1 /*
   2  * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "memory/allocation.inline.hpp"
  28 #include "os_aix.inline.hpp"
  29 #include "runtime/os.hpp"
  30 #include "runtime/os_perf.hpp"
  31 #include "utilities/macros.hpp"
  32 
  33 #include CPU_HEADER(vm_version_ext)
  34 
  35 #include <stdio.h>
  36 #include <stdarg.h>
  37 #include <unistd.h>
  38 #include <errno.h>
  39 #include <string.h>
  40 #include <sys/resource.h>
  41 #include <sys/types.h>
  42 #include <sys/stat.h>
  43 #include <dirent.h>
  44 #include <stdlib.h>
  45 #include <dlfcn.h>
  46 #include <pthread.h>
  47 #include <limits.h>
  48 
  49 /**
  50    /proc/[number]/stat
  51               Status information about the process.  This is used by ps(1).  It is defined in /usr/src/linux/fs/proc/array.c.
  52 
  53               The fields, in order, with their proper scanf(3) format specifiers, are:
  54 
  55               1. pid %d The process id.
  56 
  57               2. comm %s
  58                      The filename of the executable, in parentheses.  This is visible whether or not the executable is swapped out.
  59 
  60               3. state %c
  61                      One  character  from  the  string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk
  62                      sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging.
  63 
  64               4. ppid %d
  65                      The PID of the parent.
  66 
  67               5. pgrp %d
  68                      The process group ID of the process.
  69 
  70               6. session %d
  71                      The session ID of the process.
  72 
  73               7. tty_nr %d
  74                      The tty the process uses.
  75 
  76               8. tpgid %d
  77                      The process group ID of the process which currently owns the tty that the process is connected to.
  78 
  79               9. flags %lu
  80                      The flags of the process.  The math bit is decimal 4, and the traced bit is decimal 10.
  81 
  82               10. minflt %lu
  83                      The number of minor faults the process has made which have not required loading a memory page from disk.
  84 
  85               11. cminflt %lu
  86                      The number of minor faults that the process's waited-for children have made.
  87 
  88               12. majflt %lu
  89                      The number of major faults the process has made which have required loading a memory page from disk.
  90 
  91               13. cmajflt %lu
  92                      The number of major faults that the process's waited-for children have made.
  93 
  94               14. utime %lu
  95                      The number of jiffies that this process has been scheduled in user mode.
  96 
  97               15. stime %lu
  98                      The number of jiffies that this process has been scheduled in kernel mode.
  99 
 100               16. cutime %ld
 101                      The number of jiffies that this process's waited-for children have been scheduled in user mode. (See also times(2).)
 102 
 103               17. cstime %ld
 104                      The number of jiffies that this process' waited-for children have been scheduled in kernel mode.
 105 
 106               18. priority %ld
 107                      The standard nice value, plus fifteen.  The value is never negative in the kernel.
 108 
 109               19. nice %ld
 110                      The nice value ranges from 19 (nicest) to -19 (not nice to others).
 111 
 112               20. 0 %ld  This value is hard coded to 0 as a placeholder for a removed field.
 113 
 114               21. itrealvalue %ld
 115                      The time in jiffies before the next SIGALRM is sent to the process due to an interval timer.
 116 
 117               22. starttime %lu
 118                      The time in jiffies the process started after system boot.
 119 
 120               23. vsize %lu
 121                      Virtual memory size in bytes.
 122 
 123               24. rss %ld
 124                      Resident Set Size: number of pages the process has in real memory, minus 3 for administrative purposes. This is just the pages which  count
 125                      towards text, data, or stack space.  This does not include pages which have not been demand-loaded in, or which are swapped out.
 126 
 127               25. rlim %lu
 128                      Current limit in bytes on the rss of the process (usually 4294967295 on i386).
 129 
 130               26. startcode %lu
 131                      The address above which program text can run.
 132 
 133               27. endcode %lu
 134                      The address below which program text can run.
 135 
 136               28. startstack %lu
 137                      The address of the start of the stack.
 138 
 139               29. kstkesp %lu
 140                      The current value of esp (stack pointer), as found in the kernel stack page for the process.
 141 
 142               30. kstkeip %lu
 143                      The current EIP (instruction pointer).
 144 
 145               31. signal %lu
 146                      The bitmap of pending signals (usually 0).
 147 
 148               32. blocked %lu
 149                      The bitmap of blocked signals (usually 0, 2 for shells).
 150 
 151               33. sigignore %lu
 152                      The bitmap of ignored signals.
 153 
 154               34. sigcatch %lu
 155                      The bitmap of catched signals.
 156 
 157               35. wchan %lu
 158                      This  is the "channel" in which the process is waiting.  It is the address of a system call, and can be looked up in a namelist if you need
 159                      a textual name.  (If you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field in action.)
