1 /*
   2  * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "gc/parallel/parallelArguments.hpp"
  34 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  35 #include "gc/parallel/parMarkBitMap.inline.hpp"
  36 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  37 #include "gc/parallel/psCompactionManager.inline.hpp"
  38 #include "gc/parallel/psOldGen.hpp"
  39 #include "gc/parallel/psParallelCompact.inline.hpp"
  40 #include "gc/parallel/psPromotionManager.inline.hpp"
  41 #include "gc/parallel/psRootType.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psYoungGen.hpp"
  44 #include "gc/shared/gcCause.hpp"
  45 #include "gc/shared/gcHeapSummary.hpp"
  46 #include "gc/shared/gcId.hpp"
  47 #include "gc/shared/gcLocker.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/referencePolicy.hpp"
  53 #include "gc/shared/referenceProcessor.hpp"
  54 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  55 #include "gc/shared/spaceDecorator.inline.hpp"
  56 #include "gc/shared/taskTerminator.hpp"
  57 #include "gc/shared/weakProcessor.hpp"
  58 #include "gc/shared/workerPolicy.hpp"
  59 #include "gc/shared/workgroup.hpp"
  60 #include "logging/log.hpp"
  61 #include "memory/iterator.inline.hpp"
  62 #include "memory/resourceArea.hpp"
  63 #include "memory/universe.hpp"
  64 #include "oops/access.inline.hpp"
  65 #include "oops/instanceClassLoaderKlass.inline.hpp"
  66 #include "oops/instanceKlass.inline.hpp"
  67 #include "oops/instanceMirrorKlass.inline.hpp"
  68 #include "oops/methodData.hpp"
  69 #include "oops/objArrayKlass.inline.hpp"
  70 #include "oops/oop.inline.hpp"
  71 #include "runtime/atomic.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/safepoint.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "services/management.hpp"
  76 #include "services/memTracker.hpp"
  77 #include "services/memoryService.hpp"
  78 #include "utilities/align.hpp"
  79 #include "utilities/debug.hpp"
  80 #include "utilities/events.hpp"
  81 #include "utilities/formatBuffer.hpp"
  82 #include "utilities/macros.hpp"
  83 #include "utilities/stack.inline.hpp"
  84 #if INCLUDE_JVMCI
  85 #include "jvmci/jvmci.hpp"
  86 #endif
  87 
  88 #include <math.h>
  89 
  90 // All sizes are in HeapWords.
  91 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  92 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  93 const size_t ParallelCompactData::RegionSizeBytes =
  94   RegionSize << LogHeapWordSize;
  95 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  96 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  97 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  98 
  99 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
 100 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
 101 const size_t ParallelCompactData::BlockSizeBytes  =
 102   BlockSize << LogHeapWordSize;
 103 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
 104 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
 105 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
 106 
 107 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
 108 const size_t ParallelCompactData::Log2BlocksPerRegion =
 109   Log2RegionSize - Log2BlockSize;
 110 
 111 const ParallelCompactData::RegionData::region_sz_t
 112 ParallelCompactData::RegionData::dc_shift = 27;
 113 
 114 const ParallelCompactData::RegionData::region_sz_t
 115 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 116 
 117 const ParallelCompactData::RegionData::region_sz_t
 118 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 119 
 120 const ParallelCompactData::RegionData::region_sz_t
 121 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 122 
 123 const ParallelCompactData::RegionData::region_sz_t
 124 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 125 
 126 const ParallelCompactData::RegionData::region_sz_t
 127 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 128 
 129 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 130 
 131 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 132 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 133 
 134 double PSParallelCompact::_dwl_mean;
 135 double PSParallelCompact::_dwl_std_dev;
 136 double PSParallelCompact::_dwl_first_term;
 137 double PSParallelCompact::_dwl_adjustment;
 138 #ifdef  ASSERT
 139 bool   PSParallelCompact::_dwl_initialized = false;
 140 #endif  // #ifdef ASSERT
 141 
 142 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 143                        HeapWord* destination)
 144 {
 145   assert(src_region_idx != 0, "invalid src_region_idx");
 146   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 147   assert(destination != NULL, "invalid destination argument");
 148 
 149   _src_region_idx = src_region_idx;
 150   _partial_obj_size = partial_obj_size;
 151   _destination = destination;
 152 
 153   // These fields may not be updated below, so make sure they're clear.
 154   assert(_dest_region_addr == NULL, "should have been cleared");
 155   assert(_first_src_addr == NULL, "should have been cleared");
 156 
 157   // Determine the number of destination regions for the partial object.
 158   HeapWord* const last_word = destination + partial_obj_size - 1;
 159   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 160   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 161   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 162 
 163   if (beg_region_addr == end_region_addr) {
 164     // One destination region.
 165     _destination_count = 1;
 166     if (end_region_addr == destination) {
 167       // The destination falls on a region boundary, thus the first word of the
 168       // partial object will be the first word copied to the destination region.
 169       _dest_region_addr = end_region_addr;
 170       _first_src_addr = sd.region_to_addr(src_region_idx);
 171     }
 172   } else {
 173     // Two destination regions.  When copied, the partial object will cross a
 174     // destination region boundary, so a word somewhere within the partial
 175     // object will be the first word copied to the second destination region.
 176     _destination_count = 2;
 177     _dest_region_addr = end_region_addr;
 178     const size_t ofs = pointer_delta(end_region_addr, destination);
 179     assert(ofs < _partial_obj_size, "sanity");
 180     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 181   }
 182 }
 183 
 184 void SplitInfo::clear()
 185 {
 186   _src_region_idx = 0;
 187   _partial_obj_size = 0;
 188   _destination = NULL;
 189   _destination_count = 0;
 190   _dest_region_addr = NULL;
 191   _first_src_addr = NULL;
 192   assert(!is_valid(), "sanity");
 193 }
 194 
 195 #ifdef  ASSERT
 196 void SplitInfo::verify_clear()
 197 {
 198   assert(_src_region_idx == 0, "not clear");
 199   assert(_partial_obj_size == 0, "not clear");
 200   assert(_destination == NULL, "not clear");
 201   assert(_destination_count == 0, "not clear");
 202   assert(_dest_region_addr == NULL, "not clear");
 203   assert(_first_src_addr == NULL, "not clear");
 204 }
 205 #endif  // #ifdef ASSERT
 206 
 207 
 208 void PSParallelCompact::print_on_error(outputStream* st) {
 209   _mark_bitmap.print_on_error(st);
 210 }
 211 
 212 #ifndef PRODUCT
 213 const char* PSParallelCompact::space_names[] = {
 214   "old ", "eden", "from", "to  "
 215 };
 216 
 217 void PSParallelCompact::print_region_ranges() {
 218   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 219     return;
 220   }
 221   Log(gc, compaction) log;
 222   ResourceMark rm;
 223   LogStream ls(log.trace());
 224   Universe::print_on(&ls);
 225   log.trace("space  bottom     top        end        new_top");
 226   log.trace("------ ---------- ---------- ---------- ----------");
 227 
 228   for (unsigned int id = 0; id < last_space_id; ++id) {
 229     const MutableSpace* space = _space_info[id].space();
 230     log.trace("%u %s "
 231               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 232               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 233               id, space_names[id],
 234               summary_data().addr_to_region_idx(space->bottom()),
 235               summary_data().addr_to_region_idx(space->top()),
 236               summary_data().addr_to_region_idx(space->end()),
 237               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 238   }
 239 }
 240 
 241 void
 242 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 243 {
 244 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 245 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 246 
 247   ParallelCompactData& sd = PSParallelCompact::summary_data();
 248   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 249   log_develop_trace(gc, compaction)(
 250       REGION_IDX_FORMAT " " PTR_FORMAT " "
 251       REGION_IDX_FORMAT " " PTR_FORMAT " "
 252       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 253       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 254       i, p2i(c->data_location()), dci, p2i(c->destination()),
 255       c->partial_obj_size(), c->live_obj_size(),
 256       c->data_size(), c->source_region(), c->destination_count());
 257 
 258 #undef  REGION_IDX_FORMAT
 259 #undef  REGION_DATA_FORMAT
 260 }
 261 
 262 void
 263 print_generic_summary_data(ParallelCompactData& summary_data,
 264                            HeapWord* const beg_addr,
 265                            HeapWord* const end_addr)
 266 {
 267   size_t total_words = 0;
 268   size_t i = summary_data.addr_to_region_idx(beg_addr);
 269   const size_t last = summary_data.addr_to_region_idx(end_addr);
 270   HeapWord* pdest = 0;
 271 
 272   while (i < last) {
 273     ParallelCompactData::RegionData* c = summary_data.region(i);
 274     if (c->data_size() != 0 || c->destination() != pdest) {
 275       print_generic_summary_region(i, c);
 276       total_words += c->data_size();
 277       pdest = c->destination();
 278     }
 279     ++i;
 280   }
 281 
 282   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 283 }
 284 
 285 void
 286 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 287                                               HeapWord* const beg_addr,
 288                                               HeapWord* const end_addr) {
 289   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 290 }
 291 
 292 void
 293 print_generic_summary_data(ParallelCompactData& summary_data,
 294                            SpaceInfo* space_info)
 295 {
 296   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 297     return;
 298   }
 299 
 300   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 301     const MutableSpace* space = space_info[id].space();
 302     print_generic_summary_data(summary_data, space->bottom(),
 303                                MAX2(space->top(), space_info[id].new_top()));
 304   }
 305 }
 306 
 307 void
 308 print_initial_summary_data(ParallelCompactData& summary_data,
 309                            const MutableSpace* space) {
 310   if (space->top() == space->bottom()) {
 311     return;
 312   }
 313 
 314   const size_t region_size = ParallelCompactData::RegionSize;
 315   typedef ParallelCompactData::RegionData RegionData;
 316   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 317   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 318   const RegionData* c = summary_data.region(end_region - 1);
 319   HeapWord* end_addr = c->destination() + c->data_size();
 320   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 321 
 322   // Print (and count) the full regions at the beginning of the space.
 323   size_t full_region_count = 0;
 324   size_t i = summary_data.addr_to_region_idx(space->bottom());
 325   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 326     ParallelCompactData::RegionData* c = summary_data.region(i);
 327     log_develop_trace(gc, compaction)(
 328         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 329         i, p2i(c->destination()),
 330         c->partial_obj_size(), c->live_obj_size(),
 331         c->data_size(), c->source_region(), c->destination_count());
 332     ++full_region_count;
 333     ++i;
 334   }
 335 
 336   size_t live_to_right = live_in_space - full_region_count * region_size;
 337 
 338   double max_reclaimed_ratio = 0.0;
 339   size_t max_reclaimed_ratio_region = 0;
 340   size_t max_dead_to_right = 0;
 341   size_t max_live_to_right = 0;
 342 
 343   // Print the 'reclaimed ratio' for regions while there is something live in
 344   // the region or to the right of it.  The remaining regions are empty (and
 345   // uninteresting), and computing the ratio will result in division by 0.
 346   while (i < end_region && live_to_right > 0) {
 347     c = summary_data.region(i);
 348     HeapWord* const region_addr = summary_data.region_to_addr(i);
 349     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 350     const size_t dead_to_right = used_to_right - live_to_right;
 351     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 352 
 353     if (reclaimed_ratio > max_reclaimed_ratio) {
 354             max_reclaimed_ratio = reclaimed_ratio;
 355             max_reclaimed_ratio_region = i;
 356             max_dead_to_right = dead_to_right;
 357             max_live_to_right = live_to_right;
 358     }
 359 
 360     ParallelCompactData::RegionData* c = summary_data.region(i);
 361     log_develop_trace(gc, compaction)(
 362         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 363         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 364         i, p2i(c->destination()),
 365         c->partial_obj_size(), c->live_obj_size(),
 366         c->data_size(), c->source_region(), c->destination_count(),
 367         reclaimed_ratio, dead_to_right, live_to_right);
 368 
 369 
 370     live_to_right -= c->data_size();
 371     ++i;
 372   }
 373 
 374   // Any remaining regions are empty.  Print one more if there is one.
 375   if (i < end_region) {
 376     ParallelCompactData::RegionData* c = summary_data.region(i);
 377     log_develop_trace(gc, compaction)(
 378         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 379          i, p2i(c->destination()),
 380          c->partial_obj_size(), c->live_obj_size(),
 381          c->data_size(), c->source_region(), c->destination_count());
 382   }
 383 
 384   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 385                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 386 }
 387 
 388 void
 389 print_initial_summary_data(ParallelCompactData& summary_data,
 390                            SpaceInfo* space_info) {
 391   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 392     return;
 393   }
 394 
 395   unsigned int id = PSParallelCompact::old_space_id;
 396   const MutableSpace* space;
 397   do {
 398     space = space_info[id].space();
 399     print_initial_summary_data(summary_data, space);
 400   } while (++id < PSParallelCompact::eden_space_id);
 401 
 402   do {
 403     space = space_info[id].space();
 404     print_generic_summary_data(summary_data, space->bottom(), space->top());
 405   } while (++id < PSParallelCompact::last_space_id);
 406 }
 407 #endif  // #ifndef PRODUCT
 408 
 409 #ifdef  ASSERT
 410 size_t add_obj_count;
 411 size_t add_obj_size;
 412 size_t mark_bitmap_count;
 413 size_t mark_bitmap_size;
 414 #endif  // #ifdef ASSERT
 415 
 416 ParallelCompactData::ParallelCompactData() :
 417   _region_start(NULL),
 418   DEBUG_ONLY(_region_end(NULL) COMMA)
 419   _region_vspace(NULL),
 420   _reserved_byte_size(0),
 421   _region_data(NULL),
 422   _region_count(0),
 423   _block_vspace(NULL),
 424   _block_data(NULL),
 425   _block_count(0) {}
 426 
 427 bool ParallelCompactData::initialize(MemRegion covered_region)
 428 {
 429   _region_start = covered_region.start();
 430   const size_t region_size = covered_region.word_size();
 431   DEBUG_ONLY(_region_end = _region_start + region_size;)
 432 
 433   assert(region_align_down(_region_start) == _region_start,
 434          "region start not aligned");
 435   assert((region_size & RegionSizeOffsetMask) == 0,
 436          "region size not a multiple of RegionSize");
 437 
 438   bool result = initialize_region_data(region_size) && initialize_block_data();
 439   return result;
 440 }
 441 
 442 PSVirtualSpace*
 443 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 444 {
 445   const size_t raw_bytes = count * element_size;
 446   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 447   const size_t granularity = os::vm_allocation_granularity();
 448   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 449 
 450   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 451     MAX2(page_sz, granularity);
 452   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 453   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 454                        rs.size());
 455 
 456   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 457 
 458   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 459   if (vspace != 0) {
 460     if (vspace->expand_by(_reserved_byte_size)) {
 461       return vspace;
 462     }
 463     delete vspace;
 464     // Release memory reserved in the space.
