1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1Trace.hpp"
  63 #include "gc/g1/g1YCTypes.hpp"
  64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  65 #include "gc/g1/g1VMOperations.hpp"
  66 #include "gc/g1/heapRegion.inline.hpp"
  67 #include "gc/g1/heapRegionRemSet.hpp"
  68 #include "gc/g1/heapRegionSet.inline.hpp"
  69 #include "gc/shared/gcBehaviours.hpp"
  70 #include "gc/shared/gcHeapSummary.hpp"
  71 #include "gc/shared/gcId.hpp"
  72 #include "gc/shared/gcLocker.hpp"
  73 #include "gc/shared/gcTimer.hpp"
  74 #include "gc/shared/gcTraceTime.inline.hpp"
  75 #include "gc/shared/generationSpec.hpp"
  76 #include "gc/shared/isGCActiveMark.hpp"
  77 #include "gc/shared/locationPrinter.inline.hpp"
  78 #include "gc/shared/oopStorageParState.hpp"
  79 #include "gc/shared/preservedMarks.inline.hpp"
  80 #include "gc/shared/suspendibleThreadSet.hpp"
  81 #include "gc/shared/referenceProcessor.inline.hpp"
  82 #include "gc/shared/taskqueue.inline.hpp"
  83 #include "gc/shared/weakProcessor.inline.hpp"
  84 #include "gc/shared/workerPolicy.hpp"
  85 #include "logging/log.hpp"
  86 #include "memory/allocation.hpp"
  87 #include "memory/iterator.hpp"
  88 #include "memory/resourceArea.hpp"
  89 #include "memory/universe.hpp"
  90 #include "oops/access.inline.hpp"
  91 #include "oops/compressedOops.inline.hpp"
  92 #include "oops/oop.inline.hpp"
  93 #include "runtime/atomic.hpp"
  94 #include "runtime/flags/flagSetting.hpp"
  95 #include "runtime/handles.inline.hpp"
  96 #include "runtime/init.hpp"
  97 #include "runtime/orderAccess.hpp"
  98 #include "runtime/threadSMR.hpp"
  99 #include "runtime/vmThread.hpp"
 100 #include "utilities/align.hpp"
 101 #include "utilities/globalDefinitions.hpp"
 102 #include "utilities/stack.inline.hpp"
 103 
 104 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 105 
 106 // INVARIANTS/NOTES
 107 //
 108 // All allocation activity covered by the G1CollectedHeap interface is
 109 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 110 // and allocate_new_tlab, which are the "entry" points to the
 111 // allocation code from the rest of the JVM.  (Note that this does not
 112 // apply to TLAB allocation, which is not part of this interface: it
 113 // is done by clients of this interface.)
 114 
 115 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 116  private:
 117   size_t _num_dirtied;
 118   G1CollectedHeap* _g1h;
 119   G1CardTable* _g1_ct;
 120 
 121   HeapRegion* region_for_card(CardValue* card_ptr) const {
 122     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 123   }
 124 
 125   bool will_become_free(HeapRegion* hr) const {
 126     // A region will be freed by free_collection_set if the region is in the
 127     // collection set and has not had an evacuation failure.
 128     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 129   }
 130 
 131  public:
 132   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 133     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 134 
 135   bool do_card_ptr(CardValue* card_ptr, uint worker_i) {
 136     HeapRegion* hr = region_for_card(card_ptr);
 137 
 138     // Should only dirty cards in regions that won't be freed.
 139     if (!will_become_free(hr)) {
 140       *card_ptr = G1CardTable::dirty_card_val();
 141       _num_dirtied++;
 142     }
 143 
 144     return true;
 145   }
 146 
 147   size_t num_dirtied()   const { return _num_dirtied; }
 148 };
 149 
 150 
 151 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 152   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 153 }
 154 
 155 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 156   // The from card cache is not the memory that is actually committed. So we cannot
 157   // take advantage of the zero_filled parameter.
 158   reset_from_card_cache(start_idx, num_regions);
 159 }
 160 
 161 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 162   Ticks start = Ticks::now();
 163   workers()->run_task(task, workers()->active_workers());
 164   return Ticks::now() - start;
 165 }
 166 
 167 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 168                                              MemRegion mr) {
 169   return new HeapRegion(hrs_index, bot(), mr);
 170 }
 171 
 172 // Private methods.
 173 
 174 HeapRegion* G1CollectedHeap::new_region(size_t word_size, HeapRegionType type, bool do_expand) {
 175   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 176          "the only time we use this to allocate a humongous region is "
 177          "when we are allocating a single humongous region");
 178 
 179   HeapRegion* res = _hrm->allocate_free_region(type);
 180 
 181   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 182     // Currently, only attempts to allocate GC alloc regions set
 183     // do_expand to true. So, we should only reach here during a
 184     // safepoint. If this assumption changes we might have to
 185     // reconsider the use of _expand_heap_after_alloc_failure.
 186     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 187 
 188     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 189                               word_size * HeapWordSize);
 190 
 191     if (expand(word_size * HeapWordSize)) {
 192       // Given that expand() succeeded in expanding the heap, and we
 193       // always expand the heap by an amount aligned to the heap
 194       // region size, the free list should in theory not be empty.
 195       // In either case allocate_free_region() will check for NULL.
 196       res = _hrm->allocate_free_region(type);
 197     } else {
 198       _expand_heap_after_alloc_failure = false;
 199     }
 200   }
 201   return res;
 202 }
 203 
 204 HeapWord*
 205 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 206                                                            uint num_regions,
 207                                                            size_t word_size) {
 208   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 209   assert(is_humongous(word_size), "word_size should be humongous");
 210   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 211 
 212   // Index of last region in the series.
 213   uint last = first + num_regions - 1;
 214 
 215   // We need to initialize the region(s) we just discovered. This is
 216   // a bit tricky given that it can happen concurrently with
 217   // refinement threads refining cards on these regions and
 218   // potentially wanting to refine the BOT as they are scanning
 219   // those cards (this can happen shortly after a cleanup; see CR
 220   // 6991377). So we have to set up the region(s) carefully and in
 221   // a specific order.
 222 
 223   // The word size sum of all the regions we will allocate.
 224   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 225   assert(word_size <= word_size_sum, "sanity");
 226 
 227   // This will be the "starts humongous" region.
 228   HeapRegion* first_hr = region_at(first);
 229   // The header of the new object will be placed at the bottom of
 230   // the first region.
 231   HeapWord* new_obj = first_hr->bottom();
 232   // This will be the new top of the new object.
 233   HeapWord* obj_top = new_obj + word_size;
 234 
 235   // First, we need to zero the header of the space that we will be
 236   // allocating. When we update top further down, some refinement
 237   // threads might try to scan the region. By zeroing the header we
 238   // ensure that any thread that will try to scan the region will
 239   // come across the zero klass word and bail out.
 240   //
 241   // NOTE: It would not have been correct to have used
 242   // CollectedHeap::fill_with_object() and make the space look like
 243   // an int array. The thread that is doing the allocation will
 244   // later update the object header to a potentially different array
 245   // type and, for a very short period of time, the klass and length
 246   // fields will be inconsistent. This could cause a refinement
 247   // thread to calculate the object size incorrectly.
 248   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 249 
 250   // Next, pad out the unused tail of the last region with filler
 251   // objects, for improved usage accounting.
 252   // How many words we use for filler objects.
 253   size_t word_fill_size = word_size_sum - word_size;
 254 
 255   // How many words memory we "waste" which cannot hold a filler object.
 256   size_t words_not_fillable = 0;
 257 
 258   if (word_fill_size >= min_fill_size()) {
 259     fill_with_objects(obj_top, word_fill_size);
 260   } else if (word_fill_size > 0) {
 261     // We have space to fill, but we cannot fit an object there.
 262     words_not_fillable = word_fill_size;
 263     word_fill_size = 0;
 264   }
 265 
 266   // We will set up the first region as "starts humongous". This
 267   // will also update the BOT covering all the regions to reflect
 268   // that there is a single object that starts at the bottom of the
 269   // first region.
 270   first_hr->set_starts_humongous(obj_top, word_fill_size);
 271   _policy->remset_tracker()->update_at_allocate(first_hr);
 272   // Then, if there are any, we will set up the "continues
 273   // humongous" regions.
 274   HeapRegion* hr = NULL;
 275   for (uint i = first + 1; i <= last; ++i) {
 276     hr = region_at(i);
 277     hr->set_continues_humongous(first_hr);
 278     _policy->remset_tracker()->update_at_allocate(hr);
 279   }
 280 
 281   // Up to this point no concurrent thread would have been able to
 282   // do any scanning on any region in this series. All the top
 283   // fields still point to bottom, so the intersection between
 284   // [bottom,top] and [card_start,card_end] will be empty. Before we
 285   // update the top fields, we'll do a storestore to make sure that
 286   // no thread sees the update to top before the zeroing of the
 287   // object header and the BOT initialization.
 288   OrderAccess::storestore();
 289 
 290   // Now, we will update the top fields of the "continues humongous"
 291   // regions except the last one.
 292   for (uint i = first; i < last; ++i) {
 293     hr = region_at(i);
 294     hr->set_top(hr->end());
 295   }
 296 
 297   hr = region_at(last);
 298   // If we cannot fit a filler object, we must set top to the end
 299   // of the humongous object, otherwise we cannot iterate the heap
 300   // and the BOT will not be complete.
 301   hr->set_top(hr->end() - words_not_fillable);
 302 
 303   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 304          "obj_top should be in last region");
 305 
 306   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 307 
 308   assert(words_not_fillable == 0 ||
 309          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 310          "Miscalculation in humongous allocation");
 311 
 312   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 313 
 314   for (uint i = first; i <= last; ++i) {
 315     hr = region_at(i);
 316     _humongous_set.add(hr);
 317     _hr_printer.alloc(hr);
 318   }
 319 
 320   return new_obj;
 321 }
 322 
 323 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 324   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 325   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 326 }
 327 
 328 // If could fit into free regions w/o expansion, try.
 329 // Otherwise, if can expand, do so.
 330 // Otherwise, if using ex regions might help, try with ex given back.
 331 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 332   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 333 
 334   _verifier->verify_region_sets_optional();
 335 
 336   uint first = G1_NO_HRM_INDEX;
 337   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 338 
 339   if (obj_regions == 1) {
 340     // Only one region to allocate, try to use a fast path by directly allocating
 341     // from the free lists. Do not try to expand here, we will potentially do that
 342     // later.
 343     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 344     if (hr != NULL) {
 345       first = hr->hrm_index();
 346     }
 347   } else {
 348     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 349     // are lucky enough to find some.
 350     first = _hrm->find_contiguous_only_empty(obj_regions);
 351     if (first != G1_NO_HRM_INDEX) {
 352       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 353     }
 354   }
 355 
 356   if (first == G1_NO_HRM_INDEX) {
 357     // Policy: We could not find enough regions for the humongous object in the
 358     // free list. Look through the heap to find a mix of free and uncommitted regions.
 359     // If so, try expansion.
 360     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 361     if (first != G1_NO_HRM_INDEX) {
 362       // We found something. Make sure these regions are committed, i.e. expand
 363       // the heap. Alternatively we could do a defragmentation GC.
 364       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 365                                     word_size * HeapWordSize);
 366 
 367       _hrm->expand_at(first, obj_regions, workers());
 368       policy()->record_new_heap_size(num_regions());
 369 
 370 #ifdef ASSERT
 371       for (uint i = first; i < first + obj_regions; ++i) {
 372         HeapRegion* hr = region_at(i);
 373         assert(hr->is_free(), "sanity");
 374         assert(hr->is_empty(), "sanity");
 375         assert(is_on_master_free_list(hr), "sanity");
 376       }
 377 #endif
 378       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 379     } else {
 380       // Policy: Potentially trigger a defragmentation GC.
 381     }
 382   }
 383 
 384   HeapWord* result = NULL;
 385   if (first != G1_NO_HRM_INDEX) {
 386     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 387     assert(result != NULL, "it should always return a valid result");
 388 
 389     // A successful humongous object allocation changes the used space
 390     // information of the old generation so we need to recalculate the
 391     // sizes and update the jstat counters here.
 392     g1mm()->update_sizes();
 393   }
 394 
 395   _verifier->verify_region_sets_optional();
 396 
 397   return result;
 398 }
 399 
 400 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 401                                              size_t requested_size,
 402                                              size_t* actual_size) {
 403   assert_heap_not_locked_and_not_at_safepoint();
 404   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 405 
 406   return attempt_allocation(min_size, requested_size, actual_size);
 407 }
 408 
 409 HeapWord*
 410 G1CollectedHeap::mem_allocate(size_t word_size,
 411                               bool*  gc_overhead_limit_was_exceeded) {
 412   assert_heap_not_locked_and_not_at_safepoint();
 413 
 414   if (is_humongous(word_size)) {
 415     return attempt_allocation_humongous(word_size);
 416   }
 417   size_t dummy = 0;
 418   return attempt_allocation(word_size, word_size, &dummy);
 419 }
 420 
 421 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 422   ResourceMark rm; // For retrieving the thread names in log messages.
 423 
 424   // Make sure you read the note in attempt_allocation_humongous().
 425 
 426   assert_heap_not_locked_and_not_at_safepoint();
 427   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 428          "be called for humongous allocation requests");
 429 
 430   // We should only get here after the first-level allocation attempt
 431   // (attempt_allocation()) failed to allocate.
 432 
 433   // We will loop until a) we manage to successfully perform the
 434   // allocation or b) we successfully schedule a collection which
 435   // fails to perform the allocation. b) is the only case when we'll
 436   // return NULL.
 437   HeapWord* result = NULL;
 438   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 439     bool should_try_gc;
 440     uint gc_count_before;
 441 
 442     {
 443       MutexLocker x(Heap_lock);
 444       result = _allocator->attempt_allocation_locked(word_size);
 445       if (result != NULL) {
 446         return result;
 447       }
 448 
 449       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 450       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 451       // waiting because the GCLocker is active to not wait too long.
 452       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 453         // No need for an ergo message here, can_expand_young_list() does this when
 454         // it returns true.
 455         result = _allocator->attempt_allocation_force(word_size);
 456         if (result != NULL) {
 457           return result;
 458         }
 459       }
 460       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 461       // the GCLocker initiated GC has been performed and then retry. This includes
 462       // the case when the GC Locker is not active but has not been performed.
 463       should_try_gc = !GCLocker::needs_gc();
 464       // Read the GC count while still holding the Heap_lock.
 465       gc_count_before = total_collections();
 466     }
 467 
 468     if (should_try_gc) {
 469       bool succeeded;
 470       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 471                                    GCCause::_g1_inc_collection_pause);
 472       if (result != NULL) {
 473         assert(succeeded, "only way to get back a non-NULL result");
 474         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 475                              Thread::current()->name(), p2i(result));
 476         return result;
 477       }
 478 
 479       if (succeeded) {
 480         // We successfully scheduled a collection which failed to allocate. No
 481         // point in trying to allocate further. We'll just return NULL.
 482         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 483                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 484         return NULL;
 485       }
 486       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 487                            Thread::current()->name(), word_size);
 488     } else {
 489       // Failed to schedule a collection.
 490       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 491         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 492                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 493         return NULL;
 494       }
 495       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 496       // The GCLocker is either active or the GCLocker initiated
 497       // GC has not yet been performed. Stall until it is and
 498       // then retry the allocation.
 499       GCLocker::stall_until_clear();
 500       gclocker_retry_count += 1;
 501     }
 502 
 503     // We can reach here if we were unsuccessful in scheduling a
 504     // collection (because another thread beat us to it) or if we were
 505     // stalled due to the GC locker. In either can we should retry the
 506     // allocation attempt in case another thread successfully
 507     // performed a collection and reclaimed enough space. We do the
 508     // first attempt (without holding the Heap_lock) here and the
 509     // follow-on attempt will be at the start of the next loop
 510     // iteration (after taking the Heap_lock).
 511     size_t dummy = 0;
 512     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 513     if (result != NULL) {
 514       return result;
 515     }
 516 
 517     // Give a warning if we seem to be looping forever.
 518     if ((QueuedAllocationWarningCount > 0) &&
 519         (try_count % QueuedAllocationWarningCount == 0)) {
 520       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 521                              Thread::current()->name(), try_count, word_size);
 522     }
 523   }
 524 
 525   ShouldNotReachHere();
 526   return NULL;
 527 }
 528 
 529 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 530   assert_at_safepoint_on_vm_thread();
 531   if (_archive_allocator == NULL) {
 532     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 533   }
 534 }
 535 
 536 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 537   // Allocations in archive regions cannot be of a size that would be considered
 538   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 539   // may be different at archive-restore time.
 540   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 541 }
 542 
 543 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 544   assert_at_safepoint_on_vm_thread();
 545   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 546   if (is_archive_alloc_too_large(word_size)) {
 547     return NULL;
 548   }
 549   return _archive_allocator->archive_mem_allocate(word_size);
 550 }
 551 
 552 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 553                                               size_t end_alignment_in_bytes) {
 554   assert_at_safepoint_on_vm_thread();
 555   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 556 
 557   // Call complete_archive to do the real work, filling in the MemRegion
 558   // array with the archive regions.
 559   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 560   delete _archive_allocator;
 561   _archive_allocator = NULL;
 562 }
 563 
 564 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 565   assert(ranges != NULL, "MemRegion array NULL");
 566   assert(count != 0, "No MemRegions provided");
 567   MemRegion reserved = _hrm->reserved();
 568   for (size_t i = 0; i < count; i++) {
 569     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 570       return false;
 571     }
 572   }
 573   return true;
 574 }
 575 
 576 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 577                                             size_t count,
 578                                             bool open) {
 579   assert(!is_init_completed(), "Expect to be called at JVM init time");
 580   assert(ranges != NULL, "MemRegion array NULL");
 581   assert(count != 0, "No MemRegions provided");
 582   MutexLocker x(Heap_lock);
 583 
 584   MemRegion reserved = _hrm->reserved();
 585   HeapWord* prev_last_addr = NULL;
 586   HeapRegion* prev_last_region = NULL;
 587 
 588   // Temporarily disable pretouching of heap pages. This interface is used
 589   // when mmap'ing archived heap data in, so pre-touching is wasted.
 590   FlagSetting fs(AlwaysPreTouch, false);
 591 
 592   // Enable archive object checking used by G1MarkSweep. We have to let it know
 593   // about each archive range, so that objects in those ranges aren't marked.
 594   G1ArchiveAllocator::enable_archive_object_check();
 595 
 596   // For each specified MemRegion range, allocate the corresponding G1
 597   // regions and mark them as archive regions. We expect the ranges
 598   // in ascending starting address order, without overlap.