 160 
 161               36. nswap %lu
 162                      Number of pages swapped - not maintained.
 163 
 164               37. cnswap %lu
 165                      Cumulative nswap for child processes.
 166 
 167               38. exit_signal %d
 168                      Signal to be sent to parent when we die.
 169 
 170               39. processor %d
 171                      CPU number last executed on.
 172 
 173 
 174 
 175  ///// SSCANF FORMAT STRING. Copy and use.
 176 
 177 field:        1  2  3  4  5  6  7  8  9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38 39
 178 format:       %d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d
 179 
 180 
 181 */
 182 
 183 /**
 184  * For platforms that have them, when declaring
 185  * a printf-style function,
 186  *   formatSpec is the parameter number (starting at 1)
 187  *       that is the format argument ("%d pid %s")
 188  *   params is the parameter number where the actual args to
 189  *       the format starts. If the args are in a va_list, this
 190  *       should be 0.
 191  */
 192 #ifndef PRINTF_ARGS
 193 #  define PRINTF_ARGS(formatSpec,  params) ATTRIBUTE_PRINTF(formatSpec, params)
 194 #endif
 195 
 196 #ifndef SCANF_ARGS
 197 #  define SCANF_ARGS(formatSpec,   params) ATTRIBUTE_SCANF(formatSpec, params)
 198 #endif
 199 
 200 #ifndef _PRINTFMT_
 201 #  define _PRINTFMT_
 202 #endif
 203 
 204 #ifndef _SCANFMT_
 205 #  define _SCANFMT_
 206 #endif
 207 
 208 
 209 struct CPUPerfTicks {
 210   uint64_t  used;
 211   uint64_t  usedKernel;
 212   uint64_t  total;
 213 };
 214 
 215 typedef enum {
 216   CPU_LOAD_VM_ONLY,
 217   CPU_LOAD_GLOBAL,
 218 } CpuLoadTarget;
 219 
 220 enum {
 221   UNDETECTED,
 222   UNDETECTABLE,
 223   LINUX26_NPTL,
 224   BAREMETAL
 225 };
 226 
 227 struct CPUPerfCounters {
 228   int   nProcs;
 229   CPUPerfTicks jvmTicks;
 230   CPUPerfTicks* cpus;
 231 };
 232 
 233 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target);
 234 
 235 /** reads /proc/<pid>/stat data, with some checks and some skips.
 236  *  Ensure that 'fmt' does _NOT_ contain the first two "%d %s"
 237  */
 238 static int SCANF_ARGS(2, 0) vread_statdata(const char* procfile, _SCANFMT_ const char* fmt, va_list args) {
 239   FILE*f;
 240   int n;
 241   char buf[2048];
 242 
 243   if ((f = fopen(procfile, "r")) == NULL) {
 244     return -1;
 245   }
 246 
 247   if ((n = fread(buf, 1, sizeof(buf), f)) != -1) {
 248     char *tmp;
 249 
 250     buf[n-1] = '\0';
 251     /** skip through pid and exec name. */
 252     if ((tmp = strrchr(buf, ')')) != NULL) {
 253       // skip the ')' and the following space
 254       // but check that buffer is long enough
 255       tmp += 2;
 256       if (tmp < buf + n) {
 257         n = vsscanf(tmp, fmt, args);
 258       }
 259     }
 260   }
 261 
 262   fclose(f);
 263 
 264   return n;
 265 }
 266 
 267 static int SCANF_ARGS(2, 3) read_statdata(const char* procfile, _SCANFMT_ const char* fmt, ...) {
 268   int   n;
 269   va_list args;
 270 
 271   va_start(args, fmt);
 272   n = vread_statdata(procfile, fmt, args);
 273   va_end(args);
 274   return n;
 275 }
 276 
 277 /**
 278  * on Linux we got the ticks related information from /proc/stat
 279  * this does not work on AIX, libperfstat might be an alternative
 280  */
 281 static OSReturn get_total_ticks(int which_logical_cpu, CPUPerfTicks* pticks) {
 282   return OS_ERR;
 283 }
 284 
 285 /** read user and system ticks from a named procfile, assumed to be in 'stat' format then. */
 286 static int read_ticks(const char* procfile, uint64_t* userTicks, uint64_t* systemTicks) {
 287   return read_statdata(procfile, "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u %*u " UINT64_FORMAT " " UINT64_FORMAT,
 288     userTicks, systemTicks);
 289 }
 290 
 291 /**
 292  * Return the number of ticks spent in any of the processes belonging
 293  * to the JVM on any CPU.
