1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/powerOfTwo.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <endian.h>
  88 # include <errno.h>
  89 # include <dlfcn.h>
  90 # include <stdio.h>
  91 # include <unistd.h>
  92 # include <sys/resource.h>
  93 # include <pthread.h>
  94 # include <sys/stat.h>
  95 # include <sys/time.h>
  96 # include <sys/times.h>
  97 # include <sys/utsname.h>
  98 # include <sys/socket.h>
  99 # include <sys/wait.h>
 100 # include <pwd.h>
 101 # include <poll.h>
 102 # include <fcntl.h>
 103 # include <string.h>
 104 # include <syscall.h>
 105 # include <sys/sysinfo.h>
 106 # include <gnu/libc-version.h>
 107 # include <sys/ipc.h>
 108 # include <sys/shm.h>
 109 # include <link.h>
 110 # include <stdint.h>
 111 # include <inttypes.h>
 112 # include <sys/ioctl.h>
 113 # include <linux/elf-em.h>
 114 
 115 #ifndef _GNU_SOURCE
 116   #define _GNU_SOURCE
 117   #include <sched.h>
 118   #undef _GNU_SOURCE
 119 #else
 120   #include <sched.h>
 121 #endif
 122 
 123 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 124 // getrusage() is prepared to handle the associated failure.
 125 #ifndef RUSAGE_THREAD
 126   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 127 #endif
 128 
 129 #define MAX_PATH    (2 * K)
 130 
 131 #define MAX_SECS 100000000
 132 
 133 // for timer info max values which include all bits
 134 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 135 
 136 enum CoredumpFilterBit {
 137   FILE_BACKED_PVT_BIT = 1 << 2,
 138   FILE_BACKED_SHARED_BIT = 1 << 3,
 139   LARGEPAGES_BIT = 1 << 6,
 140   DAX_SHARED_BIT = 1 << 8
 141 };
 142 
 143 ////////////////////////////////////////////////////////////////////////////////
 144 // global variables
 145 julong os::Linux::_physical_memory = 0;
 146 
 147 address   os::Linux::_initial_thread_stack_bottom = NULL;
 148 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 149 
 150 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 151 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 152 pthread_t os::Linux::_main_thread;
 153 int os::Linux::_page_size = -1;
 154 bool os::Linux::_supports_fast_thread_cpu_time = false;
 155 const char * os::Linux::_glibc_version = NULL;
 156 const char * os::Linux::_libpthread_version = NULL;
 157 
 158 static jlong initial_time_count=0;
 159 
 160 static int clock_tics_per_sec = 100;
 161 
 162 // If the VM might have been created on the primordial thread, we need to resolve the
 163 // primordial thread stack bounds and check if the current thread might be the
 164 // primordial thread in places. If we know that the primordial thread is never used,
 165 // such as when the VM was created by one of the standard java launchers, we can
 166 // avoid this
 167 static bool suppress_primordial_thread_resolution = false;
 168 
 169 // For diagnostics to print a message once. see run_periodic_checks
 170 static sigset_t check_signal_done;
 171 static bool check_signals = true;
 172 
 173 // Signal number used to suspend/resume a thread
 174 
 175 // do not use any signal number less than SIGSEGV, see 4355769
 176 static int SR_signum = SIGUSR2;
 177 sigset_t SR_sigset;
 178 
 179 // utility functions
 180 
 181 static int SR_initialize();
 182 
 183 julong os::available_memory() {
 184   return Linux::available_memory();
 185 }
 186 
 187 julong os::Linux::available_memory() {
 188   // values in struct sysinfo are "unsigned long"
 189   struct sysinfo si;
 190   julong avail_mem;
 191 
 192   if (OSContainer::is_containerized()) {
 193     jlong mem_limit, mem_usage;
 194     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 196                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 197     }
 198     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 199       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 200     }
 201     if (mem_limit > 0 && mem_usage > 0 ) {
 202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 203       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 204       return avail_mem;
 205     }
 206   }
 207 
 208   sysinfo(&si);
 209   avail_mem = (julong)si.freeram * si.mem_unit;
 210   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 211   return avail_mem;
 212 }
 213 
 214 julong os::physical_memory() {
 215   jlong phys_mem = 0;
 216   if (OSContainer::is_containerized()) {
 217     jlong mem_limit;
 218     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 219       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 220       return mem_limit;
 221     }
 222     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 223                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 224   }
 225 
 226   phys_mem = Linux::physical_memory();
 227   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 228   return phys_mem;
 229 }
 230 
 231 static uint64_t initial_total_ticks = 0;
 232 static uint64_t initial_steal_ticks = 0;
 233 static bool     has_initial_tick_info = false;
 234 
 235 static void next_line(FILE *f) {
 236   int c;
 237   do {
 238     c = fgetc(f);
 239   } while (c != '\n' && c != EOF);
 240 }
 241 
 242 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 243   FILE*         fh;
 244   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 245   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 246   // irq: time  servicing interrupts; softirq: time servicing softirqs
 247   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 248   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 249   uint64_t      stealTicks = 0;
 250   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 251   // control of the Linux kernel
 252   uint64_t      guestNiceTicks = 0;
 253   int           logical_cpu = -1;
 254   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 255   int           n;
 256 
 257   memset(pticks, 0, sizeof(CPUPerfTicks));
 258 
 259   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 260     return false;
 261   }
 262 
 263   if (which_logical_cpu == -1) {
 264     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 266             UINT64_FORMAT " " UINT64_FORMAT " ",
 267             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 268             &iowTicks, &irqTicks, &sirqTicks,
 269             &stealTicks, &guestNiceTicks);
 270   } else {
 271     // Move to next line
 272     next_line(fh);
 273 
 274     // find the line for requested cpu faster to just iterate linefeeds?
 275     for (int i = 0; i < which_logical_cpu; i++) {
 276       next_line(fh);
 277     }
 278 
 279     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 281                UINT64_FORMAT " " UINT64_FORMAT " ",
 282                &logical_cpu, &userTicks, &niceTicks,
 283                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 284                &stealTicks, &guestNiceTicks);
 285   }
 286 
 287   fclose(fh);
 288   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 289     return false;
 290   }
 291   pticks->used       = userTicks + niceTicks;
 292   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 293   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 294                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 295 
 296   if (n > required_tickinfo_count + 3) {
 297     pticks->steal = stealTicks;
 298     pticks->has_steal_ticks = true;
 299   } else {
 300     pticks->steal = 0;
 301     pticks->has_steal_ticks = false;
 302   }
 303 
 304   return true;
 305 }
 306 
 307 // Return true if user is running as root.
 308 
 309 bool os::have_special_privileges() {
 310   static bool init = false;
 311   static bool privileges = false;
 312   if (!init) {
 313     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 314     init = true;
 315   }
 316   return privileges;
 317 }
 318 
 319 
 320 #ifndef SYS_gettid
 321 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 322   #ifdef __ia64__
 323     #define SYS_gettid 1105
 324   #else
 325     #ifdef __i386__
 326       #define SYS_gettid 224
 327     #else
 328       #ifdef __amd64__
 329         #define SYS_gettid 186
 330       #else
 331         #ifdef __sparc__
 332           #define SYS_gettid 143
 333         #else
 334           #error define gettid for the arch
 335         #endif
 336       #endif
 337     #endif
 338   #endif
 339 #endif
 340 
 341 
 342 // pid_t gettid()
 343 //
 344 // Returns the kernel thread id of the currently running thread. Kernel
 345 // thread id is used to access /proc.
 346 pid_t os::Linux::gettid() {
 347   int rslt = syscall(SYS_gettid);
 348   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 349   return (pid_t)rslt;
 350 }
 351 
 352 // Most versions of linux have a bug where the number of processors are
 353 // determined by looking at the /proc file system.  In a chroot environment,
 354 // the system call returns 1.
 355 static bool unsafe_chroot_detected = false;
 356 static const char *unstable_chroot_error = "/proc file system not found.\n"
 357                      "Java may be unstable running multithreaded in a chroot "
 358                      "environment on Linux when /proc filesystem is not mounted.";
 359 
 360 void os::Linux::initialize_system_info() {
 361   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 362   if (processor_count() == 1) {
 363     pid_t pid = os::Linux::gettid();
 364     char fname[32];
 365     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 366     FILE *fp = fopen(fname, "r");
 367     if (fp == NULL) {
 368       unsafe_chroot_detected = true;
 369     } else {
 370       fclose(fp);
 371     }
 372   }
 373   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 374   assert(processor_count() > 0, "linux error");
 375 }
 376 
 377 void os::init_system_properties_values() {
 378   // The next steps are taken in the product version:
 379   //
 380   // Obtain the JAVA_HOME value from the location of libjvm.so.
 381   // This library should be located at:
 382   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 383   //
 384   // If "/jre/lib/" appears at the right place in the path, then we
 385   // assume libjvm.so is installed in a JDK and we use this path.
 386   //
 387   // Otherwise exit with message: "Could not create the Java virtual machine."
 388   //
 389   // The following extra steps are taken in the debugging version:
 390   //
 391   // If "/jre/lib/" does NOT appear at the right place in the path
 392   // instead of exit check for $JAVA_HOME environment variable.
 393   //
 394   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 395   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 396   // it looks like libjvm.so is installed there
 397   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 398   //
 399   // Otherwise exit.
 400   //
 401   // Important note: if the location of libjvm.so changes this
 402   // code needs to be changed accordingly.
 403 
 404   // See ld(1):
 405   //      The linker uses the following search paths to locate required
 406   //      shared libraries:
 407   //        1: ...
 408   //        ...
 409   //        7: The default directories, normally /lib and /usr/lib.
 410 #ifndef OVERRIDE_LIBPATH
 411   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 412     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 413   #else
 414     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 415   #endif
 416 #else
 417   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 418 #endif
 419 
 420 // Base path of extensions installed on the system.
 421 #define SYS_EXT_DIR     "/usr/java/packages"
 422 #define EXTENSIONS_DIR  "/lib/ext"
 423 
 424   // Buffer that fits several sprintfs.
 425   // Note that the space for the colon and the trailing null are provided
 426   // by the nulls included by the sizeof operator.
 427   const size_t bufsize =
 428     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 429          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 430   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 431 
 432   // sysclasspath, java_home, dll_dir
 433   {
 434     char *pslash;
 435     os::jvm_path(buf, bufsize);
 436 
 437     // Found the full path to libjvm.so.
 438     // Now cut the path to <java_home>/jre if we can.
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /libjvm.so.
 442     }
 443     pslash = strrchr(buf, '/');
 444     if (pslash != NULL) {
 445       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 446     }
 447     Arguments::set_dll_dir(buf);
 448 
 449     if (pslash != NULL) {
 450       pslash = strrchr(buf, '/');
 451       if (pslash != NULL) {
 452         *pslash = '\0';        // Get rid of /lib.
 453       }
 454     }
 455     Arguments::set_java_home(buf);
 456     if (!set_boot_path('/', ':')) {
 457       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 458     }
 459   }
 460 
 461   // Where to look for native libraries.
 462   //
 463   // Note: Due to a legacy implementation, most of the library path
 464   // is set in the launcher. This was to accomodate linking restrictions
 465   // on legacy Linux implementations (which are no longer supported).
 466   // Eventually, all the library path setting will be done here.
 467   //
 468   // However, to prevent the proliferation of improperly built native
 469   // libraries, the new path component /usr/java/packages is added here.
 470   // Eventually, all the library path setting will be done here.
 471   {
 472     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 473     // should always exist (until the legacy problem cited above is
 474     // addressed).
 475     const char *v = ::getenv("LD_LIBRARY_PATH");
 476     const char *v_colon = ":";
 477     if (v == NULL) { v = ""; v_colon = ""; }
 478     // That's +1 for the colon and +1 for the trailing '\0'.
 479     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 480                                              strlen(v) + 1 +
 481                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 482                                              mtInternal);
 483     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 484     Arguments::set_library_path(ld_library_path);
 485     FREE_C_HEAP_ARRAY(char, ld_library_path);
 486   }
 487 
 488   // Extensions directories.
 489   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 490   Arguments::set_ext_dirs(buf);
 491 
 492   FREE_C_HEAP_ARRAY(char, buf);
 493 
 494 #undef DEFAULT_LIBPATH
 495 #undef SYS_EXT_DIR
 496 #undef EXTENSIONS_DIR
 497 }
 498 
 499 ////////////////////////////////////////////////////////////////////////////////
 500 // breakpoint support
 501 
 502 void os::breakpoint() {
 503   BREAKPOINT;
 504 }
 505 
 506 extern "C" void breakpoint() {
 507   // use debugger to set breakpoint here
 508 }
 509 
 510 ////////////////////////////////////////////////////////////////////////////////
 511 // signal support
 512 
 513 debug_only(static bool signal_sets_initialized = false);
 514 static sigset_t unblocked_sigs, vm_sigs;
 515 
 516 void os::Linux::signal_sets_init() {
 517   // Should also have an assertion stating we are still single-threaded.
 518   assert(!signal_sets_initialized, "Already initialized");
 519   // Fill in signals that are necessarily unblocked for all threads in
 520   // the VM. Currently, we unblock the following signals:
 521   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 522   //                         by -Xrs (=ReduceSignalUsage));
 523   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 524   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 525   // the dispositions or masks wrt these signals.
 526   // Programs embedding the VM that want to use the above signals for their
 527   // own purposes must, at this time, use the "-Xrs" option to prevent
 528   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 529   // (See bug 4345157, and other related bugs).
 530   // In reality, though, unblocking these signals is really a nop, since
 531   // these signals are not blocked by default.
 532   sigemptyset(&unblocked_sigs);
 533   sigaddset(&unblocked_sigs, SIGILL);
 534   sigaddset(&unblocked_sigs, SIGSEGV);
 535   sigaddset(&unblocked_sigs, SIGBUS);
 536   sigaddset(&unblocked_sigs, SIGFPE);
 537 #if defined(PPC64)
 538   sigaddset(&unblocked_sigs, SIGTRAP);
 539 #endif
 540   sigaddset(&unblocked_sigs, SR_signum);
 541 
 542   if (!ReduceSignalUsage) {
 543     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 544       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 545     }
 546     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 547       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 548     }
 549     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 550       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 551     }
 552   }
 553   // Fill in signals that are blocked by all but the VM thread.
 554   sigemptyset(&vm_sigs);
 555   if (!ReduceSignalUsage) {
 556     sigaddset(&vm_sigs, BREAK_SIGNAL);
 557   }
 558   debug_only(signal_sets_initialized = true);
 559 
 560 }
 561 
 562 // These are signals that are unblocked while a thread is running Java.
 563 // (For some reason, they get blocked by default.)
 564 sigset_t* os::Linux::unblocked_signals() {
 565   assert(signal_sets_initialized, "Not initialized");
 566   return &unblocked_sigs;
 567 }
 568 
 569 // These are the signals that are blocked while a (non-VM) thread is
 570 // running Java. Only the VM thread handles these signals.
 571 sigset_t* os::Linux::vm_signals() {
 572   assert(signal_sets_initialized, "Not initialized");
 573   return &vm_sigs;
 574 }
 575 
 576 void os::Linux::hotspot_sigmask(Thread* thread) {
 577 
 578   //Save caller's signal mask before setting VM signal mask
 579   sigset_t caller_sigmask;
 580   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 581 
 582   OSThread* osthread = thread->osthread();
 583   osthread->set_caller_sigmask(caller_sigmask);
 584 
 585   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 586 
 587   if (!ReduceSignalUsage) {
 588     if (thread->is_VM_thread()) {
 589       // Only the VM thread handles BREAK_SIGNAL ...
 590       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 591     } else {
 592       // ... all other threads block BREAK_SIGNAL
 593       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 594     }
 595   }
 596 }
 597 
 598 //////////////////////////////////////////////////////////////////////////////
 599 // detecting pthread library
 600 
 601 void os::Linux::libpthread_init() {
 602   // Save glibc and pthread version strings.
 603 #if !defined(_CS_GNU_LIBC_VERSION) || \
 604     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 605   #error "glibc too old (< 2.3.2)"
 606 #endif
 607 
 608   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 609   assert(n > 0, "cannot retrieve glibc version");
 610   char *str = (char *)malloc(n, mtInternal);
 611   confstr(_CS_GNU_LIBC_VERSION, str, n);
 612   os::Linux::set_glibc_version(str);
 613 
 614   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 615   assert(n > 0, "cannot retrieve pthread version");
 616   str = (char *)malloc(n, mtInternal);
 617   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 618   os::Linux::set_libpthread_version(str);
 619 }
 620 
 621 /////////////////////////////////////////////////////////////////////////////
 622 // thread stack expansion
 623 
 624 // os::Linux::manually_expand_stack() takes care of expanding the thread
 625 // stack. Note that this is normally not needed: pthread stacks allocate
 626 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 627 // committed. Therefore it is not necessary to expand the stack manually.
 628 //
 629 // Manually expanding the stack was historically needed on LinuxThreads
 630 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 631 // it is kept to deal with very rare corner cases:
 632 //
 633 // For one, user may run the VM on an own implementation of threads
 634 // whose stacks are - like the old LinuxThreads - implemented using
 635 // mmap(MAP_GROWSDOWN).
 636 //
 637 // Also, this coding may be needed if the VM is running on the primordial
 638 // thread. Normally we avoid running on the primordial thread; however,
 639 // user may still invoke the VM on the primordial thread.
 640 //
 641 // The following historical comment describes the details about running
 642 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 643 
 644 
 645 // Force Linux kernel to expand current thread stack. If "bottom" is close
 646 // to the stack guard, caller should block all signals.
 647 //
 648 // MAP_GROWSDOWN:
 649 //   A special mmap() flag that is used to implement thread stacks. It tells
 650 //   kernel that the memory region should extend downwards when needed. This
 651 //   allows early versions of LinuxThreads to only mmap the first few pages
 652 //   when creating a new thread. Linux kernel will automatically expand thread
 653 //   stack as needed (on page faults).
 654 //
 655 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 656 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 657 //   region, it's hard to tell if the fault is due to a legitimate stack
 658 //   access or because of reading/writing non-exist memory (e.g. buffer
 659 //   overrun). As a rule, if the fault happens below current stack pointer,
 660 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 661 //   application (see Linux kernel fault.c).
 662 //
 663 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 664 //   stack overflow detection.
 665 //
 666 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 667 //   not use MAP_GROWSDOWN.
 668 //
 669 // To get around the problem and allow stack banging on Linux, we need to
 670 // manually expand thread stack after receiving the SIGSEGV.
 671 //
 672 // There are two ways to expand thread stack to address "bottom", we used
 673 // both of them in JVM before 1.5:
 674 //   1. adjust stack pointer first so that it is below "bottom", and then
 675 //      touch "bottom"
 676 //   2. mmap() the page in question
 677 //
 678 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 679 // if current sp is already near the lower end of page 101, and we need to
 680 // call mmap() to map page 100, it is possible that part of the mmap() frame
 681 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 682 // That will destroy the mmap() frame and cause VM to crash.
 683 //
 684 // The following code works by adjusting sp first, then accessing the "bottom"
 685 // page to force a page fault. Linux kernel will then automatically expand the
 686 // stack mapping.
 687 //
 688 // _expand_stack_to() assumes its frame size is less than page size, which
 689 // should always be true if the function is not inlined.
 690 
 691 static void NOINLINE _expand_stack_to(address bottom) {
 692   address sp;
 693   size_t size;
 694   volatile char *p;
 695 
 696   // Adjust bottom to point to the largest address within the same page, it
 697   // gives us a one-page buffer if alloca() allocates slightly more memory.
 698   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 699   bottom += os::Linux::page_size() - 1;
 700 
 701   // sp might be slightly above current stack pointer; if that's the case, we
 702   // will alloca() a little more space than necessary, which is OK. Don't use
 703   // os::current_stack_pointer(), as its result can be slightly below current
 704   // stack pointer, causing us to not alloca enough to reach "bottom".
 705   sp = (address)&sp;
 706 
 707   if (sp > bottom) {
 708     size = sp - bottom;
 709     p = (volatile char *)alloca(size);
 710     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 711     p[0] = '\0';
 712   }
 713 }
 714 
 715 void os::Linux::expand_stack_to(address bottom) {
 716   _expand_stack_to(bottom);
 717 }
 718 
 719 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 720   assert(t!=NULL, "just checking");
 721   assert(t->osthread()->expanding_stack(), "expand should be set");
 722 
 723   if (t->is_in_usable_stack(addr)) {
 724     sigset_t mask_all, old_sigset;
 725     sigfillset(&mask_all);
 726     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 727     _expand_stack_to(addr);
 728     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 729     return true;
 730   }
 731   return false;
 732 }
 733 
 734 //////////////////////////////////////////////////////////////////////////////
 735 // create new thread
 736 
 737 // Thread start routine for all newly created threads
 738 static void *thread_native_entry(Thread *thread) {
 739 
 740   thread->record_stack_base_and_size();
 741 
 742   // Try to randomize the cache line index of hot stack frames.
 743   // This helps when threads of the same stack traces evict each other's
 744   // cache lines. The threads can be either from the same JVM instance, or
 745   // from different JVM instances. The benefit is especially true for
 746   // processors with hyperthreading technology.
 747   static int counter = 0;
 748   int pid = os::current_process_id();
 749   alloca(((pid ^ counter++) & 7) * 128);
 750 
 751   thread->initialize_thread_current();
 752 
 753   OSThread* osthread = thread->osthread();
 754   Monitor* sync = osthread->startThread_lock();
 755 
 756   osthread->set_thread_id(os::current_thread_id());
 757 
 758   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 759     os::current_thread_id(), (uintx) pthread_self());
 760 
 761   if (UseNUMA) {
 762     int lgrp_id = os::numa_get_group_id();
 763     if (lgrp_id != -1) {
 764       thread->set_lgrp_id(lgrp_id);
 765     }
 766   }
 767   // initialize signal mask for this thread
 768   os::Linux::hotspot_sigmask(thread);
 769 
 770   // initialize floating point control register
 771   os::Linux::init_thread_fpu_state();
 772 
 773   // handshaking with parent thread
 774   {
 775     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 776 
 777     // notify parent thread
 778     osthread->set_state(INITIALIZED);
 779     sync->notify_all();
 780 
 781     // wait until os::start_thread()
 782     while (osthread->get_state() == INITIALIZED) {
 783       sync->wait_without_safepoint_check();
 784     }
 785   }
 786 
 787   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 788 
 789   // call one more level start routine
 790   thread->call_run();
 791 
 792   // Note: at this point the thread object may already have deleted itself.
 793   // Prevent dereferencing it from here on out.
 794   thread = NULL;
 795 
 796   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 797     os::current_thread_id(), (uintx) pthread_self());
 798 
 799   return 0;
 800 }
 801 
 802 // On Linux, glibc places static TLS blocks (for __thread variables) on
 803 // the thread stack. This decreases the stack size actually available
 804 // to threads.
 805 //
 806 // For large static TLS sizes, this may cause threads to malfunction due
 807 // to insufficient stack space. This is a well-known issue in glibc:
 808 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 809 //
 810 // As a workaround, we call a private but assumed-stable glibc function,
 811 // __pthread_get_minstack() to obtain the minstack size and derive the
 812 // static TLS size from it. We then increase the user requested stack
 813 // size by this TLS size.
 814 //
 815 // Due to compatibility concerns, this size adjustment is opt-in and
 816 // controlled via AdjustStackSizeForTLS.
 817 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 818 
 819 GetMinStack _get_minstack_func = NULL;
 820 
 821 static void get_minstack_init() {
 822   _get_minstack_func =
 823         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 824   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 825                        _get_minstack_func == NULL ? "failed" : "succeeded");
 826 }
 827 
 828 // Returns the size of the static TLS area glibc puts on thread stacks.
 829 // The value is cached on first use, which occurs when the first thread
 830 // is created during VM initialization.
 831 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 832   size_t tls_size = 0;
 833   if (_get_minstack_func != NULL) {
 834     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 835     size_t minstack_size = _get_minstack_func(attr);
 836 
 837     // Remove non-TLS area size included in minstack size returned
 838     // by __pthread_get_minstack() to get the static TLS size.
 839     // In glibc before 2.27, minstack size includes guard_size.
