1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 // Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>.
  33 #include "classfile_constants.h"
  34 
  35 #include COMPILER_HEADER(utilities/globalDefinitions)
  36 
  37 // Defaults for macros that might be defined per compiler.
  38 #ifndef NOINLINE
  39 #define NOINLINE
  40 #endif
  41 #ifndef ALWAYSINLINE
  42 #define ALWAYSINLINE inline
  43 #endif
  44 
  45 #ifndef ATTRIBUTE_ALIGNED
  46 #define ATTRIBUTE_ALIGNED(x)
  47 #endif
  48 
  49 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  50 // capabilities. Choices should be led by a tradeoff between
  51 // code size and improved supportability.
  52 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  53 // to have a fallback in case hsdis is not available.
  54 #if defined(PRODUCT)
  55   #define SUPPORT_ABSTRACT_ASSEMBLY
  56   #define SUPPORT_ASSEMBLY
  57   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  58   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  59 #else
  60   #define SUPPORT_ABSTRACT_ASSEMBLY
  61   #define SUPPORT_ASSEMBLY
  62   #define SUPPORT_OPTO_ASSEMBLY
  63   #define SUPPORT_DATA_STRUCTS
  64 #endif
  65 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  66   #define SUPPORT_ABSTRACT_ASSEMBLY
  67 #endif
  68 
  69 // This file holds all globally used constants & types, class (forward)
  70 // declarations and a few frequently used utility functions.
  71 
  72 //----------------------------------------------------------------------------------------------------
  73 // Printf-style formatters for fixed- and variable-width types as pointers and
  74 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  75 // doesn't provide appropriate definitions, they should be provided in
  76 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  77 
  78 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  79 
  80 // Format 32-bit quantities.
  81 #define INT32_FORMAT           "%" PRId32
  82 #define UINT32_FORMAT          "%" PRIu32
  83 #define INT32_FORMAT_W(width)  "%" #width PRId32
  84 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  85 
  86 #define PTR32_FORMAT           "0x%08" PRIx32
  87 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  88 
  89 // Format 64-bit quantities.
  90 #define INT64_FORMAT           "%" PRId64
  91 #define UINT64_FORMAT          "%" PRIu64
  92 #define UINT64_FORMAT_X        "%" PRIx64
  93 #define INT64_FORMAT_W(width)  "%" #width PRId64
  94 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  95 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
  96 
  97 #define PTR64_FORMAT           "0x%016" PRIx64
  98 
  99 // Format jlong, if necessary
 100 #ifndef JLONG_FORMAT
 101 #define JLONG_FORMAT           INT64_FORMAT
 102 #endif
 103 #ifndef JLONG_FORMAT_W
 104 #define JLONG_FORMAT_W(width)  INT64_FORMAT_W(width)
 105 #endif
 106 #ifndef JULONG_FORMAT
 107 #define JULONG_FORMAT          UINT64_FORMAT
 108 #endif
 109 #ifndef JULONG_FORMAT_X
 110 #define JULONG_FORMAT_X        UINT64_FORMAT_X
 111 #endif
 112 
 113 // Format pointers which change size between 32- and 64-bit.
 114 #ifdef  _LP64
 115 #define INTPTR_FORMAT "0x%016" PRIxPTR
 116 #define PTR_FORMAT    "0x%016" PRIxPTR
 117 #else   // !_LP64
 118 #define INTPTR_FORMAT "0x%08"  PRIxPTR
 119 #define PTR_FORMAT    "0x%08"  PRIxPTR
 120 #endif  // _LP64
 121 
 122 // Format pointers without leading zeros
 123 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
 124 
 125 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
 126 
 127 #define SSIZE_FORMAT             "%"   PRIdPTR
 128 #define SIZE_FORMAT              "%"   PRIuPTR
 129 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 130 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 131 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 132 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 133 
 134 #define INTX_FORMAT           "%" PRIdPTR
 135 #define UINTX_FORMAT          "%" PRIuPTR
 136 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 137 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 138 
 139 //----------------------------------------------------------------------------------------------------
 140 // Constants
 141 
 142 const int LogBytesPerShort   = 1;
 143 const int LogBytesPerInt     = 2;
 144 #ifdef _LP64
 145 const int LogBytesPerWord    = 3;
 146 #else
 147 const int LogBytesPerWord    = 2;
 148 #endif
 149 const int LogBytesPerLong    = 3;
 150 
 151 const int BytesPerShort      = 1 << LogBytesPerShort;
 152 const int BytesPerInt        = 1 << LogBytesPerInt;
 153 const int BytesPerWord       = 1 << LogBytesPerWord;
 154 const int BytesPerLong       = 1 << LogBytesPerLong;
 155 
 156 const int LogBitsPerByte     = 3;
 157 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 158 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 159 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 160 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 161 
 162 const int BitsPerByte        = 1 << LogBitsPerByte;
