1 /* 2 * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/g1/g1BufferNodeList.hpp" 27 #include "gc/g1/g1CardTableEntryClosure.hpp" 28 #include "gc/g1/g1CollectedHeap.inline.hpp" 29 #include "gc/g1/g1ConcurrentRefineThread.hpp" 30 #include "gc/g1/g1DirtyCardQueue.hpp" 31 #include "gc/g1/g1FreeIdSet.hpp" 32 #include "gc/g1/g1RedirtyCardsQueue.hpp" 33 #include "gc/g1/g1RemSet.hpp" 34 #include "gc/g1/g1ThreadLocalData.hpp" 35 #include "gc/g1/heapRegionRemSet.hpp" 36 #include "gc/shared/suspendibleThreadSet.hpp" 37 #include "memory/iterator.hpp" 38 #include "runtime/atomic.hpp" 39 #include "runtime/os.hpp" 40 #include "runtime/safepoint.hpp" 41 #include "runtime/thread.inline.hpp" 42 #include "runtime/threadSMR.hpp" 43 #include "utilities/globalCounter.inline.hpp" 44 #include "utilities/macros.hpp" 45 #include "utilities/quickSort.hpp" 46 47 G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset) : 48 // Dirty card queues are always active, so we create them with their 49 // active field set to true. 50 PtrQueue(qset, true /* active */) 51 { } 52 53 G1DirtyCardQueue::~G1DirtyCardQueue() { 54 flush(); 55 } 56 57 void G1DirtyCardQueue::handle_completed_buffer() { 58 assert(_buf != NULL, "precondition"); 59 BufferNode* node = BufferNode::make_node_from_buffer(_buf, index()); 60 G1DirtyCardQueueSet* dcqs = dirty_card_qset(); 61 if (dcqs->process_or_enqueue_completed_buffer(node)) { 62 reset(); // Buffer fully processed, reset index. 63 } else { 64 allocate_buffer(); // Buffer enqueued, get a new one. 65 } 66 } 67 68 // Assumed to be zero by concurrent threads. 69 static uint par_ids_start() { return 0; } 70 71 G1DirtyCardQueueSet::G1DirtyCardQueueSet(BufferNode::Allocator* allocator) : 72 PtrQueueSet(allocator), 73 _primary_refinement_thread(NULL), 74 _num_cards(0), 75 _completed(), 76 _paused(), 77 _free_ids(par_ids_start(), num_par_ids()), 78 _process_cards_threshold(ProcessCardsThresholdNever), 79 _max_cards(MaxCardsUnlimited), 80 _max_cards_padding(0), 81 _mutator_refined_cards_counters(NEW_C_HEAP_ARRAY(size_t, num_par_ids(), mtGC)) 82 { 83 ::memset(_mutator_refined_cards_counters, 0, num_par_ids() * sizeof(size_t)); 84 _all_active = true; 85 } 86 87 G1DirtyCardQueueSet::~G1DirtyCardQueueSet() { 88 abandon_completed_buffers(); 89 FREE_C_HEAP_ARRAY(size_t, _mutator_refined_cards_counters); 90 } 91 92 // Determines how many mutator threads can process the buffers in parallel. 93 uint G1DirtyCardQueueSet::num_par_ids() { 94 return (uint)os::initial_active_processor_count(); 95 } 96 97 size_t G1DirtyCardQueueSet::total_mutator_refined_cards() const { 98 size_t sum = 0; 99 for (uint i = 0; i < num_par_ids(); ++i) { 100 sum += _mutator_refined_cards_counters[i]; 101 } 102 return sum; 103 } 104 105 void G1DirtyCardQueueSet::handle_zero_index_for_thread(Thread* t) { 106 G1ThreadLocalData::dirty_card_queue(t).handle_zero_index(); 107 } 108 109 #ifdef ASSERT 110 G1DirtyCardQueueSet::Queue::~Queue() { 111 assert(_head == NULL, "precondition"); 112 assert(_tail == NULL, "precondition"); 113 } 114 #endif // ASSERT 115 116 BufferNode* G1DirtyCardQueueSet::Queue::top() const { 117 return Atomic::load(&_head); 118 } 119 120 // An append operation atomically exchanges the new tail with the queue tail. 121 // It then sets the "next" value of the old tail to the head of the list being 122 // appended; it is an invariant that the old tail's "next" value is NULL. 123 // But if the old tail is NULL then the queue was empty. In this case the 124 // head of the list being appended is instead stored in the queue head; it is 125 // an invariant that the queue head is NULL in this case. 126 // 127 // This means there is a period between the exchange and the old tail update 128 // where the queue sequence is split into two parts, the list from the queue 129 // head to the old tail, and the list being appended. If there are concurrent 130 // push/append operations, each may introduce another such segment. But they 131 // all eventually get resolved by their respective updates of their old tail's 132 // "next" value. This also means that pop operations must handle a buffer 133 // with a NULL "next" value specially. 