // INCLUDE_JVMCI
3777 
3778   // Attach the main thread to this os thread
3779   JavaThread* main_thread = new JavaThread();
3780   main_thread->set_thread_state(_thread_in_vm);
3781   main_thread->initialize_thread_current();
3782   // must do this before set_active_handles
3783   main_thread->record_stack_base_and_size();
3784   main_thread->register_thread_stack_with_NMT();
3785   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3786 
3787   if (!main_thread->set_as_starting_thread()) {
3788     vm_shutdown_during_initialization(
3789                                       "Failed necessary internal allocation. Out of swap space");
3790     main_thread->smr_delete();
3791     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3792     return JNI_ENOMEM;
3793   }
3794 
3795   // Enable guard page *after* os::create_main_thread(), otherwise it would
3796   // crash Linux VM, see notes in os_linux.cpp.
3797   main_thread->create_stack_guard_pages();
3798 
3799   // Initialize Java-Level synchronization subsystem
3800   ObjectMonitor::Initialize();
3801 
3802   // Initialize global modules
3803   jint status = init_globals();
3804   if (status != JNI_OK) {
3805     main_thread->smr_delete();
3806     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3807     return status;
3808   }
3809 
3810   JFR_ONLY(Jfr::on_vm_init();)
3811 
3812   // Should be done after the heap is fully created
3813   main_thread->cache_global_variables();
3814 
3815   HandleMark hm;
3816 
3817   { MutexLocker mu(Threads_lock);
3818     Threads::add(main_thread);
3819   }
3820 
3821   // Any JVMTI raw monitors entered in onload will transition into
3822   // real raw monitor. VM is setup enough here for raw monitor enter.
3823   JvmtiExport::transition_pending_onload_raw_monitors();
3824 
3825   // Create the VMThread
3826   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3827 
3828   VMThread::create();
3829     Thread* vmthread = VMThread::vm_thread();
3830 
3831     if (!os::create_thread(vmthread, os::vm_thread)) {
3832       vm_exit_during_initialization("Cannot create VM thread. "
3833                                     "Out of system resources.");
3834     }
3835 
3836     // Wait for the VM thread to become ready, and VMThread::run to initialize
3837     // Monitors can have spurious returns, must always check another state flag
3838     {
3839       MutexLocker ml(Notify_lock);
3840       os::start_thread(vmthread);
3841       while (vmthread->active_handles() == NULL) {
3842         Notify_lock->wait();
3843       }
3844     }
3845   }
3846 
3847   assert(Universe::is_fully_initialized(), "not initialized");
3848   if (VerifyDuringStartup) {
3849     // Make sure we're starting with a clean slate.
3850     VM_Verify verify_op;
3851     VMThread::execute(&verify_op);
3852   }
3853 
3854   // We need this to update the java.vm.info property in case any flags used
3855   // to initially define it have been changed. This is needed for both CDS and
3856   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3857   // is initially computed. See Abstract_VM_Version::vm_info_string().
3858   // This update must happen before we initialize the java classes, but
3859   // after any initialization logic that might modify the flags.
3860   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3861 
3862   Thread* THREAD = Thread::current();
3863 
3864   // Always call even when there are not JVMTI environments yet, since environments
3865   // may be attached late and JVMTI must track phases of VM execution
3866   JvmtiExport::enter_early_start_phase();
3867 
3868   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3869   JvmtiExport::post_early_vm_start();
3870 
3871   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3872 
3873   quicken_jni_functions();
3874 
3875   // No more stub generation allowed after that point.
3876   StubCodeDesc::freeze();
3877 
3878   // Set flag that basic initialization has completed. Used by exceptions and various
3879   // debug stuff, that does not work until all basic classes have been initialized.
3880   set_init_completed();
3881 
3882   LogConfiguration::post_initialize();
3883   Metaspace::post_initialize();
3884 
3885   HOTSPOT_VM_INIT_END();
3886 
3887   // record VM initialization completion time
3888 #if INCLUDE_MANAGEMENT
3889   Management::record_vm_init_completed();
3890 #endif // INCLUDE_MANAGEMENT
3891 
3892   // Signal Dispatcher needs to be started before VMInit event is posted
3893   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3894 
3895   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3896   if (!DisableAttachMechanism) {
3897     AttachListener::vm_start();
3898     if (StartAttachListener || AttachListener::init_at_startup()) {
3899       AttachListener::init();
3900     }
3901   }
3902 
3903   // Launch -Xrun agents
3904   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3905   // back-end can launch with -Xdebug -Xrunjdwp.
3906   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3907     create_vm_init_libraries();
3908   }
3909 
3910   if (CleanChunkPoolAsync) {
3911     Chunk::start_chunk_pool_cleaner_task();
3912   }
3913 
3914   // initialize compiler(s)
3915 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3916 #if INCLUDE_JVMCI
3917   bool force_JVMCI_intialization = false;
3918   if (EnableJVMCI) {
3919     // Initialize JVMCI eagerly when it is explicitly requested.
3920     // Or when JVMCIPrintProperties is enabled.
3921     // The JVMCI Java initialization code will read this flag and
3922     // do the printing if it's set.
3923     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3924 
3925     if (!force_JVMCI_intialization) {
3926       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3927       // compilations via JVMCI will not actually block until JVMCI is initialized.
