1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1DirtyCardQueue.hpp"
  41 #include "gc/g1/g1EvacStats.inline.hpp"
  42 #include "gc/g1/g1FullCollector.hpp"
  43 #include "gc/g1/g1GCPhaseTimes.hpp"
  44 #include "gc/g1/g1HeapSizingPolicy.hpp"
  45 #include "gc/g1/g1HeapTransition.hpp"
  46 #include "gc/g1/g1HeapVerifier.hpp"
  47 #include "gc/g1/g1HotCardCache.hpp"
  48 #include "gc/g1/g1MemoryPool.hpp"
  49 #include "gc/g1/g1OopClosures.inline.hpp"
  50 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  51 #include "gc/g1/g1Policy.hpp"
  52 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  53 #include "gc/g1/g1RemSet.hpp"
  54 #include "gc/g1/g1RootClosures.hpp"
  55 #include "gc/g1/g1RootProcessor.hpp"
  56 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  57 #include "gc/g1/g1StringDedup.hpp"
  58 #include "gc/g1/g1ThreadLocalData.hpp"
  59 #include "gc/g1/g1YCTypes.hpp"
  60 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  61 #include "gc/g1/g1VMOperations.hpp"
  62 #include "gc/g1/heapRegion.inline.hpp"
  63 #include "gc/g1/heapRegionRemSet.hpp"
  64 #include "gc/g1/heapRegionSet.inline.hpp"
  65 #include "gc/shared/gcBehaviours.hpp"
  66 #include "gc/shared/gcHeapSummary.hpp"
  67 #include "gc/shared/gcId.hpp"
  68 #include "gc/shared/gcLocker.hpp"
  69 #include "gc/shared/gcTimer.hpp"
  70 #include "gc/shared/gcTrace.hpp"
  71 #include "gc/shared/gcTraceTime.inline.hpp"
  72 #include "gc/shared/generationSpec.hpp"
  73 #include "gc/shared/isGCActiveMark.hpp"
  74 #include "gc/shared/oopStorageParState.hpp"
  75 #include "gc/shared/parallelCleaning.hpp"
  76 #include "gc/shared/preservedMarks.inline.hpp"
  77 #include "gc/shared/suspendibleThreadSet.hpp"
  78 #include "gc/shared/referenceProcessor.inline.hpp"
  79 #include "gc/shared/taskqueue.inline.hpp"
  80 #include "gc/shared/weakProcessor.inline.hpp"
  81 #include "gc/shared/workerPolicy.hpp"
  82 #include "logging/log.hpp"
  83 #include "memory/allocation.hpp"
  84 #include "memory/iterator.hpp"
  85 #include "memory/resourceArea.hpp"
  86 #include "memory/universe.hpp"
  87 #include "oops/access.inline.hpp"
  88 #include "oops/compressedOops.inline.hpp"
  89 #include "oops/oop.inline.hpp"
  90 #include "runtime/atomic.hpp"
  91 #include "runtime/flags/flagSetting.hpp"
  92 #include "runtime/handles.inline.hpp"
  93 #include "runtime/init.hpp"
  94 #include "runtime/orderAccess.hpp"
  95 #include "runtime/threadSMR.hpp"
  96 #include "runtime/vmThread.hpp"
  97 #include "utilities/align.hpp"
  98 #include "utilities/globalDefinitions.hpp"
  99 #include "utilities/stack.inline.hpp"
 100 
 101 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 102 
 103 // INVARIANTS/NOTES
 104 //
 105 // All allocation activity covered by the G1CollectedHeap interface is
 106 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 107 // and allocate_new_tlab, which are the "entry" points to the
 108 // allocation code from the rest of the JVM.  (Note that this does not
 109 // apply to TLAB allocation, which is not part of this interface: it
 110 // is done by clients of this interface.)
 111 
 112 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 113  private:
 114   size_t _num_dirtied;
 115   G1CollectedHeap* _g1h;
 116   G1CardTable* _g1_ct;
 117 
 118   HeapRegion* region_for_card(CardValue* card_ptr) const {
 119     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 120   }
 121 
 122   bool will_become_free(HeapRegion* hr) const {
 123     // A region will be freed by free_collection_set if the region is in the
 124     // collection set and has not had an evacuation failure.
 125     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 126   }
 127 
 128  public:
 129   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 130     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 131 
 132   bool do_card_ptr(CardValue* card_ptr, uint worker_i) {
 133     HeapRegion* hr = region_for_card(card_ptr);
 134 
 135     // Should only dirty cards in regions that won't be freed.
 136     if (!will_become_free(hr)) {
 137       *card_ptr = G1CardTable::dirty_card_val();
 138       _num_dirtied++;
 139     }
 140 
 141     return true;
 142   }
 143 
 144   size_t num_dirtied()   const { return _num_dirtied; }
 145 };
 146 
 147 
 148 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 149   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 150 }
 151 
 152 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 153   // The from card cache is not the memory that is actually committed. So we cannot
 154   // take advantage of the zero_filled parameter.
 155   reset_from_card_cache(start_idx, num_regions);
 156 }
 157 
 158 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 159   Ticks start = Ticks::now();
 160   workers()->run_task(task, workers()->active_workers());
 161   return Ticks::now() - start;
 162 }
 163 
 164 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 165                                              MemRegion mr) {
 166   return new HeapRegion(hrs_index, bot(), mr);
 167 }
 168 
 169 // Private methods.
 170 
 171 HeapRegion* G1CollectedHeap::new_region(size_t word_size, HeapRegionType type, bool do_expand) {
 172   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 173          "the only time we use this to allocate a humongous region is "
 174          "when we are allocating a single humongous region");
 175 
 176   HeapRegion* res = _hrm->allocate_free_region(type);
 177 
 178   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 179     // Currently, only attempts to allocate GC alloc regions set
 180     // do_expand to true. So, we should only reach here during a
 181     // safepoint. If this assumption changes we might have to
 182     // reconsider the use of _expand_heap_after_alloc_failure.
 183     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 184 
 185     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 186                               word_size * HeapWordSize);
 187 
 188     if (expand(word_size * HeapWordSize)) {
 189       // Given that expand() succeeded in expanding the heap, and we
 190       // always expand the heap by an amount aligned to the heap
 191       // region size, the free list should in theory not be empty.
 192       // In either case allocate_free_region() will check for NULL.
 193       res = _hrm->allocate_free_region(type);
 194     } else {
 195       _expand_heap_after_alloc_failure = false;
 196     }
 197   }
 198   return res;
 199 }
 200 
 201 HeapWord*
 202 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 203                                                            uint num_regions,
 204                                                            size_t word_size) {
 205   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 206   assert(is_humongous(word_size), "word_size should be humongous");
 207   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 208 
 209   // Index of last region in the series.
 210   uint last = first + num_regions - 1;
 211 
 212   // We need to initialize the region(s) we just discovered. This is
 213   // a bit tricky given that it can happen concurrently with
 214   // refinement threads refining cards on these regions and
 215   // potentially wanting to refine the BOT as they are scanning
 216   // those cards (this can happen shortly after a cleanup; see CR
 217   // 6991377). So we have to set up the region(s) carefully and in
 218   // a specific order.
 219 
 220   // The word size sum of all the regions we will allocate.
 221   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 222   assert(word_size <= word_size_sum, "sanity");
 223 
 224   // This will be the "starts humongous" region.
 225   HeapRegion* first_hr = region_at(first);
 226   // The header of the new object will be placed at the bottom of
 227   // the first region.
 228   HeapWord* new_obj = first_hr->bottom();
 229   // This will be the new top of the new object.
 230   HeapWord* obj_top = new_obj + word_size;
 231 
 232   // First, we need to zero the header of the space that we will be
 233   // allocating. When we update top further down, some refinement
 234   // threads might try to scan the region. By zeroing the header we
 235   // ensure that any thread that will try to scan the region will
 236   // come across the zero klass word and bail out.
 237   //
 238   // NOTE: It would not have been correct to have used
 239   // CollectedHeap::fill_with_object() and make the space look like
 240   // an int array. The thread that is doing the allocation will
 241   // later update the object header to a potentially different array
 242   // type and, for a very short period of time, the klass and length
 243   // fields will be inconsistent. This could cause a refinement
 244   // thread to calculate the object size incorrectly.
 245   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 246 
 247   // Next, pad out the unused tail of the last region with filler
 248   // objects, for improved usage accounting.
 249   // How many words we use for filler objects.
 250   size_t word_fill_size = word_size_sum - word_size;
 251 
 252   // How many words memory we "waste" which cannot hold a filler object.
 253   size_t words_not_fillable = 0;
 254 
 255   if (word_fill_size >= min_fill_size()) {
 256     fill_with_objects(obj_top, word_fill_size);
 257   } else if (word_fill_size > 0) {
 258     // We have space to fill, but we cannot fit an object there.
 259     words_not_fillable = word_fill_size;
 260     word_fill_size = 0;
 261   }
 262 
 263   // We will set up the first region as "starts humongous". This
 264   // will also update the BOT covering all the regions to reflect
 265   // that there is a single object that starts at the bottom of the
 266   // first region.
 267   first_hr->set_starts_humongous(obj_top, word_fill_size);
 268   _policy->remset_tracker()->update_at_allocate(first_hr);
 269   // Then, if there are any, we will set up the "continues
 270   // humongous" regions.
 271   HeapRegion* hr = NULL;
 272   for (uint i = first + 1; i <= last; ++i) {
 273     hr = region_at(i);
 274     hr->set_continues_humongous(first_hr);
 275     _policy->remset_tracker()->update_at_allocate(hr);
 276   }
 277 
 278   // Up to this point no concurrent thread would have been able to
 279   // do any scanning on any region in this series. All the top
 280   // fields still point to bottom, so the intersection between
 281   // [bottom,top] and [card_start,card_end] will be empty. Before we
 282   // update the top fields, we'll do a storestore to make sure that
 283   // no thread sees the update to top before the zeroing of the
 284   // object header and the BOT initialization.
 285   OrderAccess::storestore();
 286 
 287   // Now, we will update the top fields of the "continues humongous"
 288   // regions except the last one.
 289   for (uint i = first; i < last; ++i) {
 290     hr = region_at(i);
 291     hr->set_top(hr->end());
 292   }
 293 
 294   hr = region_at(last);
 295   // If we cannot fit a filler object, we must set top to the end
 296   // of the humongous object, otherwise we cannot iterate the heap
 297   // and the BOT will not be complete.
 298   hr->set_top(hr->end() - words_not_fillable);
 299 
 300   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 301          "obj_top should be in last region");
 302 
 303   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 304 
 305   assert(words_not_fillable == 0 ||
 306          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 307          "Miscalculation in humongous allocation");
 308 
 309   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 310 
 311   for (uint i = first; i <= last; ++i) {
 312     hr = region_at(i);
 313     _humongous_set.add(hr);
 314     _hr_printer.alloc(hr);
 315   }
 316 
 317   return new_obj;
 318 }
 319 
 320 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 321   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 322   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 323 }
 324 
 325 // If could fit into free regions w/o expansion, try.
 326 // Otherwise, if can expand, do so.
 327 // Otherwise, if using ex regions might help, try with ex given back.
 328 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 329   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 330 
 331   _verifier->verify_region_sets_optional();
 332 
 333   uint first = G1_NO_HRM_INDEX;
 334   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 335 
 336   if (obj_regions == 1) {
 337     // Only one region to allocate, try to use a fast path by directly allocating
 338     // from the free lists. Do not try to expand here, we will potentially do that
 339     // later.
 340     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 341     if (hr != NULL) {
 342       first = hr->hrm_index();
 343     }
 344   } else {
 345     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 346     // are lucky enough to find some.
 347     first = _hrm->find_contiguous_only_empty(obj_regions);
 348     if (first != G1_NO_HRM_INDEX) {
 349       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 350     }
 351   }
 352 
 353   if (first == G1_NO_HRM_INDEX) {
 354     // Policy: We could not find enough regions for the humongous object in the
 355     // free list. Look through the heap to find a mix of free and uncommitted regions.
 356     // If so, try expansion.
 357     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 358     if (first != G1_NO_HRM_INDEX) {
 359       // We found something. Make sure these regions are committed, i.e. expand
 360       // the heap. Alternatively we could do a defragmentation GC.
 361       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 362                                     word_size * HeapWordSize);
 363 
 364       _hrm->expand_at(first, obj_regions, workers());
 365       policy()->record_new_heap_size(num_regions());
 366 
 367 #ifdef ASSERT
 368       for (uint i = first; i < first + obj_regions; ++i) {
 369         HeapRegion* hr = region_at(i);
 370         assert(hr->is_free(), "sanity");
 371         assert(hr->is_empty(), "sanity");
 372         assert(is_on_master_free_list(hr), "sanity");
 373       }
 374 #endif
 375       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 376     } else {
 377       // Policy: Potentially trigger a defragmentation GC.
 378     }
 379   }
 380 
 381   HeapWord* result = NULL;
 382   if (first != G1_NO_HRM_INDEX) {
 383     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 384     assert(result != NULL, "it should always return a valid result");
 385 
 386     // A successful humongous object allocation changes the used space
 387     // information of the old generation so we need to recalculate the
 388     // sizes and update the jstat counters here.
 389     g1mm()->update_sizes();
 390   }
 391 
 392   _verifier->verify_region_sets_optional();
 393 
 394   return result;
 395 }
 396 
 397 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 398                                              size_t requested_size,
 399                                              size_t* actual_size) {
 400   assert_heap_not_locked_and_not_at_safepoint();
 401   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 402 
 403   return attempt_allocation(min_size, requested_size, actual_size);
 404 }
 405 
 406 HeapWord*
 407 G1CollectedHeap::mem_allocate(size_t word_size,
 408                               bool*  gc_overhead_limit_was_exceeded) {
 409   assert_heap_not_locked_and_not_at_safepoint();
 410 
 411   if (is_humongous(word_size)) {
 412     return attempt_allocation_humongous(word_size);
 413   }
 414   size_t dummy = 0;
 415   return attempt_allocation(word_size, word_size, &dummy);
 416 }
 417 
 418 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 419   ResourceMark rm; // For retrieving the thread names in log messages.
 420 
 421   // Make sure you read the note in attempt_allocation_humongous().
 422 
 423   assert_heap_not_locked_and_not_at_safepoint();
 424   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 425          "be called for humongous allocation requests");
 426 
 427   // We should only get here after the first-level allocation attempt
 428   // (attempt_allocation()) failed to allocate.
 429 
 430   // We will loop until a) we manage to successfully perform the
 431   // allocation or b) we successfully schedule a collection which
 432   // fails to perform the allocation. b) is the only case when we'll
 433   // return NULL.
 434   HeapWord* result = NULL;
 435   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 436     bool should_try_gc;
 437     uint gc_count_before;
 438 
 439     {
 440       MutexLocker x(Heap_lock);
 441       result = _allocator->attempt_allocation_locked(word_size);
 442       if (result != NULL) {
 443         return result;
 444       }
 445 
 446       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 447       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 448       // waiting because the GCLocker is active to not wait too long.
 449       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 450         // No need for an ergo message here, can_expand_young_list() does this when
 451         // it returns true.
 452         result = _allocator->attempt_allocation_force(word_size);
 453         if (result != NULL) {
 454           return result;
 455         }
 456       }
 457       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 458       // the GCLocker initiated GC has been performed and then retry. This includes
 459       // the case when the GC Locker is not active but has not been performed.
 460       should_try_gc = !GCLocker::needs_gc();
 461       // Read the GC count while still holding the Heap_lock.
 462       gc_count_before = total_collections();
 463     }
 464 
 465     if (should_try_gc) {
 466       bool succeeded;
 467       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 468                                    GCCause::_g1_inc_collection_pause);
 469       if (result != NULL) {
 470         assert(succeeded, "only way to get back a non-NULL result");
 471         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 472                              Thread::current()->name(), p2i(result));
 473         return result;
 474       }
 475 
 476       if (succeeded) {
 477         // We successfully scheduled a collection which failed to allocate. No
 478         // point in trying to allocate further. We'll just return NULL.
 479         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 480                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 481         return NULL;
 482       }
 483       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 484                            Thread::current()->name(), word_size);
 485     } else {
 486       // Failed to schedule a collection.
 487       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 488         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 489                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 490         return NULL;
 491       }
 492       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 493       // The GCLocker is either active or the GCLocker initiated
 494       // GC has not yet been performed. Stall until it is and
 495       // then retry the allocation.
 496       GCLocker::stall_until_clear();
 497       gclocker_retry_count += 1;
 498     }
 499 
 500     // We can reach here if we were unsuccessful in scheduling a
 501     // collection (because another thread beat us to it) or if we were
 502     // stalled due to the GC locker. In either can we should retry the
 503     // allocation attempt in case another thread successfully
 504     // performed a collection and reclaimed enough space. We do the
 505     // first attempt (without holding the Heap_lock) here and the
 506     // follow-on attempt will be at the start of the next loop
 507     // iteration (after taking the Heap_lock).
 508     size_t dummy = 0;
 509     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 510     if (result != NULL) {
 511       return result;
 512     }
 513 
 514     // Give a warning if we seem to be looping forever.
 515     if ((QueuedAllocationWarningCount > 0) &&
 516         (try_count % QueuedAllocationWarningCount == 0)) {
 517       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 518                              Thread::current()->name(), try_count, word_size);
 519     }
 520   }
 521 
 522   ShouldNotReachHere();
 523   return NULL;
 524 }
 525 
 526 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 527   assert_at_safepoint_on_vm_thread();
 528   if (_archive_allocator == NULL) {
 529     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 530   }
 531 }
 532 
 533 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 534   // Allocations in archive regions cannot be of a size that would be considered
 535   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 536   // may be different at archive-restore time.
 537   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 538 }
 539 
 540 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 541   assert_at_safepoint_on_vm_thread();
 542   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 543   if (is_archive_alloc_too_large(word_size)) {
 544     return NULL;
 545   }
 546   return _archive_allocator->archive_mem_allocate(word_size);
 547 }
 548 
 549 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 550                                               size_t end_alignment_in_bytes) {
 551   assert_at_safepoint_on_vm_thread();
 552   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 553 
 554   // Call complete_archive to do the real work, filling in the MemRegion
 555   // array with the archive regions.
 556   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 557   delete _archive_allocator;
 558   _archive_allocator = NULL;
 559 }
 560 
 561 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 562   assert(ranges != NULL, "MemRegion array NULL");
 563   assert(count != 0, "No MemRegions provided");
 564   MemRegion reserved = _hrm->reserved();
 565   for (size_t i = 0; i < count; i++) {
 566     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 567       return false;
 568     }
 569   }
 570   return true;
 571 }
 572 
 573 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 574                                             size_t count,
 575                                             bool open) {
 576   assert(!is_init_completed(), "Expect to be called at JVM init time");
 577   assert(ranges != NULL, "MemRegion array NULL");
 578   assert(count != 0, "No MemRegions provided");
 579   MutexLocker x(Heap_lock);
 580 
 581   MemRegion reserved = _hrm->reserved();
 582   HeapWord* prev_last_addr = NULL;
 583   HeapRegion* prev_last_region = NULL;
 584 
 585   // Temporarily disable pretouching of heap pages. This interface is used
 586   // when mmap'ing archived heap data in, so pre-touching is wasted.