 599   for (size_t i = 0; i < count; i++) {
 600     MemRegion curr_range = ranges[i];
 601     HeapWord* start_address = curr_range.start();
 602     size_t word_size = curr_range.word_size();
 603     HeapWord* last_address = curr_range.last();
 604     size_t commits = 0;
 605 
 606     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 607               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 608               p2i(start_address), p2i(last_address));
 609     guarantee(start_address > prev_last_addr,
 610               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 611               p2i(start_address), p2i(prev_last_addr));
 612     prev_last_addr = last_address;
 613 
 614     // Check for ranges that start in the same G1 region in which the previous
 615     // range ended, and adjust the start address so we don't try to allocate
 616     // the same region again. If the current range is entirely within that
 617     // region, skip it, just adjusting the recorded top.
 618     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 619     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 620       start_address = start_region->end();
 621       if (start_address > last_address) {
 622         increase_used(word_size * HeapWordSize);
 623         start_region->set_top(last_address + 1);
 624         continue;
 625       }
 626       start_region->set_top(start_address);
 627       curr_range = MemRegion(start_address, last_address + 1);
 628       start_region = _hrm->addr_to_region(start_address);
 629     }
 630 
 631     // Perform the actual region allocation, exiting if it fails.
 632     // Then note how much new space we have allocated.
 633     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 634       return false;
 635     }
 636     increase_used(word_size * HeapWordSize);
 637     if (commits != 0) {
 638       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 639                                 HeapRegion::GrainWords * HeapWordSize * commits);
 640 
 641     }
 642 
 643     // Mark each G1 region touched by the range as archive, add it to
 644     // the old set, and set top.
 645     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 646     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 647     prev_last_region = last_region;
 648 
 649     while (curr_region != NULL) {
 650       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 651              "Region already in use (index %u)", curr_region->hrm_index());
 652       if (open) {
 653         curr_region->set_open_archive();
 654       } else {
 655         curr_region->set_closed_archive();
 656       }
 657       _hr_printer.alloc(curr_region);
 658       _archive_set.add(curr_region);
 659       HeapWord* top;
 660       HeapRegion* next_region;
 661       if (curr_region != last_region) {
 662         top = curr_region->end();
 663         next_region = _hrm->next_region_in_heap(curr_region);
 664       } else {
 665         top = last_address + 1;
 666         next_region = NULL;
 667       }
 668       curr_region->set_top(top);
 669       curr_region->set_first_dead(top);
 670       curr_region->set_end_of_live(top);
 671       curr_region = next_region;
 672     }
 673 
 674     // Notify mark-sweep of the archive
 675     G1ArchiveAllocator::set_range_archive(curr_range, open);
 676   }
 677   return true;
 678 }
 679 
 680 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 681   assert(!is_init_completed(), "Expect to be called at JVM init time");
 682   assert(ranges != NULL, "MemRegion array NULL");
 683   assert(count != 0, "No MemRegions provided");
 684   MemRegion reserved = _hrm->reserved();
 685   HeapWord *prev_last_addr = NULL;
 686   HeapRegion* prev_last_region = NULL;
 687 
 688   // For each MemRegion, create filler objects, if needed, in the G1 regions
 689   // that contain the address range. The address range actually within the
 690   // MemRegion will not be modified. That is assumed to have been initialized
 691   // elsewhere, probably via an mmap of archived heap data.
 692   MutexLocker x(Heap_lock);
 693   for (size_t i = 0; i < count; i++) {
 694     HeapWord* start_address = ranges[i].start();
 695     HeapWord* last_address = ranges[i].last();
 696 
 697     assert(reserved.contains(start_address) && reserved.contains(last_address),
 698            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 699            p2i(start_address), p2i(last_address));
 700     assert(start_address > prev_last_addr,
 701            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 702            p2i(start_address), p2i(prev_last_addr));
 703 
 704     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 705     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 706     HeapWord* bottom_address = start_region->bottom();
 707 
 708     // Check for a range beginning in the same region in which the
 709     // previous one ended.
 710     if (start_region == prev_last_region) {
 711       bottom_address = prev_last_addr + 1;
 712     }
 713 
 714     // Verify that the regions were all marked as archive regions by
 715     // alloc_archive_regions.
 716     HeapRegion* curr_region = start_region;
 717     while (curr_region != NULL) {
 718       guarantee(curr_region->is_archive(),
 719                 "Expected archive region at index %u", curr_region->hrm_index());
 720       if (curr_region != last_region) {
 721         curr_region = _hrm->next_region_in_heap(curr_region);
 722       } else {
 723         curr_region = NULL;
 724       }
 725     }
 726 
 727     prev_last_addr = last_address;
 728     prev_last_region = last_region;
 729 
 730     // Fill the memory below the allocated range with dummy object(s),
 731     // if the region bottom does not match the range start, or if the previous
 732     // range ended within the same G1 region, and there is a gap.
 733     if (start_address != bottom_address) {
 734       size_t fill_size = pointer_delta(start_address, bottom_address);
 735       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 736       increase_used(fill_size * HeapWordSize);
 737     }
 738   }
 739 }
 740 
 741 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 742                                                      size_t desired_word_size,
 743                                                      size_t* actual_word_size) {
 744   assert_heap_not_locked_and_not_at_safepoint();
 745   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 746          "be called for humongous allocation requests");
 747 
 748   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 749 
 750   if (result == NULL) {
 751     *actual_word_size = desired_word_size;
 752     result = attempt_allocation_slow(desired_word_size);
 753   }
 754 
 755   assert_heap_not_locked();
 756   if (result != NULL) {
 757     assert(*actual_word_size != 0, "Actual size must have been set here");
 758     dirty_young_block(result, *actual_word_size);
 759   } else {
 760     *actual_word_size = 0;
 761   }
 762 
 763   return result;
 764 }
 765 
 766 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
 767   assert(!is_init_completed(), "Expect to be called at JVM init time");
 768   assert(ranges != NULL, "MemRegion array NULL");
 769   assert(count != 0, "No MemRegions provided");
 770   MemRegion reserved = _hrm->reserved();
 771   HeapWord* prev_last_addr = NULL;
 772   HeapRegion* prev_last_region = NULL;
 773   size_t size_used = 0;
 774   size_t uncommitted_regions = 0;
 775 
 776   // For each Memregion, free the G1 regions that constitute it, and
 777   // notify mark-sweep that the range is no longer to be considered 'archive.'
 778   MutexLocker x(Heap_lock);
 779   for (size_t i = 0; i < count; i++) {
 780     HeapWord* start_address = ranges[i].start();
 781     HeapWord* last_address = ranges[i].last();
 782 
 783     assert(reserved.contains(start_address) && reserved.contains(last_address),
 784            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 785            p2i(start_address), p2i(last_address));
 786     assert(start_address > prev_last_addr,
 787            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 788            p2i(start_address), p2i(prev_last_addr));
 789     size_used += ranges[i].byte_size();
 790     prev_last_addr = last_address;
 791 
 792     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 793     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 794 
 795     // Check for ranges that start in the same G1 region in which the previous
 796     // range ended, and adjust the start address so we don't try to free
 797     // the same region again. If the current range is entirely within that
 798     // region, skip it.
 799     if (start_region == prev_last_region) {
 800       start_address = start_region->end();
 801       if (start_address > last_address) {
 802         continue;
 803       }
 804       start_region = _hrm->addr_to_region(start_address);
 805     }
 806     prev_last_region = last_region;
 807 
 808     // After verifying that each region was marked as an archive region by
 809     // alloc_archive_regions, set it free and empty and uncommit it.
 810     HeapRegion* curr_region = start_region;
 811     while (curr_region != NULL) {
 812       guarantee(curr_region->is_archive(),
 813                 "Expected archive region at index %u", curr_region->hrm_index());
 814       uint curr_index = curr_region->hrm_index();
 815       _archive_set.remove(curr_region);
 816       curr_region->set_free();
 817       curr_region->set_top(curr_region->bottom());
 818       if (curr_region != last_region) {
 819         curr_region = _hrm->next_region_in_heap(curr_region);
 820       } else {
 821         curr_region = NULL;
 822       }
 823       _hrm->shrink_at(curr_index, 1);
 824       uncommitted_regions++;
 825     }
 826 
 827     // Notify mark-sweep that this is no longer an archive range.
 828     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
 829   }
 830 
 831   if (uncommitted_regions != 0) {
 832     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 833                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 834   }
 835   decrease_used(size_used);
 836 }
 837 
 838 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 839   assert(obj != NULL, "archived obj is NULL");
 840   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 841 
 842   // Loading an archived object makes it strongly reachable. If it is
 843   // loaded during concurrent marking, it must be enqueued to the SATB
 844   // queue, shading the previously white object gray.
 845   G1BarrierSet::enqueue(obj);
 846 
 847   return obj;
 848 }
 849 
 850 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 851   ResourceMark rm; // For retrieving the thread names in log messages.
 852 
 853   // The structure of this method has a lot of similarities to
 854   // attempt_allocation_slow(). The reason these two were not merged
 855   // into a single one is that such a method would require several "if
 856   // allocation is not humongous do this, otherwise do that"
 857   // conditional paths which would obscure its flow. In fact, an early
 858   // version of this code did use a unified method which was harder to
 859   // follow and, as a result, it had subtle bugs that were hard to
 860   // track down. So keeping these two methods separate allows each to
 861   // be more readable. It will be good to keep these two in sync as
 862   // much as possible.
 863 
 864   assert_heap_not_locked_and_not_at_safepoint();
 865   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 866          "should only be called for humongous allocations");
 867 
 868   // Humongous objects can exhaust the heap quickly, so we should check if we
 869   // need to start a marking cycle at each humongous object allocation. We do
 870   // the check before we do the actual allocation. The reason for doing it
 871   // before the allocation is that we avoid having to keep track of the newly
 872   // allocated memory while we do a GC.
 873   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 874                                            word_size)) {
 875     collect(GCCause::_g1_humongous_allocation);
 876   }
 877 
 878   // We will loop until a) we manage to successfully perform the
 879   // allocation or b) we successfully schedule a collection which
 880   // fails to perform the allocation. b) is the only case when we'll
 881   // return NULL.
 882   HeapWord* result = NULL;
 883   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 884     bool should_try_gc;
 885     uint gc_count_before;
 886 
 887 
 888     {
 889       MutexLocker x(Heap_lock);
 890 
 891       // Given that humongous objects are not allocated in young
 892       // regions, we'll first try to do the allocation without doing a
 893       // collection hoping that there's enough space in the heap.
 894       result = humongous_obj_allocate(word_size);
 895       if (result != NULL) {
 896         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 897         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 898         return result;
 899       }
 900 
 901       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 902       // the GCLocker initiated GC has been performed and then retry. This includes
 903       // the case when the GC Locker is not active but has not been performed.
 904       should_try_gc = !GCLocker::needs_gc();
 905       // Read the GC count while still holding the Heap_lock.
 906       gc_count_before = total_collections();
 907     }
 908 
 909     if (should_try_gc) {
 910       bool succeeded;
 911       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 912                                    GCCause::_g1_humongous_allocation);
 913       if (result != NULL) {
 914         assert(succeeded, "only way to get back a non-NULL result");
 915         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 916                              Thread::current()->name(), p2i(result));
 917         return result;
 918       }
 919 
 920       if (succeeded) {
 921         // We successfully scheduled a collection which failed to allocate. No
 922         // point in trying to allocate further. We'll just return NULL.
 923         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 924                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 925         return NULL;
 926       }
 927       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 928                            Thread::current()->name(), word_size);
 929     } else {
 930       // Failed to schedule a collection.
 931       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 932         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 933                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 934         return NULL;
 935       }
 936       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 937       // The GCLocker is either active or the GCLocker initiated
 938       // GC has not yet been performed. Stall until it is and
 939       // then retry the allocation.
 940       GCLocker::stall_until_clear();
 941       gclocker_retry_count += 1;
 942     }
 943 
 944 
 945     // We can reach here if we were unsuccessful in scheduling a
 946     // collection (because another thread beat us to it) or if we were
 947     // stalled due to the GC locker. In either can we should retry the
 948     // allocation attempt in case another thread successfully
 949     // performed a collection and reclaimed enough space.
 950     // Humongous object allocation always needs a lock, so we wait for the retry
 951     // in the next iteration of the loop, unlike for the regular iteration case.
 952     // Give a warning if we seem to be looping forever.
 953 
 954     if ((QueuedAllocationWarningCount > 0) &&
 955         (try_count % QueuedAllocationWarningCount == 0)) {
 956       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 957                              Thread::current()->name(), try_count, word_size);
 958     }
 959   }
 960 
 961   ShouldNotReachHere();
 962   return NULL;
 963 }
 964 
 965 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 966                                                            bool expect_null_mutator_alloc_region) {
 967   assert_at_safepoint_on_vm_thread();
 968   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 969          "the current alloc region was unexpectedly found to be non-NULL");
 970 
 971   if (!is_humongous(word_size)) {
 972     return _allocator->attempt_allocation_locked(word_size);
 973   } else {
 974     HeapWord* result = humongous_obj_allocate(word_size);
 975     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 976       collector_state()->set_initiate_conc_mark_if_possible(true);
 977     }
 978     return result;
 979   }
 980 
 981   ShouldNotReachHere();
 982 }
 983 
 984 class PostCompactionPrinterClosure: public HeapRegionClosure {
 985 private:
 986   G1HRPrinter* _hr_printer;
 987 public:
 988   bool do_heap_region(HeapRegion* hr) {
 989     assert(!hr->is_young(), "not expecting to find young regions");
 990     _hr_printer->post_compaction(hr);
 991     return false;
 992   }
 993 
 994   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 995     : _hr_printer(hr_printer) { }
 996 };
 997 
 998 void G1CollectedHeap::print_hrm_post_compaction() {
 999   if (_hr_printer.is_active()) {
1000     PostCompactionPrinterClosure cl(hr_printer());
1001     heap_region_iterate(&cl);
1002   }
1003 }
1004 
1005 void G1CollectedHeap::abort_concurrent_cycle() {
1006   // If we start the compaction before the CM threads finish
1007   // scanning the root regions we might trip them over as we'll
1008   // be moving objects / updating references. So let's wait until
1009   // they are done. By telling them to abort, they should complete
1010   // early.
1011   _cm->root_regions()->abort();
1012   _cm->root_regions()->wait_until_scan_finished();
1013 
1014   // Disable discovery and empty the discovered lists
1015   // for the CM ref processor.
1016   _ref_processor_cm->disable_discovery();
1017   _ref_processor_cm->abandon_partial_discovery();
1018   _ref_processor_cm->verify_no_references_recorded();
1019 
1020   // Abandon current iterations of concurrent marking and concurrent
1021   // refinement, if any are in progress.
1022   concurrent_mark()->concurrent_cycle_abort();
1023 }
1024 
1025 void G1CollectedHeap::prepare_heap_for_full_collection() {
1026   // Make sure we'll choose a new allocation region afterwards.
1027   _allocator->release_mutator_alloc_region();
1028   _allocator->abandon_gc_alloc_regions();
1029 
1030   // We may have added regions to the current incremental collection
1031   // set between the last GC or pause and now. We need to clear the
1032   // incremental collection set and then start rebuilding it afresh
1033   // after this full GC.
1034   abandon_collection_set(collection_set());
1035 
1036   tear_down_region_sets(false /* free_list_only */);
1037 
1038   hrm()->prepare_for_full_collection_start();
1039 }
1040 
1041 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1042   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1043   assert_used_and_recalculate_used_equal(this);
1044   _verifier->verify_region_sets_optional();
1045   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1046   _verifier->check_bitmaps("Full GC Start");
1047 }
1048 
1049 void G1CollectedHeap::prepare_heap_for_mutators() {
1050   hrm()->prepare_for_full_collection_end();
1051 
1052   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1053   ClassLoaderDataGraph::purge();
1054   MetaspaceUtils::verify_metrics();
1055 
1056   // Prepare heap for normal collections.
1057   assert(num_free_regions() == 0, "we should not have added any free regions");
1058   rebuild_region_sets(false /* free_list_only */);
1059   abort_refinement();
1060   resize_heap_if_necessary();
1061 
1062   // Rebuild the strong code root lists for each region
1063   rebuild_strong_code_roots();
1064 
1065   // Purge code root memory
1066   purge_code_root_memory();
1067 
1068   // Start a new incremental collection set for the next pause
1069   start_new_collection_set();
1070 
1071   _allocator->init_mutator_alloc_region();
1072 
1073   // Post collection state updates.
1074   MetaspaceGC::compute_new_size();
1075 }
1076 
1077 void G1CollectedHeap::abort_refinement() {
1078   if (_hot_card_cache->use_cache()) {
1079     _hot_card_cache->reset_hot_cache();
1080   }
1081 
1082   // Discard all remembered set updates.
1083   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1084   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1085          "DCQS should be empty");
1086 }
1087 
1088 void G1CollectedHeap::verify_after_full_collection() {
1089   _hrm->verify_optional();
1090   _verifier->verify_region_sets_optional();
1091   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1092   // Clear the previous marking bitmap, if needed for bitmap verification.
1093   // Note we cannot do this when we clear the next marking bitmap in
1094   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1095   // objects marked during a full GC against the previous bitmap.
1096   // But we need to clear it before calling check_bitmaps below since
1097   // the full GC has compacted objects and updated TAMS but not updated
1098   // the prev bitmap.
1099   if (G1VerifyBitmaps) {
1100     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1101     _cm->clear_prev_bitmap(workers());
1102   }
1103   // This call implicitly verifies that the next bitmap is clear after Full GC.
1104   _verifier->check_bitmaps("Full GC End");
1105 
1106   // At this point there should be no regions in the
1107   // entire heap tagged as young.
1108   assert(check_young_list_empty(), "young list should be empty at this point");
1109 
1110   // Note: since we've just done a full GC, concurrent
1111   // marking is no longer active. Therefore we need not
1112   // re-enable reference discovery for the CM ref processor.
1113   // That will be done at the start of the next marking cycle.
1114   // We also know that the STW processor should no longer
1115   // discover any new references.
1116   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1117   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1118   _ref_processor_stw->verify_no_references_recorded();
1119   _ref_processor_cm->verify_no_references_recorded();
1120 }
1121 
1122 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1123   // Post collection logging.
1124   // We should do this after we potentially resize the heap so
1125   // that all the COMMIT / UNCOMMIT events are generated before
1126   // the compaction events.
1127   print_hrm_post_compaction();
1128   heap_transition->print();
1129   print_heap_after_gc();
1130   print_heap_regions();
1131 #ifdef TRACESPINNING
1132   ParallelTaskTerminator::print_termination_counts();
1133 #endif
1134 }
1135 
1136 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1137                                          bool clear_all_soft_refs) {
1138   assert_at_safepoint_on_vm_thread();
1139 
1140   if (GCLocker::check_active_before_gc()) {
1141     // Full GC was not completed.