134 // 135 // A push operation is just a degenerate append, where the buffer being pushed 136 // is both the head and the tail of the list being appended. 137 void G1DirtyCardQueueSet::Queue::append(BufferNode& first, BufferNode& last) { 138 assert(last.next() == NULL, "precondition"); 139 BufferNode* old_tail = Atomic::xchg(&_tail, &last); 140 if (old_tail == NULL) { // Was empty. 141 assert(Atomic::load(&_head) == NULL, "invariant"); 142 Atomic::store(&_head, &first); 143 } else { 144 assert(old_tail->next() == NULL, "invariant"); 145 old_tail->set_next(&first); 146 } 147 } 148 149 // pop gets the queue head as the candidate result (returning NULL if the 150 // queue head was NULL), and then gets that result node's "next" value. If 151 // that "next" value is NULL and the queue head hasn't changed, then there 152 // is only one element in the accessible part of the list (the sequence from 153 // head to a node with a NULL "next" value). We can't return that element, 154 // because it may be the old tail of a concurrent push/append that has not 155 // yet had its "next" field set to the new tail. So return NULL in this case. 156 // Otherwise, attempt to cmpxchg that "next" value into the queue head, 157 // retrying the whole operation if that fails. This is the "usual" lock-free 158 // pop from the head of a singly linked list, with the additional restriction 159 // on taking the last element. 160 BufferNode* G1DirtyCardQueueSet::Queue::pop() { 161 Thread* current_thread = Thread::current(); 162 while (true) { 163 // Use a critical section per iteration, rather than over the whole 164 // operation. We're not guaranteed to make progress, because of possible 165 // contention on the queue head. Lingering in one CS the whole time could 166 // lead to excessive allocation of buffers, because the CS blocks return 167 // of released buffers to the free list for reuse. 168 GlobalCounter::CriticalSection cs(current_thread); 169 170 BufferNode* result = Atomic::load_acquire(&_head); 171 // Check for empty queue. Only needs to be done on first iteration, 172 // since we never take the last element, but it's messy to make use 173 // of that and we expect one iteration to be the common case. 174 if (result == NULL) return NULL; 175 176 BufferNode* next = Atomic::load_acquire(BufferNode::next_ptr(*result)); 177 if (next != NULL) { 178 next = Atomic::cmpxchg(&_head, result, next); 179 if (next == result) { 180 // Former head successfully taken; it is not the last. 181 assert(Atomic::load(&_tail) != result, "invariant"); 182 assert(result->next() != NULL, "invariant"); 183 result->set_next(NULL); 184 return result; 185 } 186 // cmpxchg failed; try again. 187 } else if (result == Atomic::load_acquire(&_head)) { 188 // If follower of head is NULL and head hasn't changed, then only 189 // the one element is currently accessible. We don't take the last 190 // accessible element, because there may be a concurrent add using it. 191 // The check for unchanged head isn't needed for correctness, but the 192 // retry on change may sometimes let us get a buffer after all. 193 return NULL; 194 } 195 // Head changed; try again. 196 } 197 } 198 199 G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::Queue::take_all() { 200 assert_at_safepoint(); 201 HeadTail result(Atomic::load(&_head), Atomic::load(&_tail)); 202 Atomic::store(&_head, (BufferNode*)NULL); 203 Atomic::store(&_tail, (BufferNode*)NULL); 204 return result; 205 } 206 207 void G1DirtyCardQueueSet::enqueue_completed_buffer(BufferNode* cbn) { 208 assert(cbn != NULL, "precondition"); 209 // Increment _num_cards before adding to queue, so queue removal doesn't 210 // need to deal with _num_cards possibly going negative. 