 163 const int BitsPerShort       = 1 << LogBitsPerShort;
 164 const int BitsPerInt         = 1 << LogBitsPerInt;
 165 const int BitsPerWord        = 1 << LogBitsPerWord;
 166 const int BitsPerLong        = 1 << LogBitsPerLong;
 167 
 168 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 169 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 170 
 171 const int WordsPerLong       = 2;       // Number of stack entries for longs
 172 
 173 const int oopSize            = sizeof(char*); // Full-width oop
 174 extern int heapOopSize;                       // Oop within a java object
 175 const int wordSize           = sizeof(char*);
 176 const int longSize           = sizeof(jlong);
 177 const int jintSize           = sizeof(jint);
 178 const int size_tSize         = sizeof(size_t);
 179 
 180 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 181 
 182 extern int LogBytesPerHeapOop;                // Oop within a java object
 183 extern int LogBitsPerHeapOop;
 184 extern int BytesPerHeapOop;
 185 extern int BitsPerHeapOop;
 186 
 187 const int BitsPerJavaInteger = 32;
 188 const int BitsPerJavaLong    = 64;
 189 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 190 
 191 // Size of a char[] needed to represent a jint as a string in decimal.
 192 const int jintAsStringSize = 12;
 193 
 194 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 195 // We require that object sizes be measured in units of heap words (e.g.
 196 // pointer-sized values), so that given HeapWord* hw,
 197 //   hw += oop(hw)->foo();
 198 // works, where foo is a method (like size or scavenge) that returns the
 199 // object size.
 200 class HeapWordImpl;             // Opaque, never defined.
 201 typedef HeapWordImpl* HeapWord;
 202 
 203 // Analogous opaque struct for metadata allocated from metaspaces.
 204 class MetaWordImpl;             // Opaque, never defined.
 205 typedef MetaWordImpl* MetaWord;
 206 
 207 // HeapWordSize must be 2^LogHeapWordSize.
 208 const int HeapWordSize        = sizeof(HeapWord);
 209 #ifdef _LP64
 210 const int LogHeapWordSize     = 3;
 211 #else
 212 const int LogHeapWordSize     = 2;
 213 #endif
 214 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 215 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 216 
 217 // The minimum number of native machine words necessary to contain "byte_size"
 218 // bytes.
 219 inline size_t heap_word_size(size_t byte_size) {
 220   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 221 }
 222 
 223 //-------------------------------------------
 224 // Constant for jlong (standardized by C++11)
 225 
 226 // Build a 64bit integer constant
 227 #define CONST64(x)  (x ## LL)
 228 #define UCONST64(x) (x ## ULL)
 229 
 230 const jlong min_jlong = CONST64(0x8000000000000000);
 231 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 232 
 233 const size_t K                  = 1024;
 234 const size_t M                  = K*K;
 235 const size_t G                  = M*K;
 236 const size_t HWperKB            = K / sizeof(HeapWord);
 237 
 238 // Constants for converting from a base unit to milli-base units.  For
 239 // example from seconds to milliseconds and microseconds
 240 
 241 const int MILLIUNITS    = 1000;         // milli units per base unit
 242 const int MICROUNITS    = 1000000;      // micro units per base unit
 243 const int NANOUNITS     = 1000000000;   // nano units per base unit
 244 
 245 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 246 const jint  NANOSECS_PER_MILLISEC = 1000000;
 247 
 248 // Proper units routines try to maintain at least three significant digits.
 249 // In worst case, it would print five significant digits with lower prefix.
 250 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 251 // and therefore we need to be careful.
 252 
 253 inline const char* proper_unit_for_byte_size(size_t s) {
 254 #ifdef _LP64
 255   if (s >= 100*G) {
 256     return "G";
 257   }
 258 #endif
 259   if (s >= 100*M) {
 260     return "M";
 261   } else if (s >= 100*K) {
 262     return "K";
 263   } else {
 264     return "B";
 265   }
 266 }
 267 
 268 template <class T>
 269 inline T byte_size_in_proper_unit(T s) {
 270 #ifdef _LP64
 271   if (s >= 100*G) {
 272     return (T)(s/G);
 273   }
 274 #endif
 275   if (s >= 100*M) {
 276     return (T)(s/M);
 277   } else if (s >= 100*K) {
 278     return (T)(s/K);
 279   } else {
 280     return s;
 281   }
 282 }
 283 
 284 inline const char* exact_unit_for_byte_size(size_t s) {
 285 #ifdef _LP64
 286   if (s >= G && (s % G) == 0) {
 287     return "G";
 288   }
 289 #endif
 290   if (s >= M && (s % M) == 0) {
 291     return "M";
 292   }
 293   if (s >= K && (s % K) == 0) {
 294     return "K";
 295   }
 296   return "B";
 297 }
 298 
 299 inline size_t byte_size_in_exact_unit(size_t s) {
 300 #ifdef _LP64
 301   if (s >= G && (s % G) == 0) {
 302     return s / G;
 303   }
 304 #endif
 305   if (s >= M && (s % M) == 0) {
 306     return s / M;
 307   }
 308   if (s >= K && (s % K) == 0) {
 309     return s / K;
 310   }
 311   return s;
 312 }
 313 
 314 // Memory size transition formatting.
