1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1Trace.hpp"
  63 #include "gc/g1/g1YCTypes.hpp"
  64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  65 #include "gc/g1/g1VMOperations.hpp"
  66 #include "gc/g1/heapRegion.inline.hpp"
  67 #include "gc/g1/heapRegionRemSet.hpp"
  68 #include "gc/g1/heapRegionSet.inline.hpp"
  69 #include "gc/shared/concurrentGCBreakpoints.hpp"
  70 #include "gc/shared/gcBehaviours.hpp"
  71 #include "gc/shared/gcHeapSummary.hpp"
  72 #include "gc/shared/gcId.hpp"
  73 #include "gc/shared/gcLocker.hpp"
  74 #include "gc/shared/gcTimer.hpp"
  75 #include "gc/shared/gcTraceTime.inline.hpp"
  76 #include "gc/shared/generationSpec.hpp"
  77 #include "gc/shared/isGCActiveMark.hpp"
  78 #include "gc/shared/locationPrinter.inline.hpp"
  79 #include "gc/shared/oopStorageParState.hpp"
  80 #include "gc/shared/preservedMarks.inline.hpp"
  81 #include "gc/shared/suspendibleThreadSet.hpp"
  82 #include "gc/shared/referenceProcessor.inline.hpp"
  83 #include "gc/shared/taskTerminator.hpp"
  84 #include "gc/shared/taskqueue.inline.hpp"
  85 #include "gc/shared/weakProcessor.inline.hpp"
  86 #include "gc/shared/workerPolicy.hpp"
  87 #include "logging/log.hpp"
  88 #include "memory/allocation.hpp"
  89 #include "memory/iterator.hpp"
  90 #include "memory/resourceArea.hpp"
  91 #include "memory/universe.hpp"
  92 #include "oops/access.inline.hpp"
  93 #include "oops/compressedOops.inline.hpp"
  94 #include "oops/oop.inline.hpp"
  95 #include "runtime/atomic.hpp"
  96 #include "runtime/flags/flagSetting.hpp"
  97 #include "runtime/handles.inline.hpp"
  98 #include "runtime/init.hpp"
  99 #include "runtime/orderAccess.hpp"
 100 #include "runtime/threadSMR.hpp"
 101 #include "runtime/vmThread.hpp"
 102 #include "utilities/align.hpp"
 103 #include "utilities/bitMap.inline.hpp"
 104 #include "utilities/globalDefinitions.hpp"
 105 #include "utilities/stack.inline.hpp"
 106 
 107 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 108 
 109 // INVARIANTS/NOTES
 110 //
 111 // All allocation activity covered by the G1CollectedHeap interface is
 112 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 113 // and allocate_new_tlab, which are the "entry" points to the
 114 // allocation code from the rest of the JVM.  (Note that this does not
 115 // apply to TLAB allocation, which is not part of this interface: it
 116 // is done by clients of this interface.)
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 119  private:
 120   size_t _num_dirtied;
 121   G1CollectedHeap* _g1h;
 122   G1CardTable* _g1_ct;
 123 
 124   HeapRegion* region_for_card(CardValue* card_ptr) const {
 125     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 126   }
 127 
 128   bool will_become_free(HeapRegion* hr) const {
 129     // A region will be freed by free_collection_set if the region is in the
 130     // collection set and has not had an evacuation failure.
 131     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 132   }
 133 
 134  public:
 135   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 136     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 137 
 138   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 139     HeapRegion* hr = region_for_card(card_ptr);
 140 
 141     // Should only dirty cards in regions that won't be freed.
 142     if (!will_become_free(hr)) {
 143       *card_ptr = G1CardTable::dirty_card_val();
 144       _num_dirtied++;
 145     }
 146   }
 147 
 148   size_t num_dirtied()   const { return _num_dirtied; }
 149 };
 150 
 151 
 152 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 153   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 157   // The from card cache is not the memory that is actually committed. So we cannot
 158   // take advantage of the zero_filled parameter.
 159   reset_from_card_cache(start_idx, num_regions);
 160 }
 161 
 162 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 163   Ticks start = Ticks::now();
 164   workers()->run_task(task, workers()->active_workers());
 165   return Ticks::now() - start;
 166 }
 167 
 168 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 169                                              MemRegion mr) {
 170   return new HeapRegion(hrs_index, bot(), mr);
 171 }
 172 
 173 // Private methods.
 174 
 175 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 176                                         HeapRegionType type,
 177                                         bool do_expand,
 178                                         uint node_index) {
 179   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 180          "the only time we use this to allocate a humongous region is "
 181          "when we are allocating a single humongous region");
 182 
 183   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 184 
 185   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 186     // Currently, only attempts to allocate GC alloc regions set
 187     // do_expand to true. So, we should only reach here during a
 188     // safepoint. If this assumption changes we might have to
 189     // reconsider the use of _expand_heap_after_alloc_failure.
 190     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 191 
 192     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 193                               word_size * HeapWordSize);
 194 
 195     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 196            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 197            word_size * HeapWordSize);
 198     if (expand_single_region(node_index)) {
 199       // Given that expand_single_region() succeeded in expanding the heap, and we
 200       // always expand the heap by an amount aligned to the heap
 201       // region size, the free list should in theory not be empty.
 202       // In either case allocate_free_region() will check for NULL.
 203       res = _hrm->allocate_free_region(type, node_index);
 204     } else {
 205       _expand_heap_after_alloc_failure = false;
 206     }
 207   }
 208   return res;
 209 }
 210 
 211 HeapWord*
 212 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 213                                                            uint num_regions,
 214                                                            size_t word_size) {
 215   assert(first_hr != NULL, "pre-condition");
 216   assert(is_humongous(word_size), "word_size should be humongous");
 217   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 218 
 219   // Index of last region in the series.
 220   uint first = first_hr->hrm_index();
 221   uint last = first + num_regions - 1;
 222 
 223   // We need to initialize the region(s) we just discovered. This is
 224   // a bit tricky given that it can happen concurrently with
 225   // refinement threads refining cards on these regions and
 226   // potentially wanting to refine the BOT as they are scanning
 227   // those cards (this can happen shortly after a cleanup; see CR
 228   // 6991377). So we have to set up the region(s) carefully and in
 229   // a specific order.
 230 
 231   // The word size sum of all the regions we will allocate.
 232   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 233   assert(word_size <= word_size_sum, "sanity");
 234 
 235   // The passed in hr will be the "starts humongous" region. The header
 236   // of the new object will be placed at the bottom of this region.
 237   HeapWord* new_obj = first_hr->bottom();
 238   // This will be the new top of the new object.
 239   HeapWord* obj_top = new_obj + word_size;
 240 
 241   // First, we need to zero the header of the space that we will be
 242   // allocating. When we update top further down, some refinement
 243   // threads might try to scan the region. By zeroing the header we
 244   // ensure that any thread that will try to scan the region will
 245   // come across the zero klass word and bail out.
 246   //
 247   // NOTE: It would not have been correct to have used
 248   // CollectedHeap::fill_with_object() and make the space look like
 249   // an int array. The thread that is doing the allocation will
 250   // later update the object header to a potentially different array
 251   // type and, for a very short period of time, the klass and length
 252   // fields will be inconsistent. This could cause a refinement
 253   // thread to calculate the object size incorrectly.
 254   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 255 
 256   // Next, pad out the unused tail of the last region with filler
 257   // objects, for improved usage accounting.
 258   // How many words we use for filler objects.
 259   size_t word_fill_size = word_size_sum - word_size;
 260 
 261   // How many words memory we "waste" which cannot hold a filler object.
 262   size_t words_not_fillable = 0;
 263 
 264   if (word_fill_size >= min_fill_size()) {
 265     fill_with_objects(obj_top, word_fill_size);
 266   } else if (word_fill_size > 0) {
 267     // We have space to fill, but we cannot fit an object there.
 268     words_not_fillable = word_fill_size;
 269     word_fill_size = 0;
 270   }
 271 
 272   // We will set up the first region as "starts humongous". This
 273   // will also update the BOT covering all the regions to reflect
 274   // that there is a single object that starts at the bottom of the
 275   // first region.
 276   first_hr->set_starts_humongous(obj_top, word_fill_size);
 277   _policy->remset_tracker()->update_at_allocate(first_hr);
 278   // Then, if there are any, we will set up the "continues
 279   // humongous" regions.
 280   HeapRegion* hr = NULL;
 281   for (uint i = first + 1; i <= last; ++i) {
 282     hr = region_at(i);
 283     hr->set_continues_humongous(first_hr);
 284     _policy->remset_tracker()->update_at_allocate(hr);
 285   }
 286 
 287   // Up to this point no concurrent thread would have been able to
 288   // do any scanning on any region in this series. All the top
 289   // fields still point to bottom, so the intersection between
 290   // [bottom,top] and [card_start,card_end] will be empty. Before we
 291   // update the top fields, we'll do a storestore to make sure that
 292   // no thread sees the update to top before the zeroing of the
 293   // object header and the BOT initialization.
 294   OrderAccess::storestore();
 295 
 296   // Now, we will update the top fields of the "continues humongous"
 297   // regions except the last one.
 298   for (uint i = first; i < last; ++i) {
 299     hr = region_at(i);
 300     hr->set_top(hr->end());
 301   }
 302 
 303   hr = region_at(last);
 304   // If we cannot fit a filler object, we must set top to the end
 305   // of the humongous object, otherwise we cannot iterate the heap
 306   // and the BOT will not be complete.
 307   hr->set_top(hr->end() - words_not_fillable);
 308 
 309   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 310          "obj_top should be in last region");
 311 
 312   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 313 
 314   assert(words_not_fillable == 0 ||
 315          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 316          "Miscalculation in humongous allocation");
 317 
 318   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 319 
 320   for (uint i = first; i <= last; ++i) {
 321     hr = region_at(i);
 322     _humongous_set.add(hr);
 323     _hr_printer.alloc(hr);
 324   }
 325 
 326   return new_obj;
 327 }
 328 
 329 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 330   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 331   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 332 }
 333 
 334 // If could fit into free regions w/o expansion, try.
 335 // Otherwise, if can expand, do so.
 336 // Otherwise, if using ex regions might help, try with ex given back.
 337 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 338   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 339 
 340   _verifier->verify_region_sets_optional();
 341 
 342   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 343 
 344   // Policy: First try to allocate a humongous object in the free list.
 345   HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions);
 346   if (humongous_start == NULL) {
 347     // Policy: We could not find enough regions for the humongous object in the
 348     // free list. Look through the heap to find a mix of free and uncommitted regions.
 349     // If so, expand the heap and allocate the humongous object.
 350     humongous_start = _hrm->expand_and_allocate_humongous(obj_regions);
 351     if (humongous_start != NULL) {
 352       // We managed to find a region by expanding the heap.
 353       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 354                                 word_size * HeapWordSize);
 355       policy()->record_new_heap_size(num_regions());
 356     } else {
 357       // Policy: Potentially trigger a defragmentation GC.
 358     }
 359   }
 360 
 361   HeapWord* result = NULL;
 362   if (humongous_start != NULL) {
 363     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 364     assert(result != NULL, "it should always return a valid result");
 365 
 366     // A successful humongous object allocation changes the used space
 367     // information of the old generation so we need to recalculate the
 368     // sizes and update the jstat counters here.
 369     g1mm()->update_sizes();
 370   }
 371 
 372   _verifier->verify_region_sets_optional();
 373 
 374   return result;
 375 }
 376 
 377 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 378                                              size_t requested_size,
 379                                              size_t* actual_size) {
 380   assert_heap_not_locked_and_not_at_safepoint();
 381   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 382 
 383   return attempt_allocation(min_size, requested_size, actual_size);
 384 }
 385 
 386 HeapWord*
 387 G1CollectedHeap::mem_allocate(size_t word_size,
 388                               bool*  gc_overhead_limit_was_exceeded) {
 389   assert_heap_not_locked_and_not_at_safepoint();
 390 
 391   if (is_humongous(word_size)) {
 392     return attempt_allocation_humongous(word_size);
 393   }
 394   size_t dummy = 0;
 395   return attempt_allocation(word_size, word_size, &dummy);
 396 }
 397 
 398 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 399   ResourceMark rm; // For retrieving the thread names in log messages.
 400 
 401   // Make sure you read the note in attempt_allocation_humongous().
 402 
 403   assert_heap_not_locked_and_not_at_safepoint();
 404   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 405          "be called for humongous allocation requests");
 406 
 407   // We should only get here after the first-level allocation attempt
 408   // (attempt_allocation()) failed to allocate.
 409 
 410   // We will loop until a) we manage to successfully perform the
 411   // allocation or b) we successfully schedule a collection which
 412   // fails to perform the allocation. b) is the only case when we'll
 413   // return NULL.
 414   HeapWord* result = NULL;
 415   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 416     bool should_try_gc;
 417     uint gc_count_before;
 418 
 419     {
 420       MutexLocker x(Heap_lock);
 421       result = _allocator->attempt_allocation_locked(word_size);
 422       if (result != NULL) {
 423         return result;
 424       }
 425 
 426       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 427       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 428       // waiting because the GCLocker is active to not wait too long.
 429       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 430         // No need for an ergo message here, can_expand_young_list() does this when
 431         // it returns true.
 432         result = _allocator->attempt_allocation_force(word_size);
 433         if (result != NULL) {
 434           return result;
 435         }
 436       }
 437       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 438       // the GCLocker initiated GC has been performed and then retry. This includes
 439       // the case when the GC Locker is not active but has not been performed.
 440       should_try_gc = !GCLocker::needs_gc();
 441       // Read the GC count while still holding the Heap_lock.
 442       gc_count_before = total_collections();
 443     }
 444 
 445     if (should_try_gc) {
 446       bool succeeded;
 447       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 448                                    GCCause::_g1_inc_collection_pause);
 449       if (result != NULL) {
 450         assert(succeeded, "only way to get back a non-NULL result");
 451         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 452                              Thread::current()->name(), p2i(result));
 453         return result;
 454       }
 455 
 456       if (succeeded) {
 457         // We successfully scheduled a collection which failed to allocate. No
 458         // point in trying to allocate further. We'll just return NULL.
 459         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 460                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 461         return NULL;
 462       }
 463       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 464                            Thread::current()->name(), word_size);
 465     } else {
 466       // Failed to schedule a collection.
 467       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 468         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 469                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 470         return NULL;
 471       }
 472       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 473       // The GCLocker is either active or the GCLocker initiated
 474       // GC has not yet been performed. Stall until it is and
 475       // then retry the allocation.
 476       GCLocker::stall_until_clear();
 477       gclocker_retry_count += 1;
 478     }
 479 
 480     // We can reach here if we were unsuccessful in scheduling a
 481     // collection (because another thread beat us to it) or if we were
 482     // stalled due to the GC locker. In either can we should retry the
 483     // allocation attempt in case another thread successfully
 484     // performed a collection and reclaimed enough space. We do the
 485     // first attempt (without holding the Heap_lock) here and the
 486     // follow-on attempt will be at the start of the next loop
 487     // iteration (after taking the Heap_lock).
 488     size_t dummy = 0;
 489     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 490     if (result != NULL) {
 491       return result;
 492     }
 493 
 494     // Give a warning if we seem to be looping forever.
 495     if ((QueuedAllocationWarningCount > 0) &&
 496         (try_count % QueuedAllocationWarningCount == 0)) {
 497       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 498                              Thread::current()->name(), try_count, word_size);
 499     }
 500   }
 501 
 502   ShouldNotReachHere();
 503   return NULL;
 504 }
 505 
 506 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 507   assert_at_safepoint_on_vm_thread();
 508   if (_archive_allocator == NULL) {
 509     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 510   }
 511 }
 512 
 513 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 514   // Allocations in archive regions cannot be of a size that would be considered
 515   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 516   // may be different at archive-restore time.
 517   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 518 }
 519 
 520 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 521   assert_at_safepoint_on_vm_thread();
 522   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 523   if (is_archive_alloc_too_large(word_size)) {
 524     return NULL;
 525   }
 526   return _archive_allocator->archive_mem_allocate(word_size);
 527 }
 528 
 529 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 530                                               size_t end_alignment_in_bytes) {
 531   assert_at_safepoint_on_vm_thread();
 532   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 533 
 534   // Call complete_archive to do the real work, filling in the MemRegion
 535   // array with the archive regions.
 536   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 537   delete _archive_allocator;
 538   _archive_allocator = NULL;
 539 }
 540 
 541 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 542   assert(ranges != NULL, "MemRegion array NULL");
 543   assert(count != 0, "No MemRegions provided");
 544   MemRegion reserved = _hrm->reserved();
 545   for (size_t i = 0; i < count; i++) {
 546     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 547       return false;
 548     }
 549   }
 550   return true;
 551 }
 552 
 553 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 554                                             size_t count,
 555                                             bool open) {
 556   assert(!is_init_completed(), "Expect to be called at JVM init time");
 557   assert(ranges != NULL, "MemRegion array NULL");
 558   assert(count != 0, "No MemRegions provided");
 559   MutexLocker x(Heap_lock);
 560 
 561   MemRegion reserved = _hrm->reserved();
 562   HeapWord* prev_last_addr = NULL;
 563   HeapRegion* prev_last_region = NULL;
 564 
 565   // Temporarily disable pretouching of heap pages. This interface is used
 566   // when mmap'ing archived heap data in, so pre-touching is wasted.
 567   FlagSetting fs(AlwaysPreTouch, false);
 568 
 569   // Enable archive object checking used by G1MarkSweep. We have to let it know
 570   // about each archive range, so that objects in those ranges aren't marked.
 571   G1ArchiveAllocator::enable_archive_object_check();
 572 
 573   // For each specified MemRegion range, allocate the corresponding G1
 574   // regions and mark them as archive regions. We expect the ranges
 575   // in ascending starting address order, without overlap.
 576   for (size_t i = 0; i < count; i++) {
 577     MemRegion curr_range = ranges[i];
 578     HeapWord* start_address = curr_range.start();
 579     size_t word_size = curr_range.word_size();
 580     HeapWord* last_address = curr_range.last();
 581     size_t commits = 0;
 582 
 583     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 584               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 585               p2i(start_address), p2i(last_address));
 586     guarantee(start_address > prev_last_addr,
 587               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 588               p2i(start_address), p2i(prev_last_addr));
 589     prev_last_addr = last_address;
 590 
 591     // Check for ranges that start in the same G1 region in which the previous
 592     // range ended, and adjust the start address so we don't try to allocate
 593     // the same region again. If the current range is entirely within that
 594     // region, skip it, just adjusting the recorded top.
 595     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 596     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 597       start_address = start_region->end();
 598       if (start_address > last_address) {
 599         increase_used(word_size * HeapWordSize);
 600         start_region->set_top(last_address + 1);
 601         continue;
 602       }
 603       start_region->set_top(start_address);
 604       curr_range = MemRegion(start_address, last_address + 1);
 605       start_region = _hrm->addr_to_region(start_address);
 606     }
 607 
 608     // Perform the actual region allocation, exiting if it fails.
 609     // Then note how much new space we have allocated.
 610     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 611       return false;
 612     }
 613     increase_used(word_size * HeapWordSize);
 614     if (commits != 0) {
 615       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 616                                 HeapRegion::GrainWords * HeapWordSize * commits);
 617 
 618     }
 619 
 620     // Mark each G1 region touched by the range as archive, add it to
 621     // the old set, and set top.