 294  */
 295 static OSReturn get_jvm_ticks(CPUPerfTicks* pticks) {
 296   return OS_ERR;
 297 }
 298 
 299 /**
 300  * Return the load of the CPU as a double. 1.0 means the CPU process uses all
 301  * available time for user or system processes, 0.0 means the CPU uses all time
 302  * being idle.
 303  *
 304  * Returns a negative value if there is a problem in determining the CPU load.
 305  */
 306 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target) {
 307   uint64_t udiff, kdiff, tdiff;
 308   CPUPerfTicks* pticks;
 309   CPUPerfTicks  tmp;
 310   double user_load;
 311 
 312   *pkernelLoad = 0.0;
 313 
 314   if (target == CPU_LOAD_VM_ONLY) {
 315     pticks = &counters->jvmTicks;
 316   } else if (-1 == which_logical_cpu) {
 317     pticks = &counters->cpus[counters->nProcs];
 318   } else {
 319     pticks = &counters->cpus[which_logical_cpu];
 320   }
 321 
 322   tmp = *pticks;
 323 
 324   if (target == CPU_LOAD_VM_ONLY) {
 325     if (get_jvm_ticks(pticks) != OS_OK) {
 326       return -1.0;
 327     }
 328   } else if (get_total_ticks(which_logical_cpu, pticks) != OS_OK) {
 329     return -1.0;
 330   }
 331 
 332   // seems like we sometimes end up with less kernel ticks when
 333   // reading /proc/self/stat a second time, timing issue between cpus?
 334   if (pticks->usedKernel < tmp.usedKernel) {
 335     kdiff = 0;
 336   } else {
 337     kdiff = pticks->usedKernel - tmp.usedKernel;
 338   }
 339   tdiff = pticks->total - tmp.total;
 340   udiff = pticks->used - tmp.used;
 341 
 342   if (tdiff == 0) {
 343     return 0.0;
 344   } else if (tdiff < (udiff + kdiff)) {
 345     tdiff = udiff + kdiff;
 346   }
 347   *pkernelLoad = (kdiff / (double)tdiff);
 348   // BUG9044876, normalize return values to sane values
 349   *pkernelLoad = MAX2<double>(*pkernelLoad, 0.0);
 350   *pkernelLoad = MIN2<double>(*pkernelLoad, 1.0);
 351 
 352   user_load = (udiff / (double)tdiff);
 353   user_load = MAX2<double>(user_load, 0.0);
 354   user_load = MIN2<double>(user_load, 1.0);
 355 
 356   return user_load;
 357 }
 358 
 359 static int SCANF_ARGS(1, 2) parse_stat(_SCANFMT_ const char* fmt, ...) {
 360   return OS_ERR;
 361 }
 362 
 363 static int get_noof_context_switches(uint64_t* switches) {
 364   return parse_stat("ctxt " UINT64_FORMAT "\n", switches);
 365 }
 366 
 367 /** returns boot time in _seconds_ since epoch */
 368 static int get_boot_time(uint64_t* time) {
 369   return parse_stat("btime " UINT64_FORMAT "\n", time);
 370 }
 371 
 372 static int perf_context_switch_rate(double* rate) {
 373   static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
 374   static uint64_t      lastTime;
 375   static uint64_t      lastSwitches;
 376   static double        lastRate;
 377 
 378   uint64_t lt = 0;
 379   int res = 0;
 380 
 381   if (lastTime == 0) {
 382     uint64_t tmp;
 383     if (get_boot_time(&tmp) < 0) {
 384       return OS_ERR;
 385     }
 386     lt = tmp * 1000;
 387   }
 388 
 389   res = OS_OK;
 390 
 391   pthread_mutex_lock(&contextSwitchLock);
 392   {
 393 
 394     uint64_t sw;
 395     s8 t, d;
 396 
 397     if (lastTime == 0) {
 398       lastTime = lt;
 399     }
 400 
 401     t = os::javaTimeMillis();
 402     d = t - lastTime;
 403 
 404     if (d == 0) {
 405       *rate = lastRate;
 406     } else if (!get_noof_context_switches(&sw)) {
 407       *rate      = ( (double)(sw - lastSwitches) / d ) * 1000;
 408       lastRate     = *rate;
 409       lastSwitches = sw;
 410       lastTime     = t;
 411     } else {
 412       *rate = 0;
 413       res   = OS_ERR;
 414     }