 315 
 316 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)"
 317 
 318 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
 319   (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
 320 
 321 //----------------------------------------------------------------------------------------------------
 322 // VM type definitions
 323 
 324 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 325 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 326 
 327 typedef intptr_t  intx;
 328 typedef uintptr_t uintx;
 329 
 330 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 331 const intx  max_intx  = (uintx)min_intx - 1;
 332 const uintx max_uintx = (uintx)-1;
 333 
 334 // Table of values:
 335 //      sizeof intx         4               8
 336 // min_intx             0x80000000      0x8000000000000000
 337 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 338 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 339 
 340 typedef unsigned int uint;   NEEDS_CLEANUP
 341 
 342 
 343 //----------------------------------------------------------------------------------------------------
 344 // Java type definitions
 345 
 346 // All kinds of 'plain' byte addresses
 347 typedef   signed char s_char;
 348 typedef unsigned char u_char;
 349 typedef u_char*       address;
 350 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 351                                     // except for some implementations of a C++
 352                                     // linkage pointer to function. Should never
 353                                     // need one of those to be placed in this
 354                                     // type anyway.
 355 
 356 //  Utility functions to "portably" (?) bit twiddle pointers
 357 //  Where portable means keep ANSI C++ compilers quiet
 358 
 359 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 360 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 361 
 362 //  Utility functions to "portably" make cast to/from function pointers.
 363 
 364 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 365 inline address_word  castable_address(address x)              { return address_word(x) ; }
 366 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 367 
 368 // Pointer subtraction.
 369 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 370 // the range we might need to find differences from one end of the heap
 371 // to the other.
 372 // A typical use might be:
 373 //     if (pointer_delta(end(), top()) >= size) {
 374 //       // enough room for an object of size
 375 //       ...
 376 // and then additions like
 377 //       ... top() + size ...
 378 // are safe because we know that top() is at least size below end().
 379 inline size_t pointer_delta(const volatile void* left,
 380                             const volatile void* right,
 381                             size_t element_size) {
 382   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 383 }
 384 
 385 // A version specialized for HeapWord*'s.
 386 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 387   return pointer_delta(left, right, sizeof(HeapWord));
 388 }
 389 // A version specialized for MetaWord*'s.
 390 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 391   return pointer_delta(left, right, sizeof(MetaWord));
 392 }
 393 
 394 //
 395 // ANSI C++ does not allow casting from one pointer type to a function pointer
 396 // directly without at best a warning. This macro accomplishes it silently
 397 // In every case that is present at this point the value be cast is a pointer
 398 // to a C linkage function. In some case the type used for the cast reflects
 399 // that linkage and a picky compiler would not complain. In other cases because
 400 // there is no convenient place to place a typedef with extern C linkage (i.e
 401 // a platform dependent header file) it doesn't. At this point no compiler seems
 402 // picky enough to catch these instances (which are few). It is possible that
 403 // using templates could fix these for all cases. This use of templates is likely
 404 // so far from the middle of the road that it is likely to be problematic in
 405 // many C++ compilers.
 406 //
 407 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 408 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 409 
 410 // Unsigned byte types for os and stream.hpp
 411 
 412 // Unsigned one, two, four and eigth byte quantities used for describing
 413 // the .class file format. See JVM book chapter 4.
 414 
 415 typedef jubyte  u1;
 416 typedef jushort u2;
 417 typedef juint   u4;
 418 typedef julong  u8;
 419 
 420 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 421 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 422 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 423 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 424 
 425 typedef jbyte  s1;
 426 typedef jshort s2;
 427 typedef jint   s4;
 428 typedef jlong  s8;
 429 
 430 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 431 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 432 const jshort min_jshort = -(1 << 15);    // smallest jshort
 433 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 434 
 435 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 436 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 437 
 438 //----------------------------------------------------------------------------------------------------
 439 // JVM spec restrictions
 440 
 441 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 442 
 443 //----------------------------------------------------------------------------------------------------
 444 // Object alignment, in units of HeapWords.