 622     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 623     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 624     prev_last_region = last_region;
 625 
 626     while (curr_region != NULL) {
 627       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 628              "Region already in use (index %u)", curr_region->hrm_index());
 629       if (open) {
 630         curr_region->set_open_archive();
 631       } else {
 632         curr_region->set_closed_archive();
 633       }
 634       _hr_printer.alloc(curr_region);
 635       _archive_set.add(curr_region);
 636       HeapWord* top;
 637       HeapRegion* next_region;
 638       if (curr_region != last_region) {
 639         top = curr_region->end();
 640         next_region = _hrm->next_region_in_heap(curr_region);
 641       } else {
 642         top = last_address + 1;
 643         next_region = NULL;
 644       }
 645       curr_region->set_top(top);
 646       curr_region = next_region;
 647     }
 648 
 649     // Notify mark-sweep of the archive
 650     G1ArchiveAllocator::set_range_archive(curr_range, open);
 651   }
 652   return true;
 653 }
 654 
 655 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 656   assert(!is_init_completed(), "Expect to be called at JVM init time");
 657   assert(ranges != NULL, "MemRegion array NULL");
 658   assert(count != 0, "No MemRegions provided");
 659   MemRegion reserved = _hrm->reserved();
 660   HeapWord *prev_last_addr = NULL;
 661   HeapRegion* prev_last_region = NULL;
 662 
 663   // For each MemRegion, create filler objects, if needed, in the G1 regions
 664   // that contain the address range. The address range actually within the
 665   // MemRegion will not be modified. That is assumed to have been initialized
 666   // elsewhere, probably via an mmap of archived heap data.
 667   MutexLocker x(Heap_lock);
 668   for (size_t i = 0; i < count; i++) {
 669     HeapWord* start_address = ranges[i].start();
 670     HeapWord* last_address = ranges[i].last();
 671 
 672     assert(reserved.contains(start_address) && reserved.contains(last_address),
 673            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 674            p2i(start_address), p2i(last_address));
 675     assert(start_address > prev_last_addr,
 676            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 677            p2i(start_address), p2i(prev_last_addr));
 678 
 679     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 680     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 681     HeapWord* bottom_address = start_region->bottom();
 682 
 683     // Check for a range beginning in the same region in which the
 684     // previous one ended.
 685     if (start_region == prev_last_region) {
 686       bottom_address = prev_last_addr + 1;
 687     }
 688 
 689     // Verify that the regions were all marked as archive regions by
 690     // alloc_archive_regions.
 691     HeapRegion* curr_region = start_region;
 692     while (curr_region != NULL) {
 693       guarantee(curr_region->is_archive(),
 694                 "Expected archive region at index %u", curr_region->hrm_index());
 695       if (curr_region != last_region) {
 696         curr_region = _hrm->next_region_in_heap(curr_region);
 697       } else {
 698         curr_region = NULL;
 699       }
 700     }
 701 
 702     prev_last_addr = last_address;
 703     prev_last_region = last_region;
 704 
 705     // Fill the memory below the allocated range with dummy object(s),
 706     // if the region bottom does not match the range start, or if the previous
 707     // range ended within the same G1 region, and there is a gap.
 708     if (start_address != bottom_address) {
 709       size_t fill_size = pointer_delta(start_address, bottom_address);
 710       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 711       increase_used(fill_size * HeapWordSize);
 712     }
 713   }
 714 }
 715 
 716 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 717                                                      size_t desired_word_size,
 718                                                      size_t* actual_word_size) {
 719   assert_heap_not_locked_and_not_at_safepoint();
 720   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 721          "be called for humongous allocation requests");
 722 
 723   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 724 
 725   if (result == NULL) {
 726     *actual_word_size = desired_word_size;
 727     result = attempt_allocation_slow(desired_word_size);
 728   }
 729 
 730   assert_heap_not_locked();
 731   if (result != NULL) {
 732     assert(*actual_word_size != 0, "Actual size must have been set here");
 733     dirty_young_block(result, *actual_word_size);
 734   } else {
 735     *actual_word_size = 0;
 736   }
 737 
 738   return result;
 739 }
 740 
 741 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 742   assert(!is_init_completed(), "Expect to be called at JVM init time");
 743   assert(ranges != NULL, "MemRegion array NULL");
 744   assert(count != 0, "No MemRegions provided");
 745   MemRegion reserved = _hrm->reserved();
 746   HeapWord* prev_last_addr = NULL;
 747   HeapRegion* prev_last_region = NULL;
 748   size_t size_used = 0;
 749   size_t uncommitted_regions = 0;
 750 
 751   // For each Memregion, free the G1 regions that constitute it, and
 752   // notify mark-sweep that the range is no longer to be considered 'archive.'
 753   MutexLocker x(Heap_lock);
 754   for (size_t i = 0; i < count; i++) {
 755     HeapWord* start_address = ranges[i].start();
 756     HeapWord* last_address = ranges[i].last();
 757 
 758     assert(reserved.contains(start_address) && reserved.contains(last_address),
 759            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 760            p2i(start_address), p2i(last_address));
 761     assert(start_address > prev_last_addr,
 762            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 763            p2i(start_address), p2i(prev_last_addr));
 764     size_used += ranges[i].byte_size();
 765     prev_last_addr = last_address;
 766 
 767     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 768     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 769 
 770     // Check for ranges that start in the same G1 region in which the previous
 771     // range ended, and adjust the start address so we don't try to free
 772     // the same region again. If the current range is entirely within that
 773     // region, skip it.
 774     if (start_region == prev_last_region) {
 775       start_address = start_region->end();
 776       if (start_address > last_address) {
 777         continue;
 778       }
 779       start_region = _hrm->addr_to_region(start_address);
 780     }
 781     prev_last_region = last_region;
 782 
 783     // After verifying that each region was marked as an archive region by
 784     // alloc_archive_regions, set it free and empty and uncommit it.
 785     HeapRegion* curr_region = start_region;
 786     while (curr_region != NULL) {
 787       guarantee(curr_region->is_archive(),
 788                 "Expected archive region at index %u", curr_region->hrm_index());
 789       uint curr_index = curr_region->hrm_index();
 790       _archive_set.remove(curr_region);
 791       curr_region->set_free();
 792       curr_region->set_top(curr_region->bottom());
 793       if (curr_region != last_region) {
 794         curr_region = _hrm->next_region_in_heap(curr_region);
 795       } else {
 796         curr_region = NULL;
 797       }
 798       _hrm->shrink_at(curr_index, 1);
 799       uncommitted_regions++;
 800     }
 801 
 802     // Notify mark-sweep that this is no longer an archive range.
 803     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 804   }
 805 
 806   if (uncommitted_regions != 0) {
 807     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 808                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 809   }
 810   decrease_used(size_used);
 811 }
 812 
 813 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 814   assert(obj != NULL, "archived obj is NULL");
 815   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 816 
 817   // Loading an archived object makes it strongly reachable. If it is
 818   // loaded during concurrent marking, it must be enqueued to the SATB
 819   // queue, shading the previously white object gray.
 820   G1BarrierSet::enqueue(obj);
 821 
 822   return obj;
 823 }
 824 
 825 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 826   ResourceMark rm; // For retrieving the thread names in log messages.
 827 
 828   // The structure of this method has a lot of similarities to
 829   // attempt_allocation_slow(). The reason these two were not merged
 830   // into a single one is that such a method would require several "if
 831   // allocation is not humongous do this, otherwise do that"
 832   // conditional paths which would obscure its flow. In fact, an early
 833   // version of this code did use a unified method which was harder to
 834   // follow and, as a result, it had subtle bugs that were hard to
 835   // track down. So keeping these two methods separate allows each to
 836   // be more readable. It will be good to keep these two in sync as
 837   // much as possible.
 838 
 839   assert_heap_not_locked_and_not_at_safepoint();
 840   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 841          "should only be called for humongous allocations");
 842 
 843   // Humongous objects can exhaust the heap quickly, so we should check if we
 844   // need to start a marking cycle at each humongous object allocation. We do
 845   // the check before we do the actual allocation. The reason for doing it
 846   // before the allocation is that we avoid having to keep track of the newly
 847   // allocated memory while we do a GC.
 848   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 849                                            word_size)) {
 850     collect(GCCause::_g1_humongous_allocation);
 851   }
 852 
 853   // We will loop until a) we manage to successfully perform the
 854   // allocation or b) we successfully schedule a collection which
 855   // fails to perform the allocation. b) is the only case when we'll
 856   // return NULL.
 857   HeapWord* result = NULL;
 858   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 859     bool should_try_gc;
 860     uint gc_count_before;
 861 
 862 
 863     {
 864       MutexLocker x(Heap_lock);
 865 
 866       // Given that humongous objects are not allocated in young
 867       // regions, we'll first try to do the allocation without doing a
 868       // collection hoping that there's enough space in the heap.
 869       result = humongous_obj_allocate(word_size);
 870       if (result != NULL) {
 871         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 872         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 873         return result;
 874       }
 875 
 876       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 877       // the GCLocker initiated GC has been performed and then retry. This includes
 878       // the case when the GC Locker is not active but has not been performed.
 879       should_try_gc = !GCLocker::needs_gc();
 880       // Read the GC count while still holding the Heap_lock.
 881       gc_count_before = total_collections();
 882     }
 883 
 884     if (should_try_gc) {
 885       bool succeeded;
 886       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 887                                    GCCause::_g1_humongous_allocation);
 888       if (result != NULL) {
 889         assert(succeeded, "only way to get back a non-NULL result");
 890         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 891                              Thread::current()->name(), p2i(result));
 892         return result;
 893       }
 894 
 895       if (succeeded) {
 896         // We successfully scheduled a collection which failed to allocate. No
 897         // point in trying to allocate further. We'll just return NULL.
 898         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 899                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 900         return NULL;
 901       }
 902       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 903                            Thread::current()->name(), word_size);
 904     } else {
 905       // Failed to schedule a collection.
 906       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 907         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 908                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 909         return NULL;
 910       }
 911       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 912       // The GCLocker is either active or the GCLocker initiated
 913       // GC has not yet been performed. Stall until it is and
 914       // then retry the allocation.
 915       GCLocker::stall_until_clear();
 916       gclocker_retry_count += 1;
 917     }
 918 
 919 
 920     // We can reach here if we were unsuccessful in scheduling a
 921     // collection (because another thread beat us to it) or if we were
 922     // stalled due to the GC locker. In either can we should retry the
 923     // allocation attempt in case another thread successfully
 924     // performed a collection and reclaimed enough space.
 925     // Humongous object allocation always needs a lock, so we wait for the retry
 926     // in the next iteration of the loop, unlike for the regular iteration case.
 927     // Give a warning if we seem to be looping forever.
 928 
 929     if ((QueuedAllocationWarningCount > 0) &&
 930         (try_count % QueuedAllocationWarningCount == 0)) {
 931       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 932                              Thread::current()->name(), try_count, word_size);
 933     }
 934   }
 935 
 936   ShouldNotReachHere();
 937   return NULL;
 938 }
 939 
 940 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 941                                                            bool expect_null_mutator_alloc_region) {
 942   assert_at_safepoint_on_vm_thread();
 943   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 944          "the current alloc region was unexpectedly found to be non-NULL");
 945 
 946   if (!is_humongous(word_size)) {
 947     return _allocator->attempt_allocation_locked(word_size);
 948   } else {
 949     HeapWord* result = humongous_obj_allocate(word_size);
 950     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 951       collector_state()->set_initiate_conc_mark_if_possible(true);
 952     }
 953     return result;
 954   }
 955 
 956   ShouldNotReachHere();
 957 }
 958 
 959 class PostCompactionPrinterClosure: public HeapRegionClosure {
 960 private:
 961   G1HRPrinter* _hr_printer;
 962 public:
 963   bool do_heap_region(HeapRegion* hr) {
 964     assert(!hr->is_young(), "not expecting to find young regions");
 965     _hr_printer->post_compaction(hr);
 966     return false;
 967   }
 968 
 969   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 970     : _hr_printer(hr_printer) { }
 971 };
 972 
 973 void G1CollectedHeap::print_hrm_post_compaction() {
 974   if (_hr_printer.is_active()) {
 975     PostCompactionPrinterClosure cl(hr_printer());
 976     heap_region_iterate(&cl);
 977   }
 978 }
 979 
 980 void G1CollectedHeap::abort_concurrent_cycle() {
 981   // If we start the compaction before the CM threads finish
 982   // scanning the root regions we might trip them over as we'll
 983   // be moving objects / updating references. So let's wait until
 984   // they are done. By telling them to abort, they should complete
 985   // early.
 986   _cm->root_regions()->abort();
 987   _cm->root_regions()->wait_until_scan_finished();
 988 
 989   // Disable discovery and empty the discovered lists
 990   // for the CM ref processor.
 991   _ref_processor_cm->disable_discovery();
 992   _ref_processor_cm->abandon_partial_discovery();
 993   _ref_processor_cm->verify_no_references_recorded();
 994 
 995   // Abandon current iterations of concurrent marking and concurrent
 996   // refinement, if any are in progress.
 997   concurrent_mark()->concurrent_cycle_abort();
 998 }
 999 
1000 void G1CollectedHeap::prepare_heap_for_full_collection() {
1001   // Make sure we'll choose a new allocation region afterwards.
1002   _allocator->release_mutator_alloc_regions();
1003   _allocator->abandon_gc_alloc_regions();
1004 
1005   // We may have added regions to the current incremental collection
1006   // set between the last GC or pause and now. We need to clear the
1007   // incremental collection set and then start rebuilding it afresh
1008   // after this full GC.
1009   abandon_collection_set(collection_set());
1010 
1011   tear_down_region_sets(false /* free_list_only */);
1012 
1013   hrm()->prepare_for_full_collection_start();
1014 }
1015 
1016 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1017   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1018   assert_used_and_recalculate_used_equal(this);
1019   _verifier->verify_region_sets_optional();
1020   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1021   _verifier->check_bitmaps("Full GC Start");
1022 }
1023 
1024 void G1CollectedHeap::prepare_heap_for_mutators() {
1025   hrm()->prepare_for_full_collection_end();
1026 
1027   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1028   ClassLoaderDataGraph::purge();
1029   MetaspaceUtils::verify_metrics();
1030 
1031   // Prepare heap for normal collections.
1032   assert(num_free_regions() == 0, "we should not have added any free regions");
1033   rebuild_region_sets(false /* free_list_only */);
1034   abort_refinement();
1035   resize_heap_if_necessary();
1036 
1037   // Rebuild the strong code root lists for each region
1038   rebuild_strong_code_roots();
1039 
1040   // Purge code root memory
1041   purge_code_root_memory();
1042 
1043   // Start a new incremental collection set for the next pause
1044   start_new_collection_set();
1045 
1046   _allocator->init_mutator_alloc_regions();
1047 
1048   // Post collection state updates.
1049   MetaspaceGC::compute_new_size();
1050 }
1051 
1052 void G1CollectedHeap::abort_refinement() {
1053   if (_hot_card_cache->use_cache()) {
1054     _hot_card_cache->reset_hot_cache();
1055   }
1056 
1057   // Discard all remembered set updates and reset refinement statistics.
1058   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1059   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1060          "DCQS should be empty");
1061   concurrent_refine()->get_and_reset_refinement_stats();
1062 }
1063 
1064 void G1CollectedHeap::verify_after_full_collection() {
1065   _hrm->verify_optional();
1066   _verifier->verify_region_sets_optional();
1067   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1068   // Clear the previous marking bitmap, if needed for bitmap verification.
1069   // Note we cannot do this when we clear the next marking bitmap in
1070   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1071   // objects marked during a full GC against the previous bitmap.
1072   // But we need to clear it before calling check_bitmaps below since
1073   // the full GC has compacted objects and updated TAMS but not updated
1074   // the prev bitmap.
1075   if (G1VerifyBitmaps) {
1076     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1077     _cm->clear_prev_bitmap(workers());
1078   }
1079   // This call implicitly verifies that the next bitmap is clear after Full GC.
1080   _verifier->check_bitmaps("Full GC End");
1081 
1082   // At this point there should be no regions in the
1083   // entire heap tagged as young.
1084   assert(check_young_list_empty(), "young list should be empty at this point");
1085 
1086   // Note: since we've just done a full GC, concurrent
1087   // marking is no longer active. Therefore we need not
1088   // re-enable reference discovery for the CM ref processor.
1089   // That will be done at the start of the next marking cycle.
1090   // We also know that the STW processor should no longer
1091   // discover any new references.
1092   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1093   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1094   _ref_processor_stw->verify_no_references_recorded();
1095   _ref_processor_cm->verify_no_references_recorded();
1096 }
1097 
1098 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1099   // Post collection logging.
1100   // We should do this after we potentially resize the heap so
1101   // that all the COMMIT / UNCOMMIT events are generated before
1102   // the compaction events.
1103   print_hrm_post_compaction();
1104   heap_transition->print();
1105   print_heap_after_gc();
1106   print_heap_regions();
1107 }
1108 
1109 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1110                                          bool clear_all_soft_refs) {
1111   assert_at_safepoint_on_vm_thread();
1112 
1113   if (GCLocker::check_active_before_gc()) {
1114     // Full GC was not completed.
1115     return false;
1116   }
1117 
1118   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1119       soft_ref_policy()->should_clear_all_soft_refs();
1120 
1121   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1122   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1123 
1124   collector.prepare_collection();
1125   collector.collect();
1126   collector.complete_collection();
1127 
1128   // Full collection was successfully completed.
1129   return true;
1130 }
1131 
1132 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1133   // Currently, there is no facility in the do_full_collection(bool) API to notify
1134   // the caller that the collection did not succeed (e.g., because it was locked
1135   // out by the GC locker). So, right now, we'll ignore the return value.
1136   bool dummy = do_full_collection(true,                /* explicit_gc */
1137                                   clear_all_soft_refs);
1138 }
1139 
1140 void G1CollectedHeap::resize_heap_if_necessary() {
1141   assert_at_safepoint_on_vm_thread();
1142 
1143   // Capacity, free and used after the GC counted as full regions to
1144   // include the waste in the following calculations.
1145   const size_t capacity_after_gc = capacity();
1146   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1147 
1148   // This is enforced in arguments.cpp.
1149   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1150          "otherwise the code below doesn't make sense");
1151 
1152   // We don't have floating point command-line arguments
1153   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1154   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1155   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1156   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1157 
1158   // We have to be careful here as these two calculations can overflow
1159   // 32-bit size_t's.
1160   double used_after_gc_d = (double) used_after_gc;
1161   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1162   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1163 
1164   // Let's make sure that they are both under the max heap size, which
1165   // by default will make them fit into a size_t.
1166   double desired_capacity_upper_bound = (double) MaxHeapSize;
1167   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1168                                     desired_capacity_upper_bound);
1169   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1170                                     desired_capacity_upper_bound);
1171 
1172   // We can now safely turn them into size_t's.
1173   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1174   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1175 
1176   // This assert only makes sense here, before we adjust them
1177   // with respect to the min and max heap size.
1178   assert(minimum_desired_capacity <= maximum_desired_capacity,
1179          "minimum_desired_capacity = " SIZE_FORMAT ", "
1180          "maximum_desired_capacity = " SIZE_FORMAT,
1181          minimum_desired_capacity, maximum_desired_capacity);
1182 
1183   // Should not be greater than the heap max size. No need to adjust
1184   // it with respect to the heap min size as it's a lower bound (i.e.,
1185   // we'll try to make the capacity larger than it, not smaller).
1186   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1187   // Should not be less than the heap min size. No need to adjust it
1188   // with respect to the heap max size as it's an upper bound (i.e.,
1189   // we'll try to make the capacity smaller than it, not greater).