 840     // In glibc 2.27 and later, guard_size is automatically added
 841     // to the stack size by pthread_create and is no longer included
 842     // in minstack size. In both cases, the guard_size is taken into
 843     // account, so there is no need to adjust the result for that.
 844     //
 845     // Although __pthread_get_minstack() is a private glibc function,
 846     // it is expected to have a stable behavior across future glibc
 847     // versions while glibc still allocates the static TLS blocks off
 848     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 849     //
 850     // size_t
 851     // __pthread_get_minstack (const pthread_attr_t *attr)
 852     // {
 853     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 854     // }
 855     //
 856     //
 857     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 858     // if check is done for precaution.
 859     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 860       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 861     }
 862   }
 863 
 864   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 865                        tls_size);
 866   return tls_size;
 867 }
 868 
 869 bool os::create_thread(Thread* thread, ThreadType thr_type,
 870                        size_t req_stack_size) {
 871   assert(thread->osthread() == NULL, "caller responsible");
 872 
 873   // Allocate the OSThread object
 874   OSThread* osthread = new OSThread(NULL, NULL);
 875   if (osthread == NULL) {
 876     return false;
 877   }
 878 
 879   // set the correct thread state
 880   osthread->set_thread_type(thr_type);
 881 
 882   // Initial state is ALLOCATED but not INITIALIZED
 883   osthread->set_state(ALLOCATED);
 884 
 885   thread->set_osthread(osthread);
 886 
 887   // init thread attributes
 888   pthread_attr_t attr;
 889   pthread_attr_init(&attr);
 890   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 891 
 892   // Calculate stack size if it's not specified by caller.
 893   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 894   // In glibc versions prior to 2.7 the guard size mechanism
 895   // is not implemented properly. The posix standard requires adding
 896   // the size of the guard pages to the stack size, instead Linux
 897   // takes the space out of 'stacksize'. Thus we adapt the requested
 898   // stack_size by the size of the guard pages to mimick proper
 899   // behaviour. However, be careful not to end up with a size
 900   // of zero due to overflow. Don't add the guard page in that case.
 901   size_t guard_size = os::Linux::default_guard_size(thr_type);
 902   // Configure glibc guard page. Must happen before calling
 903   // get_static_tls_area_size(), which uses the guard_size.
 904   pthread_attr_setguardsize(&attr, guard_size);
 905 
 906   size_t stack_adjust_size = 0;
 907   if (AdjustStackSizeForTLS) {
 908     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 909     stack_adjust_size += get_static_tls_area_size(&attr);
 910   } else {
 911     stack_adjust_size += guard_size;
 912   }
 913 
 914   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 915   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 916     stack_size += stack_adjust_size;
 917   }
 918   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 919 
 920   int status = pthread_attr_setstacksize(&attr, stack_size);
 921   assert_status(status == 0, status, "pthread_attr_setstacksize");
 922 
 923   ThreadState state;
 924 
 925   {
 926     pthread_t tid;
 927     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 928 
 929     char buf[64];
 930     if (ret == 0) {
 931       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 932         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 933     } else {
 934       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 935         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 936       // Log some OS information which might explain why creating the thread failed.
 937       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 938       LogStream st(Log(os, thread)::info());
 939       os::Posix::print_rlimit_info(&st);
 940       os::print_memory_info(&st);
 941       os::Linux::print_proc_sys_info(&st);
 942       os::Linux::print_container_info(&st);
 943     }
 944 
 945     pthread_attr_destroy(&attr);
 946 
 947     if (ret != 0) {
 948       // Need to clean up stuff we've allocated so far
 949       thread->set_osthread(NULL);
 950       delete osthread;
 951       return false;
 952     }
 953 
 954     // Store pthread info into the OSThread
 955     osthread->set_pthread_id(tid);
 956 
 957     // Wait until child thread is either initialized or aborted
 958     {
 959       Monitor* sync_with_child = osthread->startThread_lock();
 960       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 961       while ((state = osthread->get_state()) == ALLOCATED) {
 962         sync_with_child->wait_without_safepoint_check();
 963       }
 964     }
 965   }
 966 
 967   // Aborted due to thread limit being reached
 968   if (state == ZOMBIE) {
 969     thread->set_osthread(NULL);
 970     delete osthread;
 971     return false;
 972   }
 973 
 974   // The thread is returned suspended (in state INITIALIZED),
 975   // and is started higher up in the call chain
 976   assert(state == INITIALIZED, "race condition");
 977   return true;
 978 }
 979 
 980 /////////////////////////////////////////////////////////////////////////////
 981 // attach existing thread
 982 
 983 // bootstrap the main thread
 984 bool os::create_main_thread(JavaThread* thread) {
 985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 986   return create_attached_thread(thread);
 987 }
 988 
 989 bool os::create_attached_thread(JavaThread* thread) {
 990 #ifdef ASSERT
 991   thread->verify_not_published();
 992 #endif
 993 
 994   // Allocate the OSThread object
 995   OSThread* osthread = new OSThread(NULL, NULL);
 996 
 997   if (osthread == NULL) {
 998     return false;
 999   }
1000 
1001   // Store pthread info into the OSThread
1002   osthread->set_thread_id(os::Linux::gettid());
1003   osthread->set_pthread_id(::pthread_self());
1004 
1005   // initialize floating point control register
1006   os::Linux::init_thread_fpu_state();
1007 
1008   // Initial thread state is RUNNABLE
1009   osthread->set_state(RUNNABLE);
1010 
1011   thread->set_osthread(osthread);
1012 
1013   if (UseNUMA) {
1014     int lgrp_id = os::numa_get_group_id();
1015     if (lgrp_id != -1) {
1016       thread->set_lgrp_id(lgrp_id);
1017     }
1018   }
1019 
1020   if (os::is_primordial_thread()) {
1021     // If current thread is primordial thread, its stack is mapped on demand,
1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023     // the entire stack region to avoid SEGV in stack banging.
1024     // It is also useful to get around the heap-stack-gap problem on SuSE
1025     // kernel (see 4821821 for details). We first expand stack to the top
1026     // of yellow zone, then enable stack yellow zone (order is significant,
1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028     // is no gap between the last two virtual memory regions.
1029 
1030     JavaThread *jt = (JavaThread *)thread;
1031     address addr = jt->stack_reserved_zone_base();
1032     assert(addr != NULL, "initialization problem?");
1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034 
1035     osthread->set_expanding_stack();
1036     os::Linux::manually_expand_stack(jt, addr);
1037     osthread->clear_expanding_stack();
1038   }
1039 
1040   // initialize signal mask for this thread
1041   // and save the caller's signal mask
1042   os::Linux::hotspot_sigmask(thread);
1043 
1044   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1045     os::current_thread_id(), (uintx) pthread_self());
1046 
1047   return true;
1048 }
1049 
1050 void os::pd_start_thread(Thread* thread) {
1051   OSThread * osthread = thread->osthread();
1052   assert(osthread->get_state() != INITIALIZED, "just checking");
1053   Monitor* sync_with_child = osthread->startThread_lock();
1054   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1055   sync_with_child->notify();
1056 }
1057 
1058 // Free Linux resources related to the OSThread
1059 void os::free_thread(OSThread* osthread) {
1060   assert(osthread != NULL, "osthread not set");
1061 
1062   // We are told to free resources of the argument thread,
1063   // but we can only really operate on the current thread.
1064   assert(Thread::current()->osthread() == osthread,
1065          "os::free_thread but not current thread");
1066 
1067 #ifdef ASSERT
1068   sigset_t current;
1069   sigemptyset(&current);
1070   pthread_sigmask(SIG_SETMASK, NULL, &current);
1071   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1072 #endif
1073 
1074   // Restore caller's signal mask
1075   sigset_t sigmask = osthread->caller_sigmask();
1076   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1077 
1078   delete osthread;
1079 }
1080 
1081 //////////////////////////////////////////////////////////////////////////////
1082 // primordial thread
1083 
1084 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1085 bool os::is_primordial_thread(void) {
1086   if (suppress_primordial_thread_resolution) {
1087     return false;
1088   }
1089   char dummy;
1090   // If called before init complete, thread stack bottom will be null.
1091   // Can be called if fatal error occurs before initialization.
1092   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1093   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1094          os::Linux::initial_thread_stack_size()   != 0,
1095          "os::init did not locate primordial thread's stack region");
1096   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1097       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1098                         os::Linux::initial_thread_stack_size()) {
1099     return true;
1100   } else {
1101     return false;
1102   }
1103 }
1104 
1105 // Find the virtual memory area that contains addr
1106 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1107   FILE *fp = fopen("/proc/self/maps", "r");
1108   if (fp) {
1109     address low, high;
1110     while (!feof(fp)) {
1111       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1112         if (low <= addr && addr < high) {
1113           if (vma_low)  *vma_low  = low;
1114           if (vma_high) *vma_high = high;
1115           fclose(fp);
1116           return true;
1117         }
1118       }
1119       for (;;) {
1120         int ch = fgetc(fp);
1121         if (ch == EOF || ch == (int)'\n') break;
1122       }
1123     }
1124     fclose(fp);
1125   }
1126   return false;
1127 }
1128 
1129 // Locate primordial thread stack. This special handling of primordial thread stack
1130 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1131 // bogus value for the primordial process thread. While the launcher has created
1132 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1133 // JNI invocation API from a primordial thread.
1134 void os::Linux::capture_initial_stack(size_t max_size) {
1135 
1136   // max_size is either 0 (which means accept OS default for thread stacks) or
1137   // a user-specified value known to be at least the minimum needed. If we
1138   // are actually on the primordial thread we can make it appear that we have a
1139   // smaller max_size stack by inserting the guard pages at that location. But we
1140   // cannot do anything to emulate a larger stack than what has been provided by
1141   // the OS or threading library. In fact if we try to use a stack greater than
1142   // what is set by rlimit then we will crash the hosting process.
1143 
1144   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1145   // If this is "unlimited" then it will be a huge value.
1146   struct rlimit rlim;
1147   getrlimit(RLIMIT_STACK, &rlim);
1148   size_t stack_size = rlim.rlim_cur;
1149 
1150   // 6308388: a bug in ld.so will relocate its own .data section to the
1151   //   lower end of primordial stack; reduce ulimit -s value a little bit
1152   //   so we won't install guard page on ld.so's data section.
1153   //   But ensure we don't underflow the stack size - allow 1 page spare
1154   if (stack_size >= (size_t)(3 * page_size())) {
1155     stack_size -= 2 * page_size();
1156   }
1157 
1158   // Try to figure out where the stack base (top) is. This is harder.
1159   //
1160   // When an application is started, glibc saves the initial stack pointer in
1161   // a global variable "__libc_stack_end", which is then used by system
1162   // libraries. __libc_stack_end should be pretty close to stack top. The
1163   // variable is available since the very early days. However, because it is
1164   // a private interface, it could disappear in the future.
1165   //
1166   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1167   // to __libc_stack_end, it is very close to stack top, but isn't the real
1168   // stack top. Note that /proc may not exist if VM is running as a chroot
1169   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1170   // /proc/<pid>/stat could change in the future (though unlikely).
1171   //
1172   // We try __libc_stack_end first. If that doesn't work, look for
1173   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1174   // as a hint, which should work well in most cases.
1175 
1176   uintptr_t stack_start;
1177 
1178   // try __libc_stack_end first
1179   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1180   if (p && *p) {
1181     stack_start = *p;
1182   } else {
1183     // see if we can get the start_stack field from /proc/self/stat
1184     FILE *fp;
1185     int pid;
1186     char state;
1187     int ppid;
1188     int pgrp;
1189     int session;
1190     int nr;
1191     int tpgrp;
1192     unsigned long flags;
1193     unsigned long minflt;
1194     unsigned long cminflt;
1195     unsigned long majflt;
1196     unsigned long cmajflt;
1197     unsigned long utime;
1198     unsigned long stime;
1199     long cutime;
1200     long cstime;
1201     long prio;
1202     long nice;
1203     long junk;
1204     long it_real;
1205     uintptr_t start;
1206     uintptr_t vsize;
1207     intptr_t rss;
1208     uintptr_t rsslim;
1209     uintptr_t scodes;
1210     uintptr_t ecode;
1211     int i;
1212 
1213     // Figure what the primordial thread stack base is. Code is inspired
1214     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1215     // followed by command name surrounded by parentheses, state, etc.
1216     char stat[2048];
1217     int statlen;
1218 
1219     fp = fopen("/proc/self/stat", "r");
1220     if (fp) {
1221       statlen = fread(stat, 1, 2047, fp);
1222       stat[statlen] = '\0';
1223       fclose(fp);
1224 
1225       // Skip pid and the command string. Note that we could be dealing with
1226       // weird command names, e.g. user could decide to rename java launcher
1227       // to "java 1.4.2 :)", then the stat file would look like
1228       //                1234 (java 1.4.2 :)) R ... ...
1229       // We don't really need to know the command string, just find the last
1230       // occurrence of ")" and then start parsing from there. See bug 4726580.
1231       char * s = strrchr(stat, ')');
1232 
1233       i = 0;
1234       if (s) {
1235         // Skip blank chars
1236         do { s++; } while (s && isspace(*s));
1237 
1238 #define _UFM UINTX_FORMAT
1239 #define _DFM INTX_FORMAT
1240 
1241         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1242         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1243         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1244                    &state,          // 3  %c
1245                    &ppid,           // 4  %d
1246                    &pgrp,           // 5  %d
1247                    &session,        // 6  %d
1248                    &nr,             // 7  %d
1249                    &tpgrp,          // 8  %d
1250                    &flags,          // 9  %lu
1251                    &minflt,         // 10 %lu
1252                    &cminflt,        // 11 %lu
1253                    &majflt,         // 12 %lu
1254                    &cmajflt,        // 13 %lu
1255                    &utime,          // 14 %lu
1256                    &stime,          // 15 %lu
1257                    &cutime,         // 16 %ld
1258                    &cstime,         // 17 %ld
1259                    &prio,           // 18 %ld
1260                    &nice,           // 19 %ld
1261                    &junk,           // 20 %ld
1262                    &it_real,        // 21 %ld
1263                    &start,          // 22 UINTX_FORMAT
1264                    &vsize,          // 23 UINTX_FORMAT
1265                    &rss,            // 24 INTX_FORMAT
1266                    &rsslim,         // 25 UINTX_FORMAT
1267                    &scodes,         // 26 UINTX_FORMAT
1268                    &ecode,          // 27 UINTX_FORMAT
1269                    &stack_start);   // 28 UINTX_FORMAT
1270       }
1271 
1272 #undef _UFM
1273 #undef _DFM
1274 
1275       if (i != 28 - 2) {
1276         assert(false, "Bad conversion from /proc/self/stat");
1277         // product mode - assume we are the primordial thread, good luck in the
1278         // embedded case.
1279         warning("Can't detect primordial thread stack location - bad conversion");
1280         stack_start = (uintptr_t) &rlim;
1281       }
1282     } else {
1283       // For some reason we can't open /proc/self/stat (for example, running on
1284       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1285       // most cases, so don't abort:
1286       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1287       stack_start = (uintptr_t) &rlim;
1288     }
1289   }
1290 
1291   // Now we have a pointer (stack_start) very close to the stack top, the
1292   // next thing to do is to figure out the exact location of stack top. We
1293   // can find out the virtual memory area that contains stack_start by
1294   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1295   // and its upper limit is the real stack top. (again, this would fail if
1296   // running inside chroot, because /proc may not exist.)
1297 
1298   uintptr_t stack_top;
1299   address low, high;
1300   if (find_vma((address)stack_start, &low, &high)) {
1301     // success, "high" is the true stack top. (ignore "low", because initial
1302     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1303     stack_top = (uintptr_t)high;
1304   } else {
1305     // failed, likely because /proc/self/maps does not exist
1306     warning("Can't detect primordial thread stack location - find_vma failed");
1307     // best effort: stack_start is normally within a few pages below the real
1308     // stack top, use it as stack top, and reduce stack size so we won't put
1309     // guard page outside stack.
1310     stack_top = stack_start;
1311     stack_size -= 16 * page_size();
1312   }
1313 
1314   // stack_top could be partially down the page so align it
1315   stack_top = align_up(stack_top, page_size());
1316 
1317   // Allowed stack value is minimum of max_size and what we derived from rlimit
1318   if (max_size > 0) {
1319     _initial_thread_stack_size = MIN2(max_size, stack_size);
1320   } else {
1321     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1322     // clamp it at 8MB as we do on Solaris
1323     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1324   }
1325   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1326   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1327 
1328   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1329 
1330   if (log_is_enabled(Info, os, thread)) {
1331     // See if we seem to be on primordial process thread
1332     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1333                       uintptr_t(&rlim) < stack_top;
1334 
1335     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1336                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1337                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1338                          stack_top, intptr_t(_initial_thread_stack_bottom));
1339   }
1340 }
1341 
1342 ////////////////////////////////////////////////////////////////////////////////
1343 // time support
1344 
1345 #ifndef SUPPORTS_CLOCK_MONOTONIC
1346 #error "Build platform doesn't support clock_gettime and related functionality"
1347 #endif
1348 
1349 // Time since start-up in seconds to a fine granularity.
1350 // Used by VMSelfDestructTimer and the MemProfiler.
1351 double os::elapsedTime() {
1352 
1353   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1354 }
1355 
1356 jlong os::elapsed_counter() {
1357   return javaTimeNanos() - initial_time_count;
1358 }
1359 
1360 jlong os::elapsed_frequency() {
1361   return NANOSECS_PER_SEC; // nanosecond resolution
1362 }
1363 
1364 bool os::supports_vtime() { return true; }
1365 
1366 double os::elapsedVTime() {
1367   struct rusage usage;
1368   int retval = getrusage(RUSAGE_THREAD, &usage);
1369   if (retval == 0) {
1370     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1371   } else {
1372     // better than nothing, but not much
1373     return elapsedTime();
1374   }
1375 }
1376 
1377 jlong os::javaTimeMillis() {
1378   timeval time;
1379   int status = gettimeofday(&time, NULL);
1380   assert(status != -1, "linux error");
1381   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1382 }
1383 
1384 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1385   timeval time;
1386   int status = gettimeofday(&time, NULL);
1387   assert(status != -1, "linux error");
1388   seconds = jlong(time.tv_sec);
1389   nanos = jlong(time.tv_usec) * 1000;
1390 }
1391 
1392 void os::Linux::fast_thread_clock_init() {
1393   if (!UseLinuxPosixThreadCPUClocks) {
1394     return;
1395   }
1396   clockid_t clockid;
1397   struct timespec tp;
1398   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1399       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1400 
1401   // Switch to using fast clocks for thread cpu time if
1402   // the clock_getres() returns 0 error code.
1403   // Note, that some kernels may support the current thread
1404   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1405   // returned by the pthread_getcpuclockid().
1406   // If the fast Posix clocks are supported then the clock_getres()
1407   // must return at least tp.tv_sec == 0 which means a resolution
1408   // better than 1 sec. This is extra check for reliability.
1409 
1410   if (pthread_getcpuclockid_func &&
1411       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1412       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1413     _supports_fast_thread_cpu_time = true;
1414     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1415   }
1416 }
1417 
1418 jlong os::javaTimeNanos() {
1419   if (os::supports_monotonic_clock()) {
1420     struct timespec tp;
1421     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1422     assert(status == 0, "gettime error");
1423     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1424     return result;
1425   } else {
1426     timeval time;
1427     int status = gettimeofday(&time, NULL);
1428     assert(status != -1, "linux error");
1429     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1430     return 1000 * usecs;
1431   }
1432 }
1433 
1434 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1435   if (os::supports_monotonic_clock()) {
1436     info_ptr->max_value = ALL_64_BITS;
1437 
1438     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1439     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1440     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1441   } else {
1442     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1443     info_ptr->max_value = ALL_64_BITS;
1444 
1445     // gettimeofday is a real time clock so it skips
1446     info_ptr->may_skip_backward = true;
1447     info_ptr->may_skip_forward = true;
1448   }
1449 
1450   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1451 }
1452 
1453 // Return the real, user, and system times in seconds from an
1454 // arbitrary fixed point in the past.
1455 bool os::getTimesSecs(double* process_real_time,
1456                       double* process_user_time,
1457                       double* process_system_time) {
1458   struct tms ticks;
1459   clock_t real_ticks = times(&ticks);
1460 
1461   if (real_ticks == (clock_t) (-1)) {
1462     return false;
1463   } else {
1464     double ticks_per_second = (double) clock_tics_per_sec;
1465     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1466     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1467     *process_real_time = ((double) real_ticks) / ticks_per_second;
1468 
1469     return true;
1470   }
1471 }
1472 
1473 
1474 char * os::local_time_string(char *buf, size_t buflen) {
1475   struct tm t;
1476   time_t long_time;
1477   time(&long_time);
1478   localtime_r(&long_time, &t);
1479   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1480                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1481                t.tm_hour, t.tm_min, t.tm_sec);
1482   return buf;
1483 }
1484 
1485 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1486   return localtime_r(clock, res);
1487 }
1488 
1489 ////////////////////////////////////////////////////////////////////////////////
1490 // runtime exit support
1491 
1492 // Note: os::shutdown() might be called very early during initialization, or
1493 // called from signal handler. Before adding something to os::shutdown(), make
1494 // sure it is async-safe and can handle partially initialized VM.
1495 void os::shutdown() {
1496 
1497   // allow PerfMemory to attempt cleanup of any persistent resources
1498   perfMemory_exit();
1499 
1500   // needs to remove object in file system
1501   AttachListener::abort();
1502 
1503   // flush buffered output, finish log files
1504   ostream_abort();
1505 
1506   // Check for abort hook
1507   abort_hook_t abort_hook = Arguments::abort_hook();
1508   if (abort_hook != NULL) {
1509     abort_hook();
1510   }
1511 
1512 }
1513 
1514 // Note: os::abort() might be called very early during initialization, or
1515 // called from signal handler. Before adding something to os::abort(), make
1516 // sure it is async-safe and can handle partially initialized VM.
1517 void os::abort(bool dump_core, void* siginfo, const void* context) {
1518   os::shutdown();
1519   if (dump_core) {
1520     if (DumpPrivateMappingsInCore) {
1521       ClassLoader::close_jrt_image();
1522     }
1523 #ifndef PRODUCT
1524     fdStream out(defaultStream::output_fd());
1525     out.print_raw("Current thread is ");
1526     char buf[16];
1527     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1528     out.print_raw_cr(buf);
1529     out.print_raw_cr("Dumping core ...");
1530 #endif
1531     ::abort(); // dump core
1532   }
1533 
1534   ::exit(1);
1535 }
1536 
1537 // Die immediately, no exit hook, no abort hook, no cleanup.
1538 // Dump a core file, if possible, for debugging.
1539 void os::die() {
1540   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1541     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1542     // and don't take the time to generate a core file.
1543     os::signal_raise(SIGKILL);
1544   } else {
1545     ::abort();
1546   }
1547 }
1548 
1549 // thread_id is kernel thread id (similar to Solaris LWP id)
1550 intx os::current_thread_id() { return os::Linux::gettid(); }
1551 int os::current_process_id() {
1552   return ::getpid();
1553 }
1554 
1555 // DLL functions
1556 
1557 const char* os::dll_file_extension() { return ".so"; }
1558 
1559 // This must be hard coded because it's the system's temporary
1560 // directory not the java application's temp directory, ala java.io.tmpdir.