 587   FlagSetting fs(AlwaysPreTouch, false);
 588 
 589   // Enable archive object checking used by G1MarkSweep. We have to let it know
 590   // about each archive range, so that objects in those ranges aren't marked.
 591   G1ArchiveAllocator::enable_archive_object_check();
 592 
 593   // For each specified MemRegion range, allocate the corresponding G1
 594   // regions and mark them as archive regions. We expect the ranges
 595   // in ascending starting address order, without overlap.
 596   for (size_t i = 0; i < count; i++) {
 597     MemRegion curr_range = ranges[i];
 598     HeapWord* start_address = curr_range.start();
 599     size_t word_size = curr_range.word_size();
 600     HeapWord* last_address = curr_range.last();
 601     size_t commits = 0;
 602 
 603     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 604               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 605               p2i(start_address), p2i(last_address));
 606     guarantee(start_address > prev_last_addr,
 607               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 608               p2i(start_address), p2i(prev_last_addr));
 609     prev_last_addr = last_address;
 610 
 611     // Check for ranges that start in the same G1 region in which the previous
 612     // range ended, and adjust the start address so we don't try to allocate
 613     // the same region again. If the current range is entirely within that
 614     // region, skip it, just adjusting the recorded top.
 615     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 616     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 617       start_address = start_region->end();
 618       if (start_address > last_address) {
 619         increase_used(word_size * HeapWordSize);
 620         start_region->set_top(last_address + 1);
 621         continue;
 622       }
 623       start_region->set_top(start_address);
 624       curr_range = MemRegion(start_address, last_address + 1);
 625       start_region = _hrm->addr_to_region(start_address);
 626     }
 627 
 628     // Perform the actual region allocation, exiting if it fails.
 629     // Then note how much new space we have allocated.
 630     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 631       return false;
 632     }
 633     increase_used(word_size * HeapWordSize);
 634     if (commits != 0) {
 635       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 636                                 HeapRegion::GrainWords * HeapWordSize * commits);
 637 
 638     }
 639 
 640     // Mark each G1 region touched by the range as archive, add it to
 641     // the old set, and set top.
 642     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 643     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 644     prev_last_region = last_region;
 645 
 646     while (curr_region != NULL) {
 647       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 648              "Region already in use (index %u)", curr_region->hrm_index());
 649       if (open) {
 650         curr_region->set_open_archive();
 651       } else {
 652         curr_region->set_closed_archive();
 653       }
 654       _hr_printer.alloc(curr_region);
 655       _archive_set.add(curr_region);
 656       HeapWord* top;
 657       HeapRegion* next_region;
 658       if (curr_region != last_region) {
 659         top = curr_region->end();
 660         next_region = _hrm->next_region_in_heap(curr_region);
 661       } else {
 662         top = last_address + 1;
 663         next_region = NULL;
 664       }
 665       curr_region->set_top(top);
 666       curr_region->set_first_dead(top);
 667       curr_region->set_end_of_live(top);
 668       curr_region = next_region;
 669     }
 670 
 671     // Notify mark-sweep of the archive
 672     G1ArchiveAllocator::set_range_archive(curr_range, open);
 673   }
 674   return true;
 675 }
 676 
 677 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 678   assert(!is_init_completed(), "Expect to be called at JVM init time");
 679   assert(ranges != NULL, "MemRegion array NULL");
 680   assert(count != 0, "No MemRegions provided");
 681   MemRegion reserved = _hrm->reserved();
 682   HeapWord *prev_last_addr = NULL;
 683   HeapRegion* prev_last_region = NULL;
 684 
 685   // For each MemRegion, create filler objects, if needed, in the G1 regions
 686   // that contain the address range. The address range actually within the
 687   // MemRegion will not be modified. That is assumed to have been initialized
 688   // elsewhere, probably via an mmap of archived heap data.
 689   MutexLocker x(Heap_lock);
 690   for (size_t i = 0; i < count; i++) {
 691     HeapWord* start_address = ranges[i].start();
 692     HeapWord* last_address = ranges[i].last();
 693 
 694     assert(reserved.contains(start_address) && reserved.contains(last_address),
 695            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 696            p2i(start_address), p2i(last_address));
 697     assert(start_address > prev_last_addr,
 698            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 699            p2i(start_address), p2i(prev_last_addr));
 700 
 701     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 702     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 703     HeapWord* bottom_address = start_region->bottom();
 704 
 705     // Check for a range beginning in the same region in which the
 706     // previous one ended.
 707     if (start_region == prev_last_region) {
 708       bottom_address = prev_last_addr + 1;
 709     }
 710 
 711     // Verify that the regions were all marked as archive regions by
 712     // alloc_archive_regions.
 713     HeapRegion* curr_region = start_region;
 714     while (curr_region != NULL) {
 715       guarantee(curr_region->is_archive(),
 716                 "Expected archive region at index %u", curr_region->hrm_index());
 717       if (curr_region != last_region) {
 718         curr_region = _hrm->next_region_in_heap(curr_region);
 719       } else {
 720         curr_region = NULL;
 721       }
 722     }
 723 
 724     prev_last_addr = last_address;
 725     prev_last_region = last_region;
 726 
 727     // Fill the memory below the allocated range with dummy object(s),
 728     // if the region bottom does not match the range start, or if the previous
 729     // range ended within the same G1 region, and there is a gap.
 730     if (start_address != bottom_address) {
 731       size_t fill_size = pointer_delta(start_address, bottom_address);
 732       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 733       increase_used(fill_size * HeapWordSize);
 734     }
 735   }
 736 }
 737 
 738 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 739                                                      size_t desired_word_size,
 740                                                      size_t* actual_word_size) {
 741   assert_heap_not_locked_and_not_at_safepoint();
 742   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 743          "be called for humongous allocation requests");
 744 
 745   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 746 
 747   if (result == NULL) {
 748     *actual_word_size = desired_word_size;
 749     result = attempt_allocation_slow(desired_word_size);
 750   }
 751 
 752   assert_heap_not_locked();
 753   if (result != NULL) {
 754     assert(*actual_word_size != 0, "Actual size must have been set here");
 755     dirty_young_block(result, *actual_word_size);
 756   } else {
 757     *actual_word_size = 0;
 758   }
 759 
 760   return result;
 761 }
 762 
 763 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
 764   assert(!is_init_completed(), "Expect to be called at JVM init time");
 765   assert(ranges != NULL, "MemRegion array NULL");
 766   assert(count != 0, "No MemRegions provided");
 767   MemRegion reserved = _hrm->reserved();
 768   HeapWord* prev_last_addr = NULL;
 769   HeapRegion* prev_last_region = NULL;
 770   size_t size_used = 0;
 771   size_t uncommitted_regions = 0;
 772 
 773   // For each Memregion, free the G1 regions that constitute it, and
 774   // notify mark-sweep that the range is no longer to be considered 'archive.'
 775   MutexLocker x(Heap_lock);
 776   for (size_t i = 0; i < count; i++) {
 777     HeapWord* start_address = ranges[i].start();
 778     HeapWord* last_address = ranges[i].last();
 779 
 780     assert(reserved.contains(start_address) && reserved.contains(last_address),
 781            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 782            p2i(start_address), p2i(last_address));
 783     assert(start_address > prev_last_addr,
 784            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 785            p2i(start_address), p2i(prev_last_addr));
 786     size_used += ranges[i].byte_size();
 787     prev_last_addr = last_address;
 788 
 789     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 790     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 791 
 792     // Check for ranges that start in the same G1 region in which the previous
 793     // range ended, and adjust the start address so we don't try to free
 794     // the same region again. If the current range is entirely within that
 795     // region, skip it.
 796     if (start_region == prev_last_region) {
 797       start_address = start_region->end();
 798       if (start_address > last_address) {
 799         continue;
 800       }
 801       start_region = _hrm->addr_to_region(start_address);
 802     }
 803     prev_last_region = last_region;
 804 
 805     // After verifying that each region was marked as an archive region by
 806     // alloc_archive_regions, set it free and empty and uncommit it.
 807     HeapRegion* curr_region = start_region;
 808     while (curr_region != NULL) {
 809       guarantee(curr_region->is_archive(),
 810                 "Expected archive region at index %u", curr_region->hrm_index());
 811       uint curr_index = curr_region->hrm_index();
 812       _archive_set.remove(curr_region);
 813       curr_region->set_free();
 814       curr_region->set_top(curr_region->bottom());
 815       if (curr_region != last_region) {
 816         curr_region = _hrm->next_region_in_heap(curr_region);
 817       } else {
 818         curr_region = NULL;
 819       }
 820       _hrm->shrink_at(curr_index, 1);
 821       uncommitted_regions++;
 822     }
 823 
 824     // Notify mark-sweep that this is no longer an archive range.
 825     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
 826   }
 827 
 828   if (uncommitted_regions != 0) {
 829     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 830                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 831   }
 832   decrease_used(size_used);
 833 }
 834 
 835 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 836   assert(obj != NULL, "archived obj is NULL");
 837   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 838 
 839   // Loading an archived object makes it strongly reachable. If it is
 840   // loaded during concurrent marking, it must be enqueued to the SATB
 841   // queue, shading the previously white object gray.
 842   G1BarrierSet::enqueue(obj);
 843 
 844   return obj;
 845 }
 846 
 847 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 848   ResourceMark rm; // For retrieving the thread names in log messages.
 849 
 850   // The structure of this method has a lot of similarities to
 851   // attempt_allocation_slow(). The reason these two were not merged
 852   // into a single one is that such a method would require several "if
 853   // allocation is not humongous do this, otherwise do that"
 854   // conditional paths which would obscure its flow. In fact, an early
 855   // version of this code did use a unified method which was harder to
 856   // follow and, as a result, it had subtle bugs that were hard to
 857   // track down. So keeping these two methods separate allows each to
 858   // be more readable. It will be good to keep these two in sync as
 859   // much as possible.
 860 
 861   assert_heap_not_locked_and_not_at_safepoint();
 862   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 863          "should only be called for humongous allocations");
 864 
 865   // Humongous objects can exhaust the heap quickly, so we should check if we
 866   // need to start a marking cycle at each humongous object allocation. We do
 867   // the check before we do the actual allocation. The reason for doing it
 868   // before the allocation is that we avoid having to keep track of the newly
 869   // allocated memory while we do a GC.
 870   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 871                                            word_size)) {
 872     collect(GCCause::_g1_humongous_allocation);
 873   }
 874 
 875   // We will loop until a) we manage to successfully perform the
 876   // allocation or b) we successfully schedule a collection which
 877   // fails to perform the allocation. b) is the only case when we'll
 878   // return NULL.
 879   HeapWord* result = NULL;
 880   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 881     bool should_try_gc;
 882     uint gc_count_before;
 883 
 884 
 885     {
 886       MutexLocker x(Heap_lock);
 887 
 888       // Given that humongous objects are not allocated in young
 889       // regions, we'll first try to do the allocation without doing a
 890       // collection hoping that there's enough space in the heap.
 891       result = humongous_obj_allocate(word_size);
 892       if (result != NULL) {
 893         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 894         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 895         return result;
 896       }
 897 
 898       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 899       // the GCLocker initiated GC has been performed and then retry. This includes
 900       // the case when the GC Locker is not active but has not been performed.
 901       should_try_gc = !GCLocker::needs_gc();
 902       // Read the GC count while still holding the Heap_lock.
 903       gc_count_before = total_collections();
 904     }
 905 
 906     if (should_try_gc) {
 907       bool succeeded;
 908       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 909                                    GCCause::_g1_humongous_allocation);
 910       if (result != NULL) {
 911         assert(succeeded, "only way to get back a non-NULL result");
 912         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 913                              Thread::current()->name(), p2i(result));
 914         return result;
 915       }
 916 
 917       if (succeeded) {
 918         // We successfully scheduled a collection which failed to allocate. No
 919         // point in trying to allocate further. We'll just return NULL.
 920         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 921                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 922         return NULL;
 923       }
 924       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 925                            Thread::current()->name(), word_size);
 926     } else {
 927       // Failed to schedule a collection.
 928       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 929         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 930                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 931         return NULL;
 932       }
 933       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 934       // The GCLocker is either active or the GCLocker initiated
 935       // GC has not yet been performed. Stall until it is and
 936       // then retry the allocation.
 937       GCLocker::stall_until_clear();
 938       gclocker_retry_count += 1;
 939     }
 940 
 941 
 942     // We can reach here if we were unsuccessful in scheduling a
 943     // collection (because another thread beat us to it) or if we were
 944     // stalled due to the GC locker. In either can we should retry the
 945     // allocation attempt in case another thread successfully
 946     // performed a collection and reclaimed enough space.
 947     // Humongous object allocation always needs a lock, so we wait for the retry
 948     // in the next iteration of the loop, unlike for the regular iteration case.
 949     // Give a warning if we seem to be looping forever.
 950 
 951     if ((QueuedAllocationWarningCount > 0) &&
 952         (try_count % QueuedAllocationWarningCount == 0)) {
 953       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 954                              Thread::current()->name(), try_count, word_size);
 955     }
 956   }
 957 
 958   ShouldNotReachHere();
 959   return NULL;
 960 }
 961 
 962 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 963                                                            bool expect_null_mutator_alloc_region) {
 964   assert_at_safepoint_on_vm_thread();
 965   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 966          "the current alloc region was unexpectedly found to be non-NULL");
 967 
 968   if (!is_humongous(word_size)) {
 969     return _allocator->attempt_allocation_locked(word_size);
 970   } else {
 971     HeapWord* result = humongous_obj_allocate(word_size);
 972     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 973       collector_state()->set_initiate_conc_mark_if_possible(true);
 974     }
 975     return result;
 976   }
 977 
 978   ShouldNotReachHere();
 979 }
 980 
 981 class PostCompactionPrinterClosure: public HeapRegionClosure {
 982 private:
 983   G1HRPrinter* _hr_printer;
 984 public:
 985   bool do_heap_region(HeapRegion* hr) {
 986     assert(!hr->is_young(), "not expecting to find young regions");
 987     _hr_printer->post_compaction(hr);
 988     return false;
 989   }
 990 
 991   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 992     : _hr_printer(hr_printer) { }
 993 };
 994 
 995 void G1CollectedHeap::print_hrm_post_compaction() {
 996   if (_hr_printer.is_active()) {
 997     PostCompactionPrinterClosure cl(hr_printer());
 998     heap_region_iterate(&cl);
 999   }
1000 }
1001 
1002 void G1CollectedHeap::abort_concurrent_cycle() {
1003   // If we start the compaction before the CM threads finish
1004   // scanning the root regions we might trip them over as we'll
1005   // be moving objects / updating references. So let's wait until
1006   // they are done. By telling them to abort, they should complete
1007   // early.
1008   _cm->root_regions()->abort();
1009   _cm->root_regions()->wait_until_scan_finished();
1010 
1011   // Disable discovery and empty the discovered lists
1012   // for the CM ref processor.
1013   _ref_processor_cm->disable_discovery();
1014   _ref_processor_cm->abandon_partial_discovery();
1015   _ref_processor_cm->verify_no_references_recorded();
1016 
1017   // Abandon current iterations of concurrent marking and concurrent
1018   // refinement, if any are in progress.
1019   concurrent_mark()->concurrent_cycle_abort();
1020 }
1021 
1022 void G1CollectedHeap::prepare_heap_for_full_collection() {
1023   // Make sure we'll choose a new allocation region afterwards.
1024   _allocator->release_mutator_alloc_region();
1025   _allocator->abandon_gc_alloc_regions();
1026 
1027   // We may have added regions to the current incremental collection
1028   // set between the last GC or pause and now. We need to clear the
1029   // incremental collection set and then start rebuilding it afresh
1030   // after this full GC.
1031   abandon_collection_set(collection_set());
1032 
1033   tear_down_region_sets(false /* free_list_only */);
1034 
1035   hrm()->prepare_for_full_collection_start();
1036 }
1037 
1038 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1039   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1040   assert_used_and_recalculate_used_equal(this);
1041   _verifier->verify_region_sets_optional();
1042   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1043   _verifier->check_bitmaps("Full GC Start");
1044 }
1045 
1046 void G1CollectedHeap::prepare_heap_for_mutators() {
1047   hrm()->prepare_for_full_collection_end();
1048 
1049   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1050   ClassLoaderDataGraph::purge();
1051   MetaspaceUtils::verify_metrics();
1052 
1053   // Prepare heap for normal collections.
1054   assert(num_free_regions() == 0, "we should not have added any free regions");
1055   rebuild_region_sets(false /* free_list_only */);
1056   abort_refinement();
1057   resize_heap_if_necessary();
1058 
1059   // Rebuild the strong code root lists for each region
1060   rebuild_strong_code_roots();
1061 
1062   // Purge code root memory
1063   purge_code_root_memory();
1064 
1065   // Start a new incremental collection set for the next pause
1066   start_new_collection_set();
1067 
1068   _allocator->init_mutator_alloc_region();
1069 
1070   // Post collection state updates.
1071   MetaspaceGC::compute_new_size();
1072 }
1073 
1074 void G1CollectedHeap::abort_refinement() {
1075   if (_hot_card_cache->use_cache()) {
1076     _hot_card_cache->reset_hot_cache();
1077   }
1078 
1079   // Discard all remembered set updates.
1080   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1081   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1082 }
1083 
1084 void G1CollectedHeap::verify_after_full_collection() {
1085   _hrm->verify_optional();
1086   _verifier->verify_region_sets_optional();
1087   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1088   // Clear the previous marking bitmap, if needed for bitmap verification.
1089   // Note we cannot do this when we clear the next marking bitmap in
1090   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1091   // objects marked during a full GC against the previous bitmap.
1092   // But we need to clear it before calling check_bitmaps below since
1093   // the full GC has compacted objects and updated TAMS but not updated
1094   // the prev bitmap.
1095   if (G1VerifyBitmaps) {
1096     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1097     _cm->clear_prev_bitmap(workers());
1098   }
1099   // This call implicitly verifies that the next bitmap is clear after Full GC.
1100   _verifier->check_bitmaps("Full GC End");
1101 
1102   // At this point there should be no regions in the
1103   // entire heap tagged as young.
1104   assert(check_young_list_empty(), "young list should be empty at this point");
1105 
1106   // Note: since we've just done a full GC, concurrent
1107   // marking is no longer active. Therefore we need not
1108   // re-enable reference discovery for the CM ref processor.
1109   // That will be done at the start of the next marking cycle.
1110   // We also know that the STW processor should no longer
1111   // discover any new references.
1112   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1113   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1114   _ref_processor_stw->verify_no_references_recorded();
1115   _ref_processor_cm->verify_no_references_recorded();
1116 }
1117 
1118 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1119   // Post collection logging.
1120   // We should do this after we potentially resize the heap so
1121   // that all the COMMIT / UNCOMMIT events are generated before
1122   // the compaction events.