1142     return false;
1143   }
1144 
1145   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1146       soft_ref_policy()->should_clear_all_soft_refs();
1147 
1148   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1149   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1150 
1151   collector.prepare_collection();
1152   collector.collect();
1153   collector.complete_collection();
1154 
1155   // Full collection was successfully completed.
1156   return true;
1157 }
1158 
1159 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1160   // Currently, there is no facility in the do_full_collection(bool) API to notify
1161   // the caller that the collection did not succeed (e.g., because it was locked
1162   // out by the GC locker). So, right now, we'll ignore the return value.
1163   bool dummy = do_full_collection(true,                /* explicit_gc */
1164                                   clear_all_soft_refs);
1165 }
1166 
1167 void G1CollectedHeap::resize_heap_if_necessary() {
1168   assert_at_safepoint_on_vm_thread();
1169 
1170   // Capacity, free and used after the GC counted as full regions to
1171   // include the waste in the following calculations.
1172   const size_t capacity_after_gc = capacity();
1173   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1174 
1175   // This is enforced in arguments.cpp.
1176   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1177          "otherwise the code below doesn't make sense");
1178 
1179   // We don't have floating point command-line arguments
1180   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1181   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1182   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1183   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1184 
1185   // We have to be careful here as these two calculations can overflow
1186   // 32-bit size_t's.
1187   double used_after_gc_d = (double) used_after_gc;
1188   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1189   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1190 
1191   // Let's make sure that they are both under the max heap size, which
1192   // by default will make them fit into a size_t.
1193   double desired_capacity_upper_bound = (double) MaxHeapSize;
1194   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1195                                     desired_capacity_upper_bound);
1196   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1197                                     desired_capacity_upper_bound);
1198 
1199   // We can now safely turn them into size_t's.
1200   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1201   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1202 
1203   // This assert only makes sense here, before we adjust them
1204   // with respect to the min and max heap size.
1205   assert(minimum_desired_capacity <= maximum_desired_capacity,
1206          "minimum_desired_capacity = " SIZE_FORMAT ", "
1207          "maximum_desired_capacity = " SIZE_FORMAT,
1208          minimum_desired_capacity, maximum_desired_capacity);
1209 
1210   // Should not be greater than the heap max size. No need to adjust
1211   // it with respect to the heap min size as it's a lower bound (i.e.,
1212   // we'll try to make the capacity larger than it, not smaller).
1213   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1214   // Should not be less than the heap min size. No need to adjust it
1215   // with respect to the heap max size as it's an upper bound (i.e.,
1216   // we'll try to make the capacity smaller than it, not greater).
1217   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1218 
1219   if (capacity_after_gc < minimum_desired_capacity) {
1220     // Don't expand unless it's significant
1221     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1222 
1223     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1224                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1225                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1226                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1227 
1228     expand(expand_bytes, _workers);
1229 
1230     // No expansion, now see if we want to shrink
1231   } else if (capacity_after_gc > maximum_desired_capacity) {
1232     // Capacity too large, compute shrinking size
1233     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1234 
1235     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1236                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1237                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1238                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1239 
1240     shrink(shrink_bytes);
1241   }
1242 }
1243 
1244 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1245                                                             bool do_gc,
1246                                                             bool clear_all_soft_refs,
1247                                                             bool expect_null_mutator_alloc_region,
1248                                                             bool* gc_succeeded) {
1249   *gc_succeeded = true;
1250   // Let's attempt the allocation first.
1251   HeapWord* result =
1252     attempt_allocation_at_safepoint(word_size,
1253                                     expect_null_mutator_alloc_region);
1254   if (result != NULL) {
1255     return result;
1256   }
1257 
1258   // In a G1 heap, we're supposed to keep allocation from failing by
1259   // incremental pauses.  Therefore, at least for now, we'll favor
1260   // expansion over collection.  (This might change in the future if we can
1261   // do something smarter than full collection to satisfy a failed alloc.)
1262   result = expand_and_allocate(word_size);
1263   if (result != NULL) {
1264     return result;
1265   }
1266 
1267   if (do_gc) {
1268     // Expansion didn't work, we'll try to do a Full GC.
1269     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1270                                        clear_all_soft_refs);
1271   }
1272 
1273   return NULL;
1274 }
1275 
1276 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1277                                                      bool* succeeded) {
1278   assert_at_safepoint_on_vm_thread();
1279 
1280   // Attempts to allocate followed by Full GC.
1281   HeapWord* result =
1282     satisfy_failed_allocation_helper(word_size,
1283                                      true,  /* do_gc */
1284                                      false, /* clear_all_soft_refs */
1285                                      false, /* expect_null_mutator_alloc_region */
1286                                      succeeded);
1287 
1288   if (result != NULL || !*succeeded) {
1289     return result;
1290   }
1291 
1292   // Attempts to allocate followed by Full GC that will collect all soft references.
1293   result = satisfy_failed_allocation_helper(word_size,
1294                                             true, /* do_gc */
1295                                             true, /* clear_all_soft_refs */
1296                                             true, /* expect_null_mutator_alloc_region */
1297                                             succeeded);
1298 
1299   if (result != NULL || !*succeeded) {
1300     return result;
1301   }
1302 
1303   // Attempts to allocate, no GC
1304   result = satisfy_failed_allocation_helper(word_size,
1305                                             false, /* do_gc */
1306                                             false, /* clear_all_soft_refs */
1307                                             true,  /* expect_null_mutator_alloc_region */
1308                                             succeeded);
1309 
1310   if (result != NULL) {
1311     return result;
1312   }
1313 
1314   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1315          "Flag should have been handled and cleared prior to this point");
1316 
1317   // What else?  We might try synchronous finalization later.  If the total
1318   // space available is large enough for the allocation, then a more
1319   // complete compaction phase than we've tried so far might be
1320   // appropriate.
1321   return NULL;
1322 }
1323 
1324 // Attempting to expand the heap sufficiently
1325 // to support an allocation of the given "word_size".  If
1326 // successful, perform the allocation and return the address of the
1327 // allocated block, or else "NULL".
1328 
1329 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1330   assert_at_safepoint_on_vm_thread();
1331 
1332   _verifier->verify_region_sets_optional();
1333 
1334   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1335   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1336                             word_size * HeapWordSize);
1337 
1338 
1339   if (expand(expand_bytes, _workers)) {
1340     _hrm->verify_optional();
1341     _verifier->verify_region_sets_optional();
1342     return attempt_allocation_at_safepoint(word_size,
1343                                            false /* expect_null_mutator_alloc_region */);
1344   }
1345   return NULL;
1346 }
1347 
1348 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1349   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1350   aligned_expand_bytes = align_up(aligned_expand_bytes,
1351                                        HeapRegion::GrainBytes);
1352 
1353   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1354                             expand_bytes, aligned_expand_bytes);
1355 
1356   if (is_maximal_no_gc()) {
1357     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1358     return false;
1359   }
1360 
1361   double expand_heap_start_time_sec = os::elapsedTime();
1362   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1363   assert(regions_to_expand > 0, "Must expand by at least one region");
1364 
1365   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1366   if (expand_time_ms != NULL) {
1367     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1368   }
1369 
1370   if (expanded_by > 0) {
1371     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1372     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1373     policy()->record_new_heap_size(num_regions());
1374   } else {
1375     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1376 
1377     // The expansion of the virtual storage space was unsuccessful.
1378     // Let's see if it was because we ran out of swap.
1379     if (G1ExitOnExpansionFailure &&
1380         _hrm->available() >= regions_to_expand) {
1381       // We had head room...
1382       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1383     }
1384   }
1385   return regions_to_expand > 0;
1386 }
1387 
1388 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1389   size_t aligned_shrink_bytes =
1390     ReservedSpace::page_align_size_down(shrink_bytes);
1391   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1392                                          HeapRegion::GrainBytes);
1393   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1394 
1395   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1396   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1397 
1398 
1399   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1400                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1401   if (num_regions_removed > 0) {
1402     policy()->record_new_heap_size(num_regions());
1403   } else {
1404     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1405   }
1406 }
1407 
1408 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1409   _verifier->verify_region_sets_optional();
1410 
1411   // We should only reach here at the end of a Full GC or during Remark which
1412   // means we should not not be holding to any GC alloc regions. The method
1413   // below will make sure of that and do any remaining clean up.
1414   _allocator->abandon_gc_alloc_regions();
1415 
1416   // Instead of tearing down / rebuilding the free lists here, we
1417   // could instead use the remove_all_pending() method on free_list to
1418   // remove only the ones that we need to remove.
1419   tear_down_region_sets(true /* free_list_only */);
1420   shrink_helper(shrink_bytes);
1421   rebuild_region_sets(true /* free_list_only */);
1422 
1423   _hrm->verify_optional();
1424   _verifier->verify_region_sets_optional();
1425 }
1426 
1427 class OldRegionSetChecker : public HeapRegionSetChecker {
1428 public:
1429   void check_mt_safety() {
1430     // Master Old Set MT safety protocol:
1431     // (a) If we're at a safepoint, operations on the master old set
1432     // should be invoked:
1433     // - by the VM thread (which will serialize them), or
1434     // - by the GC workers while holding the FreeList_lock, if we're
1435     //   at a safepoint for an evacuation pause (this lock is taken
1436     //   anyway when an GC alloc region is retired so that a new one
1437     //   is allocated from the free list), or
1438     // - by the GC workers while holding the OldSets_lock, if we're at a
1439     //   safepoint for a cleanup pause.
1440     // (b) If we're not at a safepoint, operations on the master old set
1441     // should be invoked while holding the Heap_lock.
1442 
1443     if (SafepointSynchronize::is_at_safepoint()) {
1444       guarantee(Thread::current()->is_VM_thread() ||
1445                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1446                 "master old set MT safety protocol at a safepoint");
1447     } else {
1448       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1449     }
1450   }
1451   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1452   const char* get_description() { return "Old Regions"; }
1453 };
1454 
1455 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1456 public:
1457   void check_mt_safety() {
1458     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1459               "May only change archive regions during initialization or safepoint.");
1460   }
1461   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1462   const char* get_description() { return "Archive Regions"; }
1463 };
1464 
1465 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1466 public:
1467   void check_mt_safety() {
1468     // Humongous Set MT safety protocol:
1469     // (a) If we're at a safepoint, operations on the master humongous
1470     // set should be invoked by either the VM thread (which will
1471     // serialize them) or by the GC workers while holding the
1472     // OldSets_lock.
1473     // (b) If we're not at a safepoint, operations on the master
1474     // humongous set should be invoked while holding the Heap_lock.
1475 
1476     if (SafepointSynchronize::is_at_safepoint()) {
1477       guarantee(Thread::current()->is_VM_thread() ||
1478                 OldSets_lock->owned_by_self(),
1479                 "master humongous set MT safety protocol at a safepoint");
1480     } else {
1481       guarantee(Heap_lock->owned_by_self(),
1482                 "master humongous set MT safety protocol outside a safepoint");
1483     }
1484   }
1485   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1486   const char* get_description() { return "Humongous Regions"; }
1487 };
1488 
1489 G1CollectedHeap::G1CollectedHeap() :
1490   CollectedHeap(),
1491   _young_gen_sampling_thread(NULL),
1492   _workers(NULL),
1493   _card_table(NULL),
1494   _soft_ref_policy(),
1495   _old_set("Old Region Set", new OldRegionSetChecker()),
1496   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1497   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1498   _bot(NULL),
1499   _listener(),
1500   _hrm(NULL),
1501   _allocator(NULL),
1502   _verifier(NULL),
1503   _summary_bytes_used(0),
1504   _archive_allocator(NULL),
1505   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1506   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1507   _expand_heap_after_alloc_failure(true),
1508   _g1mm(NULL),
1509   _humongous_reclaim_candidates(),
1510   _has_humongous_reclaim_candidates(false),
1511   _hr_printer(),
1512   _collector_state(),
1513   _old_marking_cycles_started(0),
1514   _old_marking_cycles_completed(0),
1515   _eden(),
1516   _survivor(),
1517   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1518   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1519   _policy(G1Policy::create_policy(_gc_timer_stw)),
1520   _heap_sizing_policy(NULL),
1521   _collection_set(this, _policy),
1522   _hot_card_cache(NULL),
1523   _rem_set(NULL),
1524   _cm(NULL),
1525   _cm_thread(NULL),
1526   _cr(NULL),
1527   _task_queues(NULL),
1528   _evacuation_failed(false),
1529   _evacuation_failed_info_array(NULL),
1530   _preserved_marks_set(true /* in_c_heap */),
1531 #ifndef PRODUCT
1532   _evacuation_failure_alot_for_current_gc(false),
1533   _evacuation_failure_alot_gc_number(0),
1534   _evacuation_failure_alot_count(0),
1535 #endif
1536   _ref_processor_stw(NULL),
1537   _is_alive_closure_stw(this),
1538   _is_subject_to_discovery_stw(this),
1539   _ref_processor_cm(NULL),
1540   _is_alive_closure_cm(this),
1541   _is_subject_to_discovery_cm(this),
1542   _region_attr() {
1543 
1544   _verifier = new G1HeapVerifier(this);
1545 
1546   _allocator = new G1Allocator(this);
1547 
1548   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1549 
1550   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1551 
1552   // Override the default _filler_array_max_size so that no humongous filler
1553   // objects are created.
1554   _filler_array_max_size = _humongous_object_threshold_in_words;
1555 
1556   uint n_queues = ParallelGCThreads;
1557   _task_queues = new RefToScanQueueSet(n_queues);
1558 
1559   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1560 
1561   for (uint i = 0; i < n_queues; i++) {
1562     RefToScanQueue* q = new RefToScanQueue();
1563     q->initialize();
1564     _task_queues->register_queue(i, q);
1565     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1566   }
1567 
1568   // Initialize the G1EvacuationFailureALot counters and flags.
1569   NOT_PRODUCT(reset_evacuation_should_fail();)
1570   _gc_tracer_stw->initialize();
1571 
1572   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1573 }
1574 
1575 static size_t actual_reserved_page_size(ReservedSpace rs) {
1576   size_t page_size = os::vm_page_size();
1577   if (UseLargePages) {
1578     // There are two ways to manage large page memory.
1579     // 1. OS supports committing large page memory.
1580     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1581     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1582     //    we reserved memory without large page.
1583     if (os::can_commit_large_page_memory() || rs.special()) {
1584       // An alignment at ReservedSpace comes from preferred page size or
1585       // heap alignment, and if the alignment came from heap alignment, it could be
1586       // larger than large pages size. So need to cap with the large page size.
1587       page_size = MIN2(rs.alignment(), os::large_page_size());
1588     }
1589   }
1590 
1591   return page_size;
1592 }
1593 
1594 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1595                                                                  size_t size,
1596                                                                  size_t translation_factor) {
1597   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1598   // Allocate a new reserved space, preferring to use large pages.
1599   ReservedSpace rs(size, preferred_page_size);
1600   size_t page_size = actual_reserved_page_size(rs);
1601   G1RegionToSpaceMapper* result  =
1602     G1RegionToSpaceMapper::create_mapper(rs,
1603                                          size,
1604                                          page_size,
1605                                          HeapRegion::GrainBytes,
1606                                          translation_factor,
1607                                          mtGC);
1608 
1609   os::trace_page_sizes_for_requested_size(description,
1610                                           size,
1611                                           preferred_page_size,
1612                                           page_size,
1613                                           rs.base(),
1614                                           rs.size());
1615 
1616   return result;
1617 }
1618 
1619 jint G1CollectedHeap::initialize_concurrent_refinement() {
1620   jint ecode = JNI_OK;
1621   _cr = G1ConcurrentRefine::create(&ecode);
1622   return ecode;
1623 }
1624 
1625 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1626   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1627   if (_young_gen_sampling_thread->osthread() == NULL) {
1628     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1629     return JNI_ENOMEM;
1630   }
1631   return JNI_OK;
1632 }
1633 
1634 jint G1CollectedHeap::initialize() {
1635   os::enable_vtime();
1636 
1637   // Necessary to satisfy locking discipline assertions.
1638 
1639   MutexLocker x(Heap_lock);
1640 
1641   // While there are no constraints in the GC code that HeapWordSize
1642   // be any particular value, there are multiple other areas in the
1643   // system which believe this to be true (e.g. oop->object_size in some
1644   // cases incorrectly returns the size in wordSize units rather than
1645   // HeapWordSize).
1646   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1647 
1648   size_t init_byte_size = InitialHeapSize;
1649   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1650 
1651   // Ensure that the sizes are properly aligned.
1652   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1653   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1654   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1655 
1656   // Reserve the maximum.
1657 
1658   // When compressed oops are enabled, the preferred heap base
1659   // is calculated by subtracting the requested size from the
1660   // 32Gb boundary and using the result as the base address for
1661   // heap reservation. If the requested size is not aligned to
1662   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1663   // into the ReservedHeapSpace constructor) then the actual
1664   // base of the reserved heap may end up differing from the
1665   // address that was requested (i.e. the preferred heap base).
1666   // If this happens then we could end up using a non-optimal
1667   // compressed oops mode.
1668 
1669   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1670                                                      HeapAlignment);
1671 
1672   initialize_reserved_region(heap_rs);
1673 
1674   // Create the barrier set for the entire reserved region.
1675   G1CardTable* ct = new G1CardTable(heap_rs.region());
1676   ct->initialize();
1677   G1BarrierSet* bs = new G1BarrierSet(ct);
1678   bs->initialize();
1679   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1680   BarrierSet::set_barrier_set(bs);
1681   _card_table = ct;
1682 
1683   {
1684     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1685     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1686     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1687   }
1688 
1689   // Create the hot card cache.
1690   _hot_card_cache = new G1HotCardCache(this);
1691 
1692   // Carve out the G1 part of the heap.
1693   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1694   size_t page_size = actual_reserved_page_size(heap_rs);
1695   G1RegionToSpaceMapper* heap_storage =
1696     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1697                                               g1_rs.size(),
1698                                               page_size,
1699                                               HeapRegion::GrainBytes,
1700                                               1,
1701                                               mtJavaHeap);
1702   if(heap_storage == NULL) {
1703     vm_shutdown_during_initialization("Could not initialize G1 heap");
1704     return JNI_ERR;
1705   }
1706 
1707   os::trace_page_sizes("Heap",
1708                        MinHeapSize,
1709                        reserved_byte_size,
1710                        page_size,
1711                        heap_rs.base(),
1712                        heap_rs.size());
1713   heap_storage->set_mapping_changed_listener(&_listener);
1714 
1715   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1716   G1RegionToSpaceMapper* bot_storage =
1717     create_aux_memory_mapper("Block Offset Table",
1718                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1719                              G1BlockOffsetTable::heap_map_factor());
1720 
1721   G1RegionToSpaceMapper* cardtable_storage =
1722     create_aux_memory_mapper("Card Table",
1723                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1724                              G1CardTable::heap_map_factor());
1725 
1726   G1RegionToSpaceMapper* card_counts_storage =
1727     create_aux_memory_mapper("Card Counts Table",
1728                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1729                              G1CardCounts::heap_map_factor());
1730 
1731   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1732   G1RegionToSpaceMapper* prev_bitmap_storage =
1733     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1734   G1RegionToSpaceMapper* next_bitmap_storage =
1735     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1736 
1737   _hrm = HeapRegionManager::create_manager(this);
1738 
1739   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1740   _card_table->initialize(cardtable_storage);
1741 
1742   // Do later initialization work for concurrent refinement.