211 size_t new_num_cards = Atomic::add(&_num_cards, buffer_size() - cbn->index()); 212 _completed.push(*cbn); 213 if ((new_num_cards > process_cards_threshold()) && 214 (_primary_refinement_thread != NULL)) { 215 _primary_refinement_thread->activate(); 216 } 217 } 218 219 BufferNode* G1DirtyCardQueueSet::get_completed_buffer(size_t stop_at) { 220 enqueue_previous_paused_buffers(); 221 222 // Check for insufficient cards to satisfy request. We only do this once, 223 // up front, rather than on each iteration below, since the test is racy 224 // regardless of when we do it. 225 if (Atomic::load_acquire(&_num_cards) <= stop_at) { 226 return NULL; 227 } 228 229 BufferNode* result = _completed.pop(); 230 if (result != NULL) { 231 Atomic::sub(&_num_cards, buffer_size() - result->index()); 232 } 233 return result; 234 } 235 236 #ifdef ASSERT 237 void G1DirtyCardQueueSet::verify_num_cards() const { 238 size_t actual = 0; 239 BufferNode* cur = _completed.top(); 240 for ( ; cur != NULL; cur = cur->next()) { 241 actual += buffer_size() - cur->index(); 242 } 243 assert(actual == Atomic::load(&_num_cards), 244 "Num entries in completed buffers should be " SIZE_FORMAT " but are " SIZE_FORMAT, 245 Atomic::load(&_num_cards), actual); 246 } 247 #endif // ASSERT 248 249 G1DirtyCardQueueSet::PausedBuffers::PausedList::PausedList() : 250 _head(NULL), _tail(NULL), 251 _safepoint_id(SafepointSynchronize::safepoint_id()) 252 {} 253 254 #ifdef ASSERT 255 G1DirtyCardQueueSet::PausedBuffers::PausedList::~PausedList() { 256 assert(Atomic::load(&_head) == NULL, "precondition"); 257 assert(_tail == NULL, "precondition"); 258 } 259 #endif // ASSERT 260 261 bool G1DirtyCardQueueSet::PausedBuffers::PausedList::is_next() const { 262 assert_not_at_safepoint(); 263 return _safepoint_id == SafepointSynchronize::safepoint_id(); 264 } 265 266 void G1DirtyCardQueueSet::PausedBuffers::PausedList::add(BufferNode* node) { 267 assert_not_at_safepoint(); 268 assert(is_next(), "precondition"); 269 BufferNode* old_head = Atomic::xchg(&_head, node); 270 if (old_head == NULL) { 271 assert(_tail == NULL, "invariant"); 272 _tail = node; 273 } else { 274 node->set_next(old_head); 275 } 276 } 277 278 G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::PausedList::take() { 279 BufferNode* head = Atomic::load(&_head); 280 BufferNode* tail = _tail; 281 Atomic::store(&_head, (BufferNode*)NULL); 282 _tail = NULL; 283 return HeadTail(head, tail); 284 } 285 286 G1DirtyCardQueueSet::PausedBuffers::PausedBuffers() : _plist(NULL) {} 287 288 #ifdef ASSERT 289 G1DirtyCardQueueSet::PausedBuffers::~PausedBuffers() { 290 assert(is_empty(), "invariant"); 291 } 292 #endif // ASSERT 293 294 bool G1DirtyCardQueueSet::PausedBuffers::is_empty() const { 295 return Atomic::load(&_plist) == NULL; 296 } 297 298 void G1DirtyCardQueueSet::PausedBuffers::add(BufferNode* node) { 299 assert_not_at_safepoint(); 300 PausedList* plist = Atomic::load_acquire(&_plist); 301 if (plist != NULL) { 302 // Already have a next list, so use it. We know it's a next list because 303 // of the precondition that take_previous() has already been called. 304 assert(plist->is_next(), "invariant"); 305 } else { 306 // Try to install a new next list. 307 plist = new PausedList(); 308 PausedList* old_plist = Atomic::cmpxchg(&_plist, (PausedList*)NULL, plist); 309 if (old_plist != NULL) { 310 // Some other thread installed a new next list. Use it instead. 311 delete plist; 312 plist = old_plist; 313 } 314 } 315 plist->add(node); 316 } 317 318 G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::take_previous() { 319 assert_not_at_safepoint(); 320 PausedList* previous; 321 { 322 // Deal with plist in a critical section, to prevent it from being 323 // deleted out from under us by a concurrent take_previous(). 324 GlobalCounter::CriticalSection cs(Thread::current()); 325 previous = Atomic::load_acquire(&_plist); 326 if ((previous == NULL) || // Nothing to take. 327 previous->is_next() || // Not from a previous safepoint. 328 // Some other thread stole it. 329 (Atomic::cmpxchg(&_plist, previous, (PausedList*)NULL) != previous)) { 330 return HeadTail(); 331 } 332 } 333 // We now own previous. 334 HeadTail result = previous->take(); 335 // There might be other threads examining previous (in concurrent 336 // take_previous()). Synchronize to wait until any such threads are 337 // done with such examination before deleting. 