1123   print_hrm_post_compaction();
1124   heap_transition->print();
1125   print_heap_after_gc();
1126   print_heap_regions();
1127 #ifdef TRACESPINNING
1128   ParallelTaskTerminator::print_termination_counts();
1129 #endif
1130 }
1131 
1132 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1133                                          bool clear_all_soft_refs) {
1134   assert_at_safepoint_on_vm_thread();
1135 
1136   if (GCLocker::check_active_before_gc()) {
1137     // Full GC was not completed.
1138     return false;
1139   }
1140 
1141   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1142       soft_ref_policy()->should_clear_all_soft_refs();
1143 
1144   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1145   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1146 
1147   collector.prepare_collection();
1148   collector.collect();
1149   collector.complete_collection();
1150 
1151   // Full collection was successfully completed.
1152   return true;
1153 }
1154 
1155 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1156   // Currently, there is no facility in the do_full_collection(bool) API to notify
1157   // the caller that the collection did not succeed (e.g., because it was locked
1158   // out by the GC locker). So, right now, we'll ignore the return value.
1159   bool dummy = do_full_collection(true,                /* explicit_gc */
1160                                   clear_all_soft_refs);
1161 }
1162 
1163 void G1CollectedHeap::resize_heap_if_necessary() {
1164   assert_at_safepoint_on_vm_thread();
1165 
1166   // Capacity, free and used after the GC counted as full regions to
1167   // include the waste in the following calculations.
1168   const size_t capacity_after_gc = capacity();
1169   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1170 
1171   // This is enforced in arguments.cpp.
1172   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1173          "otherwise the code below doesn't make sense");
1174 
1175   // We don't have floating point command-line arguments
1176   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1177   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1178   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1179   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1180 
1181   // We have to be careful here as these two calculations can overflow
1182   // 32-bit size_t's.
1183   double used_after_gc_d = (double) used_after_gc;
1184   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1185   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1186 
1187   // Let's make sure that they are both under the max heap size, which
1188   // by default will make them fit into a size_t.
1189   double desired_capacity_upper_bound = (double) MaxHeapSize;
1190   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1191                                     desired_capacity_upper_bound);
1192   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1193                                     desired_capacity_upper_bound);
1194 
1195   // We can now safely turn them into size_t's.
1196   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1197   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1198 
1199   // This assert only makes sense here, before we adjust them
1200   // with respect to the min and max heap size.
1201   assert(minimum_desired_capacity <= maximum_desired_capacity,
1202          "minimum_desired_capacity = " SIZE_FORMAT ", "
1203          "maximum_desired_capacity = " SIZE_FORMAT,
1204          minimum_desired_capacity, maximum_desired_capacity);
1205 
1206   // Should not be greater than the heap max size. No need to adjust
1207   // it with respect to the heap min size as it's a lower bound (i.e.,
1208   // we'll try to make the capacity larger than it, not smaller).
1209   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1210   // Should not be less than the heap min size. No need to adjust it
1211   // with respect to the heap max size as it's an upper bound (i.e.,
1212   // we'll try to make the capacity smaller than it, not greater).
1213   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1214 
1215   if (capacity_after_gc < minimum_desired_capacity) {
1216     // Don't expand unless it's significant
1217     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1218 
1219     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1220                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1221                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1222                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1223 
1224     expand(expand_bytes, _workers);
1225 
1226     // No expansion, now see if we want to shrink
1227   } else if (capacity_after_gc > maximum_desired_capacity) {
1228     // Capacity too large, compute shrinking size
1229     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1230 
1231     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1232                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1233                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1234                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1235 
1236     shrink(shrink_bytes);
1237   }
1238 }
1239 
1240 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1241                                                             bool do_gc,
1242                                                             bool clear_all_soft_refs,
1243                                                             bool expect_null_mutator_alloc_region,
1244                                                             bool* gc_succeeded) {
1245   *gc_succeeded = true;
1246   // Let's attempt the allocation first.
1247   HeapWord* result =
1248     attempt_allocation_at_safepoint(word_size,
1249                                     expect_null_mutator_alloc_region);
1250   if (result != NULL) {
1251     return result;
1252   }
1253 
1254   // In a G1 heap, we're supposed to keep allocation from failing by
1255   // incremental pauses.  Therefore, at least for now, we'll favor
1256   // expansion over collection.  (This might change in the future if we can
1257   // do something smarter than full collection to satisfy a failed alloc.)
1258   result = expand_and_allocate(word_size);
1259   if (result != NULL) {
1260     return result;
1261   }
1262 
1263   if (do_gc) {
1264     // Expansion didn't work, we'll try to do a Full GC.
1265     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1266                                        clear_all_soft_refs);
1267   }
1268 
1269   return NULL;
1270 }
1271 
1272 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1273                                                      bool* succeeded) {
1274   assert_at_safepoint_on_vm_thread();
1275 
1276   // Attempts to allocate followed by Full GC.
1277   HeapWord* result =
1278     satisfy_failed_allocation_helper(word_size,
1279                                      true,  /* do_gc */
1280                                      false, /* clear_all_soft_refs */
1281                                      false, /* expect_null_mutator_alloc_region */
1282                                      succeeded);
1283 
1284   if (result != NULL || !*succeeded) {
1285     return result;
1286   }
1287 
1288   // Attempts to allocate followed by Full GC that will collect all soft references.
1289   result = satisfy_failed_allocation_helper(word_size,
1290                                             true, /* do_gc */
1291                                             true, /* clear_all_soft_refs */
1292                                             true, /* expect_null_mutator_alloc_region */
1293                                             succeeded);
1294 
1295   if (result != NULL || !*succeeded) {
1296     return result;
1297   }
1298 
1299   // Attempts to allocate, no GC
1300   result = satisfy_failed_allocation_helper(word_size,
1301                                             false, /* do_gc */
1302                                             false, /* clear_all_soft_refs */
1303                                             true,  /* expect_null_mutator_alloc_region */
1304                                             succeeded);
1305 
1306   if (result != NULL) {
1307     return result;
1308   }
1309 
1310   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1311          "Flag should have been handled and cleared prior to this point");
1312 
1313   // What else?  We might try synchronous finalization later.  If the total
1314   // space available is large enough for the allocation, then a more
1315   // complete compaction phase than we've tried so far might be
1316   // appropriate.
1317   return NULL;
1318 }
1319 
1320 // Attempting to expand the heap sufficiently
1321 // to support an allocation of the given "word_size".  If
1322 // successful, perform the allocation and return the address of the
1323 // allocated block, or else "NULL".
1324 
1325 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1326   assert_at_safepoint_on_vm_thread();
1327 
1328   _verifier->verify_region_sets_optional();
1329 
1330   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1331   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1332                             word_size * HeapWordSize);
1333 
1334 
1335   if (expand(expand_bytes, _workers)) {
1336     _hrm->verify_optional();
1337     _verifier->verify_region_sets_optional();
1338     return attempt_allocation_at_safepoint(word_size,
1339                                            false /* expect_null_mutator_alloc_region */);
1340   }
1341   return NULL;
1342 }
1343 
1344 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1345   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1346   aligned_expand_bytes = align_up(aligned_expand_bytes,
1347                                        HeapRegion::GrainBytes);
1348 
1349   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1350                             expand_bytes, aligned_expand_bytes);
1351 
1352   if (is_maximal_no_gc()) {
1353     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1354     return false;
1355   }
1356 
1357   double expand_heap_start_time_sec = os::elapsedTime();
1358   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1359   assert(regions_to_expand > 0, "Must expand by at least one region");
1360 
1361   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1362   if (expand_time_ms != NULL) {
1363     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1364   }
1365 
1366   if (expanded_by > 0) {
1367     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1368     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1369     policy()->record_new_heap_size(num_regions());
1370   } else {
1371     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1372 
1373     // The expansion of the virtual storage space was unsuccessful.
1374     // Let's see if it was because we ran out of swap.
1375     if (G1ExitOnExpansionFailure &&
1376         _hrm->available() >= regions_to_expand) {
1377       // We had head room...
1378       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1379     }
1380   }
1381   return regions_to_expand > 0;
1382 }
1383 
1384 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1385   size_t aligned_shrink_bytes =
1386     ReservedSpace::page_align_size_down(shrink_bytes);
1387   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1388                                          HeapRegion::GrainBytes);
1389   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1390 
1391   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1392   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1393 
1394 
1395   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1396                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1397   if (num_regions_removed > 0) {
1398     policy()->record_new_heap_size(num_regions());
1399   } else {
1400     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1401   }
1402 }
1403 
1404 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1405   _verifier->verify_region_sets_optional();
1406 
1407   // We should only reach here at the end of a Full GC or during Remark which
1408   // means we should not not be holding to any GC alloc regions. The method
1409   // below will make sure of that and do any remaining clean up.
1410   _allocator->abandon_gc_alloc_regions();
1411 
1412   // Instead of tearing down / rebuilding the free lists here, we
1413   // could instead use the remove_all_pending() method on free_list to
1414   // remove only the ones that we need to remove.
1415   tear_down_region_sets(true /* free_list_only */);
1416   shrink_helper(shrink_bytes);
1417   rebuild_region_sets(true /* free_list_only */);
1418 
1419   _hrm->verify_optional();
1420   _verifier->verify_region_sets_optional();
1421 }
1422 
1423 class OldRegionSetChecker : public HeapRegionSetChecker {
1424 public:
1425   void check_mt_safety() {
1426     // Master Old Set MT safety protocol:
1427     // (a) If we're at a safepoint, operations on the master old set
1428     // should be invoked:
1429     // - by the VM thread (which will serialize them), or
1430     // - by the GC workers while holding the FreeList_lock, if we're
1431     //   at a safepoint for an evacuation pause (this lock is taken
1432     //   anyway when an GC alloc region is retired so that a new one
1433     //   is allocated from the free list), or
1434     // - by the GC workers while holding the OldSets_lock, if we're at a
1435     //   safepoint for a cleanup pause.
1436     // (b) If we're not at a safepoint, operations on the master old set
1437     // should be invoked while holding the Heap_lock.
1438 
1439     if (SafepointSynchronize::is_at_safepoint()) {
1440       guarantee(Thread::current()->is_VM_thread() ||
1441                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1442                 "master old set MT safety protocol at a safepoint");
1443     } else {
1444       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1445     }
1446   }
1447   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1448   const char* get_description() { return "Old Regions"; }
1449 };
1450 
1451 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1452 public:
1453   void check_mt_safety() {
1454     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1455               "May only change archive regions during initialization or safepoint.");
1456   }
1457   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1458   const char* get_description() { return "Archive Regions"; }
1459 };
1460 
1461 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1462 public:
1463   void check_mt_safety() {
1464     // Humongous Set MT safety protocol:
1465     // (a) If we're at a safepoint, operations on the master humongous
1466     // set should be invoked by either the VM thread (which will
1467     // serialize them) or by the GC workers while holding the
1468     // OldSets_lock.
1469     // (b) If we're not at a safepoint, operations on the master
1470     // humongous set should be invoked while holding the Heap_lock.
1471 
1472     if (SafepointSynchronize::is_at_safepoint()) {
1473       guarantee(Thread::current()->is_VM_thread() ||
1474                 OldSets_lock->owned_by_self(),
1475                 "master humongous set MT safety protocol at a safepoint");
1476     } else {
1477       guarantee(Heap_lock->owned_by_self(),
1478                 "master humongous set MT safety protocol outside a safepoint");
1479     }
1480   }
1481   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1482   const char* get_description() { return "Humongous Regions"; }
1483 };
1484 
1485 G1CollectedHeap::G1CollectedHeap() :
1486   CollectedHeap(),
1487   _young_gen_sampling_thread(NULL),
1488   _workers(NULL),
1489   _card_table(NULL),
1490   _soft_ref_policy(),
1491   _old_set("Old Region Set", new OldRegionSetChecker()),
1492   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1493   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1494   _bot(NULL),
1495   _listener(),
1496   _hrm(NULL),
1497   _allocator(NULL),
1498   _verifier(NULL),
1499   _summary_bytes_used(0),
1500   _archive_allocator(NULL),
1501   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1502   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1503   _expand_heap_after_alloc_failure(true),
1504   _g1mm(NULL),
1505   _humongous_reclaim_candidates(),
1506   _has_humongous_reclaim_candidates(false),
1507   _hr_printer(),
1508   _collector_state(),
1509   _old_marking_cycles_started(0),
1510   _old_marking_cycles_completed(0),
1511   _eden(),
1512   _survivor(),
1513   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1514   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1515   _policy(G1Policy::create_policy(_gc_timer_stw)),
1516   _heap_sizing_policy(NULL),
1517   _collection_set(this, _policy),
1518   _hot_card_cache(NULL),
1519   _rem_set(NULL),
1520   _dirty_card_queue_set(false),
1521   _cm(NULL),
1522   _cm_thread(NULL),
1523   _cr(NULL),
1524   _task_queues(NULL),
1525   _evacuation_failed(false),
1526   _evacuation_failed_info_array(NULL),
1527   _preserved_marks_set(true /* in_c_heap */),
1528 #ifndef PRODUCT
1529   _evacuation_failure_alot_for_current_gc(false),
1530   _evacuation_failure_alot_gc_number(0),
1531   _evacuation_failure_alot_count(0),
1532 #endif
1533   _ref_processor_stw(NULL),
1534   _is_alive_closure_stw(this),
1535   _is_subject_to_discovery_stw(this),
1536   _ref_processor_cm(NULL),
1537   _is_alive_closure_cm(this),
1538   _is_subject_to_discovery_cm(this),
1539   _region_attr() {
1540 
1541   _verifier = new G1HeapVerifier(this);
1542 
1543   _allocator = new G1Allocator(this);
1544 
1545   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1546 
1547   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1548 
1549   // Override the default _filler_array_max_size so that no humongous filler
1550   // objects are created.
1551   _filler_array_max_size = _humongous_object_threshold_in_words;
1552 
1553   uint n_queues = ParallelGCThreads;
1554   _task_queues = new RefToScanQueueSet(n_queues);
1555 
1556   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1557 
1558   for (uint i = 0; i < n_queues; i++) {
1559     RefToScanQueue* q = new RefToScanQueue();
1560     q->initialize();
1561     _task_queues->register_queue(i, q);
1562     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1563   }
1564 
1565   // Initialize the G1EvacuationFailureALot counters and flags.
1566   NOT_PRODUCT(reset_evacuation_should_fail();)
1567 
1568   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1569 }
1570 
1571 static size_t actual_reserved_page_size(ReservedSpace rs) {
1572   size_t page_size = os::vm_page_size();
1573   if (UseLargePages) {
1574     // There are two ways to manage large page memory.
1575     // 1. OS supports committing large page memory.
1576     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1577     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1578     //    we reserved memory without large page.
1579     if (os::can_commit_large_page_memory() || rs.special()) {
1580       // An alignment at ReservedSpace comes from preferred page size or
1581       // heap alignment, and if the alignment came from heap alignment, it could be
1582       // larger than large pages size. So need to cap with the large page size.
1583       page_size = MIN2(rs.alignment(), os::large_page_size());
1584     }
1585   }
1586 
1587   return page_size;
1588 }
1589 
1590 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1591                                                                  size_t size,
1592                                                                  size_t translation_factor) {
1593   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1594   // Allocate a new reserved space, preferring to use large pages.
1595   ReservedSpace rs(size, preferred_page_size);
1596   size_t page_size = actual_reserved_page_size(rs);
1597   G1RegionToSpaceMapper* result  =
1598     G1RegionToSpaceMapper::create_mapper(rs,
1599                                          size,
1600                                          page_size,
1601                                          HeapRegion::GrainBytes,
1602                                          translation_factor,
1603                                          mtGC);
1604 
1605   os::trace_page_sizes_for_requested_size(description,
1606                                           size,
1607                                           preferred_page_size,
1608                                           page_size,
1609                                           rs.base(),
1610                                           rs.size());
1611 
1612   return result;
1613 }
1614 
1615 jint G1CollectedHeap::initialize_concurrent_refinement() {
1616   jint ecode = JNI_OK;
1617   _cr = G1ConcurrentRefine::create(&ecode);
1618   return ecode;
1619 }
1620 
1621 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1622   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1623   if (_young_gen_sampling_thread->osthread() == NULL) {
1624     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1625     return JNI_ENOMEM;
1626   }
1627   return JNI_OK;
1628 }
1629 
1630 jint G1CollectedHeap::initialize() {
1631   os::enable_vtime();
1632 
1633   // Necessary to satisfy locking discipline assertions.
1634 
1635   MutexLocker x(Heap_lock);
1636 
1637   // While there are no constraints in the GC code that HeapWordSize
1638   // be any particular value, there are multiple other areas in the
1639   // system which believe this to be true (e.g. oop->object_size in some
1640   // cases incorrectly returns the size in wordSize units rather than
1641   // HeapWordSize).
1642   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1643 
1644   size_t init_byte_size = InitialHeapSize;
1645   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1646 
1647   // Ensure that the sizes are properly aligned.
1648   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1649   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1650   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1651 
1652   // Reserve the maximum.
1653 
1654   // When compressed oops are enabled, the preferred heap base
1655   // is calculated by subtracting the requested size from the
1656   // 32Gb boundary and using the result as the base address for
1657   // heap reservation. If the requested size is not aligned to
1658   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1659   // into the ReservedHeapSpace constructor) then the actual
1660   // base of the reserved heap may end up differing from the
1661   // address that was requested (i.e. the preferred heap base).
1662   // If this happens then we could end up using a non-optimal
1663   // compressed oops mode.
1664 
1665   ReservedSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1666                                                  HeapAlignment);
1667 
1668   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1669 
1670   // Create the barrier set for the entire reserved region.
1671   G1CardTable* ct = new G1CardTable(reserved_region());
1672   ct->initialize();
1673   G1BarrierSet* bs = new G1BarrierSet(ct);
1674   bs->initialize();
1675   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1676   BarrierSet::set_barrier_set(bs);
1677   _card_table = ct;
1678 
1679   G1BarrierSet::satb_mark_queue_set().initialize(this,
1680                                                  &bs->satb_mark_queue_buffer_allocator(),
1681                                                  G1SATBProcessCompletedThreshold,
1682                                                  G1SATBBufferEnqueueingThresholdPercent);
1683 
1684   // process_completed_buffers_threshold and max_completed_buffers are updated
1685   // later, based on the concurrent refinement object.
1686   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1687                                                   &bs->dirty_card_queue_buffer_allocator(),
1688                                                   true); // init_free_ids
1689 
1690   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1691                                     &bs->dirty_card_queue_buffer_allocator());
1692 
1693   // Create the hot card cache.
1694   _hot_card_cache = new G1HotCardCache(this);
1695 
1696   // Carve out the G1 part of the heap.