3928       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3929     }
3930   }
3931 #endif
3932   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3933   // Postpone completion of compiler initialization to after JVMCI
3934   // is initialized to avoid timeouts of blocking compilations.
3935   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3936     CompileBroker::compilation_init_phase2();
3937   }
3938 #endif
3939 
3940   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3941   // It is done after compilers are initialized, because otherwise compilations of
3942   // signature polymorphic MH intrinsics can be missed
3943   // (see SystemDictionary::find_method_handle_intrinsic).
3944   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3945 
3946   // This will initialize the module system.  Only java.base classes can be
3947   // loaded until phase 2 completes
3948   call_initPhase2(CHECK_JNI_ERR);
3949 
3950   // Always call even when there are not JVMTI environments yet, since environments
3951   // may be attached late and JVMTI must track phases of VM execution
3952   JvmtiExport::enter_start_phase();
3953 
3954   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3955   JvmtiExport::post_vm_start();
3956 
3957   // Final system initialization including security manager and system class loader
3958   call_initPhase3(CHECK_JNI_ERR);
3959 
3960   // cache the system and platform class loaders
3961   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3962 
3963 #if INCLUDE_CDS
3964   if (DumpSharedSpaces) {
3965     // capture the module path info from the ModuleEntryTable
3966     ClassLoader::initialize_module_path(THREAD);
3967   }
3968 #endif
3969 
3970 #if INCLUDE_JVMCI
3971   if (force_JVMCI_intialization) {
3972     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3973     CompileBroker::compilation_init_phase2();
3974   }
3975 #endif
3976 
3977   // Always call even when there are not JVMTI environments yet, since environments
3978   // may be attached late and JVMTI must track phases of VM execution
3979   JvmtiExport::enter_live_phase();
3980 
3981   // Make perfmemory accessible
3982   PerfMemory::set_accessible(true);
3983 
3984   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3985   JvmtiExport::post_vm_initialized();
3986 
3987   JFR_ONLY(Jfr::on_vm_start();)
3988 
3989 #if INCLUDE_MANAGEMENT
3990   Management::initialize(THREAD);
3991 
3992   if (HAS_PENDING_EXCEPTION) {
3993     // management agent fails to start possibly due to
3994     // configuration problem and is responsible for printing
3995     // stack trace if appropriate. Simply exit VM.
3996     vm_exit(1);
3997   }
3998 #endif // INCLUDE_MANAGEMENT
3999 
4000   if (MemProfiling)                   MemProfiler::engage();
4001   StatSampler::engage();
4002   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4003 
4004   BiasedLocking::init();
4005 
4006 #if INCLUDE_RTM_OPT
4007   RTMLockingCounters::init();
4008 #endif
4009 
4010   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4011     call_postVMInitHook(THREAD);
4012     // The Java side of PostVMInitHook.run must deal with all
4013     // exceptions and provide means of diagnosis.
4014     if (HAS_PENDING_EXCEPTION) {
4015       CLEAR_PENDING_EXCEPTION;
4016     }
4017   }
4018 
4019   {
4020     MutexLocker ml(PeriodicTask_lock);
4021     // Make sure the WatcherThread can be started by WatcherThread::start()
4022     // or by dynamic enrollment.
4023     WatcherThread::make_startable();
4024     // Start up the WatcherThread if there are any periodic tasks
4025     // NOTE:  All PeriodicTasks should be registered by now. If they
4026     //   aren't, late joiners might appear to start slowly (we might
4027     //   take a while to process their first tick).
4028     if (PeriodicTask::num_tasks() > 0) {
4029       WatcherThread::start();
4030     }
4031   }
4032 
4033   create_vm_timer.end();
4034 #ifdef ASSERT
4035   _vm_complete = true;
4036 #endif
4037 
4038   if (DumpSharedSpaces) {
4039     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4040     ShouldNotReachHere();
4041   }
4042 
4043   return JNI_OK;
4044 }
4045 
4046 // type for the Agent_OnLoad and JVM_OnLoad entry points
4047 extern "C" {
4048   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4049 }
4050 // Find a command line agent library and return its entry point for
4051 //         -agentlib:  -agentpath:   -Xrun
4052 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4053 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4054                                     const char *on_load_symbols[],
4055                                     size_t num_symbol_entries) {
4056   OnLoadEntry_t on_load_entry = NULL;
4057   void *library = NULL;
4058 
4059   if (!agent->valid()) {
4060     char buffer[JVM_MAXPATHLEN];
4061     char ebuf[1024] = "";
4062     const char *name = agent->name();
4063     const char *msg = "Could not find agent library ";
4064 
4065     // First check to see if agent is statically linked into executable
4066     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4067       library = agent->os_lib();
4068     } else if (agent->is_absolute_path()) {
4069       library = os::dll_load(name, ebuf, sizeof ebuf);
4070       if (library == NULL) {
4071         const char *sub_msg = " in absolute path, with error: ";
4072         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4073         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4074         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4075         // If we can't find the agent, exit.
4076         vm_exit_during_initialization(buf, NULL);
4077         FREE_C_HEAP_ARRAY(char, buf);
4078       }
4079     } else {
4080       // Try to load the agent from the standard dll directory
4081       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4082                              name)) {
4083         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4084       }
4085       if (library == NULL) { // Try the library path directory.