 415     if (*rate <= 0) {
 416       *rate = 0;
 417       lastRate = 0;
 418     }
 419   }
 420   pthread_mutex_unlock(&contextSwitchLock);
 421 
 422   return res;
 423 }
 424 
 425 class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
 426   friend class CPUPerformanceInterface;
 427  private:
 428   CPUPerfCounters _counters;
 429 
 430   int cpu_load(int which_logical_cpu, double* cpu_load);
 431   int context_switch_rate(double* rate);
 432   int cpu_load_total_process(double* cpu_load);
 433   int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
 434 
 435  public:
 436   CPUPerformance();
 437   bool initialize();
 438   ~CPUPerformance();
 439 };
 440 
 441 CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
 442   _counters.nProcs = os::active_processor_count();
 443   _counters.cpus = NULL;
 444 }
 445 
 446 bool CPUPerformanceInterface::CPUPerformance::initialize() {
 447   size_t array_entry_count = _counters.nProcs + 1;
 448   _counters.cpus = NEW_C_HEAP_ARRAY(CPUPerfTicks, array_entry_count, mtInternal);
 449   memset(_counters.cpus, 0, array_entry_count * sizeof(*_counters.cpus));
 450 
 451   // For the CPU load total
 452   get_total_ticks(-1, &_counters.cpus[_counters.nProcs]);
 453 
 454   // For each CPU
 455   for (int i = 0; i < _counters.nProcs; i++) {
 456     get_total_ticks(i, &_counters.cpus[i]);
 457   }
 458   // For JVM load
 459   get_jvm_ticks(&_counters.jvmTicks);
 460 
 461   // initialize context switch system
 462   // the double is only for init
 463   double init_ctx_switch_rate;
 464   perf_context_switch_rate(&init_ctx_switch_rate);
 465 
 466   return true;
 467 }
 468 
 469 CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
 470   if (_counters.cpus != NULL) {
 471     FREE_C_HEAP_ARRAY(char, _counters.cpus);
 472   }
 473 }
 474 
 475 int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
 476   double u, s;
 477   u = get_cpu_load(which_logical_cpu, &_counters, &s, CPU_LOAD_GLOBAL);
 478   if (u < 0) {
 479     *cpu_load = 0.0;
 480     return OS_ERR;
 481   }
 482   // Cap total systemload to 1.0
 483   *cpu_load = MIN2<double>((u + s), 1.0);
 484   return OS_OK;
 485 }
 486 
 487 int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
 488   double u, s;
 489   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
 490   if (u < 0) {
 491     *cpu_load = 0.0;
 492     return OS_ERR;
 493   }
 494   *cpu_load = u + s;
 495   return OS_OK;
 496 }
 497 
 498 int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
 499   double u, s, t;
 500 
 501   assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
 502   assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
 503   assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
 504 
 505   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
 506   if (u < 0) {
 507     *pjvmUserLoad = 0.0;
 508     *pjvmKernelLoad = 0.0;
 509     *psystemTotalLoad = 0.0;
 510     return OS_ERR;
 511   }
 512 
 513   cpu_load(-1, &t);
 514   // clamp at user+system and 1.0
 515   if (u + s > t) {
 516     t = MIN2<double>(u + s, 1.0);
 517   }
 518 
 519   *pjvmUserLoad = u;
 520   *pjvmKernelLoad = s;
 521   *psystemTotalLoad = t;
 522 
 523   return OS_OK;
 524 }
 525 
 526 int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
 527   return perf_context_switch_rate(rate);
 528 }
 529 
 530 CPUPerformanceInterface::CPUPerformanceInterface() {
 531   _impl = NULL;
 532 }
 533 
 534 bool CPUPerformanceInterface::initialize() {
 535   _impl = new CPUPerformanceInterface::CPUPerformance();
 536   return _impl->initialize();