338 GlobalCounter::write_synchronize(); 339 delete previous; 340 return result; 341 } 342 343 G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::take_all() { 344 assert_at_safepoint(); 345 HeadTail result; 346 PausedList* plist = Atomic::load(&_plist); 347 if (plist != NULL) { 348 Atomic::store(&_plist, (PausedList*)NULL); 349 result = plist->take(); 350 delete plist; 351 } 352 return result; 353 } 354 355 void G1DirtyCardQueueSet::record_paused_buffer(BufferNode* node) { 356 assert_not_at_safepoint(); 357 assert(node->next() == NULL, "precondition"); 358 // Cards for paused buffers are included in count, to contribute to 359 // notification checking after the coming safepoint if it doesn't GC. 360 // Note that this means the queue's _num_cards differs from the number 361 // of cards in the queued buffers when there are paused buffers. 362 Atomic::add(&_num_cards, buffer_size() - node->index()); 363 _paused.add(node); 364 } 365 366 void G1DirtyCardQueueSet::enqueue_paused_buffers_aux(const HeadTail& paused) { 367 if (paused._head != NULL) { 368 assert(paused._tail != NULL, "invariant"); 369 // Cards from paused buffers are already recorded in the queue count. 370 _completed.append(*paused._head, *paused._tail); 371 } 372 } 373 374 void G1DirtyCardQueueSet::enqueue_previous_paused_buffers() { 375 assert_not_at_safepoint(); 376 // The fast-path still satisfies the precondition for record_paused_buffer 377 // and PausedBuffers::add, even with a racy test. If there are paused 378 // buffers from a previous safepoint, is_empty() will return false; there 379 // will have been a safepoint between recording and test, so there can't be 380 // a false negative (is_empty() returns true) while such buffers are present. 381 // If is_empty() is false, there are two cases: 382 // 383 // (1) There were paused buffers from a previous safepoint. A concurrent 384 // caller may take and enqueue them first, but that's okay; the precondition 385 // for a possible later record_paused_buffer by this thread will still hold. 386 // 387 // (2) There are paused buffers for a requested next safepoint. 388 // 389 // In each of those cases some effort may be spent detecting and dealing 390 // with those circumstances; any wasted effort in such cases is expected to 391 // be well compensated by the fast path. 392 if (!_paused.is_empty()) { 393 enqueue_paused_buffers_aux(_paused.take_previous()); 394 } 395 } 396 397 void G1DirtyCardQueueSet::enqueue_all_paused_buffers() { 398 assert_at_safepoint(); 399 enqueue_paused_buffers_aux(_paused.take_all()); 400 } 401 402 void G1DirtyCardQueueSet::abandon_completed_buffers() { 403 enqueue_all_paused_buffers(); 404 verify_num_cards(); 405 G1BufferNodeList list = take_all_completed_buffers(); 406 BufferNode* buffers_to_delete = list._head; 407 while (buffers_to_delete != NULL) { 408 BufferNode* bn = buffers_to_delete; 409 buffers_to_delete = bn->next(); 410 bn->set_next(NULL); 411 deallocate_buffer(bn); 412 } 413 } 414 415 void G1DirtyCardQueueSet::notify_if_necessary() { 416 if ((_primary_refinement_thread != NULL) && 417 (num_cards() > process_cards_threshold())) { 418 _primary_refinement_thread->activate(); 419 } 420 } 421 422 // Merge lists of buffers. The source queue set is emptied as a 423 // result. The queue sets must share the same allocator. 424 void G1DirtyCardQueueSet::merge_bufferlists(G1RedirtyCardsQueueSet* src) { 425 assert(allocator() == src->allocator(), "precondition"); 426 const G1BufferNodeList from = src->take_all_completed_buffers(); 427 if (from._head != NULL) { 428 Atomic::add(&_num_cards, from._entry_count); 429 _completed.append(*from._head, *from._tail); 430 } 431 } 432 433 G1BufferNodeList G1DirtyCardQueueSet::take_all_completed_buffers() { 434 enqueue_all_paused_buffers(); 435 verify_num_cards(); 436 HeadTail buffers = _completed.take_all(); 437 size_t num_cards = Atomic::load(&_num_cards); 438 Atomic::store(&_num_cards, size_t(0)); 439 return G1BufferNodeList(buffers._head, buffers._tail, num_cards); 440 } 441 442 class G1RefineBufferedCards : public StackObj { 443 BufferNode* const _node; 444 CardTable::CardValue** const _node_buffer; 445 const size_t _node_buffer_size; 446 const uint _worker_id; 447 size_t* _total_refined_cards; 448 G1RemSet* const _g1rs; 449 450 static inline int compare_card(const CardTable::CardValue* p1, 451 const CardTable::CardValue* p2) { 452 return p2 - p1; 453 } 454 455 // Sorts the cards from start_index to _node_buffer_size in *decreasing* 456 // address order. Tests showed that this order is preferable to not sorting 457 // or increasing address order. 