1190   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1191 
1192   if (capacity_after_gc < minimum_desired_capacity) {
1193     // Don't expand unless it's significant
1194     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1195 
1196     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1197                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1198                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1199                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1200 
1201     expand(expand_bytes, _workers);
1202 
1203     // No expansion, now see if we want to shrink
1204   } else if (capacity_after_gc > maximum_desired_capacity) {
1205     // Capacity too large, compute shrinking size
1206     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1207 
1208     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1209                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1210                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1211                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1212 
1213     shrink(shrink_bytes);
1214   }
1215 }
1216 
1217 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1218                                                             bool do_gc,
1219                                                             bool clear_all_soft_refs,
1220                                                             bool expect_null_mutator_alloc_region,
1221                                                             bool* gc_succeeded) {
1222   *gc_succeeded = true;
1223   // Let's attempt the allocation first.
1224   HeapWord* result =
1225     attempt_allocation_at_safepoint(word_size,
1226                                     expect_null_mutator_alloc_region);
1227   if (result != NULL) {
1228     return result;
1229   }
1230 
1231   // In a G1 heap, we're supposed to keep allocation from failing by
1232   // incremental pauses.  Therefore, at least for now, we'll favor
1233   // expansion over collection.  (This might change in the future if we can
1234   // do something smarter than full collection to satisfy a failed alloc.)
1235   result = expand_and_allocate(word_size);
1236   if (result != NULL) {
1237     return result;
1238   }
1239 
1240   if (do_gc) {
1241     // Expansion didn't work, we'll try to do a Full GC.
1242     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1243                                        clear_all_soft_refs);
1244   }
1245 
1246   return NULL;
1247 }
1248 
1249 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1250                                                      bool* succeeded) {
1251   assert_at_safepoint_on_vm_thread();
1252 
1253   // Attempts to allocate followed by Full GC.
1254   HeapWord* result =
1255     satisfy_failed_allocation_helper(word_size,
1256                                      true,  /* do_gc */
1257                                      false, /* clear_all_soft_refs */
1258                                      false, /* expect_null_mutator_alloc_region */
1259                                      succeeded);
1260 
1261   if (result != NULL || !*succeeded) {
1262     return result;
1263   }
1264 
1265   // Attempts to allocate followed by Full GC that will collect all soft references.
1266   result = satisfy_failed_allocation_helper(word_size,
1267                                             true, /* do_gc */
1268                                             true, /* clear_all_soft_refs */
1269                                             true, /* expect_null_mutator_alloc_region */
1270                                             succeeded);
1271 
1272   if (result != NULL || !*succeeded) {
1273     return result;
1274   }
1275 
1276   // Attempts to allocate, no GC
1277   result = satisfy_failed_allocation_helper(word_size,
1278                                             false, /* do_gc */
1279                                             false, /* clear_all_soft_refs */
1280                                             true,  /* expect_null_mutator_alloc_region */
1281                                             succeeded);
1282 
1283   if (result != NULL) {
1284     return result;
1285   }
1286 
1287   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1288          "Flag should have been handled and cleared prior to this point");
1289 
1290   // What else?  We might try synchronous finalization later.  If the total
1291   // space available is large enough for the allocation, then a more
1292   // complete compaction phase than we've tried so far might be
1293   // appropriate.
1294   return NULL;
1295 }
1296 
1297 // Attempting to expand the heap sufficiently
1298 // to support an allocation of the given "word_size".  If
1299 // successful, perform the allocation and return the address of the
1300 // allocated block, or else "NULL".
1301 
1302 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1303   assert_at_safepoint_on_vm_thread();
1304 
1305   _verifier->verify_region_sets_optional();
1306 
1307   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1308   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1309                             word_size * HeapWordSize);
1310 
1311 
1312   if (expand(expand_bytes, _workers)) {
1313     _hrm->verify_optional();
1314     _verifier->verify_region_sets_optional();
1315     return attempt_allocation_at_safepoint(word_size,
1316                                            false /* expect_null_mutator_alloc_region */);
1317   }
1318   return NULL;
1319 }
1320 
1321 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1322   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1323   aligned_expand_bytes = align_up(aligned_expand_bytes,
1324                                        HeapRegion::GrainBytes);
1325 
1326   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1327                             expand_bytes, aligned_expand_bytes);
1328 
1329   if (is_maximal_no_gc()) {
1330     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1331     return false;
1332   }
1333 
1334   double expand_heap_start_time_sec = os::elapsedTime();
1335   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1336   assert(regions_to_expand > 0, "Must expand by at least one region");
1337 
1338   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1339   if (expand_time_ms != NULL) {
1340     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1341   }
1342 
1343   if (expanded_by > 0) {
1344     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1345     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1346     policy()->record_new_heap_size(num_regions());
1347   } else {
1348     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1349 
1350     // The expansion of the virtual storage space was unsuccessful.
1351     // Let's see if it was because we ran out of swap.
1352     if (G1ExitOnExpansionFailure &&
1353         _hrm->available() >= regions_to_expand) {
1354       // We had head room...
1355       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1356     }
1357   }
1358   return regions_to_expand > 0;
1359 }
1360 
1361 bool G1CollectedHeap::expand_single_region(uint node_index) {
1362   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1363 
1364   if (expanded_by == 0) {
1365     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1366     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1367     return false;
1368   }
1369 
1370   policy()->record_new_heap_size(num_regions());
1371   return true;
1372 }
1373 
1374 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1375   size_t aligned_shrink_bytes =
1376     ReservedSpace::page_align_size_down(shrink_bytes);
1377   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1378                                          HeapRegion::GrainBytes);
1379   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1380 
1381   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1382   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1383 
1384   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1385                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1386   if (num_regions_removed > 0) {
1387     policy()->record_new_heap_size(num_regions());
1388   } else {
1389     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1390   }
1391 }
1392 
1393 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1394   _verifier->verify_region_sets_optional();
1395 
1396   // We should only reach here at the end of a Full GC or during Remark which
1397   // means we should not not be holding to any GC alloc regions. The method
1398   // below will make sure of that and do any remaining clean up.
1399   _allocator->abandon_gc_alloc_regions();
1400 
1401   // Instead of tearing down / rebuilding the free lists here, we
1402   // could instead use the remove_all_pending() method on free_list to
1403   // remove only the ones that we need to remove.
1404   tear_down_region_sets(true /* free_list_only */);
1405   shrink_helper(shrink_bytes);
1406   rebuild_region_sets(true /* free_list_only */);
1407 
1408   _hrm->verify_optional();
1409   _verifier->verify_region_sets_optional();
1410 }
1411 
1412 class OldRegionSetChecker : public HeapRegionSetChecker {
1413 public:
1414   void check_mt_safety() {
1415     // Master Old Set MT safety protocol:
1416     // (a) If we're at a safepoint, operations on the master old set
1417     // should be invoked:
1418     // - by the VM thread (which will serialize them), or
1419     // - by the GC workers while holding the FreeList_lock, if we're
1420     //   at a safepoint for an evacuation pause (this lock is taken
1421     //   anyway when an GC alloc region is retired so that a new one
1422     //   is allocated from the free list), or
1423     // - by the GC workers while holding the OldSets_lock, if we're at a
1424     //   safepoint for a cleanup pause.
1425     // (b) If we're not at a safepoint, operations on the master old set
1426     // should be invoked while holding the Heap_lock.
1427 
1428     if (SafepointSynchronize::is_at_safepoint()) {
1429       guarantee(Thread::current()->is_VM_thread() ||
1430                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1431                 "master old set MT safety protocol at a safepoint");
1432     } else {
1433       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1434     }
1435   }
1436   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1437   const char* get_description() { return "Old Regions"; }
1438 };
1439 
1440 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1441 public:
1442   void check_mt_safety() {
1443     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1444               "May only change archive regions during initialization or safepoint.");
1445   }
1446   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1447   const char* get_description() { return "Archive Regions"; }
1448 };
1449 
1450 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1451 public:
1452   void check_mt_safety() {
1453     // Humongous Set MT safety protocol:
1454     // (a) If we're at a safepoint, operations on the master humongous
1455     // set should be invoked by either the VM thread (which will
1456     // serialize them) or by the GC workers while holding the
1457     // OldSets_lock.
1458     // (b) If we're not at a safepoint, operations on the master
1459     // humongous set should be invoked while holding the Heap_lock.
1460 
1461     if (SafepointSynchronize::is_at_safepoint()) {
1462       guarantee(Thread::current()->is_VM_thread() ||
1463                 OldSets_lock->owned_by_self(),
1464                 "master humongous set MT safety protocol at a safepoint");
1465     } else {
1466       guarantee(Heap_lock->owned_by_self(),
1467                 "master humongous set MT safety protocol outside a safepoint");
1468     }
1469   }
1470   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1471   const char* get_description() { return "Humongous Regions"; }
1472 };
1473 
1474 G1CollectedHeap::G1CollectedHeap() :
1475   CollectedHeap(),
1476   _young_gen_sampling_thread(NULL),
1477   _workers(NULL),
1478   _card_table(NULL),
1479   _soft_ref_policy(),
1480   _old_set("Old Region Set", new OldRegionSetChecker()),
1481   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1482   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1483   _bot(NULL),
1484   _listener(),
1485   _numa(G1NUMA::create()),
1486   _hrm(NULL),
1487   _allocator(NULL),
1488   _verifier(NULL),
1489   _summary_bytes_used(0),
1490   _bytes_used_during_gc(0),
1491   _archive_allocator(NULL),
1492   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1493   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1494   _expand_heap_after_alloc_failure(true),
1495   _g1mm(NULL),
1496   _humongous_reclaim_candidates(),
1497   _has_humongous_reclaim_candidates(false),
1498   _hr_printer(),
1499   _collector_state(),
1500   _old_marking_cycles_started(0),
1501   _old_marking_cycles_completed(0),
1502   _eden(),
1503   _survivor(),
1504   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1505   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1506   _policy(G1Policy::create_policy(_gc_timer_stw)),
1507   _heap_sizing_policy(NULL),
1508   _collection_set(this, _policy),
1509   _hot_card_cache(NULL),
1510   _rem_set(NULL),
1511   _cm(NULL),
1512   _cm_thread(NULL),
1513   _cr(NULL),
1514   _task_queues(NULL),
1515   _evacuation_failed(false),
1516   _evacuation_failed_info_array(NULL),
1517   _preserved_marks_set(true /* in_c_heap */),
1518 #ifndef PRODUCT
1519   _evacuation_failure_alot_for_current_gc(false),
1520   _evacuation_failure_alot_gc_number(0),
1521   _evacuation_failure_alot_count(0),
1522 #endif
1523   _ref_processor_stw(NULL),
1524   _is_alive_closure_stw(this),
1525   _is_subject_to_discovery_stw(this),
1526   _ref_processor_cm(NULL),
1527   _is_alive_closure_cm(this),
1528   _is_subject_to_discovery_cm(this),
1529   _region_attr() {
1530 
1531   _verifier = new G1HeapVerifier(this);
1532 
1533   _allocator = new G1Allocator(this);
1534 
1535   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1536 
1537   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1538 
1539   // Override the default _filler_array_max_size so that no humongous filler
1540   // objects are created.
1541   _filler_array_max_size = _humongous_object_threshold_in_words;
1542 
1543   uint n_queues = ParallelGCThreads;
1544   _task_queues = new ScannerTasksQueueSet(n_queues);
1545 
1546   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1547 
1548   for (uint i = 0; i < n_queues; i++) {
1549     ScannerTasksQueue* q = new ScannerTasksQueue();
1550     q->initialize();
1551     _task_queues->register_queue(i, q);
1552     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1553   }
1554 
1555   // Initialize the G1EvacuationFailureALot counters and flags.
1556   NOT_PRODUCT(reset_evacuation_should_fail();)
1557   _gc_tracer_stw->initialize();
1558 
1559   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1560 }
1561 
1562 static size_t actual_reserved_page_size(ReservedSpace rs) {
1563   size_t page_size = os::vm_page_size();
1564   if (UseLargePages) {
1565     // There are two ways to manage large page memory.
1566     // 1. OS supports committing large page memory.
1567     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1568     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1569     //    we reserved memory without large page.
1570     if (os::can_commit_large_page_memory() || rs.special()) {
1571       // An alignment at ReservedSpace comes from preferred page size or
1572       // heap alignment, and if the alignment came from heap alignment, it could be
1573       // larger than large pages size. So need to cap with the large page size.
1574       page_size = MIN2(rs.alignment(), os::large_page_size());
1575     }
1576   }
1577 
1578   return page_size;
1579 }
1580 
1581 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1582                                                                  size_t size,
1583                                                                  size_t translation_factor) {
1584   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1585   // Allocate a new reserved space, preferring to use large pages.
1586   ReservedSpace rs(size, preferred_page_size);
1587   size_t page_size = actual_reserved_page_size(rs);
1588   G1RegionToSpaceMapper* result  =
1589     G1RegionToSpaceMapper::create_mapper(rs,
1590                                          size,
1591                                          page_size,
1592                                          HeapRegion::GrainBytes,
1593                                          translation_factor,
1594                                          mtGC);
1595 
1596   os::trace_page_sizes_for_requested_size(description,
1597                                           size,
1598                                           preferred_page_size,
1599                                           page_size,
1600                                           rs.base(),
1601                                           rs.size());
1602 
1603   return result;
1604 }
1605 
1606 jint G1CollectedHeap::initialize_concurrent_refinement() {
1607   jint ecode = JNI_OK;
1608   _cr = G1ConcurrentRefine::create(&ecode);
1609   return ecode;
1610 }
1611 
1612 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1613   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1614   if (_young_gen_sampling_thread->osthread() == NULL) {
1615     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1616     return JNI_ENOMEM;
1617   }
1618   return JNI_OK;
1619 }
1620 
1621 jint G1CollectedHeap::initialize() {
1622 
1623   // Necessary to satisfy locking discipline assertions.
1624 
1625   MutexLocker x(Heap_lock);
1626 
1627   // While there are no constraints in the GC code that HeapWordSize
1628   // be any particular value, there are multiple other areas in the
1629   // system which believe this to be true (e.g. oop->object_size in some
1630   // cases incorrectly returns the size in wordSize units rather than
1631   // HeapWordSize).
1632   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1633 
1634   size_t init_byte_size = InitialHeapSize;
1635   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1636 
1637   // Ensure that the sizes are properly aligned.
1638   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1639   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1640   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1641 
1642   // Reserve the maximum.
1643 
1644   // When compressed oops are enabled, the preferred heap base
1645   // is calculated by subtracting the requested size from the
1646   // 32Gb boundary and using the result as the base address for
1647   // heap reservation. If the requested size is not aligned to
1648   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1649   // into the ReservedHeapSpace constructor) then the actual
1650   // base of the reserved heap may end up differing from the
1651   // address that was requested (i.e. the preferred heap base).
1652   // If this happens then we could end up using a non-optimal
1653   // compressed oops mode.
1654 
1655   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1656                                                      HeapAlignment);
1657 
1658   initialize_reserved_region(heap_rs);
1659 
1660   // Create the barrier set for the entire reserved region.
1661   G1CardTable* ct = new G1CardTable(heap_rs.region());
1662   ct->initialize();
1663   G1BarrierSet* bs = new G1BarrierSet(ct);
1664   bs->initialize();
1665   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1666   BarrierSet::set_barrier_set(bs);
1667   _card_table = ct;
1668 
1669   {
1670     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1671     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1672     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1673   }
1674 
1675   // Create the hot card cache.
1676   _hot_card_cache = new G1HotCardCache(this);
1677 
1678   // Carve out the G1 part of the heap.
1679   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1680   size_t page_size = actual_reserved_page_size(heap_rs);
1681   G1RegionToSpaceMapper* heap_storage =
1682     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1683                                               g1_rs.size(),
1684                                               page_size,
1685                                               HeapRegion::GrainBytes,
1686                                               1,
1687                                               mtJavaHeap);
1688   if(heap_storage == NULL) {
1689     vm_shutdown_during_initialization("Could not initialize G1 heap");
1690     return JNI_ERR;
1691   }
1692 
1693   os::trace_page_sizes("Heap",
1694                        MinHeapSize,
1695                        reserved_byte_size,
1696                        page_size,
1697                        heap_rs.base(),
1698                        heap_rs.size());
1699   heap_storage->set_mapping_changed_listener(&_listener);
1700 
1701   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1702   G1RegionToSpaceMapper* bot_storage =
1703     create_aux_memory_mapper("Block Offset Table",
1704                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1705                              G1BlockOffsetTable::heap_map_factor());
1706 
1707   G1RegionToSpaceMapper* cardtable_storage =
1708     create_aux_memory_mapper("Card Table",
1709                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1710                              G1CardTable::heap_map_factor());
1711 
1712   G1RegionToSpaceMapper* card_counts_storage =
1713     create_aux_memory_mapper("Card Counts Table",
1714                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1715                              G1CardCounts::heap_map_factor());
1716 
1717   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1718   G1RegionToSpaceMapper* prev_bitmap_storage =
1719     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1720   G1RegionToSpaceMapper* next_bitmap_storage =
1721     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1722 
1723   _hrm = HeapRegionManager::create_manager(this);
1724 
1725   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1726   _card_table->initialize(cardtable_storage);
1727 
1728   // Do later initialization work for concurrent refinement.
1729   _hot_card_cache->initialize(card_counts_storage);
1730 
1731   // 6843694 - ensure that the maximum region index can fit
1732   // in the remembered set structures.
1733   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1734   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1735 
1736   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1737   // start within the first card.
1738   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1739   // Also create a G1 rem set.
1740   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1741   _rem_set->initialize(max_reserved_capacity(), max_regions());
1742 
1743   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1744   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1745   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1746             "too many cards per region");
1747 
1748   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1749 
1750   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1751 
1752   {
1753     HeapWord* start = _hrm->reserved().start();
1754     HeapWord* end = _hrm->reserved().end();
1755     size_t granularity = HeapRegion::GrainBytes;
1756 
1757     _region_attr.initialize(start, end, granularity);
1758     _humongous_reclaim_candidates.initialize(start, end, granularity);
1759   }
1760 
1761   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1762                           true /* are_GC_task_threads */,
1763                           false /* are_ConcurrentGC_threads */);
1764   if (_workers == NULL) {
1765     return JNI_ENOMEM;
1766   }
1767   _workers->initialize_workers();
1768 
1769   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1770 
1771   // Create the G1ConcurrentMark data structure and thread.
1772   // (Must do this late, so that "max_regions" is defined.)
1773   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1774   _cm_thread = _cm->cm_thread();
1775 
1776   // Now expand into the initial heap size.
1777   if (!expand(init_byte_size, _workers)) {
1778     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1779     return JNI_ENOMEM;
1780   }
1781 
1782   // Perform any initialization actions delegated to the policy.
1783   policy()->init(this, &_collection_set);
1784 
1785   jint ecode = initialize_concurrent_refinement();
1786   if (ecode != JNI_OK) {
1787     return ecode;
1788   }
1789 
1790   ecode = initialize_young_gen_sampling_thread();
1791   if (ecode != JNI_OK) {
1792     return ecode;
1793   }
1794 
1795   {
1796     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1797     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1798     dcqs.set_max_cards(concurrent_refine()->red_zone());
1799   }
1800 
1801   // Here we allocate the dummy HeapRegion that is required by the
1802   // G1AllocRegion class.
1803   HeapRegion* dummy_region = _hrm->get_dummy_region();
1804 
1805   // We'll re-use the same region whether the alloc region will
1806   // require BOT updates or not and, if it doesn't, then a non-young
1807   // region will complain that it cannot support allocations without
1808   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1809   dummy_region->set_eden();
1810   // Make sure it's full.