1697   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1698   size_t page_size = actual_reserved_page_size(heap_rs);
1699   G1RegionToSpaceMapper* heap_storage =
1700     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1701                                               g1_rs.size(),
1702                                               page_size,
1703                                               HeapRegion::GrainBytes,
1704                                               1,
1705                                               mtJavaHeap);
1706   if(heap_storage == NULL) {
1707     vm_shutdown_during_initialization("Could not initialize G1 heap");
1708     return JNI_ERR;
1709   }
1710 
1711   os::trace_page_sizes("Heap",
1712                        MinHeapSize,
1713                        reserved_byte_size,
1714                        page_size,
1715                        heap_rs.base(),
1716                        heap_rs.size());
1717   heap_storage->set_mapping_changed_listener(&_listener);
1718 
1719   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1720   G1RegionToSpaceMapper* bot_storage =
1721     create_aux_memory_mapper("Block Offset Table",
1722                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1723                              G1BlockOffsetTable::heap_map_factor());
1724 
1725   G1RegionToSpaceMapper* cardtable_storage =
1726     create_aux_memory_mapper("Card Table",
1727                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1728                              G1CardTable::heap_map_factor());
1729 
1730   G1RegionToSpaceMapper* card_counts_storage =
1731     create_aux_memory_mapper("Card Counts Table",
1732                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1733                              G1CardCounts::heap_map_factor());
1734 
1735   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1736   G1RegionToSpaceMapper* prev_bitmap_storage =
1737     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1738   G1RegionToSpaceMapper* next_bitmap_storage =
1739     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1740 
1741   _hrm = HeapRegionManager::create_manager(this);
1742 
1743   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1744   _card_table->initialize(cardtable_storage);
1745   // Do later initialization work for concurrent refinement.
1746   _hot_card_cache->initialize(card_counts_storage);
1747 
1748   // 6843694 - ensure that the maximum region index can fit
1749   // in the remembered set structures.
1750   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1751   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1752 
1753   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1754   // start within the first card.
1755   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1756   // Also create a G1 rem set.
1757   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1758   _rem_set->initialize(max_reserved_capacity(), max_regions());
1759 
1760   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1761   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1762   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1763             "too many cards per region");
1764 
1765   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1766 
1767   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1768 
1769   {
1770     HeapWord* start = _hrm->reserved().start();
1771     HeapWord* end = _hrm->reserved().end();
1772     size_t granularity = HeapRegion::GrainBytes;
1773 
1774     _region_attr.initialize(start, end, granularity);
1775     _humongous_reclaim_candidates.initialize(start, end, granularity);
1776   }
1777 
1778   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1779                           true /* are_GC_task_threads */,
1780                           false /* are_ConcurrentGC_threads */);
1781   if (_workers == NULL) {
1782     return JNI_ENOMEM;
1783   }
1784   _workers->initialize_workers();
1785 
1786   // Create the G1ConcurrentMark data structure and thread.
1787   // (Must do this late, so that "max_regions" is defined.)
1788   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1789   if (_cm == NULL || !_cm->completed_initialization()) {
1790     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1791     return JNI_ENOMEM;
1792   }
1793   _cm_thread = _cm->cm_thread();
1794 
1795   // Now expand into the initial heap size.
1796   if (!expand(init_byte_size, _workers)) {
1797     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1798     return JNI_ENOMEM;
1799   }
1800 
1801   // Perform any initialization actions delegated to the policy.
1802   policy()->init(this, &_collection_set);
1803 
1804   jint ecode = initialize_concurrent_refinement();
1805   if (ecode != JNI_OK) {
1806     return ecode;
1807   }
1808 
1809   ecode = initialize_young_gen_sampling_thread();
1810   if (ecode != JNI_OK) {
1811     return ecode;
1812   }
1813 
1814   {
1815     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1816     dcqs.set_process_completed_buffers_threshold(concurrent_refine()->yellow_zone());
1817     dcqs.set_max_completed_buffers(concurrent_refine()->red_zone());
1818   }
1819 
1820   // Here we allocate the dummy HeapRegion that is required by the
1821   // G1AllocRegion class.
1822   HeapRegion* dummy_region = _hrm->get_dummy_region();
1823 
1824   // We'll re-use the same region whether the alloc region will
1825   // require BOT updates or not and, if it doesn't, then a non-young
1826   // region will complain that it cannot support allocations without
1827   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1828   dummy_region->set_eden();
1829   // Make sure it's full.
1830   dummy_region->set_top(dummy_region->end());
1831   G1AllocRegion::setup(this, dummy_region);
1832 
1833   _allocator->init_mutator_alloc_region();
1834 
1835   // Do create of the monitoring and management support so that
1836   // values in the heap have been properly initialized.
1837   _g1mm = new G1MonitoringSupport(this);
1838 
1839   G1StringDedup::initialize();
1840 
1841   _preserved_marks_set.init(ParallelGCThreads);
1842 
1843   _collection_set.initialize(max_regions());
1844 
1845   return JNI_OK;
1846 }
1847 
1848 void G1CollectedHeap::stop() {
1849   // Stop all concurrent threads. We do this to make sure these threads
1850   // do not continue to execute and access resources (e.g. logging)
1851   // that are destroyed during shutdown.
1852   _cr->stop();
1853   _young_gen_sampling_thread->stop();
1854   _cm_thread->stop();
1855   if (G1StringDedup::is_enabled()) {
1856     G1StringDedup::stop();
1857   }
1858 }
1859 
1860 void G1CollectedHeap::safepoint_synchronize_begin() {
1861   SuspendibleThreadSet::synchronize();
1862 }
1863 
1864 void G1CollectedHeap::safepoint_synchronize_end() {
1865   SuspendibleThreadSet::desynchronize();
1866 }
1867 
1868 void G1CollectedHeap::post_initialize() {
1869   CollectedHeap::post_initialize();
1870   ref_processing_init();
1871 }
1872 
1873 void G1CollectedHeap::ref_processing_init() {
1874   // Reference processing in G1 currently works as follows:
1875   //
1876   // * There are two reference processor instances. One is
1877   //   used to record and process discovered references
1878   //   during concurrent marking; the other is used to
1879   //   record and process references during STW pauses
1880   //   (both full and incremental).
1881   // * Both ref processors need to 'span' the entire heap as
1882   //   the regions in the collection set may be dotted around.
1883   //
1884   // * For the concurrent marking ref processor:
1885   //   * Reference discovery is enabled at initial marking.
1886   //   * Reference discovery is disabled and the discovered
1887   //     references processed etc during remarking.
1888   //   * Reference discovery is MT (see below).
1889   //   * Reference discovery requires a barrier (see below).
1890   //   * Reference processing may or may not be MT
1891   //     (depending on the value of ParallelRefProcEnabled
1892   //     and ParallelGCThreads).
1893   //   * A full GC disables reference discovery by the CM
1894   //     ref processor and abandons any entries on it's
1895   //     discovered lists.
1896   //
1897   // * For the STW processor:
1898   //   * Non MT discovery is enabled at the start of a full GC.
1899   //   * Processing and enqueueing during a full GC is non-MT.
1900   //   * During a full GC, references are processed after marking.
1901   //
1902   //   * Discovery (may or may not be MT) is enabled at the start
1903   //     of an incremental evacuation pause.
1904   //   * References are processed near the end of a STW evacuation pause.
1905   //   * For both types of GC:
1906   //     * Discovery is atomic - i.e. not concurrent.
1907   //     * Reference discovery will not need a barrier.
1908 
1909   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1910 
1911   // Concurrent Mark ref processor
1912   _ref_processor_cm =
1913     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1914                            mt_processing,                                  // mt processing
1915                            ParallelGCThreads,                              // degree of mt processing
1916                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1917                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1918                            false,                                          // Reference discovery is not atomic
1919                            &_is_alive_closure_cm,                          // is alive closure
1920                            true);                                          // allow changes to number of processing threads
1921 
1922   // STW ref processor
1923   _ref_processor_stw =
1924     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1925                            mt_processing,                        // mt processing
1926                            ParallelGCThreads,                    // degree of mt processing
1927                            (ParallelGCThreads > 1),              // mt discovery
1928                            ParallelGCThreads,                    // degree of mt discovery
1929                            true,                                 // Reference discovery is atomic
1930                            &_is_alive_closure_stw,               // is alive closure
1931                            true);                                // allow changes to number of processing threads
1932 }
1933 
1934 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1935   return &_soft_ref_policy;
1936 }
1937 
1938 size_t G1CollectedHeap::capacity() const {
1939   return _hrm->length() * HeapRegion::GrainBytes;
1940 }
1941 
1942 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1943   return _hrm->total_free_bytes();
1944 }
1945 
1946 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1947   _hot_card_cache->drain(cl, worker_i);
1948 }
1949 
1950 void G1CollectedHeap::iterate_dirty_card_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1951   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1952   size_t n_completed_buffers = 0;
1953   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1954     n_completed_buffers++;
1955   }
1956   assert(dcqs.completed_buffers_num() == 0, "Completed buffers exist!");
1957   phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1958 }
1959 
1960 // Computes the sum of the storage used by the various regions.
1961 size_t G1CollectedHeap::used() const {
1962   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1963   if (_archive_allocator != NULL) {
1964     result += _archive_allocator->used();
1965   }
1966   return result;
1967 }
1968 
1969 size_t G1CollectedHeap::used_unlocked() const {
1970   return _summary_bytes_used;
1971 }
1972 
1973 class SumUsedClosure: public HeapRegionClosure {
1974   size_t _used;
1975 public:
1976   SumUsedClosure() : _used(0) {}
1977   bool do_heap_region(HeapRegion* r) {
1978     _used += r->used();
1979     return false;
1980   }
1981   size_t result() { return _used; }
1982 };
1983 
1984 size_t G1CollectedHeap::recalculate_used() const {
1985   SumUsedClosure blk;
1986   heap_region_iterate(&blk);
1987   return blk.result();
1988 }
1989 
1990 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1991   switch (cause) {
1992     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1993     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1994     case GCCause::_wb_conc_mark:                        return true;
1995     default :                                           return false;
1996   }
1997 }
1998 
1999 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2000   switch (cause) {
2001     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2002     case GCCause::_g1_humongous_allocation: return true;
2003     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2004     default:                                return is_user_requested_concurrent_full_gc(cause);
2005   }
2006 }
2007 
2008 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2009   if(policy()->force_upgrade_to_full()) {
2010     return true;
2011   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2012     return false;
2013   } else if (has_regions_left_for_allocation()) {
2014     return false;
2015   } else {
2016     return true;
2017   }
2018 }
2019 
2020 #ifndef PRODUCT
2021 void G1CollectedHeap::allocate_dummy_regions() {
2022   // Let's fill up most of the region
2023   size_t word_size = HeapRegion::GrainWords - 1024;
2024   // And as a result the region we'll allocate will be humongous.
2025   guarantee(is_humongous(word_size), "sanity");
2026 
2027   // _filler_array_max_size is set to humongous object threshold
2028   // but temporarily change it to use CollectedHeap::fill_with_object().
2029   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2030 
2031   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2032     // Let's use the existing mechanism for the allocation
2033     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2034     if (dummy_obj != NULL) {
2035       MemRegion mr(dummy_obj, word_size);
2036       CollectedHeap::fill_with_object(mr);
2037     } else {
2038       // If we can't allocate once, we probably cannot allocate
2039       // again. Let's get out of the loop.
2040       break;
2041     }
2042   }
2043 }
2044 #endif // !PRODUCT
2045 
2046 void G1CollectedHeap::increment_old_marking_cycles_started() {
2047   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2048          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2049          "Wrong marking cycle count (started: %d, completed: %d)",
2050          _old_marking_cycles_started, _old_marking_cycles_completed);
2051 
2052   _old_marking_cycles_started++;
2053 }
2054 
2055 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2056   MonitorLocker x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2057 
2058   // We assume that if concurrent == true, then the caller is a
2059   // concurrent thread that was joined the Suspendible Thread
2060   // Set. If there's ever a cheap way to check this, we should add an
2061   // assert here.
2062 
2063   // Given that this method is called at the end of a Full GC or of a
2064   // concurrent cycle, and those can be nested (i.e., a Full GC can
2065   // interrupt a concurrent cycle), the number of full collections
2066   // completed should be either one (in the case where there was no
2067   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2068   // behind the number of full collections started.
2069 
2070   // This is the case for the inner caller, i.e. a Full GC.
2071   assert(concurrent ||
2072          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2073          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2074          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2075          "is inconsistent with _old_marking_cycles_completed = %u",
2076          _old_marking_cycles_started, _old_marking_cycles_completed);
2077 
2078   // This is the case for the outer caller, i.e. the concurrent cycle.
2079   assert(!concurrent ||
2080          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2081          "for outer caller (concurrent cycle): "
2082          "_old_marking_cycles_started = %u "
2083          "is inconsistent with _old_marking_cycles_completed = %u",
2084          _old_marking_cycles_started, _old_marking_cycles_completed);
2085 
2086   _old_marking_cycles_completed += 1;
2087 
2088   // We need to clear the "in_progress" flag in the CM thread before
2089   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2090   // is set) so that if a waiter requests another System.gc() it doesn't
2091   // incorrectly see that a marking cycle is still in progress.
2092   if (concurrent) {
2093     _cm_thread->set_idle();
2094   }
2095 
2096   // This notify_all() will ensure that a thread that called
2097   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2098   // and it's waiting for a full GC to finish will be woken up. It is
2099   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2100   FullGCCount_lock->notify_all();
2101 }
2102 
2103 void G1CollectedHeap::collect(GCCause::Cause cause) {
2104   try_collect(cause, true);
2105 }
2106 
2107 bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) {
2108   assert_heap_not_locked();
2109 
2110   bool gc_succeeded;
2111   bool should_retry_gc;
2112 
2113   do {
2114     should_retry_gc = false;
2115 
2116     uint gc_count_before;
2117     uint old_marking_count_before;
2118     uint full_gc_count_before;
2119 
2120     {
2121       MutexLocker ml(Heap_lock);
2122 
2123       // Read the GC count while holding the Heap_lock
2124       gc_count_before = total_collections();
2125       full_gc_count_before = total_full_collections();
2126       old_marking_count_before = _old_marking_cycles_started;
2127     }
2128 
2129     if (should_do_concurrent_full_gc(cause)) {
2130       // Schedule an initial-mark evacuation pause that will start a
2131       // concurrent cycle. We're setting word_size to 0 which means that
2132       // we are not requesting a post-GC allocation.
2133       VM_G1CollectForAllocation op(0,     /* word_size */
2134                                    gc_count_before,
2135                                    cause,
2136                                    true,  /* should_initiate_conc_mark */
2137                                    policy()->max_pause_time_ms());
2138       VMThread::execute(&op);
2139       gc_succeeded = op.gc_succeeded();
2140       if (!gc_succeeded && retry_on_gc_failure) {
2141         if (old_marking_count_before == _old_marking_cycles_started) {
2142           should_retry_gc = op.should_retry_gc();
2143         } else {
2144           // A Full GC happened while we were trying to schedule the
2145           // concurrent cycle. No point in starting a new cycle given
2146           // that the whole heap was collected anyway.
2147         }
2148 
2149         if (should_retry_gc && GCLocker::is_active_and_needs_gc()) {
2150           GCLocker::stall_until_clear();
2151         }
2152       }
2153     } else {
2154       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2155           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2156 
2157         // Schedule a standard evacuation pause. We're setting word_size
2158         // to 0 which means that we are not requesting a post-GC allocation.
2159         VM_G1CollectForAllocation op(0,     /* word_size */
2160                                      gc_count_before,
2161                                      cause,
2162                                      false, /* should_initiate_conc_mark */
2163                                      policy()->max_pause_time_ms());
2164         VMThread::execute(&op);
2165         gc_succeeded = op.gc_succeeded();
2166       } else {
2167         // Schedule a Full GC.
2168         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2169         VMThread::execute(&op);
2170         gc_succeeded = op.gc_succeeded();
2171       }
2172     }
2173   } while (should_retry_gc);
2174   return gc_succeeded;
2175 }
2176 
2177 bool G1CollectedHeap::is_in(const void* p) const {
2178   if (_hrm->reserved().contains(p)) {
2179     // Given that we know that p is in the reserved space,
2180     // heap_region_containing() should successfully
2181     // return the containing region.
2182     HeapRegion* hr = heap_region_containing(p);
2183     return hr->is_in(p);
2184   } else {
2185     return false;
2186   }
2187 }
2188 
2189 #ifdef ASSERT
2190 bool G1CollectedHeap::is_in_exact(const void* p) const {
2191   bool contains = reserved_region().contains(p);
2192   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2193   if (contains && available) {
2194     return true;
2195   } else {
2196     return false;
2197   }
2198 }
2199 #endif
2200 
2201 // Iteration functions.
2202 
2203 // Iterates an ObjectClosure over all objects within a HeapRegion.
2204 
2205 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2206   ObjectClosure* _cl;
2207 public:
2208   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2209   bool do_heap_region(HeapRegion* r) {
2210     if (!r->is_continues_humongous()) {
2211       r->object_iterate(_cl);
2212     }
2213     return false;
2214   }
2215 };
2216 
2217 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2218   IterateObjectClosureRegionClosure blk(cl);
2219   heap_region_iterate(&blk);
2220 }
2221 
2222 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2223   _hrm->iterate(cl);
2224 }
2225 
2226 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2227                                                                  HeapRegionClaimer *hrclaimer,
2228                                                                  uint worker_id) const {
2229   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2230 }
2231 
2232 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2233                                                          HeapRegionClaimer *hrclaimer) const {
2234   _hrm->par_iterate(cl, hrclaimer, 0);
2235 }
2236 
2237 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2238   _collection_set.iterate(cl);
2239 }
2240 
2241 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, uint worker_id) {
2242   _collection_set.iterate_incremental_part_from(cl, worker_id, workers()->active_workers());
2243 }
2244 
2245 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2246   HeapRegion* hr = heap_region_containing(addr);
2247   return hr->block_start(addr);
2248 }
2249 
2250 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2251   HeapRegion* hr = heap_region_containing(addr);
2252   return hr->block_is_obj(addr);
2253 }
2254 
2255 bool G1CollectedHeap::supports_tlab_allocation() const {
2256   return true;
2257 }
2258 
2259 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2260   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2261 }
2262 
2263 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2264   return _eden.length() * HeapRegion::GrainBytes;
2265 }
2266 
2267 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2268 // must be equal to the humongous object limit.
2269 size_t G1CollectedHeap::max_tlab_size() const {
2270   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2271 }
2272 
2273 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2274   return _allocator->unsafe_max_tlab_alloc();
2275 }
2276 
2277 size_t G1CollectedHeap::max_capacity() const {
2278   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2279 }
2280 
2281 size_t G1CollectedHeap::max_reserved_capacity() const {
2282   return _hrm->max_length() * HeapRegion::GrainBytes;
2283 }
2284 
2285 jlong G1CollectedHeap::millis_since_last_gc() {
2286   // See the notes in GenCollectedHeap::millis_since_last_gc()
2287   // for more information about the implementation.
