< prev index next >

src/hotspot/share/gc/g1/g1ParScanThreadState.cpp

Print this page
rev 60435 : imported patch improve_inlining

*** 153,167 **** ShouldNotReachHere(); } } #endif // ASSERT ! void G1ParScanThreadState::trim_queue() { do { ! // Fully drain the queue. ! trim_queue_to_threshold(0); ! } while (!_task_queue->is_empty()); } HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, size_t word_sz, bool previous_plab_refill_failed, --- 153,287 ---- ShouldNotReachHere(); } } #endif // ASSERT ! template <class T> void G1ParScanThreadState::do_oop_evac(T* p) { ! // Reference should not be NULL here as such are never pushed to the task queue. ! oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); ! ! // Although we never intentionally push references outside of the collection ! // set, due to (benign) races in the claim mechanism during RSet scanning more ! // than one thread might claim the same card. So the same card may be ! // processed multiple times, and so we might get references into old gen here. ! // So we need to redo this check. ! const G1HeapRegionAttr region_attr = _g1h->region_attr(obj); ! // References pushed onto the work stack should never point to a humongous region ! // as they are not added to the collection set due to above precondition. ! assert(!region_attr.is_humongous(), ! "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT, ! p2i(obj), _g1h->addr_to_region(cast_from_oop<HeapWord*>(obj)), p2i(p)); ! ! if (!region_attr.is_in_cset()) { ! // In this case somebody else already did all the work. ! return; ! } ! ! markWord m = obj->mark_raw(); ! if (m.is_marked()) { ! obj = (oop) m.decode_pointer(); ! } else { ! obj = do_copy_to_survivor_space(region_attr, obj, m); ! } ! RawAccess<IS_NOT_NULL>::oop_store(p, obj); ! ! assert(obj != NULL, "Must be"); ! if (HeapRegion::is_in_same_region(p, obj)) { ! return; ! } ! HeapRegion* from = _g1h->heap_region_containing(p); ! if (!from->is_young()) { ! enqueue_card_if_tracked(_g1h->region_attr(obj), p, obj); ! } ! } ! ! void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) { ! oop from_obj = task.to_source_array(); ! ! assert(_g1h->is_in_reserved(from_obj), "must be in heap."); ! assert(from_obj->is_objArray(), "must be obj array"); ! objArrayOop from_obj_array = objArrayOop(from_obj); ! // The from-space object contains the real length. ! int length = from_obj_array->length(); ! ! assert(from_obj->is_forwarded(), "must be forwarded"); ! oop to_obj = from_obj->forwardee(); ! assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); ! objArrayOop to_obj_array = objArrayOop(to_obj); ! // We keep track of the next start index in the length field of the ! // to-space object. ! int next_index = to_obj_array->length(); ! assert(0 <= next_index && next_index < length, ! "invariant, next index: %d, length: %d", next_index, length); ! ! int start = next_index; ! int end = length; ! int remainder = end - start; ! // We'll try not to push a range that's smaller than ParGCArrayScanChunk. ! if (remainder > 2 * ParGCArrayScanChunk) { ! end = start + ParGCArrayScanChunk; ! to_obj_array->set_length(end); ! // Push the remainder before we process the range in case another ! // worker has run out of things to do and can steal it. ! push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); ! } else { ! assert(length == end, "sanity"); ! // We'll process the final range for this object. Restore the length ! // so that the heap remains parsable in case of evacuation failure. ! to_obj_array->set_length(end); ! } ! ! HeapRegion* hr = _g1h->heap_region_containing(to_obj); ! G1ScanInYoungSetter x(&_scanner, hr->is_young()); ! // Process indexes [start,end). It will also process the header ! // along with the first chunk (i.e., the chunk with start == 0). ! // Note that at this point the length field of to_obj_array is not ! // correct given that we are using it to keep track of the next ! // start index. oop_iterate_range() (thankfully!) ignores the length ! // field and only relies on the start / end parameters. It does ! // however return the size of the object which will be incorrect. So ! // we have to ignore it even if we wanted to use it. ! to_obj_array->oop_iterate_range(&_scanner, start, end); ! } ! ! void G1ParScanThreadState::dispatch_task(ScannerTask task) { ! verify_task(task); ! if (task.is_narrow_oop_ptr()) { ! do_oop_evac(task.to_narrow_oop_ptr()); ! } else if (task.is_oop_ptr()) { ! do_oop_evac(task.to_oop_ptr()); ! } else { ! do_partial_array(task.to_partial_array_task()); ! } ! } ! ! // Process tasks until overflow queue is empty and local queue ! // contains no more than threshold entries. NOINLINE to prevent ! // inlining into steal_and_trim_queue. ! ATTRIBUTE_FLATTEN NOINLINE ! void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) { ! ScannerTask task; do { ! while (_task_queue->pop_overflow(task)) { ! if (!_task_queue->try_push_to_taskqueue(task)) { ! dispatch_task(task); ! } ! } ! while (_task_queue->pop_local(task, threshold)) { ! dispatch_task(task); ! } ! } while (!_task_queue->overflow_empty()); ! } ! ! ATTRIBUTE_FLATTEN ! void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) { ! ScannerTask stolen_task; ! while (task_queues->steal(_worker_id, stolen_task)) { ! dispatch_task(stolen_task); ! // Processing stolen task may have added tasks to our queue. ! trim_queue(); ! } } HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, size_t word_sz, bool previous_plab_refill_failed,
*** 225,235 **** _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age, dest_attr.type() == G1HeapRegionAttr::Old); } } ! oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr const region_attr, oop const old, markWord const old_mark) { const size_t word_sz = old->size(); uint age = 0; --- 345,357 ---- _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age, dest_attr.type() == G1HeapRegionAttr::Old); } } ! // Private inline function, for direct internal use and providing the ! // implementation of the public not-inline function. ! oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr, oop const old, markWord const old_mark) { const size_t word_sz = old->size(); uint age = 0;
*** 341,350 **** --- 463,480 ---- _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); return forward_ptr; } } + // Public not-inline entry point. + ATTRIBUTE_FLATTEN + oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr, + oop old, + markWord old_mark) { + return do_copy_to_survivor_space(region_attr, old, old_mark); + } + G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) { assert(worker_id < _n_workers, "out of bounds access"); if (_states[worker_id] == NULL) { _states[worker_id] = new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length);
*** 426,435 **** --- 556,592 ---- "should not be in the CSet", p2i(old), p2i(forward_ptr)); return forward_ptr; } } + + void G1ParScanThreadState::initialize_numa_stats() { + if (_numa->is_enabled()) { + LogTarget(Info, gc, heap, numa) lt; + + if (lt.is_enabled()) { + uint num_nodes = _numa->num_active_nodes(); + // Record only if there are multiple active nodes. + _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC); + memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes); + } + } + } + + void G1ParScanThreadState::flush_numa_stats() { + if (_obj_alloc_stat != NULL) { + uint node_index = _numa->index_of_current_thread(); + _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat); + } + } + + void G1ParScanThreadState::update_numa_stats(uint node_index) { + if (_obj_alloc_stat != NULL) { + _obj_alloc_stat[node_index]++; + } + } + G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, G1RedirtyCardsQueueSet* rdcqs, uint n_workers, size_t young_cset_length, size_t optional_cset_length) :
< prev index next >