1811   dummy_region->set_top(dummy_region->end());
1812   G1AllocRegion::setup(this, dummy_region);
1813 
1814   _allocator->init_mutator_alloc_regions();
1815 
1816   // Do create of the monitoring and management support so that
1817   // values in the heap have been properly initialized.
1818   _g1mm = new G1MonitoringSupport(this);
1819 
1820   G1StringDedup::initialize();
1821 
1822   _preserved_marks_set.init(ParallelGCThreads);
1823 
1824   _collection_set.initialize(max_regions());
1825 
1826   return JNI_OK;
1827 }
1828 
1829 void G1CollectedHeap::stop() {
1830   // Stop all concurrent threads. We do this to make sure these threads
1831   // do not continue to execute and access resources (e.g. logging)
1832   // that are destroyed during shutdown.
1833   _cr->stop();
1834   _young_gen_sampling_thread->stop();
1835   _cm_thread->stop();
1836   if (G1StringDedup::is_enabled()) {
1837     G1StringDedup::stop();
1838   }
1839 }
1840 
1841 void G1CollectedHeap::safepoint_synchronize_begin() {
1842   SuspendibleThreadSet::synchronize();
1843 }
1844 
1845 void G1CollectedHeap::safepoint_synchronize_end() {
1846   SuspendibleThreadSet::desynchronize();
1847 }
1848 
1849 void G1CollectedHeap::post_initialize() {
1850   CollectedHeap::post_initialize();
1851   ref_processing_init();
1852 }
1853 
1854 void G1CollectedHeap::ref_processing_init() {
1855   // Reference processing in G1 currently works as follows:
1856   //
1857   // * There are two reference processor instances. One is
1858   //   used to record and process discovered references
1859   //   during concurrent marking; the other is used to
1860   //   record and process references during STW pauses
1861   //   (both full and incremental).
1862   // * Both ref processors need to 'span' the entire heap as
1863   //   the regions in the collection set may be dotted around.
1864   //
1865   // * For the concurrent marking ref processor:
1866   //   * Reference discovery is enabled at initial marking.
1867   //   * Reference discovery is disabled and the discovered
1868   //     references processed etc during remarking.
1869   //   * Reference discovery is MT (see below).
1870   //   * Reference discovery requires a barrier (see below).
1871   //   * Reference processing may or may not be MT
1872   //     (depending on the value of ParallelRefProcEnabled
1873   //     and ParallelGCThreads).
1874   //   * A full GC disables reference discovery by the CM
1875   //     ref processor and abandons any entries on it's
1876   //     discovered lists.
1877   //
1878   // * For the STW processor:
1879   //   * Non MT discovery is enabled at the start of a full GC.
1880   //   * Processing and enqueueing during a full GC is non-MT.
1881   //   * During a full GC, references are processed after marking.
1882   //
1883   //   * Discovery (may or may not be MT) is enabled at the start
1884   //     of an incremental evacuation pause.
1885   //   * References are processed near the end of a STW evacuation pause.
1886   //   * For both types of GC:
1887   //     * Discovery is atomic - i.e. not concurrent.
1888   //     * Reference discovery will not need a barrier.
1889 
1890   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1891 
1892   // Concurrent Mark ref processor
1893   _ref_processor_cm =
1894     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1895                            mt_processing,                                  // mt processing
1896                            ParallelGCThreads,                              // degree of mt processing
1897                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1898                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1899                            false,                                          // Reference discovery is not atomic
1900                            &_is_alive_closure_cm,                          // is alive closure
1901                            true);                                          // allow changes to number of processing threads
1902 
1903   // STW ref processor
1904   _ref_processor_stw =
1905     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1906                            mt_processing,                        // mt processing
1907                            ParallelGCThreads,                    // degree of mt processing
1908                            (ParallelGCThreads > 1),              // mt discovery
1909                            ParallelGCThreads,                    // degree of mt discovery
1910                            true,                                 // Reference discovery is atomic
1911                            &_is_alive_closure_stw,               // is alive closure
1912                            true);                                // allow changes to number of processing threads
1913 }
1914 
1915 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1916   return &_soft_ref_policy;
1917 }
1918 
1919 size_t G1CollectedHeap::capacity() const {
1920   return _hrm->length() * HeapRegion::GrainBytes;
1921 }
1922 
1923 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1924   return _hrm->total_free_bytes();
1925 }
1926 
1927 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1928   _hot_card_cache->drain(cl, worker_id);
1929 }
1930 
1931 // Computes the sum of the storage used by the various regions.
1932 size_t G1CollectedHeap::used() const {
1933   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1934   if (_archive_allocator != NULL) {
1935     result += _archive_allocator->used();
1936   }
1937   return result;
1938 }
1939 
1940 size_t G1CollectedHeap::used_unlocked() const {
1941   return _summary_bytes_used;
1942 }
1943 
1944 class SumUsedClosure: public HeapRegionClosure {
1945   size_t _used;
1946 public:
1947   SumUsedClosure() : _used(0) {}
1948   bool do_heap_region(HeapRegion* r) {
1949     _used += r->used();
1950     return false;
1951   }
1952   size_t result() { return _used; }
1953 };
1954 
1955 size_t G1CollectedHeap::recalculate_used() const {
1956   SumUsedClosure blk;
1957   heap_region_iterate(&blk);
1958   return blk.result();
1959 }
1960 
1961 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1962   switch (cause) {
1963     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1964     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1965     case GCCause::_wb_conc_mark:                        return true;
1966     default :                                           return false;
1967   }
1968 }
1969 
1970 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1971   switch (cause) {
1972     case GCCause::_g1_humongous_allocation: return true;
1973     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1974     case GCCause::_wb_breakpoint:           return true;
1975     default:                                return is_user_requested_concurrent_full_gc(cause);
1976   }
1977 }
1978 
1979 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1980   if (policy()->force_upgrade_to_full()) {
1981     return true;
1982   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1983     return false;
1984   } else if (has_regions_left_for_allocation()) {
1985     return false;
1986   } else {
1987     return true;
1988   }
1989 }
1990 
1991 #ifndef PRODUCT
1992 void G1CollectedHeap::allocate_dummy_regions() {
1993   // Let's fill up most of the region
1994   size_t word_size = HeapRegion::GrainWords - 1024;
1995   // And as a result the region we'll allocate will be humongous.
1996   guarantee(is_humongous(word_size), "sanity");
1997 
1998   // _filler_array_max_size is set to humongous object threshold
1999   // but temporarily change it to use CollectedHeap::fill_with_object().
2000   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2001 
2002   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2003     // Let's use the existing mechanism for the allocation
2004     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2005     if (dummy_obj != NULL) {
2006       MemRegion mr(dummy_obj, word_size);
2007       CollectedHeap::fill_with_object(mr);
2008     } else {
2009       // If we can't allocate once, we probably cannot allocate
2010       // again. Let's get out of the loop.
2011       break;
2012     }
2013   }
2014 }
2015 #endif // !PRODUCT
2016 
2017 void G1CollectedHeap::increment_old_marking_cycles_started() {
2018   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2019          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2020          "Wrong marking cycle count (started: %d, completed: %d)",
2021          _old_marking_cycles_started, _old_marking_cycles_completed);
2022 
2023   _old_marking_cycles_started++;
2024 }
2025 
2026 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2027   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2028 
2029   // We assume that if concurrent == true, then the caller is a
2030   // concurrent thread that was joined the Suspendible Thread
2031   // Set. If there's ever a cheap way to check this, we should add an
2032   // assert here.
2033 
2034   // Given that this method is called at the end of a Full GC or of a
2035   // concurrent cycle, and those can be nested (i.e., a Full GC can
2036   // interrupt a concurrent cycle), the number of full collections
2037   // completed should be either one (in the case where there was no
2038   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2039   // behind the number of full collections started.
2040 
2041   // This is the case for the inner caller, i.e. a Full GC.
2042   assert(concurrent ||
2043          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2044          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2045          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2046          "is inconsistent with _old_marking_cycles_completed = %u",
2047          _old_marking_cycles_started, _old_marking_cycles_completed);
2048 
2049   // This is the case for the outer caller, i.e. the concurrent cycle.
2050   assert(!concurrent ||
2051          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2052          "for outer caller (concurrent cycle): "
2053          "_old_marking_cycles_started = %u "
2054          "is inconsistent with _old_marking_cycles_completed = %u",
2055          _old_marking_cycles_started, _old_marking_cycles_completed);
2056 
2057   _old_marking_cycles_completed += 1;
2058 
2059   // We need to clear the "in_progress" flag in the CM thread before
2060   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2061   // is set) so that if a waiter requests another System.gc() it doesn't
2062   // incorrectly see that a marking cycle is still in progress.
2063   if (concurrent) {
2064     _cm_thread->set_idle();
2065   }
2066 
2067   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2068   // for a full GC to finish that their wait is over.
2069   ml.notify_all();
2070 }
2071 
2072 void G1CollectedHeap::collect(GCCause::Cause cause) {
2073   try_collect(cause);
2074 }
2075 
2076 // Return true if (x < y) with allowance for wraparound.
2077 static bool gc_counter_less_than(uint x, uint y) {
2078   return (x - y) > (UINT_MAX/2);
2079 }
2080 
2081 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2082 // Macro so msg printing is format-checked.
2083 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2084   do {                                                                  \
2085     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2086     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2087       ResourceMark rm; /* For thread name. */                           \
2088       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2089       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2090                                        Thread::current()->name(),       \
2091                                        GCCause::to_string(cause));      \
2092       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2093     }                                                                   \
2094   } while (0)
2095 
2096 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2097   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2098 
2099 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2100                                                uint gc_counter,
2101                                                uint old_marking_started_before) {
2102   assert_heap_not_locked();
2103   assert(should_do_concurrent_full_gc(cause),
2104          "Non-concurrent cause %s", GCCause::to_string(cause));
2105 
2106   for (uint i = 1; true; ++i) {
2107     // Try to schedule an initial-mark evacuation pause that will
2108     // start a concurrent cycle.
2109     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2110     VM_G1TryInitiateConcMark op(gc_counter,
2111                                 cause,
2112                                 policy()->max_pause_time_ms());
2113     VMThread::execute(&op);
2114 
2115     // Request is trivially finished.
2116     if (cause == GCCause::_g1_periodic_collection) {
2117       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2118       return op.gc_succeeded();
2119     }
2120 
2121     // If VMOp skipped initiating concurrent marking cycle because
2122     // we're terminating, then we're done.
2123     if (op.terminating()) {
2124       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2125       return false;
2126     }
2127 
2128     // Lock to get consistent set of values.
2129     uint old_marking_started_after;
2130     uint old_marking_completed_after;
2131     {
2132       MutexLocker ml(Heap_lock);
2133       // Update gc_counter for retrying VMOp if needed. Captured here to be
2134       // consistent with the values we use below for termination tests.  If
2135       // a retry is needed after a possible wait, and another collection
2136       // occurs in the meantime, it will cause our retry to be skipped and
2137       // we'll recheck for termination with updated conditions from that
2138       // more recent collection.  That's what we want, rather than having
2139       // our retry possibly perform an unnecessary collection.
2140       gc_counter = total_collections();
2141       old_marking_started_after = _old_marking_cycles_started;
2142       old_marking_completed_after = _old_marking_cycles_completed;
2143     }
2144 
2145     if (cause == GCCause::_wb_breakpoint) {
2146       if (op.gc_succeeded()) {
2147         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2148         return true;
2149       }
2150       // When _wb_breakpoint there can't be another cycle or deferred.
2151       assert(!op.cycle_already_in_progress(), "invariant");
2152       assert(!op.whitebox_attached(), "invariant");
2153       // Concurrent cycle attempt might have been cancelled by some other
2154       // collection, so retry.  Unlike other cases below, we want to retry
2155       // even if cancelled by a STW full collection, because we really want
2156       // to start a concurrent cycle.
2157       if (old_marking_started_before != old_marking_started_after) {
2158         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
2159         old_marking_started_before = old_marking_started_after;
2160       }
2161     } else if (!GCCause::is_user_requested_gc(cause)) {
2162       // For an "automatic" (not user-requested) collection, we just need to
2163       // ensure that progress is made.
2164       //
2165       // Request is finished if any of
2166       // (1) the VMOp successfully performed a GC,
2167       // (2) a concurrent cycle was already in progress,
2168       // (3) whitebox is controlling concurrent cycles,
2169       // (4) a new cycle was started (by this thread or some other), or
2170       // (5) a Full GC was performed.
2171       // Cases (4) and (5) are detected together by a change to
2172       // _old_marking_cycles_started.
2173       //
2174       // Note that (1) does not imply (4).  If we're still in the mixed
2175       // phase of an earlier concurrent collection, the request to make the
2176       // collection an initial-mark won't be honored.  If we don't check for
2177       // both conditions we'll spin doing back-to-back collections.
2178       if (op.gc_succeeded() ||
2179           op.cycle_already_in_progress() ||
2180           op.whitebox_attached() ||
2181           (old_marking_started_before != old_marking_started_after)) {
2182         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2183         return true;
2184       }
2185     } else {                    // User-requested GC.
2186       // For a user-requested collection, we want to ensure that a complete
2187       // full collection has been performed before returning, but without
2188       // waiting for more than needed.
2189 
2190       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2191       // new cycle was started.  That's good, because it's not clear what we
2192       // should do otherwise.  Trying again just does back to back GCs.
2193       // Can't wait for someone else to start a cycle.  And returning fails
2194       // to meet the goal of ensuring a full collection was performed.
2195       assert(!op.gc_succeeded() ||
2196              (old_marking_started_before != old_marking_started_after),
2197              "invariant: succeeded %s, started before %u, started after %u",
2198              BOOL_TO_STR(op.gc_succeeded()),
2199              old_marking_started_before, old_marking_started_after);
2200 
2201       // Request is finished if a full collection (concurrent or stw)
2202       // was started after this request and has completed, e.g.
2203       // started_before < completed_after.
2204       if (gc_counter_less_than(old_marking_started_before,
2205                                old_marking_completed_after)) {
2206         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2207         return true;
2208       }
2209 
2210       if (old_marking_started_after != old_marking_completed_after) {
2211         // If there is an in-progress cycle (possibly started by us), then
2212         // wait for that cycle to complete, e.g.
2213         // while completed_now < started_after.
2214         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2215         MonitorLocker ml(G1OldGCCount_lock);
2216         while (gc_counter_less_than(_old_marking_cycles_completed,
2217                                     old_marking_started_after)) {
2218           ml.wait();
2219         }
2220         // Request is finished if the collection we just waited for was
2221         // started after this request.
2222         if (old_marking_started_before != old_marking_started_after) {
2223           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2224           return true;
2225         }
2226       }
2227 
2228       // If VMOp was successful then it started a new cycle that the above
2229       // wait &etc should have recognized as finishing this request.  This
2230       // differs from a non-user-request, where gc_succeeded does not imply
2231       // a new cycle was started.
2232       assert(!op.gc_succeeded(), "invariant");
2233 
2234       if (op.cycle_already_in_progress()) {
2235         // If VMOp failed because a cycle was already in progress, it
2236         // is now complete.  But it didn't finish this user-requested
2237         // GC, so try again.
2238         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2239         continue;
2240       } else if (op.whitebox_attached()) {
2241         // If WhiteBox wants control, wait for notification of a state
2242         // change in the controller, then try again.  Don't wait for
2243         // release of control, since collections may complete while in
2244         // control.  Note: This won't recognize a STW full collection
2245         // while waiting; we can't wait on multiple monitors.
2246         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
2247         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
2248         if (ConcurrentGCBreakpoints::is_controlled()) {
2249           ml.wait();
2250         }
2251         continue;
2252       }
2253     }
2254 
2255     // Collection failed and should be retried.
2256     assert(op.transient_failure(), "invariant");
2257 
2258     if (GCLocker::is_active_and_needs_gc()) {
2259       // If GCLocker is active, wait until clear before retrying.
2260       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2261       GCLocker::stall_until_clear();
2262     }
2263 
2264     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2265   }
2266 }
2267 
2268 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2269   assert_heap_not_locked();
2270 
2271   // Lock to get consistent set of values.
2272   uint gc_count_before;
2273   uint full_gc_count_before;
2274   uint old_marking_started_before;
2275   {
2276     MutexLocker ml(Heap_lock);
2277     gc_count_before = total_collections();
2278     full_gc_count_before = total_full_collections();
2279     old_marking_started_before = _old_marking_cycles_started;
2280   }
2281 
2282   if (should_do_concurrent_full_gc(cause)) {
2283     return try_collect_concurrently(cause,
2284                                     gc_count_before,
2285                                     old_marking_started_before);
2286   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2287     // Indicate failure to be consistent with VMOp failure due to
2288     // another collection slipping in after our gc_count but before
2289     // our request is processed.
2290     return false;
2291   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2292              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2293 
2294     // Schedule a standard evacuation pause. We're setting word_size
2295     // to 0 which means that we are not requesting a post-GC allocation.
2296     VM_G1CollectForAllocation op(0,     /* word_size */
2297                                  gc_count_before,
2298                                  cause,
2299                                  policy()->max_pause_time_ms());
2300     VMThread::execute(&op);
2301     return op.gc_succeeded();
2302   } else {
2303     // Schedule a Full GC.
2304     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2305     VMThread::execute(&op);
2306     return op.gc_succeeded();
2307   }
2308 }
2309 
2310 bool G1CollectedHeap::is_in(const void* p) const {
2311   if (_hrm->reserved().contains(p)) {
2312     // Given that we know that p is in the reserved space,
2313     // heap_region_containing() should successfully
2314     // return the containing region.
2315     HeapRegion* hr = heap_region_containing(p);
2316     return hr->is_in(p);
2317   } else {
2318     return false;
2319   }
2320 }
2321 
2322 #ifdef ASSERT
2323 bool G1CollectedHeap::is_in_exact(const void* p) const {
2324   bool contains = reserved_region().contains(p);
2325   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2326   if (contains && available) {
2327     return true;
2328   } else {
2329     return false;
2330   }
2331 }
2332 #endif
2333 
2334 // Iteration functions.
2335 
2336 // Iterates an ObjectClosure over all objects within a HeapRegion.
2337 
2338 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2339   ObjectClosure* _cl;
2340 public:
2341   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2342   bool do_heap_region(HeapRegion* r) {
2343     if (!r->is_continues_humongous()) {
2344       r->object_iterate(_cl);
2345     }
2346     return false;
2347   }
2348 };
2349 
2350 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2351   IterateObjectClosureRegionClosure blk(cl);
2352   heap_region_iterate(&blk);
2353 }
2354 
2355 void G1CollectedHeap::keep_alive(oop obj) {
2356   G1BarrierSet::enqueue(obj);
2357 }
2358 
2359 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2360   _hrm->iterate(cl);
2361 }
2362 
2363 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2364                                                                  HeapRegionClaimer *hrclaimer,
2365                                                                  uint worker_id) const {
2366   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2367 }
2368 
2369 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2370                                                          HeapRegionClaimer *hrclaimer) const {
2371   _hrm->par_iterate(cl, hrclaimer, 0);
2372 }
2373 
2374 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2375   _collection_set.iterate(cl);
2376 }
2377 
2378 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2379   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2380 }
2381 
2382 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2383   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2384 }
2385 
2386 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2387   HeapRegion* hr = heap_region_containing(addr);
2388   return hr->block_start(addr);
2389 }
2390 
2391 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2392   HeapRegion* hr = heap_region_containing(addr);
2393   return hr->block_is_obj(addr);
2394 }
2395 
2396 bool G1CollectedHeap::supports_tlab_allocation() const {
2397   return true;
2398 }
2399 
2400 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2401   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2402 }
2403 
2404 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2405   return _eden.length() * HeapRegion::GrainBytes;
2406 }
2407 
2408 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2409 // must be equal to the humongous object limit.