4086         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4087           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4088         }
4089         if (library == NULL) {
4090           const char *sub_msg = " on the library path, with error: ";
4091           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4092 
4093           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4094                        strlen(ebuf) + strlen(sub_msg2) + 1;
4095           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4096           if (!agent->is_instrument_lib()) {
4097             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4098           } else {
4099             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4100           }
4101           // If we can't find the agent, exit.
4102           vm_exit_during_initialization(buf, NULL);
4103           FREE_C_HEAP_ARRAY(char, buf);
4104         }
4105       }
4106     }
4107     agent->set_os_lib(library);
4108     agent->set_valid();
4109   }
4110 
4111   // Find the OnLoad function.
4112   on_load_entry =
4113     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4114                                                           false,
4115                                                           on_load_symbols,
4116                                                           num_symbol_entries));
4117   return on_load_entry;
4118 }
4119 
4120 // Find the JVM_OnLoad entry point
4121 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4122   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4123   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4124 }
4125 
4126 // Find the Agent_OnLoad entry point
4127 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4128   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4129   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4130 }
4131 
4132 // For backwards compatibility with -Xrun
4133 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4134 // treated like -agentpath:
4135 // Must be called before agent libraries are created
4136 void Threads::convert_vm_init_libraries_to_agents() {
4137   AgentLibrary* agent;
4138   AgentLibrary* next;
4139 
4140   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4141     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4142     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4143 
4144     // If there is an JVM_OnLoad function it will get called later,
4145     // otherwise see if there is an Agent_OnLoad
4146     if (on_load_entry == NULL) {
4147       on_load_entry = lookup_agent_on_load(agent);
4148       if (on_load_entry != NULL) {
4149         // switch it to the agent list -- so that Agent_OnLoad will be called,
4150         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4151         Arguments::convert_library_to_agent(agent);
4152       } else {
4153         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4154       }
4155     }
4156   }
4157 }
4158 
4159 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4160 // Invokes Agent_OnLoad
4161 // Called very early -- before JavaThreads exist
4162 void Threads::create_vm_init_agents() {
4163   extern struct JavaVM_ main_vm;
4164   AgentLibrary* agent;
4165 
4166   JvmtiExport::enter_onload_phase();
4167 
4168   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4169     // CDS dumping does not support native JVMTI agent.
4170     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4171     if (DumpSharedSpaces) {
4172       if(!agent->is_instrument_lib()) {
4173         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4174       } else if (!AllowArchivingWithJavaAgent) {
4175         vm_exit_during_cds_dumping(
4176           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4177       }
4178     }
4179 
4180     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4181 
4182     if (on_load_entry != NULL) {
4183       // Invoke the Agent_OnLoad function
4184       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4185       if (err != JNI_OK) {
4186         vm_exit_during_initialization("agent library failed to init", agent->name());
4187       }
4188     } else {
4189       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4190     }
4191   }
4192 
4193   JvmtiExport::enter_primordial_phase();
4194 }
4195 
4196 extern "C" {
4197   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4198 }
4199 
4200 void Threads::shutdown_vm_agents() {
4201   // Send any Agent_OnUnload notifications
4202   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4203   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4204   extern struct JavaVM_ main_vm;
4205   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4206 
4207     // Find the Agent_OnUnload function.
4208     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4209                                                    os::find_agent_function(agent,
4210                                                    false,
4211                                                    on_unload_symbols,
4212                                                    num_symbol_entries));
4213 
4214     // Invoke the Agent_OnUnload function
4215     if (unload_entry != NULL) {
4216       JavaThread* thread = JavaThread::current();
4217       ThreadToNativeFromVM ttn(thread);
4218       HandleMark hm(thread);
4219       (*unload_entry)(&main_vm);
4220     }
4221   }
4222 }
4223 
4224 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4225 // Invokes JVM_OnLoad
4226 void Threads::create_vm_init_libraries() {
4227   extern struct JavaVM_ main_vm;
4228   AgentLibrary* agent;
4229 
4230   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4231     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4232 
4233     if (on_load_entry != NULL) {
4234       // Invoke the JVM_OnLoad function
4235       JavaThread* thread = JavaThread::current();
4236       ThreadToNativeFromVM ttn(thread);
4237       HandleMark hm(thread);
4238       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4239       if (err != JNI_OK) {
4240         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4241       }
4242     } else {
4243       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4244     }
4245   }
4246 }
4247 
4248 
4249 // Last thread running calls java.lang.Shutdown.shutdown()
4250 void JavaThread::invoke_shutdown_hooks() {
4251   HandleMark hm(this);
4252 
4253   // We could get here with a pending exception, if so clear it now.
4254   if (this->has_pending_exception()) {
4255     this->clear_pending_exception();
4256   }
4257 
4258   EXCEPTION_MARK;
4259   Klass* shutdown_klass =
4260     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4261                                       THREAD);
4262   if (shutdown_klass != NULL) {
4263     // SystemDictionary::resolve_or_null will return null if there was
4264     // an exception.  If we cannot load the Shutdown class, just don't
4265     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4266     // won't be run.  Note that if a shutdown hook was registered,
4267     // the Shutdown class would have already been loaded
4268     // (Runtime.addShutdownHook will load it).