2288   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2289                   _policy->collection_pause_end_millis();
2290   if (ret_val < 0) {
2291     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2292       ". returning zero instead.", ret_val);
2293     return 0;
2294   }
2295   return ret_val;
2296 }
2297 
2298 void G1CollectedHeap::deduplicate_string(oop str) {
2299   assert(java_lang_String::is_instance(str), "invariant");
2300 
2301   if (G1StringDedup::is_enabled()) {
2302     G1StringDedup::deduplicate(str);
2303   }
2304 }
2305 
2306 void G1CollectedHeap::prepare_for_verify() {
2307   _verifier->prepare_for_verify();
2308 }
2309 
2310 void G1CollectedHeap::verify(VerifyOption vo) {
2311   _verifier->verify(vo);
2312 }
2313 
2314 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2315   return true;
2316 }
2317 
2318 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2319   return _cm_thread->request_concurrent_phase(phase);
2320 }
2321 
2322 bool G1CollectedHeap::is_heterogeneous_heap() const {
2323   return G1Arguments::is_heterogeneous_heap();
2324 }
2325 
2326 class PrintRegionClosure: public HeapRegionClosure {
2327   outputStream* _st;
2328 public:
2329   PrintRegionClosure(outputStream* st) : _st(st) {}
2330   bool do_heap_region(HeapRegion* r) {
2331     r->print_on(_st);
2332     return false;
2333   }
2334 };
2335 
2336 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2337                                        const HeapRegion* hr,
2338                                        const VerifyOption vo) const {
2339   switch (vo) {
2340   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2341   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2342   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2343   default:                            ShouldNotReachHere();
2344   }
2345   return false; // keep some compilers happy
2346 }
2347 
2348 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2349                                        const VerifyOption vo) const {
2350   switch (vo) {
2351   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2352   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2353   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2354   default:                            ShouldNotReachHere();
2355   }
2356   return false; // keep some compilers happy
2357 }
2358 
2359 void G1CollectedHeap::print_heap_regions() const {
2360   LogTarget(Trace, gc, heap, region) lt;
2361   if (lt.is_enabled()) {
2362     LogStream ls(lt);
2363     print_regions_on(&ls);
2364   }
2365 }
2366 
2367 void G1CollectedHeap::print_on(outputStream* st) const {
2368   st->print(" %-20s", "garbage-first heap");
2369   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2370             capacity()/K, used_unlocked()/K);
2371   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2372             p2i(_hrm->reserved().start()),
2373             p2i(_hrm->reserved().end()));
2374   st->cr();
2375   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2376   uint young_regions = young_regions_count();
2377   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2378             (size_t) young_regions * HeapRegion::GrainBytes / K);
2379   uint survivor_regions = survivor_regions_count();
2380   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2381             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2382   st->cr();
2383   MetaspaceUtils::print_on(st);
2384 }
2385 
2386 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2387   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2388                "HS=humongous(starts), HC=humongous(continues), "
2389                "CS=collection set, F=free, A=archive, "
2390                "TAMS=top-at-mark-start (previous, next)");
2391   PrintRegionClosure blk(st);
2392   heap_region_iterate(&blk);
2393 }
2394 
2395 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2396   print_on(st);
2397 
2398   // Print the per-region information.
2399   print_regions_on(st);
2400 }
2401 
2402 void G1CollectedHeap::print_on_error(outputStream* st) const {
2403   this->CollectedHeap::print_on_error(st);
2404 
2405   if (_cm != NULL) {
2406     st->cr();
2407     _cm->print_on_error(st);
2408   }
2409 }
2410 
2411 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2412   workers()->print_worker_threads_on(st);
2413   _cm_thread->print_on(st);
2414   st->cr();
2415   _cm->print_worker_threads_on(st);
2416   _cr->print_threads_on(st);
2417   _young_gen_sampling_thread->print_on(st);
2418   if (G1StringDedup::is_enabled()) {
2419     G1StringDedup::print_worker_threads_on(st);
2420   }
2421 }
2422 
2423 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2424   workers()->threads_do(tc);
2425   tc->do_thread(_cm_thread);
2426   _cm->threads_do(tc);
2427   _cr->threads_do(tc);
2428   tc->do_thread(_young_gen_sampling_thread);
2429   if (G1StringDedup::is_enabled()) {
2430     G1StringDedup::threads_do(tc);
2431   }
2432 }
2433 
2434 void G1CollectedHeap::print_tracing_info() const {
2435   rem_set()->print_summary_info();
2436   concurrent_mark()->print_summary_info();
2437 }
2438 
2439 #ifndef PRODUCT
2440 // Helpful for debugging RSet issues.
2441 
2442 class PrintRSetsClosure : public HeapRegionClosure {
2443 private:
2444   const char* _msg;
2445   size_t _occupied_sum;
2446 
2447 public:
2448   bool do_heap_region(HeapRegion* r) {
2449     HeapRegionRemSet* hrrs = r->rem_set();
2450     size_t occupied = hrrs->occupied();
2451     _occupied_sum += occupied;
2452 
2453     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2454     if (occupied == 0) {
2455       tty->print_cr("  RSet is empty");
2456     } else {
2457       hrrs->print();
2458     }
2459     tty->print_cr("----------");
2460     return false;
2461   }
2462 
2463   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2464     tty->cr();
2465     tty->print_cr("========================================");
2466     tty->print_cr("%s", msg);
2467     tty->cr();
2468   }
2469 
2470   ~PrintRSetsClosure() {
2471     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2472     tty->print_cr("========================================");
2473     tty->cr();
2474   }
2475 };
2476 
2477 void G1CollectedHeap::print_cset_rsets() {
2478   PrintRSetsClosure cl("Printing CSet RSets");
2479   collection_set_iterate_all(&cl);
2480 }
2481 
2482 void G1CollectedHeap::print_all_rsets() {
2483   PrintRSetsClosure cl("Printing All RSets");;
2484   heap_region_iterate(&cl);
2485 }
2486 #endif // PRODUCT
2487 
2488 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2489 
2490   size_t eden_used_bytes = _eden.used_bytes();
2491   size_t survivor_used_bytes = _survivor.used_bytes();
2492   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2493 
2494   size_t eden_capacity_bytes =
2495     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2496 
2497   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2498   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2499                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2500 }
2501 
2502 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2503   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2504                        stats->unused(), stats->used(), stats->region_end_waste(),
2505                        stats->regions_filled(), stats->direct_allocated(),
2506                        stats->failure_used(), stats->failure_waste());
2507 }
2508 
2509 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2510   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2511   gc_tracer->report_gc_heap_summary(when, heap_summary);
2512 
2513   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2514   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2515 }
2516 
2517 G1CollectedHeap* G1CollectedHeap::heap() {
2518   CollectedHeap* heap = Universe::heap();
2519   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2520   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2521   return (G1CollectedHeap*)heap;
2522 }
2523 
2524 void G1CollectedHeap::gc_prologue(bool full) {
2525   // always_do_update_barrier = false;
2526   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2527 
2528   // This summary needs to be printed before incrementing total collections.
2529   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2530 
2531   // Update common counters.
2532   increment_total_collections(full /* full gc */);
2533   if (full || collector_state()->in_initial_mark_gc()) {
2534     increment_old_marking_cycles_started();
2535   }
2536 
2537   // Fill TLAB's and such
2538   double start = os::elapsedTime();
2539   ensure_parsability(true);
2540   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2541 }
2542 
2543 void G1CollectedHeap::gc_epilogue(bool full) {
2544   // Update common counters.
2545   if (full) {
2546     // Update the number of full collections that have been completed.
2547     increment_old_marking_cycles_completed(false /* concurrent */);
2548   }
2549 
2550   // We are at the end of the GC. Total collections has already been increased.
2551   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2552 
2553   // FIXME: what is this about?
2554   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2555   // is set.
2556 #if COMPILER2_OR_JVMCI
2557   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2558 #endif
2559   // always_do_update_barrier = true;
2560 
2561   double start = os::elapsedTime();
2562   resize_all_tlabs();
2563   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2564 
2565   MemoryService::track_memory_usage();
2566   // We have just completed a GC. Update the soft reference
2567   // policy with the new heap occupancy
2568   Universe::update_heap_info_at_gc();
2569 }
2570 
2571 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2572                                                uint gc_count_before,
2573                                                bool* succeeded,
2574                                                GCCause::Cause gc_cause) {
2575   assert_heap_not_locked_and_not_at_safepoint();
2576   VM_G1CollectForAllocation op(word_size,
2577                                gc_count_before,
2578                                gc_cause,
2579                                false, /* should_initiate_conc_mark */
2580                                policy()->max_pause_time_ms());
2581   VMThread::execute(&op);
2582 
2583   HeapWord* result = op.result();
2584   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2585   assert(result == NULL || ret_succeeded,
2586          "the result should be NULL if the VM did not succeed");
2587   *succeeded = ret_succeeded;
2588 
2589   assert_heap_not_locked();
2590   return result;
2591 }
2592 
2593 void G1CollectedHeap::do_concurrent_mark() {
2594   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2595   if (!_cm_thread->in_progress()) {
2596     _cm_thread->set_started();
2597     CGC_lock->notify();
2598   }
2599 }
2600 
2601 size_t G1CollectedHeap::pending_card_num() {
2602   struct CountCardsClosure : public ThreadClosure {
2603     size_t _cards;
2604     CountCardsClosure() : _cards(0) {}
2605     virtual void do_thread(Thread* t) {
2606       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2607     }
2608   } count_from_threads;
2609   Threads::threads_do(&count_from_threads);
2610 
2611   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2612   size_t buffer_size = dcqs.buffer_size();
2613   size_t buffer_num = dcqs.completed_buffers_num();
2614 
2615   return buffer_size * buffer_num + count_from_threads._cards;
2616 }
2617 
2618 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2619   // We don't nominate objects with many remembered set entries, on
2620   // the assumption that such objects are likely still live.
2621   HeapRegionRemSet* rem_set = r->rem_set();
2622 
2623   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2624          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2625          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2626 }
2627 
2628 class RegisterRegionsWithRegionAttrTableClosure : public HeapRegionClosure {
2629  private:
2630   size_t _total_humongous;
2631   size_t _candidate_humongous;
2632 
2633   G1DirtyCardQueue _dcq;
2634 
2635   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2636     assert(region->is_starts_humongous(), "Must start a humongous object");
2637 
2638     oop obj = oop(region->bottom());
2639 
2640     // Dead objects cannot be eager reclaim candidates. Due to class
2641     // unloading it is unsafe to query their classes so we return early.
2642     if (g1h->is_obj_dead(obj, region)) {
2643       return false;
2644     }
2645 
2646     // If we do not have a complete remembered set for the region, then we can
2647     // not be sure that we have all references to it.
2648     if (!region->rem_set()->is_complete()) {
2649       return false;
2650     }
2651     // Candidate selection must satisfy the following constraints
2652     // while concurrent marking is in progress:
2653     //
2654     // * In order to maintain SATB invariants, an object must not be
2655     // reclaimed if it was allocated before the start of marking and
2656     // has not had its references scanned.  Such an object must have
2657     // its references (including type metadata) scanned to ensure no
2658     // live objects are missed by the marking process.  Objects
2659     // allocated after the start of concurrent marking don't need to
2660     // be scanned.
2661     //
2662     // * An object must not be reclaimed if it is on the concurrent
2663     // mark stack.  Objects allocated after the start of concurrent
2664     // marking are never pushed on the mark stack.
2665     //
2666     // Nominating only objects allocated after the start of concurrent
2667     // marking is sufficient to meet both constraints.  This may miss
2668     // some objects that satisfy the constraints, but the marking data
2669     // structures don't support efficiently performing the needed
2670     // additional tests or scrubbing of the mark stack.
2671     //
2672     // However, we presently only nominate is_typeArray() objects.
2673     // A humongous object containing references induces remembered
2674     // set entries on other regions.  In order to reclaim such an
2675     // object, those remembered sets would need to be cleaned up.
2676     //
2677     // We also treat is_typeArray() objects specially, allowing them
2678     // to be reclaimed even if allocated before the start of
2679     // concurrent mark.  For this we rely on mark stack insertion to
2680     // exclude is_typeArray() objects, preventing reclaiming an object
2681     // that is in the mark stack.  We also rely on the metadata for
2682     // such objects to be built-in and so ensured to be kept live.
2683     // Frequent allocation and drop of large binary blobs is an
2684     // important use case for eager reclaim, and this special handling
2685     // may reduce needed headroom.
2686 
2687     return obj->is_typeArray() &&
2688            g1h->is_potential_eager_reclaim_candidate(region);
2689   }
2690 
2691  public:
2692   RegisterRegionsWithRegionAttrTableClosure()
2693   : _total_humongous(0),
2694     _candidate_humongous(0),
2695     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2696   }
2697 
2698   virtual bool do_heap_region(HeapRegion* r) {
2699     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2700 
2701     if (!r->is_starts_humongous()) {
2702       g1h->register_region_with_region_attr(r);
2703       return false;
2704     }
2705 
2706     bool is_candidate = humongous_region_is_candidate(g1h, r);
2707     uint rindex = r->hrm_index();
2708     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2709     if (is_candidate) {
2710       _candidate_humongous++;
2711       g1h->register_humongous_region_with_region_attr(rindex);
2712       // Is_candidate already filters out humongous object with large remembered sets.
2713       // If we have a humongous object with a few remembered sets, we simply flush these
2714       // remembered set entries into the DCQS. That will result in automatic
2715       // re-evaluation of their remembered set entries during the following evacuation
2716       // phase.
2717       if (!r->rem_set()->is_empty()) {
2718         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2719                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2720         G1CardTable* ct = g1h->card_table();
2721         HeapRegionRemSetIterator hrrs(r->rem_set());
2722         size_t card_index;
2723         while (hrrs.has_next(card_index)) {
2724           CardTable::CardValue* card_ptr = ct->byte_for_index(card_index);
2725           // The remembered set might contain references to already freed
2726           // regions. Filter out such entries to avoid failing card table
2727           // verification.
2728           if (g1h->is_in(ct->addr_for(card_ptr))) {
2729             if (*card_ptr != G1CardTable::dirty_card_val()) {
2730               *card_ptr = G1CardTable::dirty_card_val();
2731               _dcq.enqueue(card_ptr);
2732             }
2733           }
2734         }
2735         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2736                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2737                hrrs.n_yielded(), r->rem_set()->occupied());
2738         // We should only clear the card based remembered set here as we will not
2739         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2740         // (and probably never) we do not enter this path if there are other kind of
2741         // remembered sets for this region.
2742         r->rem_set()->clear_locked(true /* only_cardset */);
2743         // Clear_locked() above sets the state to Empty. However we want to continue
2744         // collecting remembered set entries for humongous regions that were not
2745         // reclaimed.
2746         r->rem_set()->set_state_complete();
2747 #ifdef ASSERT
2748         G1HeapRegionAttr region_attr = g1h->region_attr(oop(r->bottom()));
2749         assert(region_attr.needs_remset_update(), "must be");
2750 #endif
2751       }
2752       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2753     } else {
2754       g1h->register_region_with_region_attr(r);
2755     }
2756     _total_humongous++;
2757 
2758     return false;
2759   }
2760 
2761   size_t total_humongous() const { return _total_humongous; }
2762   size_t candidate_humongous() const { return _candidate_humongous; }
2763 
2764   void flush_rem_set_entries() { _dcq.flush(); }
2765 };
2766 
2767 void G1CollectedHeap::register_regions_with_region_attr() {
2768   Ticks start = Ticks::now();
2769 
2770   RegisterRegionsWithRegionAttrTableClosure cl;
2771   heap_region_iterate(&cl);
2772 
2773   phase_times()->record_register_regions((Ticks::now() - start).seconds() * 1000.0,
2774                                          cl.total_humongous(),
2775                                          cl.candidate_humongous());
2776   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2777 
2778   // Finally flush all remembered set entries to re-check into the global DCQS.
2779   cl.flush_rem_set_entries();
2780 }
2781 
2782 #ifndef PRODUCT
2783 void G1CollectedHeap::verify_region_attr_remset_update() {
2784   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2785   public:
2786     virtual bool do_heap_region(HeapRegion* r) {
2787       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2788       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2789       assert(r->rem_set()->is_tracked() == needs_remset_update,
2790              "Region %u remset tracking status (%s) different to region attribute (%s)",
2791              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2792       return false;
2793     }
2794   } cl;
2795   heap_region_iterate(&cl);
2796 }
2797 #endif
2798 
2799 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2800   public:
2801     bool do_heap_region(HeapRegion* hr) {
2802       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2803         hr->verify_rem_set();
2804       }
2805       return false;
2806     }
2807 };
2808 
2809 uint G1CollectedHeap::num_task_queues() const {
2810   return _task_queues->size();
2811 }
2812 
2813 #if TASKQUEUE_STATS
2814 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2815   st->print_raw_cr("GC Task Stats");
2816   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2817   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2818 }
2819 
2820 void G1CollectedHeap::print_taskqueue_stats() const {
2821   if (!log_is_enabled(Trace, gc, task, stats)) {
2822     return;
2823   }
2824   Log(gc, task, stats) log;
2825   ResourceMark rm;
2826   LogStream ls(log.trace());
2827   outputStream* st = &ls;
2828 
2829   print_taskqueue_stats_hdr(st);
2830 
2831   TaskQueueStats totals;
2832   const uint n = num_task_queues();
2833   for (uint i = 0; i < n; ++i) {
2834     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2835     totals += task_queue(i)->stats;
2836   }
2837   st->print_raw("tot "); totals.print(st); st->cr();
2838 
2839   DEBUG_ONLY(totals.verify());
2840 }
2841 
2842 void G1CollectedHeap::reset_taskqueue_stats() {
2843   const uint n = num_task_queues();
2844   for (uint i = 0; i < n; ++i) {
2845     task_queue(i)->stats.reset();
2846   }
2847 }
2848 #endif // TASKQUEUE_STATS
2849 
2850 void G1CollectedHeap::wait_for_root_region_scanning() {
2851   double scan_wait_start = os::elapsedTime();
2852   // We have to wait until the CM threads finish scanning the
2853   // root regions as it's the only way to ensure that all the
2854   // objects on them have been correctly scanned before we start
2855   // moving them during the GC.
2856   bool waited = _cm->root_regions()->wait_until_scan_finished();
2857   double wait_time_ms = 0.0;
2858   if (waited) {
2859     double scan_wait_end = os::elapsedTime();
2860     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2861   }
2862   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2863 }
2864 
2865 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2866 private:
2867   G1HRPrinter* _hr_printer;
2868 public:
2869   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2870 
2871   virtual bool do_heap_region(HeapRegion* r) {
2872     _hr_printer->cset(r);
2873     return false;
2874   }
2875 };
2876 
2877 void G1CollectedHeap::start_new_collection_set() {
2878   double start = os::elapsedTime();
2879 
2880   collection_set()->start_incremental_building();
2881 
2882   clear_region_attr();
2883 
2884   guarantee(_eden.length() == 0, "eden should have been cleared");
2885   policy()->transfer_survivors_to_cset(survivor());
2886 
2887   // We redo the verification but now wrt to the new CSet which
2888   // has just got initialized after the previous CSet was freed.