2410 size_t G1CollectedHeap::max_tlab_size() const {
2411   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2412 }
2413 
2414 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2415   return _allocator->unsafe_max_tlab_alloc();
2416 }
2417 
2418 size_t G1CollectedHeap::max_capacity() const {
2419   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2420 }
2421 
2422 size_t G1CollectedHeap::max_reserved_capacity() const {
2423   return _hrm->max_length() * HeapRegion::GrainBytes;
2424 }
2425 
2426 jlong G1CollectedHeap::millis_since_last_gc() {
2427   // See the notes in GenCollectedHeap::millis_since_last_gc()
2428   // for more information about the implementation.
2429   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2430                   _policy->collection_pause_end_millis();
2431   if (ret_val < 0) {
2432     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2433       ". returning zero instead.", ret_val);
2434     return 0;
2435   }
2436   return ret_val;
2437 }
2438 
2439 void G1CollectedHeap::deduplicate_string(oop str) {
2440   assert(java_lang_String::is_instance(str), "invariant");
2441 
2442   if (G1StringDedup::is_enabled()) {
2443     G1StringDedup::deduplicate(str);
2444   }
2445 }
2446 
2447 void G1CollectedHeap::prepare_for_verify() {
2448   _verifier->prepare_for_verify();
2449 }
2450 
2451 void G1CollectedHeap::verify(VerifyOption vo) {
2452   _verifier->verify(vo);
2453 }
2454 
2455 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2456   return true;
2457 }
2458 
2459 bool G1CollectedHeap::is_heterogeneous_heap() const {
2460   return G1Arguments::is_heterogeneous_heap();
2461 }
2462 
2463 class PrintRegionClosure: public HeapRegionClosure {
2464   outputStream* _st;
2465 public:
2466   PrintRegionClosure(outputStream* st) : _st(st) {}
2467   bool do_heap_region(HeapRegion* r) {
2468     r->print_on(_st);
2469     return false;
2470   }
2471 };
2472 
2473 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2474                                        const HeapRegion* hr,
2475                                        const VerifyOption vo) const {
2476   switch (vo) {
2477   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2478   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2479   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2480   default:                            ShouldNotReachHere();
2481   }
2482   return false; // keep some compilers happy
2483 }
2484 
2485 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2486                                        const VerifyOption vo) const {
2487   switch (vo) {
2488   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2489   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2490   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2491   default:                            ShouldNotReachHere();
2492   }
2493   return false; // keep some compilers happy
2494 }
2495 
2496 void G1CollectedHeap::print_heap_regions() const {
2497   LogTarget(Trace, gc, heap, region) lt;
2498   if (lt.is_enabled()) {
2499     LogStream ls(lt);
2500     print_regions_on(&ls);
2501   }
2502 }
2503 
2504 void G1CollectedHeap::print_on(outputStream* st) const {
2505   st->print(" %-20s", "garbage-first heap");
2506   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2507             capacity()/K, used_unlocked()/K);
2508   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2509             p2i(_hrm->reserved().start()),
2510             p2i(_hrm->reserved().end()));
2511   st->cr();
2512   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2513   uint young_regions = young_regions_count();
2514   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2515             (size_t) young_regions * HeapRegion::GrainBytes / K);
2516   uint survivor_regions = survivor_regions_count();
2517   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2518             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2519   st->cr();
2520   if (_numa->is_enabled()) {
2521     uint num_nodes = _numa->num_active_nodes();
2522     st->print("  remaining free region(s) on each NUMA node: ");
2523     const int* node_ids = _numa->node_ids();
2524     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2525       st->print("%d=%u ", node_ids[node_index], _hrm->num_free_regions(node_index));
2526     }
2527     st->cr();
2528   }
2529   MetaspaceUtils::print_on(st);
2530 }
2531 
2532 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2533   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2534                "HS=humongous(starts), HC=humongous(continues), "
2535                "CS=collection set, F=free, "
2536                "OA=open archive, CA=closed archive, "
2537                "TAMS=top-at-mark-start (previous, next)");
2538   PrintRegionClosure blk(st);
2539   heap_region_iterate(&blk);
2540 }
2541 
2542 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2543   print_on(st);
2544 
2545   // Print the per-region information.
2546   print_regions_on(st);
2547 }
2548 
2549 void G1CollectedHeap::print_on_error(outputStream* st) const {
2550   this->CollectedHeap::print_on_error(st);
2551 
2552   if (_cm != NULL) {
2553     st->cr();
2554     _cm->print_on_error(st);
2555   }
2556 }
2557 
2558 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2559   workers()->print_worker_threads_on(st);
2560   _cm_thread->print_on(st);
2561   st->cr();
2562   _cm->print_worker_threads_on(st);
2563   _cr->print_threads_on(st);
2564   _young_gen_sampling_thread->print_on(st);
2565   if (G1StringDedup::is_enabled()) {
2566     G1StringDedup::print_worker_threads_on(st);
2567   }
2568 }
2569 
2570 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2571   workers()->threads_do(tc);
2572   tc->do_thread(_cm_thread);
2573   _cm->threads_do(tc);
2574   _cr->threads_do(tc);
2575   tc->do_thread(_young_gen_sampling_thread);
2576   if (G1StringDedup::is_enabled()) {
2577     G1StringDedup::threads_do(tc);
2578   }
2579 }
2580 
2581 void G1CollectedHeap::print_tracing_info() const {
2582   rem_set()->print_summary_info();
2583   concurrent_mark()->print_summary_info();
2584 }
2585 
2586 #ifndef PRODUCT
2587 // Helpful for debugging RSet issues.
2588 
2589 class PrintRSetsClosure : public HeapRegionClosure {
2590 private:
2591   const char* _msg;
2592   size_t _occupied_sum;
2593 
2594 public:
2595   bool do_heap_region(HeapRegion* r) {
2596     HeapRegionRemSet* hrrs = r->rem_set();
2597     size_t occupied = hrrs->occupied();
2598     _occupied_sum += occupied;
2599 
2600     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2601     if (occupied == 0) {
2602       tty->print_cr("  RSet is empty");
2603     } else {
2604       hrrs->print();
2605     }
2606     tty->print_cr("----------");
2607     return false;
2608   }
2609 
2610   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2611     tty->cr();
2612     tty->print_cr("========================================");
2613     tty->print_cr("%s", msg);
2614     tty->cr();
2615   }
2616 
2617   ~PrintRSetsClosure() {
2618     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2619     tty->print_cr("========================================");
2620     tty->cr();
2621   }
2622 };
2623 
2624 void G1CollectedHeap::print_cset_rsets() {
2625   PrintRSetsClosure cl("Printing CSet RSets");
2626   collection_set_iterate_all(&cl);
2627 }
2628 
2629 void G1CollectedHeap::print_all_rsets() {
2630   PrintRSetsClosure cl("Printing All RSets");;
2631   heap_region_iterate(&cl);
2632 }
2633 #endif // PRODUCT
2634 
2635 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2636   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2637 }
2638 
2639 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2640 
2641   size_t eden_used_bytes = _eden.used_bytes();
2642   size_t survivor_used_bytes = _survivor.used_bytes();
2643   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2644 
2645   size_t eden_capacity_bytes =
2646     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2647 
2648   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2649   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2650                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2651 }
2652 
2653 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2654   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2655                        stats->unused(), stats->used(), stats->region_end_waste(),
2656                        stats->regions_filled(), stats->direct_allocated(),
2657                        stats->failure_used(), stats->failure_waste());
2658 }
2659 
2660 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2661   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2662   gc_tracer->report_gc_heap_summary(when, heap_summary);
2663 
2664   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2665   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2666 }
2667 
2668 G1CollectedHeap* G1CollectedHeap::heap() {
2669   CollectedHeap* heap = Universe::heap();
2670   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2671   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2672   return (G1CollectedHeap*)heap;
2673 }
2674 
2675 void G1CollectedHeap::gc_prologue(bool full) {
2676   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2677 
2678   // This summary needs to be printed before incrementing total collections.
2679   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2680 
2681   // Update common counters.
2682   increment_total_collections(full /* full gc */);
2683   if (full || collector_state()->in_initial_mark_gc()) {
2684     increment_old_marking_cycles_started();
2685   }
2686 
2687   // Fill TLAB's and such
2688   {
2689     Ticks start = Ticks::now();
2690     ensure_parsability(true);
2691     Tickspan dt = Ticks::now() - start;
2692     phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS);
2693   }
2694 
2695   if (!full) {
2696     // Flush dirty card queues to qset, so later phases don't need to account
2697     // for partially filled per-thread queues and such.  Not needed for full
2698     // collections, which ignore those logs.
2699     Ticks start = Ticks::now();
2700     G1BarrierSet::dirty_card_queue_set().concatenate_logs();
2701     Tickspan dt = Ticks::now() - start;
2702     phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS);
2703   }
2704 }
2705 
2706 void G1CollectedHeap::gc_epilogue(bool full) {
2707   // Update common counters.
2708   if (full) {
2709     // Update the number of full collections that have been completed.
2710     increment_old_marking_cycles_completed(false /* concurrent */);
2711   }
2712 
2713   // We are at the end of the GC. Total collections has already been increased.
2714   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2715 
2716   // FIXME: what is this about?
2717   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2718   // is set.
2719 #if COMPILER2_OR_JVMCI
2720   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2721 #endif
2722 
2723   double start = os::elapsedTime();
2724   resize_all_tlabs();
2725   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2726 
2727   MemoryService::track_memory_usage();
2728   // We have just completed a GC. Update the soft reference
2729   // policy with the new heap occupancy
2730   Universe::update_heap_info_at_gc();
2731 
2732   // Print NUMA statistics.
2733   _numa->print_statistics();
2734 }
2735 
2736 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2737   LogTarget(Trace, gc, heap, verify) lt;
2738 
2739   if (lt.is_enabled()) {
2740     LogStream ls(lt);
2741     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2742     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2743     heap_region_iterate(&cl);
2744   }
2745 }
2746 
2747 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2748                                                uint gc_count_before,
2749                                                bool* succeeded,
2750                                                GCCause::Cause gc_cause) {
2751   assert_heap_not_locked_and_not_at_safepoint();
2752   VM_G1CollectForAllocation op(word_size,
2753                                gc_count_before,
2754                                gc_cause,
2755                                policy()->max_pause_time_ms());
2756   VMThread::execute(&op);
2757 
2758   HeapWord* result = op.result();
2759   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2760   assert(result == NULL || ret_succeeded,
2761          "the result should be NULL if the VM did not succeed");
2762   *succeeded = ret_succeeded;
2763 
2764   assert_heap_not_locked();
2765   return result;
2766 }
2767 
2768 void G1CollectedHeap::do_concurrent_mark() {
2769   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2770   if (!_cm_thread->in_progress()) {
2771     _cm_thread->set_started();
2772     CGC_lock->notify();
2773   }
2774 }
2775 
2776 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2777   // We don't nominate objects with many remembered set entries, on
2778   // the assumption that such objects are likely still live.
2779   HeapRegionRemSet* rem_set = r->rem_set();
2780 
2781   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2782          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2783          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2784 }
2785 
2786 #ifndef PRODUCT
2787 void G1CollectedHeap::verify_region_attr_remset_update() {
2788   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2789   public:
2790     virtual bool do_heap_region(HeapRegion* r) {
2791       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2792       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2793       assert(r->rem_set()->is_tracked() == needs_remset_update,
2794              "Region %u remset tracking status (%s) different to region attribute (%s)",
2795              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2796       return false;
2797     }
2798   } cl;
2799   heap_region_iterate(&cl);
2800 }
2801 #endif
2802 
2803 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2804   public:
2805     bool do_heap_region(HeapRegion* hr) {
2806       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2807         hr->verify_rem_set();
2808       }
2809       return false;
2810     }
2811 };
2812 
2813 uint G1CollectedHeap::num_task_queues() const {
2814   return _task_queues->size();
2815 }
2816 
2817 #if TASKQUEUE_STATS
2818 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2819   st->print_raw_cr("GC Task Stats");
2820   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2821   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2822 }
2823 
2824 void G1CollectedHeap::print_taskqueue_stats() const {
2825   if (!log_is_enabled(Trace, gc, task, stats)) {
2826     return;
2827   }
2828   Log(gc, task, stats) log;
2829   ResourceMark rm;
2830   LogStream ls(log.trace());
2831   outputStream* st = &ls;
2832 
2833   print_taskqueue_stats_hdr(st);
2834 
2835   TaskQueueStats totals;
2836   const uint n = num_task_queues();
2837   for (uint i = 0; i < n; ++i) {
2838     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2839     totals += task_queue(i)->stats;
2840   }
2841   st->print_raw("tot "); totals.print(st); st->cr();
2842 
2843   DEBUG_ONLY(totals.verify());
2844 }
2845 
2846 void G1CollectedHeap::reset_taskqueue_stats() {
2847   const uint n = num_task_queues();
2848   for (uint i = 0; i < n; ++i) {
2849     task_queue(i)->stats.reset();
2850   }
2851 }
2852 #endif // TASKQUEUE_STATS
2853 
2854 void G1CollectedHeap::wait_for_root_region_scanning() {
2855   double scan_wait_start = os::elapsedTime();
2856   // We have to wait until the CM threads finish scanning the
2857   // root regions as it's the only way to ensure that all the
2858   // objects on them have been correctly scanned before we start
2859   // moving them during the GC.
2860   bool waited = _cm->root_regions()->wait_until_scan_finished();
2861   double wait_time_ms = 0.0;
2862   if (waited) {
2863     double scan_wait_end = os::elapsedTime();
2864     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2865   }
2866   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2867 }
2868 
2869 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2870 private:
2871   G1HRPrinter* _hr_printer;
2872 public:
2873   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2874 
2875   virtual bool do_heap_region(HeapRegion* r) {
2876     _hr_printer->cset(r);
2877     return false;
2878   }
2879 };
2880 
2881 void G1CollectedHeap::start_new_collection_set() {
2882   double start = os::elapsedTime();
2883 
2884   collection_set()->start_incremental_building();
2885 
2886   clear_region_attr();
2887 
2888   guarantee(_eden.length() == 0, "eden should have been cleared");
2889   policy()->transfer_survivors_to_cset(survivor());
2890 
2891   // We redo the verification but now wrt to the new CSet which
2892   // has just got initialized after the previous CSet was freed.
2893   _cm->verify_no_collection_set_oops();
2894 
2895   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2896 }
2897 
2898 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2899 
2900   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2901   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2902                                             collection_set()->optional_region_length());
2903 
2904   _cm->verify_no_collection_set_oops();
2905 
2906   if (_hr_printer.is_active()) {
2907     G1PrintCollectionSetClosure cl(&_hr_printer);
2908     _collection_set.iterate(&cl);
2909     _collection_set.iterate_optional(&cl);
2910   }
2911 }
2912 
2913 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2914   if (collector_state()->in_initial_mark_gc()) {
2915     return G1HeapVerifier::G1VerifyConcurrentStart;
2916   } else if (collector_state()->in_young_only_phase()) {
2917     return G1HeapVerifier::G1VerifyYoungNormal;
2918   } else {
2919     return G1HeapVerifier::G1VerifyMixed;
2920   }
2921 }
2922 
2923 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2924   if (VerifyRememberedSets) {
2925     log_info(gc, verify)("[Verifying RemSets before GC]");
2926     VerifyRegionRemSetClosure v_cl;
2927     heap_region_iterate(&v_cl);
2928   }
2929   _verifier->verify_before_gc(type);
2930   _verifier->check_bitmaps("GC Start");
2931   verify_numa_regions("GC Start");
2932 }
2933 
2934 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2935   if (VerifyRememberedSets) {
2936     log_info(gc, verify)("[Verifying RemSets after GC]");
2937     VerifyRegionRemSetClosure v_cl;
2938     heap_region_iterate(&v_cl);
2939   }
2940   _verifier->verify_after_gc(type);
2941   _verifier->check_bitmaps("GC End");
2942   verify_numa_regions("GC End");
2943 }
2944 
2945 void G1CollectedHeap::expand_heap_after_young_collection(){
2946   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2947   if (expand_bytes > 0) {
2948     // No need for an ergo logging here,
2949     // expansion_amount() does this when it returns a value > 0.
2950     double expand_ms;
2951     if (!expand(expand_bytes, _workers, &expand_ms)) {
2952       // We failed to expand the heap. Cannot do anything about it.
2953     }
2954     phase_times()->record_expand_heap_time(expand_ms);
2955   }
2956 }
2957 
2958 const char* G1CollectedHeap::young_gc_name() const {
2959   if (collector_state()->in_initial_mark_gc()) {
2960     return "Pause Young (Concurrent Start)";
2961   } else if (collector_state()->in_young_only_phase()) {
2962     if (collector_state()->in_young_gc_before_mixed()) {
2963       return "Pause Young (Prepare Mixed)";
2964     } else {
2965       return "Pause Young (Normal)";
2966     }
2967   } else {
2968     return "Pause Young (Mixed)";
2969   }
2970 }
2971 
2972 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2973   assert_at_safepoint_on_vm_thread();
2974   guarantee(!is_gc_active(), "collection is not reentrant");
2975 
2976   if (GCLocker::check_active_before_gc()) {
2977     return false;
2978   }
2979 
2980   do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2981   if (should_upgrade_to_full_gc(gc_cause())) {
2982     log_info(gc, ergo)("Attempting maximally compacting collection");
2983     bool result = do_full_collection(false /* explicit gc */,
2984                                      true /* clear_all_soft_refs */);
2985     // do_full_collection only fails if blocked by GC locker, but
2986     // we've already checked for that above.
2987     assert(result, "invariant");
2988   }
2989   return true;
2990 }
2991 
2992 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
2993   GCIdMark gc_id_mark;
2994 
2995   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2996   ResourceMark rm;
2997 
2998   policy()->note_gc_start();
2999 
3000   _gc_timer_stw->register_gc_start();
3001   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3002 
3003   wait_for_root_region_scanning();
3004 
3005   print_heap_before_gc();
3006   print_heap_regions();
3007   trace_heap_before_gc(_gc_tracer_stw);
3008 
3009   _verifier->verify_region_sets_optional();
3010   _verifier->verify_dirty_young_regions();
3011 
3012   // We should not be doing initial mark unless the conc mark thread is running
3013   if (!_cm_thread->should_terminate()) {
3014     // This call will decide whether this pause is an initial-mark
3015     // pause. If it is, in_initial_mark_gc() will return true
3016     // for the duration of this pause.
3017     policy()->decide_on_conc_mark_initiation();
3018   }
3019 
3020   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3021   assert(!collector_state()->in_initial_mark_gc() ||
3022          collector_state()->in_young_only_phase(), "sanity");
3023   // We also do not allow mixed GCs during marking.
3024   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3025 
3026   // Record whether this pause is an initial mark. When the current
3027   // thread has completed its logging output and it's safe to signal
3028   // the CM thread, the flag's value in the policy has been reset.
3029   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3030   if (should_start_conc_mark) {
3031     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3032   }
3033 
3034   // Inner scope for scope based logging, timers, and stats collection
3035   {
3036     G1EvacuationInfo evacuation_info;
3037 
3038     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3039 
3040     GCTraceCPUTime tcpu;
3041 
3042     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3043 
3044     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3045                                                             workers()->active_workers(),
3046                                                             Threads::number_of_non_daemon_threads());
3047     active_workers = workers()->update_active_workers(active_workers);
3048     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3049 
3050     G1MonitoringScope ms(g1mm(),
3051                          false /* full_gc */,
3052                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3053 
3054     G1HeapTransition heap_transition(this);
3055 
3056     {
3057       IsGCActiveMark x;
3058 
3059       gc_prologue(false);
3060 
3061       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3062       verify_before_young_collection(verify_type);
3063 
3064       {
3065         // The elapsed time induced by the start time below deliberately elides
3066         // the possible verification above.