 537 }
 538 
 539 CPUPerformanceInterface::~CPUPerformanceInterface() {
 540   if (_impl != NULL) {
 541     delete _impl;
 542   }
 543 }
 544 
 545 int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
 546   return _impl->cpu_load(which_logical_cpu, cpu_load);
 547 }
 548 
 549 int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
 550   return _impl->cpu_load_total_process(cpu_load);
 551 }
 552 
 553 int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
 554   return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
 555 }
 556 
 557 int CPUPerformanceInterface::context_switch_rate(double* rate) const {
 558   return _impl->context_switch_rate(rate);
 559 }
 560 
 561 class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
 562   friend class SystemProcessInterface;
 563  private:
 564   class ProcessIterator : public CHeapObj<mtInternal> {
 565     friend class SystemProcessInterface::SystemProcesses;
 566    private:
 567     DIR*           _dir;
 568     struct dirent* _entry;
 569     bool           _valid;
 570     char           _exeName[PATH_MAX];
 571     char           _exePath[PATH_MAX];
 572 
 573     ProcessIterator();
 574     ~ProcessIterator();
 575     bool initialize();
 576 
 577     bool is_valid() const { return _valid; }
 578     bool is_valid_entry(struct dirent* entry) const;
 579     bool is_dir(const char* name) const;
 580     int  fsize(const char* name, uint64_t& size) const;
 581 
 582     char* allocate_string(const char* str) const;
 583     void  get_exe_name();
 584     char* get_exe_path();
 585     char* get_cmdline();
 586 
 587     int current(SystemProcess* process_info);
 588     int next_process();
 589   };
 590 
 591   ProcessIterator* _iterator;
 592   SystemProcesses();
 593   bool initialize();
 594   ~SystemProcesses();
 595 
 596   //information about system processes
 597   int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
 598 };
 599 
 600 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
 601   struct stat mystat;
 602   int ret_val = 0;
 603 
 604   ret_val = stat(name, &mystat);
 605   if (ret_val < 0) {
 606     return false;
 607   }
 608   ret_val = S_ISDIR(mystat.st_mode);
 609   return ret_val > 0;
 610 }
 611 
 612 int SystemProcessInterface::SystemProcesses::ProcessIterator::fsize(const char* name, uint64_t& size) const {
 613   assert(name != NULL, "name pointer is NULL!");
 614   size = 0;
 615   struct stat fbuf;
 616 
 617   if (stat(name, &fbuf) < 0) {
 618     return OS_ERR;
 619   }
 620   size = fbuf.st_size;
 621   return OS_OK;
 622 }
 623 
 624 // if it has a numeric name, is a directory and has a 'stat' file in it
 625 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
 626   char buffer[PATH_MAX];
 627   uint64_t size = 0;
 628 
 629   if (atoi(entry->d_name) != 0) {
 630     jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
 631     buffer[PATH_MAX - 1] = '\0';
 632 
 633     if (is_dir(buffer)) {
 634       jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", entry->d_name);
 635       buffer[PATH_MAX - 1] = '\0';
 636       if (fsize(buffer, size) != OS_ERR) {
 637         return true;
 638       }
 639     }
 640   }
 641   return false;
 642 }
 643 
 644 // get exe-name from /proc/<pid>/stat
 645 void SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_name() {
 646   FILE* fp;
 647   char  buffer[PATH_MAX];
 648 
 649   jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", _entry->d_name);
 650   buffer[PATH_MAX - 1] = '\0';
 651   if ((fp = fopen(buffer, "r")) != NULL) {
 652     if (fgets(buffer, PATH_MAX, fp) != NULL) {