4269     JavaValue result(T_VOID);
4270     JavaCalls::call_static(&result,
4271                            shutdown_klass,
4272                            vmSymbols::shutdown_method_name(),
4273                            vmSymbols::void_method_signature(),
4274                            THREAD);
4275   }
4276   CLEAR_PENDING_EXCEPTION;
4277 }
4278 
4279 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4280 // the program falls off the end of main(). Another VM exit path is through
4281 // vm_exit() when the program calls System.exit() to return a value or when
4282 // there is a serious error in VM. The two shutdown paths are not exactly
4283 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4284 // and VM_Exit op at VM level.
4285 //
4286 // Shutdown sequence:
4287 //   + Shutdown native memory tracking if it is on
4288 //   + Wait until we are the last non-daemon thread to execute
4289 //     <-- every thing is still working at this moment -->
4290 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4291 //        shutdown hooks
4292 //   + Call before_exit(), prepare for VM exit
4293 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4294 //        currently the only user of this mechanism is File.deleteOnExit())
4295 //      > stop StatSampler, watcher thread, CMS threads,
4296 //        post thread end and vm death events to JVMTI,
4297 //        stop signal thread
4298 //   + Call JavaThread::exit(), it will:
4299 //      > release JNI handle blocks, remove stack guard pages
4300 //      > remove this thread from Threads list
4301 //     <-- no more Java code from this thread after this point -->
4302 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4303 //     the compiler threads at safepoint
4304 //     <-- do not use anything that could get blocked by Safepoint -->
4305 //   + Disable tracing at JNI/JVM barriers
4306 //   + Set _vm_exited flag for threads that are still running native code
4307 //   + Call exit_globals()
4308 //      > deletes tty
4309 //      > deletes PerfMemory resources
4310 //   + Delete this thread
4311 //   + Return to caller
4312 
4313 bool Threads::destroy_vm() {
4314   JavaThread* thread = JavaThread::current();
4315 
4316 #ifdef ASSERT
4317   _vm_complete = false;
4318 #endif
4319   // Wait until we are the last non-daemon thread to execute
4320   { MutexLocker nu(Threads_lock);
4321     while (Threads::number_of_non_daemon_threads() > 1)
4322       // This wait should make safepoint checks, wait without a timeout,
4323       // and wait as a suspend-equivalent condition.
4324       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4325                          Mutex::_as_suspend_equivalent_flag);
4326   }
4327 
4328   EventShutdown e;
4329   if (e.should_commit()) {
4330     e.set_reason("No remaining non-daemon Java threads");
4331     e.commit();
4332   }
4333 
4334   // Hang forever on exit if we are reporting an error.
4335   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4336     os::infinite_sleep();
4337   }
4338   os::wait_for_keypress_at_exit();
4339 
4340   // run Java level shutdown hooks
4341   thread->invoke_shutdown_hooks();
4342 
4343   before_exit(thread);
4344 
4345   thread->exit(true);
4346 
4347   // Stop VM thread.
4348   {
4349     // 4945125 The vm thread comes to a safepoint during exit.
4350     // GC vm_operations can get caught at the safepoint, and the
4351     // heap is unparseable if they are caught. Grab the Heap_lock
4352     // to prevent this. The GC vm_operations will not be able to
4353     // queue until after the vm thread is dead. After this point,
4354     // we'll never emerge out of the safepoint before the VM exits.
4355 
4356     MutexLockerEx ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4357 
4358     VMThread::wait_for_vm_thread_exit();
4359     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4360     VMThread::destroy();
4361   }
4362 
4363   // Now, all Java threads are gone except daemon threads. Daemon threads
4364   // running Java code or in VM are stopped by the Safepoint. However,
4365   // daemon threads executing native code are still running.  But they
4366   // will be stopped at native=>Java/VM barriers. Note that we can't
4367   // simply kill or suspend them, as it is inherently deadlock-prone.
4368 
4369   VM_Exit::set_vm_exited();
4370 
4371   // Clean up ideal graph printers after the VMThread has started
4372   // the final safepoint which will block all the Compiler threads.
4373   // Note that this Thread has already logically exited so the
4374   // clean_up() function's use of a JavaThreadIteratorWithHandle
4375   // would be a problem except set_vm_exited() has remembered the
4376   // shutdown thread which is granted a policy exception.
4377 #if defined(COMPILER2) && !defined(PRODUCT)
4378   IdealGraphPrinter::clean_up();
4379 #endif
4380 
4381   notify_vm_shutdown();
4382 
4383   // exit_globals() will delete tty
4384   exit_globals();
4385 
4386   // We are after VM_Exit::set_vm_exited() so we can't call
4387   // thread->smr_delete() or we will block on the Threads_lock.
4388   // Deleting the shutdown thread here is safe because another
4389   // JavaThread cannot have an active ThreadsListHandle for
4390   // this JavaThread.
4391   delete thread;
4392 
4393 #if INCLUDE_JVMCI
4394   if (JVMCICounterSize > 0) {
4395     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4396   }
4397 #endif
4398 
4399   LogConfiguration::finalize();
4400 
4401   return true;
4402 }
4403 
4404 
4405 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4406   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4407   return is_supported_jni_version(version);
4408 }
4409 
4410 
4411 jboolean Threads::is_supported_jni_version(jint version) {
4412   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4413   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4414   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4415   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4416   if (version == JNI_VERSION_9) return JNI_TRUE;
4417   if (version == JNI_VERSION_10) return JNI_TRUE;
4418   return JNI_FALSE;
4419 }
4420 
4421 
4422 void Threads::add(JavaThread* p, bool force_daemon) {
4423   // The threads lock must be owned at this point
4424   assert(Threads_lock->owned_by_self(), "must have threads lock");
4425 
4426   BarrierSet::barrier_set()->on_thread_attach(p);
4427 
4428   p->set_next(_thread_list);
4429   _thread_list = p;
4430 
4431   // Once a JavaThread is added to the Threads list, smr_delete() has
4432   // to be used to delete it. Otherwise we can just delete it directly.