1561 const char* os::get_temp_directory() { return "/tmp"; }
1562 
1563 static bool file_exists(const char* filename) {
1564   struct stat statbuf;
1565   if (filename == NULL || strlen(filename) == 0) {
1566     return false;
1567   }
1568   return os::stat(filename, &statbuf) == 0;
1569 }
1570 
1571 // check if addr is inside libjvm.so
1572 bool os::address_is_in_vm(address addr) {
1573   static address libjvm_base_addr;
1574   Dl_info dlinfo;
1575 
1576   if (libjvm_base_addr == NULL) {
1577     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1578       libjvm_base_addr = (address)dlinfo.dli_fbase;
1579     }
1580     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1581   }
1582 
1583   if (dladdr((void *)addr, &dlinfo) != 0) {
1584     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1585   }
1586 
1587   return false;
1588 }
1589 
1590 bool os::dll_address_to_function_name(address addr, char *buf,
1591                                       int buflen, int *offset,
1592                                       bool demangle) {
1593   // buf is not optional, but offset is optional
1594   assert(buf != NULL, "sanity check");
1595 
1596   Dl_info dlinfo;
1597 
1598   if (dladdr((void*)addr, &dlinfo) != 0) {
1599     // see if we have a matching symbol
1600     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1601       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1602         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1603       }
1604       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1605       return true;
1606     }
1607     // no matching symbol so try for just file info
1608     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1609       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1610                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1611         return true;
1612       }
1613     }
1614   }
1615 
1616   buf[0] = '\0';
1617   if (offset != NULL) *offset = -1;
1618   return false;
1619 }
1620 
1621 struct _address_to_library_name {
1622   address addr;          // input : memory address
1623   size_t  buflen;        //         size of fname
1624   char*   fname;         // output: library name
1625   address base;          //         library base addr
1626 };
1627 
1628 static int address_to_library_name_callback(struct dl_phdr_info *info,
1629                                             size_t size, void *data) {
1630   int i;
1631   bool found = false;
1632   address libbase = NULL;
1633   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1634 
1635   // iterate through all loadable segments
1636   for (i = 0; i < info->dlpi_phnum; i++) {
1637     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1638     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1639       // base address of a library is the lowest address of its loaded
1640       // segments.
1641       if (libbase == NULL || libbase > segbase) {
1642         libbase = segbase;
1643       }
1644       // see if 'addr' is within current segment
1645       if (segbase <= d->addr &&
1646           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1647         found = true;
1648       }
1649     }
1650   }
1651 
1652   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1653   // so dll_address_to_library_name() can fall through to use dladdr() which
1654   // can figure out executable name from argv[0].
1655   if (found && info->dlpi_name && info->dlpi_name[0]) {
1656     d->base = libbase;
1657     if (d->fname) {
1658       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1659     }
1660     return 1;
1661   }
1662   return 0;
1663 }
1664 
1665 bool os::dll_address_to_library_name(address addr, char* buf,
1666                                      int buflen, int* offset) {
1667   // buf is not optional, but offset is optional
1668   assert(buf != NULL, "sanity check");
1669 
1670   Dl_info dlinfo;
1671   struct _address_to_library_name data;
1672 
1673   // There is a bug in old glibc dladdr() implementation that it could resolve
1674   // to wrong library name if the .so file has a base address != NULL. Here
1675   // we iterate through the program headers of all loaded libraries to find
1676   // out which library 'addr' really belongs to. This workaround can be
1677   // removed once the minimum requirement for glibc is moved to 2.3.x.
1678   data.addr = addr;
1679   data.fname = buf;
1680   data.buflen = buflen;
1681   data.base = NULL;
1682   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1683 
1684   if (rslt) {
1685     // buf already contains library name
1686     if (offset) *offset = addr - data.base;
1687     return true;
1688   }
1689   if (dladdr((void*)addr, &dlinfo) != 0) {
1690     if (dlinfo.dli_fname != NULL) {
1691       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1692     }
1693     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1694       *offset = addr - (address)dlinfo.dli_fbase;
1695     }
1696     return true;
1697   }
1698 
1699   buf[0] = '\0';
1700   if (offset) *offset = -1;
1701   return false;
1702 }
1703 
1704 // Loads .dll/.so and
1705 // in case of error it checks if .dll/.so was built for the
1706 // same architecture as Hotspot is running on
1707 
1708 
1709 // Remember the stack's state. The Linux dynamic linker will change
1710 // the stack to 'executable' at most once, so we must safepoint only once.
1711 bool os::Linux::_stack_is_executable = false;
1712 
1713 // VM operation that loads a library.  This is necessary if stack protection
1714 // of the Java stacks can be lost during loading the library.  If we
1715 // do not stop the Java threads, they can stack overflow before the stacks
1716 // are protected again.
1717 class VM_LinuxDllLoad: public VM_Operation {
1718  private:
1719   const char *_filename;
1720   char *_ebuf;
1721   int _ebuflen;
1722   void *_lib;
1723  public:
1724   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1725     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1726   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1727   void doit() {
1728     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1729     os::Linux::_stack_is_executable = true;
1730   }
1731   void* loaded_library() { return _lib; }
1732 };
1733 
1734 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1735   void * result = NULL;
1736   bool load_attempted = false;
1737 
1738   log_info(os)("attempting shared library load of %s", filename);
1739 
1740   // Check whether the library to load might change execution rights
1741   // of the stack. If they are changed, the protection of the stack
1742   // guard pages will be lost. We need a safepoint to fix this.
1743   //
1744   // See Linux man page execstack(8) for more info.
1745   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1746     if (!ElfFile::specifies_noexecstack(filename)) {
1747       if (!is_init_completed()) {
1748         os::Linux::_stack_is_executable = true;
1749         // This is OK - No Java threads have been created yet, and hence no
1750         // stack guard pages to fix.
1751         //
1752         // Dynamic loader will make all stacks executable after
1753         // this function returns, and will not do that again.
1754         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1755       } else {
1756         warning("You have loaded library %s which might have disabled stack guard. "
1757                 "The VM will try to fix the stack guard now.\n"
1758                 "It's highly recommended that you fix the library with "
1759                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1760                 filename);
1761 
1762         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1763         JavaThread *jt = JavaThread::current();
1764         if (jt->thread_state() != _thread_in_native) {
1765           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1766           // that requires ExecStack. Cannot enter safe point. Let's give up.
1767           warning("Unable to fix stack guard. Giving up.");
1768         } else {
1769           if (!LoadExecStackDllInVMThread) {
1770             // This is for the case where the DLL has an static
1771             // constructor function that executes JNI code. We cannot
1772             // load such DLLs in the VMThread.
1773             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1774           }
1775 
1776           ThreadInVMfromNative tiv(jt);
1777           debug_only(VMNativeEntryWrapper vew;)
1778 
1779           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1780           VMThread::execute(&op);
1781           if (LoadExecStackDllInVMThread) {
1782             result = op.loaded_library();
1783           }
1784           load_attempted = true;
1785         }
1786       }
1787     }
1788   }
1789 
1790   if (!load_attempted) {
1791     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1792   }
1793 
1794   if (result != NULL) {
1795     // Successful loading
1796     return result;
1797   }
1798 
1799   Elf32_Ehdr elf_head;
1800   int diag_msg_max_length=ebuflen-strlen(ebuf);
1801   char* diag_msg_buf=ebuf+strlen(ebuf);
1802 
1803   if (diag_msg_max_length==0) {
1804     // No more space in ebuf for additional diagnostics message
1805     return NULL;
1806   }
1807 
1808 
1809   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1810 
1811   if (file_descriptor < 0) {
1812     // Can't open library, report dlerror() message
1813     return NULL;
1814   }
1815 
1816   bool failed_to_read_elf_head=
1817     (sizeof(elf_head)!=
1818      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1819 
1820   ::close(file_descriptor);
1821   if (failed_to_read_elf_head) {
1822     // file i/o error - report dlerror() msg
1823     return NULL;
1824   }
1825 
1826   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1827     // handle invalid/out of range endianness values
1828     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1829       return NULL;
1830     }
1831 
1832 #if defined(VM_LITTLE_ENDIAN)
1833     // VM is LE, shared object BE
1834     elf_head.e_machine = be16toh(elf_head.e_machine);
1835 #else
1836     // VM is BE, shared object LE
1837     elf_head.e_machine = le16toh(elf_head.e_machine);
1838 #endif
1839   }
1840 
1841   typedef struct {
1842     Elf32_Half    code;         // Actual value as defined in elf.h
1843     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1844     unsigned char elf_class;    // 32 or 64 bit
1845     unsigned char endianness;   // MSB or LSB
1846     char*         name;         // String representation
1847   } arch_t;
1848 
1849 #ifndef EM_AARCH64
1850   #define EM_AARCH64    183               /* ARM AARCH64 */
1851 #endif
1852 #ifndef EM_RISCV
1853   #define EM_RISCV      243               /* RISC-V */
1854 #endif
1855 
1856   static const arch_t arch_array[]={
1857     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1858     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1859     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1860     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1861     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1862     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1863     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1864     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1865 #if defined(VM_LITTLE_ENDIAN)
1866     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1867     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1868 #else
1869     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1870     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1871 #endif
1872     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1873     // we only support 64 bit z architecture
1874     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1875     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1876     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1877     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1878     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1879     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1880     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1881     {EM_RISCV,       EM_RISCV,   ELFCLASS64, ELFDATA2LSB, (char*)"RISC-V"},
1882   };
1883 
1884 #if  (defined IA32)
1885   static  Elf32_Half running_arch_code=EM_386;
1886 #elif   (defined AMD64) || (defined X32)
1887   static  Elf32_Half running_arch_code=EM_X86_64;
1888 #elif  (defined IA64)
1889   static  Elf32_Half running_arch_code=EM_IA_64;
1890 #elif  (defined __sparc) && (defined _LP64)
1891   static  Elf32_Half running_arch_code=EM_SPARCV9;
1892 #elif  (defined __sparc) && (!defined _LP64)
1893   static  Elf32_Half running_arch_code=EM_SPARC;
1894 #elif  (defined __powerpc64__)
1895   static  Elf32_Half running_arch_code=EM_PPC64;
1896 #elif  (defined __powerpc__)
1897   static  Elf32_Half running_arch_code=EM_PPC;
1898 #elif  (defined AARCH64)
1899   static  Elf32_Half running_arch_code=EM_AARCH64;
1900 #elif  (defined ARM)
1901   static  Elf32_Half running_arch_code=EM_ARM;
1902 #elif  (defined S390)
1903   static  Elf32_Half running_arch_code=EM_S390;
1904 #elif  (defined ALPHA)
1905   static  Elf32_Half running_arch_code=EM_ALPHA;
1906 #elif  (defined MIPSEL)
1907   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1908 #elif  (defined PARISC)
1909   static  Elf32_Half running_arch_code=EM_PARISC;
1910 #elif  (defined MIPS)
1911   static  Elf32_Half running_arch_code=EM_MIPS;
1912 #elif  (defined M68K)
1913   static  Elf32_Half running_arch_code=EM_68K;
1914 #elif  (defined SH)
1915   static  Elf32_Half running_arch_code=EM_SH;
1916 #elif  (defined RISCV)
1917   static  Elf32_Half running_arch_code=EM_RISCV;
1918 #else
1919     #error Method os::dll_load requires that one of following is defined:\
1920         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, RISCV, S390, SH, __sparc
1921 #endif
1922 
1923   // Identify compatibility class for VM's architecture and library's architecture
1924   // Obtain string descriptions for architectures
1925 
1926   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1927   int running_arch_index=-1;
1928 
1929   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1930     if (running_arch_code == arch_array[i].code) {
1931       running_arch_index    = i;
1932     }
1933     if (lib_arch.code == arch_array[i].code) {
1934       lib_arch.compat_class = arch_array[i].compat_class;
1935       lib_arch.name         = arch_array[i].name;
1936     }
1937   }
1938 
1939   assert(running_arch_index != -1,
1940          "Didn't find running architecture code (running_arch_code) in arch_array");
1941   if (running_arch_index == -1) {
1942     // Even though running architecture detection failed
1943     // we may still continue with reporting dlerror() message
1944     return NULL;
1945   }
1946 
1947   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1948     if (lib_arch.name != NULL) {
1949       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1950                  " (Possible cause: can't load %s .so on a %s platform)",
1951                  lib_arch.name, arch_array[running_arch_index].name);
1952     } else {
1953       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1954                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1955                  lib_arch.code, arch_array[running_arch_index].name);
1956     }
1957     return NULL;
1958   }
1959 
1960   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1961     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1962     return NULL;
1963   }
1964 
1965   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1966   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1967     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1968     return NULL;
1969   }
1970 
1971   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1972     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1973                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1974                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1975     return NULL;
1976   }
1977 
1978   return NULL;
1979 }
1980 
1981 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1982                                 int ebuflen) {
1983   void * result = ::dlopen(filename, RTLD_LAZY);
1984   if (result == NULL) {
1985     const char* error_report = ::dlerror();
1986     if (error_report == NULL) {
1987       error_report = "dlerror returned no error description";
1988     }
1989     if (ebuf != NULL && ebuflen > 0) {
1990       ::strncpy(ebuf, error_report, ebuflen-1);
1991       ebuf[ebuflen-1]='\0';
1992     }
1993     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1994     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1995   } else {
1996     Events::log(NULL, "Loaded shared library %s", filename);
1997     log_info(os)("shared library load of %s was successful", filename);
1998   }
1999   return result;
2000 }
2001 
2002 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2003                                        int ebuflen) {
2004   void * result = NULL;
2005   if (LoadExecStackDllInVMThread) {
2006     result = dlopen_helper(filename, ebuf, ebuflen);
2007   }
2008 
2009   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2010   // library that requires an executable stack, or which does not have this
2011   // stack attribute set, dlopen changes the stack attribute to executable. The
2012   // read protection of the guard pages gets lost.
2013   //
2014   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2015   // may have been queued at the same time.
2016 
2017   if (!_stack_is_executable) {
2018     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2019       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2020           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2021         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2022           warning("Attempt to reguard stack yellow zone failed.");
2023         }
2024       }
2025     }
2026   }
2027 
2028   return result;
2029 }
2030 
2031 void* os::dll_lookup(void* handle, const char* name) {
2032   void* res = dlsym(handle, name);
2033   return res;
2034 }
2035 
2036 void* os::get_default_process_handle() {
2037   return (void*)::dlopen(NULL, RTLD_LAZY);
2038 }
2039 
2040 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2041   int fd = ::open(filename, O_RDONLY);
2042   if (fd == -1) {
2043     return false;
2044   }
2045 
2046   if (hdr != NULL) {
2047     st->print_cr("%s", hdr);
2048   }
2049 
2050   char buf[33];
2051   int bytes;
2052   buf[32] = '\0';
2053   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2054     st->print_raw(buf, bytes);
2055   }
2056 
2057   ::close(fd);
2058 
2059   return true;
2060 }
2061 
2062 static void _print_ascii_file_h(const char* header, const char* filename, outputStream* st) {
2063   st->print("%s", header);
2064   if (!_print_ascii_file(filename, st)) {
2065     st->print_cr("<Not Available>");
2066   }
2067 }
2068 
2069 void os::print_dll_info(outputStream *st) {
2070   st->print_cr("Dynamic libraries:");
2071 
2072   char fname[32];
2073   pid_t pid = os::Linux::gettid();
2074 
2075   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2076 
2077   if (!_print_ascii_file(fname, st)) {
2078     st->print("Can not get library information for pid = %d\n", pid);
2079   }
2080 }
2081 
2082 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2083   FILE *procmapsFile = NULL;
2084 
2085   // Open the procfs maps file for the current process
2086   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2087     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2088     char line[PATH_MAX + 100];
2089 
2090     // Read line by line from 'file'
2091     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2092       u8 base, top, inode;
2093       char name[sizeof(line)];
2094 
2095       // Parse fields from line, discard perms, offset and device
2096       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %*s %*s %*s " INT64_FORMAT " %s",
2097              &base, &top, &inode, name);
2098       // the last entry 'name' is empty for some entries, so we might have 3 matches instead of 4 for some lines
2099       if (matches < 3) continue;
2100       if (matches == 3) name[0] = '\0';
2101 
2102       // Filter by inode 0 so that we only get file system mapped files.
2103       if (inode != 0) {
2104 
2105         // Call callback with the fields of interest
2106         if(callback(name, (address)base, (address)top, param)) {
2107           // Oops abort, callback aborted
2108           fclose(procmapsFile);
2109           return 1;
2110         }
2111       }
2112     }
2113     fclose(procmapsFile);
2114   }
2115   return 0;
2116 }
2117 
2118 void os::print_os_info_brief(outputStream* st) {
2119   os::Linux::print_distro_info(st);
2120 
2121   os::Posix::print_uname_info(st);
2122 
2123   os::Linux::print_libversion_info(st);
2124 
2125 }
2126 
2127 void os::print_os_info(outputStream* st) {
2128   st->print("OS:");
2129 
2130   os::Linux::print_distro_info(st);
2131 
2132   os::Posix::print_uname_info(st);
2133 
2134   os::Linux::print_uptime_info(st);
2135 
2136   // Print warning if unsafe chroot environment detected
2137   if (unsafe_chroot_detected) {
2138     st->print("WARNING!! ");
2139     st->print_cr("%s", unstable_chroot_error);
2140   }
2141 
2142   os::Linux::print_libversion_info(st);
2143 
2144   os::Posix::print_rlimit_info(st);
2145 
2146   os::Posix::print_load_average(st);
2147 
2148   os::Linux::print_full_memory_info(st);
2149 
2150   os::Linux::print_proc_sys_info(st);
2151 
2152   os::Linux::print_ld_preload_file(st);
2153 
2154   os::Linux::print_container_info(st);
2155 
2156   VM_Version::print_platform_virtualization_info(st);
2157 
2158   os::Linux::print_steal_info(st);
2159 }
2160 
2161 // Try to identify popular distros.
2162 // Most Linux distributions have a /etc/XXX-release file, which contains
2163 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2164 // file that also contains the OS version string. Some have more than one
2165 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2166 // /etc/redhat-release.), so the order is important.
2167 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2168 // their own specific XXX-release file as well as a redhat-release file.
2169 // Because of this the XXX-release file needs to be searched for before the
2170 // redhat-release file.
2171 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2172 // search for redhat-release / SuSE-release needs to be before lsb-release.
2173 // Since the lsb-release file is the new standard it needs to be searched
2174 // before the older style release files.
2175 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2176 // next to last resort.  The os-release file is a new standard that contains
2177 // distribution information and the system-release file seems to be an old
2178 // standard that has been replaced by the lsb-release and os-release files.
2179 // Searching for the debian_version file is the last resort.  It contains
2180 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2181 // "Debian " is printed before the contents of the debian_version file.
2182 
2183 const char* distro_files[] = {
2184   "/etc/oracle-release",
2185   "/etc/mandriva-release",
2186   "/etc/mandrake-release",
2187   "/etc/sun-release",
2188   "/etc/redhat-release",
2189   "/etc/SuSE-release",
2190   "/etc/lsb-release",
2191   "/etc/turbolinux-release",
2192   "/etc/gentoo-release",
2193   "/etc/ltib-release",
2194   "/etc/angstrom-version",
2195   "/etc/system-release",
2196   "/etc/os-release",
2197   NULL };
2198 
2199 void os::Linux::print_distro_info(outputStream* st) {
2200   for (int i = 0;; i++) {
2201     const char* file = distro_files[i];
2202     if (file == NULL) {
2203       break;  // done
2204     }
2205     // If file prints, we found it.
2206     if (_print_ascii_file(file, st)) {
2207       return;
2208     }
2209   }
2210 
2211   if (file_exists("/etc/debian_version")) {
2212     st->print("Debian ");
2213     _print_ascii_file("/etc/debian_version", st);
2214   } else {
2215     st->print("Linux");
2216   }
2217   st->cr();
2218 }
2219 
2220 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2221   char buf[256];
2222   while (fgets(buf, sizeof(buf), fp)) {
2223     // Edit out extra stuff in expected format
2224     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2225       char* ptr = strstr(buf, "\"");  // the name is in quotes
2226       if (ptr != NULL) {
2227         ptr++; // go beyond first quote
2228         char* nl = strchr(ptr, '\"');
2229         if (nl != NULL) *nl = '\0';
2230         strncpy(distro, ptr, length);
2231       } else {
2232         ptr = strstr(buf, "=");
2233         ptr++; // go beyond equals then
2234         char* nl = strchr(ptr, '\n');
2235         if (nl != NULL) *nl = '\0';
2236         strncpy(distro, ptr, length);
2237       }
2238       return;
2239     } else if (get_first_line) {
2240       char* nl = strchr(buf, '\n');
2241       if (nl != NULL) *nl = '\0';
2242       strncpy(distro, buf, length);
2243       return;
2244     }
2245   }
2246   // print last line and close
2247   char* nl = strchr(buf, '\n');
2248   if (nl != NULL) *nl = '\0';
2249   strncpy(distro, buf, length);
2250 }
2251 
2252 static void parse_os_info(char* distro, size_t length, const char* file) {
2253   FILE* fp = fopen(file, "r");
2254   if (fp != NULL) {
2255     // if suse format, print out first line
2256     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2257     parse_os_info_helper(fp, distro, length, get_first_line);
2258     fclose(fp);
2259   }
2260 }
2261 
2262 void os::get_summary_os_info(char* buf, size_t buflen) {
2263   for (int i = 0;; i++) {
2264     const char* file = distro_files[i];
2265     if (file == NULL) {
2266       break; // ran out of distro_files
2267     }
2268     if (file_exists(file)) {
2269       parse_os_info(buf, buflen, file);
2270       return;
2271     }
2272   }
2273   // special case for debian
2274   if (file_exists("/etc/debian_version")) {
2275     strncpy(buf, "Debian ", buflen);
2276     if (buflen > 7) {
2277       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2278     }
2279   } else {
2280     strncpy(buf, "Linux", buflen);
2281   }
2282 }
2283 
2284 void os::Linux::print_libversion_info(outputStream* st) {
2285   // libc, pthread
2286   st->print("libc:");
2287   st->print("%s ", os::Linux::glibc_version());
2288   st->print("%s ", os::Linux::libpthread_version());
2289   st->cr();
2290 }
2291 
2292 void os::Linux::print_proc_sys_info(outputStream* st) {
2293   st->cr();
2294   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2295   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2296   st->cr();
2297   st->cr();
2298 
2299   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2300   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2301   st->cr();
2302   st->cr();
2303 
2304   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2305   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2306   st->cr();
2307   st->cr();
2308 }
2309 
2310 void os::Linux::print_full_memory_info(outputStream* st) {
2311   st->print("\n/proc/meminfo:\n");
2312   _print_ascii_file("/proc/meminfo", st);
2313   st->cr();
2314 
2315   // some information regarding THPs; for details see
2316   // https://www.kernel.org/doc/Documentation/vm/transhuge.txt
2317   st->print_cr("/sys/kernel/mm/transparent_hugepage/enabled:");
2318   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/enabled", st)) {
2319     st->print_cr("  <Not Available>");
2320   }
2321   st->cr();
2322   st->print_cr("/sys/kernel/mm/transparent_hugepage/defrag (defrag/compaction efforts parameter):");
2323   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/defrag", st)) {
2324     st->print_cr("  <Not Available>");
2325   }
2326   st->cr();
2327 }
2328 
2329 void os::Linux::print_ld_preload_file(outputStream* st) {
2330   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2331   st->cr();
2332 }
2333 
2334 void os::Linux::print_uptime_info(outputStream* st) {
2335   struct sysinfo sinfo;
2336   int ret = sysinfo(&sinfo);
2337   if (ret == 0) {
2338     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2339   }
2340 }
2341 
2342 
2343 void os::Linux::print_container_info(outputStream* st) {
2344   if (!OSContainer::is_containerized()) {
2345     return;
2346   }
2347 
2348   st->print("container (cgroup) information:\n");
2349 
2350   const char *p_ct = OSContainer::container_type();
2351   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2352 
2353   char *p = OSContainer::cpu_cpuset_cpus();
2354   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2355   free(p);
2356 
2357   p = OSContainer::cpu_cpuset_memory_nodes();
2358   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2359   free(p);
2360 
2361   int i = OSContainer::active_processor_count();
2362   st->print("active_processor_count: ");
2363   if (i > 0) {
2364     st->print("%d\n", i);
2365   } else {
2366     st->print("not supported\n");
2367   }
2368 
2369   i = OSContainer::cpu_quota();
2370   st->print("cpu_quota: ");
2371   if (i > 0) {
2372     st->print("%d\n", i);
2373   } else {
2374     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2375   }
2376 
2377   i = OSContainer::cpu_period();
2378   st->print("cpu_period: ");
2379   if (i > 0) {
2380     st->print("%d\n", i);
2381   } else {
2382     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2383   }
2384 
2385   i = OSContainer::cpu_shares();
2386   st->print("cpu_shares: ");
2387   if (i > 0) {
2388     st->print("%d\n", i);
2389   } else {
2390     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2391   }
2392 
2393   jlong j = OSContainer::memory_limit_in_bytes();
2394   st->print("memory_limit_in_bytes: ");
2395   if (j > 0) {
2396     st->print(JLONG_FORMAT "\n", j);
2397   } else {
2398     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2399   }
2400 
2401   j = OSContainer::memory_and_swap_limit_in_bytes();
2402   st->print("memory_and_swap_limit_in_bytes: ");
2403   if (j > 0) {
2404     st->print(JLONG_FORMAT "\n", j);
2405   } else {
2406     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2407   }
2408 
2409   j = OSContainer::memory_soft_limit_in_bytes();
2410   st->print("memory_soft_limit_in_bytes: ");
2411   if (j > 0) {
2412     st->print(JLONG_FORMAT "\n", j);
2413   } else {
2414     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2415   }
2416 
2417   j = OSContainer::OSContainer::memory_usage_in_bytes();
2418   st->print("memory_usage_in_bytes: ");
2419   if (j > 0) {
2420     st->print(JLONG_FORMAT "\n", j);
2421   } else {
2422     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2423   }
2424 
2425   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2426   st->print("memory_max_usage_in_bytes: ");
2427   if (j > 0) {
2428     st->print(JLONG_FORMAT "\n", j);
2429   } else {
2430     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2431   }
2432   st->cr();
2433 }
2434 
2435 void os::Linux::print_steal_info(outputStream* st) {
2436   if (has_initial_tick_info) {
2437     CPUPerfTicks pticks;
2438     bool res = os::Linux::get_tick_information(&pticks, -1);
2439 
2440     if (res && pticks.has_steal_ticks) {
2441       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2442       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2443       double steal_ticks_perc = 0.0;
2444       if (total_ticks_difference != 0) {
2445         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2446       }
2447       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2448       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2449     }
2450   }
2451 }
2452 
2453 void os::print_memory_info(outputStream* st) {
2454 
2455   st->print("Memory:");
2456   st->print(" %dk page", os::vm_page_size()>>10);
2457 
2458   // values in struct sysinfo are "unsigned long"
2459   struct sysinfo si;
2460   sysinfo(&si);
2461 
2462   st->print(", physical " UINT64_FORMAT "k",
2463             os::physical_memory() >> 10);
2464   st->print("(" UINT64_FORMAT "k free)",
2465             os::available_memory() >> 10);
2466   st->print(", swap " UINT64_FORMAT "k",
2467             ((jlong)si.totalswap * si.mem_unit) >> 10);
2468   st->print("(" UINT64_FORMAT "k free)",
2469             ((jlong)si.freeswap * si.mem_unit) >> 10);
2470   st->cr();
2471 }
2472 
2473 // Print the first "model name" line and the first "flags" line
2474 // that we find and nothing more. We assume "model name" comes
2475 // before "flags" so if we find a second "model name", then the
2476 // "flags" field is considered missing.