3067         double sample_start_time_sec = os::elapsedTime();
3068 
3069         // Please see comment in g1CollectedHeap.hpp and
3070         // G1CollectedHeap::ref_processing_init() to see how
3071         // reference processing currently works in G1.
3072         _ref_processor_stw->enable_discovery();
3073 
3074         // We want to temporarily turn off discovery by the
3075         // CM ref processor, if necessary, and turn it back on
3076         // on again later if we do. Using a scoped
3077         // NoRefDiscovery object will do this.
3078         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3079 
3080         policy()->record_collection_pause_start(sample_start_time_sec);
3081 
3082         // Forget the current allocation region (we might even choose it to be part
3083         // of the collection set!).
3084         _allocator->release_mutator_alloc_regions();
3085 
3086         calculate_collection_set(evacuation_info, target_pause_time_ms);
3087 
3088         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3089         G1ParScanThreadStateSet per_thread_states(this,
3090                                                   &rdcqs,
3091                                                   workers()->active_workers(),
3092                                                   collection_set()->young_region_length(),
3093                                                   collection_set()->optional_region_length());
3094         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3095 
3096         // Actually do the work...
3097         evacuate_initial_collection_set(&per_thread_states);
3098 
3099         if (_collection_set.optional_region_length() != 0) {
3100           evacuate_optional_collection_set(&per_thread_states);
3101         }
3102         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3103 
3104         start_new_collection_set();
3105 
3106         _survivor_evac_stats.adjust_desired_plab_sz();
3107         _old_evac_stats.adjust_desired_plab_sz();
3108 
3109         if (should_start_conc_mark) {
3110           // We have to do this before we notify the CM threads that
3111           // they can start working to make sure that all the
3112           // appropriate initialization is done on the CM object.
3113           concurrent_mark()->post_initial_mark();
3114           // Note that we don't actually trigger the CM thread at
3115           // this point. We do that later when we're sure that
3116           // the current thread has completed its logging output.
3117         }
3118 
3119         allocate_dummy_regions();
3120 
3121         _allocator->init_mutator_alloc_regions();
3122 
3123         expand_heap_after_young_collection();
3124 
3125         double sample_end_time_sec = os::elapsedTime();
3126         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3127         policy()->record_collection_pause_end(pause_time_ms);
3128       }
3129 
3130       verify_after_young_collection(verify_type);
3131 
3132       gc_epilogue(false);
3133     }
3134 
3135     // Print the remainder of the GC log output.
3136     if (evacuation_failed()) {
3137       log_info(gc)("To-space exhausted");
3138     }
3139 
3140     policy()->print_phases();
3141     heap_transition.print();
3142 
3143     _hrm->verify_optional();
3144     _verifier->verify_region_sets_optional();
3145 
3146     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3147     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3148 
3149     print_heap_after_gc();
3150     print_heap_regions();
3151     trace_heap_after_gc(_gc_tracer_stw);
3152 
3153     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3154     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3155     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3156     // before any GC notifications are raised.
3157     g1mm()->update_sizes();
3158 
3159     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3160     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3161     _gc_timer_stw->register_gc_end();
3162     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3163   }
3164   // It should now be safe to tell the concurrent mark thread to start
3165   // without its logging output interfering with the logging output
3166   // that came from the pause.
3167 
3168   if (should_start_conc_mark) {
3169     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3170     // thread(s) could be running concurrently with us. Make sure that anything
3171     // after this point does not assume that we are the only GC thread running.
3172     // Note: of course, the actual marking work will not start until the safepoint
3173     // itself is released in SuspendibleThreadSet::desynchronize().
3174     do_concurrent_mark();
3175     ConcurrentGCBreakpoints::notify_idle_to_active();
3176   }
3177 }
3178 
3179 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3180   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3181   workers()->run_task(&rsfp_task);
3182 }
3183 
3184 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3185   double remove_self_forwards_start = os::elapsedTime();
3186 
3187   remove_self_forwarding_pointers(rdcqs);
3188   _preserved_marks_set.restore(workers());
3189 
3190   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3191 }
3192 
3193 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3194   if (!_evacuation_failed) {
3195     _evacuation_failed = true;
3196   }
3197 
3198   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3199   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3200 }
3201 
3202 bool G1ParEvacuateFollowersClosure::offer_termination() {
3203   EventGCPhaseParallel event;
3204   G1ParScanThreadState* const pss = par_scan_state();
3205   start_term_time();
3206   const bool res = terminator()->offer_termination();
3207   end_term_time();
3208   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3209   return res;
3210 }
3211 
3212 void G1ParEvacuateFollowersClosure::do_void() {
3213   EventGCPhaseParallel event;
3214   G1ParScanThreadState* const pss = par_scan_state();
3215   pss->trim_queue();
3216   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3217   do {
3218     EventGCPhaseParallel event;
3219     pss->steal_and_trim_queue(queues());
3220     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3221   } while (!offer_termination());
3222 }
3223 
3224 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3225                                         bool class_unloading_occurred) {
3226   uint num_workers = workers()->active_workers();
3227   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3228   workers()->run_task(&unlink_task);
3229 }
3230 
3231 // Clean string dedup data structures.
3232 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3233 // record the durations of the phases. Hence the almost-copy.
3234 class G1StringDedupCleaningTask : public AbstractGangTask {
3235   BoolObjectClosure* _is_alive;
3236   OopClosure* _keep_alive;
3237   G1GCPhaseTimes* _phase_times;
3238 
3239 public:
3240   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3241                             OopClosure* keep_alive,
3242                             G1GCPhaseTimes* phase_times) :
3243     AbstractGangTask("Partial Cleaning Task"),
3244     _is_alive(is_alive),
3245     _keep_alive(keep_alive),
3246     _phase_times(phase_times)
3247   {
3248     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3249     StringDedup::gc_prologue(true);
3250   }
3251 
3252   ~G1StringDedupCleaningTask() {
3253     StringDedup::gc_epilogue();
3254   }
3255 
3256   void work(uint worker_id) {
3257     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3258     {
3259       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3260       StringDedupQueue::unlink_or_oops_do(&cl);
3261     }
3262     {
3263       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3264       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3265     }
3266   }
3267 };
3268 
3269 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3270                                             OopClosure* keep_alive,
3271                                             G1GCPhaseTimes* phase_times) {
3272   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3273   workers()->run_task(&cl);
3274 }
3275 
3276 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3277  private:
3278   G1RedirtyCardsQueueSet* _qset;
3279   G1CollectedHeap* _g1h;
3280   BufferNode* volatile _nodes;
3281 
3282   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3283     size_t buffer_size = _qset->buffer_size();
3284     BufferNode* next = Atomic::load(&_nodes);
3285     while (next != NULL) {
3286       BufferNode* node = next;
3287       next = Atomic::cmpxchg(&_nodes, node, node->next());
3288       if (next == node) {
3289         cl->apply_to_buffer(node, buffer_size, worker_id);
3290         next = node->next();
3291       }
3292     }
3293   }
3294 
3295  public:
3296   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3297     AbstractGangTask("Redirty Cards"),
3298     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3299 
3300   virtual void work(uint worker_id) {
3301     G1GCPhaseTimes* p = _g1h->phase_times();
3302     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3303 
3304     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3305     par_apply(&cl, worker_id);
3306 
3307     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3308   }
3309 };
3310 
3311 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3312   double redirty_logged_cards_start = os::elapsedTime();
3313 
3314   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3315   workers()->run_task(&redirty_task);
3316 
3317   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3318   dcq.merge_bufferlists(rdcqs);
3319 
3320   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3321 }
3322 
3323 // Weak Reference Processing support
3324 
3325 bool G1STWIsAliveClosure::do_object_b(oop p) {
3326   // An object is reachable if it is outside the collection set,
3327   // or is inside and copied.
3328   return !_g1h->is_in_cset(p) || p->is_forwarded();
3329 }
3330 
3331 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3332   assert(obj != NULL, "must not be NULL");
3333   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3334   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3335   // may falsely indicate that this is not the case here: however the collection set only
3336   // contains old regions when concurrent mark is not running.
3337   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3338 }
3339 
3340 // Non Copying Keep Alive closure
3341 class G1KeepAliveClosure: public OopClosure {
3342   G1CollectedHeap*_g1h;
3343 public:
3344   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3345   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3346   void do_oop(oop* p) {
3347     oop obj = *p;
3348     assert(obj != NULL, "the caller should have filtered out NULL values");
3349 
3350     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3351     if (!region_attr.is_in_cset_or_humongous()) {
3352       return;
3353     }
3354     if (region_attr.is_in_cset()) {
3355       assert( obj->is_forwarded(), "invariant" );
3356       *p = obj->forwardee();
3357     } else {
3358       assert(!obj->is_forwarded(), "invariant" );
3359       assert(region_attr.is_humongous(),
3360              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3361      _g1h->set_humongous_is_live(obj);
3362     }
3363   }
3364 };
3365 
3366 // Copying Keep Alive closure - can be called from both
3367 // serial and parallel code as long as different worker
3368 // threads utilize different G1ParScanThreadState instances
3369 // and different queues.
3370 
3371 class G1CopyingKeepAliveClosure: public OopClosure {
3372   G1CollectedHeap*         _g1h;
3373   G1ParScanThreadState*    _par_scan_state;
3374 
3375 public:
3376   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3377                             G1ParScanThreadState* pss):
3378     _g1h(g1h),
3379     _par_scan_state(pss)
3380   {}
3381 
3382   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3383   virtual void do_oop(      oop* p) { do_oop_work(p); }
3384 
3385   template <class T> void do_oop_work(T* p) {
3386     oop obj = RawAccess<>::oop_load(p);
3387 
3388     if (_g1h->is_in_cset_or_humongous(obj)) {
3389       // If the referent object has been forwarded (either copied
3390       // to a new location or to itself in the event of an
3391       // evacuation failure) then we need to update the reference
3392       // field and, if both reference and referent are in the G1
3393       // heap, update the RSet for the referent.
3394       //
3395       // If the referent has not been forwarded then we have to keep
3396       // it alive by policy. Therefore we have copy the referent.
3397       //
3398       // When the queue is drained (after each phase of reference processing)
3399       // the object and it's followers will be copied, the reference field set
3400       // to point to the new location, and the RSet updated.
3401       _par_scan_state->push_on_queue(ScannerTask(p));
3402     }
3403   }
3404 };
3405 
3406 // Serial drain queue closure. Called as the 'complete_gc'
3407 // closure for each discovered list in some of the
3408 // reference processing phases.
3409 
3410 class G1STWDrainQueueClosure: public VoidClosure {
3411 protected:
3412   G1CollectedHeap* _g1h;
3413   G1ParScanThreadState* _par_scan_state;
3414 
3415   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3416 
3417 public:
3418   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3419     _g1h(g1h),
3420     _par_scan_state(pss)
3421   { }
3422 
3423   void do_void() {
3424     G1ParScanThreadState* const pss = par_scan_state();
3425     pss->trim_queue();
3426   }
3427 };
3428 
3429 // Parallel Reference Processing closures
3430 
3431 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3432 // processing during G1 evacuation pauses.
3433 
3434 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3435 private:
3436   G1CollectedHeap*          _g1h;
3437   G1ParScanThreadStateSet*  _pss;
3438   ScannerTasksQueueSet*     _queues;
3439   WorkGang*                 _workers;
3440 
3441 public:
3442   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3443                            G1ParScanThreadStateSet* per_thread_states,
3444                            WorkGang* workers,
3445                            ScannerTasksQueueSet *task_queues) :
3446     _g1h(g1h),
3447     _pss(per_thread_states),
3448     _queues(task_queues),
3449     _workers(workers)
3450   {
3451     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3452   }
3453 
3454   // Executes the given task using concurrent marking worker threads.
3455   virtual void execute(ProcessTask& task, uint ergo_workers);
3456 };
3457 
3458 // Gang task for possibly parallel reference processing
3459 
3460 class G1STWRefProcTaskProxy: public AbstractGangTask {
3461   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3462   ProcessTask&     _proc_task;
3463   G1CollectedHeap* _g1h;
3464   G1ParScanThreadStateSet* _pss;
3465   ScannerTasksQueueSet* _task_queues;
3466   TaskTerminator* _terminator;
3467 
3468 public:
3469   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3470                         G1CollectedHeap* g1h,
3471                         G1ParScanThreadStateSet* per_thread_states,
3472                         ScannerTasksQueueSet *task_queues,
3473                         TaskTerminator* terminator) :
3474     AbstractGangTask("Process reference objects in parallel"),
3475     _proc_task(proc_task),
3476     _g1h(g1h),
3477     _pss(per_thread_states),
3478     _task_queues(task_queues),
3479     _terminator(terminator)
3480   {}
3481 
3482   virtual void work(uint worker_id) {
3483     // The reference processing task executed by a single worker.
3484     ResourceMark rm;
3485     HandleMark   hm;
3486 
3487     G1STWIsAliveClosure is_alive(_g1h);
3488 
3489     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3490     pss->set_ref_discoverer(NULL);
3491 
3492     // Keep alive closure.
3493     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3494 
3495     // Complete GC closure
3496     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3497 
3498     // Call the reference processing task's work routine.
3499     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3500 
3501     // Note we cannot assert that the refs array is empty here as not all
3502     // of the processing tasks (specifically phase2 - pp2_work) execute
3503     // the complete_gc closure (which ordinarily would drain the queue) so
3504     // the queue may not be empty.
3505   }
3506 };
3507 
3508 // Driver routine for parallel reference processing.
3509 // Creates an instance of the ref processing gang
3510 // task and has the worker threads execute it.
3511 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3512   assert(_workers != NULL, "Need parallel worker threads.");
3513 
3514   assert(_workers->active_workers() >= ergo_workers,
3515          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3516          ergo_workers, _workers->active_workers());
3517   TaskTerminator terminator(ergo_workers, _queues);
3518   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3519 
3520   _workers->run_task(&proc_task_proxy, ergo_workers);
3521 }
3522 
3523 // End of weak reference support closures
3524 
3525 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3526   double ref_proc_start = os::elapsedTime();
3527 
3528   ReferenceProcessor* rp = _ref_processor_stw;
3529   assert(rp->discovery_enabled(), "should have been enabled");
3530 
3531   // Closure to test whether a referent is alive.
3532   G1STWIsAliveClosure is_alive(this);
3533 
3534   // Even when parallel reference processing is enabled, the processing
3535   // of JNI refs is serial and performed serially by the current thread
3536   // rather than by a worker. The following PSS will be used for processing
3537   // JNI refs.
3538 
3539   // Use only a single queue for this PSS.
3540   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3541   pss->set_ref_discoverer(NULL);
3542   assert(pss->queue_is_empty(), "pre-condition");
3543 
3544   // Keep alive closure.
3545   G1CopyingKeepAliveClosure keep_alive(this, pss);
3546 
3547   // Serial Complete GC closure
3548   G1STWDrainQueueClosure drain_queue(this, pss);
3549 
3550   // Setup the soft refs policy...
3551   rp->setup_policy(false);
3552 
3553   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3554 
3555   ReferenceProcessorStats stats;
3556   if (!rp->processing_is_mt()) {
3557     // Serial reference processing...
3558     stats = rp->process_discovered_references(&is_alive,
3559                                               &keep_alive,
3560                                               &drain_queue,
3561                                               NULL,
3562                                               pt);
3563   } else {
3564     uint no_of_gc_workers = workers()->active_workers();
3565 
3566     // Parallel reference processing
3567     assert(no_of_gc_workers <= rp->max_num_queues(),
3568            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3569            no_of_gc_workers,  rp->max_num_queues());
3570 
3571     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3572     stats = rp->process_discovered_references(&is_alive,
3573                                               &keep_alive,
3574                                               &drain_queue,
3575                                               &par_task_executor,
3576                                               pt);
3577   }
3578 
3579   _gc_tracer_stw->report_gc_reference_stats(stats);
3580 
3581   // We have completed copying any necessary live referent objects.
3582   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3583 
3584   make_pending_list_reachable();
3585 
3586   assert(!rp->discovery_enabled(), "Postcondition");
3587   rp->verify_no_references_recorded();
3588 
3589   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3590   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3591 }
3592 
3593 void G1CollectedHeap::make_pending_list_reachable() {
3594   if (collector_state()->in_initial_mark_gc()) {
3595     oop pll_head = Universe::reference_pending_list();
3596     if (pll_head != NULL) {
3597       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3598       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3599     }
3600   }
3601 }
3602 
3603 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3604   Ticks start = Ticks::now();
3605   per_thread_states->flush();
3606   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3607 }
3608 
3609 class G1PrepareEvacuationTask : public AbstractGangTask {
3610   class G1PrepareRegionsClosure : public HeapRegionClosure {
3611     G1CollectedHeap* _g1h;
3612     G1PrepareEvacuationTask* _parent_task;
3613     size_t _worker_humongous_total;
3614     size_t _worker_humongous_candidates;
3615 
3616     bool humongous_region_is_candidate(HeapRegion* region) const {
3617       assert(region->is_starts_humongous(), "Must start a humongous object");
3618 
3619       oop obj = oop(region->bottom());
3620 
3621       // Dead objects cannot be eager reclaim candidates. Due to class
3622       // unloading it is unsafe to query their classes so we return early.
3623       if (_g1h->is_obj_dead(obj, region)) {
3624         return false;
3625       }
3626 
3627       // If we do not have a complete remembered set for the region, then we can
3628       // not be sure that we have all references to it.
3629       if (!region->rem_set()->is_complete()) {
3630         return false;
3631       }
3632       // Candidate selection must satisfy the following constraints
3633       // while concurrent marking is in progress:
3634       //
3635       // * In order to maintain SATB invariants, an object must not be
3636       // reclaimed if it was allocated before the start of marking and
3637       // has not had its references scanned.  Such an object must have
3638       // its references (including type metadata) scanned to ensure no
3639       // live objects are missed by the marking process.  Objects
3640       // allocated after the start of concurrent marking don't need to
3641       // be scanned.
3642       //
3643       // * An object must not be reclaimed if it is on the concurrent
3644       // mark stack.  Objects allocated after the start of concurrent
3645       // marking are never pushed on the mark stack.
3646       //
3647       // Nominating only objects allocated after the start of concurrent
3648       // marking is sufficient to meet both constraints.  This may miss
3649       // some objects that satisfy the constraints, but the marking data
3650       // structures don't support efficiently performing the needed
3651       // additional tests or scrubbing of the mark stack.
3652       //
3653       // However, we presently only nominate is_typeArray() objects.
3654       // A humongous object containing references induces remembered
3655       // set entries on other regions.  In order to reclaim such an
3656       // object, those remembered sets would need to be cleaned up.
3657       //
3658       // We also treat is_typeArray() objects specially, allowing them
3659       // to be reclaimed even if allocated before the start of
3660       // concurrent mark.  For this we rely on mark stack insertion to
3661       // exclude is_typeArray() objects, preventing reclaiming an object
3662       // that is in the mark stack.  We also rely on the metadata for
3663       // such objects to be built-in and so ensured to be kept live.
3664       // Frequent allocation and drop of large binary blobs is an
3665       // important use case for eager reclaim, and this special handling
3666       // may reduce needed headroom.