 445 //
 446 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 447 // reference fields can be naturally aligned.
 448 
 449 extern int MinObjAlignment;
 450 extern int MinObjAlignmentInBytes;
 451 extern int MinObjAlignmentInBytesMask;
 452 
 453 extern int LogMinObjAlignment;
 454 extern int LogMinObjAlignmentInBytes;
 455 
 456 const int LogKlassAlignmentInBytes = 3;
 457 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 458 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 459 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 460 
 461 // Maximal size of heap where unscaled compression can be used. Also upper bound
 462 // for heap placement: 4GB.
 463 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 464 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 465 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 466 extern uint64_t OopEncodingHeapMax;
 467 
 468 // Maximal size of compressed class space. Above this limit compression is not possible.
 469 // Also upper bound for placement of zero based class space. (Class space is further limited
 470 // to be < 3G, see arguments.cpp.)
 471 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 472 
 473 // Machine dependent stuff
 474 
 475 // The maximum size of the code cache.  Can be overridden by targets.
 476 #define CODE_CACHE_SIZE_LIMIT (2*G)
 477 // Allow targets to reduce the default size of the code cache.
 478 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 479 
 480 #include CPU_HEADER(globalDefinitions)
 481 
 482 // To assure the IRIW property on processors that are not multiple copy
 483 // atomic, sync instructions must be issued between volatile reads to
 484 // assure their ordering, instead of after volatile stores.
 485 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 486 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 487 #ifdef CPU_MULTI_COPY_ATOMIC
 488 // Not needed.
 489 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 490 #else
 491 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment.
 492 // Final decision is subject to JEP 188: Java Memory Model Update.
 493 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false);
 494 #endif
 495 
 496 // The expected size in bytes of a cache line, used to pad data structures.
 497 #ifndef DEFAULT_CACHE_LINE_SIZE
 498   #define DEFAULT_CACHE_LINE_SIZE 64
 499 #endif
 500 
 501 
 502 //----------------------------------------------------------------------------------------------------
 503 // Utility macros for compilers
 504 // used to silence compiler warnings
 505 
 506 #define Unused_Variable(var) var
 507 
 508 
 509 //----------------------------------------------------------------------------------------------------
 510 // Miscellaneous
 511 
 512 // 6302670 Eliminate Hotspot __fabsf dependency
 513 // All fabs() callers should call this function instead, which will implicitly
 514 // convert the operand to double, avoiding a dependency on __fabsf which
 515 // doesn't exist in early versions of Solaris 8.
 516 inline double fabsd(double value) {
 517   return fabs(value);
 518 }
 519 
 520 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 521 // is zero, return 0.0.
 522 template<typename T>
 523 inline double percent_of(T numerator, T denominator) {
 524   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 525 }
 526 
 527 //----------------------------------------------------------------------------------------------------
 528 // Special casts
 529 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 530 typedef union {
 531   jfloat f;
 532   jint i;
 533 } FloatIntConv;
 534 
 535 typedef union {
 536   jdouble d;
 537   jlong l;
 538   julong ul;
 539 } DoubleLongConv;
 540 
 541 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 542 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 543 
 544 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 545 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 546 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 547 
 548 inline jint low (jlong value)                    { return jint(value); }
 549 inline jint high(jlong value)                    { return jint(value >> 32); }
 550 
 551 // the fancy casts are a hopefully portable way
 552 // to do unsigned 32 to 64 bit type conversion
 553 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 554                                                    *value |= (jlong)(julong)(juint)low; }
 555 
 556 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 557                                                    *value |= (jlong)high       << 32; }
 558 
 559 inline jlong jlong_from(jint h, jint l) {
 560   jlong result = 0; // initialization to avoid warning
 561   set_high(&result, h);
 562   set_low(&result,  l);
 563   return result;
 564 }
 565 
 566 union jlong_accessor {
 567   jint  words[2];
 568   jlong long_value;
 569 };
 570 
 571 void basic_types_init(); // cannot define here; uses assert
 572 
 573 
 574 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 575 enum BasicType {
 576 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS.
 577   T_BOOLEAN     = JVM_T_BOOLEAN,
 578   T_CHAR        = JVM_T_CHAR,
 579   T_FLOAT       = JVM_T_FLOAT,
 580   T_DOUBLE      = JVM_T_DOUBLE,
 581   T_BYTE        = JVM_T_BYTE,
 582   T_SHORT       = JVM_T_SHORT,
 583   T_INT         = JVM_T_INT,
 584   T_LONG        = JVM_T_LONG,
 585   // The remaining values are not part of any standard.