1743   _hot_card_cache->initialize(card_counts_storage);
1744 
1745   // 6843694 - ensure that the maximum region index can fit
1746   // in the remembered set structures.
1747   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1748   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1749 
1750   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1751   // start within the first card.
1752   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1753   // Also create a G1 rem set.
1754   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1755   _rem_set->initialize(max_reserved_capacity(), max_regions());
1756 
1757   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1758   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1759   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1760             "too many cards per region");
1761 
1762   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1763 
1764   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1765 
1766   {
1767     HeapWord* start = _hrm->reserved().start();
1768     HeapWord* end = _hrm->reserved().end();
1769     size_t granularity = HeapRegion::GrainBytes;
1770 
1771     _region_attr.initialize(start, end, granularity);
1772     _humongous_reclaim_candidates.initialize(start, end, granularity);
1773   }
1774 
1775   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1776                           true /* are_GC_task_threads */,
1777                           false /* are_ConcurrentGC_threads */);
1778   if (_workers == NULL) {
1779     return JNI_ENOMEM;
1780   }
1781   _workers->initialize_workers();
1782 
1783   // Create the G1ConcurrentMark data structure and thread.
1784   // (Must do this late, so that "max_regions" is defined.)
1785   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1786   if (_cm == NULL || !_cm->completed_initialization()) {
1787     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1788     return JNI_ENOMEM;
1789   }
1790   _cm_thread = _cm->cm_thread();
1791 
1792   // Now expand into the initial heap size.
1793   if (!expand(init_byte_size, _workers)) {
1794     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1795     return JNI_ENOMEM;
1796   }
1797 
1798   // Perform any initialization actions delegated to the policy.
1799   policy()->init(this, &_collection_set);
1800 
1801   jint ecode = initialize_concurrent_refinement();
1802   if (ecode != JNI_OK) {
1803     return ecode;
1804   }
1805 
1806   ecode = initialize_young_gen_sampling_thread();
1807   if (ecode != JNI_OK) {
1808     return ecode;
1809   }
1810 
1811   {
1812     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1813     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1814     dcqs.set_max_cards(concurrent_refine()->red_zone());
1815   }
1816 
1817   // Here we allocate the dummy HeapRegion that is required by the
1818   // G1AllocRegion class.
1819   HeapRegion* dummy_region = _hrm->get_dummy_region();
1820 
1821   // We'll re-use the same region whether the alloc region will
1822   // require BOT updates or not and, if it doesn't, then a non-young
1823   // region will complain that it cannot support allocations without
1824   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1825   dummy_region->set_eden();
1826   // Make sure it's full.
1827   dummy_region->set_top(dummy_region->end());
1828   G1AllocRegion::setup(this, dummy_region);
1829 
1830   _allocator->init_mutator_alloc_region();
1831 
1832   // Do create of the monitoring and management support so that
1833   // values in the heap have been properly initialized.
1834   _g1mm = new G1MonitoringSupport(this);
1835 
1836   G1StringDedup::initialize();
1837 
1838   _preserved_marks_set.init(ParallelGCThreads);
1839 
1840   _collection_set.initialize(max_regions());
1841 
1842   return JNI_OK;
1843 }
1844 
1845 void G1CollectedHeap::stop() {
1846   // Stop all concurrent threads. We do this to make sure these threads
1847   // do not continue to execute and access resources (e.g. logging)
1848   // that are destroyed during shutdown.
1849   _cr->stop();
1850   _young_gen_sampling_thread->stop();
1851   _cm_thread->stop();
1852   if (G1StringDedup::is_enabled()) {
1853     G1StringDedup::stop();
1854   }
1855 }
1856 
1857 void G1CollectedHeap::safepoint_synchronize_begin() {
1858   SuspendibleThreadSet::synchronize();
1859 }
1860 
1861 void G1CollectedHeap::safepoint_synchronize_end() {
1862   SuspendibleThreadSet::desynchronize();
1863 }
1864 
1865 void G1CollectedHeap::post_initialize() {
1866   CollectedHeap::post_initialize();
1867   ref_processing_init();
1868 }
1869 
1870 void G1CollectedHeap::ref_processing_init() {
1871   // Reference processing in G1 currently works as follows:
1872   //
1873   // * There are two reference processor instances. One is
1874   //   used to record and process discovered references
1875   //   during concurrent marking; the other is used to
1876   //   record and process references during STW pauses
1877   //   (both full and incremental).
1878   // * Both ref processors need to 'span' the entire heap as
1879   //   the regions in the collection set may be dotted around.
1880   //
1881   // * For the concurrent marking ref processor:
1882   //   * Reference discovery is enabled at initial marking.
1883   //   * Reference discovery is disabled and the discovered
1884   //     references processed etc during remarking.
1885   //   * Reference discovery is MT (see below).
1886   //   * Reference discovery requires a barrier (see below).
1887   //   * Reference processing may or may not be MT
1888   //     (depending on the value of ParallelRefProcEnabled
1889   //     and ParallelGCThreads).
1890   //   * A full GC disables reference discovery by the CM
1891   //     ref processor and abandons any entries on it's
1892   //     discovered lists.
1893   //
1894   // * For the STW processor:
1895   //   * Non MT discovery is enabled at the start of a full GC.
1896   //   * Processing and enqueueing during a full GC is non-MT.
1897   //   * During a full GC, references are processed after marking.
1898   //
1899   //   * Discovery (may or may not be MT) is enabled at the start
1900   //     of an incremental evacuation pause.
1901   //   * References are processed near the end of a STW evacuation pause.
1902   //   * For both types of GC:
1903   //     * Discovery is atomic - i.e. not concurrent.
1904   //     * Reference discovery will not need a barrier.
1905 
1906   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1907 
1908   // Concurrent Mark ref processor
1909   _ref_processor_cm =
1910     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1911                            mt_processing,                                  // mt processing
1912                            ParallelGCThreads,                              // degree of mt processing
1913                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1914                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1915                            false,                                          // Reference discovery is not atomic
1916                            &_is_alive_closure_cm,                          // is alive closure
1917                            true);                                          // allow changes to number of processing threads
1918 
1919   // STW ref processor
1920   _ref_processor_stw =
1921     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1922                            mt_processing,                        // mt processing
1923                            ParallelGCThreads,                    // degree of mt processing
1924                            (ParallelGCThreads > 1),              // mt discovery
1925                            ParallelGCThreads,                    // degree of mt discovery
1926                            true,                                 // Reference discovery is atomic
1927                            &_is_alive_closure_stw,               // is alive closure
1928                            true);                                // allow changes to number of processing threads
1929 }
1930 
1931 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1932   return &_soft_ref_policy;
1933 }
1934 
1935 size_t G1CollectedHeap::capacity() const {
1936   return _hrm->length() * HeapRegion::GrainBytes;
1937 }
1938 
1939 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1940   return _hrm->total_free_bytes();
1941 }
1942 
1943 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1944   _hot_card_cache->drain(cl, worker_i);
1945 }
1946 
1947 void G1CollectedHeap::iterate_dirty_card_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1948   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1949   while (dcqs.apply_closure_during_gc(cl, worker_i)) {}
1950   assert(dcqs.num_cards() == 0, "Completed buffers exist!");
1951 }
1952 
1953 // Computes the sum of the storage used by the various regions.
1954 size_t G1CollectedHeap::used() const {
1955   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1956   if (_archive_allocator != NULL) {
1957     result += _archive_allocator->used();
1958   }
1959   return result;
1960 }
1961 
1962 size_t G1CollectedHeap::used_unlocked() const {
1963   return _summary_bytes_used;
1964 }
1965 
1966 class SumUsedClosure: public HeapRegionClosure {
1967   size_t _used;
1968 public:
1969   SumUsedClosure() : _used(0) {}
1970   bool do_heap_region(HeapRegion* r) {
1971     _used += r->used();
1972     return false;
1973   }
1974   size_t result() { return _used; }
1975 };
1976 
1977 size_t G1CollectedHeap::recalculate_used() const {
1978   SumUsedClosure blk;
1979   heap_region_iterate(&blk);
1980   return blk.result();
1981 }
1982 
1983 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1984   switch (cause) {
1985     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1986     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1987     case GCCause::_wb_conc_mark:                        return true;
1988     default :                                           return false;
1989   }
1990 }
1991 
1992 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1993   switch (cause) {
1994     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1995     case GCCause::_g1_humongous_allocation: return true;
1996     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1997     default:                                return is_user_requested_concurrent_full_gc(cause);
1998   }
1999 }
2000 
2001 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2002   if(policy()->force_upgrade_to_full()) {
2003     return true;
2004   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2005     return false;
2006   } else if (has_regions_left_for_allocation()) {
2007     return false;
2008   } else {
2009     return true;
2010   }
2011 }
2012 
2013 #ifndef PRODUCT
2014 void G1CollectedHeap::allocate_dummy_regions() {
2015   // Let's fill up most of the region
2016   size_t word_size = HeapRegion::GrainWords - 1024;
2017   // And as a result the region we'll allocate will be humongous.
2018   guarantee(is_humongous(word_size), "sanity");
2019 
2020   // _filler_array_max_size is set to humongous object threshold
2021   // but temporarily change it to use CollectedHeap::fill_with_object().
2022   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2023 
2024   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2025     // Let's use the existing mechanism for the allocation
2026     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2027     if (dummy_obj != NULL) {
2028       MemRegion mr(dummy_obj, word_size);
2029       CollectedHeap::fill_with_object(mr);
2030     } else {
2031       // If we can't allocate once, we probably cannot allocate
2032       // again. Let's get out of the loop.
2033       break;
2034     }
2035   }
2036 }
2037 #endif // !PRODUCT
2038 
2039 void G1CollectedHeap::increment_old_marking_cycles_started() {
2040   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2041          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2042          "Wrong marking cycle count (started: %d, completed: %d)",
2043          _old_marking_cycles_started, _old_marking_cycles_completed);
2044 
2045   _old_marking_cycles_started++;
2046 }
2047 
2048 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2049   MonitorLocker x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2050 
2051   // We assume that if concurrent == true, then the caller is a
2052   // concurrent thread that was joined the Suspendible Thread
2053   // Set. If there's ever a cheap way to check this, we should add an
2054   // assert here.
2055 
2056   // Given that this method is called at the end of a Full GC or of a
2057   // concurrent cycle, and those can be nested (i.e., a Full GC can
2058   // interrupt a concurrent cycle), the number of full collections
2059   // completed should be either one (in the case where there was no
2060   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2061   // behind the number of full collections started.
2062 
2063   // This is the case for the inner caller, i.e. a Full GC.
2064   assert(concurrent ||
2065          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2066          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2067          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2068          "is inconsistent with _old_marking_cycles_completed = %u",
2069          _old_marking_cycles_started, _old_marking_cycles_completed);
2070 
2071   // This is the case for the outer caller, i.e. the concurrent cycle.
2072   assert(!concurrent ||
2073          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2074          "for outer caller (concurrent cycle): "
2075          "_old_marking_cycles_started = %u "
2076          "is inconsistent with _old_marking_cycles_completed = %u",
2077          _old_marking_cycles_started, _old_marking_cycles_completed);
2078 
2079   _old_marking_cycles_completed += 1;
2080 
2081   // We need to clear the "in_progress" flag in the CM thread before
2082   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2083   // is set) so that if a waiter requests another System.gc() it doesn't
2084   // incorrectly see that a marking cycle is still in progress.
2085   if (concurrent) {
2086     _cm_thread->set_idle();
2087   }
2088 
2089   // This notify_all() will ensure that a thread that called
2090   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2091   // and it's waiting for a full GC to finish will be woken up. It is
2092   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2093   FullGCCount_lock->notify_all();
2094 }
2095 
2096 void G1CollectedHeap::collect(GCCause::Cause cause) {
2097   try_collect(cause, true);
2098 }
2099 
2100 bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) {
2101   assert_heap_not_locked();
2102 
2103   bool gc_succeeded;
2104   bool should_retry_gc;
2105 
2106   do {
2107     should_retry_gc = false;
2108 
2109     uint gc_count_before;
2110     uint old_marking_count_before;
2111     uint full_gc_count_before;
2112 
2113     {
2114       MutexLocker ml(Heap_lock);
2115 
2116       // Read the GC count while holding the Heap_lock
2117       gc_count_before = total_collections();
2118       full_gc_count_before = total_full_collections();
2119       old_marking_count_before = _old_marking_cycles_started;
2120     }
2121 
2122     if (should_do_concurrent_full_gc(cause)) {
2123       // Schedule an initial-mark evacuation pause that will start a
2124       // concurrent cycle. We're setting word_size to 0 which means that
2125       // we are not requesting a post-GC allocation.
2126       VM_G1CollectForAllocation op(0,     /* word_size */
2127                                    gc_count_before,
2128                                    cause,
2129                                    true,  /* should_initiate_conc_mark */
2130                                    policy()->max_pause_time_ms());
2131       VMThread::execute(&op);
2132       gc_succeeded = op.gc_succeeded();
2133       if (!gc_succeeded && retry_on_gc_failure) {
2134         if (old_marking_count_before == _old_marking_cycles_started) {
2135           should_retry_gc = op.should_retry_gc();
2136         } else {
2137           // A Full GC happened while we were trying to schedule the
2138           // concurrent cycle. No point in starting a new cycle given
2139           // that the whole heap was collected anyway.
2140         }
2141 
2142         if (should_retry_gc && GCLocker::is_active_and_needs_gc()) {
2143           GCLocker::stall_until_clear();
2144         }
2145       }
2146     } else if (GCLocker::should_discard(cause, gc_count_before)) {
2147       // Return false to be consistent with VMOp failure due to
2148       // another collection slipping in after our gc_count but before
2149       // our request is processed.  _gc_locker collections upgraded by
2150       // GCLockerInvokesConcurrent are handled above and never discarded.
2151       return false;
2152     } else {
2153       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2154           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2155 
2156         // Schedule a standard evacuation pause. We're setting word_size
2157         // to 0 which means that we are not requesting a post-GC allocation.
2158         VM_G1CollectForAllocation op(0,     /* word_size */
2159                                      gc_count_before,
2160                                      cause,
2161                                      false, /* should_initiate_conc_mark */
2162                                      policy()->max_pause_time_ms());
2163         VMThread::execute(&op);
2164         gc_succeeded = op.gc_succeeded();
2165       } else {
2166         // Schedule a Full GC.
2167         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2168         VMThread::execute(&op);
2169         gc_succeeded = op.gc_succeeded();
2170       }
2171     }
2172   } while (should_retry_gc);
2173   return gc_succeeded;
2174 }
2175 
2176 bool G1CollectedHeap::is_in(const void* p) const {
2177   if (_hrm->reserved().contains(p)) {
2178     // Given that we know that p is in the reserved space,
2179     // heap_region_containing() should successfully
2180     // return the containing region.
2181     HeapRegion* hr = heap_region_containing(p);
2182     return hr->is_in(p);
2183   } else {
2184     return false;
2185   }
2186 }
2187 
2188 #ifdef ASSERT
2189 bool G1CollectedHeap::is_in_exact(const void* p) const {
2190   bool contains = reserved_region().contains(p);
2191   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2192   if (contains && available) {
2193     return true;
2194   } else {
2195     return false;
2196   }
2197 }
2198 #endif
2199 
2200 // Iteration functions.
2201 
2202 // Iterates an ObjectClosure over all objects within a HeapRegion.
2203 
2204 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2205   ObjectClosure* _cl;
2206 public:
2207   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2208   bool do_heap_region(HeapRegion* r) {
2209     if (!r->is_continues_humongous()) {
2210       r->object_iterate(_cl);
2211     }
2212     return false;
2213   }
2214 };
2215 
2216 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2217   IterateObjectClosureRegionClosure blk(cl);
2218   heap_region_iterate(&blk);
2219 }
2220 
2221 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2222   _hrm->iterate(cl);
2223 }
2224 
2225 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2226                                                                  HeapRegionClaimer *hrclaimer,
2227                                                                  uint worker_id) const {
2228   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2229 }
2230 
2231 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2232                                                          HeapRegionClaimer *hrclaimer) const {
2233   _hrm->par_iterate(cl, hrclaimer, 0);
2234 }
2235 
2236 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2237   _collection_set.iterate(cl);
2238 }
2239 
2240 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2241   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2242 }
2243 
2244 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2245   HeapRegion* hr = heap_region_containing(addr);
2246   return hr->block_start(addr);
2247 }
2248 
2249 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2250   HeapRegion* hr = heap_region_containing(addr);
2251   return hr->block_is_obj(addr);
2252 }
2253 
2254 bool G1CollectedHeap::supports_tlab_allocation() const {
2255   return true;
2256 }
2257 
2258 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2259   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2260 }
2261 
2262 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2263   return _eden.length() * HeapRegion::GrainBytes;
2264 }
2265 
2266 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2267 // must be equal to the humongous object limit.
2268 size_t G1CollectedHeap::max_tlab_size() const {
2269   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2270 }
2271 
2272 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2273   return _allocator->unsafe_max_tlab_alloc();
2274 }
2275 
2276 size_t G1CollectedHeap::max_capacity() const {
2277   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2278 }
2279 
2280 size_t G1CollectedHeap::max_reserved_capacity() const {
2281   return _hrm->max_length() * HeapRegion::GrainBytes;
2282 }
2283 
2284 jlong G1CollectedHeap::millis_since_last_gc() {
2285   // See the notes in GenCollectedHeap::millis_since_last_gc()
2286   // for more information about the implementation.