4433   p->set_on_thread_list();
4434 
4435   _number_of_threads++;
4436   oop threadObj = p->threadObj();
4437   bool daemon = true;
4438   // Bootstrapping problem: threadObj can be null for initial
4439   // JavaThread (or for threads attached via JNI)
4440   if ((!force_daemon) && !is_daemon((threadObj))) {
4441     _number_of_non_daemon_threads++;
4442     daemon = false;
4443   }
4444 
4445   ThreadService::add_thread(p, daemon);
4446 
4447   // Maintain fast thread list
4448   ThreadsSMRSupport::add_thread(p);
4449 
4450   // Possible GC point.
4451   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4452 }
4453 
4454 void Threads::remove(JavaThread* p) {
4455 
4456   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4457   ObjectSynchronizer::omFlush(p);
4458 
4459   // Extra scope needed for Thread_lock, so we can check
4460   // that we do not remove thread without safepoint code notice
4461   { MutexLocker ml(Threads_lock);
4462 
4463     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4464 
4465     // Maintain fast thread list
4466     ThreadsSMRSupport::remove_thread(p);
4467 
4468     JavaThread* current = _thread_list;
4469     JavaThread* prev    = NULL;
4470 
4471     while (current != p) {
4472       prev    = current;
4473       current = current->next();
4474     }
4475 
4476     if (prev) {
4477       prev->set_next(current->next());
4478     } else {
4479       _thread_list = p->next();
4480     }
4481 
4482     _number_of_threads--;
4483     oop threadObj = p->threadObj();
4484     bool daemon = true;
4485     if (!is_daemon(threadObj)) {
4486       _number_of_non_daemon_threads--;
4487       daemon = false;
4488 
4489       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4490       // on destroy_vm will wake up.
4491       if (number_of_non_daemon_threads() == 1) {
4492         Threads_lock->notify_all();
4493       }
4494     }
4495     ThreadService::remove_thread(p, daemon);
4496 
4497     // Make sure that safepoint code disregard this thread. This is needed since
4498     // the thread might mess around with locks after this point. This can cause it
4499     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4500     // of this thread since it is removed from the queue.
4501     p->set_terminated_value();
4502   } // unlock Threads_lock
4503 
4504   // Since Events::log uses a lock, we grab it outside the Threads_lock
4505   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4506 }
4507 
4508 // Operations on the Threads list for GC.  These are not explicitly locked,
4509 // but the garbage collector must provide a safe context for them to run.
4510 // In particular, these things should never be called when the Threads_lock
4511 // is held by some other thread. (Note: the Safepoint abstraction also
4512 // uses the Threads_lock to guarantee this property. It also makes sure that
4513 // all threads gets blocked when exiting or starting).
4514 
4515 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4516   ALL_JAVA_THREADS(p) {
4517     p->oops_do(f, cf);
4518   }
4519   VMThread::vm_thread()->oops_do(f, cf);
4520 }
4521 
4522 void Threads::change_thread_claim_parity() {
4523   // Set the new claim parity.
4524   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4525          "Not in range.");
4526   _thread_claim_parity++;
4527   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4528   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4529          "Not in range.");
4530 }
4531 
4532 #ifdef ASSERT
4533 void Threads::assert_all_threads_claimed() {
4534   ALL_JAVA_THREADS(p) {
4535     const int thread_parity = p->oops_do_parity();
4536     assert((thread_parity == _thread_claim_parity),
4537            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4538   }
4539   VMThread* vmt = VMThread::vm_thread();
4540   const int thread_parity = vmt->oops_do_parity();
4541   assert((thread_parity == _thread_claim_parity),
4542          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4543 }
4544 #endif // ASSERT
4545 
4546 class ParallelOopsDoThreadClosure : public ThreadClosure {
4547 private:
4548   OopClosure* _f;
4549   CodeBlobClosure* _cf;
4550 public:
4551   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4552   void do_thread(Thread* t) {
4553     t->oops_do(_f, _cf);
4554   }
4555 };
4556 
4557 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4558   ParallelOopsDoThreadClosure tc(f, cf);
4559   possibly_parallel_threads_do(is_par, &tc);
4560 }
4561 
4562 void Threads::nmethods_do(CodeBlobClosure* cf) {
4563   ALL_JAVA_THREADS(p) {
4564     // This is used by the code cache sweeper to mark nmethods that are active
4565     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4566     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4567     if(!p->is_Code_cache_sweeper_thread()) {
4568       p->nmethods_do(cf);
4569     }
4570   }
4571 }
4572 
4573 void Threads::metadata_do(void f(Metadata*)) {
4574   ALL_JAVA_THREADS(p) {
4575     p->metadata_do(f);
4576   }
4577 }
4578 
4579 class ThreadHandlesClosure : public ThreadClosure {
4580   void (*_f)(Metadata*);
4581  public:
4582   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4583   virtual void do_thread(Thread* thread) {
4584     thread->metadata_handles_do(_f);
4585   }
4586 };
4587 
4588 void Threads::metadata_handles_do(void f(Metadata*)) {
4589   // Only walk the Handles in Thread.