2889   _cm->verify_no_collection_set_oops();
2890 
2891   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2892 }
2893 
2894 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2895 
2896   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2897   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2898                                             collection_set()->optional_region_length());
2899 
2900   _cm->verify_no_collection_set_oops();
2901 
2902   if (_hr_printer.is_active()) {
2903     G1PrintCollectionSetClosure cl(&_hr_printer);
2904     _collection_set.iterate(&cl);
2905     _collection_set.iterate_optional(&cl);
2906   }
2907 }
2908 
2909 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2910   if (collector_state()->in_initial_mark_gc()) {
2911     return G1HeapVerifier::G1VerifyConcurrentStart;
2912   } else if (collector_state()->in_young_only_phase()) {
2913     return G1HeapVerifier::G1VerifyYoungNormal;
2914   } else {
2915     return G1HeapVerifier::G1VerifyMixed;
2916   }
2917 }
2918 
2919 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2920   if (VerifyRememberedSets) {
2921     log_info(gc, verify)("[Verifying RemSets before GC]");
2922     VerifyRegionRemSetClosure v_cl;
2923     heap_region_iterate(&v_cl);
2924   }
2925   _verifier->verify_before_gc(type);
2926   _verifier->check_bitmaps("GC Start");
2927 }
2928 
2929 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2930   if (VerifyRememberedSets) {
2931     log_info(gc, verify)("[Verifying RemSets after GC]");
2932     VerifyRegionRemSetClosure v_cl;
2933     heap_region_iterate(&v_cl);
2934   }
2935   _verifier->verify_after_gc(type);
2936   _verifier->check_bitmaps("GC End");
2937 }
2938 
2939 void G1CollectedHeap::expand_heap_after_young_collection(){
2940   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2941   if (expand_bytes > 0) {
2942     // No need for an ergo logging here,
2943     // expansion_amount() does this when it returns a value > 0.
2944     double expand_ms;
2945     if (!expand(expand_bytes, _workers, &expand_ms)) {
2946       // We failed to expand the heap. Cannot do anything about it.
2947     }
2948     phase_times()->record_expand_heap_time(expand_ms);
2949   }
2950 }
2951 
2952 const char* G1CollectedHeap::young_gc_name() const {
2953   if (collector_state()->in_initial_mark_gc()) {
2954     return "Pause Young (Concurrent Start)";
2955   } else if (collector_state()->in_young_only_phase()) {
2956     if (collector_state()->in_young_gc_before_mixed()) {
2957       return "Pause Young (Prepare Mixed)";
2958     } else {
2959       return "Pause Young (Normal)";
2960     }
2961   } else {
2962     return "Pause Young (Mixed)";
2963   }
2964 }
2965 
2966 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2967   assert_at_safepoint_on_vm_thread();
2968   guarantee(!is_gc_active(), "collection is not reentrant");
2969 
2970   if (GCLocker::check_active_before_gc()) {
2971     return false;
2972   }
2973 
2974   GCIdMark gc_id_mark;
2975 
2976   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2977   ResourceMark rm;
2978 
2979   policy()->note_gc_start();
2980 
2981   _gc_timer_stw->register_gc_start();
2982   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2983 
2984   wait_for_root_region_scanning();
2985 
2986   print_heap_before_gc();
2987   print_heap_regions();
2988   trace_heap_before_gc(_gc_tracer_stw);
2989 
2990   _verifier->verify_region_sets_optional();
2991   _verifier->verify_dirty_young_regions();
2992 
2993   // We should not be doing initial mark unless the conc mark thread is running
2994   if (!_cm_thread->should_terminate()) {
2995     // This call will decide whether this pause is an initial-mark
2996     // pause. If it is, in_initial_mark_gc() will return true
2997     // for the duration of this pause.
2998     policy()->decide_on_conc_mark_initiation();
2999   }
3000 
3001   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3002   assert(!collector_state()->in_initial_mark_gc() ||
3003          collector_state()->in_young_only_phase(), "sanity");
3004   // We also do not allow mixed GCs during marking.
3005   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3006 
3007   // Record whether this pause is an initial mark. When the current
3008   // thread has completed its logging output and it's safe to signal
3009   // the CM thread, the flag's value in the policy has been reset.
3010   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3011   if (should_start_conc_mark) {
3012     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3013   }
3014 
3015   // Inner scope for scope based logging, timers, and stats collection
3016   {
3017     G1EvacuationInfo evacuation_info;
3018 
3019     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3020 
3021     GCTraceCPUTime tcpu;
3022 
3023     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3024 
3025     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3026                                                             workers()->active_workers(),
3027                                                             Threads::number_of_non_daemon_threads());
3028     active_workers = workers()->update_active_workers(active_workers);
3029     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3030 
3031     G1MonitoringScope ms(g1mm(),
3032                          false /* full_gc */,
3033                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3034 
3035     G1HeapTransition heap_transition(this);
3036     size_t heap_used_bytes_before_gc = used();
3037 
3038     {
3039       IsGCActiveMark x;
3040 
3041       gc_prologue(false);
3042 
3043       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3044       verify_before_young_collection(verify_type);
3045 
3046       {
3047         // The elapsed time induced by the start time below deliberately elides
3048         // the possible verification above.
3049         double sample_start_time_sec = os::elapsedTime();
3050 
3051         // Please see comment in g1CollectedHeap.hpp and
3052         // G1CollectedHeap::ref_processing_init() to see how
3053         // reference processing currently works in G1.
3054         _ref_processor_stw->enable_discovery();
3055 
3056         // We want to temporarily turn off discovery by the
3057         // CM ref processor, if necessary, and turn it back on
3058         // on again later if we do. Using a scoped
3059         // NoRefDiscovery object will do this.
3060         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3061 
3062         policy()->record_collection_pause_start(sample_start_time_sec);
3063 
3064         // Forget the current allocation region (we might even choose it to be part
3065         // of the collection set!).
3066         _allocator->release_mutator_alloc_region();
3067 
3068         calculate_collection_set(evacuation_info, target_pause_time_ms);
3069 
3070         G1ParScanThreadStateSet per_thread_states(this,
3071                                                   workers()->active_workers(),
3072                                                   collection_set()->young_region_length(),
3073                                                   collection_set()->optional_region_length());
3074         pre_evacuate_collection_set(evacuation_info);
3075 
3076         // Actually do the work...
3077         evacuate_initial_collection_set(&per_thread_states);
3078 
3079         if (_collection_set.optional_region_length() != 0) {
3080           evacuate_optional_collection_set(&per_thread_states);
3081         }
3082         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3083 
3084         start_new_collection_set();
3085 
3086         _survivor_evac_stats.adjust_desired_plab_sz();
3087         _old_evac_stats.adjust_desired_plab_sz();
3088 
3089         if (should_start_conc_mark) {
3090           // We have to do this before we notify the CM threads that
3091           // they can start working to make sure that all the
3092           // appropriate initialization is done on the CM object.
3093           concurrent_mark()->post_initial_mark();
3094           // Note that we don't actually trigger the CM thread at
3095           // this point. We do that later when we're sure that
3096           // the current thread has completed its logging output.
3097         }
3098 
3099         allocate_dummy_regions();
3100 
3101         _allocator->init_mutator_alloc_region();
3102 
3103         expand_heap_after_young_collection();
3104 
3105         double sample_end_time_sec = os::elapsedTime();
3106         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3107         size_t total_cards_scanned = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards) +
3108                                      phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3109         policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3110       }
3111 
3112       verify_after_young_collection(verify_type);
3113 
3114 #ifdef TRACESPINNING
3115       ParallelTaskTerminator::print_termination_counts();
3116 #endif
3117 
3118       gc_epilogue(false);
3119     }
3120 
3121     // Print the remainder of the GC log output.
3122     if (evacuation_failed()) {
3123       log_info(gc)("To-space exhausted");
3124     }
3125 
3126     policy()->print_phases();
3127     heap_transition.print();
3128 
3129     _hrm->verify_optional();
3130     _verifier->verify_region_sets_optional();
3131 
3132     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3133     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3134 
3135     print_heap_after_gc();
3136     print_heap_regions();
3137     trace_heap_after_gc(_gc_tracer_stw);
3138 
3139     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3140     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3141     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3142     // before any GC notifications are raised.
3143     g1mm()->update_sizes();
3144 
3145     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3146     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3147     _gc_timer_stw->register_gc_end();
3148     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3149   }
3150   // It should now be safe to tell the concurrent mark thread to start
3151   // without its logging output interfering with the logging output
3152   // that came from the pause.
3153 
3154   if (should_start_conc_mark) {
3155     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3156     // thread(s) could be running concurrently with us. Make sure that anything
3157     // after this point does not assume that we are the only GC thread running.
3158     // Note: of course, the actual marking work will not start until the safepoint
3159     // itself is released in SuspendibleThreadSet::desynchronize().
3160     do_concurrent_mark();
3161   }
3162 
3163   return true;
3164 }
3165 
3166 void G1CollectedHeap::remove_self_forwarding_pointers() {
3167   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3168   workers()->run_task(&rsfp_task);
3169 }
3170 
3171 void G1CollectedHeap::restore_after_evac_failure() {
3172   double remove_self_forwards_start = os::elapsedTime();
3173 
3174   remove_self_forwarding_pointers();
3175   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3176   _preserved_marks_set.restore(&task_executor);
3177 
3178   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3179 }
3180 
3181 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3182   if (!_evacuation_failed) {
3183     _evacuation_failed = true;
3184   }
3185 
3186   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3187   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3188 }
3189 
3190 bool G1ParEvacuateFollowersClosure::offer_termination() {
3191   EventGCPhaseParallel event;
3192   G1ParScanThreadState* const pss = par_scan_state();
3193   start_term_time();
3194   const bool res = terminator()->offer_termination();
3195   end_term_time();
3196   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3197   return res;
3198 }
3199 
3200 void G1ParEvacuateFollowersClosure::do_void() {
3201   EventGCPhaseParallel event;
3202   G1ParScanThreadState* const pss = par_scan_state();
3203   pss->trim_queue();
3204   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3205   do {
3206     EventGCPhaseParallel event;
3207     pss->steal_and_trim_queue(queues());
3208     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3209   } while (!offer_termination());
3210 }
3211 
3212 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3213                                         bool class_unloading_occurred) {
3214   uint num_workers = workers()->active_workers();
3215   ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3216   workers()->run_task(&unlink_task);
3217 }
3218 
3219 // Clean string dedup data structures.
3220 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3221 // record the durations of the phases. Hence the almost-copy.
3222 class G1StringDedupCleaningTask : public AbstractGangTask {
3223   BoolObjectClosure* _is_alive;
3224   OopClosure* _keep_alive;
3225   G1GCPhaseTimes* _phase_times;
3226 
3227 public:
3228   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3229                             OopClosure* keep_alive,
3230                             G1GCPhaseTimes* phase_times) :
3231     AbstractGangTask("Partial Cleaning Task"),
3232     _is_alive(is_alive),
3233     _keep_alive(keep_alive),
3234     _phase_times(phase_times)
3235   {
3236     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3237     StringDedup::gc_prologue(true);
3238   }
3239 
3240   ~G1StringDedupCleaningTask() {
3241     StringDedup::gc_epilogue();
3242   }
3243 
3244   void work(uint worker_id) {
3245     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3246     {
3247       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3248       StringDedupQueue::unlink_or_oops_do(&cl);
3249     }
3250     {
3251       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3252       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3253     }
3254   }
3255 };
3256 
3257 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3258                                             OopClosure* keep_alive,
3259                                             G1GCPhaseTimes* phase_times) {
3260   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3261   workers()->run_task(&cl);
3262 }
3263 
3264 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3265  private:
3266   G1DirtyCardQueueSet* _queue;
3267   G1CollectedHeap* _g1h;
3268  public:
3269   G1RedirtyLoggedCardsTask(G1DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3270     _queue(queue), _g1h(g1h) { }
3271 
3272   virtual void work(uint worker_id) {
3273     G1GCPhaseTimes* p = _g1h->phase_times();
3274     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3275 
3276     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3277     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3278 
3279     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3280   }
3281 };
3282 
3283 void G1CollectedHeap::redirty_logged_cards() {
3284   double redirty_logged_cards_start = os::elapsedTime();
3285 
3286   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3287   dirty_card_queue_set().reset_for_par_iteration();
3288   workers()->run_task(&redirty_task);
3289 
3290   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3291   dcq.merge_bufferlists(&dirty_card_queue_set());
3292   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3293 
3294   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3295 }
3296 
3297 // Weak Reference Processing support
3298 
3299 bool G1STWIsAliveClosure::do_object_b(oop p) {
3300   // An object is reachable if it is outside the collection set,
3301   // or is inside and copied.
3302   return !_g1h->is_in_cset(p) || p->is_forwarded();
3303 }
3304 
3305 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3306   assert(obj != NULL, "must not be NULL");
3307   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3308   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3309   // may falsely indicate that this is not the case here: however the collection set only
3310   // contains old regions when concurrent mark is not running.
3311   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3312 }
3313 
3314 // Non Copying Keep Alive closure
3315 class G1KeepAliveClosure: public OopClosure {
3316   G1CollectedHeap*_g1h;
3317 public:
3318   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3319   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3320   void do_oop(oop* p) {
3321     oop obj = *p;
3322     assert(obj != NULL, "the caller should have filtered out NULL values");
3323 
3324     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3325     if (!region_attr.is_in_cset_or_humongous()) {
3326       return;
3327     }
3328     if (region_attr.is_in_cset()) {
3329       assert( obj->is_forwarded(), "invariant" );
3330       *p = obj->forwardee();
3331     } else {
3332       assert(!obj->is_forwarded(), "invariant" );
3333       assert(region_attr.is_humongous(),
3334              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3335      _g1h->set_humongous_is_live(obj);
3336     }
3337   }
3338 };
3339 
3340 // Copying Keep Alive closure - can be called from both
3341 // serial and parallel code as long as different worker
3342 // threads utilize different G1ParScanThreadState instances
3343 // and different queues.
3344 
3345 class G1CopyingKeepAliveClosure: public OopClosure {
3346   G1CollectedHeap*         _g1h;
3347   G1ParScanThreadState*    _par_scan_state;
3348 
3349 public:
3350   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3351                             G1ParScanThreadState* pss):
3352     _g1h(g1h),
3353     _par_scan_state(pss)
3354   {}
3355 
3356   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3357   virtual void do_oop(      oop* p) { do_oop_work(p); }
3358 
3359   template <class T> void do_oop_work(T* p) {
3360     oop obj = RawAccess<>::oop_load(p);
3361 
3362     if (_g1h->is_in_cset_or_humongous(obj)) {
3363       // If the referent object has been forwarded (either copied
3364       // to a new location or to itself in the event of an
3365       // evacuation failure) then we need to update the reference
3366       // field and, if both reference and referent are in the G1
3367       // heap, update the RSet for the referent.
3368       //
3369       // If the referent has not been forwarded then we have to keep
3370       // it alive by policy. Therefore we have copy the referent.
3371       //
3372       // When the queue is drained (after each phase of reference processing)
3373       // the object and it's followers will be copied, the reference field set
3374       // to point to the new location, and the RSet updated.
3375       _par_scan_state->push_on_queue(p);
3376     }
3377   }
3378 };
3379 
3380 // Serial drain queue closure. Called as the 'complete_gc'
3381 // closure for each discovered list in some of the
3382 // reference processing phases.
3383 
3384 class G1STWDrainQueueClosure: public VoidClosure {
3385 protected:
3386   G1CollectedHeap* _g1h;
3387   G1ParScanThreadState* _par_scan_state;
3388 
3389   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3390 
3391 public:
3392   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3393     _g1h(g1h),
3394     _par_scan_state(pss)
3395   { }
3396 
3397   void do_void() {
3398     G1ParScanThreadState* const pss = par_scan_state();
3399     pss->trim_queue();
3400   }
3401 };
3402 
3403 // Parallel Reference Processing closures
3404 
3405 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3406 // processing during G1 evacuation pauses.
3407 
3408 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3409 private:
3410   G1CollectedHeap*          _g1h;
3411   G1ParScanThreadStateSet*  _pss;
3412   RefToScanQueueSet*        _queues;
3413   WorkGang*                 _workers;
3414 
3415 public:
3416   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3417                            G1ParScanThreadStateSet* per_thread_states,
3418                            WorkGang* workers,
3419                            RefToScanQueueSet *task_queues) :
3420     _g1h(g1h),
3421     _pss(per_thread_states),
3422     _queues(task_queues),
3423     _workers(workers)
3424   {
3425     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3426   }
3427 
3428   // Executes the given task using concurrent marking worker threads.
3429   virtual void execute(ProcessTask& task, uint ergo_workers);
3430 };
3431 
3432 // Gang task for possibly parallel reference processing
3433 
3434 class G1STWRefProcTaskProxy: public AbstractGangTask {
3435   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3436   ProcessTask&     _proc_task;
3437   G1CollectedHeap* _g1h;
3438   G1ParScanThreadStateSet* _pss;
3439   RefToScanQueueSet* _task_queues;
3440   ParallelTaskTerminator* _terminator;
3441 
3442 public:
3443   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3444                         G1CollectedHeap* g1h,
3445                         G1ParScanThreadStateSet* per_thread_states,
3446                         RefToScanQueueSet *task_queues,
3447                         ParallelTaskTerminator* terminator) :
3448     AbstractGangTask("Process reference objects in parallel"),
3449     _proc_task(proc_task),
3450     _g1h(g1h),
3451     _pss(per_thread_states),
3452     _task_queues(task_queues),
3453     _terminator(terminator)
3454   {}
3455 
3456   virtual void work(uint worker_id) {
3457     // The reference processing task executed by a single worker.
3458     ResourceMark rm;
3459     HandleMark   hm;
3460 
3461     G1STWIsAliveClosure is_alive(_g1h);
3462 
3463     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3464     pss->set_ref_discoverer(NULL);
3465 
3466     // Keep alive closure.
3467     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3468 
3469     // Complete GC closure
3470     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3471 
3472     // Call the reference processing task's work routine.
3473     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3474 
3475     // Note we cannot assert that the refs array is empty here as not all
3476     // of the processing tasks (specifically phase2 - pp2_work) execute
3477     // the complete_gc closure (which ordinarily would drain the queue) so
3478     // the queue may not be empty.
3479   }
3480 };
3481 
3482 // Driver routine for parallel reference processing.
3483 // Creates an instance of the ref processing gang
3484 // task and has the worker threads execute it.
3485 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3486   assert(_workers != NULL, "Need parallel worker threads.");
3487 
3488   assert(_workers->active_workers() >= ergo_workers,
3489          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3490          ergo_workers, _workers->active_workers());
3491   TaskTerminator terminator(ergo_workers, _queues);
3492   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3493 
3494   _workers->run_task(&proc_task_proxy, ergo_workers);
3495 }
3496 
3497 // End of weak reference support closures
3498 
3499 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3500   double ref_proc_start = os::elapsedTime();
3501 
3502   ReferenceProcessor* rp = _ref_processor_stw;
3503   assert(rp->discovery_enabled(), "should have been enabled");
3504 
3505   // Closure to test whether a referent is alive.