2287   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2288                   _policy->collection_pause_end_millis();
2289   if (ret_val < 0) {
2290     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2291       ". returning zero instead.", ret_val);
2292     return 0;
2293   }
2294   return ret_val;
2295 }
2296 
2297 void G1CollectedHeap::deduplicate_string(oop str) {
2298   assert(java_lang_String::is_instance(str), "invariant");
2299 
2300   if (G1StringDedup::is_enabled()) {
2301     G1StringDedup::deduplicate(str);
2302   }
2303 }
2304 
2305 void G1CollectedHeap::prepare_for_verify() {
2306   _verifier->prepare_for_verify();
2307 }
2308 
2309 void G1CollectedHeap::verify(VerifyOption vo) {
2310   _verifier->verify(vo);
2311 }
2312 
2313 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2314   return true;
2315 }
2316 
2317 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2318   return _cm_thread->request_concurrent_phase(phase);
2319 }
2320 
2321 bool G1CollectedHeap::is_heterogeneous_heap() const {
2322   return G1Arguments::is_heterogeneous_heap();
2323 }
2324 
2325 class PrintRegionClosure: public HeapRegionClosure {
2326   outputStream* _st;
2327 public:
2328   PrintRegionClosure(outputStream* st) : _st(st) {}
2329   bool do_heap_region(HeapRegion* r) {
2330     r->print_on(_st);
2331     return false;
2332   }
2333 };
2334 
2335 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2336                                        const HeapRegion* hr,
2337                                        const VerifyOption vo) const {
2338   switch (vo) {
2339   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2340   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2341   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2342   default:                            ShouldNotReachHere();
2343   }
2344   return false; // keep some compilers happy
2345 }
2346 
2347 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2348                                        const VerifyOption vo) const {
2349   switch (vo) {
2350   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2351   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2352   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2353   default:                            ShouldNotReachHere();
2354   }
2355   return false; // keep some compilers happy
2356 }
2357 
2358 void G1CollectedHeap::print_heap_regions() const {
2359   LogTarget(Trace, gc, heap, region) lt;
2360   if (lt.is_enabled()) {
2361     LogStream ls(lt);
2362     print_regions_on(&ls);
2363   }
2364 }
2365 
2366 void G1CollectedHeap::print_on(outputStream* st) const {
2367   st->print(" %-20s", "garbage-first heap");
2368   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2369             capacity()/K, used_unlocked()/K);
2370   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2371             p2i(_hrm->reserved().start()),
2372             p2i(_hrm->reserved().end()));
2373   st->cr();
2374   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2375   uint young_regions = young_regions_count();
2376   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2377             (size_t) young_regions * HeapRegion::GrainBytes / K);
2378   uint survivor_regions = survivor_regions_count();
2379   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2380             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2381   st->cr();
2382   MetaspaceUtils::print_on(st);
2383 }
2384 
2385 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2386   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2387                "HS=humongous(starts), HC=humongous(continues), "
2388                "CS=collection set, F=free, A=archive, "
2389                "TAMS=top-at-mark-start (previous, next)");
2390   PrintRegionClosure blk(st);
2391   heap_region_iterate(&blk);
2392 }
2393 
2394 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2395   print_on(st);
2396 
2397   // Print the per-region information.
2398   print_regions_on(st);
2399 }
2400 
2401 void G1CollectedHeap::print_on_error(outputStream* st) const {
2402   this->CollectedHeap::print_on_error(st);
2403 
2404   if (_cm != NULL) {
2405     st->cr();
2406     _cm->print_on_error(st);
2407   }
2408 }
2409 
2410 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2411   workers()->print_worker_threads_on(st);
2412   _cm_thread->print_on(st);
2413   st->cr();
2414   _cm->print_worker_threads_on(st);
2415   _cr->print_threads_on(st);
2416   _young_gen_sampling_thread->print_on(st);
2417   if (G1StringDedup::is_enabled()) {
2418     G1StringDedup::print_worker_threads_on(st);
2419   }
2420 }
2421 
2422 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2423   workers()->threads_do(tc);
2424   tc->do_thread(_cm_thread);
2425   _cm->threads_do(tc);
2426   _cr->threads_do(tc);
2427   tc->do_thread(_young_gen_sampling_thread);
2428   if (G1StringDedup::is_enabled()) {
2429     G1StringDedup::threads_do(tc);
2430   }
2431 }
2432 
2433 void G1CollectedHeap::print_tracing_info() const {
2434   rem_set()->print_summary_info();
2435   concurrent_mark()->print_summary_info();
2436 }
2437 
2438 #ifndef PRODUCT
2439 // Helpful for debugging RSet issues.
2440 
2441 class PrintRSetsClosure : public HeapRegionClosure {
2442 private:
2443   const char* _msg;
2444   size_t _occupied_sum;
2445 
2446 public:
2447   bool do_heap_region(HeapRegion* r) {
2448     HeapRegionRemSet* hrrs = r->rem_set();
2449     size_t occupied = hrrs->occupied();
2450     _occupied_sum += occupied;
2451 
2452     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2453     if (occupied == 0) {
2454       tty->print_cr("  RSet is empty");
2455     } else {
2456       hrrs->print();
2457     }
2458     tty->print_cr("----------");
2459     return false;
2460   }
2461 
2462   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2463     tty->cr();
2464     tty->print_cr("========================================");
2465     tty->print_cr("%s", msg);
2466     tty->cr();
2467   }
2468 
2469   ~PrintRSetsClosure() {
2470     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2471     tty->print_cr("========================================");
2472     tty->cr();
2473   }
2474 };
2475 
2476 void G1CollectedHeap::print_cset_rsets() {
2477   PrintRSetsClosure cl("Printing CSet RSets");
2478   collection_set_iterate_all(&cl);
2479 }
2480 
2481 void G1CollectedHeap::print_all_rsets() {
2482   PrintRSetsClosure cl("Printing All RSets");;
2483   heap_region_iterate(&cl);
2484 }
2485 #endif // PRODUCT
2486 
2487 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2488   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2489 }
2490 
2491 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2492 
2493   size_t eden_used_bytes = _eden.used_bytes();
2494   size_t survivor_used_bytes = _survivor.used_bytes();
2495   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2496 
2497   size_t eden_capacity_bytes =
2498     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2499 
2500   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2501   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2502                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2503 }
2504 
2505 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2506   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2507                        stats->unused(), stats->used(), stats->region_end_waste(),
2508                        stats->regions_filled(), stats->direct_allocated(),
2509                        stats->failure_used(), stats->failure_waste());
2510 }
2511 
2512 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2513   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2514   gc_tracer->report_gc_heap_summary(when, heap_summary);
2515 
2516   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2517   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2518 }
2519 
2520 G1CollectedHeap* G1CollectedHeap::heap() {
2521   CollectedHeap* heap = Universe::heap();
2522   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2523   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2524   return (G1CollectedHeap*)heap;
2525 }
2526 
2527 void G1CollectedHeap::gc_prologue(bool full) {
2528   // always_do_update_barrier = false;
2529   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2530 
2531   // This summary needs to be printed before incrementing total collections.
2532   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2533 
2534   // Update common counters.
2535   increment_total_collections(full /* full gc */);
2536   if (full || collector_state()->in_initial_mark_gc()) {
2537     increment_old_marking_cycles_started();
2538   }
2539 
2540   // Fill TLAB's and such
2541   double start = os::elapsedTime();
2542   ensure_parsability(true);
2543   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2544 }
2545 
2546 void G1CollectedHeap::gc_epilogue(bool full) {
2547   // Update common counters.
2548   if (full) {
2549     // Update the number of full collections that have been completed.
2550     increment_old_marking_cycles_completed(false /* concurrent */);
2551   }
2552 
2553   // We are at the end of the GC. Total collections has already been increased.
2554   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2555 
2556   // FIXME: what is this about?
2557   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2558   // is set.
2559 #if COMPILER2_OR_JVMCI
2560   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2561 #endif
2562   // always_do_update_barrier = true;
2563 
2564   double start = os::elapsedTime();
2565   resize_all_tlabs();
2566   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2567 
2568   MemoryService::track_memory_usage();
2569   // We have just completed a GC. Update the soft reference
2570   // policy with the new heap occupancy
2571   Universe::update_heap_info_at_gc();
2572 }
2573 
2574 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2575                                                uint gc_count_before,
2576                                                bool* succeeded,
2577                                                GCCause::Cause gc_cause) {
2578   assert_heap_not_locked_and_not_at_safepoint();
2579   VM_G1CollectForAllocation op(word_size,
2580                                gc_count_before,
2581                                gc_cause,
2582                                false, /* should_initiate_conc_mark */
2583                                policy()->max_pause_time_ms());
2584   VMThread::execute(&op);
2585 
2586   HeapWord* result = op.result();
2587   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2588   assert(result == NULL || ret_succeeded,
2589          "the result should be NULL if the VM did not succeed");
2590   *succeeded = ret_succeeded;
2591 
2592   assert_heap_not_locked();
2593   return result;
2594 }
2595 
2596 void G1CollectedHeap::do_concurrent_mark() {
2597   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2598   if (!_cm_thread->in_progress()) {
2599     _cm_thread->set_started();
2600     CGC_lock->notify();
2601   }
2602 }
2603 
2604 size_t G1CollectedHeap::pending_card_num() {
2605   struct CountCardsClosure : public ThreadClosure {
2606     size_t _cards;
2607     CountCardsClosure() : _cards(0) {}
2608     virtual void do_thread(Thread* t) {
2609       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2610     }
2611   } count_from_threads;
2612   Threads::threads_do(&count_from_threads);
2613 
2614   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2615   dcqs.verify_num_cards();
2616 
2617   return dcqs.num_cards() + count_from_threads._cards;
2618 }
2619 
2620 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2621   // We don't nominate objects with many remembered set entries, on
2622   // the assumption that such objects are likely still live.
2623   HeapRegionRemSet* rem_set = r->rem_set();
2624 
2625   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2626          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2627          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2628 }
2629 
2630 class RegisterRegionsWithRegionAttrTableClosure : public HeapRegionClosure {
2631  private:
2632   size_t _total_humongous;
2633   size_t _candidate_humongous;
2634 
2635   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2636     assert(region->is_starts_humongous(), "Must start a humongous object");
2637 
2638     oop obj = oop(region->bottom());
2639 
2640     // Dead objects cannot be eager reclaim candidates. Due to class
2641     // unloading it is unsafe to query their classes so we return early.
2642     if (g1h->is_obj_dead(obj, region)) {
2643       return false;
2644     }
2645 
2646     // If we do not have a complete remembered set for the region, then we can
2647     // not be sure that we have all references to it.
2648     if (!region->rem_set()->is_complete()) {
2649       return false;
2650     }
2651     // Candidate selection must satisfy the following constraints
2652     // while concurrent marking is in progress:
2653     //
2654     // * In order to maintain SATB invariants, an object must not be
2655     // reclaimed if it was allocated before the start of marking and
2656     // has not had its references scanned.  Such an object must have
2657     // its references (including type metadata) scanned to ensure no
2658     // live objects are missed by the marking process.  Objects
2659     // allocated after the start of concurrent marking don't need to
2660     // be scanned.
2661     //
2662     // * An object must not be reclaimed if it is on the concurrent
2663     // mark stack.  Objects allocated after the start of concurrent
2664     // marking are never pushed on the mark stack.
2665     //
2666     // Nominating only objects allocated after the start of concurrent
2667     // marking is sufficient to meet both constraints.  This may miss
2668     // some objects that satisfy the constraints, but the marking data
2669     // structures don't support efficiently performing the needed
2670     // additional tests or scrubbing of the mark stack.
2671     //
2672     // However, we presently only nominate is_typeArray() objects.
2673     // A humongous object containing references induces remembered
2674     // set entries on other regions.  In order to reclaim such an
2675     // object, those remembered sets would need to be cleaned up.
2676     //
2677     // We also treat is_typeArray() objects specially, allowing them
2678     // to be reclaimed even if allocated before the start of
2679     // concurrent mark.  For this we rely on mark stack insertion to
2680     // exclude is_typeArray() objects, preventing reclaiming an object
2681     // that is in the mark stack.  We also rely on the metadata for
2682     // such objects to be built-in and so ensured to be kept live.
2683     // Frequent allocation and drop of large binary blobs is an
2684     // important use case for eager reclaim, and this special handling
2685     // may reduce needed headroom.
2686 
2687     return obj->is_typeArray() &&
2688            g1h->is_potential_eager_reclaim_candidate(region);
2689   }
2690 
2691  public:
2692   RegisterRegionsWithRegionAttrTableClosure()
2693   : _total_humongous(0),
2694     _candidate_humongous(0) {
2695   }
2696 
2697   virtual bool do_heap_region(HeapRegion* r) {
2698     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2699 
2700     if (!r->is_starts_humongous()) {
2701       g1h->register_region_with_region_attr(r);
2702       return false;
2703     }
2704 
2705     bool is_candidate = humongous_region_is_candidate(g1h, r);
2706     uint rindex = r->hrm_index();
2707     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2708     if (is_candidate) {
2709       g1h->register_humongous_region_with_region_attr(rindex);
2710       _candidate_humongous++;
2711       // We will later handle the remembered sets of these regions.
2712     } else {
2713       g1h->register_region_with_region_attr(r);
2714     }
2715     _total_humongous++;
2716 
2717     return false;
2718   }
2719 
2720   size_t total_humongous() const { return _total_humongous; }
2721   size_t candidate_humongous() const { return _candidate_humongous; }
2722 };
2723 
2724 void G1CollectedHeap::register_regions_with_region_attr() {
2725   Ticks start = Ticks::now();
2726 
2727   RegisterRegionsWithRegionAttrTableClosure cl;
2728   heap_region_iterate(&cl);
2729 
2730   phase_times()->record_register_regions((Ticks::now() - start).seconds() * 1000.0,
2731                                          cl.total_humongous(),
2732                                          cl.candidate_humongous());
2733   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2734 }
2735 
2736 #ifndef PRODUCT
2737 void G1CollectedHeap::verify_region_attr_remset_update() {
2738   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2739   public:
2740     virtual bool do_heap_region(HeapRegion* r) {
2741       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2742       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2743       assert(r->rem_set()->is_tracked() == needs_remset_update,
2744              "Region %u remset tracking status (%s) different to region attribute (%s)",
2745              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2746       return false;
2747     }
2748   } cl;
2749   heap_region_iterate(&cl);
2750 }
2751 #endif
2752 
2753 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2754   public:
2755     bool do_heap_region(HeapRegion* hr) {
2756       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2757         hr->verify_rem_set();
2758       }
2759       return false;
2760     }
2761 };
2762 
2763 uint G1CollectedHeap::num_task_queues() const {
2764   return _task_queues->size();
2765 }
2766 
2767 #if TASKQUEUE_STATS
2768 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2769   st->print_raw_cr("GC Task Stats");
2770   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2771   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2772 }
2773 
2774 void G1CollectedHeap::print_taskqueue_stats() const {
2775   if (!log_is_enabled(Trace, gc, task, stats)) {
2776     return;
2777   }
2778   Log(gc, task, stats) log;
2779   ResourceMark rm;
2780   LogStream ls(log.trace());
2781   outputStream* st = &ls;
2782 
2783   print_taskqueue_stats_hdr(st);
2784 
2785   TaskQueueStats totals;
2786   const uint n = num_task_queues();
2787   for (uint i = 0; i < n; ++i) {
2788     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2789     totals += task_queue(i)->stats;
2790   }
2791   st->print_raw("tot "); totals.print(st); st->cr();
2792 
2793   DEBUG_ONLY(totals.verify());
2794 }
2795 
2796 void G1CollectedHeap::reset_taskqueue_stats() {
2797   const uint n = num_task_queues();
2798   for (uint i = 0; i < n; ++i) {
2799     task_queue(i)->stats.reset();
2800   }
2801 }
2802 #endif // TASKQUEUE_STATS
2803 
2804 void G1CollectedHeap::wait_for_root_region_scanning() {
2805   double scan_wait_start = os::elapsedTime();
2806   // We have to wait until the CM threads finish scanning the
2807   // root regions as it's the only way to ensure that all the
2808   // objects on them have been correctly scanned before we start
2809   // moving them during the GC.
2810   bool waited = _cm->root_regions()->wait_until_scan_finished();
2811   double wait_time_ms = 0.0;
2812   if (waited) {
2813     double scan_wait_end = os::elapsedTime();
2814     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2815   }
2816   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2817 }
2818 
2819 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2820 private:
2821   G1HRPrinter* _hr_printer;
2822 public:
2823   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2824 
2825   virtual bool do_heap_region(HeapRegion* r) {
2826     _hr_printer->cset(r);
2827     return false;
2828   }
2829 };
2830 
2831 void G1CollectedHeap::start_new_collection_set() {
2832   double start = os::elapsedTime();
2833 
2834   collection_set()->start_incremental_building();
2835 
2836   clear_region_attr();
2837 
2838   guarantee(_eden.length() == 0, "eden should have been cleared");
2839   policy()->transfer_survivors_to_cset(survivor());
2840 
2841   // We redo the verification but now wrt to the new CSet which
2842   // has just got initialized after the previous CSet was freed.
2843   _cm->verify_no_collection_set_oops();
2844 
2845   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2846 }
2847 
2848 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2849 
2850   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2851   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2852                                             collection_set()->optional_region_length());
2853 
2854   _cm->verify_no_collection_set_oops();
2855 
2856   if (_hr_printer.is_active()) {
2857     G1PrintCollectionSetClosure cl(&_hr_printer);
2858     _collection_set.iterate(&cl);
2859     _collection_set.iterate_optional(&cl);
2860   }
2861 }
2862 
2863 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2864   if (collector_state()->in_initial_mark_gc()) {
2865     return G1HeapVerifier::G1VerifyConcurrentStart;
2866   } else if (collector_state()->in_young_only_phase()) {
2867     return G1HeapVerifier::G1VerifyYoungNormal;
2868   } else {
2869     return G1HeapVerifier::G1VerifyMixed;
2870   }
2871 }
2872 
2873 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2874   if (VerifyRememberedSets) {
2875     log_info(gc, verify)("[Verifying RemSets before GC]");
2876     VerifyRegionRemSetClosure v_cl;
2877     heap_region_iterate(&v_cl);
2878   }
2879   _verifier->verify_before_gc(type);
2880   _verifier->check_bitmaps("GC Start");
2881 }
2882 
2883 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2884   if (VerifyRememberedSets) {
2885     log_info(gc, verify)("[Verifying RemSets after GC]");
2886     VerifyRegionRemSetClosure v_cl;
2887     heap_region_iterate(&v_cl);
2888   }
2889   _verifier->verify_after_gc(type);
2890   _verifier->check_bitmaps("GC End");
2891 }
2892 
2893 void G1CollectedHeap::expand_heap_after_young_collection(){
2894   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2895   if (expand_bytes > 0) {
2896     // No need for an ergo logging here,
2897     // expansion_amount() does this when it returns a value > 0.
2898     double expand_ms;
2899     if (!expand(expand_bytes, _workers, &expand_ms)) {
2900       // We failed to expand the heap. Cannot do anything about it.