3667 
3668       return obj->is_typeArray() &&
3669              _g1h->is_potential_eager_reclaim_candidate(region);
3670     }
3671 
3672   public:
3673     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3674       _g1h(g1h),
3675       _parent_task(parent_task),
3676       _worker_humongous_total(0),
3677       _worker_humongous_candidates(0) { }
3678 
3679     ~G1PrepareRegionsClosure() {
3680       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3681       _parent_task->add_humongous_total(_worker_humongous_total);
3682     }
3683 
3684     virtual bool do_heap_region(HeapRegion* hr) {
3685       // First prepare the region for scanning
3686       _g1h->rem_set()->prepare_region_for_scan(hr);
3687 
3688       // Now check if region is a humongous candidate
3689       if (!hr->is_starts_humongous()) {
3690         _g1h->register_region_with_region_attr(hr);
3691         return false;
3692       }
3693 
3694       uint index = hr->hrm_index();
3695       if (humongous_region_is_candidate(hr)) {
3696         _g1h->set_humongous_reclaim_candidate(index, true);
3697         _g1h->register_humongous_region_with_region_attr(index);
3698         _worker_humongous_candidates++;
3699         // We will later handle the remembered sets of these regions.
3700       } else {
3701         _g1h->set_humongous_reclaim_candidate(index, false);
3702         _g1h->register_region_with_region_attr(hr);
3703       }
3704       _worker_humongous_total++;
3705 
3706       return false;
3707     }
3708   };
3709 
3710   G1CollectedHeap* _g1h;
3711   HeapRegionClaimer _claimer;
3712   volatile size_t _humongous_total;
3713   volatile size_t _humongous_candidates;
3714 public:
3715   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3716     AbstractGangTask("Prepare Evacuation"),
3717     _g1h(g1h),
3718     _claimer(_g1h->workers()->active_workers()),
3719     _humongous_total(0),
3720     _humongous_candidates(0) { }
3721 
3722   ~G1PrepareEvacuationTask() {
3723     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3724   }
3725 
3726   void work(uint worker_id) {
3727     G1PrepareRegionsClosure cl(_g1h, this);
3728     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3729   }
3730 
3731   void add_humongous_candidates(size_t candidates) {
3732     Atomic::add(&_humongous_candidates, candidates);
3733   }
3734 
3735   void add_humongous_total(size_t total) {
3736     Atomic::add(&_humongous_total, total);
3737   }
3738 
3739   size_t humongous_candidates() {
3740     return _humongous_candidates;
3741   }
3742 
3743   size_t humongous_total() {
3744     return _humongous_total;
3745   }
3746 };
3747 
3748 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3749   _bytes_used_during_gc = 0;
3750 
3751   _expand_heap_after_alloc_failure = true;
3752   _evacuation_failed = false;
3753 
3754   // Disable the hot card cache.
3755   _hot_card_cache->reset_hot_cache_claimed_index();
3756   _hot_card_cache->set_use_cache(false);
3757 
3758   // Initialize the GC alloc regions.
3759   _allocator->init_gc_alloc_regions(evacuation_info);
3760 
3761   {
3762     Ticks start = Ticks::now();
3763     rem_set()->prepare_for_scan_heap_roots();
3764     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3765   }
3766 
3767   {
3768     G1PrepareEvacuationTask g1_prep_task(this);
3769     Tickspan task_time = run_task(&g1_prep_task);
3770 
3771     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3772                                            g1_prep_task.humongous_total(),
3773                                            g1_prep_task.humongous_candidates());
3774   }
3775 
3776   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3777   _preserved_marks_set.assert_empty();
3778 
3779 #if COMPILER2_OR_JVMCI
3780   DerivedPointerTable::clear();
3781 #endif
3782 
3783   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3784   if (collector_state()->in_initial_mark_gc()) {
3785     concurrent_mark()->pre_initial_mark();
3786 
3787     double start_clear_claimed_marks = os::elapsedTime();
3788 
3789     ClassLoaderDataGraph::clear_claimed_marks();
3790 
3791     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3792     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3793   }
3794 
3795   // Should G1EvacuationFailureALot be in effect for this GC?
3796   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3797 }
3798 
3799 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3800 protected:
3801   G1CollectedHeap* _g1h;
3802   G1ParScanThreadStateSet* _per_thread_states;
3803   ScannerTasksQueueSet* _task_queues;
3804   TaskTerminator _terminator;
3805   uint _num_workers;
3806 
3807   void evacuate_live_objects(G1ParScanThreadState* pss,
3808                              uint worker_id,
3809                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3810                              G1GCPhaseTimes::GCParPhases termination_phase) {
3811     G1GCPhaseTimes* p = _g1h->phase_times();
3812 
3813     Ticks start = Ticks::now();
3814     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3815     cl.do_void();
3816 
3817     assert(pss->queue_is_empty(), "should be empty");
3818 
3819     Tickspan evac_time = (Ticks::now() - start);
3820     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3821 
3822     if (termination_phase == G1GCPhaseTimes::Termination) {
3823       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3824       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3825     } else {
3826       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3827       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3828     }
3829     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3830   }
3831 
3832   virtual void start_work(uint worker_id) { }
3833 
3834   virtual void end_work(uint worker_id) { }
3835 
3836   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3837 
3838   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3839 
3840 public:
3841   G1EvacuateRegionsBaseTask(const char* name,
3842                             G1ParScanThreadStateSet* per_thread_states,
3843                             ScannerTasksQueueSet* task_queues,
3844                             uint num_workers) :
3845     AbstractGangTask(name),
3846     _g1h(G1CollectedHeap::heap()),
3847     _per_thread_states(per_thread_states),
3848     _task_queues(task_queues),
3849     _terminator(num_workers, _task_queues),
3850     _num_workers(num_workers)
3851   { }
3852 
3853   void work(uint worker_id) {
3854     start_work(worker_id);
3855 
3856     {
3857       ResourceMark rm;
3858       HandleMark   hm;
3859 
3860       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3861       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3862 
3863       scan_roots(pss, worker_id);
3864       evacuate_live_objects(pss, worker_id);
3865     }
3866 
3867     end_work(worker_id);
3868   }
3869 };
3870 
3871 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3872   G1RootProcessor* _root_processor;
3873 
3874   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3875     _root_processor->evacuate_roots(pss, worker_id);
3876     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3877     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3878   }
3879 
3880   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3881     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3882   }
3883 
3884   void start_work(uint worker_id) {
3885     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3886   }
3887 
3888   void end_work(uint worker_id) {
3889     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3890   }
3891 
3892 public:
3893   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3894                         G1ParScanThreadStateSet* per_thread_states,
3895                         ScannerTasksQueueSet* task_queues,
3896                         G1RootProcessor* root_processor,
3897                         uint num_workers) :
3898     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3899     _root_processor(root_processor)
3900   { }
3901 };
3902 
3903 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3904   G1GCPhaseTimes* p = phase_times();
3905 
3906   {
3907     Ticks start = Ticks::now();
3908     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3909     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3910   }
3911 
3912   Tickspan task_time;
3913   const uint num_workers = workers()->active_workers();
3914 
3915   Ticks start_processing = Ticks::now();
3916   {
3917     G1RootProcessor root_processor(this, num_workers);
3918     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3919     task_time = run_task(&g1_par_task);
3920     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3921     // To extract its code root fixup time we measure total time of this scope and
3922     // subtract from the time the WorkGang task took.
3923   }
3924   Tickspan total_processing = Ticks::now() - start_processing;
3925 
3926   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3927   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3928 }
3929 
3930 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3931 
3932   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3933     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3934     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3935   }
3936 
3937   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3938     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3939   }
3940 
3941 public:
3942   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3943                                 ScannerTasksQueueSet* queues,
3944                                 uint num_workers) :
3945     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3946   }
3947 };
3948 
3949 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3950   class G1MarkScope : public MarkScope { };
3951 
3952   Tickspan task_time;
3953 
3954   Ticks start_processing = Ticks::now();
3955   {
3956     G1MarkScope code_mark_scope;
3957     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3958     task_time = run_task(&task);
3959     // See comment in evacuate_collection_set() for the reason of the scope.
3960   }
3961   Tickspan total_processing = Ticks::now() - start_processing;
3962 
3963   G1GCPhaseTimes* p = phase_times();
3964   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3965 }
3966 
3967 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3968   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3969 
3970   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3971 
3972     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3973     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3974 
3975     if (time_left_ms < 0 ||
3976         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3977       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3978                                 _collection_set.optional_region_length(), time_left_ms);
3979       break;
3980     }
3981 
3982     {
3983       Ticks start = Ticks::now();
3984       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3985       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3986     }
3987 
3988     {
3989       Ticks start = Ticks::now();
3990       evacuate_next_optional_regions(per_thread_states);
3991       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3992     }
3993   }
3994 
3995   _collection_set.abandon_optional_collection_set(per_thread_states);
3996 }
3997 
3998 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3999                                                    G1RedirtyCardsQueueSet* rdcqs,
4000                                                    G1ParScanThreadStateSet* per_thread_states) {
4001   G1GCPhaseTimes* p = phase_times();
4002 
4003   rem_set()->cleanup_after_scan_heap_roots();
4004 
4005   // Process any discovered reference objects - we have
4006   // to do this _before_ we retire the GC alloc regions
4007   // as we may have to copy some 'reachable' referent
4008   // objects (and their reachable sub-graphs) that were
4009   // not copied during the pause.
4010   process_discovered_references(per_thread_states);
4011 
4012   G1STWIsAliveClosure is_alive(this);
4013   G1KeepAliveClosure keep_alive(this);
4014 
4015   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4016 
4017   if (G1StringDedup::is_enabled()) {
4018     double string_dedup_time_ms = os::elapsedTime();
4019 
4020     string_dedup_cleaning(&is_alive, &keep_alive, p);
4021 
4022     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4023     p->record_string_deduplication_time(string_cleanup_time_ms);
4024   }
4025 
4026   _allocator->release_gc_alloc_regions(evacuation_info);
4027 
4028   if (evacuation_failed()) {
4029     restore_after_evac_failure(rdcqs);
4030 
4031     // Reset the G1EvacuationFailureALot counters and flags
4032     NOT_PRODUCT(reset_evacuation_should_fail();)
4033 
4034     double recalculate_used_start = os::elapsedTime();
4035     set_used(recalculate_used());
4036     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4037 
4038     if (_archive_allocator != NULL) {
4039       _archive_allocator->clear_used();
4040     }
4041     for (uint i = 0; i < ParallelGCThreads; i++) {
4042       if (_evacuation_failed_info_array[i].has_failed()) {
4043         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4044       }
4045     }
4046   } else {
4047     // The "used" of the the collection set have already been subtracted
4048     // when they were freed.  Add in the bytes used.
4049     increase_used(_bytes_used_during_gc);
4050   }
4051 
4052   _preserved_marks_set.assert_empty();
4053 
4054   merge_per_thread_state_info(per_thread_states);
4055 
4056   // Reset and re-enable the hot card cache.
4057   // Note the counts for the cards in the regions in the
4058   // collection set are reset when the collection set is freed.
4059   _hot_card_cache->reset_hot_cache();
4060   _hot_card_cache->set_use_cache(true);
4061 
4062   purge_code_root_memory();
4063 
4064   redirty_logged_cards(rdcqs);
4065 
4066   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4067 
4068   eagerly_reclaim_humongous_regions();
4069 
4070   record_obj_copy_mem_stats();
4071 
4072   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4073   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4074 
4075 #if COMPILER2_OR_JVMCI
4076   double start = os::elapsedTime();
4077   DerivedPointerTable::update_pointers();
4078   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4079 #endif
4080   policy()->print_age_table();
4081 }
4082 
4083 void G1CollectedHeap::record_obj_copy_mem_stats() {
4084   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4085 
4086   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4087                                                create_g1_evac_summary(&_old_evac_stats));
4088 }
4089 
4090 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4091   assert(!hr->is_free(), "the region should not be free");
4092   assert(!hr->is_empty(), "the region should not be empty");
4093   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4094 
4095   if (G1VerifyBitmaps) {
4096     MemRegion mr(hr->bottom(), hr->end());
4097     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4098   }
4099 
4100   // Clear the card counts for this region.
4101   // Note: we only need to do this if the region is not young
4102   // (since we don't refine cards in young regions).
4103   if (!hr->is_young()) {
4104     _hot_card_cache->reset_card_counts(hr);
4105   }
4106 
4107   // Reset region metadata to allow reuse.
4108   hr->hr_clear(true /* clear_space */);
4109   _policy->remset_tracker()->update_at_free(hr);
4110 
4111   if (free_list != NULL) {
4112     free_list->add_ordered(hr);
4113   }
4114 }
4115 
4116 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4117                                             FreeRegionList* free_list) {
4118   assert(hr->is_humongous(), "this is only for humongous regions");
4119   assert(free_list != NULL, "pre-condition");
4120   hr->clear_humongous();
4121   free_region(hr, free_list);
4122 }
4123 
4124 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4125                                            const uint humongous_regions_removed) {
4126   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4127     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4128     _old_set.bulk_remove(old_regions_removed);
4129     _humongous_set.bulk_remove(humongous_regions_removed);
4130   }
4131 
4132 }
4133 
4134 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4135   assert(list != NULL, "list can't be null");
4136   if (!list->is_empty()) {
4137     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4138     _hrm->insert_list_into_free_list(list);
4139   }
4140 }
4141 
4142 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4143   decrease_used(bytes);
4144 }
4145 
4146 class G1FreeCollectionSetTask : public AbstractGangTask {
4147   // Helper class to keep statistics for the collection set freeing
4148   class FreeCSetStats {
4149     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4150     size_t _after_used_bytes;    // Usage in regions failing evacuation
4151     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4152     size_t _failure_used_words;  // Live size in failed regions
4153     size_t _failure_waste_words; // Wasted size in failed regions
4154     size_t _rs_length;           // Remembered set size
4155     uint _regions_freed;         // Number of regions freed
4156   public:
4157     FreeCSetStats() :
4158         _before_used_bytes(0),
4159         _after_used_bytes(0),
4160         _bytes_allocated_in_old_since_last_gc(0),
4161         _failure_used_words(0),
4162         _failure_waste_words(0),
4163         _rs_length(0),
4164         _regions_freed(0) { }
4165 
4166     void merge_stats(FreeCSetStats* other) {
4167       assert(other != NULL, "invariant");
4168       _before_used_bytes += other->_before_used_bytes;
4169       _after_used_bytes += other->_after_used_bytes;
4170       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4171       _failure_used_words += other->_failure_used_words;
4172       _failure_waste_words += other->_failure_waste_words;
4173       _rs_length += other->_rs_length;
4174       _regions_freed += other->_regions_freed;
4175     }
4176 
4177     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4178       evacuation_info->set_regions_freed(_regions_freed);
4179       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4180 
4181       g1h->decrement_summary_bytes(_before_used_bytes);
4182       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4183 
4184       G1Policy *policy = g1h->policy();
4185       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4186       policy->record_rs_length(_rs_length);
4187       policy->cset_regions_freed();
4188     }
4189 
4190     void account_failed_region(HeapRegion* r) {
4191       size_t used_words = r->marked_bytes() / HeapWordSize;
4192       _failure_used_words += used_words;
4193       _failure_waste_words += HeapRegion::GrainWords - used_words;
4194       _after_used_bytes += r->used();
4195 
4196       // When moving a young gen region to old gen, we "allocate" that whole
4197       // region there. This is in addition to any already evacuated objects.
4198       // Notify the policy about that. Old gen regions do not cause an
4199       // additional allocation: both the objects still in the region and the
4200       // ones already moved are accounted for elsewhere.
4201       if (r->is_young()) {
4202         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4203       }
4204     }
4205 
4206     void account_evacuated_region(HeapRegion* r) {
4207       _before_used_bytes += r->used();
4208       _regions_freed += 1;
4209     }
4210 
4211     void account_rs_length(HeapRegion* r) {
4212       _rs_length += r->rem_set()->occupied();
4213     }
4214   };
4215 
4216   // Closure applied to all regions in the collection set.
4217   class FreeCSetClosure : public HeapRegionClosure {
4218     // Helper to send JFR events for regions.
4219     class JFREventForRegion {
4220       EventGCPhaseParallel _event;
4221     public:
4222       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4223         _event.set_gcId(GCId::current());
4224         _event.set_gcWorkerId(worker_id);
4225         if (region->is_young()) {
4226           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4227         } else {
4228           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4229         }
4230       }
4231 
4232       ~JFREventForRegion() {
4233         _event.commit();
4234       }
4235     };
4236 
4237     // Helper to do timing for region work.
4238     class TimerForRegion {
4239       Tickspan& _time;
4240       Ticks     _start_time;
4241     public:
4242       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4243       ~TimerForRegion() {
4244         _time += Ticks::now() - _start_time;
4245       }
4246     };
4247 
4248     // FreeCSetClosure members
4249     G1CollectedHeap* _g1h;
4250     const size_t*    _surviving_young_words;
4251     uint             _worker_id;
4252     Tickspan         _young_time;
4253     Tickspan         _non_young_time;
4254     FreeCSetStats*   _stats;
4255 
4256     void assert_in_cset(HeapRegion* r) {
4257       assert(r->young_index_in_cset() != 0 &&
4258              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4259              "Young index %u is wrong for region %u of type %s with %u young regions",
4260              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4261     }
4262 
4263     void handle_evacuated_region(HeapRegion* r) {
4264       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4265       stats()->account_evacuated_region(r);
4266 
4267       // Free the region and and its remembered set.
4268       _g1h->free_region(r, NULL);
4269     }
4270 
4271     void handle_failed_region(HeapRegion* r) {
4272       // Do some allocation statistics accounting. Regions that failed evacuation
4273       // are always made old, so there is no need to update anything in the young
4274       // gen statistics, but we need to update old gen statistics.
4275       stats()->account_failed_region(r);
4276 
4277       // Update the region state due to the failed evacuation.
4278       r->handle_evacuation_failure();
4279 
4280       // Add region to old set, need to hold lock.
4281       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4282       _g1h->old_set_add(r);
4283     }
4284 
4285     Tickspan& timer_for_region(HeapRegion* r) {
4286       return r->is_young() ? _young_time : _non_young_time;
4287     }
4288 
4289     FreeCSetStats* stats() {
4290       return _stats;
4291     }
4292   public:
4293     FreeCSetClosure(const size_t* surviving_young_words,
4294                     uint worker_id,
4295                     FreeCSetStats* stats) :
4296         HeapRegionClosure(),
4297         _g1h(G1CollectedHeap::heap()),
4298         _surviving_young_words(surviving_young_words),
4299         _worker_id(worker_id),
4300         _young_time(),
4301         _non_young_time(),
4302         _stats(stats) { }
4303 
4304     virtual bool do_heap_region(HeapRegion* r) {
4305       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4306       JFREventForRegion event(r, _worker_id);
4307       TimerForRegion timer(timer_for_region(r));
4308 
4309       _g1h->clear_region_attr(r);
4310       stats()->account_rs_length(r);
4311 
4312       if (r->is_young()) {
4313         assert_in_cset(r);
4314         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4315       }
4316 
4317       if (r->evacuation_failed()) {
4318         handle_failed_region(r);
4319       } else {
4320         handle_evacuated_region(r);
4321       }
4322       assert(!_g1h->is_on_master_free_list(r), "sanity");
4323 
4324       return false;
4325     }
4326 
4327     void report_timing(Tickspan parallel_time) {
4328       G1GCPhaseTimes* pt = _g1h->phase_times();
4329       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4330       if (_young_time.value() > 0) {
4331         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4332       }
4333       if (_non_young_time.value() > 0) {
4334         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4335       }
4336     }
4337   };
4338 
4339   // G1FreeCollectionSetTask members
4340   G1CollectedHeap*  _g1h;
4341   G1EvacuationInfo* _evacuation_info;
4342   FreeCSetStats*    _worker_stats;
4343   HeapRegionClaimer _claimer;
4344   const size_t*     _surviving_young_words;
4345   uint              _active_workers;
4346 
4347   FreeCSetStats* worker_stats(uint worker) {
4348     return &_worker_stats[worker];
4349   }
4350 
4351   void report_statistics() {
4352     // Merge the accounting
4353     FreeCSetStats total_stats;
4354     for (uint worker = 0; worker < _active_workers; worker++) {
4355       total_stats.merge_stats(worker_stats(worker));
4356     }
4357     total_stats.report(_g1h, _evacuation_info);
4358   }
4359 
4360 public:
4361   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4362       AbstractGangTask("G1 Free Collection Set"),
4363       _g1h(G1CollectedHeap::heap()),
4364       _evacuation_info(evacuation_info),
4365       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4366       _claimer(active_workers),
4367       _surviving_young_words(surviving_young_words),
4368       _active_workers(active_workers) {
4369     for (uint worker = 0; worker < active_workers; worker++) {
4370       ::new (&_worker_stats[worker]) FreeCSetStats();
4371     }
4372   }
4373 
4374   ~G1FreeCollectionSetTask() {
4375     Ticks serial_time = Ticks::now();
4376     report_statistics();
4377     for (uint worker = 0; worker < _active_workers; worker++) {
4378       _worker_stats[worker].~FreeCSetStats();
4379     }
4380     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4381     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4382   }
4383 
4384   virtual void work(uint worker_id) {
4385     EventGCPhaseParallel event;
4386     Ticks start = Ticks::now();
4387     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4388     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4389 
4390     // Report the total parallel time along with some more detailed metrics.