4590   ThreadHandlesClosure handles_closure(f);
4591   threads_do(&handles_closure);
4592 }
4593 
4594 void Threads::deoptimized_wrt_marked_nmethods() {
4595   ALL_JAVA_THREADS(p) {
4596     p->deoptimized_wrt_marked_nmethods();
4597   }
4598 }
4599 
4600 
4601 // Get count Java threads that are waiting to enter the specified monitor.
4602 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4603                                                          int count,
4604                                                          address monitor) {
4605   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4606 
4607   int i = 0;
4608   DO_JAVA_THREADS(t_list, p) {
4609     if (!p->can_call_java()) continue;
4610 
4611     address pending = (address)p->current_pending_monitor();
4612     if (pending == monitor) {             // found a match
4613       if (i < count) result->append(p);   // save the first count matches
4614       i++;
4615     }
4616   }
4617 
4618   return result;
4619 }
4620 
4621 
4622 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4623                                                       address owner) {
4624   // NULL owner means not locked so we can skip the search
4625   if (owner == NULL) return NULL;
4626 
4627   DO_JAVA_THREADS(t_list, p) {
4628     // first, see if owner is the address of a Java thread
4629     if (owner == (address)p) return p;
4630   }
4631 
4632   // Cannot assert on lack of success here since this function may be
4633   // used by code that is trying to report useful problem information
4634   // like deadlock detection.
4635   if (UseHeavyMonitors) return NULL;
4636 
4637   // If we didn't find a matching Java thread and we didn't force use of
4638   // heavyweight monitors, then the owner is the stack address of the
4639   // Lock Word in the owning Java thread's stack.
4640   //
4641   JavaThread* the_owner = NULL;
4642   DO_JAVA_THREADS(t_list, q) {
4643     if (q->is_lock_owned(owner)) {
4644       the_owner = q;
4645       break;
4646     }
4647   }
4648 
4649   // cannot assert on lack of success here; see above comment
4650   return the_owner;
4651 }
4652 
4653 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4654 void Threads::print_on(outputStream* st, bool print_stacks,
4655                        bool internal_format, bool print_concurrent_locks,
4656                        bool print_extended_info) {
4657   char buf[32];
4658   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4659 
4660   st->print_cr("Full thread dump %s (%s %s):",
4661                VM_Version::vm_name(),
4662                VM_Version::vm_release(),
4663                VM_Version::vm_info_string());
4664   st->cr();
4665 
4666 #if INCLUDE_SERVICES
4667   // Dump concurrent locks
4668   ConcurrentLocksDump concurrent_locks;
4669   if (print_concurrent_locks) {
4670     concurrent_locks.dump_at_safepoint();
4671   }
4672 #endif // INCLUDE_SERVICES
4673 
4674   ThreadsSMRSupport::print_info_on(st);
4675   st->cr();
4676 
4677   ALL_JAVA_THREADS(p) {
4678     ResourceMark rm;
4679     p->print_on(st, print_extended_info);
4680     if (print_stacks) {
4681       if (internal_format) {
4682         p->trace_stack();
4683       } else {
4684         p->print_stack_on(st);
4685       }
4686     }
4687     st->cr();
4688 #if INCLUDE_SERVICES
4689     if (print_concurrent_locks) {
4690       concurrent_locks.print_locks_on(p, st);
4691     }
4692 #endif // INCLUDE_SERVICES
4693   }
4694 
4695   VMThread::vm_thread()->print_on(st);
4696   st->cr();
4697   Universe::heap()->print_gc_threads_on(st);
4698   WatcherThread* wt = WatcherThread::watcher_thread();
4699   if (wt != NULL) {
4700     wt->print_on(st);
4701     st->cr();
4702   }
4703 
4704   st->flush();
4705 }
4706 
4707 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4708                              int buflen, bool* found_current) {
4709   if (this_thread != NULL) {
4710     bool is_current = (current == this_thread);
4711     *found_current = *found_current || is_current;
4712     st->print("%s", is_current ? "=>" : "  ");
4713 
4714     st->print(PTR_FORMAT, p2i(this_thread));
4715     st->print(" ");
4716     this_thread->print_on_error(st, buf, buflen);
4717     st->cr();
4718   }
4719 }
4720 
4721 class PrintOnErrorClosure : public ThreadClosure {
4722   outputStream* _st;
4723   Thread* _current;
4724   char* _buf;
4725   int _buflen;
4726   bool* _found_current;
4727  public:
4728   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4729                       int buflen, bool* found_current) :
4730    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4731 
4732   virtual void do_thread(Thread* thread) {
4733     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4734   }
4735 };
4736 
4737 // Threads::print_on_error() is called by fatal error handler. It's possible
4738 // that VM is not at safepoint and/or current thread is inside signal handler.
4739 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4740 // memory (even in resource area), it might deadlock the error handler.
