/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shared/satbMarkQueue.hpp" #include "gc/shared/collectedHeap.hpp" #include "logging/log.hpp" #include "memory/allocation.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/orderAccess.hpp" #include "runtime/os.hpp" #include "runtime/safepoint.hpp" #include "runtime/thread.hpp" #include "runtime/threadSMR.hpp" #include "runtime/vmThread.hpp" #include "utilities/globalCounter.inline.hpp" SATBMarkQueue::SATBMarkQueue(SATBMarkQueueSet* qset) : // SATB queues are only active during marking cycles. We create // them with their active field set to false. If a thread is // created during a cycle and its SATB queue needs to be activated // before the thread starts running, we'll need to set its active // field to true. This must be done in the collector-specific // BarrierSet thread attachment protocol. PtrQueue(qset, false /* active */) { } void SATBMarkQueue::flush() { // Filter now to possibly save work later. If filtering empties the // buffer then flush_impl can deallocate the buffer. filter(); flush_impl(); } // This method will first apply filtering to the buffer. If filtering // retains a small enough collection in the buffer, we can continue to // use the buffer as-is, instead of enqueueing and replacing it. void SATBMarkQueue::handle_completed_buffer() { // This method should only be called if there is a non-NULL buffer // that is full. assert(index() == 0, "pre-condition"); assert(_buf != NULL, "pre-condition"); filter(); size_t threshold = satb_qset()->buffer_enqueue_threshold(); // Ensure we'll enqueue completely full buffers. assert(threshold > 0, "enqueue threshold = 0"); // Ensure we won't enqueue empty buffers. assert(threshold <= capacity(), "enqueue threshold " SIZE_FORMAT " exceeds capacity " SIZE_FORMAT, threshold, capacity()); if (index() < threshold) { // Buffer is sufficiently full; enqueue and allocate a new one. enqueue_completed_buffer(); } // Else continue to accumulate in buffer. } void SATBMarkQueue::apply_closure_and_empty(SATBBufferClosure* cl) { assert(SafepointSynchronize::is_at_safepoint(), "SATB queues must only be processed at safepoints"); if (_buf != NULL) { cl->do_buffer(&_buf[index()], size()); reset(); } } #ifndef PRODUCT // Helpful for debugging static void print_satb_buffer(const char* name, void** buf, size_t index, size_t capacity) { tty->print_cr(" SATB BUFFER [%s] buf: " PTR_FORMAT " index: " SIZE_FORMAT " capacity: " SIZE_FORMAT, name, p2i(buf), index, capacity); } void SATBMarkQueue::print(const char* name) { print_satb_buffer(name, _buf, index(), capacity()); } #endif // PRODUCT SATBMarkQueueSet::SATBMarkQueueSet() : PtrQueueSet(), _list(), _count_and_process_flag(0), _process_completed_buffers_threshold(SIZE_MAX), _buffer_enqueue_threshold(0) {} SATBMarkQueueSet::~SATBMarkQueueSet() { abandon_completed_buffers(); } // _count_and_process_flag has flag in least significant bit, count in // remaining bits. _process_completed_buffers_threshold is scaled // accordingly, with the lsbit set, so a _count_and_process_flag value // is directly comparable with the recorded threshold value. The // process flag is set whenever the count exceeds the threshold, and // remains set until the count is reduced to zero. // Increment count. If count > threshold, set flag, else maintain flag. static void increment_count(volatile size_t* cfptr, size_t threshold) { size_t old; size_t value = Atomic::load(cfptr); do { old = value; value += 2; assert(value > old, "overflow"); if (value > threshold) value |= 1; value = Atomic::cmpxchg(value, cfptr, old); } while (value != old); } // Decrement count. If count == 0, clear flag, else maintain flag. static void decrement_count(volatile size_t* cfptr) { size_t old; size_t value = Atomic::load(cfptr); do { assert((value >> 1) != 0, "underflow"); old = value; value -= 2; if (value <= 1) value = 0; value = Atomic::cmpxchg(value, cfptr, old); } while (value != old); } // Scale requested threshold to align with count field. If scaling // overflows, just use max value. Set process flag field to make // comparison in increment_count exact. static size_t scale_threshold(size_t value) { size_t scaled_value = value << 1; if ((scaled_value >> 1) != value) { scaled_value = SIZE_MAX; } return scaled_value | 1; } void SATBMarkQueueSet::initialize(BufferNode::Allocator* allocator, size_t process_completed_buffers_threshold, uint buffer_enqueue_threshold_percentage) { PtrQueueSet::initialize(allocator); _process_completed_buffers_threshold = scale_threshold(process_completed_buffers_threshold); assert(buffer_size() != 0, "buffer size not initialized"); // Minimum threshold of 1 ensures enqueuing of completely full buffers. size_t size = buffer_size(); size_t enqueue_qty = (size * buffer_enqueue_threshold_percentage) / 100; _buffer_enqueue_threshold = MAX2(size - enqueue_qty, (size_t)1); } #ifdef ASSERT void SATBMarkQueueSet::dump_active_states(bool expected_active) { log_error(gc, verify)("Expected SATB active state: %s", expected_active ? "ACTIVE" : "INACTIVE"); log_error(gc, verify)("Actual SATB active states:"); log_error(gc, verify)(" Queue set: %s", is_active() ? "ACTIVE" : "INACTIVE"); class DumpThreadStateClosure : public