3506   G1STWIsAliveClosure is_alive(this);
3507 
3508   // Even when parallel reference processing is enabled, the processing
3509   // of JNI refs is serial and performed serially by the current thread
3510   // rather than by a worker. The following PSS will be used for processing
3511   // JNI refs.
3512 
3513   // Use only a single queue for this PSS.
3514   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3515   pss->set_ref_discoverer(NULL);
3516   assert(pss->queue_is_empty(), "pre-condition");
3517 
3518   // Keep alive closure.
3519   G1CopyingKeepAliveClosure keep_alive(this, pss);
3520 
3521   // Serial Complete GC closure
3522   G1STWDrainQueueClosure drain_queue(this, pss);
3523 
3524   // Setup the soft refs policy...
3525   rp->setup_policy(false);
3526 
3527   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3528 
3529   ReferenceProcessorStats stats;
3530   if (!rp->processing_is_mt()) {
3531     // Serial reference processing...
3532     stats = rp->process_discovered_references(&is_alive,
3533                                               &keep_alive,
3534                                               &drain_queue,
3535                                               NULL,
3536                                               pt);
3537   } else {
3538     uint no_of_gc_workers = workers()->active_workers();
3539 
3540     // Parallel reference processing
3541     assert(no_of_gc_workers <= rp->max_num_queues(),
3542            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3543            no_of_gc_workers,  rp->max_num_queues());
3544 
3545     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3546     stats = rp->process_discovered_references(&is_alive,
3547                                               &keep_alive,
3548                                               &drain_queue,
3549                                               &par_task_executor,
3550                                               pt);
3551   }
3552 
3553   _gc_tracer_stw->report_gc_reference_stats(stats);
3554 
3555   // We have completed copying any necessary live referent objects.
3556   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3557 
3558   make_pending_list_reachable();
3559 
3560   assert(!rp->discovery_enabled(), "Postcondition");
3561   rp->verify_no_references_recorded();
3562 
3563   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3564   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3565 }
3566 
3567 void G1CollectedHeap::make_pending_list_reachable() {
3568   if (collector_state()->in_initial_mark_gc()) {
3569     oop pll_head = Universe::reference_pending_list();
3570     if (pll_head != NULL) {
3571       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3572       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3573     }
3574   }
3575 }
3576 
3577 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3578   double merge_pss_time_start = os::elapsedTime();
3579   per_thread_states->flush();
3580   phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3581 }
3582 
3583 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info) {
3584   _expand_heap_after_alloc_failure = true;
3585   _evacuation_failed = false;
3586 
3587   // Disable the hot card cache.
3588   _hot_card_cache->reset_hot_cache_claimed_index();
3589   _hot_card_cache->set_use_cache(false);
3590 
3591   // Initialize the GC alloc regions.
3592   _allocator->init_gc_alloc_regions(evacuation_info);
3593 
3594   register_regions_with_region_attr();
3595   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3596 
3597   rem_set()->prepare_for_scan_rem_set();
3598   _preserved_marks_set.assert_empty();
3599 
3600 #if COMPILER2_OR_JVMCI
3601   DerivedPointerTable::clear();
3602 #endif
3603 
3604   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3605   if (collector_state()->in_initial_mark_gc()) {
3606     concurrent_mark()->pre_initial_mark();
3607 
3608     double start_clear_claimed_marks = os::elapsedTime();
3609 
3610     ClassLoaderDataGraph::clear_claimed_marks();
3611 
3612     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3613     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3614   }
3615 
3616   // Should G1EvacuationFailureALot be in effect for this GC?
3617   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3618 
3619   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3620 }
3621 
3622 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3623 protected:
3624   G1CollectedHeap* _g1h;
3625   G1ParScanThreadStateSet* _per_thread_states;
3626   RefToScanQueueSet* _task_queues;
3627   TaskTerminator _terminator;
3628   uint _num_workers;
3629 
3630   void evacuate_live_objects(G1ParScanThreadState* pss,
3631                              uint worker_id,
3632                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3633                              G1GCPhaseTimes::GCParPhases termination_phase) {
3634     G1GCPhaseTimes* p = _g1h->phase_times();
3635 
3636     Ticks start = Ticks::now();
3637     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3638     cl.do_void();
3639 
3640     assert(pss->queue_is_empty(), "should be empty");
3641 
3642     Tickspan evac_time = (Ticks::now() - start);
3643     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3644 
3645     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABWaste);
3646     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_undo_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABUndoWaste);
3647 
3648     if (termination_phase == G1GCPhaseTimes::Termination) {
3649       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3650       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3651     } else {
3652       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3653       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3654     }
3655     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3656   }
3657 
3658   virtual void start_work(uint worker_id) { }
3659 
3660   virtual void end_work(uint worker_id) { }
3661 
3662   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3663 
3664   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3665 
3666 public:
3667   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3668     AbstractGangTask(name),
3669     _g1h(G1CollectedHeap::heap()),
3670     _per_thread_states(per_thread_states),
3671     _task_queues(task_queues),
3672     _terminator(num_workers, _task_queues),
3673     _num_workers(num_workers)
3674   { }
3675 
3676   void work(uint worker_id) {
3677     start_work(worker_id);
3678 
3679     {
3680       ResourceMark rm;
3681       HandleMark   hm;
3682 
3683       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3684       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3685 
3686       scan_roots(pss, worker_id);
3687       evacuate_live_objects(pss, worker_id);
3688     }
3689 
3690     end_work(worker_id);
3691   }
3692 };
3693 
3694 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3695   G1RootProcessor* _root_processor;
3696 
3697   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3698     _root_processor->evacuate_roots(pss, worker_id);
3699     _g1h->rem_set()->update_rem_set(pss, worker_id);
3700     _g1h->rem_set()->scan_rem_set(pss, worker_id, G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::CodeRoots);
3701   }
3702 
3703   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3704     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3705   }
3706 
3707   void start_work(uint worker_id) {
3708     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3709   }
3710 
3711   void end_work(uint worker_id) {
3712     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3713   }
3714 
3715 public:
3716   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3717                         G1ParScanThreadStateSet* per_thread_states,
3718                         RefToScanQueueSet* task_queues,
3719                         G1RootProcessor* root_processor,
3720                         uint num_workers) :
3721     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3722     _root_processor(root_processor)
3723   { }
3724 };
3725 
3726 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3727   Tickspan task_time;
3728   const uint num_workers = workers()->active_workers();
3729 
3730   Ticks start_processing = Ticks::now();
3731   {
3732     G1RootProcessor root_processor(this, num_workers);
3733     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3734     task_time = run_task(&g1_par_task);
3735     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3736     // To extract its code root fixup time we measure total time of this scope and
3737     // subtract from the time the WorkGang task took.
3738   }
3739   Tickspan total_processing = Ticks::now() - start_processing;
3740 
3741   G1GCPhaseTimes* p = phase_times();
3742   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3743   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3744 }
3745 
3746 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3747 
3748   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3749     _g1h->rem_set()->scan_rem_set(pss, worker_id, G1GCPhaseTimes::OptScanRS, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptCodeRoots);
3750   }
3751 
3752   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3753     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3754   }
3755 
3756 public:
3757   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3758                                 RefToScanQueueSet* queues,
3759                                 uint num_workers) :
3760     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3761   }
3762 };
3763 
3764 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3765   class G1MarkScope : public MarkScope { };
3766 
3767   Tickspan task_time;
3768 
3769   Ticks start_processing = Ticks::now();
3770   {
3771     G1MarkScope code_mark_scope;
3772     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3773     task_time = run_task(&task);
3774     // See comment in evacuate_collection_set() for the reason of the scope.
3775   }
3776   Tickspan total_processing = Ticks::now() - start_processing;
3777 
3778   G1GCPhaseTimes* p = phase_times();
3779   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3780 }
3781 
3782 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3783   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3784 
3785   Ticks start = Ticks::now();
3786 
3787   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3788 
3789     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3790     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3791 
3792     if (time_left_ms < 0 ||
3793         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3794       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3795                                 _collection_set.optional_region_length(), time_left_ms);
3796       break;
3797     }
3798 
3799     evacuate_next_optional_regions(per_thread_states);
3800   }
3801 
3802   _collection_set.abandon_optional_collection_set(per_thread_states);
3803 
3804   phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3805 }
3806 
3807 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3808   // Also cleans the card table from temporary duplicate detection information used
3809   // during UpdateRS/ScanRS.
3810   rem_set()->cleanup_after_scan_rem_set();
3811 
3812   // Process any discovered reference objects - we have
3813   // to do this _before_ we retire the GC alloc regions
3814   // as we may have to copy some 'reachable' referent
3815   // objects (and their reachable sub-graphs) that were
3816   // not copied during the pause.
3817   process_discovered_references(per_thread_states);
3818 
3819   G1STWIsAliveClosure is_alive(this);
3820   G1KeepAliveClosure keep_alive(this);
3821 
3822   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3823                               phase_times()->weak_phase_times());
3824 
3825   if (G1StringDedup::is_enabled()) {
3826     double string_dedup_time_ms = os::elapsedTime();
3827 
3828     string_dedup_cleaning(&is_alive, &keep_alive, phase_times());
3829 
3830     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
3831     phase_times()->record_string_deduplication_time(string_cleanup_time_ms);
3832   }
3833 
3834   _allocator->release_gc_alloc_regions(evacuation_info);
3835 
3836   if (evacuation_failed()) {
3837     restore_after_evac_failure();
3838 
3839     // Reset the G1EvacuationFailureALot counters and flags
3840     NOT_PRODUCT(reset_evacuation_should_fail();)
3841 
3842     double recalculate_used_start = os::elapsedTime();
3843     set_used(recalculate_used());
3844     phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3845 
3846     if (_archive_allocator != NULL) {
3847       _archive_allocator->clear_used();
3848     }
3849     for (uint i = 0; i < ParallelGCThreads; i++) {
3850       if (_evacuation_failed_info_array[i].has_failed()) {
3851         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3852       }
3853     }
3854   } else {
3855     // The "used" of the the collection set have already been subtracted
3856     // when they were freed.  Add in the bytes evacuated.
3857     increase_used(policy()->bytes_copied_during_gc());
3858   }
3859 
3860   _preserved_marks_set.assert_empty();
3861 
3862   merge_per_thread_state_info(per_thread_states);
3863 
3864   // Reset and re-enable the hot card cache.
3865   // Note the counts for the cards in the regions in the
3866   // collection set are reset when the collection set is freed.
3867   _hot_card_cache->reset_hot_cache();
3868   _hot_card_cache->set_use_cache(true);
3869 
3870   purge_code_root_memory();
3871 
3872   redirty_logged_cards();
3873 
3874   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
3875 
3876   eagerly_reclaim_humongous_regions();
3877 
3878   record_obj_copy_mem_stats();
3879 
3880   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3881   evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc());
3882 
3883 #if COMPILER2_OR_JVMCI
3884   double start = os::elapsedTime();
3885   DerivedPointerTable::update_pointers();
3886   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3887 #endif
3888   policy()->print_age_table();
3889 }
3890 
3891 void G1CollectedHeap::record_obj_copy_mem_stats() {
3892   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3893 
3894   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3895                                                create_g1_evac_summary(&_old_evac_stats));
3896 }
3897 
3898 void G1CollectedHeap::free_region(HeapRegion* hr,
3899                                   FreeRegionList* free_list,
3900                                   bool skip_remset,
3901                                   bool skip_hot_card_cache,
3902                                   bool locked) {
3903   assert(!hr->is_free(), "the region should not be free");
3904   assert(!hr->is_empty(), "the region should not be empty");
3905   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3906   assert(free_list != NULL, "pre-condition");
3907 
3908   if (G1VerifyBitmaps) {
3909     MemRegion mr(hr->bottom(), hr->end());
3910     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3911   }
3912 
3913   // Clear the card counts for this region.
3914   // Note: we only need to do this if the region is not young
3915   // (since we don't refine cards in young regions).
3916   if (!skip_hot_card_cache && !hr->is_young()) {
3917     _hot_card_cache->reset_card_counts(hr);
3918   }
3919   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3920   _policy->remset_tracker()->update_at_free(hr);
3921   free_list->add_ordered(hr);
3922 }
3923 
3924 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3925                                             FreeRegionList* free_list) {
3926   assert(hr->is_humongous(), "this is only for humongous regions");
3927   assert(free_list != NULL, "pre-condition");
3928   hr->clear_humongous();
3929   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3930 }
3931 
3932 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3933                                            const uint humongous_regions_removed) {
3934   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3935     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3936     _old_set.bulk_remove(old_regions_removed);
3937     _humongous_set.bulk_remove(humongous_regions_removed);
3938   }
3939 
3940 }
3941 
3942 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3943   assert(list != NULL, "list can't be null");
3944   if (!list->is_empty()) {
3945     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3946     _hrm->insert_list_into_free_list(list);
3947   }
3948 }
3949 
3950 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3951   decrease_used(bytes);
3952 }
3953 
3954 class G1FreeCollectionSetTask : public AbstractGangTask {
3955 private:
3956 
3957   // Closure applied to all regions in the collection set to do work that needs to
3958   // be done serially in a single thread.
3959   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3960   private:
3961     G1EvacuationInfo* _evacuation_info;
3962     const size_t* _surviving_young_words;
3963 
3964     // Bytes used in successfully evacuated regions before the evacuation.
3965     size_t _before_used_bytes;
3966     // Bytes used in unsucessfully evacuated regions before the evacuation
3967     size_t _after_used_bytes;
3968 
3969     size_t _bytes_allocated_in_old_since_last_gc;
3970 
3971     size_t _failure_used_words;
3972     size_t _failure_waste_words;
3973 
3974     FreeRegionList _local_free_list;
3975   public:
3976     G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3977       HeapRegionClosure(),
3978       _evacuation_info(evacuation_info),
3979       _surviving_young_words(surviving_young_words),
3980       _before_used_bytes(0),
3981       _after_used_bytes(0),
3982       _bytes_allocated_in_old_since_last_gc(0),
3983       _failure_used_words(0),
3984       _failure_waste_words(0),
3985       _local_free_list("Local Region List for CSet Freeing") {
3986     }
3987 
3988     virtual bool do_heap_region(HeapRegion* r) {
3989       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3990 
3991       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3992       g1h->clear_region_attr(r);
3993 
3994       if (r->is_young()) {
3995         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
3996                "Young index %d is wrong for region %u of type %s with %u young regions",
3997                r->young_index_in_cset(),
3998                r->hrm_index(),
3999                r->get_type_str(),
4000                g1h->collection_set()->young_region_length());
4001         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4002         r->record_surv_words_in_group(words_survived);
4003       }
4004 
4005       if (!r->evacuation_failed()) {
4006         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4007         _before_used_bytes += r->used();
4008         g1h->free_region(r,
4009                          &_local_free_list,
4010                          true, /* skip_remset */
4011                          true, /* skip_hot_card_cache */
4012                          true  /* locked */);
4013       } else {
4014         r->uninstall_surv_rate_group();
4015         r->set_young_index_in_cset(-1);
4016         r->set_evacuation_failed(false);
4017         // When moving a young gen region to old gen, we "allocate" that whole region
4018         // there. This is in addition to any already evacuated objects. Notify the
4019         // policy about that.
4020         // Old gen regions do not cause an additional allocation: both the objects
4021         // still in the region and the ones already moved are accounted for elsewhere.
4022         if (r->is_young()) {
4023           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4024         }
4025         // The region is now considered to be old.
4026         r->set_old();
4027         // Do some allocation statistics accounting. Regions that failed evacuation
4028         // are always made old, so there is no need to update anything in the young
4029         // gen statistics, but we need to update old gen statistics.
4030         size_t used_words = r->marked_bytes() / HeapWordSize;
4031 
4032         _failure_used_words += used_words;
4033         _failure_waste_words += HeapRegion::GrainWords - used_words;
4034 
4035         g1h->old_set_add(r);
4036         _after_used_bytes += r->used();
4037       }
4038       return false;
4039     }
4040 
4041     void complete_work() {
4042       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4043 
4044       _evacuation_info->set_regions_freed(_local_free_list.length());
4045       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4046 
4047       g1h->prepend_to_freelist(&_local_free_list);
4048       g1h->decrement_summary_bytes(_before_used_bytes);
4049 
4050       G1Policy* policy = g1h->policy();
4051       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4052 
4053       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4054     }
4055   };
4056 
4057   G1CollectionSet* _collection_set;
4058   G1SerialFreeCollectionSetClosure _cl;
4059   const size_t* _surviving_young_words;
4060 
4061   size_t _rs_lengths;
4062 
4063   volatile jint _serial_work_claim;
4064 
4065   struct WorkItem {
4066     uint region_idx;
4067     bool is_young;
4068     bool evacuation_failed;
4069 
4070     WorkItem(HeapRegion* r) {
4071       region_idx = r->hrm_index();
4072       is_young = r->is_young();
4073       evacuation_failed = r->evacuation_failed();
4074     }
4075   };
4076 
4077   volatile size_t _parallel_work_claim;
4078   size_t _num_work_items;
4079   WorkItem* _work_items;
4080 
4081   void do_serial_work() {
4082     // Need to grab the lock to be allowed to modify the old region list.
4083     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4084     _collection_set->iterate(&_cl);
4085   }
4086 
4087   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4088     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4089 
4090     HeapRegion* r = g1h->region_at(region_idx);
4091     assert(!g1h->is_on_master_free_list(r), "sanity");
4092 
4093     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4094 
4095     if (!is_young) {
4096       g1h->_hot_card_cache->reset_card_counts(r);
4097     }
4098 
4099     if (!evacuation_failed) {
4100       r->rem_set()->clear_locked();
4101     }
4102   }
4103 
4104   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4105   private:
4106     size_t _cur_idx;
4107     WorkItem* _work_items;
4108   public:
4109     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4110 
4111     virtual bool do_heap_region(HeapRegion* r) {
4112       _work_items[_cur_idx++] = WorkItem(r);
4113       return false;
4114     }
4115   };
4116 
4117   void prepare_work() {
4118     G1PrepareFreeCollectionSetClosure cl(_work_items);
4119     _collection_set->iterate(&cl);
4120   }
4121 
4122   void complete_work() {
4123     _cl.complete_work();
4124 
4125     G1Policy* policy = G1CollectedHeap::heap()->policy();
4126     policy->record_max_rs_lengths(_rs_lengths);
4127     policy->cset_regions_freed();
4128   }
4129 public:
4130   G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4131     AbstractGangTask("G1 Free Collection Set"),
4132     _collection_set(collection_set),
4133     _cl(evacuation_info, surviving_young_words),
4134     _surviving_young_words(surviving_young_words),
4135     _rs_lengths(0),
4136     _serial_work_claim(0),
4137     _parallel_work_claim(0),
4138     _num_work_items(collection_set->region_length()),
4139     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4140     prepare_work();
4141   }
4142 
4143   ~G1FreeCollectionSetTask() {
4144     complete_work();
4145     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4146   }
4147 
4148   // Chunk size for work distribution. The chosen value has been determined experimentally
4149   // to be a good tradeoff between overhead and achievable parallelism.