4741 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4742                              int buflen) {
4743   ThreadsSMRSupport::print_info_on(st);
4744   st->cr();
4745 
4746   bool found_current = false;
4747   st->print_cr("Java Threads: ( => current thread )");
4748   ALL_JAVA_THREADS(thread) {
4749     print_on_error(thread, st, current, buf, buflen, &found_current);
4750   }
4751   st->cr();
4752 
4753   st->print_cr("Other Threads:");
4754   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4755   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4756 
4757   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4758   Universe::heap()->gc_threads_do(&print_closure);
4759 
4760   if (!found_current) {
4761     st->cr();
4762     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4763     current->print_on_error(st, buf, buflen);
4764     st->cr();
4765   }
4766   st->cr();
4767 
4768   st->print_cr("Threads with active compile tasks:");
4769   print_threads_compiling(st, buf, buflen);
4770 }
4771 
4772 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4773   ALL_JAVA_THREADS(thread) {
4774     if (thread->is_Compiler_thread()) {
4775       CompilerThread* ct = (CompilerThread*) thread;
4776 
4777       // Keep task in local variable for NULL check.
4778       // ct->_task might be set to NULL by concurring compiler thread
4779       // because it completed the compilation. The task is never freed,
4780       // though, just returned to a free list.
4781       CompileTask* task = ct->task();
4782       if (task != NULL) {
4783         thread->print_name_on_error(st, buf, buflen);
4784         st->print("  ");
4785         task->print(st, NULL, true, true);
4786       }
4787     }
4788   }
4789 }
4790 
4791 
4792 // Internal SpinLock and Mutex
4793 // Based on ParkEvent
4794 
4795 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4796 //
4797 // We employ SpinLocks _only for low-contention, fixed-length
4798 // short-duration critical sections where we're concerned
4799 // about native mutex_t or HotSpot Mutex:: latency.
4800 // The mux construct provides a spin-then-block mutual exclusion
4801 // mechanism.
4802 //
4803 // Testing has shown that contention on the ListLock guarding gFreeList
4804 // is common.  If we implement ListLock as a simple SpinLock it's common
4805 // for the JVM to devolve to yielding with little progress.  This is true
4806 // despite the fact that the critical sections protected by ListLock are
4807 // extremely short.
4808 //
4809 // TODO-FIXME: ListLock should be of type SpinLock.
4810 // We should make this a 1st-class type, integrated into the lock
4811 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4812 // should have sufficient padding to avoid false-sharing and excessive
4813 // cache-coherency traffic.
4814 
4815 
4816 typedef volatile int SpinLockT;
4817 
4818 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4819   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4820     return;   // normal fast-path return
4821   }
4822 
4823   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4824   int ctr = 0;
4825   int Yields = 0;
4826   for (;;) {
4827     while (*adr != 0) {
4828       ++ctr;
4829       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4830         if (Yields > 5) {
4831           os::naked_short_sleep(1);
4832         } else {
4833           os::naked_yield();
4834           ++Yields;
4835         }
4836       } else {
4837         SpinPause();
4838       }
4839     }
4840     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4841   }
4842 }
4843 
4844 void Thread::SpinRelease(volatile int * adr) {
4845   assert(*adr != 0, "invariant");
4846   OrderAccess::fence();      // guarantee at least release consistency.
4847   // Roach-motel semantics.
4848   // It's safe if subsequent LDs and STs float "up" into the critical section,
4849   // but prior LDs and STs within the critical section can't be allowed
4850   // to reorder or float past the ST that releases the lock.
4851   // Loads and stores in the critical section - which appear in program
4852   // order before the store that releases the lock - must also appear
4853   // before the store that releases the lock in memory visibility order.
4854   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4855   // the ST of 0 into the lock-word which releases the lock, so fence
4856   // more than covers this on all platforms.
4857   *adr = 0;
4858 }
4859 
4860 // muxAcquire and muxRelease:
4861 //
4862 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4863 //    The LSB of the word is set IFF the lock is held.
4864 //    The remainder of the word points to the head of a singly-linked list
4865 //    of threads blocked on the lock.
4866 //
4867 // *  The current implementation of muxAcquire-muxRelease uses its own
4868 //    dedicated Thread._MuxEvent instance.  If we're interested in
4869 //    minimizing the peak number of extant ParkEvent instances then
4870 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4871 //    as certain invariants were satisfied.  Specifically, care would need
4872 //    to be taken with regards to consuming unpark() "permits".
4873 //    A safe rule of thumb is that a thread would never call muxAcquire()
4874 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4875 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4876 //    consume an unpark() permit intended for monitorenter, for instance.
4877 //    One way around this would be to widen the restricted-range semaphore
4878 //    implemented in park().  Another alternative would be to provide
4879 //    multiple instances of the PlatformEvent() for each thread.  One
4880 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4881 //
4882 // *  Usage:
4883 //    -- Only as leaf locks
4884 //    -- for short-term locking only as muxAcquire does not perform
4885 //       thread state transitions.
4886 //
4887 // Alternatives:
4888 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4889 //    but with parking or spin-then-park instead of pure spinning.
4890 // *  Use Taura-Oyama-Yonenzawa locks.
4891 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4892 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4893 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4894 //    acquiring threads use timers (ParkTimed) to detect and recover from
4895 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4896 //    boundaries by using placement-new.
4897 // *  Augment MCS with advisory back-link fields maintained with CAS().
4898 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4899 //    The validity of the backlinks must be ratified before we trust the value.
4900 //    If the backlinks are invalid the exiting thread must back-track through the
4901 //    the forward links, which are always trustworthy.