 586   // T_OBJECT and T_VOID denote two more semantic choices
 587   // for method return values.
 588   // T_OBJECT and T_ARRAY describe signature syntax.
 589   // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe
 590   // internal references within the JVM as if they were Java
 591   // types in their own right.
 592   T_OBJECT      = 12,
 593   T_ARRAY       = 13,
 594   T_VOID        = 14,
 595   T_ADDRESS     = 15,
 596   T_NARROWOOP   = 16,
 597   T_METADATA    = 17,
 598   T_NARROWKLASS = 18,
 599   T_CONFLICT    = 19, // for stack value type with conflicting contents
 600   T_ILLEGAL     = 99
 601 };
 602 
 603 inline bool is_java_primitive(BasicType t) {
 604   return T_BOOLEAN <= t && t <= T_LONG;
 605 }
 606 
 607 inline bool is_subword_type(BasicType t) {
 608   // these guys are processed exactly like T_INT in calling sequences:
 609   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 610 }
 611 
 612 inline bool is_signed_subword_type(BasicType t) {
 613   return (t == T_BYTE || t == T_SHORT);
 614 }
 615 
 616 inline bool is_double_word_type(BasicType t) {
 617   return (t == T_DOUBLE || t == T_LONG);
 618 }
 619 
 620 inline bool is_reference_type(BasicType t) {
 621   return (t == T_OBJECT || t == T_ARRAY);
 622 }
 623 
 624 // Convert a char from a classfile signature to a BasicType
 625 inline BasicType char2type(char c) {
 626   switch( c ) {
 627   case JVM_SIGNATURE_BYTE:    return T_BYTE;
 628   case JVM_SIGNATURE_CHAR:    return T_CHAR;
 629   case JVM_SIGNATURE_DOUBLE:  return T_DOUBLE;
 630   case JVM_SIGNATURE_FLOAT:   return T_FLOAT;
 631   case JVM_SIGNATURE_INT:     return T_INT;
 632   case JVM_SIGNATURE_LONG:    return T_LONG;
 633   case JVM_SIGNATURE_SHORT:   return T_SHORT;
 634   case JVM_SIGNATURE_BOOLEAN: return T_BOOLEAN;
 635   case JVM_SIGNATURE_VOID:    return T_VOID;
 636   case JVM_SIGNATURE_CLASS:   return T_OBJECT;
 637   case JVM_SIGNATURE_ARRAY:   return T_ARRAY;
 638   }
 639   return T_ILLEGAL;
 640 }
 641 
 642 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 643 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 644 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 645 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 646 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 647 extern BasicType name2type(const char* name);
 648 
 649 // Auxiliary math routines
 650 // least common multiple
 651 extern size_t lcm(size_t a, size_t b);
 652 
 653 
 654 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 655 enum BasicTypeSize {
 656   T_BOOLEAN_size     = 1,
 657   T_CHAR_size        = 1,
 658   T_FLOAT_size       = 1,
 659   T_DOUBLE_size      = 2,
 660   T_BYTE_size        = 1,
 661   T_SHORT_size       = 1,
 662   T_INT_size         = 1,
 663   T_LONG_size        = 2,
 664   T_OBJECT_size      = 1,
 665   T_ARRAY_size       = 1,
 666   T_NARROWOOP_size   = 1,
 667   T_NARROWKLASS_size = 1,
 668   T_VOID_size        = 0
 669 };
 670 
 671 
 672 // maps a BasicType to its instance field storage type:
 673 // all sub-word integral types are widened to T_INT
 674 extern BasicType type2field[T_CONFLICT+1];
 675 extern BasicType type2wfield[T_CONFLICT+1];
 676 
 677 
 678 // size in bytes
 679 enum ArrayElementSize {
 680   T_BOOLEAN_aelem_bytes     = 1,
 681   T_CHAR_aelem_bytes        = 2,
 682   T_FLOAT_aelem_bytes       = 4,
 683   T_DOUBLE_aelem_bytes      = 8,
 684   T_BYTE_aelem_bytes        = 1,
 685   T_SHORT_aelem_bytes       = 2,
 686   T_INT_aelem_bytes         = 4,
 687   T_LONG_aelem_bytes        = 8,
 688 #ifdef _LP64
 689   T_OBJECT_aelem_bytes      = 8,
 690   T_ARRAY_aelem_bytes       = 8,
 691 #else
 692   T_OBJECT_aelem_bytes      = 4,
 693   T_ARRAY_aelem_bytes       = 4,
 694 #endif
 695   T_NARROWOOP_aelem_bytes   = 4,
 696   T_NARROWKLASS_aelem_bytes = 4,
 697   T_VOID_aelem_bytes        = 0
 698 };
 699 
 700 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 701 #ifdef ASSERT
 702 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 703 #else
 704 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 705 #endif
 706 
 707 
 708 // JavaValue serves as a container for arbitrary Java values.