4391     cl.report_timing(Ticks::now() - start);
4392     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4393   }
4394 };
4395 
4396 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4397   _eden.clear();
4398 
4399   // The free collections set is split up in two tasks, the first
4400   // frees the collection set and records what regions are free,
4401   // and the second one rebuilds the free list. This proved to be
4402   // more efficient than adding a sorted list to another.
4403 
4404   Ticks free_cset_start_time = Ticks::now();
4405   {
4406     uint const num_cs_regions = _collection_set.region_length();
4407     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4408     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4409 
4410     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4411                         cl.name(), num_workers, num_cs_regions, num_regions());
4412     workers()->run_task(&cl, num_workers);
4413   }
4414 
4415   Ticks free_cset_end_time = Ticks::now();
4416   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4417 
4418   // Now rebuild the free region list.
4419   hrm()->rebuild_free_list(workers());
4420   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4421 
4422   collection_set->clear();
4423 }
4424 
4425 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4426  private:
4427   FreeRegionList* _free_region_list;
4428   HeapRegionSet* _proxy_set;
4429   uint _humongous_objects_reclaimed;
4430   uint _humongous_regions_reclaimed;
4431   size_t _freed_bytes;
4432  public:
4433 
4434   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4435     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4436   }
4437 
4438   virtual bool do_heap_region(HeapRegion* r) {
4439     if (!r->is_starts_humongous()) {
4440       return false;
4441     }
4442 
4443     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4444 
4445     oop obj = (oop)r->bottom();
4446     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4447 
4448     // The following checks whether the humongous object is live are sufficient.
4449     // The main additional check (in addition to having a reference from the roots
4450     // or the young gen) is whether the humongous object has a remembered set entry.
4451     //
4452     // A humongous object cannot be live if there is no remembered set for it
4453     // because:
4454     // - there can be no references from within humongous starts regions referencing
4455     // the object because we never allocate other objects into them.
4456     // (I.e. there are no intra-region references that may be missed by the
4457     // remembered set)
4458     // - as soon there is a remembered set entry to the humongous starts region
4459     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4460     // until the end of a concurrent mark.
4461     //
4462     // It is not required to check whether the object has been found dead by marking
4463     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4464     // all objects allocated during that time are considered live.
4465     // SATB marking is even more conservative than the remembered set.
4466     // So if at this point in the collection there is no remembered set entry,
4467     // nobody has a reference to it.
4468     // At the start of collection we flush all refinement logs, and remembered sets
4469     // are completely up-to-date wrt to references to the humongous object.
4470     //
4471     // Other implementation considerations:
4472     // - never consider object arrays at this time because they would pose
4473     // considerable effort for cleaning up the the remembered sets. This is
4474     // required because stale remembered sets might reference locations that
4475     // are currently allocated into.
4476     uint region_idx = r->hrm_index();
4477     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4478         !r->rem_set()->is_empty()) {
4479       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4480                                region_idx,
4481                                (size_t)obj->size() * HeapWordSize,
4482                                p2i(r->bottom()),
4483                                r->rem_set()->occupied(),
4484                                r->rem_set()->strong_code_roots_list_length(),
4485                                next_bitmap->is_marked(r->bottom()),
4486                                g1h->is_humongous_reclaim_candidate(region_idx),
4487                                obj->is_typeArray()
4488                               );
4489       return false;
4490     }
4491 
4492     guarantee(obj->is_typeArray(),
4493               "Only eagerly reclaiming type arrays is supported, but the object "
4494               PTR_FORMAT " is not.", p2i(r->bottom()));
4495 
4496     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4497                              region_idx,
4498                              (size_t)obj->size() * HeapWordSize,
4499                              p2i(r->bottom()),
4500                              r->rem_set()->occupied(),
4501                              r->rem_set()->strong_code_roots_list_length(),
4502                              next_bitmap->is_marked(r->bottom()),
4503                              g1h->is_humongous_reclaim_candidate(region_idx),
4504                              obj->is_typeArray()
4505                             );
4506 
4507     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4508     cm->humongous_object_eagerly_reclaimed(r);
4509     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4510            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4511            region_idx,
4512            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4513            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4514     _humongous_objects_reclaimed++;
4515     do {
4516       HeapRegion* next = g1h->next_region_in_humongous(r);
4517       _freed_bytes += r->used();
4518       r->set_containing_set(NULL);
4519       _humongous_regions_reclaimed++;
4520       g1h->free_humongous_region(r, _free_region_list);
4521       r = next;
4522     } while (r != NULL);
4523 
4524     return false;
4525   }
4526 
4527   uint humongous_objects_reclaimed() {
4528     return _humongous_objects_reclaimed;
4529   }
4530 
4531   uint humongous_regions_reclaimed() {
4532     return _humongous_regions_reclaimed;
4533   }
4534 
4535   size_t bytes_freed() const {
4536     return _freed_bytes;
4537   }
4538 };
4539 
4540 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4541   assert_at_safepoint_on_vm_thread();
4542 
4543   if (!G1EagerReclaimHumongousObjects ||
4544       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4545     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4546     return;
4547   }
4548 
4549   double start_time = os::elapsedTime();
4550 
4551   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4552 
4553   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4554   heap_region_iterate(&cl);
4555 
4556   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4557 
4558   G1HRPrinter* hrp = hr_printer();
4559   if (hrp->is_active()) {
4560     FreeRegionListIterator iter(&local_cleanup_list);
4561     while (iter.more_available()) {
4562       HeapRegion* hr = iter.get_next();
4563       hrp->cleanup(hr);
4564     }
4565   }
4566 
4567   prepend_to_freelist(&local_cleanup_list);
4568   decrement_summary_bytes(cl.bytes_freed());
4569 
4570   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4571                                                        cl.humongous_objects_reclaimed());
4572 }
4573 
4574 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4575 public:
4576   virtual bool do_heap_region(HeapRegion* r) {
4577     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4578     G1CollectedHeap::heap()->clear_region_attr(r);
4579     r->clear_young_index_in_cset();
4580     return false;
4581   }
4582 };
4583 
4584 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4585   G1AbandonCollectionSetClosure cl;
4586   collection_set_iterate_all(&cl);
4587 
4588   collection_set->clear();
4589   collection_set->stop_incremental_building();
4590 }
4591 
4592 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4593   return _allocator->is_retained_old_region(hr);
4594 }
4595 
4596 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4597   _eden.add(hr);
4598   _policy->set_region_eden(hr);
4599 }
4600 
4601 #ifdef ASSERT
4602 
4603 class NoYoungRegionsClosure: public HeapRegionClosure {
4604 private:
4605   bool _success;
4606 public:
4607   NoYoungRegionsClosure() : _success(true) { }
4608   bool do_heap_region(HeapRegion* r) {
4609     if (r->is_young()) {
4610       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4611                             p2i(r->bottom()), p2i(r->end()));
4612       _success = false;
4613     }
4614     return false;
4615   }
4616   bool success() { return _success; }
4617 };
4618 
4619 bool G1CollectedHeap::check_young_list_empty() {
4620   bool ret = (young_regions_count() == 0);
4621 
4622   NoYoungRegionsClosure closure;
4623   heap_region_iterate(&closure);
4624   ret = ret && closure.success();
4625 
4626   return ret;
4627 }
4628 
4629 #endif // ASSERT
4630 
4631 class TearDownRegionSetsClosure : public HeapRegionClosure {
4632   HeapRegionSet *_old_set;
4633 
4634 public:
4635   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4636 
4637   bool do_heap_region(HeapRegion* r) {
4638     if (r->is_old()) {
4639       _old_set->remove(r);
4640     } else if(r->is_young()) {
4641       r->uninstall_surv_rate_group();
4642     } else {
4643       // We ignore free regions, we'll empty the free list afterwards.
4644       // We ignore humongous and archive regions, we're not tearing down these
4645       // sets.
4646       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4647              "it cannot be another type");
4648     }
4649     return false;
4650   }
4651 
4652   ~TearDownRegionSetsClosure() {
4653     assert(_old_set->is_empty(), "post-condition");
4654   }
4655 };
4656 
4657 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4658   assert_at_safepoint_on_vm_thread();
4659 
4660   if (!free_list_only) {
4661     TearDownRegionSetsClosure cl(&_old_set);
4662     heap_region_iterate(&cl);
4663 
4664     // Note that emptying the _young_list is postponed and instead done as
4665     // the first step when rebuilding the regions sets again. The reason for
4666     // this is that during a full GC string deduplication needs to know if
4667     // a collected region was young or old when the full GC was initiated.
4668   }
4669   _hrm->remove_all_free_regions();
4670 }
4671 
4672 void G1CollectedHeap::increase_used(size_t bytes) {
4673   _summary_bytes_used += bytes;
4674 }
4675 
4676 void G1CollectedHeap::decrease_used(size_t bytes) {
4677   assert(_summary_bytes_used >= bytes,
4678          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4679          _summary_bytes_used, bytes);
4680   _summary_bytes_used -= bytes;
4681 }
4682 
4683 void G1CollectedHeap::set_used(size_t bytes) {
4684   _summary_bytes_used = bytes;
4685 }
4686 
4687 class RebuildRegionSetsClosure : public HeapRegionClosure {
4688 private:
4689   bool _free_list_only;
4690 
4691   HeapRegionSet* _old_set;
4692   HeapRegionManager* _hrm;
4693 
4694   size_t _total_used;
4695 
4696 public:
4697   RebuildRegionSetsClosure(bool free_list_only,
4698                            HeapRegionSet* old_set,
4699                            HeapRegionManager* hrm) :
4700     _free_list_only(free_list_only),
4701     _old_set(old_set), _hrm(hrm), _total_used(0) {
4702     assert(_hrm->num_free_regions() == 0, "pre-condition");
4703     if (!free_list_only) {
4704       assert(_old_set->is_empty(), "pre-condition");
4705     }
4706   }
4707 
4708   bool do_heap_region(HeapRegion* r) {
4709     if (r->is_empty()) {
4710       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4711       // Add free regions to the free list
4712       r->set_free();
4713       _hrm->insert_into_free_list(r);
4714     } else if (!_free_list_only) {
4715       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4716 
4717       if (r->is_archive() || r->is_humongous()) {
4718         // We ignore archive and humongous regions. We left these sets unchanged.
4719       } else {
4720         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4721         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4722         r->move_to_old();
4723         _old_set->add(r);
4724       }
4725       _total_used += r->used();
4726     }
4727 
4728     return false;
4729   }
4730 
4731   size_t total_used() {
4732     return _total_used;
4733   }
4734 };
4735 
4736 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4737   assert_at_safepoint_on_vm_thread();
4738 
4739   if (!free_list_only) {
4740     _eden.clear();
4741     _survivor.clear();
4742   }
4743 
4744   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4745   heap_region_iterate(&cl);
4746 
4747   if (!free_list_only) {
4748     set_used(cl.total_used());
4749     if (_archive_allocator != NULL) {
4750       _archive_allocator->clear_used();
4751     }
4752   }
4753   assert_used_and_recalculate_used_equal(this);
4754 }
4755 
4756 // Methods for the mutator alloc region
4757 
4758 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4759                                                       bool force,
4760                                                       uint node_index) {
4761   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4762   bool should_allocate = policy()->should_allocate_mutator_region();
4763   if (force || should_allocate) {
4764     HeapRegion* new_alloc_region = new_region(word_size,
4765                                               HeapRegionType::Eden,
4766                                               false /* do_expand */,
4767                                               node_index);
4768     if (new_alloc_region != NULL) {
4769       set_region_short_lived_locked(new_alloc_region);
4770       _hr_printer.alloc(new_alloc_region, !should_allocate);
4771       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4772       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4773       return new_alloc_region;
4774     }
4775   }
4776   return NULL;
4777 }
4778 
4779 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4780                                                   size_t allocated_bytes) {
4781   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4782   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4783 
4784   collection_set()->add_eden_region(alloc_region);
4785   increase_used(allocated_bytes);
4786   _eden.add_used_bytes(allocated_bytes);
4787   _hr_printer.retire(alloc_region);
4788 
4789   // We update the eden sizes here, when the region is retired,
4790   // instead of when it's allocated, since this is the point that its
4791   // used space has been recorded in _summary_bytes_used.
4792   g1mm()->update_eden_size();
4793 }
4794 
4795 // Methods for the GC alloc regions
4796 
4797 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4798   if (dest.is_old()) {
4799     return true;
4800   } else {
4801     return survivor_regions_count() < policy()->max_survivor_regions();
4802   }
4803 }
4804 
4805 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4806   assert(FreeList_lock->owned_by_self(), "pre-condition");
4807 
4808   if (!has_more_regions(dest)) {
4809     return NULL;
4810   }
4811 
4812   HeapRegionType type;
4813   if (dest.is_young()) {
4814     type = HeapRegionType::Survivor;
4815   } else {
4816     type = HeapRegionType::Old;
4817   }
4818 
4819   HeapRegion* new_alloc_region = new_region(word_size,
4820                                             type,
4821                                             true /* do_expand */,
4822                                             node_index);
4823 
4824   if (new_alloc_region != NULL) {
4825     if (type.is_survivor()) {
4826       new_alloc_region->set_survivor();
4827       _survivor.add(new_alloc_region);
4828       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4829     } else {
4830       new_alloc_region->set_old();
4831       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4832     }
4833     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4834     register_region_with_region_attr(new_alloc_region);
4835     _hr_printer.alloc(new_alloc_region);
4836     return new_alloc_region;
4837   }
4838   return NULL;
4839 }
4840 
4841 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4842                                              size_t allocated_bytes,
4843                                              G1HeapRegionAttr dest) {
4844   _bytes_used_during_gc += allocated_bytes;
4845   if (dest.is_old()) {
4846     old_set_add(alloc_region);
4847   } else {
4848     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4849     _survivor.add_used_bytes(allocated_bytes);
4850   }
4851 
4852   bool const during_im = collector_state()->in_initial_mark_gc();
4853   if (during_im && allocated_bytes > 0) {
4854     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4855   }
4856   _hr_printer.retire(alloc_region);
4857 }
4858 
4859 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4860   bool expanded = false;
4861   uint index = _hrm->find_highest_free(&expanded);
4862 
4863   if (index != G1_NO_HRM_INDEX) {
4864     if (expanded) {
4865       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4866                                 HeapRegion::GrainWords * HeapWordSize);
4867     }
4868     return _hrm->allocate_free_regions_starting_at(index, 1);
4869   }
4870   return NULL;
4871 }
4872 
4873 // Optimized nmethod scanning
4874 
4875 class RegisterNMethodOopClosure: public OopClosure {
4876   G1CollectedHeap* _g1h;
4877   nmethod* _nm;
4878 
4879   template <class T> void do_oop_work(T* p) {
4880     T heap_oop = RawAccess<>::oop_load(p);
4881     if (!CompressedOops::is_null(heap_oop)) {
4882       oop obj = CompressedOops::decode_not_null(heap_oop);
4883       HeapRegion* hr = _g1h->heap_region_containing(obj);
4884       assert(!hr->is_continues_humongous(),
4885              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4886              " starting at " HR_FORMAT,
4887              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4888 
4889       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4890       hr->add_strong_code_root_locked(_nm);
4891     }
4892   }
4893 
4894 public:
4895   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4896     _g1h(g1h), _nm(nm) {}
4897 
4898   void do_oop(oop* p)       { do_oop_work(p); }
4899   void do_oop(narrowOop* p) { do_oop_work(p); }
4900 };
4901 
4902 class UnregisterNMethodOopClosure: public OopClosure {
4903   G1CollectedHeap* _g1h;
4904   nmethod* _nm;
4905 
4906   template <class T> void do_oop_work(T* p) {
4907     T heap_oop = RawAccess<>::oop_load(p);
4908     if (!CompressedOops::is_null(heap_oop)) {
4909       oop obj = CompressedOops::decode_not_null(heap_oop);
4910       HeapRegion* hr = _g1h->heap_region_containing(obj);
4911       assert(!hr->is_continues_humongous(),
4912              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4913              " starting at " HR_FORMAT,
4914              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4915 
4916       hr->remove_strong_code_root(_nm);
4917     }
4918   }
4919 
4920 public:
4921   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4922     _g1h(g1h), _nm(nm) {}
4923 
4924   void do_oop(oop* p)       { do_oop_work(p); }
4925   void do_oop(narrowOop* p) { do_oop_work(p); }
4926 };
4927 
4928 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4929   guarantee(nm != NULL, "sanity");
4930   RegisterNMethodOopClosure reg_cl(this, nm);
4931   nm->oops_do(&reg_cl);
4932 }
4933 
4934 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4935   guarantee(nm != NULL, "sanity");
4936   UnregisterNMethodOopClosure reg_cl(this, nm);
4937   nm->oops_do(&reg_cl, true);
4938 }
4939 
4940 void G1CollectedHeap::purge_code_root_memory() {
4941   double purge_start = os::elapsedTime();
4942   G1CodeRootSet::purge();
4943   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4944   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4945 }
4946 
4947 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4948   G1CollectedHeap* _g1h;
4949 
4950 public:
4951   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4952     _g1h(g1h) {}
4953 
4954   void do_code_blob(CodeBlob* cb) {
4955     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4956     if (nm == NULL) {
4957       return;
4958     }
4959 
4960     _g1h->register_nmethod(nm);
4961   }
4962 };
4963 
4964 void G1CollectedHeap::rebuild_strong_code_roots() {
4965   RebuildStrongCodeRootClosure blob_cl(this);
4966   CodeCache::blobs_do(&blob_cl);
4967 }
4968 
4969 void G1CollectedHeap::initialize_serviceability() {
4970   _g1mm->initialize_serviceability();
4971 }
4972 
4973 MemoryUsage G1CollectedHeap::memory_usage() {
4974   return _g1mm->memory_usage();
4975 }
4976 
4977 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4978   return _g1mm->memory_managers();
4979 }
4980 
4981 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4982   return _g1mm->memory_pools();
4983 }