ThreadClosure { SATBMarkQueueSet* _qset; public: DumpThreadStateClosure(SATBMarkQueueSet* qset) : _qset(qset) {} virtual void do_thread(Thread* t) { SATBMarkQueue& queue = _qset->satb_queue_for_thread(t); log_error(gc, verify)(" Thread \"%s\" queue: %s", t->name(), queue.is_active() ? "ACTIVE" : "INACTIVE"); } } closure(this); Threads::threads_do(&closure); } void SATBMarkQueueSet::verify_active_states(bool expected_active) { // Verify queue set state if (is_active() != expected_active) { dump_active_states(expected_active); fatal("SATB queue set has an unexpected active state"); } // Verify thread queue states class VerifyThreadStatesClosure : public ThreadClosure { SATBMarkQueueSet* _qset; bool _expected_active; public: VerifyThreadStatesClosure(SATBMarkQueueSet* qset, bool expected_active) : _qset(qset), _expected_active(expected_active) {} virtual void do_thread(Thread* t) { if (_qset->satb_queue_for_thread(t).is_active() != _expected_active) { _qset->dump_active_states(_expected_active); fatal("Thread SATB queue has an unexpected active state"); } } } closure(this, expected_active); Threads::threads_do(&closure); } #endif // ASSERT void SATBMarkQueueSet::set_active_all_threads(bool active, bool expected_active) { assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); #ifdef ASSERT verify_active_states(expected_active); #endif // ASSERT // Update the global state, synchronized with threads list management. { MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag); _all_active = active; } class SetThreadActiveClosure : public ThreadClosure { SATBMarkQueueSet* _qset; bool _active; public: SetThreadActiveClosure(SATBMarkQueueSet* qset, bool active) : _qset(qset), _active(active) {} virtual void do_thread(Thread* t) { _qset->satb_queue_for_thread(t).set_active(_active); } } closure(this, active); Threads::threads_do(&closure); } bool SATBMarkQueueSet::apply_closure_to_completed_buffer(SATBBufferClosure* cl) { BufferNode* nd = get_completed_buffer(); if (nd != NULL) { void **buf = BufferNode::make_buffer_from_node(nd); size_t index = nd->index(); size_t size = buffer_size(); assert(index <= size, "invariant"); cl->do_buffer(buf + index, size - index); deallocate_buffer(nd); return true; } else { return false; } } // SATB buffer life-cycle - Per-thread queues obtain buffers from the // qset's buffer allocator, fill them, and push them onto the qset's // list. The GC concurrently pops buffers from the qset, processes // them, and returns them to the buffer allocator for re-use. Both // the allocator and the qset use lock-free stacks. The ABA problem // is solved by having both allocation pops and GC pops performed // within GlobalCounter critical sections, while the return of buffers // to the allocator performs a GlobalCounter synchronize before // pushing onto the allocator's list. void SATBMarkQueueSet::enqueue_completed_buffer(BufferNode* node) { assert(node != NULL, "precondition"); // Increment count and update flag appropriately. Done before // pushing buffer so count is always at least the actual number in // the list, and decrement never underflows. increment_count(&_count_and_process_flag, _process_completed_buffers_threshold); _list.push(*node); } BufferNode* SATBMarkQueueSet::get_completed_buffer() { BufferNode* node; { GlobalCounter::CriticalSection cs(Thread::current()); node = _list.pop(); } if (node != NULL) { // Got a buffer so decrement count and update flag appropriately. decrement_count(&_count_and_process_flag); } return node; } #ifndef PRODUCT // Helpful for debugging #define SATB_PRINTER_BUFFER_SIZE 256 void SATBMarkQueueSet::print_all(const char* msg) { char buffer[SATB_PRINTER_BUFFER_SIZE]; assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); tty->cr(); tty->print_cr("SATB BUFFERS [%s]", msg); BufferNode* nd = _list.top(); int i = 0; while (nd != NULL) { void** buf = BufferNode::make_buffer_from_node(nd); os::snprintf(buffer, SATB_PRINTER_BUFFER_SIZE, "Enqueued: %d", i); print_satb_buffer(buffer, buf, nd->index(), buffer_size()); nd = nd->next(); i += 1; } class PrintThreadClosure : public ThreadClosure { SATBMarkQueueSet* _qset; char* _buffer; public: PrintThreadClosure(SATBMarkQueueSet* qset, char* buffer) : _qset(qset), _buffer(buffer) {} virtual void do_thread(Thread* t) { os::snprintf(_buffer, SATB_PRINTER_BUFFER_SIZE, "Thread: %s", t->name()); _qset->satb_queue_for_thread(t).print(_buffer); } } closure(this, buffer); Threads::threads_do(&closure); tty->cr(); } #endif // PRODUCT void SATBMarkQueueSet::abandon_completed_buffers() { Atomic::store(size_t(0), &_count_and_process_flag); BufferNode* buffers_to_delete = _list.pop_all(); while (buffers_to_delete != NULL) { BufferNode* bn = buffers_to_delete; buffers_to_delete = bn->next(); bn->set_next(NULL); deallocate_buffer(bn); } } void SATBMarkQueueSet::abandon_partial_marking() { assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); abandon_completed_buffers(); class AbandonThreadQueueClosure : public ThreadClosure { SATBMarkQueueSet* _qset; public: AbandonThreadQueueClosure(SATBMarkQueueSet* qset) : _qset(qset) {} virtual void do_thread(Thread* t) { _qset->satb_queue_for_thread(t).reset(); } } closure(this); Threads::threads_do(&closure); }