2477 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2478 #if defined(IA32) || defined(AMD64)
2479   // Other platforms have less repetitive cpuinfo files
2480   FILE *fp = fopen("/proc/cpuinfo", "r");
2481   if (fp) {
2482     while (!feof(fp)) {
2483       if (fgets(buf, buflen, fp)) {
2484         // Assume model name comes before flags
2485         bool model_name_printed = false;
2486         if (strstr(buf, "model name") != NULL) {
2487           if (!model_name_printed) {
2488             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2489             st->print_raw(buf);
2490             model_name_printed = true;
2491           } else {
2492             // model name printed but not flags?  Odd, just return
2493             fclose(fp);
2494             return true;
2495           }
2496         }
2497         // print the flags line too
2498         if (strstr(buf, "flags") != NULL) {
2499           st->print_raw(buf);
2500           fclose(fp);
2501           return true;
2502         }
2503       }
2504     }
2505     fclose(fp);
2506   }
2507 #endif // x86 platforms
2508   return false;
2509 }
2510 
2511 // additional information about CPU e.g. available frequency ranges
2512 static void print_sys_devices_cpu_info(outputStream* st, char* buf, size_t buflen) {
2513   _print_ascii_file_h("Online cpus:", "/sys/devices/system/cpu/online", st);
2514   _print_ascii_file_h("Offline cpus:", "/sys/devices/system/cpu/offline", st);
2515 
2516   if (ExtensiveErrorReports) {
2517     // cache related info (cpu 0, should be similar for other CPUs)
2518     for (unsigned int i=0; i < 10; i++) { // handle max. 10 cache entries
2519       char hbuf_level[60];
2520       char hbuf_type[60];
2521       char hbuf_size[60];
2522       char hbuf_coherency_line_size[80];
2523       snprintf(hbuf_level, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/level", i);
2524       snprintf(hbuf_type, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/type", i);
2525       snprintf(hbuf_size, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/size", i);
2526       snprintf(hbuf_coherency_line_size, 80, "/sys/devices/system/cpu/cpu0/cache/index%u/coherency_line_size", i);
2527       if (file_exists(hbuf_level)) {
2528         _print_ascii_file_h("cache level:", hbuf_level, st);
2529         _print_ascii_file_h("cache type:", hbuf_type, st);
2530         _print_ascii_file_h("cache size:", hbuf_size, st);
2531         _print_ascii_file_h("cache coherency line size:", hbuf_coherency_line_size, st);
2532       }
2533     }
2534   }
2535 
2536   // we miss the cpufreq entries on Power and s390x
2537 #if defined(IA32) || defined(AMD64)
2538   _print_ascii_file_h("BIOS frequency limitation:", "/sys/devices/system/cpu/cpu0/cpufreq/bios_limit", st);
2539   _print_ascii_file_h("Frequency switch latency (ns):", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_transition_latency", st);
2540   _print_ascii_file_h("Available cpu frequencies:", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies", st);
2541   // min and max should be in the Available range but still print them (not all info might be available for all kernels)
2542   if (ExtensiveErrorReports) {
2543     _print_ascii_file_h("Maximum cpu frequency:", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", st);
2544     _print_ascii_file_h("Minimum cpu frequency:", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_min_freq", st);
2545     _print_ascii_file_h("Current cpu frequency:", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq", st);
2546   }
2547   // governors are power schemes, see https://wiki.archlinux.org/index.php/CPU_frequency_scaling
2548   if (ExtensiveErrorReports) {
2549     _print_ascii_file_h("Available governors:", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors", st);
2550   }
2551   _print_ascii_file_h("Current governor:", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor", st);
2552   // Core performance boost, see https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt
2553   // Raise operating frequency of some cores in a multi-core package if certain conditions apply, e.g.
2554   // whole chip is not fully utilized
2555   _print_ascii_file_h("Core performance/turbo boost:", "/sys/devices/system/cpu/cpufreq/boost", st);
2556 #endif
2557 }
2558 
2559 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2560   // Only print the model name if the platform provides this as a summary
2561   if (!print_model_name_and_flags(st, buf, buflen)) {
2562     st->print("\n/proc/cpuinfo:\n");
2563     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2564       st->print_cr("  <Not Available>");
2565     }
2566   }
2567   print_sys_devices_cpu_info(st, buf, buflen);
2568 }
2569 
2570 #if defined(AMD64) || defined(IA32) || defined(X32)
2571 const char* search_string = "model name";
2572 #elif defined(M68K)
2573 const char* search_string = "CPU";
2574 #elif defined(PPC64)
2575 const char* search_string = "cpu";
2576 #elif defined(S390)
2577 const char* search_string = "machine =";
2578 #elif defined(SPARC)
2579 const char* search_string = "cpu";
2580 #else
2581 const char* search_string = "Processor";
2582 #endif
2583 
2584 // Parses the cpuinfo file for string representing the model name.
2585 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2586   FILE* fp = fopen("/proc/cpuinfo", "r");
2587   if (fp != NULL) {
2588     while (!feof(fp)) {
2589       char buf[256];
2590       if (fgets(buf, sizeof(buf), fp)) {
2591         char* start = strstr(buf, search_string);
2592         if (start != NULL) {
2593           char *ptr = start + strlen(search_string);
2594           char *end = buf + strlen(buf);
2595           while (ptr != end) {
2596              // skip whitespace and colon for the rest of the name.
2597              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2598                break;
2599              }
2600              ptr++;
2601           }
2602           if (ptr != end) {
2603             // reasonable string, get rid of newline and keep the rest
2604             char* nl = strchr(buf, '\n');
2605             if (nl != NULL) *nl = '\0';
2606             strncpy(cpuinfo, ptr, length);
2607             fclose(fp);
2608             return;
2609           }
2610         }
2611       }
2612     }
2613     fclose(fp);
2614   }
2615   // cpuinfo not found or parsing failed, just print generic string.  The entire
2616   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2617 #if   defined(AARCH64)
2618   strncpy(cpuinfo, "AArch64", length);
2619 #elif defined(AMD64)
2620   strncpy(cpuinfo, "x86_64", length);
2621 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2622   strncpy(cpuinfo, "ARM", length);
2623 #elif defined(IA32)
2624   strncpy(cpuinfo, "x86_32", length);
2625 #elif defined(IA64)
2626   strncpy(cpuinfo, "IA64", length);
2627 #elif defined(PPC)
2628   strncpy(cpuinfo, "PPC64", length);
2629 #elif defined(S390)
2630   strncpy(cpuinfo, "S390", length);
2631 #elif defined(SPARC)
2632   strncpy(cpuinfo, "sparcv9", length);
2633 #elif defined(ZERO_LIBARCH)
2634   strncpy(cpuinfo, ZERO_LIBARCH, length);
2635 #else
2636   strncpy(cpuinfo, "unknown", length);
2637 #endif
2638 }
2639 
2640 static void print_signal_handler(outputStream* st, int sig,
2641                                  char* buf, size_t buflen);
2642 
2643 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2644   st->print_cr("Signal Handlers:");
2645   print_signal_handler(st, SIGSEGV, buf, buflen);
2646   print_signal_handler(st, SIGBUS , buf, buflen);
2647   print_signal_handler(st, SIGFPE , buf, buflen);
2648   print_signal_handler(st, SIGPIPE, buf, buflen);
2649   print_signal_handler(st, SIGXFSZ, buf, buflen);
2650   print_signal_handler(st, SIGILL , buf, buflen);
2651   print_signal_handler(st, SR_signum, buf, buflen);
2652   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2653   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2654   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2655   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2656 #if defined(PPC64)
2657   print_signal_handler(st, SIGTRAP, buf, buflen);
2658 #endif
2659 }
2660 
2661 static char saved_jvm_path[MAXPATHLEN] = {0};
2662 
2663 // Find the full path to the current module, libjvm.so
2664 void os::jvm_path(char *buf, jint buflen) {
2665   // Error checking.
2666   if (buflen < MAXPATHLEN) {
2667     assert(false, "must use a large-enough buffer");
2668     buf[0] = '\0';
2669     return;
2670   }
2671   // Lazy resolve the path to current module.
2672   if (saved_jvm_path[0] != 0) {
2673     strcpy(buf, saved_jvm_path);
2674     return;
2675   }
2676 
2677   char dli_fname[MAXPATHLEN];
2678   bool ret = dll_address_to_library_name(
2679                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2680                                          dli_fname, sizeof(dli_fname), NULL);
2681   assert(ret, "cannot locate libjvm");
2682   char *rp = NULL;
2683   if (ret && dli_fname[0] != '\0') {
2684     rp = os::Posix::realpath(dli_fname, buf, buflen);
2685   }
2686   if (rp == NULL) {
2687     return;
2688   }
2689 
2690   if (Arguments::sun_java_launcher_is_altjvm()) {
2691     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2692     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2693     // If "/jre/lib/" appears at the right place in the string, then
2694     // assume we are installed in a JDK and we're done. Otherwise, check
2695     // for a JAVA_HOME environment variable and fix up the path so it
2696     // looks like libjvm.so is installed there (append a fake suffix
2697     // hotspot/libjvm.so).
2698     const char *p = buf + strlen(buf) - 1;
2699     for (int count = 0; p > buf && count < 5; ++count) {
2700       for (--p; p > buf && *p != '/'; --p)
2701         /* empty */ ;
2702     }
2703 
2704     if (strncmp(p, "/jre/lib/", 9) != 0) {
2705       // Look for JAVA_HOME in the environment.
2706       char* java_home_var = ::getenv("JAVA_HOME");
2707       if (java_home_var != NULL && java_home_var[0] != 0) {
2708         char* jrelib_p;
2709         int len;
2710 
2711         // Check the current module name "libjvm.so".
2712         p = strrchr(buf, '/');
2713         if (p == NULL) {
2714           return;
2715         }
2716         assert(strstr(p, "/libjvm") == p, "invalid library name");
2717 
2718         rp = os::Posix::realpath(java_home_var, buf, buflen);
2719         if (rp == NULL) {
2720           return;
2721         }
2722 
2723         // determine if this is a legacy image or modules image
2724         // modules image doesn't have "jre" subdirectory
2725         len = strlen(buf);
2726         assert(len < buflen, "Ran out of buffer room");
2727         jrelib_p = buf + len;
2728         snprintf(jrelib_p, buflen-len, "/jre/lib");
2729         if (0 != access(buf, F_OK)) {
2730           snprintf(jrelib_p, buflen-len, "/lib");
2731         }
2732 
2733         if (0 == access(buf, F_OK)) {
2734           // Use current module name "libjvm.so"
2735           len = strlen(buf);
2736           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2737         } else {
2738           // Go back to path of .so
2739           rp = os::Posix::realpath(dli_fname, buf, buflen);
2740           if (rp == NULL) {
2741             return;
2742           }
2743         }
2744       }
2745     }
2746   }
2747 
2748   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2749   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2750 }
2751 
2752 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2753   // no prefix required, not even "_"
2754 }
2755 
2756 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2757   // no suffix required
2758 }
2759 
2760 ////////////////////////////////////////////////////////////////////////////////
2761 // sun.misc.Signal support
2762 
2763 static void UserHandler(int sig, void *siginfo, void *context) {
2764   // Ctrl-C is pressed during error reporting, likely because the error
2765   // handler fails to abort. Let VM die immediately.
2766   if (sig == SIGINT && VMError::is_error_reported()) {
2767     os::die();
2768   }
2769 
2770   os::signal_notify(sig);
2771 }
2772 
2773 void* os::user_handler() {
2774   return CAST_FROM_FN_PTR(void*, UserHandler);
2775 }
2776 
2777 extern "C" {
2778   typedef void (*sa_handler_t)(int);
2779   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2780 }
2781 
2782 void* os::signal(int signal_number, void* handler) {
2783   struct sigaction sigAct, oldSigAct;
2784 
2785   sigfillset(&(sigAct.sa_mask));
2786   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2787   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2788 
2789   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2790     // -1 means registration failed
2791     return (void *)-1;
2792   }
2793 
2794   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2795 }
2796 
2797 void os::signal_raise(int signal_number) {
2798   ::raise(signal_number);
2799 }
2800 
2801 // The following code is moved from os.cpp for making this
2802 // code platform specific, which it is by its very nature.
2803 
2804 // Will be modified when max signal is changed to be dynamic
2805 int os::sigexitnum_pd() {
2806   return NSIG;
2807 }
2808 
2809 // a counter for each possible signal value
2810 static volatile jint pending_signals[NSIG+1] = { 0 };
2811 
2812 // Linux(POSIX) specific hand shaking semaphore.
2813 static Semaphore* sig_sem = NULL;
2814 static PosixSemaphore sr_semaphore;
2815 
2816 static void jdk_misc_signal_init() {
2817   // Initialize signal structures
2818   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2819 
2820   // Initialize signal semaphore
2821   sig_sem = new Semaphore();
2822 }
2823 
2824 void os::signal_notify(int sig) {
2825   if (sig_sem != NULL) {
2826     Atomic::inc(&pending_signals[sig]);
2827     sig_sem->signal();
2828   } else {
2829     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2830     // initialization isn't called.
2831     assert(ReduceSignalUsage, "signal semaphore should be created");
2832   }
2833 }
2834 
2835 static int check_pending_signals() {
2836   for (;;) {
2837     for (int i = 0; i < NSIG + 1; i++) {
2838       jint n = pending_signals[i];
2839       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2840         return i;
2841       }
2842     }
2843     JavaThread *thread = JavaThread::current();
2844     ThreadBlockInVM tbivm(thread);
2845 
2846     bool threadIsSuspended;
2847     do {
2848       thread->set_suspend_equivalent();
2849       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2850       sig_sem->wait();
2851 
2852       // were we externally suspended while we were waiting?
2853       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2854       if (threadIsSuspended) {
2855         // The semaphore has been incremented, but while we were waiting
2856         // another thread suspended us. We don't want to continue running
2857         // while suspended because that would surprise the thread that
2858         // suspended us.
2859         sig_sem->signal();
2860 
2861         thread->java_suspend_self();
2862       }
2863     } while (threadIsSuspended);
2864   }
2865 }
2866 
2867 int os::signal_wait() {
2868   return check_pending_signals();
2869 }
2870 
2871 ////////////////////////////////////////////////////////////////////////////////
2872 // Virtual Memory
2873 
2874 int os::vm_page_size() {
2875   // Seems redundant as all get out
2876   assert(os::Linux::page_size() != -1, "must call os::init");
2877   return os::Linux::page_size();
2878 }
2879 
2880 // Solaris allocates memory by pages.
2881 int os::vm_allocation_granularity() {
2882   assert(os::Linux::page_size() != -1, "must call os::init");
2883   return os::Linux::page_size();
2884 }
2885 
2886 // Rationale behind this function:
2887 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2888 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2889 //  samples for JITted code. Here we create private executable mapping over the code cache
2890 //  and then we can use standard (well, almost, as mapping can change) way to provide
2891 //  info for the reporting script by storing timestamp and location of symbol
2892 void linux_wrap_code(char* base, size_t size) {
2893   static volatile jint cnt = 0;
2894 
2895   if (!UseOprofile) {
2896     return;
2897   }
2898 
2899   char buf[PATH_MAX+1];
2900   int num = Atomic::add(&cnt, 1);
2901 
2902   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2903            os::get_temp_directory(), os::current_process_id(), num);
2904   unlink(buf);
2905 
2906   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2907 
2908   if (fd != -1) {
2909     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2910     if (rv != (off_t)-1) {
2911       if (::write(fd, "", 1) == 1) {
2912         mmap(base, size,
2913              PROT_READ|PROT_WRITE|PROT_EXEC,
2914              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2915       }
2916     }
2917     ::close(fd);
2918     unlink(buf);
2919   }
2920 }
2921 
2922 static bool recoverable_mmap_error(int err) {
2923   // See if the error is one we can let the caller handle. This
2924   // list of errno values comes from JBS-6843484. I can't find a
2925   // Linux man page that documents this specific set of errno
2926   // values so while this list currently matches Solaris, it may
2927   // change as we gain experience with this failure mode.
2928   switch (err) {
2929   case EBADF:
2930   case EINVAL:
2931   case ENOTSUP:
2932     // let the caller deal with these errors
2933     return true;
2934 
2935   default:
2936     // Any remaining errors on this OS can cause our reserved mapping
2937     // to be lost. That can cause confusion where different data
2938     // structures think they have the same memory mapped. The worst
2939     // scenario is if both the VM and a library think they have the
2940     // same memory mapped.
2941     return false;
2942   }
2943 }
2944 
2945 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2946                                     int err) {
2947   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2948           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2949           os::strerror(err), err);
2950 }
2951 
2952 static void warn_fail_commit_memory(char* addr, size_t size,
2953                                     size_t alignment_hint, bool exec,
2954                                     int err) {
2955   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2956           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2957           alignment_hint, exec, os::strerror(err), err);
2958 }
2959 
2960 // NOTE: Linux kernel does not really reserve the pages for us.
2961 //       All it does is to check if there are enough free pages
2962 //       left at the time of mmap(). This could be a potential
2963 //       problem.
2964 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2965   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2966   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2967                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2968   if (res != (uintptr_t) MAP_FAILED) {
2969     if (UseNUMAInterleaving) {
2970       numa_make_global(addr, size);
2971     }
2972     return 0;
2973   }
2974 
2975   int err = errno;  // save errno from mmap() call above
2976 
2977   if (!recoverable_mmap_error(err)) {
2978     warn_fail_commit_memory(addr, size, exec, err);
2979     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2980   }
2981 
2982   return err;
2983 }
2984 
2985 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2986   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2987 }
2988 
2989 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2990                                   const char* mesg) {
2991   assert(mesg != NULL, "mesg must be specified");
2992   int err = os::Linux::commit_memory_impl(addr, size, exec);
2993   if (err != 0) {
2994     // the caller wants all commit errors to exit with the specified mesg:
2995     warn_fail_commit_memory(addr, size, exec, err);
2996     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2997   }
2998 }
2999 
3000 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
3001 #ifndef MAP_HUGETLB
3002   #define MAP_HUGETLB 0x40000
3003 #endif
3004 
3005 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
3006 #ifndef MADV_HUGEPAGE
3007   #define MADV_HUGEPAGE 14
3008 #endif
3009 
3010 int os::Linux::commit_memory_impl(char* addr, size_t size,
3011                                   size_t alignment_hint, bool exec) {
3012   int err = os::Linux::commit_memory_impl(addr, size, exec);
3013   if (err == 0) {
3014     realign_memory(addr, size, alignment_hint);
3015   }
3016   return err;
3017 }
3018 
3019 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3020                           bool exec) {
3021   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
3022 }
3023 
3024 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3025                                   size_t alignment_hint, bool exec,
3026                                   const char* mesg) {
3027   assert(mesg != NULL, "mesg must be specified");
3028   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
3029   if (err != 0) {
3030     // the caller wants all commit errors to exit with the specified mesg:
3031     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
3032     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3033   }
3034 }
3035 
3036 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
3037   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
3038     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
3039     // be supported or the memory may already be backed by huge pages.
3040     ::madvise(addr, bytes, MADV_HUGEPAGE);
3041   }
3042 }
3043 
3044 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
3045   // This method works by doing an mmap over an existing mmaping and effectively discarding
3046   // the existing pages. However it won't work for SHM-based large pages that cannot be
3047   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
3048   // small pages on top of the SHM segment. This method always works for small pages, so we
3049   // allow that in any case.
3050   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
3051     commit_memory(addr, bytes, alignment_hint, !ExecMem);
3052   }
3053 }
3054 
3055 void os::numa_make_global(char *addr, size_t bytes) {
3056   Linux::numa_interleave_memory(addr, bytes);
3057 }
3058 
3059 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
3060 // bind policy to MPOL_PREFERRED for the current thread.
3061 #define USE_MPOL_PREFERRED 0
3062 
3063 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
3064   // To make NUMA and large pages more robust when both enabled, we need to ease
3065   // the requirements on where the memory should be allocated. MPOL_BIND is the
3066   // default policy and it will force memory to be allocated on the specified
3067   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
3068   // the specified node, but will not force it. Using this policy will prevent
3069   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
3070   // free large pages.
3071   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3072   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3073 }
3074 
3075 bool os::numa_topology_changed() { return false; }
3076 
3077 size_t os::numa_get_groups_num() {
3078   // Return just the number of nodes in which it's possible to allocate memory
3079   // (in numa terminology, configured nodes).
3080   return Linux::numa_num_configured_nodes();
3081 }
3082 
3083 int os::numa_get_group_id() {
3084   int cpu_id = Linux::sched_getcpu();
3085   if (cpu_id != -1) {
3086     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3087     if (lgrp_id != -1) {
3088       return lgrp_id;
3089     }
3090   }
3091   return 0;
3092 }
3093 
3094 int os::numa_get_group_id_for_address(const void* address) {
3095   void** pages = const_cast<void**>(&address);
3096   int id = -1;
3097 
3098   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3099     return -1;
3100   }
3101   if (id < 0) {
3102     return -1;
3103   }
3104   return id;
3105 }
3106 
3107 int os::Linux::get_existing_num_nodes() {
3108   int node;
3109   int highest_node_number = Linux::numa_max_node();
3110   int num_nodes = 0;
3111 
3112   // Get the total number of nodes in the system including nodes without memory.