 653       char* start, *end;
 654       // exe-name is between the first pair of ( and )
 655       start = strchr(buffer, '(');
 656       if (start != NULL && start[1] != '\0') {
 657         start++;
 658         end = strrchr(start, ')');
 659         if (end != NULL) {
 660           size_t len;
 661           len = MIN2<size_t>(end - start, sizeof(_exeName) - 1);
 662           memcpy(_exeName, start, len);
 663           _exeName[len] = '\0';
 664         }
 665       }
 666     }
 667     fclose(fp);
 668   }
 669 }
 670 
 671 // get command line from /proc/<pid>/cmdline
 672 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_cmdline() {
 673   FILE* fp;
 674   char  buffer[PATH_MAX];
 675   char* cmdline = NULL;
 676 
 677   jio_snprintf(buffer, PATH_MAX, "/proc/%s/cmdline", _entry->d_name);
 678   buffer[PATH_MAX - 1] = '\0';
 679   if ((fp = fopen(buffer, "r")) != NULL) {
 680     size_t size = 0;
 681     char   dummy;
 682 
 683     // find out how long the file is (stat always returns 0)
 684     while (fread(&dummy, 1, 1, fp) == 1) {
 685       size++;
 686     }
 687     if (size > 0) {
 688       cmdline = NEW_C_HEAP_ARRAY(char, size + 1, mtInternal);
 689       cmdline[0] = '\0';
 690       if (fseek(fp, 0, SEEK_SET) == 0) {
 691         if (fread(cmdline, 1, size, fp) == size) {
 692           // the file has the arguments separated by '\0',
 693           // so we translate '\0' to ' '
 694           for (size_t i = 0; i < size; i++) {
 695             if (cmdline[i] == '\0') {
 696               cmdline[i] = ' ';
 697             }
 698           }
 699           cmdline[size] = '\0';
 700         }
 701       }
 702     }
 703     fclose(fp);
 704   }
 705   return cmdline;
 706 }
 707 
 708 // get full path to exe from /proc/<pid>/exe symlink
 709 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_path() {
 710   char buffer[PATH_MAX];
 711 
 712   jio_snprintf(buffer, PATH_MAX, "/proc/%s/exe", _entry->d_name);
 713   buffer[PATH_MAX - 1] = '\0';
 714   return realpath(buffer, _exePath);
 715 }
 716 
 717 char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
 718   if (str != NULL) {
 719     return os::strdup_check_oom(str, mtInternal);
 720   }
 721   return NULL;
 722 }
 723 
 724 int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
 725   if (!is_valid()) {
 726     return OS_ERR;
 727   }
 728 
 729   process_info->set_pid(atoi(_entry->d_name));
 730 
 731   get_exe_name();
 732   process_info->set_name(allocate_string(_exeName));
 733 
 734   if (get_exe_path() != NULL) {
 735      process_info->set_path(allocate_string(_exePath));
 736   }
 737 
 738   char* cmdline = NULL;
 739   cmdline = get_cmdline();
 740   if (cmdline != NULL) {
 741     process_info->set_command_line(allocate_string(cmdline));
 742     FREE_C_HEAP_ARRAY(char, cmdline);
 743   }
 744 
 745   return OS_OK;
 746 }
 747 
 748 int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
 749   if (!is_valid()) {
 750     return OS_ERR;
 751   }
 752 
 753   do {
 754     _entry = os::readdir(_dir);
 755     if (_entry == NULL) {
 756       // Error or reached end.  Could use errno to distinguish those cases.
 757       _valid = false;
 758       return OS_ERR;
 759     }
 760   } while(!is_valid_entry(_entry));
 761 
 762   _valid = true;
 763   return OS_OK;
 764 }
 765 
 766 SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
 767   _dir = NULL;
 768   _entry = NULL;
 769   _valid = false;
 770 }
 771 
 772 bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
 773   // Not yet implemented.