2901     }
2902     phase_times()->record_expand_heap_time(expand_ms);
2903   }
2904 }
2905 
2906 const char* G1CollectedHeap::young_gc_name() const {
2907   if (collector_state()->in_initial_mark_gc()) {
2908     return "Pause Young (Concurrent Start)";
2909   } else if (collector_state()->in_young_only_phase()) {
2910     if (collector_state()->in_young_gc_before_mixed()) {
2911       return "Pause Young (Prepare Mixed)";
2912     } else {
2913       return "Pause Young (Normal)";
2914     }
2915   } else {
2916     return "Pause Young (Mixed)";
2917   }
2918 }
2919 
2920 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2921   assert_at_safepoint_on_vm_thread();
2922   guarantee(!is_gc_active(), "collection is not reentrant");
2923 
2924   if (GCLocker::check_active_before_gc()) {
2925     return false;
2926   }
2927 
2928   GCIdMark gc_id_mark;
2929 
2930   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2931   ResourceMark rm;
2932 
2933   policy()->note_gc_start();
2934 
2935   _gc_timer_stw->register_gc_start();
2936   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2937 
2938   wait_for_root_region_scanning();
2939 
2940   print_heap_before_gc();
2941   print_heap_regions();
2942   trace_heap_before_gc(_gc_tracer_stw);
2943 
2944   _verifier->verify_region_sets_optional();
2945   _verifier->verify_dirty_young_regions();
2946 
2947   // We should not be doing initial mark unless the conc mark thread is running
2948   if (!_cm_thread->should_terminate()) {
2949     // This call will decide whether this pause is an initial-mark
2950     // pause. If it is, in_initial_mark_gc() will return true
2951     // for the duration of this pause.
2952     policy()->decide_on_conc_mark_initiation();
2953   }
2954 
2955   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2956   assert(!collector_state()->in_initial_mark_gc() ||
2957          collector_state()->in_young_only_phase(), "sanity");
2958   // We also do not allow mixed GCs during marking.
2959   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2960 
2961   // Record whether this pause is an initial mark. When the current
2962   // thread has completed its logging output and it's safe to signal
2963   // the CM thread, the flag's value in the policy has been reset.
2964   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2965   if (should_start_conc_mark) {
2966     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2967   }
2968 
2969   // Inner scope for scope based logging, timers, and stats collection
2970   {
2971     G1EvacuationInfo evacuation_info;
2972 
2973     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2974 
2975     GCTraceCPUTime tcpu;
2976 
2977     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
2978 
2979     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
2980                                                             workers()->active_workers(),
2981                                                             Threads::number_of_non_daemon_threads());
2982     active_workers = workers()->update_active_workers(active_workers);
2983     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2984 
2985     G1MonitoringScope ms(g1mm(),
2986                          false /* full_gc */,
2987                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2988 
2989     G1HeapTransition heap_transition(this);
2990     size_t heap_used_bytes_before_gc = used();
2991 
2992     {
2993       IsGCActiveMark x;
2994 
2995       gc_prologue(false);
2996 
2997       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
2998       verify_before_young_collection(verify_type);
2999 
3000       {
3001         // The elapsed time induced by the start time below deliberately elides
3002         // the possible verification above.
3003         double sample_start_time_sec = os::elapsedTime();
3004 
3005         // Please see comment in g1CollectedHeap.hpp and
3006         // G1CollectedHeap::ref_processing_init() to see how
3007         // reference processing currently works in G1.
3008         _ref_processor_stw->enable_discovery();
3009 
3010         // We want to temporarily turn off discovery by the
3011         // CM ref processor, if necessary, and turn it back on
3012         // on again later if we do. Using a scoped
3013         // NoRefDiscovery object will do this.
3014         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3015 
3016         policy()->record_collection_pause_start(sample_start_time_sec);
3017 
3018         // Forget the current allocation region (we might even choose it to be part
3019         // of the collection set!).
3020         _allocator->release_mutator_alloc_region();
3021 
3022         calculate_collection_set(evacuation_info, target_pause_time_ms);
3023 
3024         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3025         G1ParScanThreadStateSet per_thread_states(this,
3026                                                   &rdcqs,
3027                                                   workers()->active_workers(),
3028                                                   collection_set()->young_region_length(),
3029                                                   collection_set()->optional_region_length());
3030         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3031 
3032         // Actually do the work...
3033         evacuate_initial_collection_set(&per_thread_states);
3034 
3035         if (_collection_set.optional_region_length() != 0) {
3036           evacuate_optional_collection_set(&per_thread_states);
3037         }
3038         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3039 
3040         start_new_collection_set();
3041 
3042         _survivor_evac_stats.adjust_desired_plab_sz();
3043         _old_evac_stats.adjust_desired_plab_sz();
3044 
3045         if (should_start_conc_mark) {
3046           // We have to do this before we notify the CM threads that
3047           // they can start working to make sure that all the
3048           // appropriate initialization is done on the CM object.
3049           concurrent_mark()->post_initial_mark();
3050           // Note that we don't actually trigger the CM thread at
3051           // this point. We do that later when we're sure that
3052           // the current thread has completed its logging output.
3053         }
3054 
3055         allocate_dummy_regions();
3056 
3057         _allocator->init_mutator_alloc_region();
3058 
3059         expand_heap_after_young_collection();
3060 
3061         double sample_end_time_sec = os::elapsedTime();
3062         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3063         policy()->record_collection_pause_end(pause_time_ms, heap_used_bytes_before_gc);
3064       }
3065 
3066       verify_after_young_collection(verify_type);
3067 
3068 #ifdef TRACESPINNING
3069       ParallelTaskTerminator::print_termination_counts();
3070 #endif
3071 
3072       gc_epilogue(false);
3073     }
3074 
3075     // Print the remainder of the GC log output.
3076     if (evacuation_failed()) {
3077       log_info(gc)("To-space exhausted");
3078     }
3079 
3080     policy()->print_phases();
3081     heap_transition.print();
3082 
3083     _hrm->verify_optional();
3084     _verifier->verify_region_sets_optional();
3085 
3086     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3087     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3088 
3089     print_heap_after_gc();
3090     print_heap_regions();
3091     trace_heap_after_gc(_gc_tracer_stw);
3092 
3093     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3094     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3095     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3096     // before any GC notifications are raised.
3097     g1mm()->update_sizes();
3098 
3099     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3100     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3101     _gc_timer_stw->register_gc_end();
3102     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3103   }
3104   // It should now be safe to tell the concurrent mark thread to start
3105   // without its logging output interfering with the logging output
3106   // that came from the pause.
3107 
3108   if (should_start_conc_mark) {
3109     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3110     // thread(s) could be running concurrently with us. Make sure that anything
3111     // after this point does not assume that we are the only GC thread running.
3112     // Note: of course, the actual marking work will not start until the safepoint
3113     // itself is released in SuspendibleThreadSet::desynchronize().
3114     do_concurrent_mark();
3115   }
3116 
3117   return true;
3118 }
3119 
3120 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3121   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3122   workers()->run_task(&rsfp_task);
3123 }
3124 
3125 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3126   double remove_self_forwards_start = os::elapsedTime();
3127 
3128   remove_self_forwarding_pointers(rdcqs);
3129   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3130   _preserved_marks_set.restore(&task_executor);
3131 
3132   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3133 }
3134 
3135 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3136   if (!_evacuation_failed) {
3137     _evacuation_failed = true;
3138   }
3139 
3140   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3141   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3142 }
3143 
3144 bool G1ParEvacuateFollowersClosure::offer_termination() {
3145   EventGCPhaseParallel event;
3146   G1ParScanThreadState* const pss = par_scan_state();
3147   start_term_time();
3148   const bool res = terminator()->offer_termination();
3149   end_term_time();
3150   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3151   return res;
3152 }
3153 
3154 void G1ParEvacuateFollowersClosure::do_void() {
3155   EventGCPhaseParallel event;
3156   G1ParScanThreadState* const pss = par_scan_state();
3157   pss->trim_queue();
3158   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3159   do {
3160     EventGCPhaseParallel event;
3161     pss->steal_and_trim_queue(queues());
3162     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3163   } while (!offer_termination());
3164 }
3165 
3166 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3167                                         bool class_unloading_occurred) {
3168   uint num_workers = workers()->active_workers();
3169   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3170   workers()->run_task(&unlink_task);
3171 }
3172 
3173 // Clean string dedup data structures.
3174 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3175 // record the durations of the phases. Hence the almost-copy.
3176 class G1StringDedupCleaningTask : public AbstractGangTask {
3177   BoolObjectClosure* _is_alive;
3178   OopClosure* _keep_alive;
3179   G1GCPhaseTimes* _phase_times;
3180 
3181 public:
3182   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3183                             OopClosure* keep_alive,
3184                             G1GCPhaseTimes* phase_times) :
3185     AbstractGangTask("Partial Cleaning Task"),
3186     _is_alive(is_alive),
3187     _keep_alive(keep_alive),
3188     _phase_times(phase_times)
3189   {
3190     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3191     StringDedup::gc_prologue(true);
3192   }
3193 
3194   ~G1StringDedupCleaningTask() {
3195     StringDedup::gc_epilogue();
3196   }
3197 
3198   void work(uint worker_id) {
3199     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3200     {
3201       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3202       StringDedupQueue::unlink_or_oops_do(&cl);
3203     }
3204     {
3205       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3206       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3207     }
3208   }
3209 };
3210 
3211 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3212                                             OopClosure* keep_alive,
3213                                             G1GCPhaseTimes* phase_times) {
3214   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3215   workers()->run_task(&cl);
3216 }
3217 
3218 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3219  private:
3220   G1RedirtyCardsQueueSet* _qset;
3221   G1CollectedHeap* _g1h;
3222   BufferNode* volatile _nodes;
3223 
3224   void apply(G1CardTableEntryClosure* cl, BufferNode* node, uint worker_id) {
3225     void** buf = BufferNode::make_buffer_from_node(node);
3226     size_t limit = _qset->buffer_size();
3227     for (size_t i = node->index(); i < limit; ++i) {
3228       CardTable::CardValue* card_ptr = static_cast<CardTable::CardValue*>(buf[i]);
3229       bool result = cl->do_card_ptr(card_ptr, worker_id);
3230       assert(result, "Closure should always return true");
3231     }
3232   }
3233 
3234   void par_apply(G1CardTableEntryClosure* cl, uint worker_id) {
3235     BufferNode* next = Atomic::load(&_nodes);
3236     while (next != NULL) {
3237       BufferNode* node = next;
3238       next = Atomic::cmpxchg(node->next(), &_nodes, node);
3239       if (next == node) {
3240         apply(cl, node, worker_id);
3241         next = node->next();
3242       }
3243     }
3244   }
3245 
3246  public:
3247   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3248     AbstractGangTask("Redirty Cards"),
3249     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3250 
3251   virtual void work(uint worker_id) {
3252     G1GCPhaseTimes* p = _g1h->phase_times();
3253     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3254 
3255     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3256     par_apply(&cl, worker_id);
3257 
3258     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3259   }
3260 };
3261 
3262 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3263   double redirty_logged_cards_start = os::elapsedTime();
3264 
3265   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3266   workers()->run_task(&redirty_task);
3267 
3268   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3269   dcq.merge_bufferlists(rdcqs);
3270 
3271   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3272 }
3273 
3274 // Weak Reference Processing support
3275 
3276 bool G1STWIsAliveClosure::do_object_b(oop p) {
3277   // An object is reachable if it is outside the collection set,
3278   // or is inside and copied.
3279   return !_g1h->is_in_cset(p) || p->is_forwarded();
3280 }
3281 
3282 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3283   assert(obj != NULL, "must not be NULL");
3284   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3285   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3286   // may falsely indicate that this is not the case here: however the collection set only
3287   // contains old regions when concurrent mark is not running.
3288   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3289 }
3290 
3291 // Non Copying Keep Alive closure
3292 class G1KeepAliveClosure: public OopClosure {
3293   G1CollectedHeap*_g1h;
3294 public:
3295   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3296   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3297   void do_oop(oop* p) {
3298     oop obj = *p;
3299     assert(obj != NULL, "the caller should have filtered out NULL values");
3300 
3301     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3302     if (!region_attr.is_in_cset_or_humongous()) {
3303       return;
3304     }
3305     if (region_attr.is_in_cset()) {
3306       assert( obj->is_forwarded(), "invariant" );
3307       *p = obj->forwardee();
3308     } else {
3309       assert(!obj->is_forwarded(), "invariant" );
3310       assert(region_attr.is_humongous(),
3311              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3312      _g1h->set_humongous_is_live(obj);
3313     }
3314   }
3315 };
3316 
3317 // Copying Keep Alive closure - can be called from both
3318 // serial and parallel code as long as different worker
3319 // threads utilize different G1ParScanThreadState instances
3320 // and different queues.
3321 
3322 class G1CopyingKeepAliveClosure: public OopClosure {
3323   G1CollectedHeap*         _g1h;
3324   G1ParScanThreadState*    _par_scan_state;
3325 
3326 public:
3327   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3328                             G1ParScanThreadState* pss):
3329     _g1h(g1h),
3330     _par_scan_state(pss)
3331   {}
3332 
3333   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3334   virtual void do_oop(      oop* p) { do_oop_work(p); }
3335 
3336   template <class T> void do_oop_work(T* p) {
3337     oop obj = RawAccess<>::oop_load(p);
3338 
3339     if (_g1h->is_in_cset_or_humongous(obj)) {
3340       // If the referent object has been forwarded (either copied
3341       // to a new location or to itself in the event of an
3342       // evacuation failure) then we need to update the reference
3343       // field and, if both reference and referent are in the G1
3344       // heap, update the RSet for the referent.
3345       //
3346       // If the referent has not been forwarded then we have to keep
3347       // it alive by policy. Therefore we have copy the referent.
3348       //
3349       // When the queue is drained (after each phase of reference processing)
3350       // the object and it's followers will be copied, the reference field set
3351       // to point to the new location, and the RSet updated.
3352       _par_scan_state->push_on_queue(p);
3353     }
3354   }
3355 };
3356 
3357 // Serial drain queue closure. Called as the 'complete_gc'
3358 // closure for each discovered list in some of the
3359 // reference processing phases.
3360 
3361 class G1STWDrainQueueClosure: public VoidClosure {
3362 protected:
3363   G1CollectedHeap* _g1h;
3364   G1ParScanThreadState* _par_scan_state;
3365 
3366   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3367 
3368 public:
3369   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3370     _g1h(g1h),
3371     _par_scan_state(pss)
3372   { }
3373 
3374   void do_void() {
3375     G1ParScanThreadState* const pss = par_scan_state();
3376     pss->trim_queue();
3377   }
3378 };
3379 
3380 // Parallel Reference Processing closures
3381 
3382 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3383 // processing during G1 evacuation pauses.
3384 
3385 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3386 private:
3387   G1CollectedHeap*          _g1h;
3388   G1ParScanThreadStateSet*  _pss;
3389   RefToScanQueueSet*        _queues;
3390   WorkGang*                 _workers;
3391 
3392 public:
3393   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3394                            G1ParScanThreadStateSet* per_thread_states,
3395                            WorkGang* workers,
3396                            RefToScanQueueSet *task_queues) :
3397     _g1h(g1h),
3398     _pss(per_thread_states),
3399     _queues(task_queues),
3400     _workers(workers)
3401   {
3402     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3403   }
3404 
3405   // Executes the given task using concurrent marking worker threads.
3406   virtual void execute(ProcessTask& task, uint ergo_workers);
3407 };
3408 
3409 // Gang task for possibly parallel reference processing
3410 
3411 class G1STWRefProcTaskProxy: public AbstractGangTask {
3412   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3413   ProcessTask&     _proc_task;
3414   G1CollectedHeap* _g1h;
3415   G1ParScanThreadStateSet* _pss;
3416   RefToScanQueueSet* _task_queues;
3417   ParallelTaskTerminator* _terminator;
3418 
3419 public:
3420   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3421                         G1CollectedHeap* g1h,
3422                         G1ParScanThreadStateSet* per_thread_states,
3423                         RefToScanQueueSet *task_queues,
3424                         ParallelTaskTerminator* terminator) :
3425     AbstractGangTask("Process reference objects in parallel"),
3426     _proc_task(proc_task),
3427     _g1h(g1h),
3428     _pss(per_thread_states),
3429     _task_queues(task_queues),
3430     _terminator(terminator)
3431   {}
3432 
3433   virtual void work(uint worker_id) {
3434     // The reference processing task executed by a single worker.
3435     ResourceMark rm;
3436     HandleMark   hm;
3437 
3438     G1STWIsAliveClosure is_alive(_g1h);
3439 
3440     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3441     pss->set_ref_discoverer(NULL);
3442 
3443     // Keep alive closure.
3444     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3445 
3446     // Complete GC closure
3447     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3448 
3449     // Call the reference processing task's work routine.
3450     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3451 
3452     // Note we cannot assert that the refs array is empty here as not all
3453     // of the processing tasks (specifically phase2 - pp2_work) execute
3454     // the complete_gc closure (which ordinarily would drain the queue) so
3455     // the queue may not be empty.
3456   }
3457 };
3458 
3459 // Driver routine for parallel reference processing.
3460 // Creates an instance of the ref processing gang
3461 // task and has the worker threads execute it.
3462 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3463   assert(_workers != NULL, "Need parallel worker threads.");
3464 
3465   assert(_workers->active_workers() >= ergo_workers,
3466          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3467          ergo_workers, _workers->active_workers());
3468   TaskTerminator terminator(ergo_workers, _queues);
3469   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3470 
3471   _workers->run_task(&proc_task_proxy, ergo_workers);
3472 }
3473 
3474 // End of weak reference support closures
3475 
3476 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3477   double ref_proc_start = os::elapsedTime();
3478 
3479   ReferenceProcessor* rp = _ref_processor_stw;
3480   assert(rp->discovery_enabled(), "should have been enabled");
3481 
3482   // Closure to test whether a referent is alive.
3483   G1STWIsAliveClosure is_alive(this);
3484 
3485   // Even when parallel reference processing is enabled, the processing
3486   // of JNI refs is serial and performed serially by the current thread
3487   // rather than by a worker. The following PSS will be used for processing
3488   // JNI refs.
3489 
3490   // Use only a single queue for this PSS.
3491   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3492   pss->set_ref_discoverer(NULL);
3493   assert(pss->queue_is_empty(), "pre-condition");
3494 
3495   // Keep alive closure.
3496   G1CopyingKeepAliveClosure keep_alive(this, pss);
3497 
3498   // Serial Complete GC closure
3499   G1STWDrainQueueClosure drain_queue(this, pss);
3500 
3501   // Setup the soft refs policy...
3502   rp->setup_policy(false);
3503 
3504   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3505 
3506   ReferenceProcessorStats stats;
3507   if (!rp->processing_is_mt()) {
3508     // Serial reference processing...