458 void sort_cards(size_t start_index) { 459 QuickSort::sort(&_node_buffer[start_index], 460 _node_buffer_size - start_index, 461 compare_card, 462 false); 463 } 464 465 // Returns the index to the first clean card in the buffer. 466 size_t clean_cards() { 467 const size_t start = _node->index(); 468 assert(start <= _node_buffer_size, "invariant"); 469 470 // Two-fingered compaction algorithm similar to the filtering mechanism in 471 // SATBMarkQueue. The main difference is that clean_card_before_refine() 472 // could change the buffer element in-place. 473 // We don't check for SuspendibleThreadSet::should_yield(), because 474 // cleaning and redirtying the cards is fast. 475 CardTable::CardValue** src = &_node_buffer[start]; 476 CardTable::CardValue** dst = &_node_buffer[_node_buffer_size]; 477 assert(src <= dst, "invariant"); 478 for ( ; src < dst; ++src) { 479 // Search low to high for a card to keep. 480 if (_g1rs->clean_card_before_refine(src)) { 481 // Found keeper. Search high to low for a card to discard. 482 while (src < --dst) { 483 if (!_g1rs->clean_card_before_refine(dst)) { 484 *dst = *src; // Replace discard with keeper. 485 break; 486 } 487 } 488 // If discard search failed (src == dst), the outer loop will also end. 489 } 490 } 491 492 // dst points to the first retained clean card, or the end of the buffer 493 // if all the cards were discarded. 494 const size_t first_clean = dst - _node_buffer; 495 assert(first_clean >= start && first_clean <= _node_buffer_size, "invariant"); 496 // Discarded cards are considered as refined. 497 *_total_refined_cards += first_clean - start; 498 return first_clean; 499 } 500 501 bool refine_cleaned_cards(size_t start_index) { 502 bool result = true; 503 size_t i = start_index; 504 for ( ; i < _node_buffer_size; ++i) { 505 if (SuspendibleThreadSet::should_yield()) { 506 redirty_unrefined_cards(i); 507 result = false; 508 break; 509 } 510 _g1rs->refine_card_concurrently(_node_buffer[i], _worker_id); 511 } 512 _node->set_index(i); 513 *_total_refined_cards += i - start_index; 514 return result; 515 } 516 517 void redirty_unrefined_cards(size_t start) { 518 for ( ; start < _node_buffer_size; ++start) { 519 *_node_buffer[start] = G1CardTable::dirty_card_val(); 520 } 521 } 522 523 public: 524 G1RefineBufferedCards(BufferNode* node, 525 size_t node_buffer_size, 526 uint worker_id, 527 size_t* total_refined_cards) : 528 _node(node), 529 _node_buffer(reinterpret_cast<CardTable::CardValue**>(BufferNode::make_buffer_from_node(node))), 530 _node_buffer_size(node_buffer_size), 531 _worker_id(worker_id), 532 _total_refined_cards(total_refined_cards), 533 _g1rs(G1CollectedHeap::heap()->rem_set()) {} 534 535 bool refine() { 536 size_t first_clean_index = clean_cards(); 537 if (first_clean_index == _node_buffer_size) { 538 _node->set_index(first_clean_index); 539 return true; 540 } 541 // This fence serves two purposes. First, the cards must be cleaned 542 // before processing the contents. Second, we can't proceed with 543 // processing a region until after the read of the region's top in 544 // collect_and_clean_cards(), for synchronization with possibly concurrent 545 // humongous object allocation (see comment at the StoreStore fence before 546 // setting the regions' tops in humongous allocation path). 547 // It's okay that reading region's top and reading region's type were racy 548 // wrto each other. We need both set, in any order, to proceed. 