3113   for (node = 0; node <= highest_node_number; node++) {
3114     if (is_node_in_existing_nodes(node)) {
3115       num_nodes++;
3116     }
3117   }
3118   return num_nodes;
3119 }
3120 
3121 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3122   int highest_node_number = Linux::numa_max_node();
3123   size_t i = 0;
3124 
3125   // Map all node ids in which it is possible to allocate memory. Also nodes are
3126   // not always consecutively available, i.e. available from 0 to the highest
3127   // node number. If the nodes have been bound explicitly using numactl membind,
3128   // then allocate memory from those nodes only.
3129   for (int node = 0; node <= highest_node_number; node++) {
3130     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3131       ids[i++] = node;
3132     }
3133   }
3134   return i;
3135 }
3136 
3137 bool os::get_page_info(char *start, page_info* info) {
3138   return false;
3139 }
3140 
3141 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3142                      page_info* page_found) {
3143   return end;
3144 }
3145 
3146 
3147 int os::Linux::sched_getcpu_syscall(void) {
3148   unsigned int cpu = 0;
3149   int retval = -1;
3150 
3151 #if defined(IA32)
3152   #ifndef SYS_getcpu
3153     #define SYS_getcpu 318
3154   #endif
3155   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3156 #elif defined(AMD64)
3157 // Unfortunately we have to bring all these macros here from vsyscall.h
3158 // to be able to compile on old linuxes.
3159   #define __NR_vgetcpu 2
3160   #define VSYSCALL_START (-10UL << 20)
3161   #define VSYSCALL_SIZE 1024
3162   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3163   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3164   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3165   retval = vgetcpu(&cpu, NULL, NULL);
3166 #endif
3167 
3168   return (retval == -1) ? retval : cpu;
3169 }
3170 
3171 void os::Linux::sched_getcpu_init() {
3172   // sched_getcpu() should be in libc.
3173   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3174                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3175 
3176   // If it's not, try a direct syscall.
3177   if (sched_getcpu() == -1) {
3178     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3179                                     (void*)&sched_getcpu_syscall));
3180   }
3181 
3182   if (sched_getcpu() == -1) {
3183     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3184   }
3185 }
3186 
3187 // Something to do with the numa-aware allocator needs these symbols
3188 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3189 extern "C" JNIEXPORT void numa_error(char *where) { }
3190 
3191 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3192 // load symbol from base version instead.
3193 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3194   void *f = dlvsym(handle, name, "libnuma_1.1");
3195   if (f == NULL) {
3196     f = dlsym(handle, name);
3197   }
3198   return f;
3199 }
3200 
3201 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3202 // Return NULL if the symbol is not defined in this particular version.
3203 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3204   return dlvsym(handle, name, "libnuma_1.2");
3205 }
3206 
3207 bool os::Linux::libnuma_init() {
3208   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3209     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3210     if (handle != NULL) {
3211       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3212                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3213       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3214                                        libnuma_dlsym(handle, "numa_max_node")));
3215       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3216                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3217       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3218                                         libnuma_dlsym(handle, "numa_available")));
3219       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3220                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3221       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3222                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3223       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3224                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3225       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3226                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3227       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3228                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3229       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3230                                        libnuma_dlsym(handle, "numa_distance")));
3231       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3232                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3233       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3234                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3235       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3236                                          libnuma_dlsym(handle, "numa_move_pages")));
3237       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3238                                             libnuma_dlsym(handle, "numa_set_preferred")));
3239 
3240       if (numa_available() != -1) {
3241         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3242         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3243         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3244         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3245         set_numa_membind_bitmask(_numa_get_membind());
3246         // Create an index -> node mapping, since nodes are not always consecutive
3247         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3248         rebuild_nindex_to_node_map();
3249         // Create a cpu -> node mapping
3250         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3251         rebuild_cpu_to_node_map();
3252         return true;
3253       }
3254     }
3255   }
3256   return false;
3257 }
3258 
3259 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3260   // Creating guard page is very expensive. Java thread has HotSpot
3261   // guard pages, only enable glibc guard page for non-Java threads.
3262   // (Remember: compiler thread is a Java thread, too!)
3263   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3264 }
3265 
3266 void os::Linux::rebuild_nindex_to_node_map() {
3267   int highest_node_number = Linux::numa_max_node();
3268 
3269   nindex_to_node()->clear();
3270   for (int node = 0; node <= highest_node_number; node++) {
3271     if (Linux::is_node_in_existing_nodes(node)) {
3272       nindex_to_node()->append(node);
3273     }
3274   }
3275 }
3276 
3277 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3278 // The table is later used in get_node_by_cpu().
3279 void os::Linux::rebuild_cpu_to_node_map() {
3280   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3281                               // in libnuma (possible values are starting from 16,
3282                               // and continuing up with every other power of 2, but less
3283                               // than the maximum number of CPUs supported by kernel), and
3284                               // is a subject to change (in libnuma version 2 the requirements
3285                               // are more reasonable) we'll just hardcode the number they use
3286                               // in the library.
3287   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3288 
3289   size_t cpu_num = processor_count();
3290   size_t cpu_map_size = NCPUS / BitsPerCLong;
3291   size_t cpu_map_valid_size =
3292     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3293 
3294   cpu_to_node()->clear();
3295   cpu_to_node()->at_grow(cpu_num - 1);
3296 
3297   size_t node_num = get_existing_num_nodes();
3298 
3299   int distance = 0;
3300   int closest_distance = INT_MAX;
3301   int closest_node = 0;
3302   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3303   for (size_t i = 0; i < node_num; i++) {
3304     // Check if node is configured (not a memory-less node). If it is not, find
3305     // the closest configured node. Check also if node is bound, i.e. it's allowed
3306     // to allocate memory from the node. If it's not allowed, map cpus in that node
3307     // to the closest node from which memory allocation is allowed.
3308     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3309         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3310       closest_distance = INT_MAX;
3311       // Check distance from all remaining nodes in the system. Ignore distance
3312       // from itself, from another non-configured node, and from another non-bound
3313       // node.
3314       for (size_t m = 0; m < node_num; m++) {
3315         if (m != i &&
3316             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3317             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3318           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3319           // If a closest node is found, update. There is always at least one
3320           // configured and bound node in the system so there is always at least
3321           // one node close.
3322           if (distance != 0 && distance < closest_distance) {
3323             closest_distance = distance;
3324             closest_node = nindex_to_node()->at(m);
3325           }
3326         }
3327       }
3328      } else {
3329        // Current node is already a configured node.
3330        closest_node = nindex_to_node()->at(i);
3331      }
3332 
3333     // Get cpus from the original node and map them to the closest node. If node
3334     // is a configured node (not a memory-less node), then original node and
3335     // closest node are the same.
3336     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3337       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3338         if (cpu_map[j] != 0) {
3339           for (size_t k = 0; k < BitsPerCLong; k++) {
3340             if (cpu_map[j] & (1UL << k)) {
3341               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3342             }
3343           }
3344         }
3345       }
3346     }
3347   }
3348   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3349 }
3350 
3351 int os::Linux::get_node_by_cpu(int cpu_id) {
3352   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3353     return cpu_to_node()->at(cpu_id);
3354   }
3355   return -1;
3356 }
3357 
3358 GrowableArray<int>* os::Linux::_cpu_to_node;
3359 GrowableArray<int>* os::Linux::_nindex_to_node;
3360 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3361 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3362 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3363 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3364 os::Linux::numa_available_func_t os::Linux::_numa_available;
3365 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3366 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3367 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3368 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3369 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3370 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3371 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3372 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3373 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3374 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3375 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3376 unsigned long* os::Linux::_numa_all_nodes;
3377 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3378 struct bitmask* os::Linux::_numa_nodes_ptr;
3379 struct bitmask* os::Linux::_numa_interleave_bitmask;
3380 struct bitmask* os::Linux::_numa_membind_bitmask;
3381 
3382 bool os::pd_uncommit_memory(char* addr, size_t size) {
3383   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3384                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3385   return res  != (uintptr_t) MAP_FAILED;
3386 }
3387 
3388 static address get_stack_commited_bottom(address bottom, size_t size) {
3389   address nbot = bottom;
3390   address ntop = bottom + size;
3391 
3392   size_t page_sz = os::vm_page_size();
3393   unsigned pages = size / page_sz;
3394 
3395   unsigned char vec[1];
3396   unsigned imin = 1, imax = pages + 1, imid;
3397   int mincore_return_value = 0;
3398 
3399   assert(imin <= imax, "Unexpected page size");
3400 
3401   while (imin < imax) {
3402     imid = (imax + imin) / 2;
3403     nbot = ntop - (imid * page_sz);
3404 
3405     // Use a trick with mincore to check whether the page is mapped or not.
3406     // mincore sets vec to 1 if page resides in memory and to 0 if page
3407     // is swapped output but if page we are asking for is unmapped
3408     // it returns -1,ENOMEM
3409     mincore_return_value = mincore(nbot, page_sz, vec);
3410 
3411     if (mincore_return_value == -1) {
3412       // Page is not mapped go up
3413       // to find first mapped page
3414       if (errno != EAGAIN) {
3415         assert(errno == ENOMEM, "Unexpected mincore errno");
3416         imax = imid;
3417       }
3418     } else {
3419       // Page is mapped go down
3420       // to find first not mapped page
3421       imin = imid + 1;
3422     }
3423   }
3424 
3425   nbot = nbot + page_sz;
3426 
3427   // Adjust stack bottom one page up if last checked page is not mapped
3428   if (mincore_return_value == -1) {
3429     nbot = nbot + page_sz;
3430   }
3431 
3432   return nbot;
3433 }
3434 
3435 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3436   int mincore_return_value;
3437   const size_t stripe = 1024;  // query this many pages each time
3438   unsigned char vec[stripe + 1];
3439   // set a guard
3440   vec[stripe] = 'X';
3441 
3442   const size_t page_sz = os::vm_page_size();
3443   size_t pages = size / page_sz;
3444 
3445   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3446   assert(is_aligned(size, page_sz), "Size must be page aligned");
3447 
3448   committed_start = NULL;
3449 
3450   int loops = (pages + stripe - 1) / stripe;
3451   int committed_pages = 0;
3452   address loop_base = start;
3453   bool found_range = false;
3454 
3455   for (int index = 0; index < loops && !found_range; index ++) {
3456     assert(pages > 0, "Nothing to do");
3457     int pages_to_query = (pages >= stripe) ? stripe : pages;
3458     pages -= pages_to_query;
3459 
3460     // Get stable read
3461     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3462 
3463     // During shutdown, some memory goes away without properly notifying NMT,
3464     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3465     // Bailout and return as not committed for now.
3466     if (mincore_return_value == -1 && errno == ENOMEM) {
3467       return false;
3468     }
3469 
3470     assert(vec[stripe] == 'X', "overflow guard");
3471     assert(mincore_return_value == 0, "Range must be valid");
3472     // Process this stripe
3473     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3474       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3475         // End of current contiguous region
3476         if (committed_start != NULL) {
3477           found_range = true;
3478           break;
3479         }
3480       } else { // committed
3481         // Start of region
3482         if (committed_start == NULL) {
3483           committed_start = loop_base + page_sz * vecIdx;
3484         }
3485         committed_pages ++;
3486       }
3487     }
3488 
3489     loop_base += pages_to_query * page_sz;
3490   }
3491 
3492   if (committed_start != NULL) {
3493     assert(committed_pages > 0, "Must have committed region");
3494     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3495     assert(committed_start >= start && committed_start < start + size, "Out of range");
3496     committed_size = page_sz * committed_pages;
3497     return true;
3498   } else {
3499     assert(committed_pages == 0, "Should not have committed region");
3500     return false;
3501   }
3502 }
3503 
3504 
3505 // Linux uses a growable mapping for the stack, and if the mapping for
3506 // the stack guard pages is not removed when we detach a thread the
3507 // stack cannot grow beyond the pages where the stack guard was
3508 // mapped.  If at some point later in the process the stack expands to
3509 // that point, the Linux kernel cannot expand the stack any further
3510 // because the guard pages are in the way, and a segfault occurs.
3511 //
3512 // However, it's essential not to split the stack region by unmapping
3513 // a region (leaving a hole) that's already part of the stack mapping,
3514 // so if the stack mapping has already grown beyond the guard pages at
3515 // the time we create them, we have to truncate the stack mapping.
3516 // So, we need to know the extent of the stack mapping when
3517 // create_stack_guard_pages() is called.
3518 
3519 // We only need this for stacks that are growable: at the time of
3520 // writing thread stacks don't use growable mappings (i.e. those
3521 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3522 // only applies to the main thread.
3523 
3524 // If the (growable) stack mapping already extends beyond the point
3525 // where we're going to put our guard pages, truncate the mapping at
3526 // that point by munmap()ping it.  This ensures that when we later
3527 // munmap() the guard pages we don't leave a hole in the stack
3528 // mapping. This only affects the main/primordial thread
3529 
3530 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3531   if (os::is_primordial_thread()) {
3532     // As we manually grow stack up to bottom inside create_attached_thread(),
3533     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3534     // we don't need to do anything special.
3535     // Check it first, before calling heavy function.
3536     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3537     unsigned char vec[1];
3538 
3539     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3540       // Fallback to slow path on all errors, including EAGAIN
3541       stack_extent = (uintptr_t) get_stack_commited_bottom(
3542                                                            os::Linux::initial_thread_stack_bottom(),
3543                                                            (size_t)addr - stack_extent);
3544     }
3545 
3546     if (stack_extent < (uintptr_t)addr) {
3547       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3548     }
3549   }
3550 
3551   return os::commit_memory(addr, size, !ExecMem);
3552 }
3553 
3554 // If this is a growable mapping, remove the guard pages entirely by
3555 // munmap()ping them.  If not, just call uncommit_memory(). This only
3556 // affects the main/primordial thread, but guard against future OS changes.
3557 // It's safe to always unmap guard pages for primordial thread because we
3558 // always place it right after end of the mapped region.
3559 
3560 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3561   uintptr_t stack_extent, stack_base;
3562 
3563   if (os::is_primordial_thread()) {
3564     return ::munmap(addr, size) == 0;
3565   }
3566 
3567   return os::uncommit_memory(addr, size);
3568 }
3569 
3570 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3571 // at 'requested_addr'. If there are existing memory mappings at the same
3572 // location, however, they will be overwritten. If 'fixed' is false,
3573 // 'requested_addr' is only treated as a hint, the return value may or
3574 // may not start from the requested address. Unlike Linux mmap(), this
3575 // function returns NULL to indicate failure.
3576 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3577   char * addr;
3578   int flags;
3579 
3580   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3581   if (fixed) {
3582     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3583     flags |= MAP_FIXED;
3584   }
3585 
3586   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3587   // touch an uncommitted page. Otherwise, the read/write might
3588   // succeed if we have enough swap space to back the physical page.
3589   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3590                        flags, -1, 0);
3591 
3592   return addr == MAP_FAILED ? NULL : addr;
3593 }
3594 
3595 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3596 //   (req_addr != NULL) or with a given alignment.
3597 //  - bytes shall be a multiple of alignment.
3598 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3599 //  - alignment sets the alignment at which memory shall be allocated.
3600 //     It must be a multiple of allocation granularity.
3601 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3602 //  req_addr or NULL.
3603 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3604 
3605   size_t extra_size = bytes;
3606   if (req_addr == NULL && alignment > 0) {
3607     extra_size += alignment;
3608   }
3609 
3610   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3611     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3612     -1, 0);
3613   if (start == MAP_FAILED) {
3614     start = NULL;
3615   } else {
3616     if (req_addr != NULL) {
3617       if (start != req_addr) {
3618         ::munmap(start, extra_size);
3619         start = NULL;
3620       }
3621     } else {
3622       char* const start_aligned = align_up(start, alignment);
3623       char* const end_aligned = start_aligned + bytes;
3624       char* const end = start + extra_size;
3625       if (start_aligned > start) {
3626         ::munmap(start, start_aligned - start);
3627       }
3628       if (end_aligned < end) {
3629         ::munmap(end_aligned, end - end_aligned);
3630       }
3631       start = start_aligned;
3632     }
3633   }
3634   return start;
3635 }
3636 
3637 static int anon_munmap(char * addr, size_t size) {
3638   return ::munmap(addr, size) == 0;
3639 }
3640 
3641 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3642                             size_t alignment_hint) {
3643   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3644 }
3645 
3646 bool os::pd_release_memory(char* addr, size_t size) {
3647   return anon_munmap(addr, size);
3648 }
3649 
3650 static bool linux_mprotect(char* addr, size_t size, int prot) {
3651   // Linux wants the mprotect address argument to be page aligned.
3652   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3653 
3654   // According to SUSv3, mprotect() should only be used with mappings
3655   // established by mmap(), and mmap() always maps whole pages. Unaligned
3656   // 'addr' likely indicates problem in the VM (e.g. trying to change
3657   // protection of malloc'ed or statically allocated memory). Check the
3658   // caller if you hit this assert.
3659   assert(addr == bottom, "sanity check");
3660 
3661   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3662   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3663   return ::mprotect(bottom, size, prot) == 0;
3664 }
3665 
3666 // Set protections specified
3667 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3668                         bool is_committed) {
3669   unsigned int p = 0;
3670   switch (prot) {
3671   case MEM_PROT_NONE: p = PROT_NONE; break;
3672   case MEM_PROT_READ: p = PROT_READ; break;
3673   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3674   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3675   default:
3676     ShouldNotReachHere();
3677   }
3678   // is_committed is unused.
3679   return linux_mprotect(addr, bytes, p);
3680 }
3681 
3682 bool os::guard_memory(char* addr, size_t size) {
3683   return linux_mprotect(addr, size, PROT_NONE);
3684 }
3685 
3686 bool os::unguard_memory(char* addr, size_t size) {
3687   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3688 }
3689 
3690 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3691                                                     size_t page_size) {
3692   bool result = false;
3693   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3694                  MAP_ANONYMOUS|MAP_PRIVATE,
3695                  -1, 0);
3696   if (p != MAP_FAILED) {
3697     void *aligned_p = align_up(p, page_size);
3698 
3699     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3700 
3701     munmap(p, page_size * 2);
3702   }
3703 
3704   if (warn && !result) {
3705     warning("TransparentHugePages is not supported by the operating system.");
3706   }
3707 
3708   return result;
3709 }
3710 
3711 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3712   bool result = false;
3713   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3714                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3715                  -1, 0);
3716 
3717   if (p != MAP_FAILED) {
3718     // We don't know if this really is a huge page or not.
3719     FILE *fp = fopen("/proc/self/maps", "r");
3720     if (fp) {
3721       while (!feof(fp)) {
3722         char chars[257];
3723         long x = 0;
3724         if (fgets(chars, sizeof(chars), fp)) {
3725           if (sscanf(chars, "%lx-%*x", &x) == 1
3726               && x == (long)p) {
3727             if (strstr (chars, "hugepage")) {
3728               result = true;
3729               break;
3730             }
3731           }
3732         }
3733       }
3734       fclose(fp);
3735     }
3736     munmap(p, page_size);
3737   }
3738 
3739   if (warn && !result) {
3740     warning("HugeTLBFS is not supported by the operating system.");
3741   }
3742 
3743   return result;
3744 }
3745 
3746 // From the coredump_filter documentation:
3747 //
3748 // - (bit 0) anonymous private memory
3749 // - (bit 1) anonymous shared memory
3750 // - (bit 2) file-backed private memory
3751 // - (bit 3) file-backed shared memory
3752 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3753 //           effective only if the bit 2 is cleared)
3754 // - (bit 5) hugetlb private memory
3755 // - (bit 6) hugetlb shared memory
3756 // - (bit 7) dax private memory
3757 // - (bit 8) dax shared memory
3758 //
3759 static void set_coredump_filter(CoredumpFilterBit bit) {
3760   FILE *f;
3761   long cdm;
3762 
3763   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3764     return;
3765   }
3766 
3767   if (fscanf(f, "%lx", &cdm) != 1) {
3768     fclose(f);
3769     return;
3770   }
3771 
3772   long saved_cdm = cdm;
3773   rewind(f);
3774   cdm |= bit;
3775 
3776   if (cdm != saved_cdm) {
3777     fprintf(f, "%#lx", cdm);
3778   }
3779 
3780   fclose(f);
3781 }
3782 
3783 // Large page support
3784 
3785 static size_t _large_page_size = 0;
3786 
3787 size_t os::Linux::find_large_page_size() {
3788   size_t large_page_size = 0;
3789 
3790   // large_page_size on Linux is used to round up heap size. x86 uses either
3791   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3792   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3793   // page as large as 256M.
3794   //
3795   // Here we try to figure out page size by parsing /proc/meminfo and looking
3796   // for a line with the following format:
3797   //    Hugepagesize:     2048 kB
3798   //
3799   // If we can't determine the value (e.g. /proc is not mounted, or the text
3800   // format has been changed), we'll use the largest page size supported by
3801   // the processor.
3802 
3803 #ifndef ZERO
3804   large_page_size =
3805     AARCH64_ONLY(2 * M)
3806     AMD64_ONLY(2 * M)
3807     ARM32_ONLY(2 * M)
3808     IA32_ONLY(4 * M)
3809     IA64_ONLY(256 * M)
3810     PPC_ONLY(4 * M)
3811     S390_ONLY(1 * M)
3812     SPARC_ONLY(4 * M);
3813 #endif // ZERO
3814 
3815   FILE *fp = fopen("/proc/meminfo", "r");
3816   if (fp) {
3817     while (!feof(fp)) {
3818       int x = 0;
3819       char buf[16];
3820       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3821         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3822           large_page_size = x * K;
3823           break;
3824         }
3825       } else {
3826         // skip to next line
3827         for (;;) {
3828           int ch = fgetc(fp);
3829           if (ch == EOF || ch == (int)'\n') break;
3830         }
3831       }
3832     }
3833     fclose(fp);
3834   }
3835 
3836   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3837     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3838             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3839             proper_unit_for_byte_size(large_page_size));
3840   }
3841 
3842   return large_page_size;
3843 }
3844 
3845 size_t os::Linux::setup_large_page_size() {
3846   _large_page_size = Linux::find_large_page_size();
3847   const size_t default_page_size = (size_t)Linux::page_size();
3848   if (_large_page_size > default_page_size) {
3849     _page_sizes[0] = _large_page_size;
3850     _page_sizes[1] = default_page_size;
3851     _page_sizes[2] = 0;
3852   }
3853 
3854   return _large_page_size;
3855 }
3856 
3857 bool os::Linux::setup_large_page_type(size_t page_size) {
3858   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3859       FLAG_IS_DEFAULT(UseSHM) &&
3860       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3861 
3862     // The type of large pages has not been specified by the user.
3863 
3864     // Try UseHugeTLBFS and then UseSHM.
3865     UseHugeTLBFS = UseSHM = true;
3866 
3867     // Don't try UseTransparentHugePages since there are known
3868     // performance issues with it turned on. This might change in the future.
3869     UseTransparentHugePages = false;
3870   }
3871 
3872   if (UseTransparentHugePages) {
3873     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3874     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3875       UseHugeTLBFS = false;
3876       UseSHM = false;
3877       return true;
3878     }
3879     UseTransparentHugePages = false;
3880   }
3881 
3882   if (UseHugeTLBFS) {
3883     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3884     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3885       UseSHM = false;
3886       return true;
3887     }
3888     UseHugeTLBFS = false;
3889   }
3890 
3891   return UseSHM;
3892 }
3893 
3894 void os::large_page_init() {
3895   if (!UseLargePages &&
3896       !UseTransparentHugePages &&
3897       !UseHugeTLBFS &&
3898       !UseSHM) {
3899     // Not using large pages.
3900     return;
3901   }
3902 
3903   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3904     // The user explicitly turned off large pages.
3905     // Ignore the rest of the large pages flags.
3906     UseTransparentHugePages = false;
3907     UseHugeTLBFS = false;
3908     UseSHM = false;
3909     return;
3910   }
3911 
3912   size_t large_page_size = Linux::setup_large_page_size();
3913   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3914 
3915   set_coredump_filter(LARGEPAGES_BIT);
3916 }
3917 
3918 #ifndef SHM_HUGETLB
3919   #define SHM_HUGETLB 04000
3920 #endif
3921 
3922 #define shm_warning_format(format, ...)              \
3923   do {                                               \
3924     if (UseLargePages &&                             \
3925         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3926          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3927          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3928       warning(format, __VA_ARGS__);                  \
3929     }                                                \
3930   } while (0)
3931 
3932 #define shm_warning(str) shm_warning_format("%s", str)
3933 
3934 #define shm_warning_with_errno(str)                \
3935   do {                                             \
3936     int err = errno;                               \
3937     shm_warning_format(str " (error = %d)", err);  \
3938   } while (0)
3939 
3940 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3941   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3942 
3943   if (!is_aligned(alignment, SHMLBA)) {
3944     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3945     return NULL;
3946   }
3947 
3948   // To ensure that we get 'alignment' aligned memory from shmat,
3949   // we pre-reserve aligned virtual memory and then attach to that.