3509     stats = rp->process_discovered_references(&is_alive,
3510                                               &keep_alive,
3511                                               &drain_queue,
3512                                               NULL,
3513                                               pt);
3514   } else {
3515     uint no_of_gc_workers = workers()->active_workers();
3516 
3517     // Parallel reference processing
3518     assert(no_of_gc_workers <= rp->max_num_queues(),
3519            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3520            no_of_gc_workers,  rp->max_num_queues());
3521 
3522     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3523     stats = rp->process_discovered_references(&is_alive,
3524                                               &keep_alive,
3525                                               &drain_queue,
3526                                               &par_task_executor,
3527                                               pt);
3528   }
3529 
3530   _gc_tracer_stw->report_gc_reference_stats(stats);
3531 
3532   // We have completed copying any necessary live referent objects.
3533   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3534 
3535   make_pending_list_reachable();
3536 
3537   assert(!rp->discovery_enabled(), "Postcondition");
3538   rp->verify_no_references_recorded();
3539 
3540   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3541   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3542 }
3543 
3544 void G1CollectedHeap::make_pending_list_reachable() {
3545   if (collector_state()->in_initial_mark_gc()) {
3546     oop pll_head = Universe::reference_pending_list();
3547     if (pll_head != NULL) {
3548       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3549       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3550     }
3551   }
3552 }
3553 
3554 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3555   double merge_pss_time_start = os::elapsedTime();
3556   per_thread_states->flush();
3557   phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3558 }
3559 
3560 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3561   _expand_heap_after_alloc_failure = true;
3562   _evacuation_failed = false;
3563 
3564   // Disable the hot card cache.
3565   _hot_card_cache->reset_hot_cache_claimed_index();
3566   _hot_card_cache->set_use_cache(false);
3567 
3568   // Initialize the GC alloc regions.
3569   _allocator->init_gc_alloc_regions(evacuation_info);
3570 
3571   {
3572     Ticks start = Ticks::now();
3573     rem_set()->prepare_for_scan_heap_roots();
3574     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3575   }
3576 
3577   register_regions_with_region_attr();
3578   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3579 
3580   _preserved_marks_set.assert_empty();
3581 
3582 #if COMPILER2_OR_JVMCI
3583   DerivedPointerTable::clear();
3584 #endif
3585 
3586   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3587   if (collector_state()->in_initial_mark_gc()) {
3588     concurrent_mark()->pre_initial_mark();
3589 
3590     double start_clear_claimed_marks = os::elapsedTime();
3591 
3592     ClassLoaderDataGraph::clear_claimed_marks();
3593 
3594     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3595     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3596   }
3597 
3598   // Should G1EvacuationFailureALot be in effect for this GC?
3599   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3600 }
3601 
3602 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3603 protected:
3604   G1CollectedHeap* _g1h;
3605   G1ParScanThreadStateSet* _per_thread_states;
3606   RefToScanQueueSet* _task_queues;
3607   TaskTerminator _terminator;
3608   uint _num_workers;
3609 
3610   void evacuate_live_objects(G1ParScanThreadState* pss,
3611                              uint worker_id,
3612                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3613                              G1GCPhaseTimes::GCParPhases termination_phase) {
3614     G1GCPhaseTimes* p = _g1h->phase_times();
3615 
3616     Ticks start = Ticks::now();
3617     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3618     cl.do_void();
3619 
3620     assert(pss->queue_is_empty(), "should be empty");
3621 
3622     Tickspan evac_time = (Ticks::now() - start);
3623     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3624 
3625     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABWaste);
3626     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_undo_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABUndoWaste);
3627 
3628     if (termination_phase == G1GCPhaseTimes::Termination) {
3629       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3630       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3631     } else {
3632       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3633       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3634     }
3635     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3636   }
3637 
3638   virtual void start_work(uint worker_id) { }
3639 
3640   virtual void end_work(uint worker_id) { }
3641 
3642   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3643 
3644   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3645 
3646 public:
3647   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3648     AbstractGangTask(name),
3649     _g1h(G1CollectedHeap::heap()),
3650     _per_thread_states(per_thread_states),
3651     _task_queues(task_queues),
3652     _terminator(num_workers, _task_queues),
3653     _num_workers(num_workers)
3654   { }
3655 
3656   void work(uint worker_id) {
3657     start_work(worker_id);
3658 
3659     {
3660       ResourceMark rm;
3661       HandleMark   hm;
3662 
3663       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3664       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3665 
3666       scan_roots(pss, worker_id);
3667       evacuate_live_objects(pss, worker_id);
3668     }
3669 
3670     end_work(worker_id);
3671   }
3672 };
3673 
3674 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3675   G1RootProcessor* _root_processor;
3676 
3677   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3678     _root_processor->evacuate_roots(pss, worker_id);
3679     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3680     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3681   }
3682 
3683   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3684     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3685   }
3686 
3687   void start_work(uint worker_id) {
3688     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3689   }
3690 
3691   void end_work(uint worker_id) {
3692     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3693   }
3694 
3695 public:
3696   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3697                         G1ParScanThreadStateSet* per_thread_states,
3698                         RefToScanQueueSet* task_queues,
3699                         G1RootProcessor* root_processor,
3700                         uint num_workers) :
3701     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3702     _root_processor(root_processor)
3703   { }
3704 };
3705 
3706 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3707   G1GCPhaseTimes* p = phase_times();
3708 
3709   {
3710     Ticks start = Ticks::now();
3711     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3712     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3713   }
3714 
3715   Tickspan task_time;
3716   const uint num_workers = workers()->active_workers();
3717 
3718   Ticks start_processing = Ticks::now();
3719   {
3720     G1RootProcessor root_processor(this, num_workers);
3721     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3722     task_time = run_task(&g1_par_task);
3723     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3724     // To extract its code root fixup time we measure total time of this scope and
3725     // subtract from the time the WorkGang task took.
3726   }
3727   Tickspan total_processing = Ticks::now() - start_processing;
3728 
3729   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3730   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3731 }
3732 
3733 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3734 
3735   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3736     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3737     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3738   }
3739 
3740   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3741     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3742   }
3743 
3744 public:
3745   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3746                                 RefToScanQueueSet* queues,
3747                                 uint num_workers) :
3748     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3749   }
3750 };
3751 
3752 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3753   class G1MarkScope : public MarkScope { };
3754 
3755   Tickspan task_time;
3756 
3757   Ticks start_processing = Ticks::now();
3758   {
3759     G1MarkScope code_mark_scope;
3760     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3761     task_time = run_task(&task);
3762     // See comment in evacuate_collection_set() for the reason of the scope.
3763   }
3764   Tickspan total_processing = Ticks::now() - start_processing;
3765 
3766   G1GCPhaseTimes* p = phase_times();
3767   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3768 }
3769 
3770 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3771   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3772 
3773   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3774 
3775     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3776     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3777 
3778     if (time_left_ms < 0 ||
3779         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3780       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3781                                 _collection_set.optional_region_length(), time_left_ms);
3782       break;
3783     }
3784 
3785     {
3786       Ticks start = Ticks::now();
3787       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3788       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3789     }
3790 
3791     {
3792       Ticks start = Ticks::now();
3793       evacuate_next_optional_regions(per_thread_states);
3794       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3795     }
3796   }
3797 
3798   _collection_set.abandon_optional_collection_set(per_thread_states);
3799 }
3800 
3801 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3802                                                    G1RedirtyCardsQueueSet* rdcqs,
3803                                                    G1ParScanThreadStateSet* per_thread_states) {
3804   rem_set()->cleanup_after_scan_heap_roots();
3805 
3806   // Process any discovered reference objects - we have
3807   // to do this _before_ we retire the GC alloc regions
3808   // as we may have to copy some 'reachable' referent
3809   // objects (and their reachable sub-graphs) that were
3810   // not copied during the pause.
3811   process_discovered_references(per_thread_states);
3812 
3813   G1STWIsAliveClosure is_alive(this);
3814   G1KeepAliveClosure keep_alive(this);
3815 
3816   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3817                               phase_times()->weak_phase_times());
3818 
3819   if (G1StringDedup::is_enabled()) {
3820     double string_dedup_time_ms = os::elapsedTime();
3821 
3822     string_dedup_cleaning(&is_alive, &keep_alive, phase_times());
3823 
3824     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
3825     phase_times()->record_string_deduplication_time(string_cleanup_time_ms);
3826   }
3827 
3828   _allocator->release_gc_alloc_regions(evacuation_info);
3829 
3830   if (evacuation_failed()) {
3831     restore_after_evac_failure(rdcqs);
3832 
3833     // Reset the G1EvacuationFailureALot counters and flags
3834     NOT_PRODUCT(reset_evacuation_should_fail();)
3835 
3836     double recalculate_used_start = os::elapsedTime();
3837     set_used(recalculate_used());
3838     phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3839 
3840     if (_archive_allocator != NULL) {
3841       _archive_allocator->clear_used();
3842     }
3843     for (uint i = 0; i < ParallelGCThreads; i++) {
3844       if (_evacuation_failed_info_array[i].has_failed()) {
3845         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3846       }
3847     }
3848   } else {
3849     // The "used" of the the collection set have already been subtracted
3850     // when they were freed.  Add in the bytes evacuated.
3851     increase_used(policy()->bytes_copied_during_gc());
3852   }
3853 
3854   _preserved_marks_set.assert_empty();
3855 
3856   merge_per_thread_state_info(per_thread_states);
3857 
3858   // Reset and re-enable the hot card cache.
3859   // Note the counts for the cards in the regions in the
3860   // collection set are reset when the collection set is freed.
3861   _hot_card_cache->reset_hot_cache();
3862   _hot_card_cache->set_use_cache(true);
3863 
3864   purge_code_root_memory();
3865 
3866   redirty_logged_cards(rdcqs);
3867 
3868   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
3869 
3870   eagerly_reclaim_humongous_regions();
3871 
3872   record_obj_copy_mem_stats();
3873 
3874   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3875   evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc());
3876 
3877 #if COMPILER2_OR_JVMCI
3878   double start = os::elapsedTime();
3879   DerivedPointerTable::update_pointers();
3880   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3881 #endif
3882   policy()->print_age_table();
3883 }
3884 
3885 void G1CollectedHeap::record_obj_copy_mem_stats() {
3886   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3887 
3888   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3889                                                create_g1_evac_summary(&_old_evac_stats));
3890 }
3891 
3892 void G1CollectedHeap::free_region(HeapRegion* hr,
3893                                   FreeRegionList* free_list,
3894                                   bool skip_remset,
3895                                   bool skip_hot_card_cache,
3896                                   bool locked) {
3897   assert(!hr->is_free(), "the region should not be free");
3898   assert(!hr->is_empty(), "the region should not be empty");
3899   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3900   assert(free_list != NULL, "pre-condition");
3901 
3902   if (G1VerifyBitmaps) {
3903     MemRegion mr(hr->bottom(), hr->end());
3904     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3905   }
3906 
3907   // Clear the card counts for this region.
3908   // Note: we only need to do this if the region is not young
3909   // (since we don't refine cards in young regions).
3910   if (!skip_hot_card_cache && !hr->is_young()) {
3911     _hot_card_cache->reset_card_counts(hr);
3912   }
3913   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3914   _policy->remset_tracker()->update_at_free(hr);
3915   free_list->add_ordered(hr);
3916 }
3917 
3918 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3919                                             FreeRegionList* free_list) {
3920   assert(hr->is_humongous(), "this is only for humongous regions");
3921   assert(free_list != NULL, "pre-condition");
3922   hr->clear_humongous();
3923   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3924 }
3925 
3926 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3927                                            const uint humongous_regions_removed) {
3928   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3929     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3930     _old_set.bulk_remove(old_regions_removed);
3931     _humongous_set.bulk_remove(humongous_regions_removed);
3932   }
3933 
3934 }
3935 
3936 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3937   assert(list != NULL, "list can't be null");
3938   if (!list->is_empty()) {
3939     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3940     _hrm->insert_list_into_free_list(list);
3941   }
3942 }
3943 
3944 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3945   decrease_used(bytes);
3946 }
3947 
3948 class G1FreeCollectionSetTask : public AbstractGangTask {
3949 private:
3950 
3951   // Closure applied to all regions in the collection set to do work that needs to
3952   // be done serially in a single thread.
3953   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3954   private:
3955     G1EvacuationInfo* _evacuation_info;
3956     const size_t* _surviving_young_words;
3957 
3958     // Bytes used in successfully evacuated regions before the evacuation.
3959     size_t _before_used_bytes;
3960     // Bytes used in unsucessfully evacuated regions before the evacuation
3961     size_t _after_used_bytes;
3962 
3963     size_t _bytes_allocated_in_old_since_last_gc;
3964 
3965     size_t _failure_used_words;
3966     size_t _failure_waste_words;
3967 
3968     FreeRegionList _local_free_list;
3969   public:
3970     G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3971       HeapRegionClosure(),
3972       _evacuation_info(evacuation_info),
3973       _surviving_young_words(surviving_young_words),
3974       _before_used_bytes(0),
3975       _after_used_bytes(0),
3976       _bytes_allocated_in_old_since_last_gc(0),
3977       _failure_used_words(0),
3978       _failure_waste_words(0),
3979       _local_free_list("Local Region List for CSet Freeing") {
3980     }
3981 
3982     virtual bool do_heap_region(HeapRegion* r) {
3983       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3984 
3985       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3986       g1h->clear_region_attr(r);
3987 
3988       if (r->is_young()) {
3989         assert(r->young_index_in_cset() != 0 && (uint)r->young_index_in_cset() <= g1h->collection_set()->young_region_length(),
3990                "Young index %u is wrong for region %u of type %s with %u young regions",
3991                r->young_index_in_cset(),
3992                r->hrm_index(),
3993                r->get_type_str(),
3994                g1h->collection_set()->young_region_length());
3995         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
3996         r->record_surv_words_in_group(words_survived);
3997       }
3998 
3999       if (!r->evacuation_failed()) {
4000         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4001         _before_used_bytes += r->used();
4002         g1h->free_region(r,
4003                          &_local_free_list,
4004                          true, /* skip_remset */
4005                          true, /* skip_hot_card_cache */
4006                          true  /* locked */);
4007       } else {
4008         r->uninstall_surv_rate_group();
4009         r->clear_young_index_in_cset();
4010         r->set_evacuation_failed(false);
4011         // When moving a young gen region to old gen, we "allocate" that whole region
4012         // there. This is in addition to any already evacuated objects. Notify the
4013         // policy about that.
4014         // Old gen regions do not cause an additional allocation: both the objects
4015         // still in the region and the ones already moved are accounted for elsewhere.
4016         if (r->is_young()) {
4017           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4018         }
4019         // The region is now considered to be old.
4020         r->set_old();
4021         // Do some allocation statistics accounting. Regions that failed evacuation
4022         // are always made old, so there is no need to update anything in the young
4023         // gen statistics, but we need to update old gen statistics.
4024         size_t used_words = r->marked_bytes() / HeapWordSize;
4025 
4026         _failure_used_words += used_words;
4027         _failure_waste_words += HeapRegion::GrainWords - used_words;
4028 
4029         g1h->old_set_add(r);
4030         _after_used_bytes += r->used();
4031       }
4032       return false;
4033     }
4034 
4035     void complete_work() {
4036       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4037 
4038       _evacuation_info->set_regions_freed(_local_free_list.length());
4039       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4040 
4041       g1h->prepend_to_freelist(&_local_free_list);
4042       g1h->decrement_summary_bytes(_before_used_bytes);
4043 
4044       G1Policy* policy = g1h->policy();
4045       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4046 
4047       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4048     }
4049   };
4050 
4051   G1CollectionSet* _collection_set;
4052   G1SerialFreeCollectionSetClosure _cl;
4053   const size_t* _surviving_young_words;
4054 
4055   size_t _rs_length;
4056 
4057   volatile jint _serial_work_claim;
4058 
4059   struct WorkItem {
4060     uint region_idx;
4061     bool is_young;
4062     bool evacuation_failed;
4063 
4064     WorkItem(HeapRegion* r) {
4065       region_idx = r->hrm_index();
4066       is_young = r->is_young();
4067       evacuation_failed = r->evacuation_failed();
4068     }
4069   };
4070 
4071   volatile size_t _parallel_work_claim;
4072   size_t _num_work_items;
4073   WorkItem* _work_items;
4074 
4075   void do_serial_work() {
4076     // Need to grab the lock to be allowed to modify the old region list.
4077     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4078     _collection_set->iterate(&_cl);
4079   }
4080 
4081   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4082     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4083 
4084     HeapRegion* r = g1h->region_at(region_idx);
4085     assert(!g1h->is_on_master_free_list(r), "sanity");
4086 
4087     Atomic::add(r->rem_set()->occupied_locked(), &_rs_length);
4088 
4089     if (!is_young) {
4090       g1h->_hot_card_cache->reset_card_counts(r);
4091     }
4092 
4093     if (!evacuation_failed) {
4094       r->rem_set()->clear_locked();
4095     }
4096   }
4097 
4098   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4099   private:
4100     size_t _cur_idx;
4101     WorkItem* _work_items;
4102   public:
4103     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4104 
4105     virtual bool do_heap_region(HeapRegion* r) {
4106       _work_items[_cur_idx++] = WorkItem(r);
4107       return false;
4108     }
4109   };
4110 
4111   void prepare_work() {
4112     G1PrepareFreeCollectionSetClosure cl(_work_items);
4113     _collection_set->iterate(&cl);
4114   }
4115 
4116   void complete_work() {
4117     _cl.complete_work();
4118 
4119     G1Policy* policy = G1CollectedHeap::heap()->policy();
4120     policy->record_max_rs_length(_rs_length);
4121     policy->cset_regions_freed();
4122   }
4123 public:
4124   G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4125     AbstractGangTask("G1 Free Collection Set"),
4126     _collection_set(collection_set),
4127     _cl(evacuation_info, surviving_young_words),
4128     _surviving_young_words(surviving_young_words),
4129     _rs_length(0),
4130     _serial_work_claim(0),
4131     _parallel_work_claim(0),
4132     _num_work_items(collection_set->region_length()),
4133     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4134     prepare_work();
4135   }
4136 
4137   ~G1FreeCollectionSetTask() {
4138     complete_work();
4139     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4140   }
4141 
4142   // Chunk size for work distribution. The chosen value has been determined experimentally
4143   // to be a good tradeoff between overhead and achievable parallelism.
4144   static uint chunk_size() { return 32; }
4145 
4146   virtual void work(uint worker_id) {
4147     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times();
4148 
4149     // Claim serial work.