 774   return false;
 775 }
 776 
 777 SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
 778   if (_dir != NULL) {
 779     os::closedir(_dir);
 780   }
 781 }
 782 
 783 SystemProcessInterface::SystemProcesses::SystemProcesses() {
 784   _iterator = NULL;
 785 }
 786 
 787 bool SystemProcessInterface::SystemProcesses::initialize() {
 788   _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
 789   return _iterator->initialize();
 790 }
 791 
 792 SystemProcessInterface::SystemProcesses::~SystemProcesses() {
 793   if (_iterator != NULL) {
 794     delete _iterator;
 795   }
 796 }
 797 
 798 int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
 799   assert(system_processes != NULL, "system_processes pointer is NULL!");
 800   assert(no_of_sys_processes != NULL, "system_processes counter pointers is NULL!");
 801   assert(_iterator != NULL, "iterator is NULL!");
 802 
 803   // initialize pointers
 804   *no_of_sys_processes = 0;
 805   *system_processes = NULL;
 806 
 807   while (_iterator->is_valid()) {
 808     SystemProcess* tmp = new SystemProcess();
 809     _iterator->current(tmp);
 810 
 811     //if already existing head
 812     if (*system_processes != NULL) {
 813       //move "first to second"
 814       tmp->set_next(*system_processes);
 815     }
 816     // new head
 817     *system_processes = tmp;
 818     // increment
 819     (*no_of_sys_processes)++;
 820     // step forward
 821     _iterator->next_process();
 822   }
 823   return OS_OK;
 824 }
 825 
 826 int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
 827   return _impl->system_processes(system_procs, no_of_sys_processes);
 828 }
 829 
 830 SystemProcessInterface::SystemProcessInterface() {
 831   _impl = NULL;
 832 }
 833 
 834 bool SystemProcessInterface::initialize() {
 835   _impl = new SystemProcessInterface::SystemProcesses();
 836   return _impl->initialize();
 837 }
 838 
 839 SystemProcessInterface::~SystemProcessInterface() {
 840   if (_impl != NULL) {
 841     delete _impl;
 842   }
 843 }
 844 
 845 CPUInformationInterface::CPUInformationInterface() {
 846   _cpu_info = NULL;
 847 }
 848 
 849 bool CPUInformationInterface::initialize() {
 850   _cpu_info = new CPUInformation();
 851   _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
 852   _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
 853   _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
 854   _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
 855   _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
 856   return true;
 857 }
 858 
 859 CPUInformationInterface::~CPUInformationInterface() {
 860   if (_cpu_info != NULL) {
 861     if (_cpu_info->cpu_name() != NULL) {
 862       const char* cpu_name = _cpu_info->cpu_name();
 863       FREE_C_HEAP_ARRAY(char, cpu_name);
 864       _cpu_info->set_cpu_name(NULL);
 865     }
 866     if (_cpu_info->cpu_description() != NULL) {
 867        const char* cpu_desc = _cpu_info->cpu_description();
 868        FREE_C_HEAP_ARRAY(char, cpu_desc);
 869       _cpu_info->set_cpu_description(NULL);
 870     }
 871     delete _cpu_info;
 872   }
 873 }
 874 
 875 int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
 876   if (_cpu_info == NULL) {
 877     return OS_ERR;
 878   }
 879 
 880   cpu_info = *_cpu_info; // shallow copy assignment
 881   return OS_OK;
 882 }
 883 
 884 class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
 885   friend class NetworkPerformanceInterface;
 886  private:
 887   NetworkPerformance();
 888   NONCOPYABLE(NetworkPerformance);
 889   bool initialize();
 890   ~NetworkPerformance();
 891   int network_utilization(NetworkInterface** network_interfaces) const;
 892 };
 893 
 894 NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
 895 
 896 }
 897 
 898 bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
 899   return true;
 900 }
 901 
 902 NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
 903 }
 904 
 905 int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
 906 {
 907   return FUNCTIONALITY_NOT_IMPLEMENTED;
 908 }
 909 
 910 NetworkPerformanceInterface::NetworkPerformanceInterface() {
 911   _impl = NULL;
 912 }
 913 
 914 NetworkPerformanceInterface::~NetworkPerformanceInterface() {
 915   if (_impl != NULL) {
 916     delete _impl;
 917   }
 918 }
 919 
 920 bool NetworkPerformanceInterface::initialize() {
 921   _impl = new NetworkPerformanceInterface::NetworkPerformance();
 922   return _impl->initialize();
 923 }
 924 
 925 int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
 926   return _impl->network_utilization(network_interfaces);
 927 }