3950 
3951   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3952   if (pre_reserved_addr == NULL) {
3953     // Couldn't pre-reserve aligned memory.
3954     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3955     return NULL;
3956   }
3957 
3958   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3959   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3960 
3961   if ((intptr_t)addr == -1) {
3962     int err = errno;
3963     shm_warning_with_errno("Failed to attach shared memory.");
3964 
3965     assert(err != EACCES, "Unexpected error");
3966     assert(err != EIDRM,  "Unexpected error");
3967     assert(err != EINVAL, "Unexpected error");
3968 
3969     // Since we don't know if the kernel unmapped the pre-reserved memory area
3970     // we can't unmap it, since that would potentially unmap memory that was
3971     // mapped from other threads.
3972     return NULL;
3973   }
3974 
3975   return addr;
3976 }
3977 
3978 static char* shmat_at_address(int shmid, char* req_addr) {
3979   if (!is_aligned(req_addr, SHMLBA)) {
3980     assert(false, "Requested address needs to be SHMLBA aligned");
3981     return NULL;
3982   }
3983 
3984   char* addr = (char*)shmat(shmid, req_addr, 0);
3985 
3986   if ((intptr_t)addr == -1) {
3987     shm_warning_with_errno("Failed to attach shared memory.");
3988     return NULL;
3989   }
3990 
3991   return addr;
3992 }
3993 
3994 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3995   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3996   if (req_addr != NULL) {
3997     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3998     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3999     return shmat_at_address(shmid, req_addr);
4000   }
4001 
4002   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
4003   // return large page size aligned memory addresses when req_addr == NULL.
4004   // However, if the alignment is larger than the large page size, we have
4005   // to manually ensure that the memory returned is 'alignment' aligned.
4006   if (alignment > os::large_page_size()) {
4007     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
4008     return shmat_with_alignment(shmid, bytes, alignment);
4009   } else {
4010     return shmat_at_address(shmid, NULL);
4011   }
4012 }
4013 
4014 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
4015                                             char* req_addr, bool exec) {
4016   // "exec" is passed in but not used.  Creating the shared image for
4017   // the code cache doesn't have an SHM_X executable permission to check.
4018   assert(UseLargePages && UseSHM, "only for SHM large pages");
4019   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4020   assert(is_aligned(req_addr, alignment), "Unaligned address");
4021 
4022   if (!is_aligned(bytes, os::large_page_size())) {
4023     return NULL; // Fallback to small pages.
4024   }
4025 
4026   // Create a large shared memory region to attach to based on size.
4027   // Currently, size is the total size of the heap.
4028   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
4029   if (shmid == -1) {
4030     // Possible reasons for shmget failure:
4031     // 1. shmmax is too small for Java heap.
4032     //    > check shmmax value: cat /proc/sys/kernel/shmmax
4033     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
4034     // 2. not enough large page memory.
4035     //    > check available large pages: cat /proc/meminfo
4036     //    > increase amount of large pages:
4037     //          echo new_value > /proc/sys/vm/nr_hugepages
4038     //      Note 1: different Linux may use different name for this property,
4039     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
4040     //      Note 2: it's possible there's enough physical memory available but
4041     //            they are so fragmented after a long run that they can't
4042     //            coalesce into large pages. Try to reserve large pages when
4043     //            the system is still "fresh".
4044     shm_warning_with_errno("Failed to reserve shared memory.");
4045     return NULL;
4046   }
4047 
4048   // Attach to the region.
4049   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
4050 
4051   // Remove shmid. If shmat() is successful, the actual shared memory segment
4052   // will be deleted when it's detached by shmdt() or when the process
4053   // terminates. If shmat() is not successful this will remove the shared
4054   // segment immediately.
4055   shmctl(shmid, IPC_RMID, NULL);
4056 
4057   return addr;
4058 }
4059 
4060 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
4061                                         int error) {
4062   assert(error == ENOMEM, "Only expect to fail if no memory is available");
4063 
4064   bool warn_on_failure = UseLargePages &&
4065       (!FLAG_IS_DEFAULT(UseLargePages) ||
4066        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
4067        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
4068 
4069   if (warn_on_failure) {
4070     char msg[128];
4071     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4072                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4073     warning("%s", msg);
4074   }
4075 }
4076 
4077 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4078                                                         char* req_addr,
4079                                                         bool exec) {
4080   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4081   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4082   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4083 
4084   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4085   char* addr = (char*)::mmap(req_addr, bytes, prot,
4086                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
4087                              -1, 0);
4088 
4089   if (addr == MAP_FAILED) {
4090     warn_on_large_pages_failure(req_addr, bytes, errno);
4091     return NULL;
4092   }
4093 
4094   assert(is_aligned(addr, os::large_page_size()), "Must be");
4095 
4096   return addr;
4097 }
4098 
4099 // Reserve memory using mmap(MAP_HUGETLB).
4100 //  - bytes shall be a multiple of alignment.
4101 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4102 //  - alignment sets the alignment at which memory shall be allocated.
4103 //     It must be a multiple of allocation granularity.
4104 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4105 //  req_addr or NULL.
4106 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4107                                                          size_t alignment,
4108                                                          char* req_addr,
4109                                                          bool exec) {
4110   size_t large_page_size = os::large_page_size();
4111   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4112 
4113   assert(is_aligned(req_addr, alignment), "Must be");
4114   assert(is_aligned(bytes, alignment), "Must be");
4115 
4116   // First reserve - but not commit - the address range in small pages.
4117   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4118 
4119   if (start == NULL) {
4120     return NULL;
4121   }
4122 
4123   assert(is_aligned(start, alignment), "Must be");
4124 
4125   char* end = start + bytes;
4126 
4127   // Find the regions of the allocated chunk that can be promoted to large pages.
4128   char* lp_start = align_up(start, large_page_size);
4129   char* lp_end   = align_down(end, large_page_size);
4130 
4131   size_t lp_bytes = lp_end - lp_start;
4132 
4133   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4134 
4135   if (lp_bytes == 0) {
4136     // The mapped region doesn't even span the start and the end of a large page.
4137     // Fall back to allocate a non-special area.
4138     ::munmap(start, end - start);
4139     return NULL;
4140   }
4141 
4142   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4143 
4144   void* result;
4145 
4146   // Commit small-paged leading area.
4147   if (start != lp_start) {
4148     result = ::mmap(start, lp_start - start, prot,
4149                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4150                     -1, 0);
4151     if (result == MAP_FAILED) {
4152       ::munmap(lp_start, end - lp_start);
4153       return NULL;
4154     }
4155   }
4156 
4157   // Commit large-paged area.
4158   result = ::mmap(lp_start, lp_bytes, prot,
4159                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4160                   -1, 0);
4161   if (result == MAP_FAILED) {
4162     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4163     // If the mmap above fails, the large pages region will be unmapped and we
4164     // have regions before and after with small pages. Release these regions.
4165     //
4166     // |  mapped  |  unmapped  |  mapped  |
4167     // ^          ^            ^          ^
4168     // start      lp_start     lp_end     end
4169     //
4170     ::munmap(start, lp_start - start);
4171     ::munmap(lp_end, end - lp_end);
4172     return NULL;
4173   }
4174 
4175   // Commit small-paged trailing area.
4176   if (lp_end != end) {
4177     result = ::mmap(lp_end, end - lp_end, prot,
4178                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4179                     -1, 0);
4180     if (result == MAP_FAILED) {
4181       ::munmap(start, lp_end - start);
4182       return NULL;
4183     }
4184   }
4185 
4186   return start;
4187 }
4188 
4189 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4190                                                    size_t alignment,
4191                                                    char* req_addr,
4192                                                    bool exec) {
4193   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4194   assert(is_aligned(req_addr, alignment), "Must be");
4195   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4196   assert(is_power_of_2(os::large_page_size()), "Must be");
4197   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4198 
4199   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4200     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4201   } else {
4202     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4203   }
4204 }
4205 
4206 char* os::pd_reserve_memory_special(size_t bytes, size_t alignment,
4207                                     char* req_addr, bool exec) {
4208   assert(UseLargePages, "only for large pages");
4209 
4210   char* addr;
4211   if (UseSHM) {
4212     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4213   } else {
4214     assert(UseHugeTLBFS, "must be");
4215     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4216   }
4217 
4218   if (addr != NULL) {
4219     if (UseNUMAInterleaving) {
4220       numa_make_global(addr, bytes);
4221     }
4222   }
4223 
4224   return addr;
4225 }
4226 
4227 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4228   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4229   return shmdt(base) == 0;
4230 }
4231 
4232 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4233   return pd_release_memory(base, bytes);
4234 }
4235 
4236 bool os::pd_release_memory_special(char* base, size_t bytes) {
4237   assert(UseLargePages, "only for large pages");
4238   bool res;
4239 
4240   if (UseSHM) {
4241     res = os::Linux::release_memory_special_shm(base, bytes);
4242   } else {
4243     assert(UseHugeTLBFS, "must be");
4244     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4245   }
4246   return res;
4247 }
4248 
4249 size_t os::large_page_size() {
4250   return _large_page_size;
4251 }
4252 
4253 // With SysV SHM the entire memory region must be allocated as shared
4254 // memory.
4255 // HugeTLBFS allows application to commit large page memory on demand.
4256 // However, when committing memory with HugeTLBFS fails, the region
4257 // that was supposed to be committed will lose the old reservation
4258 // and allow other threads to steal that memory region. Because of this
4259 // behavior we can't commit HugeTLBFS memory.
4260 bool os::can_commit_large_page_memory() {
4261   return UseTransparentHugePages;
4262 }
4263 
4264 bool os::can_execute_large_page_memory() {
4265   return UseTransparentHugePages || UseHugeTLBFS;
4266 }
4267 
4268 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4269   assert(file_desc >= 0, "file_desc is not valid");
4270   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4271   if (result != NULL) {
4272     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4273       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4274     }
4275   }
4276   return result;
4277 }
4278 
4279 // Reserve memory at an arbitrary address, only if that area is
4280 // available (and not reserved for something else).
4281 
4282 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4283   // Assert only that the size is a multiple of the page size, since
4284   // that's all that mmap requires, and since that's all we really know
4285   // about at this low abstraction level.  If we need higher alignment,
4286   // we can either pass an alignment to this method or verify alignment
4287   // in one of the methods further up the call chain.  See bug 5044738.
4288   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4289 
4290   // Repeatedly allocate blocks until the block is allocated at the
4291   // right spot.
4292 
4293   // Linux mmap allows caller to pass an address as hint; give it a try first,
4294   // if kernel honors the hint then we can return immediately.
4295   char * addr = anon_mmap(requested_addr, bytes, false);
4296   if (addr == requested_addr) {
4297     return requested_addr;
4298   }
4299 
4300   if (addr != NULL) {
4301     // mmap() is successful but it fails to reserve at the requested address
4302     anon_munmap(addr, bytes);
4303   }
4304 
4305   return NULL;
4306 }
4307 
4308 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4309 void os::infinite_sleep() {
4310   while (true) {    // sleep forever ...
4311     ::sleep(100);   // ... 100 seconds at a time
4312   }
4313 }
4314 
4315 // Used to convert frequent JVM_Yield() to nops
4316 bool os::dont_yield() {
4317   return DontYieldALot;
4318 }
4319 
4320 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4321 // actually give up the CPU. Since skip buddy (v2.6.28):
4322 //
4323 // * Sets the yielding task as skip buddy for current CPU's run queue.
4324 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4325 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4326 //
4327 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4328 // getting re-scheduled immediately.
4329 //
4330 void os::naked_yield() {
4331   sched_yield();
4332 }
4333 
4334 ////////////////////////////////////////////////////////////////////////////////
4335 // thread priority support
4336 
4337 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4338 // only supports dynamic priority, static priority must be zero. For real-time
4339 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4340 // However, for large multi-threaded applications, SCHED_RR is not only slower
4341 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4342 // of 5 runs - Sep 2005).
4343 //
4344 // The following code actually changes the niceness of kernel-thread/LWP. It
4345 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4346 // not the entire user process, and user level threads are 1:1 mapped to kernel
4347 // threads. It has always been the case, but could change in the future. For
4348 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4349 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4350 // (e.g., root privilege or CAP_SYS_NICE capability).
4351 
4352 int os::java_to_os_priority[CriticalPriority + 1] = {
4353   19,              // 0 Entry should never be used
4354 
4355    4,              // 1 MinPriority
4356    3,              // 2
4357    2,              // 3
4358 
4359    1,              // 4
4360    0,              // 5 NormPriority
4361   -1,              // 6
4362 
4363   -2,              // 7
4364   -3,              // 8
4365   -4,              // 9 NearMaxPriority
4366 
4367   -5,              // 10 MaxPriority
4368 
4369   -5               // 11 CriticalPriority
4370 };
4371 
4372 static int prio_init() {
4373   if (ThreadPriorityPolicy == 1) {
4374     if (geteuid() != 0) {
4375       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy) && !FLAG_IS_JIMAGE_RESOURCE(ThreadPriorityPolicy)) {
4376         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4377                 "e.g., being the root user. If the necessary permission is not " \
4378                 "possessed, changes to priority will be silently ignored.");
4379       }
4380     }
4381   }
4382   if (UseCriticalJavaThreadPriority) {
4383     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4384   }
4385   return 0;
4386 }
4387 
4388 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4389   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4390 
4391   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4392   return (ret == 0) ? OS_OK : OS_ERR;
4393 }
4394 
4395 OSReturn os::get_native_priority(const Thread* const thread,
4396                                  int *priority_ptr) {
4397   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4398     *priority_ptr = java_to_os_priority[NormPriority];
4399     return OS_OK;
4400   }
4401 
4402   errno = 0;
4403   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4404   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4405 }
4406 
4407 ////////////////////////////////////////////////////////////////////////////////
4408 // suspend/resume support
4409 
4410 //  The low-level signal-based suspend/resume support is a remnant from the
4411 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4412 //  within hotspot. Currently used by JFR's OSThreadSampler
4413 //
4414 //  The remaining code is greatly simplified from the more general suspension
4415 //  code that used to be used.
4416 //
4417 //  The protocol is quite simple:
4418 //  - suspend:
4419 //      - sends a signal to the target thread
4420 //      - polls the suspend state of the osthread using a yield loop
4421 //      - target thread signal handler (SR_handler) sets suspend state
4422 //        and blocks in sigsuspend until continued
4423 //  - resume:
4424 //      - sets target osthread state to continue
4425 //      - sends signal to end the sigsuspend loop in the SR_handler
4426 //
4427 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4428 //  but is checked for NULL in SR_handler as a thread termination indicator.
4429 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4430 //
4431 //  Note that resume_clear_context() and suspend_save_context() are needed
4432 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4433 //  which in part is used by:
4434 //    - Forte Analyzer: AsyncGetCallTrace()
4435 //    - StackBanging: get_frame_at_stack_banging_point()
4436 
4437 static void resume_clear_context(OSThread *osthread) {
4438   osthread->set_ucontext(NULL);
4439   osthread->set_siginfo(NULL);
4440 }
4441 
4442 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4443                                  ucontext_t* context) {
4444   osthread->set_ucontext(context);
4445   osthread->set_siginfo(siginfo);
4446 }
4447 
4448 // Handler function invoked when a thread's execution is suspended or
4449 // resumed. We have to be careful that only async-safe functions are
4450 // called here (Note: most pthread functions are not async safe and
4451 // should be avoided.)
4452 //
4453 // Note: sigwait() is a more natural fit than sigsuspend() from an
4454 // interface point of view, but sigwait() prevents the signal hander
4455 // from being run. libpthread would get very confused by not having
4456 // its signal handlers run and prevents sigwait()'s use with the
4457 // mutex granting granting signal.
4458 //
4459 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4460 //
4461 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4462   // Save and restore errno to avoid confusing native code with EINTR
4463   // after sigsuspend.
4464   int old_errno = errno;
4465 
4466   Thread* thread = Thread::current_or_null_safe();
4467   assert(thread != NULL, "Missing current thread in SR_handler");
4468 
4469   // On some systems we have seen signal delivery get "stuck" until the signal
4470   // mask is changed as part of thread termination. Check that the current thread
4471   // has not already terminated (via SR_lock()) - else the following assertion
4472   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4473   // destructor has completed.
4474 
4475   if (thread->SR_lock() == NULL) {
4476     return;
4477   }
4478 
4479   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4480 
4481   OSThread* osthread = thread->osthread();
4482 
4483   os::SuspendResume::State current = osthread->sr.state();
4484   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4485     suspend_save_context(osthread, siginfo, context);
4486 
4487     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4488     os::SuspendResume::State state = osthread->sr.suspended();
4489     if (state == os::SuspendResume::SR_SUSPENDED) {
4490       sigset_t suspend_set;  // signals for sigsuspend()
4491       sigemptyset(&suspend_set);
4492       // get current set of blocked signals and unblock resume signal
4493       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4494       sigdelset(&suspend_set, SR_signum);
4495 
4496       sr_semaphore.signal();
4497       // wait here until we are resumed
4498       while (1) {
4499         sigsuspend(&suspend_set);
4500 
4501         os::SuspendResume::State result = osthread->sr.running();
4502         if (result == os::SuspendResume::SR_RUNNING) {
4503           sr_semaphore.signal();
4504           break;
4505         }
4506       }
4507 
4508     } else if (state == os::SuspendResume::SR_RUNNING) {
4509       // request was cancelled, continue
4510     } else {
4511       ShouldNotReachHere();
4512     }
4513 
4514     resume_clear_context(osthread);
4515   } else if (current == os::SuspendResume::SR_RUNNING) {
4516     // request was cancelled, continue
4517   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4518     // ignore
4519   } else {
4520     // ignore
4521   }
4522 
4523   errno = old_errno;
4524 }
4525 
4526 static int SR_initialize() {
4527   struct sigaction act;
4528   char *s;
4529 
4530   // Get signal number to use for suspend/resume
4531   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4532     int sig = ::strtol(s, 0, 10);
4533     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4534         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4535       SR_signum = sig;
4536     } else {
4537       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4538               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4539     }
4540   }
4541 
4542   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4543          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4544 
4545   sigemptyset(&SR_sigset);
4546   sigaddset(&SR_sigset, SR_signum);
4547 
4548   // Set up signal handler for suspend/resume
4549   act.sa_flags = SA_RESTART|SA_SIGINFO;
4550   act.sa_handler = (void (*)(int)) SR_handler;
4551 
4552   // SR_signum is blocked by default.
4553   // 4528190 - We also need to block pthread restart signal (32 on all
4554   // supported Linux platforms). Note that LinuxThreads need to block
4555   // this signal for all threads to work properly. So we don't have
4556   // to use hard-coded signal number when setting up the mask.
4557   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4558 
4559   if (sigaction(SR_signum, &act, 0) == -1) {
4560     return -1;
4561   }
4562 
4563   // Save signal flag
4564   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4565   return 0;
4566 }
4567 
4568 static int sr_notify(OSThread* osthread) {
4569   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4570   assert_status(status == 0, status, "pthread_kill");
4571   return status;
4572 }
4573 
4574 // "Randomly" selected value for how long we want to spin
4575 // before bailing out on suspending a thread, also how often
4576 // we send a signal to a thread we want to resume
4577 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4578 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4579 
4580 // returns true on success and false on error - really an error is fatal
4581 // but this seems the normal response to library errors
4582 static bool do_suspend(OSThread* osthread) {
4583   assert(osthread->sr.is_running(), "thread should be running");
4584   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4585 
4586   // mark as suspended and send signal
4587   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4588     // failed to switch, state wasn't running?
4589     ShouldNotReachHere();
4590     return false;
4591   }
4592 
4593   if (sr_notify(osthread) != 0) {
4594     ShouldNotReachHere();
4595   }
4596 
4597   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4598   while (true) {
4599     if (sr_semaphore.timedwait(2)) {
4600       break;
4601     } else {
4602       // timeout
4603       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4604       if (cancelled == os::SuspendResume::SR_RUNNING) {
4605         return false;
4606       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4607         // make sure that we consume the signal on the semaphore as well
4608         sr_semaphore.wait();
4609         break;
4610       } else {
4611         ShouldNotReachHere();
4612         return false;
4613       }
4614     }
4615   }
4616 
4617   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4618   return true;
4619 }
4620 
4621 static void do_resume(OSThread* osthread) {
4622   assert(osthread->sr.is_suspended(), "thread should be suspended");
4623   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4624 
4625   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4626     // failed to switch to WAKEUP_REQUEST
4627     ShouldNotReachHere();
4628     return;
4629   }
4630 
4631   while (true) {
4632     if (sr_notify(osthread) == 0) {
4633       if (sr_semaphore.timedwait(2)) {
4634         if (osthread->sr.is_running()) {
4635           return;
4636         }
4637       }
4638     } else {
4639       ShouldNotReachHere();
4640     }
4641   }
4642 
4643   guarantee(osthread->sr.is_running(), "Must be running!");
4644 }
4645 
4646 ///////////////////////////////////////////////////////////////////////////////////
4647 // signal handling (except suspend/resume)
4648 
4649 // This routine may be used by user applications as a "hook" to catch signals.
4650 // The user-defined signal handler must pass unrecognized signals to this
4651 // routine, and if it returns true (non-zero), then the signal handler must
4652 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4653 // routine will never retun false (zero), but instead will execute a VM panic
4654 // routine kill the process.
4655 //
4656 // If this routine returns false, it is OK to call it again.  This allows
4657 // the user-defined signal handler to perform checks either before or after
4658 // the VM performs its own checks.  Naturally, the user code would be making
4659 // a serious error if it tried to handle an exception (such as a null check
4660 // or breakpoint) that the VM was generating for its own correct operation.
4661 //
4662 // This routine may recognize any of the following kinds of signals:
4663 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4664 // It should be consulted by handlers for any of those signals.
4665 //
4666 // The caller of this routine must pass in the three arguments supplied
4667 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4668 // field of the structure passed to sigaction().  This routine assumes that
4669 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4670 //
4671 // Note that the VM will print warnings if it detects conflicting signal
4672 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4673 //
4674 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4675                                                  siginfo_t* siginfo,
4676                                                  void* ucontext,
4677                                                  int abort_if_unrecognized);
4678 
4679 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4680   assert(info != NULL && uc != NULL, "it must be old kernel");
4681   int orig_errno = errno;  // Preserve errno value over signal handler.
4682   JVM_handle_linux_signal(sig, info, uc, true);
4683   errno = orig_errno;
4684 }
4685 
4686 
4687 // This boolean allows users to forward their own non-matching signals
4688 // to JVM_handle_linux_signal, harmlessly.
4689 bool os::Linux::signal_handlers_are_installed = false;
4690 
4691 // For signal-chaining
4692 bool os::Linux::libjsig_is_loaded = false;
4693 typedef struct sigaction *(*get_signal_t)(int);
4694 get_signal_t os::Linux::get_signal_action = NULL;
4695 
4696 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4697   struct sigaction *actp = NULL;
4698 
4699   if (libjsig_is_loaded) {
4700     // Retrieve the old signal handler from libjsig
4701     actp = (*get_signal_action)(sig);
4702   }
4703   if (actp == NULL) {
4704     // Retrieve the preinstalled signal handler from jvm
4705     actp = os::Posix::get_preinstalled_handler(sig);
4706   }
4707 
4708   return actp;
4709 }
4710 
4711 static bool call_chained_handler(struct sigaction *actp, int sig,
4712                                  siginfo_t *siginfo, void *context) {
4713   // Call the old signal handler
4714   if (actp->sa_handler == SIG_DFL) {
4715     // It's more reasonable to let jvm treat it as an unexpected exception
4716     // instead of taking the default action.