4150     if (_serial_work_claim == 0) {
4151       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4152       if (value == 0) {
4153         double serial_time = os::elapsedTime();
4154         do_serial_work();
4155         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4156       }
4157     }
4158 
4159     // Start parallel work.
4160     double young_time = 0.0;
4161     bool has_young_time = false;
4162     double non_young_time = 0.0;
4163     bool has_non_young_time = false;
4164 
4165     while (true) {
4166       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4167       size_t cur = end - chunk_size();
4168 
4169       if (cur >= _num_work_items) {
4170         break;
4171       }
4172 
4173       EventGCPhaseParallel event;
4174       double start_time = os::elapsedTime();
4175 
4176       end = MIN2(end, _num_work_items);
4177 
4178       for (; cur < end; cur++) {
4179         bool is_young = _work_items[cur].is_young;
4180 
4181         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4182 
4183         double end_time = os::elapsedTime();
4184         double time_taken = end_time - start_time;
4185         if (is_young) {
4186           young_time += time_taken;
4187           has_young_time = true;
4188           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4189         } else {
4190           non_young_time += time_taken;
4191           has_non_young_time = true;
4192           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4193         }
4194         start_time = end_time;
4195       }
4196     }
4197 
4198     if (has_young_time) {
4199       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4200     }
4201     if (has_non_young_time) {
4202       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4203     }
4204   }
4205 };
4206 
4207 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4208   _eden.clear();
4209 
4210   double free_cset_start_time = os::elapsedTime();
4211 
4212   {
4213     uint const num_regions = _collection_set.region_length();
4214     uint const num_chunks = MAX2(num_regions / G1FreeCollectionSetTask::chunk_size(), 1U);
4215     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4216 
4217     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4218 
4219     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4220                         cl.name(), num_workers, num_regions);
4221     workers()->run_task(&cl, num_workers);
4222   }
4223   phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4224 
4225   collection_set->clear();
4226 }
4227 
4228 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4229  private:
4230   FreeRegionList* _free_region_list;
4231   HeapRegionSet* _proxy_set;
4232   uint _humongous_objects_reclaimed;
4233   uint _humongous_regions_reclaimed;
4234   size_t _freed_bytes;
4235  public:
4236 
4237   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4238     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4239   }
4240 
4241   virtual bool do_heap_region(HeapRegion* r) {
4242     if (!r->is_starts_humongous()) {
4243       return false;
4244     }
4245 
4246     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4247 
4248     oop obj = (oop)r->bottom();
4249     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4250 
4251     // The following checks whether the humongous object is live are sufficient.
4252     // The main additional check (in addition to having a reference from the roots
4253     // or the young gen) is whether the humongous object has a remembered set entry.
4254     //
4255     // A humongous object cannot be live if there is no remembered set for it
4256     // because:
4257     // - there can be no references from within humongous starts regions referencing
4258     // the object because we never allocate other objects into them.
4259     // (I.e. there are no intra-region references that may be missed by the
4260     // remembered set)
4261     // - as soon there is a remembered set entry to the humongous starts region
4262     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4263     // until the end of a concurrent mark.
4264     //
4265     // It is not required to check whether the object has been found dead by marking
4266     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4267     // all objects allocated during that time are considered live.
4268     // SATB marking is even more conservative than the remembered set.
4269     // So if at this point in the collection there is no remembered set entry,
4270     // nobody has a reference to it.
4271     // At the start of collection we flush all refinement logs, and remembered sets
4272     // are completely up-to-date wrt to references to the humongous object.
4273     //
4274     // Other implementation considerations:
4275     // - never consider object arrays at this time because they would pose
4276     // considerable effort for cleaning up the the remembered sets. This is
4277     // required because stale remembered sets might reference locations that
4278     // are currently allocated into.
4279     uint region_idx = r->hrm_index();
4280     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4281         !r->rem_set()->is_empty()) {
4282       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4283                                region_idx,
4284                                (size_t)obj->size() * HeapWordSize,
4285                                p2i(r->bottom()),
4286                                r->rem_set()->occupied(),
4287                                r->rem_set()->strong_code_roots_list_length(),
4288                                next_bitmap->is_marked(r->bottom()),
4289                                g1h->is_humongous_reclaim_candidate(region_idx),
4290                                obj->is_typeArray()
4291                               );
4292       return false;
4293     }
4294 
4295     guarantee(obj->is_typeArray(),
4296               "Only eagerly reclaiming type arrays is supported, but the object "
4297               PTR_FORMAT " is not.", p2i(r->bottom()));
4298 
4299     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4300                              region_idx,
4301                              (size_t)obj->size() * HeapWordSize,
4302                              p2i(r->bottom()),
4303                              r->rem_set()->occupied(),
4304                              r->rem_set()->strong_code_roots_list_length(),
4305                              next_bitmap->is_marked(r->bottom()),
4306                              g1h->is_humongous_reclaim_candidate(region_idx),
4307                              obj->is_typeArray()
4308                             );
4309 
4310     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4311     cm->humongous_object_eagerly_reclaimed(r);
4312     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4313            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4314            region_idx,
4315            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4316            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4317     _humongous_objects_reclaimed++;
4318     do {
4319       HeapRegion* next = g1h->next_region_in_humongous(r);
4320       _freed_bytes += r->used();
4321       r->set_containing_set(NULL);
4322       _humongous_regions_reclaimed++;
4323       g1h->free_humongous_region(r, _free_region_list);
4324       r = next;
4325     } while (r != NULL);
4326 
4327     return false;
4328   }
4329 
4330   uint humongous_objects_reclaimed() {
4331     return _humongous_objects_reclaimed;
4332   }
4333 
4334   uint humongous_regions_reclaimed() {
4335     return _humongous_regions_reclaimed;
4336   }
4337 
4338   size_t bytes_freed() const {
4339     return _freed_bytes;
4340   }
4341 };
4342 
4343 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4344   assert_at_safepoint_on_vm_thread();
4345 
4346   if (!G1EagerReclaimHumongousObjects ||
4347       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4348     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4349     return;
4350   }
4351 
4352   double start_time = os::elapsedTime();
4353 
4354   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4355 
4356   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4357   heap_region_iterate(&cl);
4358 
4359   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4360 
4361   G1HRPrinter* hrp = hr_printer();
4362   if (hrp->is_active()) {
4363     FreeRegionListIterator iter(&local_cleanup_list);
4364     while (iter.more_available()) {
4365       HeapRegion* hr = iter.get_next();
4366       hrp->cleanup(hr);
4367     }
4368   }
4369 
4370   prepend_to_freelist(&local_cleanup_list);
4371   decrement_summary_bytes(cl.bytes_freed());
4372 
4373   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4374                                                        cl.humongous_objects_reclaimed());
4375 }
4376 
4377 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4378 public:
4379   virtual bool do_heap_region(HeapRegion* r) {
4380     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4381     G1CollectedHeap::heap()->clear_region_attr(r);
4382     r->clear_young_index_in_cset();
4383     return false;
4384   }
4385 };
4386 
4387 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4388   G1AbandonCollectionSetClosure cl;
4389   collection_set_iterate_all(&cl);
4390 
4391   collection_set->clear();
4392   collection_set->stop_incremental_building();
4393 }
4394 
4395 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4396   return _allocator->is_retained_old_region(hr);
4397 }
4398 
4399 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4400   _eden.add(hr);
4401   _policy->set_region_eden(hr);
4402 }
4403 
4404 #ifdef ASSERT
4405 
4406 class NoYoungRegionsClosure: public HeapRegionClosure {
4407 private:
4408   bool _success;
4409 public:
4410   NoYoungRegionsClosure() : _success(true) { }
4411   bool do_heap_region(HeapRegion* r) {
4412     if (r->is_young()) {
4413       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4414                             p2i(r->bottom()), p2i(r->end()));
4415       _success = false;
4416     }
4417     return false;
4418   }
4419   bool success() { return _success; }
4420 };
4421 
4422 bool G1CollectedHeap::check_young_list_empty() {
4423   bool ret = (young_regions_count() == 0);
4424 
4425   NoYoungRegionsClosure closure;
4426   heap_region_iterate(&closure);
4427   ret = ret && closure.success();
4428 
4429   return ret;
4430 }
4431 
4432 #endif // ASSERT
4433 
4434 class TearDownRegionSetsClosure : public HeapRegionClosure {
4435   HeapRegionSet *_old_set;
4436 
4437 public:
4438   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4439 
4440   bool do_heap_region(HeapRegion* r) {
4441     if (r->is_old()) {
4442       _old_set->remove(r);
4443     } else if(r->is_young()) {
4444       r->uninstall_surv_rate_group();
4445     } else {
4446       // We ignore free regions, we'll empty the free list afterwards.
4447       // We ignore humongous and archive regions, we're not tearing down these
4448       // sets.
4449       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4450              "it cannot be another type");
4451     }
4452     return false;
4453   }
4454 
4455   ~TearDownRegionSetsClosure() {
4456     assert(_old_set->is_empty(), "post-condition");
4457   }
4458 };
4459 
4460 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4461   assert_at_safepoint_on_vm_thread();
4462 
4463   if (!free_list_only) {
4464     TearDownRegionSetsClosure cl(&_old_set);
4465     heap_region_iterate(&cl);
4466 
4467     // Note that emptying the _young_list is postponed and instead done as
4468     // the first step when rebuilding the regions sets again. The reason for
4469     // this is that during a full GC string deduplication needs to know if
4470     // a collected region was young or old when the full GC was initiated.
4471   }
4472   _hrm->remove_all_free_regions();
4473 }
4474 
4475 void G1CollectedHeap::increase_used(size_t bytes) {
4476   _summary_bytes_used += bytes;
4477 }
4478 
4479 void G1CollectedHeap::decrease_used(size_t bytes) {
4480   assert(_summary_bytes_used >= bytes,
4481          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4482          _summary_bytes_used, bytes);
4483   _summary_bytes_used -= bytes;
4484 }
4485 
4486 void G1CollectedHeap::set_used(size_t bytes) {
4487   _summary_bytes_used = bytes;
4488 }
4489 
4490 class RebuildRegionSetsClosure : public HeapRegionClosure {
4491 private:
4492   bool _free_list_only;
4493 
4494   HeapRegionSet* _old_set;
4495   HeapRegionManager* _hrm;
4496 
4497   size_t _total_used;
4498 
4499 public:
4500   RebuildRegionSetsClosure(bool free_list_only,
4501                            HeapRegionSet* old_set,
4502                            HeapRegionManager* hrm) :
4503     _free_list_only(free_list_only),
4504     _old_set(old_set), _hrm(hrm), _total_used(0) {
4505     assert(_hrm->num_free_regions() == 0, "pre-condition");
4506     if (!free_list_only) {
4507       assert(_old_set->is_empty(), "pre-condition");
4508     }
4509   }
4510 
4511   bool do_heap_region(HeapRegion* r) {
4512     if (r->is_empty()) {
4513       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4514       // Add free regions to the free list
4515       r->set_free();
4516       _hrm->insert_into_free_list(r);
4517     } else if (!_free_list_only) {
4518       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4519 
4520       if (r->is_archive() || r->is_humongous()) {
4521         // We ignore archive and humongous regions. We left these sets unchanged.
4522       } else {
4523         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4524         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4525         r->move_to_old();
4526         _old_set->add(r);
4527       }
4528       _total_used += r->used();
4529     }
4530 
4531     return false;
4532   }
4533 
4534   size_t total_used() {
4535     return _total_used;
4536   }
4537 };
4538 
4539 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4540   assert_at_safepoint_on_vm_thread();
4541 
4542   if (!free_list_only) {
4543     _eden.clear();
4544     _survivor.clear();
4545   }
4546 
4547   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4548   heap_region_iterate(&cl);
4549 
4550   if (!free_list_only) {
4551     set_used(cl.total_used());
4552     if (_archive_allocator != NULL) {
4553       _archive_allocator->clear_used();
4554     }
4555   }
4556   assert_used_and_recalculate_used_equal(this);
4557 }
4558 
4559 // Methods for the mutator alloc region
4560 
4561 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4562                                                       bool force) {
4563   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4564   bool should_allocate = policy()->should_allocate_mutator_region();
4565   if (force || should_allocate) {
4566     HeapRegion* new_alloc_region = new_region(word_size,
4567                                               HeapRegionType::Eden,
4568                                               false /* do_expand */);
4569     if (new_alloc_region != NULL) {
4570       set_region_short_lived_locked(new_alloc_region);
4571       _hr_printer.alloc(new_alloc_region, !should_allocate);
4572       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4573       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4574       return new_alloc_region;
4575     }
4576   }
4577   return NULL;
4578 }
4579 
4580 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4581                                                   size_t allocated_bytes) {
4582   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4583   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4584 
4585   collection_set()->add_eden_region(alloc_region);
4586   increase_used(allocated_bytes);
4587   _eden.add_used_bytes(allocated_bytes);
4588   _hr_printer.retire(alloc_region);
4589 
4590   // We update the eden sizes here, when the region is retired,
4591   // instead of when it's allocated, since this is the point that its
4592   // used space has been recorded in _summary_bytes_used.
4593   g1mm()->update_eden_size();
4594 }
4595 
4596 // Methods for the GC alloc regions
4597 
4598 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4599   if (dest.is_old()) {
4600     return true;
4601   } else {
4602     return survivor_regions_count() < policy()->max_survivor_regions();
4603   }
4604 }
4605 
4606 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest) {
4607   assert(FreeList_lock->owned_by_self(), "pre-condition");
4608 
4609   if (!has_more_regions(dest)) {
4610     return NULL;
4611   }
4612 
4613   HeapRegionType type;
4614   if (dest.is_young()) {
4615     type = HeapRegionType::Survivor;
4616   } else {
4617     type = HeapRegionType::Old;
4618   }
4619 
4620   HeapRegion* new_alloc_region = new_region(word_size,
4621                                             type,
4622                                             true /* do_expand */);
4623 
4624   if (new_alloc_region != NULL) {
4625     if (type.is_survivor()) {
4626       new_alloc_region->set_survivor();
4627       _survivor.add(new_alloc_region);
4628       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4629     } else {
4630       new_alloc_region->set_old();
4631       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4632     }
4633     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4634     register_region_with_region_attr(new_alloc_region);
4635     _hr_printer.alloc(new_alloc_region);
4636     return new_alloc_region;
4637   }
4638   return NULL;
4639 }
4640 
4641 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4642                                              size_t allocated_bytes,
4643                                              G1HeapRegionAttr dest) {
4644   policy()->record_bytes_copied_during_gc(allocated_bytes);
4645   if (dest.is_old()) {
4646     old_set_add(alloc_region);
4647   } else {
4648     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4649     _survivor.add_used_bytes(allocated_bytes);
4650   }
4651 
4652   bool const during_im = collector_state()->in_initial_mark_gc();
4653   if (during_im && allocated_bytes > 0) {
4654     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4655   }
4656   _hr_printer.retire(alloc_region);
4657 }
4658 
4659 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4660   bool expanded = false;
4661   uint index = _hrm->find_highest_free(&expanded);
4662 
4663   if (index != G1_NO_HRM_INDEX) {
4664     if (expanded) {
4665       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4666                                 HeapRegion::GrainWords * HeapWordSize);
4667     }
4668     _hrm->allocate_free_regions_starting_at(index, 1);
4669     return region_at(index);
4670   }
4671   return NULL;
4672 }
4673 
4674 // Optimized nmethod scanning
4675 
4676 class RegisterNMethodOopClosure: public OopClosure {
4677   G1CollectedHeap* _g1h;
4678   nmethod* _nm;
4679 
4680   template <class T> void do_oop_work(T* p) {
4681     T heap_oop = RawAccess<>::oop_load(p);
4682     if (!CompressedOops::is_null(heap_oop)) {
4683       oop obj = CompressedOops::decode_not_null(heap_oop);
4684       HeapRegion* hr = _g1h->heap_region_containing(obj);
4685       assert(!hr->is_continues_humongous(),
4686              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4687              " starting at " HR_FORMAT,
4688              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4689 
4690       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4691       hr->add_strong_code_root_locked(_nm);
4692     }
4693   }
4694 
4695 public:
4696   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4697     _g1h(g1h), _nm(nm) {}
4698 
4699   void do_oop(oop* p)       { do_oop_work(p); }
4700   void do_oop(narrowOop* p) { do_oop_work(p); }
4701 };
4702 
4703 class UnregisterNMethodOopClosure: public OopClosure {
4704   G1CollectedHeap* _g1h;
4705   nmethod* _nm;
4706 
4707   template <class T> void do_oop_work(T* p) {
4708     T heap_oop = RawAccess<>::oop_load(p);
4709     if (!CompressedOops::is_null(heap_oop)) {
4710       oop obj = CompressedOops::decode_not_null(heap_oop);
4711       HeapRegion* hr = _g1h->heap_region_containing(obj);
4712       assert(!hr->is_continues_humongous(),
4713              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4714              " starting at " HR_FORMAT,
4715              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4716 
4717       hr->remove_strong_code_root(_nm);
4718     }
4719   }
4720 
4721 public:
4722   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4723     _g1h(g1h), _nm(nm) {}
4724 
4725   void do_oop(oop* p)       { do_oop_work(p); }
4726   void do_oop(narrowOop* p) { do_oop_work(p); }
4727 };
4728 
4729 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4730   guarantee(nm != NULL, "sanity");
4731   RegisterNMethodOopClosure reg_cl(this, nm);
4732   nm->oops_do(&reg_cl);
4733 }
4734 
4735 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4736   guarantee(nm != NULL, "sanity");
4737   UnregisterNMethodOopClosure reg_cl(this, nm);
4738   nm->oops_do(&reg_cl, true);
4739 }
4740 
4741 void G1CollectedHeap::purge_code_root_memory() {
4742   double purge_start = os::elapsedTime();
4743   G1CodeRootSet::purge();
4744   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4745   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4746 }
4747 
4748 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4749   G1CollectedHeap* _g1h;
4750 
4751 public:
4752   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4753     _g1h(g1h) {}
4754 
4755   void do_code_blob(CodeBlob* cb) {
4756     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4757     if (nm == NULL) {
4758       return;
4759     }
4760 
4761     _g1h->register_nmethod(nm);
4762   }
4763 };
4764 
4765 void G1CollectedHeap::rebuild_strong_code_roots() {
4766   RebuildStrongCodeRootClosure blob_cl(this);
4767   CodeCache::blobs_do(&blob_cl);
4768 }
4769 
4770 void G1CollectedHeap::initialize_serviceability() {
4771   _g1mm->initialize_serviceability();
4772 }
4773 
4774 MemoryUsage G1CollectedHeap::memory_usage() {
4775   return _g1mm->memory_usage();
4776 }
4777 
4778 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4779   return _g1mm->memory_managers();
4780 }
4781 
4782 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4783   return _g1mm->memory_pools();
4784 }