4150   static uint chunk_size() { return 32; }
4151 
4152   virtual void work(uint worker_id) {
4153     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times();
4154 
4155     // Claim serial work.
4156     if (_serial_work_claim == 0) {
4157       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4158       if (value == 0) {
4159         double serial_time = os::elapsedTime();
4160         do_serial_work();
4161         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4162       }
4163     }
4164 
4165     // Start parallel work.
4166     double young_time = 0.0;
4167     bool has_young_time = false;
4168     double non_young_time = 0.0;
4169     bool has_non_young_time = false;
4170 
4171     while (true) {
4172       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4173       size_t cur = end - chunk_size();
4174 
4175       if (cur >= _num_work_items) {
4176         break;
4177       }
4178 
4179       EventGCPhaseParallel event;
4180       double start_time = os::elapsedTime();
4181 
4182       end = MIN2(end, _num_work_items);
4183 
4184       for (; cur < end; cur++) {
4185         bool is_young = _work_items[cur].is_young;
4186 
4187         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4188 
4189         double end_time = os::elapsedTime();
4190         double time_taken = end_time - start_time;
4191         if (is_young) {
4192           young_time += time_taken;
4193           has_young_time = true;
4194           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4195         } else {
4196           non_young_time += time_taken;
4197           has_non_young_time = true;
4198           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4199         }
4200         start_time = end_time;
4201       }
4202     }
4203 
4204     if (has_young_time) {
4205       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4206     }
4207     if (has_non_young_time) {
4208       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4209     }
4210   }
4211 };
4212 
4213 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4214   _eden.clear();
4215 
4216   double free_cset_start_time = os::elapsedTime();
4217 
4218   {
4219     uint const num_regions = _collection_set.region_length();
4220     uint const num_chunks = MAX2(num_regions / G1FreeCollectionSetTask::chunk_size(), 1U);
4221     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4222 
4223     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4224 
4225     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4226                         cl.name(), num_workers, num_regions);
4227     workers()->run_task(&cl, num_workers);
4228   }
4229   phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4230 
4231   collection_set->clear();
4232 }
4233 
4234 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4235  private:
4236   FreeRegionList* _free_region_list;
4237   HeapRegionSet* _proxy_set;
4238   uint _humongous_objects_reclaimed;
4239   uint _humongous_regions_reclaimed;
4240   size_t _freed_bytes;
4241  public:
4242 
4243   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4244     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4245   }
4246 
4247   virtual bool do_heap_region(HeapRegion* r) {
4248     if (!r->is_starts_humongous()) {
4249       return false;
4250     }
4251 
4252     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4253 
4254     oop obj = (oop)r->bottom();
4255     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4256 
4257     // The following checks whether the humongous object is live are sufficient.
4258     // The main additional check (in addition to having a reference from the roots
4259     // or the young gen) is whether the humongous object has a remembered set entry.
4260     //
4261     // A humongous object cannot be live if there is no remembered set for it
4262     // because:
4263     // - there can be no references from within humongous starts regions referencing
4264     // the object because we never allocate other objects into them.
4265     // (I.e. there are no intra-region references that may be missed by the
4266     // remembered set)
4267     // - as soon there is a remembered set entry to the humongous starts region
4268     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4269     // until the end of a concurrent mark.
4270     //
4271     // It is not required to check whether the object has been found dead by marking
4272     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4273     // all objects allocated during that time are considered live.
4274     // SATB marking is even more conservative than the remembered set.
4275     // So if at this point in the collection there is no remembered set entry,
4276     // nobody has a reference to it.
4277     // At the start of collection we flush all refinement logs, and remembered sets
4278     // are completely up-to-date wrt to references to the humongous object.
4279     //
4280     // Other implementation considerations:
4281     // - never consider object arrays at this time because they would pose
4282     // considerable effort for cleaning up the the remembered sets. This is
4283     // required because stale remembered sets might reference locations that
4284     // are currently allocated into.
4285     uint region_idx = r->hrm_index();
4286     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4287         !r->rem_set()->is_empty()) {
4288       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4289                                region_idx,
4290                                (size_t)obj->size() * HeapWordSize,
4291                                p2i(r->bottom()),
4292                                r->rem_set()->occupied(),
4293                                r->rem_set()->strong_code_roots_list_length(),
4294                                next_bitmap->is_marked(r->bottom()),
4295                                g1h->is_humongous_reclaim_candidate(region_idx),
4296                                obj->is_typeArray()
4297                               );
4298       return false;
4299     }
4300 
4301     guarantee(obj->is_typeArray(),
4302               "Only eagerly reclaiming type arrays is supported, but the object "
4303               PTR_FORMAT " is not.", p2i(r->bottom()));
4304 
4305     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4306                              region_idx,
4307                              (size_t)obj->size() * HeapWordSize,
4308                              p2i(r->bottom()),
4309                              r->rem_set()->occupied(),
4310                              r->rem_set()->strong_code_roots_list_length(),
4311                              next_bitmap->is_marked(r->bottom()),
4312                              g1h->is_humongous_reclaim_candidate(region_idx),
4313                              obj->is_typeArray()
4314                             );
4315 
4316     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4317     cm->humongous_object_eagerly_reclaimed(r);
4318     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4319            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4320            region_idx,
4321            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4322            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4323     _humongous_objects_reclaimed++;
4324     do {
4325       HeapRegion* next = g1h->next_region_in_humongous(r);
4326       _freed_bytes += r->used();
4327       r->set_containing_set(NULL);
4328       _humongous_regions_reclaimed++;
4329       g1h->free_humongous_region(r, _free_region_list);
4330       r = next;
4331     } while (r != NULL);
4332 
4333     return false;
4334   }
4335 
4336   uint humongous_objects_reclaimed() {
4337     return _humongous_objects_reclaimed;
4338   }
4339 
4340   uint humongous_regions_reclaimed() {
4341     return _humongous_regions_reclaimed;
4342   }
4343 
4344   size_t bytes_freed() const {
4345     return _freed_bytes;
4346   }
4347 };
4348 
4349 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4350   assert_at_safepoint_on_vm_thread();
4351 
4352   if (!G1EagerReclaimHumongousObjects ||
4353       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4354     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4355     return;
4356   }
4357 
4358   double start_time = os::elapsedTime();
4359 
4360   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4361 
4362   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4363   heap_region_iterate(&cl);
4364 
4365   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4366 
4367   G1HRPrinter* hrp = hr_printer();
4368   if (hrp->is_active()) {
4369     FreeRegionListIterator iter(&local_cleanup_list);
4370     while (iter.more_available()) {
4371       HeapRegion* hr = iter.get_next();
4372       hrp->cleanup(hr);
4373     }
4374   }
4375 
4376   prepend_to_freelist(&local_cleanup_list);
4377   decrement_summary_bytes(cl.bytes_freed());
4378 
4379   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4380                                                        cl.humongous_objects_reclaimed());
4381 }
4382 
4383 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4384 public:
4385   virtual bool do_heap_region(HeapRegion* r) {
4386     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4387     G1CollectedHeap::heap()->clear_region_attr(r);
4388     r->set_young_index_in_cset(-1);
4389     return false;
4390   }
4391 };
4392 
4393 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4394   G1AbandonCollectionSetClosure cl;
4395   collection_set_iterate_all(&cl);
4396 
4397   collection_set->clear();
4398   collection_set->stop_incremental_building();
4399 }
4400 
4401 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4402   return _allocator->is_retained_old_region(hr);
4403 }
4404 
4405 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4406   _eden.add(hr);
4407   _policy->set_region_eden(hr);
4408 }
4409 
4410 #ifdef ASSERT
4411 
4412 class NoYoungRegionsClosure: public HeapRegionClosure {
4413 private:
4414   bool _success;
4415 public:
4416   NoYoungRegionsClosure() : _success(true) { }
4417   bool do_heap_region(HeapRegion* r) {
4418     if (r->is_young()) {
4419       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4420                             p2i(r->bottom()), p2i(r->end()));
4421       _success = false;
4422     }
4423     return false;
4424   }
4425   bool success() { return _success; }
4426 };
4427 
4428 bool G1CollectedHeap::check_young_list_empty() {
4429   bool ret = (young_regions_count() == 0);
4430 
4431   NoYoungRegionsClosure closure;
4432   heap_region_iterate(&closure);
4433   ret = ret && closure.success();
4434 
4435   return ret;
4436 }
4437 
4438 #endif // ASSERT
4439 
4440 class TearDownRegionSetsClosure : public HeapRegionClosure {
4441   HeapRegionSet *_old_set;
4442 
4443 public:
4444   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4445 
4446   bool do_heap_region(HeapRegion* r) {
4447     if (r->is_old()) {
4448       _old_set->remove(r);
4449     } else if(r->is_young()) {
4450       r->uninstall_surv_rate_group();
4451     } else {
4452       // We ignore free regions, we'll empty the free list afterwards.
4453       // We ignore humongous and archive regions, we're not tearing down these
4454       // sets.
4455       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4456              "it cannot be another type");
4457     }
4458     return false;
4459   }
4460 
4461   ~TearDownRegionSetsClosure() {
4462     assert(_old_set->is_empty(), "post-condition");
4463   }
4464 };
4465 
4466 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4467   assert_at_safepoint_on_vm_thread();
4468 
4469   if (!free_list_only) {
4470     TearDownRegionSetsClosure cl(&_old_set);
4471     heap_region_iterate(&cl);
4472 
4473     // Note that emptying the _young_list is postponed and instead done as
4474     // the first step when rebuilding the regions sets again. The reason for
4475     // this is that during a full GC string deduplication needs to know if
4476     // a collected region was young or old when the full GC was initiated.
4477   }
4478   _hrm->remove_all_free_regions();
4479 }
4480 
4481 void G1CollectedHeap::increase_used(size_t bytes) {
4482   _summary_bytes_used += bytes;
4483 }
4484 
4485 void G1CollectedHeap::decrease_used(size_t bytes) {
4486   assert(_summary_bytes_used >= bytes,
4487          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4488          _summary_bytes_used, bytes);
4489   _summary_bytes_used -= bytes;
4490 }
4491 
4492 void G1CollectedHeap::set_used(size_t bytes) {
4493   _summary_bytes_used = bytes;
4494 }
4495 
4496 class RebuildRegionSetsClosure : public HeapRegionClosure {
4497 private:
4498   bool _free_list_only;
4499 
4500   HeapRegionSet* _old_set;
4501   HeapRegionManager* _hrm;
4502 
4503   size_t _total_used;
4504 
4505 public:
4506   RebuildRegionSetsClosure(bool free_list_only,
4507                            HeapRegionSet* old_set,
4508                            HeapRegionManager* hrm) :
4509     _free_list_only(free_list_only),
4510     _old_set(old_set), _hrm(hrm), _total_used(0) {
4511     assert(_hrm->num_free_regions() == 0, "pre-condition");
4512     if (!free_list_only) {
4513       assert(_old_set->is_empty(), "pre-condition");
4514     }
4515   }
4516 
4517   bool do_heap_region(HeapRegion* r) {
4518     if (r->is_empty()) {
4519       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4520       // Add free regions to the free list
4521       r->set_free();
4522       _hrm->insert_into_free_list(r);
4523     } else if (!_free_list_only) {
4524       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4525 
4526       if (r->is_archive() || r->is_humongous()) {
4527         // We ignore archive and humongous regions. We left these sets unchanged.
4528       } else {
4529         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4530         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4531         r->move_to_old();
4532         _old_set->add(r);
4533       }
4534       _total_used += r->used();
4535     }
4536 
4537     return false;
4538   }
4539 
4540   size_t total_used() {
4541     return _total_used;
4542   }
4543 };
4544 
4545 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4546   assert_at_safepoint_on_vm_thread();
4547 
4548   if (!free_list_only) {
4549     _eden.clear();
4550     _survivor.clear();
4551   }
4552 
4553   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4554   heap_region_iterate(&cl);
4555 
4556   if (!free_list_only) {
4557     set_used(cl.total_used());
4558     if (_archive_allocator != NULL) {
4559       _archive_allocator->clear_used();
4560     }
4561   }
4562   assert_used_and_recalculate_used_equal(this);
4563 }
4564 
4565 // Methods for the mutator alloc region
4566 
4567 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4568                                                       bool force) {
4569   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4570   bool should_allocate = policy()->should_allocate_mutator_region();
4571   if (force || should_allocate) {
4572     HeapRegion* new_alloc_region = new_region(word_size,
4573                                               HeapRegionType::Eden,
4574                                               false /* do_expand */);
4575     if (new_alloc_region != NULL) {
4576       set_region_short_lived_locked(new_alloc_region);
4577       _hr_printer.alloc(new_alloc_region, !should_allocate);
4578       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4579       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4580       return new_alloc_region;
4581     }
4582   }
4583   return NULL;
4584 }
4585 
4586 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4587                                                   size_t allocated_bytes) {
4588   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4589   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4590 
4591   collection_set()->add_eden_region(alloc_region);
4592   increase_used(allocated_bytes);
4593   _eden.add_used_bytes(allocated_bytes);
4594   _hr_printer.retire(alloc_region);
4595 
4596   // We update the eden sizes here, when the region is retired,
4597   // instead of when it's allocated, since this is the point that its
4598   // used space has been recorded in _summary_bytes_used.
4599   g1mm()->update_eden_size();
4600 }
4601 
4602 // Methods for the GC alloc regions
4603 
4604 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4605   if (dest.is_old()) {
4606     return true;
4607   } else {
4608     return survivor_regions_count() < policy()->max_survivor_regions();
4609   }
4610 }
4611 
4612 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest) {
4613   assert(FreeList_lock->owned_by_self(), "pre-condition");
4614 
4615   if (!has_more_regions(dest)) {
4616     return NULL;
4617   }
4618 
4619   HeapRegionType type;
4620   if (dest.is_young()) {
4621     type = HeapRegionType::Survivor;
4622   } else {
4623     type = HeapRegionType::Old;
4624   }
4625 
4626   HeapRegion* new_alloc_region = new_region(word_size,
4627                                             type,
4628                                             true /* do_expand */);
4629 
4630   if (new_alloc_region != NULL) {
4631     if (type.is_survivor()) {
4632       new_alloc_region->set_survivor();
4633       _survivor.add(new_alloc_region);
4634       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4635     } else {
4636       new_alloc_region->set_old();
4637       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4638     }
4639     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4640     register_region_with_region_attr(new_alloc_region);
4641     _hr_printer.alloc(new_alloc_region);
4642     return new_alloc_region;
4643   }
4644   return NULL;
4645 }
4646 
4647 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4648                                              size_t allocated_bytes,
4649                                              G1HeapRegionAttr dest) {
4650   policy()->record_bytes_copied_during_gc(allocated_bytes);
4651   if (dest.is_old()) {
4652     old_set_add(alloc_region);
4653   } else {
4654     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4655     _survivor.add_used_bytes(allocated_bytes);
4656   }
4657 
4658   bool const during_im = collector_state()->in_initial_mark_gc();
4659   if (during_im && allocated_bytes > 0) {
4660     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4661   }
4662   _hr_printer.retire(alloc_region);
4663 }
4664 
4665 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4666   bool expanded = false;
4667   uint index = _hrm->find_highest_free(&expanded);
4668 
4669   if (index != G1_NO_HRM_INDEX) {
4670     if (expanded) {
4671       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4672                                 HeapRegion::GrainWords * HeapWordSize);
4673     }
4674     _hrm->allocate_free_regions_starting_at(index, 1);
4675     return region_at(index);
4676   }
4677   return NULL;
4678 }
4679 
4680 // Optimized nmethod scanning
4681 
4682 class RegisterNMethodOopClosure: public OopClosure {
4683   G1CollectedHeap* _g1h;
4684   nmethod* _nm;
4685 
4686   template <class T> void do_oop_work(T* p) {
4687     T heap_oop = RawAccess<>::oop_load(p);
4688     if (!CompressedOops::is_null(heap_oop)) {
4689       oop obj = CompressedOops::decode_not_null(heap_oop);
4690       HeapRegion* hr = _g1h->heap_region_containing(obj);
4691       assert(!hr->is_continues_humongous(),
4692              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4693              " starting at " HR_FORMAT,
4694              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4695 
4696       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4697       hr->add_strong_code_root_locked(_nm);
4698     }
4699   }
4700 
4701 public:
4702   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4703     _g1h(g1h), _nm(nm) {}
4704 
4705   void do_oop(oop* p)       { do_oop_work(p); }
4706   void do_oop(narrowOop* p) { do_oop_work(p); }
4707 };
4708 
4709 class UnregisterNMethodOopClosure: public OopClosure {
4710   G1CollectedHeap* _g1h;
4711   nmethod* _nm;
4712 
4713   template <class T> void do_oop_work(T* p) {
4714     T heap_oop = RawAccess<>::oop_load(p);
4715     if (!CompressedOops::is_null(heap_oop)) {
4716       oop obj = CompressedOops::decode_not_null(heap_oop);
4717       HeapRegion* hr = _g1h->heap_region_containing(obj);
4718       assert(!hr->is_continues_humongous(),
4719              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4720              " starting at " HR_FORMAT,
4721              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4722 
4723       hr->remove_strong_code_root(_nm);
4724     }
4725   }
4726 
4727 public:
4728   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4729     _g1h(g1h), _nm(nm) {}
4730 
4731   void do_oop(oop* p)       { do_oop_work(p); }
4732   void do_oop(narrowOop* p) { do_oop_work(p); }
4733 };
4734 
4735 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4736   guarantee(nm != NULL, "sanity");
4737   RegisterNMethodOopClosure reg_cl(this, nm);
4738   nm->oops_do(&reg_cl);
4739 }
4740 
4741 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4742   guarantee(nm != NULL, "sanity");
4743   UnregisterNMethodOopClosure reg_cl(this, nm);
4744   nm->oops_do(&reg_cl, true);
4745 }
4746 
4747 void G1CollectedHeap::purge_code_root_memory() {
4748   double purge_start = os::elapsedTime();
4749   G1CodeRootSet::purge();
4750   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4751   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4752 }
4753 
4754 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4755   G1CollectedHeap* _g1h;
4756 
4757 public:
4758   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4759     _g1h(g1h) {}
4760 
4761   void do_code_blob(CodeBlob* cb) {
4762     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4763     if (nm == NULL) {
4764       return;
4765     }
4766 
4767     _g1h->register_nmethod(nm);
4768   }
4769 };
4770 
4771 void G1CollectedHeap::rebuild_strong_code_roots() {
4772   RebuildStrongCodeRootClosure blob_cl(this);
4773   CodeCache::blobs_do(&blob_cl);
4774 }
4775 
4776 void G1CollectedHeap::initialize_serviceability() {
4777   _g1mm->initialize_serviceability();
4778 }
4779 
4780 MemoryUsage G1CollectedHeap::memory_usage() {
4781   return _g1mm->memory_usage();
4782 }
4783 
4784 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4785   return _g1mm->memory_managers();
4786 }
4787 
4788 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4789   return _g1mm->memory_pools();
4790 }