4902 // *  Add a successor indication.  The LockWord is currently encoded as
4903 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4904 //    to provide the usual futile-wakeup optimization.
4905 //    See RTStt for details.
4906 //
4907 
4908 
4909 const intptr_t LOCKBIT = 1;
4910 
4911 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4912   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4913   if (w == 0) return;
4914   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4915     return;
4916   }
4917 
4918   ParkEvent * const Self = Thread::current()->_MuxEvent;
4919   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4920   for (;;) {
4921     int its = (os::is_MP() ? 100 : 0) + 1;
4922 
4923     // Optional spin phase: spin-then-park strategy
4924     while (--its >= 0) {
4925       w = *Lock;
4926       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4927         return;
4928       }
4929     }
4930 
4931     Self->reset();
4932     Self->OnList = intptr_t(Lock);
4933     // The following fence() isn't _strictly necessary as the subsequent
4934     // CAS() both serializes execution and ratifies the fetched *Lock value.
4935     OrderAccess::fence();
4936     for (;;) {
4937       w = *Lock;
4938       if ((w & LOCKBIT) == 0) {
4939         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4940           Self->OnList = 0;   // hygiene - allows stronger asserts
4941           return;
4942         }
4943         continue;      // Interference -- *Lock changed -- Just retry
4944       }
4945       assert(w & LOCKBIT, "invariant");
4946       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4947       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4948     }
4949 
4950     while (Self->OnList != 0) {
4951       Self->park();
4952     }
4953   }
4954 }
4955 
4956 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4957   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4958   if (w == 0) return;
4959   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4960     return;
4961   }
4962 
4963   ParkEvent * ReleaseAfter = NULL;
4964   if (ev == NULL) {
4965     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4966   }
4967   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4968   for (;;) {
4969     guarantee(ev->OnList == 0, "invariant");
4970     int its = (os::is_MP() ? 100 : 0) + 1;
4971 
4972     // Optional spin phase: spin-then-park strategy
4973     while (--its >= 0) {
4974       w = *Lock;
4975       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4976         if (ReleaseAfter != NULL) {
4977           ParkEvent::Release(ReleaseAfter);
4978         }
4979         return;
4980       }
4981     }
4982 
4983     ev->reset();
4984     ev->OnList = intptr_t(Lock);
4985     // The following fence() isn't _strictly necessary as the subsequent
4986     // CAS() both serializes execution and ratifies the fetched *Lock value.
4987     OrderAccess::fence();
4988     for (;;) {
4989       w = *Lock;
4990       if ((w & LOCKBIT) == 0) {
4991         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4992           ev->OnList = 0;
4993           // We call ::Release while holding the outer lock, thus
4994           // artificially lengthening the critical section.
4995           // Consider deferring the ::Release() until the subsequent unlock(),
4996           // after we've dropped the outer lock.
4997           if (ReleaseAfter != NULL) {
4998             ParkEvent::Release(ReleaseAfter);
4999           }
5000           return;
5001         }
5002         continue;      // Interference -- *Lock changed -- Just retry
5003       }
5004       assert(w & LOCKBIT, "invariant");
5005       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5006       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5007     }
5008 
5009     while (ev->OnList != 0) {
5010       ev->park();
5011     }
5012   }
5013 }
5014 
5015 // Release() must extract a successor from the list and then wake that thread.
5016 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5017 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5018 // Release() would :
5019 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5020 // (B) Extract a successor from the private list "in-hand"
5021 // (C) attempt to CAS() the residual back into *Lock over null.
5022 //     If there were any newly arrived threads and the CAS() would fail.
5023 //     In that case Release() would detach the RATs, re-merge the list in-hand
5024 //     with the RATs and repeat as needed.  Alternately, Release() might
5025 //     detach and extract a successor, but then pass the residual list to the wakee.
5026 //     The wakee would be responsible for reattaching and remerging before it
5027 //     competed for the lock.
5028 //
5029 // Both "pop" and DMR are immune from ABA corruption -- there can be
5030 // multiple concurrent pushers, but only one popper or detacher.
5031 // This implementation pops from the head of the list.  This is unfair,
5032 // but tends to provide excellent throughput as hot threads remain hot.
5033 // (We wake recently run threads first).
5034 //
5035 // All paths through muxRelease() will execute a CAS.
5036 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5037 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5038 // executed within the critical section are complete and globally visible before the
5039 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5040 void Thread::muxRelease(volatile intptr_t * Lock)  {
5041   for (;;) {
5042     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5043     assert(w & LOCKBIT, "invariant");
5044     if (w == LOCKBIT) return;
5045     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5046     assert(List != NULL, "invariant");
5047     assert(List->OnList == intptr_t(Lock), "invariant");
5048     ParkEvent * const nxt = List->ListNext;
5049     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5050 
5051     // The following CAS() releases the lock and pops the head element.
5052     // The CAS() also ratifies the previously fetched lock-word value.
5053     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5054       continue;
5055     }
5056     List->OnList = 0;
5057     OrderAccess::fence();
5058     List->unpark();
5059     return;
5060   }
5061 }
5062 
5063 
5064 void Threads::verify() {
5065   ALL_JAVA_THREADS(p) {
5066     p->verify();
5067   }
5068   VMThread* thread = VMThread::vm_thread();
5069   if (thread != NULL) thread->verify();
5070 }