549 OrderAccess::fence(); 550 sort_cards(first_clean_index); 551 return refine_cleaned_cards(first_clean_index); 552 } 553 }; 554 555 bool G1DirtyCardQueueSet::refine_buffer(BufferNode* node, 556 uint worker_id, 557 size_t* total_refined_cards) { 558 G1RefineBufferedCards buffered_cards(node, 559 buffer_size(), 560 worker_id, 561 total_refined_cards); 562 return buffered_cards.refine(); 563 } 564 565 #ifndef ASSERT 566 #define assert_fully_consumed(node, buffer_size) 567 #else 568 #define assert_fully_consumed(node, buffer_size) \ 569 do { \ 570 size_t _afc_index = (node)->index(); \ 571 size_t _afc_size = (buffer_size); \ 572 assert(_afc_index == _afc_size, \ 573 "Buffer was not fully consumed as claimed: index: " \ 574 SIZE_FORMAT ", size: " SIZE_FORMAT, \ 575 _afc_index, _afc_size); \ 576 } while (0) 577 #endif // ASSERT 578 579 bool G1DirtyCardQueueSet::process_or_enqueue_completed_buffer(BufferNode* node) { 580 if (Thread::current()->is_Java_thread()) { 581 // If the number of buffers exceeds the limit, make this Java 582 // thread do the processing itself. Calculation is racy but we 583 // don't need precision here. The add of padding could overflow, 584 // which is treated as unlimited. 585 size_t limit = max_cards() + max_cards_padding(); 586 if ((num_cards() > limit) && (limit >= max_cards())) { 587 if (mut_process_buffer(node)) { 588 return true; 589 } 590 // Buffer was incompletely processed because of a pending safepoint 591 // request. Unlike with refinement thread processing, for mutator 592 // processing the buffer did not come from the completed buffer queue, 593 // so it is okay to add it to the queue rather than to the paused set. 594 // Indeed, it can't be added to the paused set because we didn't pass 595 // through enqueue_previous_paused_buffers. 596 } 597 } 598 enqueue_completed_buffer(node); 599 return false; 600 } 601 602 bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) { 603 uint worker_id = _free_ids.claim_par_id(); // temporarily claim an id 604 uint counter_index = worker_id - par_ids_start(); 605 size_t* counter = &_mutator_refined_cards_counters[counter_index]; 606 bool result = refine_buffer(node, worker_id, counter); 607 _free_ids.release_par_id(worker_id); // release the id 608 609 if (result) { 610 assert_fully_consumed(node, buffer_size()); 611 } 612 return result; 613 } 614 615 bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_id, 616 size_t stop_at, 617 size_t* total_refined_cards) { 618 BufferNode* node = get_completed_buffer(stop_at); 619 if (node == NULL) { 620 return false; 621 } else if (refine_buffer(node, worker_id, total_refined_cards)) { 622 assert_fully_consumed(node, buffer_size()); 623 // Done with fully processed buffer. 624 deallocate_buffer(node); 625 return true; 626 } else { 627 // Buffer incompletely processed because there is a pending safepoint. 628 // Record partially processed buffer, to be finished later. 629 record_paused_buffer(node); 630 return true; 631 } 632 } 633 634 void G1DirtyCardQueueSet::abandon_logs() { 635 assert_at_safepoint(); 636 abandon_completed_buffers(); 637 638 // Since abandon is done only at safepoints, we can safely manipulate 639 // these queues. 640 struct AbandonThreadLogClosure : public ThreadClosure { 641 virtual void do_thread(Thread* t) { 642 G1ThreadLocalData::dirty_card_queue(t).reset(); 643 } 644 } closure; 645 Threads::threads_do(&closure); 646 647 G1BarrierSet::shared_dirty_card_queue().reset(); 648 } 649 650 void G1DirtyCardQueueSet::concatenate_logs() { 651 // Iterate over all the threads, if we find a partial log add it to 652 // the global list of logs. Temporarily turn off the limit on the number 653 // of outstanding buffers. 654 assert_at_safepoint(); 655 size_t old_limit = max_cards(); 656 set_max_cards(MaxCardsUnlimited); 657 658 struct ConcatenateThreadLogClosure : public ThreadClosure { 659 virtual void do_thread(Thread* t) { 660 G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t); 661 if (!dcq.is_empty()) { 662 dcq.flush(); 663 } 664 } 665 } closure; 666 Threads::threads_do(&closure); 667 668 G1BarrierSet::shared_dirty_card_queue().flush(); 669 enqueue_all_paused_buffers(); 670 verify_num_cards(); 671 set_max_cards(old_limit); 672 }