 709 
 710 class JavaValue {
 711 
 712  public:
 713   typedef union JavaCallValue {
 714     jfloat   f;
 715     jdouble  d;
 716     jint     i;
 717     jlong    l;
 718     jobject  h;
 719   } JavaCallValue;
 720 
 721  private:
 722   BasicType _type;
 723   JavaCallValue _value;
 724 
 725  public:
 726   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 727 
 728   JavaValue(jfloat value) {
 729     _type    = T_FLOAT;
 730     _value.f = value;
 731   }
 732 
 733   JavaValue(jdouble value) {
 734     _type    = T_DOUBLE;
 735     _value.d = value;
 736   }
 737 
 738  jfloat get_jfloat() const { return _value.f; }
 739  jdouble get_jdouble() const { return _value.d; }
 740  jint get_jint() const { return _value.i; }
 741  jlong get_jlong() const { return _value.l; }
 742  jobject get_jobject() const { return _value.h; }
 743  JavaCallValue* get_value_addr() { return &_value; }
 744  BasicType get_type() const { return _type; }
 745 
 746  void set_jfloat(jfloat f) { _value.f = f;}
 747  void set_jdouble(jdouble d) { _value.d = d;}
 748  void set_jint(jint i) { _value.i = i;}
 749  void set_jlong(jlong l) { _value.l = l;}
 750  void set_jobject(jobject h) { _value.h = h;}
 751  void set_type(BasicType t) { _type = t; }
 752 
 753  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 754  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 755  jchar get_jchar() const { return (jchar) (_value.i);}
 756  jshort get_jshort() const { return (jshort) (_value.i);}
 757 
 758 };
 759 
 760 
 761 #define STACK_BIAS      0
 762 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 763 // in order to extend the reach of the stack pointer.
 764 #if defined(SPARC) && defined(_LP64)
 765 #undef STACK_BIAS
 766 #define STACK_BIAS      0x7ff
 767 #endif
 768 
 769 
 770 // TosState describes the top-of-stack state before and after the execution of
 771 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 772 // registers. The TosState corresponds to the 'machine representation' of this cached
 773 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 774 // as well as a 5th state in case the top-of-stack value is actually on the top
 775 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 776 // state when it comes to machine representation but is used separately for (oop)
 777 // type specific operations (e.g. verification code).
 778 
 779 enum TosState {         // describes the tos cache contents
 780   btos = 0,             // byte, bool tos cached
 781   ztos = 1,             // byte, bool tos cached
 782   ctos = 2,             // char tos cached
 783   stos = 3,             // short tos cached
 784   itos = 4,             // int tos cached
 785   ltos = 5,             // long tos cached
 786   ftos = 6,             // float tos cached
 787   dtos = 7,             // double tos cached
 788   atos = 8,             // object cached
 789   vtos = 9,             // tos not cached
 790   number_of_states,
 791   ilgl                  // illegal state: should not occur
 792 };
 793 
 794 
 795 inline TosState as_TosState(BasicType type) {
 796   switch (type) {
 797     case T_BYTE   : return btos;
 798     case T_BOOLEAN: return ztos;
 799     case T_CHAR   : return ctos;
 800     case T_SHORT  : return stos;
 801     case T_INT    : return itos;
 802     case T_LONG   : return ltos;
 803     case T_FLOAT  : return ftos;
 804     case T_DOUBLE : return dtos;
 805     case T_VOID   : return vtos;
 806     case T_ARRAY  : // fall through
 807     case T_OBJECT : return atos;
 808     default       : return ilgl;
 809   }
 810 }
 811 
 812 inline BasicType as_BasicType(TosState state) {
 813   switch (state) {
 814     case btos : return T_BYTE;
 815     case ztos : return T_BOOLEAN;
 816     case ctos : return T_CHAR;
 817     case stos : return T_SHORT;
 818     case itos : return T_INT;
 819     case ltos : return T_LONG;
 820     case ftos : return T_FLOAT;
 821     case dtos : return T_DOUBLE;
 822     case atos : return T_OBJECT;
 823     case vtos : return T_VOID;
 824     default   : return T_ILLEGAL;
 825   }
 826 }
 827 
 828 
 829 // Helper function to convert BasicType info into TosState
 830 // Note: Cannot define here as it uses global constant at the time being.
 831 TosState as_TosState(BasicType type);
 832 
 833 
 834 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 835 // information is needed by the safepoint code.
