/* * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved. * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shared/taskTerminator.hpp" #include "gc/shared/taskqueue.hpp" #include "logging/log.hpp" TaskTerminator::TaskTerminator(uint n_threads, TaskQueueSetSuper* queue_set) : _n_threads(n_threads), _queue_set(queue_set), _offered_termination(0), _spin_master(NULL) { _blocker = new Monitor(Mutex::leaf, "TaskTerminator", false, Monitor::_safepoint_check_never); } TaskTerminator::~TaskTerminator() { if (_offered_termination != 0) { assert(_offered_termination == _n_threads, "Must be terminated or aborted"); assert_queue_set_empty(); } assert(_spin_master == NULL, "Should have been reset"); assert(_blocker != NULL, "Can not be NULL"); delete _blocker; } #ifdef ASSERT void TaskTerminator::assert_queue_set_empty() const { _queue_set->assert_empty(); } #endif void TaskTerminator::yield() { assert(_offered_termination <= _n_threads, "Invariant"); os::naked_yield(); } void TaskTerminator::reset_for_reuse() { if (_offered_termination != 0) { assert(_offered_termination == _n_threads, "Terminator may still be in use"); _offered_termination = 0; } } void TaskTerminator::reset_for_reuse(uint n_threads) { reset_for_reuse(); _n_threads = n_threads; } bool TaskTerminator::exit_termination(size_t tasks, TerminatorTerminator* terminator) { return tasks > 0 || (terminator != NULL && terminator->should_exit_termination()); } size_t TaskTerminator::tasks_in_queue_set() const { return _queue_set->tasks(); } bool TaskTerminator::offer_termination(TerminatorTerminator* terminator) { assert(_n_threads > 0, "Initialization is incorrect"); assert(_offered_termination < _n_threads, "Invariant"); assert(_blocker != NULL, "Invariant"); // Single worker, done if (_n_threads == 1) { _offered_termination = 1; assert_queue_set_empty(); return true; } _blocker->lock_without_safepoint_check(); _offered_termination++; // All arrived, done if (_offered_termination == _n_threads) { _blocker->notify_all(); _blocker->unlock(); assert_queue_set_empty(); return true; } Thread* the_thread = Thread::current(); while (true) { if (_spin_master == NULL) { _spin_master = the_thread; _blocker->unlock(); if (do_spin_master_work(terminator)) { assert(_offered_termination == _n_threads, "termination condition"); assert_queue_set_empty(); return true; } else { _blocker->lock_without_safepoint_check(); // There is possibility that termination is reached between dropping the lock // before returning from do_spin_master_work() and acquiring lock above. if (_offered_termination == _n_threads) { _blocker->unlock(); assert_queue_set_empty(); return true; } } } else { _blocker->wait_without_safepoint_check(WorkStealingSleepMillis); if (_offered_termination == _n_threads) { _blocker->unlock(); assert_queue_set_empty(); return true; } } size_t tasks = tasks_in_queue_set(); if (exit_termination(tasks, terminator)) { assert_lock_strong(_blocker); _offered_termination--; _blocker->unlock(); return false; } } } bool TaskTerminator::do_spin_master_work(TerminatorTerminator* terminator) { uint yield_count = 0; // Number of hard spin loops done since last yield uint hard_spin_count = 0; // Number of iterations in the hard spin loop. uint hard_spin_limit = WorkStealingHardSpins; // If WorkStealingSpinToYieldRatio is 0, no hard spinning is done. // If it is greater than 0, then start with a small number // of spins and increase number with each turn at spinning until // the count of hard spins exceeds WorkStealingSpinToYieldRatio. // Then do a yield() call and start spinning afresh. if (WorkStealingSpinToYieldRatio > 0) { hard_spin_limit = WorkStealingHardSpins >> WorkStealingSpinToYieldRatio; hard_spin_limit = MAX2(hard_spin_limit, 1U); } // Remember the initial spin limit. uint hard_spin_start = hard_spin_limit; // Loop waiting for all threads to offer termination or // more work. while (true) { // Look for more work. // Periodically sleep() instead of yield() to give threads // waiting on the cores the chance to grab this code if (yield_count <= WorkStealingYieldsBeforeSleep) { // Do a yield or hardspin. For purposes of deciding whether // to sleep, count this as a yield. yield_count++; // Periodically call yield() instead spinning // After WorkStealingSpinToYieldRatio spins, do a yield() call // and reset the counts and starting limit. if (hard_spin_count > WorkStealingSpinToYieldRatio) { yield(); hard_spin_count = 0; hard_spin_limit = hard_spin_start; } else { // Hard spin this time // Increase the hard spinning period but only up to a limit. hard_spin_limit = MIN2(2*hard_spin_limit, (uint) WorkStealingHardSpins); for (uint j = 0; j < hard_spin_limit; j++) { SpinPause(); } hard_spin_count++; } } else { log_develop_trace(gc, task)("TaskTerminator::do_spin_master_work() thread " PTR_FORMAT " sleeps after %u yields", p2i(Thread::current()), yield_count); yield_count = 0; MonitorLocker locker(_blocker, Mutex::_no_safepoint_check_flag); _spin_master = NULL; locker.wait(WorkStealingSleepMillis); if (_spin_master == NULL) { _spin_master = Thread::current(); } else { return false; } } size_t tasks = tasks_in_queue_set(); bool exit = exit_termination(tasks, terminator); { MonitorLocker locker(_blocker, Mutex::_no_safepoint_check_flag); // Termination condition reached if (_offered_termination == _n_threads) { _spin_master = NULL; return true; } else if (exit) { if (tasks >= _offered_termination - 1) { locker.notify_all(); } else { for (; tasks > 1; tasks--) { locker.notify(); } } _spin_master = NULL; return false; } } } }