4717     return false;
4718   } else if (actp->sa_handler != SIG_IGN) {
4719     if ((actp->sa_flags & SA_NODEFER) == 0) {
4720       // automaticlly block the signal
4721       sigaddset(&(actp->sa_mask), sig);
4722     }
4723 
4724     sa_handler_t hand = NULL;
4725     sa_sigaction_t sa = NULL;
4726     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4727     // retrieve the chained handler
4728     if (siginfo_flag_set) {
4729       sa = actp->sa_sigaction;
4730     } else {
4731       hand = actp->sa_handler;
4732     }
4733 
4734     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4735       actp->sa_handler = SIG_DFL;
4736     }
4737 
4738     // try to honor the signal mask
4739     sigset_t oset;
4740     sigemptyset(&oset);
4741     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4742 
4743     // call into the chained handler
4744     if (siginfo_flag_set) {
4745       (*sa)(sig, siginfo, context);
4746     } else {
4747       (*hand)(sig);
4748     }
4749 
4750     // restore the signal mask
4751     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4752   }
4753   // Tell jvm's signal handler the signal is taken care of.
4754   return true;
4755 }
4756 
4757 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4758   bool chained = false;
4759   // signal-chaining
4760   if (UseSignalChaining) {
4761     struct sigaction *actp = get_chained_signal_action(sig);
4762     if (actp != NULL) {
4763       chained = call_chained_handler(actp, sig, siginfo, context);
4764     }
4765   }
4766   return chained;
4767 }
4768 
4769 // for diagnostic
4770 int sigflags[NSIG];
4771 
4772 int os::Linux::get_our_sigflags(int sig) {
4773   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4774   return sigflags[sig];
4775 }
4776 
4777 void os::Linux::set_our_sigflags(int sig, int flags) {
4778   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4779   if (sig > 0 && sig < NSIG) {
4780     sigflags[sig] = flags;
4781   }
4782 }
4783 
4784 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4785   // Check for overwrite.
4786   struct sigaction oldAct;
4787   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4788 
4789   void* oldhand = oldAct.sa_sigaction
4790                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4791                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4792   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4793       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4794       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4795     if (AllowUserSignalHandlers || !set_installed) {
4796       // Do not overwrite; user takes responsibility to forward to us.
4797       return;
4798     } else if (UseSignalChaining) {
4799       // save the old handler in jvm
4800       os::Posix::save_preinstalled_handler(sig, oldAct);
4801       // libjsig also interposes the sigaction() call below and saves the
4802       // old sigaction on it own.
4803     } else {
4804       fatal("Encountered unexpected pre-existing sigaction handler "
4805             "%#lx for signal %d.", (long)oldhand, sig);
4806     }
4807   }
4808 
4809   struct sigaction sigAct;
4810   sigfillset(&(sigAct.sa_mask));
4811   sigAct.sa_handler = SIG_DFL;
4812   if (!set_installed) {
4813     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4814   } else {
4815     sigAct.sa_sigaction = signalHandler;
4816     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4817   }
4818   // Save flags, which are set by ours
4819   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4820   sigflags[sig] = sigAct.sa_flags;
4821 
4822   int ret = sigaction(sig, &sigAct, &oldAct);
4823   assert(ret == 0, "check");
4824 
4825   void* oldhand2  = oldAct.sa_sigaction
4826                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4827                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4828   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4829 }
4830 
4831 // install signal handlers for signals that HotSpot needs to
4832 // handle in order to support Java-level exception handling.
4833 
4834 void os::Linux::install_signal_handlers() {
4835   if (!signal_handlers_are_installed) {
4836     signal_handlers_are_installed = true;
4837 
4838     // signal-chaining
4839     typedef void (*signal_setting_t)();
4840     signal_setting_t begin_signal_setting = NULL;
4841     signal_setting_t end_signal_setting = NULL;
4842     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4843                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4844     if (begin_signal_setting != NULL) {
4845       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4846                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4847       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4848                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4849       libjsig_is_loaded = true;
4850       assert(UseSignalChaining, "should enable signal-chaining");
4851     }
4852     if (libjsig_is_loaded) {
4853       // Tell libjsig jvm is setting signal handlers
4854       (*begin_signal_setting)();
4855     }
4856 
4857     set_signal_handler(SIGSEGV, true);
4858     set_signal_handler(SIGPIPE, true);
4859     set_signal_handler(SIGBUS, true);
4860     set_signal_handler(SIGILL, true);
4861     set_signal_handler(SIGFPE, true);
4862 #if defined(PPC64)
4863     set_signal_handler(SIGTRAP, true);
4864 #endif
4865     set_signal_handler(SIGXFSZ, true);
4866 
4867     if (libjsig_is_loaded) {
4868       // Tell libjsig jvm finishes setting signal handlers
4869       (*end_signal_setting)();
4870     }
4871 
4872     // We don't activate signal checker if libjsig is in place, we trust ourselves
4873     // and if UserSignalHandler is installed all bets are off.
4874     // Log that signal checking is off only if -verbose:jni is specified.
4875     if (CheckJNICalls) {
4876       if (libjsig_is_loaded) {
4877         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4878         check_signals = false;
4879       }
4880       if (AllowUserSignalHandlers) {
4881         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4882         check_signals = false;
4883       }
4884     }
4885   }
4886 }
4887 
4888 // This is the fastest way to get thread cpu time on Linux.
4889 // Returns cpu time (user+sys) for any thread, not only for current.
4890 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4891 // It might work on 2.6.10+ with a special kernel/glibc patch.
4892 // For reference, please, see IEEE Std 1003.1-2004:
4893 //   http://www.unix.org/single_unix_specification
4894 
4895 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4896   struct timespec tp;
4897   int rc = os::Posix::clock_gettime(clockid, &tp);
4898   assert(rc == 0, "clock_gettime is expected to return 0 code");
4899 
4900   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4901 }
4902 
4903 /////
4904 // glibc on Linux platform uses non-documented flag
4905 // to indicate, that some special sort of signal
4906 // trampoline is used.
4907 // We will never set this flag, and we should
4908 // ignore this flag in our diagnostic
4909 #ifdef SIGNIFICANT_SIGNAL_MASK
4910   #undef SIGNIFICANT_SIGNAL_MASK
4911 #endif
4912 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4913 
4914 static const char* get_signal_handler_name(address handler,
4915                                            char* buf, int buflen) {
4916   int offset = 0;
4917   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4918   if (found) {
4919     // skip directory names
4920     const char *p1, *p2;
4921     p1 = buf;
4922     size_t len = strlen(os::file_separator());
4923     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4924     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4925   } else {
4926     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4927   }
4928   return buf;
4929 }
4930 
4931 static void print_signal_handler(outputStream* st, int sig,
4932                                  char* buf, size_t buflen) {
4933   struct sigaction sa;
4934 
4935   sigaction(sig, NULL, &sa);
4936 
4937   // See comment for SIGNIFICANT_SIGNAL_MASK define
4938   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4939 
4940   st->print("%s: ", os::exception_name(sig, buf, buflen));
4941 
4942   address handler = (sa.sa_flags & SA_SIGINFO)
4943     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4944     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4945 
4946   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4947     st->print("SIG_DFL");
4948   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4949     st->print("SIG_IGN");
4950   } else {
4951     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4952   }
4953 
4954   st->print(", sa_mask[0]=");
4955   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4956 
4957   address rh = VMError::get_resetted_sighandler(sig);
4958   // May be, handler was resetted by VMError?
4959   if (rh != NULL) {
4960     handler = rh;
4961     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4962   }
4963 
4964   st->print(", sa_flags=");
4965   os::Posix::print_sa_flags(st, sa.sa_flags);
4966 
4967   // Check: is it our handler?
4968   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4969       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4970     // It is our signal handler
4971     // check for flags, reset system-used one!
4972     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4973       st->print(
4974                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4975                 os::Linux::get_our_sigflags(sig));
4976     }
4977   }
4978   st->cr();
4979 }
4980 
4981 
4982 #define DO_SIGNAL_CHECK(sig)                      \
4983   do {                                            \
4984     if (!sigismember(&check_signal_done, sig)) {  \
4985       os::Linux::check_signal_handler(sig);       \
4986     }                                             \
4987   } while (0)
4988 
4989 // This method is a periodic task to check for misbehaving JNI applications
4990 // under CheckJNI, we can add any periodic checks here
4991 
4992 void os::run_periodic_checks() {
4993   if (check_signals == false) return;
4994 
4995   // SEGV and BUS if overridden could potentially prevent
4996   // generation of hs*.log in the event of a crash, debugging
4997   // such a case can be very challenging, so we absolutely
4998   // check the following for a good measure:
4999   DO_SIGNAL_CHECK(SIGSEGV);
5000   DO_SIGNAL_CHECK(SIGILL);
5001   DO_SIGNAL_CHECK(SIGFPE);
5002   DO_SIGNAL_CHECK(SIGBUS);
5003   DO_SIGNAL_CHECK(SIGPIPE);
5004   DO_SIGNAL_CHECK(SIGXFSZ);
5005 #if defined(PPC64)
5006   DO_SIGNAL_CHECK(SIGTRAP);
5007 #endif
5008 
5009   // ReduceSignalUsage allows the user to override these handlers
5010   // see comments at the very top and jvm_md.h
5011   if (!ReduceSignalUsage) {
5012     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
5013     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
5014     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
5015     DO_SIGNAL_CHECK(BREAK_SIGNAL);
5016   }
5017 
5018   DO_SIGNAL_CHECK(SR_signum);
5019 }
5020 
5021 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
5022 
5023 static os_sigaction_t os_sigaction = NULL;
5024 
5025 void os::Linux::check_signal_handler(int sig) {
5026   char buf[O_BUFLEN];
5027   address jvmHandler = NULL;
5028 
5029 
5030   struct sigaction act;
5031   if (os_sigaction == NULL) {
5032     // only trust the default sigaction, in case it has been interposed
5033     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
5034     if (os_sigaction == NULL) return;
5035   }
5036 
5037   os_sigaction(sig, (struct sigaction*)NULL, &act);
5038 
5039 
5040   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
5041 
5042   address thisHandler = (act.sa_flags & SA_SIGINFO)
5043     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
5044     : CAST_FROM_FN_PTR(address, act.sa_handler);
5045 
5046 
5047   switch (sig) {
5048   case SIGSEGV:
5049   case SIGBUS:
5050   case SIGFPE:
5051   case SIGPIPE:
5052   case SIGILL:
5053   case SIGXFSZ:
5054     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5055     break;
5056 
5057   case SHUTDOWN1_SIGNAL:
5058   case SHUTDOWN2_SIGNAL:
5059   case SHUTDOWN3_SIGNAL:
5060   case BREAK_SIGNAL:
5061     jvmHandler = (address)user_handler();
5062     break;
5063 
5064   default:
5065     if (sig == SR_signum) {
5066       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5067     } else {
5068       return;
5069     }
5070     break;
5071   }
5072 
5073   if (thisHandler != jvmHandler) {
5074     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5075     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5076     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5077     // No need to check this sig any longer
5078     sigaddset(&check_signal_done, sig);
5079     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5080     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5081       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5082                     exception_name(sig, buf, O_BUFLEN));
5083     }
5084   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5085     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5086     tty->print("expected:");
5087     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5088     tty->cr();
5089     tty->print("  found:");
5090     os::Posix::print_sa_flags(tty, act.sa_flags);
5091     tty->cr();
5092     // No need to check this sig any longer
5093     sigaddset(&check_signal_done, sig);
5094   }
5095 
5096   // Dump all the signal
5097   if (sigismember(&check_signal_done, sig)) {
5098     print_signal_handlers(tty, buf, O_BUFLEN);
5099   }
5100 }
5101 
5102 extern void report_error(char* file_name, int line_no, char* title,
5103                          char* format, ...);
5104 
5105 // this is called _before_ most of the global arguments have been parsed
5106 void os::init(void) {
5107   char dummy;   // used to get a guess on initial stack address
5108 
5109   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5110 
5111   init_random(1234567);
5112 
5113   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5114   if (Linux::page_size() == -1) {
5115     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5116           os::strerror(errno));
5117   }
5118   init_page_sizes((size_t) Linux::page_size());
5119 
5120   Linux::initialize_system_info();
5121 
5122   os::Linux::CPUPerfTicks pticks;
5123   bool res = os::Linux::get_tick_information(&pticks, -1);
5124 
5125   if (res && pticks.has_steal_ticks) {
5126     has_initial_tick_info = true;
5127     initial_total_ticks = pticks.total;
5128     initial_steal_ticks = pticks.steal;
5129   }
5130 
5131   // _main_thread points to the thread that created/loaded the JVM.
5132   Linux::_main_thread = pthread_self();
5133 
5134   // retrieve entry point for pthread_setname_np
5135   Linux::_pthread_setname_np =
5136     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5137 
5138   os::Posix::init();
5139 
5140   initial_time_count = javaTimeNanos();
5141 
5142   // Always warn if no monotonic clock available
5143   if (!os::Posix::supports_monotonic_clock()) {
5144     warning("No monotonic clock was available - timed services may "    \
5145             "be adversely affected if the time-of-day clock changes");
5146   }
5147 }
5148 
5149 // To install functions for atexit system call
5150 extern "C" {
5151   static void perfMemory_exit_helper() {
5152     perfMemory_exit();
5153   }
5154 }
5155 
5156 void os::pd_init_container_support() {
5157   OSContainer::init();
5158 }
5159 
5160 void os::Linux::numa_init() {
5161 
5162   // Java can be invoked as
5163   // 1. Without numactl and heap will be allocated/configured on all nodes as
5164   //    per the system policy.
5165   // 2. With numactl --interleave:
5166   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5167   //      API for membind case bitmask is reset.
5168   //      Interleave is only hint and Kernel can fallback to other nodes if
5169   //      no memory is available on the target nodes.
5170   // 3. With numactl --membind:
5171   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5172   //      interleave case returns bitmask of all nodes.
5173   // numa_all_nodes_ptr holds bitmask of all nodes.
5174   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5175   // bitmask when externally configured to run on all or fewer nodes.
5176 
5177   if (!Linux::libnuma_init()) {
5178     UseNUMA = false;
5179   } else {
5180     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5181       // If there's only one node (they start from 0) or if the process
5182       // is bound explicitly to a single node using membind, disable NUMA unless
5183       // user explicilty forces NUMA optimizations on single-node/UMA systems
5184       UseNUMA = ForceNUMA;
5185     } else {
5186 
5187       LogTarget(Info,os) log;
5188       LogStream ls(log);
5189 
5190       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5191 
5192       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5193       const char* numa_mode = "membind";
5194 
5195       if (Linux::is_running_in_interleave_mode()) {
5196         bmp = Linux::_numa_interleave_bitmask;
5197         numa_mode = "interleave";
5198       }
5199 
5200       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5201                " Heap will be configured using NUMA memory nodes:", numa_mode);
5202 
5203       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5204         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5205           ls.print(" %d", node);
5206         }
5207       }
5208     }
5209   }
5210 
5211   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5212     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5213     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5214     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5215     // and disable adaptive resizing.
5216     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5217       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5218               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5219       UseAdaptiveSizePolicy = false;
5220       UseAdaptiveNUMAChunkSizing = false;
5221     }
5222   }
5223 }
5224 
5225 // this is called _after_ the global arguments have been parsed
5226 jint os::init_2(void) {
5227 
5228   // This could be set after os::Posix::init() but all platforms
5229   // have to set it the same so we have to mirror Solaris.
5230   DEBUG_ONLY(os::set_mutex_init_done();)
5231 
5232   os::Posix::init_2();
5233 
5234   Linux::fast_thread_clock_init();
5235 
5236   // initialize suspend/resume support - must do this before signal_sets_init()
5237   if (SR_initialize() != 0) {
5238     perror("SR_initialize failed");
5239     return JNI_ERR;
5240   }
5241 
5242   Linux::signal_sets_init();
5243   Linux::install_signal_handlers();
5244   // Initialize data for jdk.internal.misc.Signal
5245   if (!ReduceSignalUsage) {
5246     jdk_misc_signal_init();
5247   }
5248 
5249   if (AdjustStackSizeForTLS) {
5250     get_minstack_init();
5251   }
5252 
5253   // Check and sets minimum stack sizes against command line options
5254   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5255     return JNI_ERR;
5256   }
5257 
5258 #if defined(IA32)
5259   // Need to ensure we've determined the process's initial stack to
5260   // perform the workaround
5261   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5262   workaround_expand_exec_shield_cs_limit();
5263 #else
5264   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5265   if (!suppress_primordial_thread_resolution) {
5266     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5267   }
5268 #endif
5269 
5270   Linux::libpthread_init();
5271   Linux::sched_getcpu_init();
5272   log_info(os)("HotSpot is running with %s, %s",
5273                Linux::glibc_version(), Linux::libpthread_version());
5274 
5275   if (UseNUMA) {
5276     Linux::numa_init();
5277   }
5278 
5279   if (MaxFDLimit) {
5280     // set the number of file descriptors to max. print out error
5281     // if getrlimit/setrlimit fails but continue regardless.
5282     struct rlimit nbr_files;
5283     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5284     if (status != 0) {
5285       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5286     } else {
5287       nbr_files.rlim_cur = nbr_files.rlim_max;
5288       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5289       if (status != 0) {
5290         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5291       }
5292     }
5293   }
5294 
5295   // at-exit methods are called in the reverse order of their registration.
5296   // atexit functions are called on return from main or as a result of a
5297   // call to exit(3C). There can be only 32 of these functions registered
5298   // and atexit() does not set errno.
5299 
5300   if (PerfAllowAtExitRegistration) {
5301     // only register atexit functions if PerfAllowAtExitRegistration is set.
5302     // atexit functions can be delayed until process exit time, which
5303     // can be problematic for embedded VM situations. Embedded VMs should
5304     // call DestroyJavaVM() to assure that VM resources are released.
5305 
5306     // note: perfMemory_exit_helper atexit function may be removed in
5307     // the future if the appropriate cleanup code can be added to the
5308     // VM_Exit VMOperation's doit method.
5309     if (atexit(perfMemory_exit_helper) != 0) {
5310       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5311     }
5312   }
5313 
5314   // initialize thread priority policy
5315   prio_init();
5316 
5317   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5318     set_coredump_filter(DAX_SHARED_BIT);
5319   }
5320 
5321   if (DumpPrivateMappingsInCore) {
5322     set_coredump_filter(FILE_BACKED_PVT_BIT);
5323   }
5324 
5325   if (DumpSharedMappingsInCore) {
5326     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5327   }
5328 
5329   return JNI_OK;
5330 }
5331 
5332 // older glibc versions don't have this macro (which expands to
5333 // an optimized bit-counting function) so we have to roll our own
5334 #ifndef CPU_COUNT
5335 
5336 static int _cpu_count(const cpu_set_t* cpus) {
5337   int count = 0;
5338   // only look up to the number of configured processors
5339   for (int i = 0; i < os::processor_count(); i++) {
5340     if (CPU_ISSET(i, cpus)) {
5341       count++;
5342     }
5343   }
5344   return count;
5345 }
5346 
5347 #define CPU_COUNT(cpus) _cpu_count(cpus)
5348 
5349 #endif // CPU_COUNT
5350 
5351 // Get the current number of available processors for this process.
5352 // This value can change at any time during a process's lifetime.
5353 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5354 // If it appears there may be more than 1024 processors then we do a
5355 // dynamic check - see 6515172 for details.
5356 // If anything goes wrong we fallback to returning the number of online
5357 // processors - which can be greater than the number available to the process.
5358 int os::Linux::active_processor_count() {
5359   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5360   cpu_set_t* cpus_p = &cpus;
5361   int cpus_size = sizeof(cpu_set_t);
5362 
5363   int configured_cpus = os::processor_count();  // upper bound on available cpus
5364   int cpu_count = 0;
5365 
5366 // old build platforms may not support dynamic cpu sets
5367 #ifdef CPU_ALLOC
5368 
5369   // To enable easy testing of the dynamic path on different platforms we
5370   // introduce a diagnostic flag: UseCpuAllocPath
5371   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5372     // kernel may use a mask bigger than cpu_set_t
5373     log_trace(os)("active_processor_count: using dynamic path %s"
5374                   "- configured processors: %d",
5375                   UseCpuAllocPath ? "(forced) " : "",
5376                   configured_cpus);
5377     cpus_p = CPU_ALLOC(configured_cpus);
5378     if (cpus_p != NULL) {
5379       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5380       // zero it just to be safe
5381       CPU_ZERO_S(cpus_size, cpus_p);
5382     }
5383     else {
5384        // failed to allocate so fallback to online cpus
5385        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5386        log_trace(os)("active_processor_count: "
5387                      "CPU_ALLOC failed (%s) - using "
5388                      "online processor count: %d",
5389                      os::strerror(errno), online_cpus);
5390        return online_cpus;
5391     }
5392   }
5393   else {
5394     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5395                   configured_cpus);
5396   }
5397 #else // CPU_ALLOC
5398 // these stubs won't be executed
5399 #define CPU_COUNT_S(size, cpus) -1
5400 #define CPU_FREE(cpus)
5401 
5402   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5403                 configured_cpus);
5404 #endif // CPU_ALLOC
5405 
5406   // pid 0 means the current thread - which we have to assume represents the process
5407   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5408     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5409       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5410     }
5411     else {
5412       cpu_count = CPU_COUNT(cpus_p);
5413     }
5414     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5415   }
5416   else {
5417     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5418     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5419             "which may exceed available processors", os::strerror(errno), cpu_count);
5420   }
5421 
5422   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5423     CPU_FREE(cpus_p);
5424   }
5425 
5426   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5427   return cpu_count;
5428 }
5429 
5430 // Determine the active processor count from one of
5431 // three different sources:
5432 //
5433 // 1. User option -XX:ActiveProcessorCount
5434 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5435 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5436 //
5437 // Option 1, if specified, will always override.
5438 // If the cgroup subsystem is active and configured, we
5439 // will return the min of the cgroup and option 2 results.
5440 // This is required since tools, such as numactl, that
5441 // alter cpu affinity do not update cgroup subsystem
5442 // cpuset configuration files.
5443 int os::active_processor_count() {
5444   // User has overridden the number of active processors
5445   if (ActiveProcessorCount > 0) {
5446     log_trace(os)("active_processor_count: "
5447                   "active processor count set by user : %d",
5448                   ActiveProcessorCount);
5449     return ActiveProcessorCount;
5450   }
5451 
5452   int active_cpus;
5453   if (OSContainer::is_containerized()) {
5454     active_cpus = OSContainer::active_processor_count();
5455     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5456                    active_cpus);
5457   } else {
5458     active_cpus = os::Linux::active_processor_count();
5459   }
5460 
5461   return active_cpus;
5462 }
5463 
5464 uint os::processor_id() {
5465   const int id = Linux::sched_getcpu();
5466   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5467   return (uint)id;
5468 }
5469 
5470 void os::set_native_thread_name(const char *name) {
5471   if (Linux::_pthread_setname_np) {
5472     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5473     snprintf(buf, sizeof(buf), "%s", name);
5474     buf[sizeof(buf) - 1] = '\0';
5475     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5476     // ERANGE should not happen; all other errors should just be ignored.
5477     assert(rc != ERANGE, "pthread_setname_np failed");
5478   }
5479 }
5480 
5481 bool os::bind_to_processor(uint processor_id) {
5482   // Not yet implemented.
5483   return false;
5484 }
5485 
5486 ///
5487 
5488 void os::SuspendedThreadTask::internal_do_task() {
5489   if (do_suspend(_thread->osthread())) {
5490     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5491     do_task(context);
5492     do_resume(_thread->osthread());
5493   }
5494 }
5495 
5496 ////////////////////////////////////////////////////////////////////////////////
5497 // debug support
5498 
5499 bool os::find(address addr, outputStream* st) {
5500   Dl_info dlinfo;
5501   memset(&dlinfo, 0, sizeof(dlinfo));
5502   if (dladdr(addr, &dlinfo) != 0) {
5503     st->print(PTR_FORMAT ": ", p2i(addr));
5504     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5505       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5506                 p2i(addr) - p2i(dlinfo.dli_saddr));
5507     } else if (dlinfo.dli_fbase != NULL) {
5508       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5509     } else {
5510       st->print("<absolute address>");
5511     }
5512     if (dlinfo.dli_fname != NULL) {
5513       st->print(" in %s", dlinfo.dli_fname);
5514     }
5515     if (dlinfo.dli_fbase != NULL) {
5516       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5517     }
5518     st->cr();
5519 
5520     if (Verbose) {
5521       // decode some bytes around the PC
5522       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5523       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5524       address       lowest = (address) dlinfo.dli_sname;
5525       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5526       if (begin < lowest)  begin = lowest;
5527       Dl_info dlinfo2;
5528       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5529           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5530         end = (address) dlinfo2.dli_saddr;
5531       }
5532       Disassembler::decode(begin, end, st);
5533     }
5534     return true;
5535   }
5536   return false;
5537 }
5538 
5539 ////////////////////////////////////////////////////////////////////////////////
5540 // misc
5541 
5542 // This does not do anything on Linux. This is basically a hook for being
5543 // able to use structured exception handling (thread-local exception filters)
5544 // on, e.g., Win32.
5545 void
5546 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5547                          JavaCallArguments* args, Thread* thread) {
5548   f(value, method, args, thread);
5549 }
5550 
5551 void os::print_statistics() {
5552 }
5553 
5554 bool os::message_box(const char* title, const char* message) {
5555   int i;
5556   fdStream err(defaultStream::error_fd());
5557   for (i = 0; i < 78; i++) err.print_raw("=");
5558   err.cr();
5559   err.print_raw_cr(title);
5560   for (i = 0; i < 78; i++) err.print_raw("-");
5561   err.cr();
5562   err.print_raw_cr(message);
5563   for (i = 0; i < 78; i++) err.print_raw("=");
5564   err.cr();
5565 
5566   char buf[16];
5567   // Prevent process from exiting upon "read error" without consuming all CPU
5568   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5569 
5570   return buf[0] == 'y' || buf[0] == 'Y';
5571 }
5572 
5573 // Is a (classpath) directory empty?
5574 bool os::dir_is_empty(const char* path) {
5575   DIR *dir = NULL;
5576   struct dirent *ptr;
5577 
5578   dir = opendir(path);
5579   if (dir == NULL) return true;
5580 
5581   // Scan the directory
5582   bool result = true;
5583   while (result && (ptr = readdir(dir)) != NULL) {
5584     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5585       result = false;
5586     }
5587   }
5588   closedir(dir);
5589   return result;
5590 }
5591 
5592 // This code originates from JDK's sysOpen and open64_w
5593 // from src/solaris/hpi/src/system_md.c
5594 
5595 int os::open(const char *path, int oflag, int mode) {
5596   if (strlen(path) > MAX_PATH - 1) {
5597     errno = ENAMETOOLONG;
5598     return -1;
5599   }
5600 
5601   // All file descriptors that are opened in the Java process and not
5602   // specifically destined for a subprocess should have the close-on-exec
5603   // flag set.  If we don't set it, then careless 3rd party native code
5604   // might fork and exec without closing all appropriate file descriptors
5605   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5606   // turn might:
5607   //
5608   // - cause end-of-file to fail to be detected on some file
5609   //   descriptors, resulting in mysterious hangs, or
5610   //
5611   // - might cause an fopen in the subprocess to fail on a system
5612   //   suffering from bug 1085341.
5613   //
5614   // (Yes, the default setting of the close-on-exec flag is a Unix
5615   // design flaw)
5616   //
5617   // See:
5618   // 1085341: 32-bit stdio routines should support file descriptors >255
5619   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5620   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5621   //
5622   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5623   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5624   // because it saves a system call and removes a small window where the flag
5625   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5626   // and we fall back to using FD_CLOEXEC (see below).
5627 #ifdef O_CLOEXEC
5628   oflag |= O_CLOEXEC;
5629 #endif
5630 
5631   int fd = ::open64(path, oflag, mode);
5632   if (fd == -1) return -1;
5633 
5634   //If the open succeeded, the file might still be a directory
5635   {
5636     struct stat64 buf64;
5637     int ret = ::fstat64(fd, &buf64);
5638     int st_mode = buf64.st_mode;
5639 
5640     if (ret != -1) {
5641       if ((st_mode & S_IFMT) == S_IFDIR) {
5642         errno = EISDIR;
5643         ::close(fd);
5644         return -1;
5645       }
5646     } else {
5647       ::close(fd);
5648       return -1;
5649     }
5650   }
5651 
5652 #ifdef FD_CLOEXEC
5653   // Validate that the use of the O_CLOEXEC flag on open above worked.
5654   // With recent kernels, we will perform this check exactly once.
5655   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5656   if (!O_CLOEXEC_is_known_to_work) {
5657     int flags = ::fcntl(fd, F_GETFD);
5658     if (flags != -1) {
5659       if ((flags & FD_CLOEXEC) != 0)
5660         O_CLOEXEC_is_known_to_work = 1;
5661       else
5662         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5663     }
5664   }
5665 #endif
5666 
5667   return fd;
5668 }
5669 
5670 
5671 // create binary file, rewriting existing file if required
5672 int os::create_binary_file(const char* path, bool rewrite_existing) {
5673   int oflags = O_WRONLY | O_CREAT;
5674   if (!rewrite_existing) {
5675     oflags |= O_EXCL;
5676   }
5677   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5678 }
5679 
5680 // return current position of file pointer
5681 jlong os::current_file_offset(int fd) {
5682   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5683 }
5684 
5685 // move file pointer to the specified offset
5686 jlong os::seek_to_file_offset(int fd, jlong offset) {
5687   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5688 }
5689 
5690 // This code originates from JDK's sysAvailable
5691 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5692 
5693 int os::available(int fd, jlong *bytes) {
5694   jlong cur, end;
5695   int mode;
5696   struct stat64 buf64;
5697 
5698   if (::fstat64(fd, &buf64) >= 0) {
5699     mode = buf64.st_mode;
5700     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5701       int n;
5702       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5703         *bytes = n;
5704         return 1;
5705       }
5706     }
5707   }
5708   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5709     return 0;
5710   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5711     return 0;
5712   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5713     return 0;
5714   }
5715   *bytes = end - cur;
5716   return 1;
5717 }
5718 
5719 // Map a block of memory.
5720 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5721                         char *addr, size_t bytes, bool read_only,
5722                         bool allow_exec) {
5723   int prot;
5724   int flags = MAP_PRIVATE;
5725 
5726   if (read_only) {
5727     prot = PROT_READ;
5728   } else {
5729     prot = PROT_READ | PROT_WRITE;
5730   }
5731 
5732   if (allow_exec) {
5733     prot |= PROT_EXEC;
5734   }
5735 
5736   if (addr != NULL) {
5737     flags |= MAP_FIXED;
5738   }
5739 
5740   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5741                                      fd, file_offset);
5742   if (mapped_address == MAP_FAILED) {
5743     return NULL;
5744   }
5745   return mapped_address;
5746 }
5747 
5748 
5749 // Remap a block of memory.
5750 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5751                           char *addr, size_t bytes, bool read_only,
5752                           bool allow_exec) {
5753   // same as map_memory() on this OS
5754   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5755                         allow_exec);
5756 }
5757 
5758 
5759 // Unmap a block of memory.
5760 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5761   return munmap(addr, bytes) == 0;
5762 }
5763 
5764 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5765 
5766 static jlong fast_cpu_time(Thread *thread) {
5767     clockid_t clockid;
5768     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5769                                               &clockid);
5770     if (rc == 0) {
5771       return os::Linux::fast_thread_cpu_time(clockid);
5772     } else {
5773       // It's possible to encounter a terminated native thread that failed
5774       // to detach itself from the VM - which should result in ESRCH.
5775       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5776       return -1;
5777     }
5778 }
5779 
5780 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5781 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5782 // of a thread.
5783 //
5784 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5785 // the fast estimate available on the platform.
5786 
5787 jlong os::current_thread_cpu_time() {
5788   if (os::Linux::supports_fast_thread_cpu_time()) {
5789     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5790   } else {
5791     // return user + sys since the cost is the same
5792     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5793   }
5794 }
5795 
5796 jlong os::thread_cpu_time(Thread* thread) {
5797   // consistent with what current_thread_cpu_time() returns
5798   if (os::Linux::supports_fast_thread_cpu_time()) {
5799     return fast_cpu_time(thread);
5800   } else {
5801     return slow_thread_cpu_time(thread, true /* user + sys */);
5802   }
5803 }
5804 
5805 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5806   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5807     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5808   } else {
5809     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5810   }
5811 }
5812 
5813 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5814   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5815     return fast_cpu_time(thread);
5816   } else {
5817     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5818   }
5819 }
5820 
5821 //  -1 on error.
5822 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5823   pid_t  tid = thread->osthread()->thread_id();
5824   char *s;
5825   char stat[2048];
5826   int statlen;
5827   char proc_name[64];
5828   int count;
5829   long sys_time, user_time;
5830   char cdummy;
5831   int idummy;
5832   long ldummy;
5833   FILE *fp;
5834 
5835   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5836   fp = fopen(proc_name, "r");
5837   if (fp == NULL) return -1;
5838   statlen = fread(stat, 1, 2047, fp);
5839   stat[statlen] = '\0';
5840   fclose(fp);
5841 
5842   // Skip pid and the command string. Note that we could be dealing with
5843   // weird command names, e.g. user could decide to rename java launcher
5844   // to "java 1.4.2 :)", then the stat file would look like
5845   //                1234 (java 1.4.2 :)) R ... ...
5846   // We don't really need to know the command string, just find the last
5847   // occurrence of ")" and then start parsing from there. See bug 4726580.
5848   s = strrchr(stat, ')');
5849   if (s == NULL) return -1;
5850 
5851   // Skip blank chars
5852   do { s++; } while (s && isspace(*s));
5853 
5854   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5855                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5856                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5857                  &user_time, &sys_time);
5858   if (count != 13) return -1;
5859   if (user_sys_cpu_time) {
5860     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5861   } else {
5862     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5863   }
5864 }
5865 
5866 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5867   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5868   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5869   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5870   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5871 }
5872 
5873 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5874   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5875   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5876   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5877   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5878 }
5879 
5880 bool os::is_thread_cpu_time_supported() {
5881   return true;
5882 }
5883 
5884 // System loadavg support.  Returns -1 if load average cannot be obtained.
5885 // Linux doesn't yet have a (official) notion of processor sets,
5886 // so just return the system wide load average.
5887 int os::loadavg(double loadavg[], int nelem) {
5888   return ::getloadavg(loadavg, nelem);
5889 }
5890 
5891 void os::pause() {
5892   char filename[MAX_PATH];
5893   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5894     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5895   } else {
5896     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5897   }
5898 
5899   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5900   if (fd != -1) {
5901     struct stat buf;
5902     ::close(fd);
5903     while (::stat(filename, &buf) == 0) {
5904       (void)::poll(NULL, 0, 100);
5905     }
5906   } else {
5907     jio_fprintf(stderr,
5908                 "Could not open pause file '%s', continuing immediately.\n", filename);
5909   }
5910 }
5911 
5912 extern char** environ;
5913 
5914 // Run the specified command in a separate process. Return its exit value,
5915 // or -1 on failure (e.g. can't fork a new process).
5916 // Unlike system(), this function can be called from signal handler. It
5917 // doesn't block SIGINT et al.
5918 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5919   const char * argv[4] = {"sh", "-c", cmd, NULL};
5920 
5921   pid_t pid ;
5922 
5923   if (use_vfork_if_available) {
5924     pid = vfork();
5925   } else {
5926     pid = fork();
5927   }
5928 
5929   if (pid < 0) {
5930     // fork failed
5931     return -1;
5932 
5933   } else if (pid == 0) {
5934     // child process
5935 
5936     execve("/bin/sh", (char* const*)argv, environ);
5937 
5938     // execve failed
5939     _exit(-1);
5940 
5941   } else  {
5942     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5943     // care about the actual exit code, for now.
5944 
5945     int status;
5946 
5947     // Wait for the child process to exit.  This returns immediately if
5948     // the child has already exited. */
5949     while (waitpid(pid, &status, 0) < 0) {
5950       switch (errno) {
5951       case ECHILD: return 0;
5952       case EINTR: break;
5953       default: return -1;
5954       }
5955     }
5956 
5957     if (WIFEXITED(status)) {
5958       // The child exited normally; get its exit code.
5959       return WEXITSTATUS(status);
5960     } else if (WIFSIGNALED(status)) {
5961       // The child exited because of a signal
5962       // The best value to return is 0x80 + signal number,
5963       // because that is what all Unix shells do, and because
5964       // it allows callers to distinguish between process exit and
5965       // process death by signal.
5966       return 0x80 + WTERMSIG(status);
5967     } else {
5968       // Unknown exit code; pass it through
5969       return status;
5970     }
5971   }
5972 }
5973 
5974 // Get the default path to the core file
5975 // Returns the length of the string
5976 int os::get_core_path(char* buffer, size_t bufferSize) {
5977   /*
5978    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5979    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5980    */
5981   const int core_pattern_len = 129;
5982   char core_pattern[core_pattern_len] = {0};
5983 
5984   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5985   if (core_pattern_file == -1) {
5986     return -1;
5987   }
5988 
5989   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5990   ::close(core_pattern_file);
5991   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5992     return -1;
5993   }
5994   if (core_pattern[ret-1] == '\n') {
5995     core_pattern[ret-1] = '\0';
5996   } else {
5997     core_pattern[ret] = '\0';
5998   }
5999 
6000   // Replace the %p in the core pattern with the process id. NOTE: we do this
6001   // only if the pattern doesn't start with "|", and we support only one %p in
6002   // the pattern.
6003   char *pid_pos = strstr(core_pattern, "%p");
6004   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
6005   int written;
6006 
6007   if (core_pattern[0] == '/') {
6008     if (pid_pos != NULL) {
6009       *pid_pos = '\0';
6010       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
6011                              current_process_id(), tail);
6012     } else {
6013       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6014     }
6015   } else {
6016     char cwd[PATH_MAX];
6017 
6018     const char* p = get_current_directory(cwd, PATH_MAX);
6019     if (p == NULL) {
6020       return -1;
6021     }
6022 
6023     if (core_pattern[0] == '|') {
6024       written = jio_snprintf(buffer, bufferSize,
6025                              "\"%s\" (or dumping to %s/core.%d)",
6026                              &core_pattern[1], p, current_process_id());
6027     } else if (pid_pos != NULL) {
6028       *pid_pos = '\0';
6029       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
6030                              current_process_id(), tail);
6031     } else {
6032       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6033     }
6034   }
6035 
6036   if (written < 0) {
6037     return -1;
6038   }
6039 
6040   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6041     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6042 
6043     if (core_uses_pid_file != -1) {
6044       char core_uses_pid = 0;
6045       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6046       ::close(core_uses_pid_file);
6047 
6048       if (core_uses_pid == '1') {
6049         jio_snprintf(buffer + written, bufferSize - written,
6050                                           ".%d", current_process_id());
6051       }
6052     }
6053   }
6054 
6055   return strlen(buffer);
6056 }
6057 
6058 bool os::start_debugging(char *buf, int buflen) {
6059   int len = (int)strlen(buf);
6060   char *p = &buf[len];
6061 
6062   jio_snprintf(p, buflen-len,
6063                "\n\n"
6064                "Do you want to debug the problem?\n\n"
6065                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6066                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6067                "Otherwise, press RETURN to abort...",
6068                os::current_process_id(), os::current_process_id(),
6069                os::current_thread_id(), os::current_thread_id());
6070 
6071   bool yes = os::message_box("Unexpected Error", buf);
6072 
6073   if (yes) {
6074     // yes, user asked VM to launch debugger
6075     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6076                  os::current_process_id(), os::current_process_id());
6077 
6078     os::fork_and_exec(buf);
6079     yes = false;
6080   }
6081   return yes;
6082 }
6083 
6084 
6085 // Java/Compiler thread:
6086 //
6087 //   Low memory addresses
6088 // P0 +------------------------+
6089 //    |                        |\  Java thread created by VM does not have glibc
6090 //    |    glibc guard page    | - guard page, attached Java thread usually has
6091 //    |                        |/  1 glibc guard page.
6092 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6093 //    |                        |\
6094 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6095 //    |                        |/
6096 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6097 //    |                        |\
6098 //    |      Normal Stack      | -
6099 //    |                        |/
6100 // P2 +------------------------+ Thread::stack_base()
6101 //
6102 // Non-Java thread:
6103 //
6104 //   Low memory addresses
6105 // P0 +------------------------+
6106 //    |                        |\
6107 //    |  glibc guard page      | - usually 1 page
6108 //    |                        |/
6109 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6110 //    |                        |\
6111 //    |      Normal Stack      | -
6112 //    |                        |/
6113 // P2 +------------------------+ Thread::stack_base()
6114 //
6115 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6116 //    returned from pthread_attr_getstack().
6117 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6118 //    of the stack size given in pthread_attr. We work around this for
6119 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6120 //
6121 #ifndef ZERO
6122 static void current_stack_region(address * bottom, size_t * size) {
6123   if (os::is_primordial_thread()) {
6124     // primordial thread needs special handling because pthread_getattr_np()
6125     // may return bogus value.
6126     *bottom = os::Linux::initial_thread_stack_bottom();
6127     *size   = os::Linux::initial_thread_stack_size();
6128   } else {
6129     pthread_attr_t attr;
6130 
6131     int rslt = pthread_getattr_np(pthread_self(), &attr);
6132 
6133     // JVM needs to know exact stack location, abort if it fails
6134     if (rslt != 0) {
6135       if (rslt == ENOMEM) {
6136         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6137       } else {
6138         fatal("pthread_getattr_np failed with error = %d", rslt);
6139       }
6140     }
6141 
6142     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6143       fatal("Cannot locate current stack attributes!");
6144     }
6145 
6146     // Work around NPTL stack guard error.
6147     size_t guard_size = 0;
6148     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6149     if (rslt != 0) {
6150       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6151     }
6152     *bottom += guard_size;
6153     *size   -= guard_size;
6154 
6155     pthread_attr_destroy(&attr);
6156 
6157   }
6158   assert(os::current_stack_pointer() >= *bottom &&
6159          os::current_stack_pointer() < *bottom + *size, "just checking");
6160 }
6161 
6162 address os::current_stack_base() {
6163   address bottom;
6164   size_t size;
6165   current_stack_region(&bottom, &size);
6166   return (bottom + size);
6167 }
6168 
6169 size_t os::current_stack_size() {
6170   // This stack size includes the usable stack and HotSpot guard pages
6171   // (for the threads that have Hotspot guard pages).
6172   address bottom;
6173   size_t size;
6174   current_stack_region(&bottom, &size);
6175   return size;
6176 }
6177 #endif
6178 
6179 static inline struct timespec get_mtime(const char* filename) {
6180   struct stat st;
6181   int ret = os::stat(filename, &st);
6182   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6183   return st.st_mtim;
6184 }
6185 
6186 int os::compare_file_modified_times(const char* file1, const char* file2) {
6187   struct timespec filetime1 = get_mtime(file1);
6188   struct timespec filetime2 = get_mtime(file2);
6189   int diff = filetime1.tv_sec - filetime2.tv_sec;
6190   if (diff == 0) {
6191     return filetime1.tv_nsec - filetime2.tv_nsec;
6192   }
6193   return diff;
6194 }
6195 
6196 bool os::supports_map_sync() {
6197   return true;
6198 }
6199 
6200 /////////////// Unit tests ///////////////
6201 
6202 #ifndef PRODUCT
6203 
6204 class TestReserveMemorySpecial : AllStatic {
6205  public:
6206   static void small_page_write(void* addr, size_t size) {
6207     size_t page_size = os::vm_page_size();
6208 
6209     char* end = (char*)addr + size;
6210     for (char* p = (char*)addr; p < end; p += page_size) {
6211       *p = 1;
6212     }
6213   }
6214 
6215   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6216     if (!UseHugeTLBFS) {
6217       return;
6218     }
6219 
6220     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6221 
6222     if (addr != NULL) {
6223       small_page_write(addr, size);
6224 
6225       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6226     }
6227   }
6228 
6229   static void test_reserve_memory_special_huge_tlbfs_only() {
6230     if (!UseHugeTLBFS) {
6231       return;
6232     }
6233 
6234     size_t lp = os::large_page_size();
6235 
6236     for (size_t size = lp; size <= lp * 10; size += lp) {
6237       test_reserve_memory_special_huge_tlbfs_only(size);
6238     }
6239   }
6240 
6241   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6242     size_t lp = os::large_page_size();
6243     size_t ag = os::vm_allocation_granularity();
6244 
6245     // sizes to test
6246     const size_t sizes[] = {
6247       lp, lp + ag, lp + lp / 2, lp * 2,
6248       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6249       lp * 10, lp * 10 + lp / 2
6250     };
6251     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6252 
6253     // For each size/alignment combination, we test three scenarios:
6254     // 1) with req_addr == NULL
6255     // 2) with a non-null req_addr at which we expect to successfully allocate
6256     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6257     //    expect the allocation to either fail or to ignore req_addr
6258 
6259     // Pre-allocate two areas; they shall be as large as the largest allocation
6260     //  and aligned to the largest alignment we will be testing.
6261     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6262     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6263       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6264       -1, 0);
6265     assert(mapping1 != MAP_FAILED, "should work");
6266 
6267     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6268       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6269       -1, 0);
6270     assert(mapping2 != MAP_FAILED, "should work");
6271 
6272     // Unmap the first mapping, but leave the second mapping intact: the first
6273     // mapping will serve as a value for a "good" req_addr (case 2). The second
6274     // mapping, still intact, as "bad" req_addr (case 3).
6275     ::munmap(mapping1, mapping_size);
6276 
6277     // Case 1
6278     for (int i = 0; i < num_sizes; i++) {
6279       const size_t size = sizes[i];
6280       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6281         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6282         if (p != NULL) {
6283           assert(is_aligned(p, alignment), "must be");
6284           small_page_write(p, size);
6285           os::Linux::release_memory_special_huge_tlbfs(p, size);
6286         }
6287       }
6288     }
6289 
6290     // Case 2
6291     for (int i = 0; i < num_sizes; i++) {
6292       const size_t size = sizes[i];
6293       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6294         char* const req_addr = align_up(mapping1, alignment);
6295         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6296         if (p != NULL) {
6297           assert(p == req_addr, "must be");
6298           small_page_write(p, size);
6299           os::Linux::release_memory_special_huge_tlbfs(p, size);
6300         }
6301       }
6302     }
6303 
6304     // Case 3
6305     for (int i = 0; i < num_sizes; i++) {
6306       const size_t size = sizes[i];
6307       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6308         char* const req_addr = align_up(mapping2, alignment);
6309         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6310         // as the area around req_addr contains already existing mappings, the API should always
6311         // return NULL (as per contract, it cannot return another address)
6312         assert(p == NULL, "must be");
6313       }
6314     }
6315 
6316     ::munmap(mapping2, mapping_size);
6317 
6318   }
6319 
6320   static void test_reserve_memory_special_huge_tlbfs() {
6321     if (!UseHugeTLBFS) {
6322       return;
6323     }
6324 
6325     test_reserve_memory_special_huge_tlbfs_only();
6326     test_reserve_memory_special_huge_tlbfs_mixed();
6327   }
6328 
6329   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6330     if (!UseSHM) {
6331       return;
6332     }
6333 
6334     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6335 
6336     if (addr != NULL) {
6337       assert(is_aligned(addr, alignment), "Check");
6338       assert(is_aligned(addr, os::large_page_size()), "Check");
6339 
6340       small_page_write(addr, size);
6341 
6342       os::Linux::release_memory_special_shm(addr, size);
6343     }
6344   }
6345 
6346   static void test_reserve_memory_special_shm() {
6347     size_t lp = os::large_page_size();
6348     size_t ag = os::vm_allocation_granularity();
6349 
6350     for (size_t size = ag; size < lp * 3; size += ag) {
6351       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6352         test_reserve_memory_special_shm(size, alignment);
6353       }
6354     }
6355   }
6356 
6357   static void test() {
6358     test_reserve_memory_special_huge_tlbfs();
6359     test_reserve_memory_special_shm();
6360   }
6361 };
6362 
6363 void TestReserveMemorySpecial_test() {
6364   TestReserveMemorySpecial::test();
6365 }
6366 
6367 #endif