 836 //
 837 // There are 4 essential states:
 838 //
 839 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 840 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 841 //  _thread_in_vm       : Executing in the vm
 842 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 843 //
 844 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 845 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 846 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 847 //
 848 // Given a state, the xxxx_trans state can always be found by adding 1.
 849 //
 850 enum JavaThreadState {
 851   _thread_uninitialized     =  0, // should never happen (missing initialization)
 852   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 853   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 854   _thread_in_native         =  4, // running in native code
 855   _thread_in_native_trans   =  5, // corresponding transition state
 856   _thread_in_vm             =  6, // running in VM
 857   _thread_in_vm_trans       =  7, // corresponding transition state
 858   _thread_in_Java           =  8, // running in Java or in stub code
 859   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 860   _thread_blocked           = 10, // blocked in vm
 861   _thread_blocked_trans     = 11, // corresponding transition state
 862   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 863 };
 864 
 865 //----------------------------------------------------------------------------------------------------
 866 // Special constants for debugging
 867 
 868 const jint     badInt           = -3;                       // generic "bad int" value
 869 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 870 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 871 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 872 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 873 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 874 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 875 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 876 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 877 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 878 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 879 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 880 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 881 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 882 
 883 
 884 // (These must be implemented as #defines because C++ compilers are
 885 // not obligated to inline non-integral constants!)
 886 #define       badAddress        ((address)::badAddressVal)
 887 #define       badOop            (cast_to_oop(::badOopVal))
 888 #define       badHeapWord       (::badHeapWordVal)
 889 
 890 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 891 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 892 
 893 //----------------------------------------------------------------------------------------------------
 894 // Utility functions for bitfield manipulations
 895 
 896 const intptr_t AllBits    = ~0; // all bits set in a word
 897 const intptr_t NoBits     =  0; // no bits set in a word
 898 const jlong    NoLongBits =  0; // no bits set in a long
 899 const intptr_t OneBit     =  1; // only right_most bit set in a word
 900 
 901 // get a word with the n.th or the right-most or left-most n bits set
 902 // (note: #define used only so that they can be used in enum constant definitions)
 903 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 904 #define right_n_bits(n)   (nth_bit(n) - 1)
 905 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 906 
 907 // bit-operations using a mask m
 908 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 909 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 910 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 911 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 912 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 913 
 914 // bit-operations using the n.th bit
 915 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 916 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 917 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 918 
 919 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 920 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 921   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 922 }
 923 
 924 
 925 //----------------------------------------------------------------------------------------------------
 926 // Utility functions for integers
 927 
 928 // Avoid use of global min/max macros which may cause unwanted double
 929 // evaluation of arguments.
 930 #ifdef max
 931 #undef max
 932 #endif
 933 
 934 #ifdef min
 935 #undef min
 936 #endif
 937 
 938 // It is necessary to use templates here. Having normal overloaded
 939 // functions does not work because it is necessary to provide both 32-
 940 // and 64-bit overloaded functions, which does not work, and having
 941 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 942 // will be even more error-prone than macros.
 943 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 944 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 945 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 946 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 947 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 948 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 949 
 950 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 951 
 952 // true if x is a power of 2, false otherwise
 953 inline bool is_power_of_2(intptr_t x) {
 954   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 955 }
 956 
 957 // long version of is_power_of_2
 958 inline bool is_power_of_2_long(jlong x) {
 959   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 960 }
 961 
 962 // Returns largest i such that 2^i <= x.
 963 // If x == 0, the function returns -1.
 964 inline int log2_intptr(uintptr_t x) {
 965   int i = -1;
 966   uintptr_t p = 1;
 967   while (p != 0 && p <= x) {
 968     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 969     i++; p *= 2;
 970   }
 971   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 972   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
 973   return i;
 974 }
 975 
 976 //* largest i such that 2^i <= x
 977 inline int log2_long(julong x) {
 978   int i = -1;
 979   julong p =  1;
 980   while (p != 0 && p <= x) {
 981     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 982     i++; p *= 2;
 983   }
 984   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 985   // (if p = 0 then overflow occurred and i = 63)
 986   return i;
 987 }
 988 
 989 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
 990 inline int log2_intptr(intptr_t x) {
 991   return log2_intptr((uintptr_t)x);
 992 }
 993 
 994 inline int log2_int(int x) {
 995   STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
 996   return log2_intptr((uintptr_t)x);
 997 }
 998 
 999 inline int log2_jint(jint x) {
1000   STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
1001   return log2_intptr((uintptr_t)x);
1002 }
1003 
1004 inline int log2_uint(uint x) {
1005   STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
1006   return log2_intptr((uintptr_t)x);
1007 }
1008 
1009 //  A negative value of 'x' will return '63'
1010 inline int log2_jlong(jlong x) {
1011   STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
1012   return log2_long((julong)x);
1013 }
1014 
1015 //* the argument must be exactly a power of 2
1016 inline int exact_log2(intptr_t x) {
1017   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1018   return log2_intptr(x);
1019 }
1020 
1021 //* the argument must be exactly a power of 2
1022 inline int exact_log2_long(jlong x) {
1023   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1024   return log2_long(x);
1025 }
1026 
1027 inline bool is_odd (intx x) { return x & 1;      }
1028 inline bool is_even(intx x) { return !is_odd(x); }
1029 
1030 // abs methods which cannot overflow and so are well-defined across
1031 // the entire domain of integer types.