 465     rs.release();
 466   }
 467 
 468   return 0;
 469 }
 470 
 471 bool ParallelCompactData::initialize_region_data(size_t region_size)
 472 {
 473   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 474   _region_vspace = create_vspace(count, sizeof(RegionData));
 475   if (_region_vspace != 0) {
 476     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 477     _region_count = count;
 478     return true;
 479   }
 480   return false;
 481 }
 482 
 483 bool ParallelCompactData::initialize_block_data()
 484 {
 485   assert(_region_count != 0, "region data must be initialized first");
 486   const size_t count = _region_count << Log2BlocksPerRegion;
 487   _block_vspace = create_vspace(count, sizeof(BlockData));
 488   if (_block_vspace != 0) {
 489     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 490     _block_count = count;
 491     return true;
 492   }
 493   return false;
 494 }
 495 
 496 void ParallelCompactData::clear()
 497 {
 498   memset(_region_data, 0, _region_vspace->committed_size());
 499   memset(_block_data, 0, _block_vspace->committed_size());
 500 }
 501 
 502 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 503   assert(beg_region <= _region_count, "beg_region out of range");
 504   assert(end_region <= _region_count, "end_region out of range");
 505   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 506 
 507   const size_t region_cnt = end_region - beg_region;
 508   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 509 
 510   const size_t beg_block = beg_region * BlocksPerRegion;
 511   const size_t block_cnt = region_cnt * BlocksPerRegion;
 512   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 513 }
 514 
 515 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 516 {
 517   const RegionData* cur_cp = region(region_idx);
 518   const RegionData* const end_cp = region(region_count() - 1);
 519 
 520   HeapWord* result = region_to_addr(region_idx);
 521   if (cur_cp < end_cp) {
 522     do {
 523       result += cur_cp->partial_obj_size();
 524     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 525   }
 526   return result;
 527 }
 528 
 529 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 530 {
 531   const size_t obj_ofs = pointer_delta(addr, _region_start);
 532   const size_t beg_region = obj_ofs >> Log2RegionSize;
 533   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 534 
 535   DEBUG_ONLY(Atomic::inc(&add_obj_count);)
 536   DEBUG_ONLY(Atomic::add(&add_obj_size, len);)
 537 
 538   if (beg_region == end_region) {
 539     // All in one region.
 540     _region_data[beg_region].add_live_obj(len);
 541     return;
 542   }
 543 
 544   // First region.
 545   const size_t beg_ofs = region_offset(addr);
 546   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 547 
 548   Klass* klass = ((oop)addr)->klass();
 549   // Middle regions--completely spanned by this object.
 550   for (size_t region = beg_region + 1; region < end_region; ++region) {
 551     _region_data[region].set_partial_obj_size(RegionSize);
 552     _region_data[region].set_partial_obj_addr(addr);
 553   }
 554 
 555   // Last region.
 556   const size_t end_ofs = region_offset(addr + len - 1);
 557   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 558   _region_data[end_region].set_partial_obj_addr(addr);
 559 }
 560 
 561 void
 562 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 563 {
 564   assert(region_offset(beg) == 0, "not RegionSize aligned");
 565   assert(region_offset(end) == 0, "not RegionSize aligned");
 566 
 567   size_t cur_region = addr_to_region_idx(beg);
 568   const size_t end_region = addr_to_region_idx(end);
 569   HeapWord* addr = beg;
 570   while (cur_region < end_region) {
 571     _region_data[cur_region].set_destination(addr);
 572     _region_data[cur_region].set_destination_count(0);
 573     _region_data[cur_region].set_source_region(cur_region);
 574     _region_data[cur_region].set_data_location(addr);
 575 
 576     // Update live_obj_size so the region appears completely full.
 577     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 578     _region_data[cur_region].set_live_obj_size(live_size);
 579 
 580     ++cur_region;
 581     addr += RegionSize;
 582   }
 583 }
 584 
 585 // Find the point at which a space can be split and, if necessary, record the
 586 // split point.
 587 //
 588 // If the current src region (which overflowed the destination space) doesn't
 589 // have a partial object, the split point is at the beginning of the current src
 590 // region (an "easy" split, no extra bookkeeping required).
 591 //
 592 // If the current src region has a partial object, the split point is in the
 593 // region where that partial object starts (call it the split_region).  If
 594 // split_region has a partial object, then the split point is just after that
 595 // partial object (a "hard" split where we have to record the split data and
 596 // zero the partial_obj_size field).  With a "hard" split, we know that the
 597 // partial_obj ends within split_region because the partial object that caused
 598 // the overflow starts in split_region.  If split_region doesn't have a partial
 599 // obj, then the split is at the beginning of split_region (another "easy"
 600 // split).
 601 HeapWord*
 602 ParallelCompactData::summarize_split_space(size_t src_region,
 603                                            SplitInfo& split_info,
 604                                            HeapWord* destination,
 605                                            HeapWord* target_end,
 606                                            HeapWord** target_next)
 607 {
 608   assert(destination <= target_end, "sanity");
 609   assert(destination + _region_data[src_region].data_size() > target_end,
 610     "region should not fit into target space");
 611   assert(is_region_aligned(target_end), "sanity");
 612 
 613   size_t split_region = src_region;
 614   HeapWord* split_destination = destination;
 615   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 616 
 617   if (destination + partial_obj_size > target_end) {
 618     // The split point is just after the partial object (if any) in the
 619     // src_region that contains the start of the object that overflowed the
 620     // destination space.
 621     //
 622     // Find the start of the "overflow" object and set split_region to the
 623     // region containing it.
 624     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 625     split_region = addr_to_region_idx(overflow_obj);
 626 
 627     // Clear the source_region field of all destination regions whose first word
 628     // came from data after the split point (a non-null source_region field
 629     // implies a region must be filled).
 630     //
 631     // An alternative to the simple loop below:  clear during post_compact(),
 632     // which uses memcpy instead of individual stores, and is easy to
 633     // parallelize.  (The downside is that it clears the entire RegionData
 634     // object as opposed to just one field.)
 635     //
 636     // post_compact() would have to clear the summary data up to the highest
 637     // address that was written during the summary phase, which would be
 638     //
 639     //         max(top, max(new_top, clear_top))
 640     //
 641     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 642     // to target_end.
 643     const RegionData* const sr = region(split_region);
 644     const size_t beg_idx =
 645       addr_to_region_idx(region_align_up(sr->destination() +
 646                                          sr->partial_obj_size()));
 647     const size_t end_idx = addr_to_region_idx(target_end);
 648 
 649     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 650     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 651       _region_data[idx].set_source_region(0);
 652     }
 653 
 654     // Set split_destination and partial_obj_size to reflect the split region.
 655     split_destination = sr->destination();
 656     partial_obj_size = sr->partial_obj_size();
 657   }
 658 
 659   // The split is recorded only if a partial object extends onto the region.
 660   if (partial_obj_size != 0) {
 661     _region_data[split_region].set_partial_obj_size(0);
 662     split_info.record(split_region, partial_obj_size, split_destination);
 663   }
 664 
 665   // Setup the continuation addresses.
 666   *target_next = split_destination + partial_obj_size;
 667   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 668 
 669   if (log_develop_is_enabled(Trace, gc, compaction)) {
 670     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 671     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 672                                       split_type, p2i(source_next), split_region, partial_obj_size);
 673     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 674                                       split_type, p2i(split_destination),
 675                                       addr_to_region_idx(split_destination),
 676                                       p2i(*target_next));
 677 
 678     if (partial_obj_size != 0) {
 679       HeapWord* const po_beg = split_info.destination();
 680       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 681       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 682                                         split_type,
 683                                         p2i(po_beg), addr_to_region_idx(po_beg),
 684                                         p2i(po_end), addr_to_region_idx(po_end));
 685     }
 686   }
 687 
 688   return source_next;
 689 }
 690 
 691 bool ParallelCompactData::summarize(SplitInfo& split_info,
 692                                     HeapWord* source_beg, HeapWord* source_end,
 693                                     HeapWord** source_next,
 694                                     HeapWord* target_beg, HeapWord* target_end,
 695                                     HeapWord** target_next)
 696 {
 697   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 698   log_develop_trace(gc, compaction)(
 699       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 700       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 701       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 702       p2i(target_beg), p2i(target_end), p2i(*target_next));
 703 
 704   size_t cur_region = addr_to_region_idx(source_beg);
 705   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 706 
 707   HeapWord *dest_addr = target_beg;
 708   while (cur_region < end_region) {
 709     // The destination must be set even if the region has no data.
 710     _region_data[cur_region].set_destination(dest_addr);
 711 
 712     size_t words = _region_data[cur_region].data_size();
 713     if (words > 0) {
 714       // If cur_region does not fit entirely into the target space, find a point
 715       // at which the source space can be 'split' so that part is copied to the
 716       // target space and the rest is copied elsewhere.
 717       if (dest_addr + words > target_end) {
 718         assert(source_next != NULL, "source_next is NULL when splitting");
 719         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 720                                              target_end, target_next);
 721         return false;
 722       }
 723 
 724       // Compute the destination_count for cur_region, and if necessary, update
 725       // source_region for a destination region.  The source_region field is
 726       // updated if cur_region is the first (left-most) region to be copied to a
 727       // destination region.
 728       //
 729       // The destination_count calculation is a bit subtle.  A region that has
 730       // data that compacts into itself does not count itself as a destination.
 731       // This maintains the invariant that a zero count means the region is
 732       // available and can be claimed and then filled.
 733       uint destination_count = 0;
 734       if (split_info.is_split(cur_region)) {
 735         // The current region has been split:  the partial object will be copied
 736         // to one destination space and the remaining data will be copied to
 737         // another destination space.  Adjust the initial destination_count and,
 738         // if necessary, set the source_region field if the partial object will
 739         // cross a destination region boundary.
 740         destination_count = split_info.destination_count();
 741         if (destination_count == 2) {
 742           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 743           _region_data[dest_idx].set_source_region(cur_region);
 744         }
 745       }
 746 
 747       HeapWord* const last_addr = dest_addr + words - 1;
 748       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 749       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 750 
 751       // Initially assume that the destination regions will be the same and
 752       // adjust the value below if necessary.  Under this assumption, if
 753       // cur_region == dest_region_2, then cur_region will be compacted
 754       // completely into itself.
 755       destination_count += cur_region == dest_region_2 ? 0 : 1;
 756       if (dest_region_1 != dest_region_2) {
 757         // Destination regions differ; adjust destination_count.
 758         destination_count += 1;
 759         // Data from cur_region will be copied to the start of dest_region_2.
 760         _region_data[dest_region_2].set_source_region(cur_region);
 761       } else if (region_offset(dest_addr) == 0) {
 762         // Data from cur_region will be copied to the start of the destination
 763         // region.
 764         _region_data[dest_region_1].set_source_region(cur_region);
 765       }
 766 
 767       _region_data[cur_region].set_destination_count(destination_count);
 768       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 769       dest_addr += words;
 770     }
 771 
 772     ++cur_region;
 773   }
 774 
 775   *target_next = dest_addr;
 776   return true;
 777 }
 778 
 779 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 780   assert(addr != NULL, "Should detect NULL oop earlier");
 781   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 782   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 783 
 784   // Region covering the object.
 785   RegionData* const region_ptr = addr_to_region_ptr(addr);
 786   HeapWord* result = region_ptr->destination();
 787 
 788   // If the entire Region is live, the new location is region->destination + the
 789   // offset of the object within in the Region.
 790 
 791   // Run some performance tests to determine if this special case pays off.  It
 792   // is worth it for pointers into the dense prefix.  If the optimization to
 793   // avoid pointer updates in regions that only point to the dense prefix is
 794   // ever implemented, this should be revisited.
 795   if (region_ptr->data_size() == RegionSize) {
 796     result += region_offset(addr);
 797     return result;
 798   }
 799 
 800   // Otherwise, the new location is region->destination + block offset + the
 801   // number of live words in the Block that are (a) to the left of addr and (b)
 802   // due to objects that start in the Block.
 803 
 804   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 805   // threads may fill the block table for a region (harmless, since it is
 806   // idempotent).
 807   if (!region_ptr->blocks_filled()) {
 808     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 809     region_ptr->set_blocks_filled();
 810   }
 811 
 812   HeapWord* const search_start = block_align_down(addr);
 813   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 814 
 815   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 816   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 817   result += block_offset + live;
 818   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 819   return result;
 820 }
 821 
 822 #ifdef ASSERT
 823 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 824 {
 825   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 826   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 827   for (const size_t* p = beg; p < end; ++p) {
 828     assert(*p == 0, "not zero");
 829   }
 830 }
 831 
 832 void ParallelCompactData::verify_clear()
 833 {
 834   verify_clear(_region_vspace);
 835   verify_clear(_block_vspace);
 836 }
 837 #endif  // #ifdef ASSERT
 838 
 839 STWGCTimer          PSParallelCompact::_gc_timer;
 840 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 841 elapsedTimer        PSParallelCompact::_accumulated_time;
 842 unsigned int        PSParallelCompact::_total_invocations = 0;
 843 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 844 jlong               PSParallelCompact::_time_of_last_gc = 0;
 845 CollectorCounters*  PSParallelCompact::_counters = NULL;
 846 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 847 ParallelCompactData PSParallelCompact::_summary_data;
 848 
 849 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 850 
 851 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 852 
 853 class PCReferenceProcessor: public ReferenceProcessor {
 854 public:
 855   PCReferenceProcessor(
 856     BoolObjectClosure* is_subject_to_discovery,
 857     BoolObjectClosure* is_alive_non_header) :
 858       ReferenceProcessor(is_subject_to_discovery,
 859       ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 860       ParallelGCThreads,   // mt processing degree
 861       true,                // mt discovery
 862       ParallelGCThreads,   // mt discovery degree
 863       true,                // atomic_discovery
 864       is_alive_non_header) {
 865   }
 866 
 867   template<typename T> bool discover(oop obj, ReferenceType type) {
 868     T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(obj);
 869     T heap_oop = RawAccess<>::oop_load(referent_addr);
 870     oop referent = CompressedOops::decode_not_null(heap_oop);
 871     return PSParallelCompact::mark_bitmap()->is_unmarked(referent)
 872         && ReferenceProcessor::discover_reference(obj, type);
 873   }
 874   virtual bool discover_reference(oop obj, ReferenceType type) {
 875     if (UseCompressedOops) {
 876       return discover<narrowOop>(obj, type);
 877     } else {
 878       return discover<oop>(obj, type);
 879     }
 880   }
 881 };
 882 
 883 void PSParallelCompact::post_initialize() {
 884   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 885   _span_based_discoverer.set_span(heap->reserved_region());
 886   _ref_processor =
 887     new PCReferenceProcessor(&_span_based_discoverer,
 888                              &_is_alive_closure); // non-header is alive closure
 889 
 890   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 891 
 892   // Initialize static fields in ParCompactionManager.
 893   ParCompactionManager::initialize(mark_bitmap());
 894 }
 895 
 896 bool PSParallelCompact::initialize() {
 897   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 898   MemRegion mr = heap->reserved_region();
 899 
 900   // Was the old gen get allocated successfully?
 901   if (!heap->old_gen()->is_allocated()) {
 902     return false;
 903   }
 904 
 905   initialize_space_info();
 906   initialize_dead_wood_limiter();
 907 
 908   if (!_mark_bitmap.initialize(mr)) {
 909     vm_shutdown_during_initialization(
 910       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 911       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 912       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 913     return false;
 914   }
 915 
 916   if (!_summary_data.initialize(mr)) {
 917     vm_shutdown_during_initialization(
 918       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 919       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 920       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 921     return false;
 922   }
 923 
 924   return true;
 925 }
 926 
 927 void PSParallelCompact::initialize_space_info()
 928 {
 929   memset(&_space_info, 0, sizeof(_space_info));
 930 
 931   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 932   PSYoungGen* young_gen = heap->young_gen();
 933 
 934   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 935   _space_info[eden_space_id].set_space(young_gen->eden_space());
 936   _space_info[from_space_id].set_space(young_gen->from_space());
 937   _space_info[to_space_id].set_space(young_gen->to_space());
 938 
 939   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 940 }
 941 
 942 void PSParallelCompact::initialize_dead_wood_limiter()
 943 {
 944   const size_t max = 100;
 945   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 946   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 947   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 948   DEBUG_ONLY(_dwl_initialized = true;)
 949   _dwl_adjustment = normal_distribution(1.0);
 950 }
 951 
 952 void
 953 PSParallelCompact::clear_data_covering_space(SpaceId id)
 954 {
 955   // At this point, top is the value before GC, new_top() is the value that will
 956   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 957   // should be marked above top.  The summary data is cleared to the larger of
 958   // top & new_top.
 959   MutableSpace* const space = _space_info[id].space();
 960   HeapWord* const bot = space->bottom();
 961   HeapWord* const top = space->top();
 962   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 963 
 964   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 965   const idx_t end_bit = _mark_bitmap.align_range_end(_mark_bitmap.addr_to_bit(top));
 966   _mark_bitmap.clear_range(beg_bit, end_bit);
 967 
 968   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 969   const size_t end_region =
 970     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 971   _summary_data.clear_range(beg_region, end_region);
 972 
 973   // Clear the data used to 'split' regions.
 974   SplitInfo& split_info = _space_info[id].split_info();
 975   if (split_info.is_valid()) {
 976     split_info.clear();
 977   }
 978   DEBUG_ONLY(split_info.verify_clear();)
 979 }
 980 
 981 void PSParallelCompact::pre_compact()
 982 {
 983   // Update the from & to space pointers in space_info, since they are swapped
 984   // at each young gen gc.  Do the update unconditionally (even though a
 985   // promotion failure does not swap spaces) because an unknown number of young
 986   // collections will have swapped the spaces an unknown number of times.
 987   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 988   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 989   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 990   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 991 
 992   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 993   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 994 
 995   // Increment the invocation count
 996   heap->increment_total_collections(true);
 997 
 998   // We need to track unique mark sweep invocations as well.
 999   _total_invocations++;
1000 
1001   heap->print_heap_before_gc();
1002   heap->trace_heap_before_gc(&_gc_tracer);
1003 
1004   // Fill in TLABs
1005   heap->ensure_parsability(true);  // retire TLABs
1006 
1007   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
1008     HandleMark hm;  // Discard invalid handles created during verification
1009     Universe::verify("Before GC");
1010   }
1011 
1012   // Verify object start arrays
1013   if (VerifyObjectStartArray &&
1014       VerifyBeforeGC) {
1015     heap->old_gen()->verify_object_start_array();
1016   }
1017 
1018   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1019   DEBUG_ONLY(summary_data().verify_clear();)
1020 
1021   ParCompactionManager::reset_all_bitmap_query_caches();
1022 }
1023 
1024 void PSParallelCompact::post_compact()
1025 {
1026   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
1027   ParCompactionManager::remove_all_shadow_regions();
1028 
1029   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1030     // Clear the marking bitmap, summary data and split info.
1031     clear_data_covering_space(SpaceId(id));
1032     // Update top().  Must be done after clearing the bitmap and summary data.
1033     _space_info[id].publish_new_top();
1034   }
1035 
1036   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1037   MutableSpace* const from_space = _space_info[from_space_id].space();
1038   MutableSpace* const to_space   = _space_info[to_space_id].space();
1039 
1040   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1041   bool eden_empty = eden_space->is_empty();
1042 
1043   // Update heap occupancy information which is used as input to the soft ref
1044   // clearing policy at the next gc.
1045   Universe::update_heap_info_at_gc();
1046 
1047   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1048     to_space->is_empty();
1049 
1050   PSCardTable* ct = heap->card_table();
1051   MemRegion old_mr = heap->old_gen()->reserved();
1052   if (young_gen_empty) {
1053     ct->clear(MemRegion(old_mr.start(), old_mr.end()));
1054   } else {
1055     ct->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1056   }
1057 
1058   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1059   ClassLoaderDataGraph::purge();
1060   MetaspaceUtils::verify_metrics();
1061 
1062   heap->prune_scavengable_nmethods();
1063 
1064 #if COMPILER2_OR_JVMCI
1065   DerivedPointerTable::update_pointers();
1066 #endif
1067 
1068   if (ZapUnusedHeapArea) {
1069     heap->gen_mangle_unused_area();
1070   }
1071 
1072   // Update time of last GC
1073   reset_millis_since_last_gc();
1074 }
1075 
1076 HeapWord*
1077 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1078                                                     bool maximum_compaction)
1079 {
1080   const size_t region_size = ParallelCompactData::RegionSize;
1081   const ParallelCompactData& sd = summary_data();
1082 
1083   const MutableSpace* const space = _space_info[id].space();
1084   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1085   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1086   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1087 
1088   // Skip full regions at the beginning of the space--they are necessarily part
1089   // of the dense prefix.
1090   size_t full_count = 0;
1091   const RegionData* cp;
1092   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1093     ++full_count;
1094   }
1095 
1096   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1097   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1098   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1099   if (maximum_compaction || cp == end_cp || interval_ended) {
1100     _maximum_compaction_gc_num = total_invocations();
1101     return sd.region_to_addr(cp);
1102   }
1103 
1104   HeapWord* const new_top = _space_info[id].new_top();
1105   const size_t space_live = pointer_delta(new_top, space->bottom());
1106   const size_t space_used = space->used_in_words();
1107   const size_t space_capacity = space->capacity_in_words();
1108 
1109   const double cur_density = double(space_live) / space_capacity;
1110   const double deadwood_density =
1111     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1112   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1113 
1114   log_develop_debug(gc, compaction)(
1115       "cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1116       cur_density, deadwood_density, deadwood_goal);
1117   log_develop_debug(gc, compaction)(
1118       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1119       "space_cap=" SIZE_FORMAT,
1120       space_live, space_used,
1121       space_capacity);
1122 
1123   // XXX - Use binary search?
1124   HeapWord* dense_prefix = sd.region_to_addr(cp);
1125   const RegionData* full_cp = cp;
1126   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1127   while (cp < end_cp) {
1128     HeapWord* region_destination = cp->destination();
1129     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1130 
1131     log_develop_trace(gc, compaction)(
1132         "c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1133         "dp=" PTR_FORMAT " cdw=" SIZE_FORMAT_W(8),
1134         sd.region(cp), p2i(region_destination),
1135         p2i(dense_prefix), cur_deadwood);
1136 
1137     if (cur_deadwood >= deadwood_goal) {
1138       // Found the region that has the correct amount of deadwood to the left.
1139       // This typically occurs after crossing a fairly sparse set of regions, so
1140       // iterate backwards over those sparse regions, looking for the region
1141       // that has the lowest density of live objects 'to the right.'
1142       size_t space_to_left = sd.region(cp) * region_size;
1143       size_t live_to_left = space_to_left - cur_deadwood;
1144       size_t space_to_right = space_capacity - space_to_left;
1145       size_t live_to_right = space_live - live_to_left;
1146       double density_to_right = double(live_to_right) / space_to_right;
1147       while (cp > full_cp) {
1148         --cp;
1149         const size_t prev_region_live_to_right = live_to_right -
1150           cp->data_size();
1151         const size_t prev_region_space_to_right = space_to_right + region_size;
1152         double prev_region_density_to_right =
1153           double(prev_region_live_to_right) / prev_region_space_to_right;
1154         if (density_to_right <= prev_region_density_to_right) {
1155           return dense_prefix;
1156         }
1157 
1158         log_develop_trace(gc, compaction)(
1159             "backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1160             "pc_d2r=%10.8f",
1161             sd.region(cp), density_to_right,
1162             prev_region_density_to_right);
1163 
1164         dense_prefix -= region_size;
1165         live_to_right = prev_region_live_to_right;
1166         space_to_right = prev_region_space_to_right;
1167         density_to_right = prev_region_density_to_right;
1168       }
1169       return dense_prefix;
1170     }
1171 
1172     dense_prefix += region_size;
1173     ++cp;
1174   }
1175 
1176   return dense_prefix;
1177 }
1178 
1179 #ifndef PRODUCT
1180 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1181                                                  const SpaceId id,
1182                                                  const bool maximum_compaction,
1183                                                  HeapWord* const addr)
1184 {
1185   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1186   RegionData* const cp = summary_data().region(region_idx);
1187   const MutableSpace* const space = _space_info[id].space();
1188   HeapWord* const new_top = _space_info[id].new_top();
1189 
1190   const size_t space_live = pointer_delta(new_top, space->bottom());
1191   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1192   const size_t space_cap = space->capacity_in_words();
1193   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1194   const size_t live_to_right = new_top - cp->destination();
1195   const size_t dead_to_right = space->top() - addr - live_to_right;
1196 
1197   log_develop_debug(gc, compaction)(
1198       "%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1199       "spl=" SIZE_FORMAT " "
1200       "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1201       "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT " "
1202       "ratio=%10.8f",
1203       algorithm, p2i(addr), region_idx,
1204       space_live,
1205       dead_to_left, dead_to_left_pct,
1206       dead_to_right, live_to_right,
1207       double(dead_to_right) / live_to_right);
1208 }
1209 #endif  // #ifndef PRODUCT
1210 
1211 // Return a fraction indicating how much of the generation can be treated as
1212 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1213 // based on the density of live objects in the generation to determine a limit,
1214 // which is then adjusted so the return value is min_percent when the density is
1215 // 1.
1216 //
1217 // The following table shows some return values for a different values of the
1218 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1219 // min_percent is 1.
1220 //
1221 //                          fraction allowed as dead wood
1222 //         -----------------------------------------------------------------
1223 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1224 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1225 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1226 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1227 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1228 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1229 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1230 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1231 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1232 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1233 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1234 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1235 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1236 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1237 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1238 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1239 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1240 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1241 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1242 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1243 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1244 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1245 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1246 
1247 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1248 {
1249   assert(_dwl_initialized, "uninitialized");
1250 
1251   // The raw limit is the value of the normal distribution at x = density.
1252   const double raw_limit = normal_distribution(density);
1253 
1254   // Adjust the raw limit so it becomes the minimum when the density is 1.
1255   //
1256   // First subtract the adjustment value (which is simply the precomputed value
1257   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1258   // Then add the minimum value, so the minimum is returned when the density is
1259   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1260   const double min = double(min_percent) / 100.0;
1261   const double limit = raw_limit - _dwl_adjustment + min;
1262   return MAX2(limit, 0.0);
1263 }
1264 
1265 ParallelCompactData::RegionData*
1266 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1267                                            const RegionData* end)
1268 {
1269   const size_t region_size = ParallelCompactData::RegionSize;
1270   ParallelCompactData& sd = summary_data();
1271   size_t left = sd.region(beg);
1272   size_t right = end > beg ? sd.region(end) - 1 : left;
1273 
1274   // Binary search.
1275   while (left < right) {
1276     // Equivalent to (left + right) / 2, but does not overflow.
1277     const size_t middle = left + (right - left) / 2;
1278     RegionData* const middle_ptr = sd.region(middle);
1279     HeapWord* const dest = middle_ptr->destination();
1280     HeapWord* const addr = sd.region_to_addr(middle);
1281     assert(dest != NULL, "sanity");
1282     assert(dest <= addr, "must move left");
1283 
1284     if (middle > left && dest < addr) {
1285       right = middle - 1;
1286     } else if (middle < right && middle_ptr->data_size() == region_size) {
1287       left = middle + 1;
1288     } else {
1289       return middle_ptr;
1290     }
1291   }
1292   return sd.region(left);
1293 }
1294 
1295 ParallelCompactData::RegionData*
1296 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1297                                           const RegionData* end,
1298                                           size_t dead_words)
1299 {
1300   ParallelCompactData& sd = summary_data();
1301   size_t left = sd.region(beg);
1302   size_t right = end > beg ? sd.region(end) - 1 : left;
1303 
1304   // Binary search.
1305   while (left < right) {
1306     // Equivalent to (left + right) / 2, but does not overflow.
1307     const size_t middle = left + (right - left) / 2;
1308     RegionData* const middle_ptr = sd.region(middle);
1309     HeapWord* const dest = middle_ptr->destination();
1310     HeapWord* const addr = sd.region_to_addr(middle);
1311     assert(dest != NULL, "sanity");
1312     assert(dest <= addr, "must move left");
1313 
1314     const size_t dead_to_left = pointer_delta(addr, dest);
1315     if (middle > left && dead_to_left > dead_words) {
1316       right = middle - 1;
1317     } else if (middle < right && dead_to_left < dead_words) {
1318       left = middle + 1;
1319     } else {
1320       return middle_ptr;
1321     }
1322   }
1323   return sd.region(left);
1324 }
1325 
1326 // The result is valid during the summary phase, after the initial summarization
1327 // of each space into itself, and before final summarization.
1328 inline double
1329 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1330                                    HeapWord* const bottom,
1331                                    HeapWord* const top,
1332                                    HeapWord* const new_top)
1333 {
1334   ParallelCompactData& sd = summary_data();
1335 
1336   assert(cp != NULL, "sanity");
1337   assert(bottom != NULL, "sanity");
1338   assert(top != NULL, "sanity");
1339   assert(new_top != NULL, "sanity");
1340   assert(top >= new_top, "summary data problem?");
1341   assert(new_top > bottom, "space is empty; should not be here");
1342   assert(new_top >= cp->destination(), "sanity");
1343   assert(top >= sd.region_to_addr(cp), "sanity");
1344 
1345   HeapWord* const destination = cp->destination();
1346   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1347   const size_t compacted_region_live = pointer_delta(new_top, destination);
1348   const size_t compacted_region_used = pointer_delta(top,
1349                                                      sd.region_to_addr(cp));
1350   const size_t reclaimable = compacted_region_used - compacted_region_live;
1351 
1352   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1353   return double(reclaimable) / divisor;
1354 }
1355 
1356 // Return the address of the end of the dense prefix, a.k.a. the start of the
1357 // compacted region.  The address is always on a region boundary.
1358 //
1359 // Completely full regions at the left are skipped, since no compaction can
1360 // occur in those regions.  Then the maximum amount of dead wood to allow is
1361 // computed, based on the density (amount live / capacity) of the generation;
1362 // the region with approximately that amount of dead space to the left is
1363 // identified as the limit region.  Regions between the last completely full
1364 // region and the limit region are scanned and the one that has the best
1365 // (maximum) reclaimed_ratio() is selected.
1366 HeapWord*
1367 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1368                                         bool maximum_compaction)
1369 {
1370   const size_t region_size = ParallelCompactData::RegionSize;
1371   const ParallelCompactData& sd = summary_data();
1372 
1373   const MutableSpace* const space = _space_info[id].space();
1374   HeapWord* const top = space->top();
1375   HeapWord* const top_aligned_up = sd.region_align_up(top);
1376   HeapWord* const new_top = _space_info[id].new_top();
1377   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1378   HeapWord* const bottom = space->bottom();
1379   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1380   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1381   const RegionData* const new_top_cp =
1382     sd.addr_to_region_ptr(new_top_aligned_up);
1383 
1384   // Skip full regions at the beginning of the space--they are necessarily part
1385   // of the dense prefix.
1386   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1387   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1388          space->is_empty(), "no dead space allowed to the left");
1389   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1390          "region must have dead space");
1391 
1392   // The gc number is saved whenever a maximum compaction is done, and used to
1393   // determine when the maximum compaction interval has expired.  This avoids
1394   // successive max compactions for different reasons.
1395   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1396   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1397   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1398     total_invocations() == HeapFirstMaximumCompactionCount;
1399   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1400     _maximum_compaction_gc_num = total_invocations();
1401     return sd.region_to_addr(full_cp);
1402   }
1403 
1404   const size_t space_live = pointer_delta(new_top, bottom);
1405   const size_t space_used = space->used_in_words();
1406   const size_t space_capacity = space->capacity_in_words();
1407 
1408   const double density = double(space_live) / double(space_capacity);
1409   const size_t min_percent_free = MarkSweepDeadRatio;
1410   const double limiter = dead_wood_limiter(density, min_percent_free);
1411   const size_t dead_wood_max = space_used - space_live;
1412   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1413                                       dead_wood_max);
1414 
1415   log_develop_debug(gc, compaction)(
1416       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1417       "space_cap=" SIZE_FORMAT,
1418       space_live, space_used,
1419       space_capacity);
1420   log_develop_debug(gc, compaction)(
1421       "dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1422       "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1423       density, min_percent_free, limiter,
1424       dead_wood_max, dead_wood_limit);
1425 
1426   // Locate the region with the desired amount of dead space to the left.
1427   const RegionData* const limit_cp =
1428     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1429 
1430   // Scan from the first region with dead space to the limit region and find the
1431   // one with the best (largest) reclaimed ratio.
1432   double best_ratio = 0.0;
1433   const RegionData* best_cp = full_cp;
1434   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1435     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1436     if (tmp_ratio > best_ratio) {
1437       best_cp = cp;
1438       best_ratio = tmp_ratio;
1439     }
1440   }
1441 
1442   return sd.region_to_addr(best_cp);
1443 }
1444 
1445 void PSParallelCompact::summarize_spaces_quick()
1446 {
1447   for (unsigned int i = 0; i < last_space_id; ++i) {
1448     const MutableSpace* space = _space_info[i].space();
1449     HeapWord** nta = _space_info[i].new_top_addr();
1450     bool result = _summary_data.summarize(_space_info[i].split_info(),
1451                                           space->bottom(), space->top(), NULL,
1452                                           space->bottom(), space->end(), nta);
1453     assert(result, "space must fit into itself");
1454     _space_info[i].set_dense_prefix(space->bottom());
1455   }
1456 }
1457 
1458 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1459 {
1460   HeapWord* const dense_prefix_end = dense_prefix(id);
1461   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1462   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1463   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1464     // Only enough dead space is filled so that any remaining dead space to the
1465     // left is larger than the minimum filler object.  (The remainder is filled
1466     // during the copy/update phase.)
1467     //
1468     // The size of the dead space to the right of the boundary is not a
1469     // concern, since compaction will be able to use whatever space is
1470     // available.
1471     //
1472     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1473     // surrounds the space to be filled with an object.
1474     //
1475     // In the 32-bit VM, each bit represents two 32-bit words:
1476     //                              +---+
1477     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1478     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1479     //                              +---+
1480     //
1481     // In the 64-bit VM, each bit represents one 64-bit word:
1482     //                              +------------+
1483     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1484     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1485     //                              +------------+
1486     //                          +-------+
1487     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1488     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1489     //                          +-------+
1490     //                      +-----------+
1491     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1492     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1493     //                      +-----------+
1494     //                          +-------+
1495     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1496     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1497     //                          +-------+
1498 
1499     // Initially assume case a, c or e will apply.
1500     size_t obj_len = CollectedHeap::min_fill_size();
1501     HeapWord* obj_beg = dense_prefix_end - obj_len;
1502 
1503 #ifdef  _LP64
1504     if (MinObjAlignment > 1) { // object alignment > heap word size
1505       // Cases a, c or e.
1506     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1507       // Case b above.
1508       obj_beg = dense_prefix_end - 1;
1509     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1510                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1511       // Case d above.
1512       obj_beg = dense_prefix_end - 3;
1513       obj_len = 3;
1514     }
1515 #endif  // #ifdef _LP64
1516 
1517     CollectedHeap::fill_with_object(obj_beg, obj_len);
1518     _mark_bitmap.mark_obj(obj_beg, obj_len);
1519     _summary_data.add_obj(obj_beg, obj_len);
1520     assert(start_array(id) != NULL, "sanity");
1521     start_array(id)->allocate_block(obj_beg);
1522   }
1523 }
1524 
1525 void
1526 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1527 {
1528   assert(id < last_space_id, "id out of range");
1529   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1530          "should have been reset in summarize_spaces_quick()");
1531 
1532   const MutableSpace* space = _space_info[id].space();
1533   if (_space_info[id].new_top() != space->bottom()) {
1534     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1535     _space_info[id].set_dense_prefix(dense_prefix_end);
1536 
1537 #ifndef PRODUCT
1538     if (log_is_enabled(Debug, gc, compaction)) {
1539       print_dense_prefix_stats("ratio", id, maximum_compaction,
1540                                dense_prefix_end);
1541       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1542       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1543     }
1544 #endif  // #ifndef PRODUCT
1545 
1546     // Recompute the summary data, taking into account the dense prefix.  If
1547     // every last byte will be reclaimed, then the existing summary data which
1548     // compacts everything can be left in place.
1549     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1550       // If dead space crosses the dense prefix boundary, it is (at least
1551       // partially) filled with a dummy object, marked live and added to the
1552       // summary data.  This simplifies the copy/update phase and must be done
1553       // before the final locations of objects are determined, to prevent
1554       // leaving a fragment of dead space that is too small to fill.
1555       fill_dense_prefix_end(id);
1556 
1557       // Compute the destination of each Region, and thus each object.
1558       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1559       _summary_data.summarize(_space_info[id].split_info(),
1560                               dense_prefix_end, space->top(), NULL,
1561                               dense_prefix_end, space->end(),
1562                               _space_info[id].new_top_addr());
1563     }
1564   }
1565 
1566   if (log_develop_is_enabled(Trace, gc, compaction)) {
1567     const size_t region_size = ParallelCompactData::RegionSize;
1568     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1569     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1570     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1571     HeapWord* const new_top = _space_info[id].new_top();
1572     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1573     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1574     log_develop_trace(gc, compaction)(
1575         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1576         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1577         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1578         id, space->capacity_in_words(), p2i(dense_prefix_end),
1579         dp_region, dp_words / region_size,
1580         cr_words / region_size, p2i(new_top));
1581   }
1582 }
1583 
1584 #ifndef PRODUCT
1585 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1586                                           HeapWord* dst_beg, HeapWord* dst_end,
1587                                           SpaceId src_space_id,
1588                                           HeapWord* src_beg, HeapWord* src_end)
1589 {
1590   log_develop_trace(gc, compaction)(
1591       "Summarizing %d [%s] into %d [%s]:  "
1592       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1593       SIZE_FORMAT "-" SIZE_FORMAT " "
1594       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1595       SIZE_FORMAT "-" SIZE_FORMAT,
1596       src_space_id, space_names[src_space_id],
1597       dst_space_id, space_names[dst_space_id],
1598       p2i(src_beg), p2i(src_end),
1599       _summary_data.addr_to_region_idx(src_beg),
1600       _summary_data.addr_to_region_idx(src_end),
1601       p2i(dst_beg), p2i(dst_end),
1602       _summary_data.addr_to_region_idx(dst_beg),
1603       _summary_data.addr_to_region_idx(dst_end));
1604 }
1605 #endif  // #ifndef PRODUCT
1606 
1607 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1608                                       bool maximum_compaction)
1609 {
1610   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1611 
1612   log_develop_debug(gc, marking)(
1613       "add_obj_count=" SIZE_FORMAT " "
1614       "add_obj_bytes=" SIZE_FORMAT,
1615       add_obj_count,
1616       add_obj_size * HeapWordSize);
1617   log_develop_debug(gc, marking)(
1618       "mark_bitmap_count=" SIZE_FORMAT " "
1619       "mark_bitmap_bytes=" SIZE_FORMAT,
1620       mark_bitmap_count,
1621       mark_bitmap_size * HeapWordSize);
1622 
1623   // Quick summarization of each space into itself, to see how much is live.
1624   summarize_spaces_quick();
1625 
1626   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1627   NOT_PRODUCT(print_region_ranges());
1628   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1629 
1630   // The amount of live data that will end up in old space (assuming it fits).
1631   size_t old_space_total_live = 0;
1632   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1633     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1634                                           _space_info[id].space()->bottom());
1635   }
1636 
1637   MutableSpace* const old_space = _space_info[old_space_id].space();
1638   const size_t old_capacity = old_space->capacity_in_words();
1639   if (old_space_total_live > old_capacity) {
1640     // XXX - should also try to expand
1641     maximum_compaction = true;
1642   }
1643 
1644   // Old generations.
1645   summarize_space(old_space_id, maximum_compaction);
1646 
1647   // Summarize the remaining spaces in the young gen.  The initial target space
1648   // is the old gen.  If a space does not fit entirely into the target, then the
1649   // remainder is compacted into the space itself and that space becomes the new
1650   // target.
1651   SpaceId dst_space_id = old_space_id;
1652   HeapWord* dst_space_end = old_space->end();
1653   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1654   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1655     const MutableSpace* space = _space_info[id].space();
1656     const size_t live = pointer_delta(_space_info[id].new_top(),
1657                                       space->bottom());
1658     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1659 
1660     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1661                                   SpaceId(id), space->bottom(), space->top());)
1662     if (live > 0 && live <= available) {
1663       // All the live data will fit.
1664       bool done = _summary_data.summarize(_space_info[id].split_info(),
1665                                           space->bottom(), space->top(),
1666                                           NULL,
1667                                           *new_top_addr, dst_space_end,
1668                                           new_top_addr);
1669       assert(done, "space must fit into old gen");
1670 
1671       // Reset the new_top value for the space.
1672       _space_info[id].set_new_top(space->bottom());
1673     } else if (live > 0) {
1674       // Attempt to fit part of the source space into the target space.
1675       HeapWord* next_src_addr = NULL;
1676       bool done = _summary_data.summarize(_space_info[id].split_info(),
1677                                           space->bottom(), space->top(),
1678                                           &next_src_addr,
1679                                           *new_top_addr, dst_space_end,
1680                                           new_top_addr);
1681       assert(!done, "space should not fit into old gen");
1682       assert(next_src_addr != NULL, "sanity");
1683 
1684       // The source space becomes the new target, so the remainder is compacted
1685       // within the space itself.
1686       dst_space_id = SpaceId(id);
1687       dst_space_end = space->end();
1688       new_top_addr = _space_info[id].new_top_addr();
1689       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1690                                     space->bottom(), dst_space_end,
1691                                     SpaceId(id), next_src_addr, space->top());)
1692       done = _summary_data.summarize(_space_info[id].split_info(),
1693                                      next_src_addr, space->top(),
1694                                      NULL,
1695                                      space->bottom(), dst_space_end,
1696                                      new_top_addr);
1697       assert(done, "space must fit when compacted into itself");
1698       assert(*new_top_addr <= space->top(), "usage should not grow");
1699     }
1700   }
1701 
1702   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1703   NOT_PRODUCT(print_region_ranges());
1704   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1705 }
1706 
1707 // This method should contain all heap-specific policy for invoking a full
1708 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1709 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1710 // before full gc, or any other specialized behavior, it needs to be added here.
1711 //
1712 // Note that this method should only be called from the vm_thread while at a
1713 // safepoint.
1714 //
1715 // Note that the all_soft_refs_clear flag in the soft ref policy
1716 // may be true because this method can be called without intervening
1717 // activity.  For example when the heap space is tight and full measure
1718 // are being taken to free space.
1719 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1720   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1721   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1722          "should be in vm thread");
1723 
1724   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1725   GCCause::Cause gc_cause = heap->gc_cause();
1726   assert(!heap->is_gc_active(), "not reentrant");
1727 
1728   PSAdaptiveSizePolicy* policy = heap->size_policy();
1729   IsGCActiveMark mark;
1730 
1731   if (ScavengeBeforeFullGC) {
1732     PSScavenge::invoke_no_policy();
1733   }
1734 
1735   const bool clear_all_soft_refs =
1736     heap->soft_ref_policy()->should_clear_all_soft_refs();
1737 
1738   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1739                                       maximum_heap_compaction);
1740 }
1741 
1742 // This method contains no policy. You should probably
1743 // be calling invoke() instead.
1744 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1745   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1746   assert(ref_processor() != NULL, "Sanity");
1747 
1748   if (GCLocker::check_active_before_gc()) {
1749     return false;
1750   }
1751 
1752   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1753 
1754   GCIdMark gc_id_mark;
1755   _gc_timer.register_gc_start();
1756   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1757 
1758   TimeStamp marking_start;
1759   TimeStamp compaction_start;
1760   TimeStamp collection_exit;
1761 
1762   GCCause::Cause gc_cause = heap->gc_cause();
1763   PSYoungGen* young_gen = heap->young_gen();
1764   PSOldGen* old_gen = heap->old_gen();
1765   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1766 
1767   // The scope of casr should end after code that can change
1768   // SoftRefPolicy::_should_clear_all_soft_refs.
1769   ClearedAllSoftRefs casr(maximum_heap_compaction,
1770                           heap->soft_ref_policy());
1771 
1772   if (ZapUnusedHeapArea) {
1773     // Save information needed to minimize mangling
1774     heap->record_gen_tops_before_GC();
1775   }
1776 
1777   // Make sure data structures are sane, make the heap parsable, and do other
1778   // miscellaneous bookkeeping.
1779   pre_compact();
1780 
1781   const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
1782 
1783   // Get the compaction manager reserved for the VM thread.
1784   ParCompactionManager* const vmthread_cm =
1785     ParCompactionManager::manager_array(ParallelScavengeHeap::heap()->workers().total_workers());
1786 
1787   {
1788     ResourceMark rm;
1789     HandleMark hm;
1790 
1791     const uint active_workers =
1792       WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().total_workers(),
1793                                         ParallelScavengeHeap::heap()->workers().active_workers(),
1794                                         Threads::number_of_non_daemon_threads());
1795     ParallelScavengeHeap::heap()->workers().update_active_workers(active_workers);
1796 
1797     GCTraceCPUTime tcpu;
1798     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1799 
1800     heap->pre_full_gc_dump(&_gc_timer);
1801 
1802     TraceCollectorStats tcs(counters());
1803     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause);
1804 
1805     if (log_is_enabled(Debug, gc, heap, exit)) {
1806       accumulated_time()->start();
1807     }
1808 
1809     // Let the size policy know we're starting
1810     size_policy->major_collection_begin();
1811 
1812 #if COMPILER2_OR_JVMCI
1813     DerivedPointerTable::clear();
1814 #endif
1815 
1816     ref_processor()->enable_discovery();
1817     ref_processor()->setup_policy(maximum_heap_compaction);
1818 
1819     bool marked_for_unloading = false;
1820 
1821     marking_start.update();
1822     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1823 
1824     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1825       && GCCause::is_user_requested_gc(gc_cause);
1826     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1827 
1828 #if COMPILER2_OR_JVMCI
1829     assert(DerivedPointerTable::is_active(), "Sanity");
1830     DerivedPointerTable::set_active(false);
1831 #endif
1832 
1833     // adjust_roots() updates Universe::_intArrayKlassObj which is
1834     // needed by the compaction for filling holes in the dense prefix.
1835     adjust_roots(vmthread_cm);
1836 
1837     compaction_start.update();
1838     compact();
1839 
1840     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1841     // done before resizing.
1842     post_compact();
1843 
1844     // Let the size policy know we're done
1845     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1846 
1847     if (UseAdaptiveSizePolicy) {
1848       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1849       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1850                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1851 
1852       // Don't check if the size_policy is ready here.  Let
1853       // the size_policy check that internally.
1854       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1855           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1856         // Swap the survivor spaces if from_space is empty. The
1857         // resize_young_gen() called below is normally used after
1858         // a successful young GC and swapping of survivor spaces;
1859         // otherwise, it will fail to resize the young gen with
1860         // the current implementation.
1861         if (young_gen->from_space()->is_empty()) {
1862           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1863           young_gen->swap_spaces();
1864         }
1865 
1866         // Calculate optimal free space amounts
1867         assert(young_gen->max_size() >
1868           young_gen->from_space()->capacity_in_bytes() +
1869           young_gen->to_space()->capacity_in_bytes(),
1870           "Sizes of space in young gen are out-of-bounds");
1871 
1872         size_t young_live = young_gen->used_in_bytes();
1873         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1874         size_t old_live = old_gen->used_in_bytes();
1875         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1876         size_t max_old_gen_size = old_gen->max_gen_size();
1877         size_t max_eden_size = young_gen->max_size() -
1878           young_gen->from_space()->capacity_in_bytes() -
1879           young_gen->to_space()->capacity_in_bytes();
1880 
1881         // Used for diagnostics
1882         size_policy->clear_generation_free_space_flags();
1883 
1884         size_policy->compute_generations_free_space(young_live,
1885                                                     eden_live,
1886                                                     old_live,
1887                                                     cur_eden,
1888                                                     max_old_gen_size,
1889                                                     max_eden_size,
1890                                                     true /* full gc*/);
1891 
1892         size_policy->check_gc_overhead_limit(eden_live,
1893                                              max_old_gen_size,
1894                                              max_eden_size,
1895                                              true /* full gc*/,
1896                                              gc_cause,
1897                                              heap->soft_ref_policy());
1898 
1899         size_policy->decay_supplemental_growth(true /* full gc*/);
1900 
1901         heap->resize_old_gen(
1902           size_policy->calculated_old_free_size_in_bytes());
1903 
1904         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1905                                size_policy->calculated_survivor_size_in_bytes());
1906       }
1907 
1908       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1909     }
1910 
1911     if (UsePerfData) {
1912       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1913       counters->update_counters();
1914       counters->update_old_capacity(old_gen->capacity_in_bytes());
1915       counters->update_young_capacity(young_gen->capacity_in_bytes());
1916     }
1917 
1918     heap->resize_all_tlabs();
1919 
1920     // Resize the metaspace capacity after a collection
1921     MetaspaceGC::compute_new_size();
1922 
1923     if (log_is_enabled(Debug, gc, heap, exit)) {
1924       accumulated_time()->stop();
1925     }
1926 
1927     heap->print_heap_change(pre_gc_values);
1928 
1929     // Track memory usage and detect low memory
1930     MemoryService::track_memory_usage();
1931     heap->update_counters();
1932 
1933     heap->post_full_gc_dump(&_gc_timer);
1934   }
1935 
1936 #ifdef ASSERT
1937   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1938     ParCompactionManager* const cm =
1939       ParCompactionManager::manager_array(int(i));
1940     assert(cm->marking_stack()->is_empty(),       "should be empty");
1941     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1942   }
1943 #endif // ASSERT
1944 
1945   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1946     HandleMark hm;  // Discard invalid handles created during verification
1947     Universe::verify("After GC");
1948   }
1949 
1950   // Re-verify object start arrays
1951   if (VerifyObjectStartArray &&
1952       VerifyAfterGC) {
1953     old_gen->verify_object_start_array();
1954   }
1955 
1956   if (ZapUnusedHeapArea) {
1957     old_gen->object_space()->check_mangled_unused_area_complete();
1958   }
1959 
1960   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1961 
1962   collection_exit.update();
1963 
1964   heap->print_heap_after_gc();
1965   heap->trace_heap_after_gc(&_gc_tracer);
1966 
1967   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1968                          marking_start.ticks(), compaction_start.ticks(),
1969                          collection_exit.ticks());
1970 
1971   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1972 
1973   _gc_timer.register_gc_end();
1974 
1975   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1976   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1977 
1978   return true;
1979 }
1980 
1981 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
1982 private:
1983   uint _worker_id;
1984 
1985 public:
1986   PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { }
1987   void do_thread(Thread* thread) {
1988     assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
1989 
1990     ResourceMark rm;
1991 
1992     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id);
1993 
1994     PCMarkAndPushClosure mark_and_push_closure(cm);
1995     MarkingCodeBlobClosure mark_and_push_in_blobs(&mark_and_push_closure, !CodeBlobToOopClosure::FixRelocations);
1996 
1997     thread->oops_do(&mark_and_push_closure, &mark_and_push_in_blobs);
1998 
1999     // Do the real work
2000     cm->follow_marking_stacks();
2001   }
2002 };
2003 
2004 static void mark_from_roots_work(ParallelRootType::Value root_type, uint worker_id) {
2005   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2006 
2007   ParCompactionManager* cm =
2008     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2009   PCMarkAndPushClosure mark_and_push_closure(cm);
2010 
2011   switch (root_type) {
2012     case ParallelRootType::universe:
2013       Universe::oops_do(&mark_and_push_closure);
2014       break;
2015 
2016     case ParallelRootType::jni_handles:
2017       JNIHandles::oops_do(&mark_and_push_closure);
2018       break;
2019 
2020     case ParallelRootType::object_synchronizer:
2021       ObjectSynchronizer::oops_do(&mark_and_push_closure);
2022       break;
2023 
2024     case ParallelRootType::management:
2025       Management::oops_do(&mark_and_push_closure);
2026       break;
2027 
2028     case ParallelRootType::jvmti:
2029       JvmtiExport::oops_do(&mark_and_push_closure);
2030       break;
2031 
2032     case ParallelRootType::system_dictionary:
2033       SystemDictionary::oops_do(&mark_and_push_closure);
2034       break;
2035 
2036     case ParallelRootType::class_loader_data:
2037       {
2038         CLDToOopClosure cld_closure(&mark_and_push_closure, ClassLoaderData::_claim_strong);
2039         ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
2040       }
2041       break;
2042 
2043     case ParallelRootType::code_cache:
2044       // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
2045       //ScavengableNMethods::scavengable_nmethods_do(CodeBlobToOopClosure(&mark_and_push_closure));
2046       AOTLoader::oops_do(&mark_and_push_closure);
2047       break;
2048 
2049     case ParallelRootType::sentinel:
2050     DEBUG_ONLY(default:) // DEBUG_ONLY hack will create compile error on release builds (-Wswitch) and runtime check on debug builds
2051       fatal("Bad enumeration value: %u", root_type);
2052       break;
2053   }
2054 
2055   // Do the real work
2056   cm->follow_marking_stacks();
2057 }
2058 
2059 static void steal_marking_work(TaskTerminator& terminator, uint worker_id) {
2060   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2061 
2062   ParCompactionManager* cm =
2063     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2064 
2065   oop obj = NULL;
2066   ObjArrayTask task;
2067   do {
2068     while (ParCompactionManager::steal_objarray(worker_id,  task)) {
2069       cm->follow_array((objArrayOop)task.obj(), task.index());
2070       cm->follow_marking_stacks();
2071     }
2072     while (ParCompactionManager::steal(worker_id, obj)) {
2073       cm->follow_contents(obj);
2074       cm->follow_marking_stacks();
2075     }
2076   } while (!terminator.offer_termination());
2077 }
2078 
2079 class MarkFromRootsTask : public AbstractGangTask {
2080   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2081   StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do
2082   SequentialSubTasksDone _subtasks;
2083   TaskTerminator _terminator;
2084   uint _active_workers;
2085 
2086 public:
2087   MarkFromRootsTask(uint active_workers) :
2088       AbstractGangTask("MarkFromRootsTask"),
2089       _strong_roots_scope(active_workers),
2090       _subtasks(),
2091       _terminator(active_workers, ParCompactionManager::oop_task_queues()),
2092       _active_workers(active_workers) {
2093     _subtasks.set_n_threads(active_workers);
2094     _subtasks.set_n_tasks(ParallelRootType::sentinel);
2095   }
2096 
2097   virtual void work(uint worker_id) {
2098     for (uint task = 0; _subtasks.try_claim_task(task); /*empty*/ ) {
2099       mark_from_roots_work(static_cast<ParallelRootType::Value>(task), worker_id);
2100     }
2101     _subtasks.all_tasks_completed();
2102 
2103     PCAddThreadRootsMarkingTaskClosure closure(worker_id);
2104     Threads::possibly_parallel_threads_do(true /*parallel */, &closure);
2105 
2106     if (_active_workers > 1) {
2107       steal_marking_work(_terminator, worker_id);
2108     }
2109   }
2110 };
2111 
2112 class PCRefProcTask : public AbstractGangTask {
2113   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2114   ProcessTask& _task;
2115   uint _ergo_workers;
2116   TaskTerminator _terminator;
2117 
2118 public:
2119   PCRefProcTask(ProcessTask& task, uint ergo_workers) :
2120       AbstractGangTask("PCRefProcTask"),
2121       _task(task),
2122       _ergo_workers(ergo_workers),
2123       _terminator(_ergo_workers, ParCompactionManager::oop_task_queues()) {
2124   }
2125 
2126   virtual void work(uint worker_id) {
2127     ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2128     assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2129 
2130     ParCompactionManager* cm =
2131       ParCompactionManager::gc_thread_compaction_manager(worker_id);
2132     PCMarkAndPushClosure mark_and_push_closure(cm);
2133     ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2134     _task.work(worker_id, *PSParallelCompact::is_alive_closure(),
2135                mark_and_push_closure, follow_stack_closure);
2136 
2137     steal_marking_work(_terminator, worker_id);
2138   }
2139 };
2140 
2141 class RefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2142   void execute(ProcessTask& process_task, uint ergo_workers) {
2143     assert(ParallelScavengeHeap::heap()->workers().active_workers() == ergo_workers,
2144            "Ergonomically chosen workers (%u) must be equal to active workers (%u)",
2145            ergo_workers, ParallelScavengeHeap::heap()->workers().active_workers());
2146 
2147     PCRefProcTask task(process_task, ergo_workers);
2148     ParallelScavengeHeap::heap()->workers().run_task(&task);
2149   }
2150 };
2151 
2152 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2153                                       bool maximum_heap_compaction,
2154                                       ParallelOldTracer *gc_tracer) {
2155   // Recursively traverse all live objects and mark them
2156   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2157 
2158   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2159   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2160 
2161   PCMarkAndPushClosure mark_and_push_closure(cm);
2162   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2163 
2164   // Need new claim bits before marking starts.
2165   ClassLoaderDataGraph::clear_claimed_marks();
2166 
2167   {
2168     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2169 
2170     MarkFromRootsTask task(active_gc_threads);
2171     ParallelScavengeHeap::heap()->workers().run_task(&task);
2172   }
2173 
2174   // Process reference objects found during marking
2175   {
2176     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2177 
2178     ReferenceProcessorStats stats;
2179     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
2180 
2181     if (ref_processor()->processing_is_mt()) {
2182       ref_processor()->set_active_mt_degree(active_gc_threads);
2183 
2184       RefProcTaskExecutor task_executor;
2185       stats = ref_processor()->process_discovered_references(
2186         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2187         &task_executor, &pt);
2188     } else {
2189       stats = ref_processor()->process_discovered_references(
2190         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2191         &pt);
2192     }
2193 
2194     gc_tracer->report_gc_reference_stats(stats);
2195     pt.print_all_references();
2196   }
2197 
2198   // This is the point where the entire marking should have completed.
2199   assert(cm->marking_stacks_empty(), "Marking should have completed");
2200 
2201   {
2202     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
2203     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
2204   }
2205 
2206   {
2207     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2208 
2209     // Follow system dictionary roots and unload classes.
2210     bool purged_class = SystemDictionary::do_unloading(&_gc_timer);
2211 
2212     // Unload nmethods.
2213     CodeCache::do_unloading(is_alive_closure(), purged_class);
2214 
2215     // Prune dead klasses from subklass/sibling/implementor lists.
2216     Klass::clean_weak_klass_links(purged_class);
2217 
2218     // Clean JVMCI metadata handles.
2219     JVMCI_ONLY(JVMCI::do_unloading(purged_class));
2220   }
2221 
2222   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2223 }
2224 
2225 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2226   // Adjust the pointers to reflect the new locations
2227   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2228 
2229   // Need new claim bits when tracing through and adjusting pointers.
2230   ClassLoaderDataGraph::clear_claimed_marks();
2231 
2232   PCAdjustPointerClosure oop_closure(cm);
2233 
2234   // General strong roots.
2235   Universe::oops_do(&oop_closure);
2236   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2237   Threads::oops_do(&oop_closure, NULL);
2238   ObjectSynchronizer::oops_do(&oop_closure);
2239   Management::oops_do(&oop_closure);
2240   JvmtiExport::oops_do(&oop_closure);
2241   SystemDictionary::oops_do(&oop_closure);
2242   CLDToOopClosure cld_closure(&oop_closure, ClassLoaderData::_claim_strong);
2243   ClassLoaderDataGraph::cld_do(&cld_closure);
2244 
2245   // Now adjust pointers in remaining weak roots.  (All of which should
2246   // have been cleared if they pointed to non-surviving objects.)
2247   WeakProcessor::oops_do(&oop_closure);
2248 
2249   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2250   CodeCache::blobs_do(&adjust_from_blobs);
2251   AOT_ONLY(AOTLoader::oops_do(&oop_closure);)
2252 
2253   ref_processor()->weak_oops_do(&oop_closure);
2254   // Roots were visited so references into the young gen in roots
2255   // may have been scanned.  Process them also.
2256   // Should the reference processor have a span that excludes
2257   // young gen objects?
2258   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2259 }
2260 
2261 // Helper class to print 8 region numbers per line and then print the total at the end.
2262 class FillableRegionLogger : public StackObj {
2263 private:
2264   Log(gc, compaction) log;
2265   static const int LineLength = 8;
2266   size_t _regions[LineLength];
2267   int _next_index;
2268   bool _enabled;
2269   size_t _total_regions;
2270 public:
2271   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
2272   ~FillableRegionLogger() {
2273     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2274   }
2275 
2276   void print_line() {
2277     if (!_enabled || _next_index == 0) {
2278       return;
2279     }
2280     FormatBuffer<> line("Fillable: ");
2281     for (int i = 0; i < _next_index; i++) {
2282       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2283     }
2284     log.trace("%s", line.buffer());
2285     _next_index = 0;
2286   }
2287 
2288   void handle(size_t region) {
2289     if (!_enabled) {
2290       return;
2291     }
2292     _regions[_next_index++] = region;
2293     if (_next_index == LineLength) {
2294       print_line();
2295     }
2296     _total_regions++;
2297   }
2298 };
2299 
2300 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads)
2301 {
2302   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2303 
2304   // Find the threads that are active
2305   uint worker_id = 0;
2306 
2307   // Find all regions that are available (can be filled immediately) and
2308   // distribute them to the thread stacks.  The iteration is done in reverse
2309   // order (high to low) so the regions will be removed in ascending order.
2310 
2311   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2312 
2313   // id + 1 is used to test termination so unsigned  can
2314   // be used with an old_space_id == 0.
2315   FillableRegionLogger region_logger;
2316   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2317     SpaceInfo* const space_info = _space_info + id;
2318     MutableSpace* const space = space_info->space();
2319     HeapWord* const new_top = space_info->new_top();
2320 
2321     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2322     const size_t end_region =
2323       sd.addr_to_region_idx(sd.region_align_up(new_top));
2324 
2325     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2326       if (sd.region(cur)->claim_unsafe()) {
2327         ParCompactionManager* cm = ParCompactionManager::manager_array(worker_id);
2328         bool result = sd.region(cur)->mark_normal();
2329         assert(result, "Must succeed at this point.");
2330         cm->region_stack()->push(cur);
2331         region_logger.handle(cur);
2332         // Assign regions to tasks in round-robin fashion.
2333         if (++worker_id == parallel_gc_threads) {
2334           worker_id = 0;
2335         }
2336       }
2337     }
2338     region_logger.print_line();
2339   }
2340 }
2341 
2342 class TaskQueue : StackObj {
2343   volatile uint _counter;
2344   uint _size;
2345   uint _insert_index;
2346   PSParallelCompact::UpdateDensePrefixTask* _backing_array;
2347 public:
2348   explicit TaskQueue(uint size) : _counter(0), _size(size), _insert_index(0), _backing_array(NULL) {
2349     _backing_array = NEW_C_HEAP_ARRAY(PSParallelCompact::UpdateDensePrefixTask, _size, mtGC);
2350   }
2351   ~TaskQueue() {
2352     assert(_counter >= _insert_index, "not all queue elements were claimed");
2353     FREE_C_HEAP_ARRAY(T, _backing_array);
2354   }
2355 
2356   void push(const PSParallelCompact::UpdateDensePrefixTask& value) {
2357     assert(_insert_index < _size, "too small backing array");
2358     _backing_array[_insert_index++] = value;
2359   }
2360 
2361   bool try_claim(PSParallelCompact::UpdateDensePrefixTask& reference) {
2362     uint claimed = Atomic::fetch_and_add(&_counter, 1u);
2363     if (claimed < _insert_index) {
2364       reference = _backing_array[claimed];
2365       return true;
2366     } else {
2367       return false;
2368     }
2369   }
2370 };
2371 
2372 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2373 
2374 void PSParallelCompact::enqueue_dense_prefix_tasks(TaskQueue& task_queue,
2375                                                    uint parallel_gc_threads) {
2376   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2377 
2378   ParallelCompactData& sd = PSParallelCompact::summary_data();
2379 
2380   // Iterate over all the spaces adding tasks for updating
2381   // regions in the dense prefix.  Assume that 1 gc thread
2382   // will work on opening the gaps and the remaining gc threads
2383   // will work on the dense prefix.
2384   unsigned int space_id;
2385   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2386     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2387     const MutableSpace* const space = _space_info[space_id].space();
2388 
2389     if (dense_prefix_end == space->bottom()) {
2390       // There is no dense prefix for this space.
2391       continue;
2392     }
2393 
2394     // The dense prefix is before this region.
2395     size_t region_index_end_dense_prefix =
2396         sd.addr_to_region_idx(dense_prefix_end);
2397     RegionData* const dense_prefix_cp =
2398       sd.region(region_index_end_dense_prefix);
2399     assert(dense_prefix_end == space->end() ||
2400            dense_prefix_cp->available() ||
2401            dense_prefix_cp->claimed(),
2402            "The region after the dense prefix should always be ready to fill");
2403 
2404     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2405 
2406     // Is there dense prefix work?
2407     size_t total_dense_prefix_regions =
2408       region_index_end_dense_prefix - region_index_start;
2409     // How many regions of the dense prefix should be given to
2410     // each thread?
2411     if (total_dense_prefix_regions > 0) {
2412       uint tasks_for_dense_prefix = 1;
2413       if (total_dense_prefix_regions <=
2414           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2415         // Don't over partition.  This assumes that
2416         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2417         // so there are not many regions to process.
2418         tasks_for_dense_prefix = parallel_gc_threads;
2419       } else {
2420         // Over partition
2421         tasks_for_dense_prefix = parallel_gc_threads *
2422           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2423       }
2424       size_t regions_per_thread = total_dense_prefix_regions /
2425         tasks_for_dense_prefix;
2426       // Give each thread at least 1 region.
2427       if (regions_per_thread == 0) {
2428         regions_per_thread = 1;
2429       }
2430 
2431       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2432         if (region_index_start >= region_index_end_dense_prefix) {
2433           break;
2434         }
2435         // region_index_end is not processed
2436         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2437                                        region_index_end_dense_prefix);
2438         task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2439                                               region_index_start,
2440                                               region_index_end));
2441         region_index_start = region_index_end;
2442       }
2443     }
2444     // This gets any part of the dense prefix that did not
2445     // fit evenly.
2446     if (region_index_start < region_index_end_dense_prefix) {
2447       task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2448                                             region_index_start,
2449                                             region_index_end_dense_prefix));
2450     }
2451   }
2452 }
2453 
2454 #ifdef ASSERT
2455 // Write a histogram of the number of times the block table was filled for a
2456 // region.
2457 void PSParallelCompact::write_block_fill_histogram()
2458 {
2459   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2460     return;
2461   }
2462 
2463   Log(gc, compaction) log;
2464   ResourceMark rm;
2465   LogStream ls(log.trace());
2466   outputStream* out = &ls;
2467 
2468   typedef ParallelCompactData::RegionData rd_t;
2469   ParallelCompactData& sd = summary_data();
2470 
2471   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2472     MutableSpace* const spc = _space_info[id].space();
2473     if (spc->bottom() != spc->top()) {
2474       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2475       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2476       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2477 
2478       size_t histo[5] = { 0, 0, 0, 0, 0 };
2479       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2480       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2481 
2482       for (const rd_t* cur = beg; cur < end; ++cur) {
2483         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2484       }
2485       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2486       for (size_t i = 0; i < histo_len; ++i) {
2487         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2488                    histo[i], 100.0 * histo[i] / region_cnt);
2489       }
2490       out->cr();
2491     }
2492   }
2493 }
2494 #endif // #ifdef ASSERT
2495 
2496 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) {
2497   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2498 
2499   ParCompactionManager* cm =
2500     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2501 
2502   // Drain the stacks that have been preloaded with regions
2503   // that are ready to fill.
2504 
2505   cm->drain_region_stacks();
2506 
2507   guarantee(cm->region_stack()->is_empty(), "Not empty");
2508 
2509   size_t region_index = 0;
2510 
2511   while (true) {
2512     if (ParCompactionManager::steal(worker_id, region_index)) {
2513       PSParallelCompact::fill_and_update_region(cm, region_index);
2514       cm->drain_region_stacks();
2515     } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) {
2516       // Fill and update an unavailable region with the help of a shadow region
2517       PSParallelCompact::fill_and_update_shadow_region(cm, region_index);
2518       cm->drain_region_stacks();
2519     } else {
2520       if (terminator->offer_termination()) {
2521         break;
2522       }
2523       // Go around again.
2524     }
2525   }
2526   return;
2527 }
2528 
2529 class UpdateDensePrefixAndCompactionTask: public AbstractGangTask {
2530   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2531   TaskQueue& _tq;
2532   TaskTerminator _terminator;
2533   uint _active_workers;
2534 
2535 public:
2536   UpdateDensePrefixAndCompactionTask(TaskQueue& tq, uint active_workers) :
2537       AbstractGangTask("UpdateDensePrefixAndCompactionTask"),
2538       _tq(tq),
2539       _terminator(active_workers, ParCompactionManager::region_task_queues()),
2540       _active_workers(active_workers) {
2541   }
2542   virtual void work(uint worker_id) {
2543     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2544 
2545     for (PSParallelCompact::UpdateDensePrefixTask task; _tq.try_claim(task); /* empty */) {
2546       PSParallelCompact::update_and_deadwood_in_dense_prefix(cm,
2547                                                              task._space_id,
2548                                                              task._region_index_start,
2549                                                              task._region_index_end);
2550     }
2551 
2552     // Once a thread has drained it's stack, it should try to steal regions from
2553     // other threads.
2554     compaction_with_stealing_work(&_terminator, worker_id);
2555   }
2556 };
2557 
2558 void PSParallelCompact::compact() {
2559   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2560 
2561   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2562   PSOldGen* old_gen = heap->old_gen();
2563   old_gen->start_array()->reset();
2564   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2565 
2566   // for [0..last_space_id)
2567   //     for [0..active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)
2568   //         push
2569   //     push
2570   //
2571   // max push count is thus: last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1)
2572   TaskQueue task_queue(last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1));
2573   initialize_shadow_regions(active_gc_threads);
2574   prepare_region_draining_tasks(active_gc_threads);
2575   enqueue_dense_prefix_tasks(task_queue, active_gc_threads);
2576 
2577   {
2578     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2579 
2580     UpdateDensePrefixAndCompactionTask task(task_queue, active_gc_threads);
2581     ParallelScavengeHeap::heap()->workers().run_task(&task);
2582 
2583 #ifdef  ASSERT
2584     // Verify that all regions have been processed before the deferred updates.
2585     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2586       verify_complete(SpaceId(id));
2587     }
2588 #endif
2589   }
2590 
2591   {
2592     // Update the deferred objects, if any.  Any compaction manager can be used.
2593     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2594     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2595     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2596       update_deferred_objects(cm, SpaceId(id));
2597     }
2598   }
2599 
2600   DEBUG_ONLY(write_block_fill_histogram());
2601 }
2602 
2603 #ifdef  ASSERT
2604 void PSParallelCompact::verify_complete(SpaceId space_id) {
2605   // All Regions between space bottom() to new_top() should be marked as filled
2606   // and all Regions between new_top() and top() should be available (i.e.,
2607   // should have been emptied).
2608   ParallelCompactData& sd = summary_data();
2609   SpaceInfo si = _space_info[space_id];
2610   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2611   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2612   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2613   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2614   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2615 
2616   bool issued_a_warning = false;
2617 
2618   size_t cur_region;
2619   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2620     const RegionData* const c = sd.region(cur_region);
2621     if (!c->completed()) {
2622       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2623                       cur_region, c->destination_count());
2624       issued_a_warning = true;
2625     }
2626   }
2627 
2628   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2629     const RegionData* const c = sd.region(cur_region);
2630     if (!c->available()) {
2631       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2632                       cur_region, c->destination_count());
2633       issued_a_warning = true;
2634     }
2635   }
2636 
2637   if (issued_a_warning) {
2638     print_region_ranges();
2639   }
2640 }
2641 #endif  // #ifdef ASSERT
2642 
2643 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2644   _start_array->allocate_block(addr);
2645   compaction_manager()->update_contents(oop(addr));
2646 }
2647 
2648 // Update interior oops in the ranges of regions [beg_region, end_region).
2649 void
2650 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2651                                                        SpaceId space_id,
2652                                                        size_t beg_region,
2653                                                        size_t end_region) {
2654   ParallelCompactData& sd = summary_data();
2655   ParMarkBitMap* const mbm = mark_bitmap();
2656 
2657   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2658   HeapWord* const end_addr = sd.region_to_addr(end_region);
2659   assert(beg_region <= end_region, "bad region range");
2660   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2661 
2662 #ifdef  ASSERT
2663   // Claim the regions to avoid triggering an assert when they are marked as
2664   // filled.
2665   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2666     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2667   }
2668 #endif  // #ifdef ASSERT
2669 
2670   if (beg_addr != space(space_id)->bottom()) {
2671     // Find the first live object or block of dead space that *starts* in this
2672     // range of regions.  If a partial object crosses onto the region, skip it;
2673     // it will be marked for 'deferred update' when the object head is
2674     // processed.  If dead space crosses onto the region, it is also skipped; it
2675     // will be filled when the prior region is processed.  If neither of those
2676     // apply, the first word in the region is the start of a live object or dead
2677     // space.
2678     assert(beg_addr > space(space_id)->bottom(), "sanity");
2679     const RegionData* const cp = sd.region(beg_region);
2680     if (cp->partial_obj_size() != 0) {
2681       beg_addr = sd.partial_obj_end(beg_region);
2682     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2683       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2684     }
2685   }
2686 
2687   if (beg_addr < end_addr) {
2688     // A live object or block of dead space starts in this range of Regions.
2689      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2690 
2691     // Create closures and iterate.
2692     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2693     FillClosure fill_closure(cm, space_id);
2694     ParMarkBitMap::IterationStatus status;
2695     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2696                           dense_prefix_end);
2697     if (status == ParMarkBitMap::incomplete) {
2698       update_closure.do_addr(update_closure.source());
2699     }
2700   }
2701 
2702   // Mark the regions as filled.
2703   RegionData* const beg_cp = sd.region(beg_region);
2704   RegionData* const end_cp = sd.region(end_region);
2705   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2706     cp->set_completed();
2707   }
2708 }
2709 
2710 // Return the SpaceId for the space containing addr.  If addr is not in the
2711 // heap, last_space_id is returned.  In debug mode it expects the address to be
2712 // in the heap and asserts such.
2713 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2714   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2715 
2716   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2717     if (_space_info[id].space()->contains(addr)) {
2718       return SpaceId(id);
2719     }
2720   }
2721 
2722   assert(false, "no space contains the addr");
2723   return last_space_id;
2724 }
2725 
2726 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2727                                                 SpaceId id) {
2728   assert(id < last_space_id, "bad space id");
2729 
2730   ParallelCompactData& sd = summary_data();
2731   const SpaceInfo* const space_info = _space_info + id;
2732   ObjectStartArray* const start_array = space_info->start_array();
2733 
2734   const MutableSpace* const space = space_info->space();
2735   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2736   HeapWord* const beg_addr = space_info->dense_prefix();
2737   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2738 
2739   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2740   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2741   const RegionData* cur_region;
2742   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2743     HeapWord* const addr = cur_region->deferred_obj_addr();
2744     if (addr != NULL) {
2745       if (start_array != NULL) {
2746         start_array->allocate_block(addr);
2747       }
2748       cm->update_contents(oop(addr));
2749       assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2750     }
2751   }
2752 }
2753 
2754 // Skip over count live words starting from beg, and return the address of the
2755 // next live word.  Unless marked, the word corresponding to beg is assumed to
2756 // be dead.  Callers must either ensure beg does not correspond to the middle of
2757 // an object, or account for those live words in some other way.  Callers must
2758 // also ensure that there are enough live words in the range [beg, end) to skip.
2759 HeapWord*
2760 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2761 {
2762   assert(count > 0, "sanity");
2763 
2764   ParMarkBitMap* m = mark_bitmap();
2765   idx_t bits_to_skip = m->words_to_bits(count);
2766   idx_t cur_beg = m->addr_to_bit(beg);
2767   const idx_t search_end = m->align_range_end(m->addr_to_bit(end));
2768 
2769   do {
2770     cur_beg = m->find_obj_beg(cur_beg, search_end);
2771     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2772     const size_t obj_bits = cur_end - cur_beg + 1;
2773     if (obj_bits > bits_to_skip) {
2774       return m->bit_to_addr(cur_beg + bits_to_skip);
2775     }
2776     bits_to_skip -= obj_bits;
2777     cur_beg = cur_end + 1;
2778   } while (bits_to_skip > 0);
2779 
2780   // Skipping the desired number of words landed just past the end of an object.
2781   // Find the start of the next object.
2782   cur_beg = m->find_obj_beg(cur_beg, search_end);
2783   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2784   return m->bit_to_addr(cur_beg);
2785 }
2786 
2787 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2788                                             SpaceId src_space_id,
2789                                             size_t src_region_idx)
2790 {
2791   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2792 
2793   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2794   if (split_info.dest_region_addr() == dest_addr) {
2795     // The partial object ending at the split point contains the first word to
2796     // be copied to dest_addr.
2797     return split_info.first_src_addr();
2798   }
2799 
2800   const ParallelCompactData& sd = summary_data();
2801   ParMarkBitMap* const bitmap = mark_bitmap();
2802   const size_t RegionSize = ParallelCompactData::RegionSize;
2803 
2804   assert(sd.is_region_aligned(dest_addr), "not aligned");
2805   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2806   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2807   HeapWord* const src_region_destination = src_region_ptr->destination();
2808 
2809   assert(dest_addr >= src_region_destination, "wrong src region");
2810   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2811 
2812   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2813   HeapWord* const src_region_end = src_region_beg + RegionSize;
2814 
2815   HeapWord* addr = src_region_beg;
2816   if (dest_addr == src_region_destination) {
2817     // Return the first live word in the source region.
2818     if (partial_obj_size == 0) {
2819       addr = bitmap->find_obj_beg(addr, src_region_end);
2820       assert(addr < src_region_end, "no objects start in src region");
2821     }
2822     return addr;
2823   }
2824 
2825   // Must skip some live data.
2826   size_t words_to_skip = dest_addr - src_region_destination;
2827   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2828 
2829   if (partial_obj_size >= words_to_skip) {
2830     // All the live words to skip are part of the partial object.
2831     addr += words_to_skip;
2832     if (partial_obj_size == words_to_skip) {
2833       // Find the first live word past the partial object.
2834       addr = bitmap->find_obj_beg(addr, src_region_end);
2835       assert(addr < src_region_end, "wrong src region");
2836     }
2837     return addr;
2838   }
2839 
2840   // Skip over the partial object (if any).
2841   if (partial_obj_size != 0) {
2842     words_to_skip -= partial_obj_size;
2843     addr += partial_obj_size;
2844   }
2845 
2846   // Skip over live words due to objects that start in the region.
2847   addr = skip_live_words(addr, src_region_end, words_to_skip);
2848   assert(addr < src_region_end, "wrong src region");
2849   return addr;
2850 }
2851 
2852 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2853                                                      SpaceId src_space_id,
2854                                                      size_t beg_region,
2855                                                      HeapWord* end_addr)
2856 {
2857   ParallelCompactData& sd = summary_data();
2858 
2859 #ifdef ASSERT
2860   MutableSpace* const src_space = _space_info[src_space_id].space();
2861   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2862   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2863          "src_space_id does not match beg_addr");
2864   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2865          "src_space_id does not match end_addr");
2866 #endif // #ifdef ASSERT
2867 
2868   RegionData* const beg = sd.region(beg_region);
2869   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2870 
2871   // Regions up to new_top() are enqueued if they become available.
2872   HeapWord* const new_top = _space_info[src_space_id].new_top();
2873   RegionData* const enqueue_end =
2874     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2875 
2876   for (RegionData* cur = beg; cur < end; ++cur) {
2877     assert(cur->data_size() > 0, "region must have live data");
2878     cur->decrement_destination_count();
2879     if (cur < enqueue_end && cur->available() && cur->claim()) {
2880       if (cur->mark_normal()) {
2881         cm->push_region(sd.region(cur));
2882       } else if (cur->mark_copied()) {
2883         // Try to copy the content of the shadow region back to its corresponding
2884         // heap region if the shadow region is filled. Otherwise, the GC thread
2885         // fills the shadow region will copy the data back (see
2886         // MoveAndUpdateShadowClosure::complete_region).
2887         copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur));
2888         ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region());
2889         cur->set_completed();
2890       }
2891     }
2892   }
2893 }
2894 
2895 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2896                                           SpaceId& src_space_id,
2897                                           HeapWord*& src_space_top,
2898                                           HeapWord* end_addr)
2899 {
2900   typedef ParallelCompactData::RegionData RegionData;
2901 
2902   ParallelCompactData& sd = PSParallelCompact::summary_data();
2903   const size_t region_size = ParallelCompactData::RegionSize;
2904 
2905   size_t src_region_idx = 0;
2906 
2907   // Skip empty regions (if any) up to the top of the space.
2908   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2909   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2910   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2911   const RegionData* const top_region_ptr =
2912     sd.addr_to_region_ptr(top_aligned_up);
2913   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2914     ++src_region_ptr;
2915   }
2916 
2917   if (src_region_ptr < top_region_ptr) {
2918     // The next source region is in the current space.  Update src_region_idx
2919     // and the source address to match src_region_ptr.
2920     src_region_idx = sd.region(src_region_ptr);
2921     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2922     if (src_region_addr > closure.source()) {
2923       closure.set_source(src_region_addr);
2924     }
2925     return src_region_idx;
2926   }
2927 
2928   // Switch to a new source space and find the first non-empty region.
2929   unsigned int space_id = src_space_id + 1;
2930   assert(space_id < last_space_id, "not enough spaces");
2931 
2932   HeapWord* const destination = closure.destination();
2933 
2934   do {
2935     MutableSpace* space = _space_info[space_id].space();
2936     HeapWord* const bottom = space->bottom();
2937     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2938 
2939     // Iterate over the spaces that do not compact into themselves.
2940     if (bottom_cp->destination() != bottom) {
2941       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2942       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2943 
2944       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2945         if (src_cp->live_obj_size() > 0) {
2946           // Found it.
2947           assert(src_cp->destination() == destination,
2948                  "first live obj in the space must match the destination");
2949           assert(src_cp->partial_obj_size() == 0,
2950                  "a space cannot begin with a partial obj");
2951 
2952           src_space_id = SpaceId(space_id);
2953           src_space_top = space->top();
2954           const size_t src_region_idx = sd.region(src_cp);
2955           closure.set_source(sd.region_to_addr(src_region_idx));
2956           return src_region_idx;
2957         } else {
2958           assert(src_cp->data_size() == 0, "sanity");
2959         }
2960       }
2961     }
2962   } while (++space_id < last_space_id);
2963 
2964   assert(false, "no source region was found");
2965   return 0;
2966 }
2967 
2968 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx)
2969 {
2970   typedef ParMarkBitMap::IterationStatus IterationStatus;
2971   ParMarkBitMap* const bitmap = mark_bitmap();
2972   ParallelCompactData& sd = summary_data();
2973   RegionData* const region_ptr = sd.region(region_idx);
2974 
2975   // Get the source region and related info.
2976   size_t src_region_idx = region_ptr->source_region();
2977   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2978   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2979   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2980 
2981   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2982 
2983   // Adjust src_region_idx to prepare for decrementing destination counts (the
2984   // destination count is not decremented when a region is copied to itself).
2985   if (src_region_idx == region_idx) {
2986     src_region_idx += 1;
2987   }
2988 
2989   if (bitmap->is_unmarked(closure.source())) {
2990     // The first source word is in the middle of an object; copy the remainder
2991     // of the object or as much as will fit.  The fact that pointer updates were
2992     // deferred will be noted when the object header is processed.
2993     HeapWord* const old_src_addr = closure.source();
2994     closure.copy_partial_obj();
2995     if (closure.is_full()) {
2996       decrement_destination_counts(cm, src_space_id, src_region_idx,
2997                                    closure.source());
2998       region_ptr->set_deferred_obj_addr(NULL);
2999       closure.complete_region(cm, dest_addr, region_ptr);
3000       return;
3001     }
3002 
3003     HeapWord* const end_addr = sd.region_align_down(closure.source());
3004     if (sd.region_align_down(old_src_addr) != end_addr) {
3005       // The partial object was copied from more than one source region.
3006       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3007 
3008       // Move to the next source region, possibly switching spaces as well.  All
3009       // args except end_addr may be modified.
3010       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3011                                        end_addr);
3012     }
3013   }
3014 
3015   do {
3016     HeapWord* const cur_addr = closure.source();
3017     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3018                                     src_space_top);
3019     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3020 
3021     if (status == ParMarkBitMap::incomplete) {
3022       // The last obj that starts in the source region does not end in the
3023       // region.
3024       assert(closure.source() < end_addr, "sanity");
3025       HeapWord* const obj_beg = closure.source();
3026       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3027                                        src_space_top);
3028       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3029       if (obj_end < range_end) {
3030         // The end was found; the entire object will fit.
3031         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3032         assert(status != ParMarkBitMap::would_overflow, "sanity");
3033       } else {
3034         // The end was not found; the object will not fit.
3035         assert(range_end < src_space_top, "obj cannot cross space boundary");
3036         status = ParMarkBitMap::would_overflow;
3037       }
3038     }
3039 
3040     if (status == ParMarkBitMap::would_overflow) {
3041       // The last object did not fit.  Note that interior oop updates were
3042       // deferred, then copy enough of the object to fill the region.
3043       region_ptr->set_deferred_obj_addr(closure.destination());
3044       status = closure.copy_until_full(); // copies from closure.source()
3045 
3046       decrement_destination_counts(cm, src_space_id, src_region_idx,
3047                                    closure.source());
3048       closure.complete_region(cm, dest_addr, region_ptr);
3049       return;
3050     }
3051 
3052     if (status == ParMarkBitMap::full) {
3053       decrement_destination_counts(cm, src_space_id, src_region_idx,
3054                                    closure.source());
3055       region_ptr->set_deferred_obj_addr(NULL);
3056       closure.complete_region(cm, dest_addr, region_ptr);
3057       return;
3058     }
3059 
3060     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3061 
3062     // Move to the next source region, possibly switching spaces as well.  All
3063     // args except end_addr may be modified.
3064     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3065                                      end_addr);
3066   } while (true);
3067 }
3068 
3069 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx)
3070 {
3071   MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
3072   fill_region(cm, cl, region_idx);
3073 }
3074 
3075 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx)
3076 {
3077   // Get a shadow region first
3078   ParallelCompactData& sd = summary_data();
3079   RegionData* const region_ptr = sd.region(region_idx);
3080   size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr);
3081   // The InvalidShadow return value indicates the corresponding heap region is available,
3082   // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use
3083   // MoveAndUpdateShadowClosure to fill the acquired shadow region.
3084   if (shadow_region == ParCompactionManager::InvalidShadow) {
3085     MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
3086     region_ptr->shadow_to_normal();
3087     return fill_region(cm, cl, region_idx);
3088   } else {
3089     MoveAndUpdateShadowClosure cl(mark_bitmap(), cm, region_idx, shadow_region);
3090     return fill_region(cm, cl, region_idx);
3091   }
3092 }
3093 
3094 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr)
3095 {
3096   Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize);
3097 }
3098 
3099 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t &region_idx)
3100 {
3101   size_t next = cm->next_shadow_region();
3102   ParallelCompactData& sd = summary_data();
3103   size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top());
3104   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
3105 
3106   while (next < old_new_top) {
3107     if (sd.region(next)->mark_shadow()) {
3108       region_idx = next;
3109       return true;
3110     }
3111     next = cm->move_next_shadow_region_by(active_gc_threads);
3112   }
3113 
3114   return false;
3115 }
3116 
3117 // The shadow region is an optimization to address region dependencies in full GC. The basic
3118 // idea is making more regions available by temporally storing their live objects in empty
3119 // shadow regions to resolve dependencies between them and the destination regions. Therefore,
3120 // GC threads need not wait destination regions to be available before processing sources.
3121 //
3122 // A typical workflow would be:
3123 // After draining its own stack and failing to steal from others, a GC worker would pick an
3124 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills
3125 // the shadow region by copying live objects from source regions of the unavailable one. Once
3126 // the unavailable region becomes available, the data in the shadow region will be copied back.
3127 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces.
3128 //
3129 // For more details, please refer to ยง4.2 of the VEE'19 paper:
3130 // Haoyu Li, Mingyu Wu, Binyu Zang, and Haibo Chen. 2019. ScissorGC: scalable and efficient
3131 // compaction for Java full garbage collection. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
3132 // International Conference on Virtual Execution Environments (VEE 2019). ACM, New York, NY, USA,
3133 // 108-121. DOI: https://doi.org/10.1145/3313808.3313820
3134 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads)
3135 {
3136   const ParallelCompactData& sd = PSParallelCompact::summary_data();
3137 
3138   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
3139     SpaceInfo* const space_info = _space_info + id;
3140     MutableSpace* const space = space_info->space();
3141 
3142     const size_t beg_region =
3143       sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top())));
3144     const size_t end_region =
3145       sd.addr_to_region_idx(sd.region_align_down(space->end()));
3146 
3147     for (size_t cur = beg_region; cur < end_region; ++cur) {
3148       ParCompactionManager::push_shadow_region(cur);
3149     }
3150   }
3151 
3152   size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix());
3153   for (uint i = 0; i < parallel_gc_threads; i++) {
3154     ParCompactionManager *cm = ParCompactionManager::manager_array(i);
3155     cm->set_next_shadow_region(beg_region + i);
3156   }
3157 }
3158 
3159 void PSParallelCompact::fill_blocks(size_t region_idx)
3160 {
3161   // Fill in the block table elements for the specified region.  Each block
3162   // table element holds the number of live words in the region that are to the
3163   // left of the first object that starts in the block.  Thus only blocks in
3164   // which an object starts need to be filled.
3165   //
3166   // The algorithm scans the section of the bitmap that corresponds to the
3167   // region, keeping a running total of the live words.  When an object start is
3168   // found, if it's the first to start in the block that contains it, the
3169   // current total is written to the block table element.
3170   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3171   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3172   const size_t RegionSize = ParallelCompactData::RegionSize;
3173 
3174   ParallelCompactData& sd = summary_data();
3175   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3176   if (partial_obj_size >= RegionSize) {
3177     return; // No objects start in this region.
3178   }
3179 
3180   // Ensure the first loop iteration decides that the block has changed.
3181   size_t cur_block = sd.block_count();
3182 
3183   const ParMarkBitMap* const bitmap = mark_bitmap();
3184 
3185   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3186   assert((size_t)1 << Log2BitsPerBlock ==
3187          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3188 
3189   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3190   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3191   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3192   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3193   while (beg_bit < range_end) {
3194     const size_t new_block = beg_bit >> Log2BitsPerBlock;
3195     if (new_block != cur_block) {
3196       cur_block = new_block;
3197       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3198     }
3199 
3200     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3201     if (end_bit < range_end - 1) {
3202       live_bits += end_bit - beg_bit + 1;
3203       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3204     } else {
3205       return;
3206     }
3207   }
3208 }
3209 
3210 jlong PSParallelCompact::millis_since_last_gc() {
3211   // We need a monotonically non-decreasing time in ms but
3212   // os::javaTimeMillis() does not guarantee monotonicity.
3213   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3214   jlong ret_val = now - _time_of_last_gc;
3215   // XXX See note in genCollectedHeap::millis_since_last_gc().
3216   if (ret_val < 0) {
3217     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3218     return 0;
3219   }
3220   return ret_val;
3221 }
3222 
3223 void PSParallelCompact::reset_millis_since_last_gc() {
3224   // We need a monotonically non-decreasing time in ms but
3225   // os::javaTimeMillis() does not guarantee monotonicity.
3226   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3227 }
3228 
3229 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3230 {
3231   if (source() != copy_destination()) {
3232     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3233     Copy::aligned_conjoint_words(source(), copy_destination(), words_remaining());
3234   }
3235   update_state(words_remaining());
3236   assert(is_full(), "sanity");
3237   return ParMarkBitMap::full;
3238 }
3239 
3240 void MoveAndUpdateClosure::copy_partial_obj()
3241 {
3242   size_t words = words_remaining();
3243 
3244   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3245   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3246   if (end_addr < range_end) {
3247     words = bitmap()->obj_size(source(), end_addr);
3248   }
3249 
3250   // This test is necessary; if omitted, the pointer updates to a partial object
3251   // that crosses the dense prefix boundary could be overwritten.
3252   if (source() != copy_destination()) {
3253     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3254     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3255   }
3256   update_state(words);
3257 }
3258 
3259 void MoveAndUpdateClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3260                                            PSParallelCompact::RegionData *region_ptr) {
3261   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished");
3262   region_ptr->set_completed();
3263 }
3264 
3265 ParMarkBitMapClosure::IterationStatus
3266 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3267   assert(destination() != NULL, "sanity");
3268   assert(bitmap()->obj_size(addr) == words, "bad size");
3269 
3270   _source = addr;
3271   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3272          destination(), "wrong destination");
3273 
3274   if (words > words_remaining()) {
3275     return ParMarkBitMap::would_overflow;
3276   }
3277 
3278   // The start_array must be updated even if the object is not moving.
3279   if (_start_array != NULL) {
3280     _start_array->allocate_block(destination());
3281   }
3282 
3283   if (copy_destination() != source()) {
3284     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3285     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3286   }
3287 
3288   oop moved_oop = (oop) copy_destination();
3289   compaction_manager()->update_contents(moved_oop);
3290   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3291 
3292   update_state(words);
3293   assert(copy_destination() == cast_from_oop<HeapWord*>(moved_oop) + moved_oop->size(), "sanity");
3294   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3295 }
3296 
3297 void MoveAndUpdateShadowClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3298                                                  PSParallelCompact::RegionData *region_ptr) {
3299   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow");
3300   // Record the shadow region index
3301   region_ptr->set_shadow_region(_shadow);
3302   // Mark the shadow region as filled to indicate the data is ready to be
3303   // copied back
3304   region_ptr->mark_filled();
3305   // Try to copy the content of the shadow region back to its corresponding
3306   // heap region if available; the GC thread that decreases the destination
3307   // count to zero will do the copying otherwise (see
3308   // PSParallelCompact::decrement_destination_counts).
3309   if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) {
3310     region_ptr->set_completed();
3311     PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr);
3312     ParCompactionManager::push_shadow_region_mt_safe(_shadow);
3313   }
3314 }
3315 
3316 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3317                                      ParCompactionManager* cm,
3318                                      PSParallelCompact::SpaceId space_id) :
3319   ParMarkBitMapClosure(mbm, cm),
3320   _space_id(space_id),
3321   _start_array(PSParallelCompact::start_array(space_id))
3322 {
3323 }
3324 
3325 // Updates the references in the object to their new values.
3326 ParMarkBitMapClosure::IterationStatus
3327 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3328   do_addr(addr);
3329   return ParMarkBitMap::incomplete;
3330 }
3331 
3332 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3333   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3334   _start_array(PSParallelCompact::start_array(space_id))
3335 {
3336   assert(space_id == PSParallelCompact::old_space_id,
3337          "cannot use FillClosure in the young gen");
3338 }
3339 
3340 ParMarkBitMapClosure::IterationStatus
3341 FillClosure::do_addr(HeapWord* addr, size_t size) {
3342   CollectedHeap::fill_with_objects(addr, size);
3343   HeapWord* const end = addr + size;
3344   do {
3345     _start_array->allocate_block(addr);
3346     addr += oop(addr)->size();
3347   } while (addr < end);
3348   return ParMarkBitMap::incomplete;
3349 }