1032 static inline unsigned int uabs(unsigned int n) {
1033   union {
1034     unsigned int result;
1035     int value;
1036   };
1037   result = n;
1038   if (value < 0) result = 0-result;
1039   return result;
1040 }
1041 static inline julong uabs(julong n) {
1042   union {
1043     julong result;
1044     jlong value;
1045   };
1046   result = n;
1047   if (value < 0) result = 0-result;
1048   return result;
1049 }
1050 static inline julong uabs(jlong n) { return uabs((julong)n); }
1051 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1052 
1053 // "to" should be greater than "from."
1054 inline intx byte_size(void* from, void* to) {
1055   return (address)to - (address)from;
1056 }
1057 
1058 
1059 // Pack and extract shorts to/from ints:
1060 
1061 inline int extract_low_short_from_int(jint x) {
1062   return x & 0xffff;
1063 }
1064 
1065 inline int extract_high_short_from_int(jint x) {
1066   return (x >> 16) & 0xffff;
1067 }
1068 
1069 inline int build_int_from_shorts( jushort low, jushort high ) {
1070   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1071 }
1072 
1073 // Convert pointer to intptr_t, for use in printing pointers.
1074 inline intptr_t p2i(const void * p) {
1075   return (intptr_t) p;
1076 }
1077 
1078 // swap a & b
1079 template<class T> static void swap(T& a, T& b) {
1080   T tmp = a;
1081   a = b;
1082   b = tmp;
1083 }
1084 
1085 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1086 
1087 //----------------------------------------------------------------------------------------------------
1088 // Sum and product which can never overflow: they wrap, just like the
1089 // Java operations.  Note that we don't intend these to be used for
1090 // general-purpose arithmetic: their purpose is to emulate Java
1091 // operations.
1092 
1093 // The goal of this code to avoid undefined or implementation-defined
1094 // behavior.  The use of an lvalue to reference cast is explicitly
1095 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1096 // 15 in C++03]
1097 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1098 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1099   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1100   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1101   return reinterpret_cast<TYPE&>(ures);                 \
1102 }
1103 
1104 JAVA_INTEGER_OP(+, java_add, jint, juint)
1105 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1106 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1107 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1108 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1109 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1110 
1111 #undef JAVA_INTEGER_OP
1112 
1113 //----------------------------------------------------------------------------------------------------
1114 // The goal of this code is to provide saturating operations for int/uint.
1115 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1116 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1117 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1118   jlong res = static_cast<jlong>(in1);               \
1119   res OP ## = static_cast<jlong>(in2);               \
1120   if (res > max_jint) {                              \
1121     res = max_jint;                                  \
1122   } else if (res < min_jint) {                       \
1123     res = min_jint;                                  \
1124   }                                                  \
1125   return static_cast<int>(res);                      \
1126 }
1127 
1128 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1129 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1130 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1131 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1132 
1133 #undef SATURATED_INTEGER_OP
1134 
1135 // Dereference vptr
1136 // All C++ compilers that we know of have the vtbl pointer in the first
1137 // word.  If there are exceptions, this function needs to be made compiler
1138 // specific.
1139 static inline void* dereference_vptr(const void* addr) {
1140   return *(void**)addr;
1141 }
1142 
1143 //----------------------------------------------------------------------------------------------------
1144 // String type aliases used by command line flag declarations and
1145 // processing utilities.
1146 
1147 typedef const char* ccstr;
1148 typedef const char* ccstrlist;   // represents string arguments which accumulate
1149 
1150 //----------------------------------------------------------------------------------------------------
1151 // Default hash/equals functions used by ResourceHashtable and KVHashtable
1152 
1153 template<typename K> unsigned primitive_hash(const K& k) {
1154   unsigned hash = (unsigned)((uintptr_t)k);
1155   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1156 }
1157 
1158 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1159   return k0 == k1;
1160 }
1161 
1162 
1163 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP