1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 // Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>.
  33 #include "classfile_constants.h"
  34 
  35 #include COMPILER_HEADER(utilities/globalDefinitions)
  36 
  37 // Defaults for macros that might be defined per compiler.
  38 #ifndef NOINLINE
  39 #define NOINLINE
  40 #endif
  41 #ifndef ALWAYSINLINE
  42 #define ALWAYSINLINE inline
  43 #endif
  44 
  45 #ifndef ATTRIBUTE_ALIGNED
  46 #define ATTRIBUTE_ALIGNED(x)
  47 #endif
  48 
  49 #ifndef ATTRIBUTE_FLATTEN
  50 #define ATTRIBUTE_FLATTEN
  51 #endif
  52 
  53 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  54 // capabilities. Choices should be led by a tradeoff between
  55 // code size and improved supportability.
  56 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  57 // to have a fallback in case hsdis is not available.
  58 #if defined(PRODUCT)
  59   #define SUPPORT_ABSTRACT_ASSEMBLY
  60   #define SUPPORT_ASSEMBLY
  61   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  62   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  63 #else
  64   #define SUPPORT_ABSTRACT_ASSEMBLY
  65   #define SUPPORT_ASSEMBLY
  66   #define SUPPORT_OPTO_ASSEMBLY
  67   #define SUPPORT_DATA_STRUCTS
  68 #endif
  69 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  70   #define SUPPORT_ABSTRACT_ASSEMBLY
  71 #endif
  72 
  73 // This file holds all globally used constants & types, class (forward)
  74 // declarations and a few frequently used utility functions.
  75 
  76 // Declare the named class to be noncopyable.  This macro must be used in
  77 // a private part of the class's definition, followed by a semi-colon.
  78 // Doing so provides private declarations for the class's copy constructor
  79 // and assignment operator.  Because these operations are private, most
  80 // potential callers will fail to compile because they are inaccessible.
  81 // The operations intentionally lack a definition, to provoke link-time
  82 // failures for calls from contexts where they are accessible, e.g. from
  83 // within the class or from a friend of the class.
  84 // Note: The lack of definitions is still not completely bullet-proof, as
  85 // an apparent call might be optimized away by copy elision.
  86 // For C++11 the declarations should be changed to deleted definitions.
  87 #define NONCOPYABLE(C) C(C const&); C& operator=(C const&) /* next token must be ; */
  88 
  89 //----------------------------------------------------------------------------------------------------
  90 // Printf-style formatters for fixed- and variable-width types as pointers and
  91 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  92 // doesn't provide appropriate definitions, they should be provided in
  93 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  94 
  95 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  96 
  97 // Format 32-bit quantities.
  98 #define INT32_FORMAT           "%" PRId32
  99 #define UINT32_FORMAT          "%" PRIu32
 100 #define INT32_FORMAT_W(width)  "%" #width PRId32
 101 #define UINT32_FORMAT_W(width) "%" #width PRIu32
 102 
 103 #define PTR32_FORMAT           "0x%08" PRIx32
 104 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
 105 
 106 // Format 64-bit quantities.
 107 #define INT64_FORMAT           "%" PRId64
 108 #define UINT64_FORMAT          "%" PRIu64
 109 #define UINT64_FORMAT_X        "%" PRIx64
 110 #define INT64_FORMAT_W(width)  "%" #width PRId64
 111 #define UINT64_FORMAT_W(width) "%" #width PRIu64
 112 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
 113 
 114 #define PTR64_FORMAT           "0x%016" PRIx64
 115 
 116 // Format jlong, if necessary
 117 #ifndef JLONG_FORMAT
 118 #define JLONG_FORMAT           INT64_FORMAT
 119 #endif
 120 #ifndef JLONG_FORMAT_W
 121 #define JLONG_FORMAT_W(width)  INT64_FORMAT_W(width)
 122 #endif
 123 #ifndef JULONG_FORMAT
 124 #define JULONG_FORMAT          UINT64_FORMAT
 125 #endif
 126 #ifndef JULONG_FORMAT_X
 127 #define JULONG_FORMAT_X        UINT64_FORMAT_X
 128 #endif
 129 
 130 // Format pointers which change size between 32- and 64-bit.
 131 #ifdef  _LP64
 132 #define INTPTR_FORMAT "0x%016" PRIxPTR
 133 #define PTR_FORMAT    "0x%016" PRIxPTR
 134 #else   // !_LP64
 135 #define INTPTR_FORMAT "0x%08"  PRIxPTR
 136 #define PTR_FORMAT    "0x%08"  PRIxPTR
 137 #endif  // _LP64
 138 
 139 // Format pointers without leading zeros
 140 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
 141 
 142 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
 143 
 144 #define SSIZE_FORMAT             "%"   PRIdPTR
 145 #define SIZE_FORMAT              "%"   PRIuPTR
 146 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 147 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 148 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 149 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 150 
 151 #define INTX_FORMAT           "%" PRIdPTR
 152 #define UINTX_FORMAT          "%" PRIuPTR
 153 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 154 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 155 
 156 //----------------------------------------------------------------------------------------------------
 157 // Constants
 158 
 159 const int LogBytesPerShort   = 1;
 160 const int LogBytesPerInt     = 2;
 161 #ifdef _LP64
 162 const int LogBytesPerWord    = 3;
 163 #else
 164 const int LogBytesPerWord    = 2;
 165 #endif
 166 const int LogBytesPerLong    = 3;
 167 
 168 const int BytesPerShort      = 1 << LogBytesPerShort;
 169 const int BytesPerInt        = 1 << LogBytesPerInt;
 170 const int BytesPerWord       = 1 << LogBytesPerWord;
 171 const int BytesPerLong       = 1 << LogBytesPerLong;
 172 
 173 const int LogBitsPerByte     = 3;
 174 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 175 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 176 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 177 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 178 
 179 const int BitsPerByte        = 1 << LogBitsPerByte;
 180 const int BitsPerShort       = 1 << LogBitsPerShort;
 181 const int BitsPerInt         = 1 << LogBitsPerInt;
 182 const int BitsPerWord        = 1 << LogBitsPerWord;
 183 const int BitsPerLong        = 1 << LogBitsPerLong;
 184 
 185 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 186 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 187 
 188 const int WordsPerLong       = 2;       // Number of stack entries for longs
 189 
 190 const int oopSize            = sizeof(char*); // Full-width oop
 191 extern int heapOopSize;                       // Oop within a java object
 192 const int wordSize           = sizeof(char*);
 193 const int longSize           = sizeof(jlong);
 194 const int jintSize           = sizeof(jint);
 195 const int size_tSize         = sizeof(size_t);
 196 
 197 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 198 
 199 extern int LogBytesPerHeapOop;                // Oop within a java object
 200 extern int LogBitsPerHeapOop;
 201 extern int BytesPerHeapOop;
 202 extern int BitsPerHeapOop;
 203 
 204 const int BitsPerJavaInteger = 32;
 205 const int BitsPerJavaLong    = 64;
 206 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 207 
 208 // Size of a char[] needed to represent a jint as a string in decimal.
 209 const int jintAsStringSize = 12;
 210 
 211 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 212 // We require that object sizes be measured in units of heap words (e.g.
 213 // pointer-sized values), so that given HeapWord* hw,
 214 //   hw += oop(hw)->foo();
 215 // works, where foo is a method (like size or scavenge) that returns the
 216 // object size.
 217 class HeapWordImpl;             // Opaque, never defined.
 218 typedef HeapWordImpl* HeapWord;
 219 
 220 // Analogous opaque struct for metadata allocated from metaspaces.
 221 class MetaWordImpl;             // Opaque, never defined.
 222 typedef MetaWordImpl* MetaWord;
 223 
 224 // HeapWordSize must be 2^LogHeapWordSize.
 225 const int HeapWordSize        = sizeof(HeapWord);
 226 #ifdef _LP64
 227 const int LogHeapWordSize     = 3;
 228 #else
 229 const int LogHeapWordSize     = 2;
 230 #endif
 231 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 232 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 233 
 234 // The minimum number of native machine words necessary to contain "byte_size"
 235 // bytes.
 236 inline size_t heap_word_size(size_t byte_size) {
 237   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 238 }
 239 
 240 //-------------------------------------------
 241 // Constant for jlong (standardized by C++11)
 242 
 243 // Build a 64bit integer constant
 244 #define CONST64(x)  (x ## LL)
 245 #define UCONST64(x) (x ## ULL)
 246 
 247 const jlong min_jlong = CONST64(0x8000000000000000);
 248 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 249 
 250 const size_t K                  = 1024;
 251 const size_t M                  = K*K;
 252 const size_t G                  = M*K;
 253 const size_t HWperKB            = K / sizeof(HeapWord);
 254 
 255 // Constants for converting from a base unit to milli-base units.  For
 256 // example from seconds to milliseconds and microseconds
 257 
 258 const int MILLIUNITS    = 1000;         // milli units per base unit
 259 const int MICROUNITS    = 1000000;      // micro units per base unit
 260 const int NANOUNITS     = 1000000000;   // nano units per base unit
 261 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS;
 262 
 263 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 264 const jint  NANOSECS_PER_MILLISEC = 1000000;
 265 
 266 
 267 // Unit conversion functions
 268 // The caller is responsible for considering overlow.
 269 
 270 inline int64_t nanos_to_millis(int64_t nanos) {
 271   return nanos / NANOUNITS_PER_MILLIUNIT;
 272 }
 273 inline int64_t millis_to_nanos(int64_t millis) {
 274   return millis * NANOUNITS_PER_MILLIUNIT;
 275 }
 276 
 277 // Proper units routines try to maintain at least three significant digits.
 278 // In worst case, it would print five significant digits with lower prefix.
 279 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 280 // and therefore we need to be careful.
 281 
 282 inline const char* proper_unit_for_byte_size(size_t s) {
 283 #ifdef _LP64
 284   if (s >= 100*G) {
 285     return "G";
 286   }
 287 #endif
 288   if (s >= 100*M) {
 289     return "M";
 290   } else if (s >= 100*K) {
 291     return "K";
 292   } else {
 293     return "B";
 294   }
 295 }
 296 
 297 template <class T>
 298 inline T byte_size_in_proper_unit(T s) {
 299 #ifdef _LP64
 300   if (s >= 100*G) {
 301     return (T)(s/G);
 302   }
 303 #endif
 304   if (s >= 100*M) {
 305     return (T)(s/M);
 306   } else if (s >= 100*K) {
 307     return (T)(s/K);
 308   } else {
 309     return s;
 310   }
 311 }
 312 
 313 inline const char* exact_unit_for_byte_size(size_t s) {
 314 #ifdef _LP64
 315   if (s >= G && (s % G) == 0) {
 316     return "G";
 317   }
 318 #endif
 319   if (s >= M && (s % M) == 0) {
 320     return "M";
 321   }
 322   if (s >= K && (s % K) == 0) {
 323     return "K";
 324   }
 325   return "B";
 326 }
 327 
 328 inline size_t byte_size_in_exact_unit(size_t s) {
 329 #ifdef _LP64
 330   if (s >= G && (s % G) == 0) {
 331     return s / G;
 332   }
 333 #endif
 334   if (s >= M && (s % M) == 0) {
 335     return s / M;
 336   }
 337   if (s >= K && (s % K) == 0) {
 338     return s / K;
 339   }
 340   return s;
 341 }
 342 
 343 // Memory size transition formatting.
 344 
 345 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)"
 346 
 347 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
 348   (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
 349 
 350 //----------------------------------------------------------------------------------------------------
 351 // VM type definitions
 352 
 353 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 354 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 355 
 356 typedef intptr_t  intx;
 357 typedef uintptr_t uintx;
 358 
 359 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 360 const intx  max_intx  = (uintx)min_intx - 1;
 361 const uintx max_uintx = (uintx)-1;
 362 
 363 // Table of values:
 364 //      sizeof intx         4               8
 365 // min_intx             0x80000000      0x8000000000000000
 366 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 367 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 368 
 369 typedef unsigned int uint;   NEEDS_CLEANUP
 370 
 371 
 372 //----------------------------------------------------------------------------------------------------
 373 // Java type definitions
 374 
 375 // All kinds of 'plain' byte addresses
 376 typedef   signed char s_char;
 377 typedef unsigned char u_char;
 378 typedef u_char*       address;
 379 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 380                                     // except for some implementations of a C++
 381                                     // linkage pointer to function. Should never
 382                                     // need one of those to be placed in this
 383                                     // type anyway.
 384 
 385 //  Utility functions to "portably" (?) bit twiddle pointers
 386 //  Where portable means keep ANSI C++ compilers quiet
 387 
 388 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 389 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 390 
 391 //  Utility functions to "portably" make cast to/from function pointers.
 392 
 393 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 394 inline address_word  castable_address(address x)              { return address_word(x) ; }
 395 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 396 
 397 // Pointer subtraction.
 398 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 399 // the range we might need to find differences from one end of the heap
 400 // to the other.
 401 // A typical use might be:
 402 //     if (pointer_delta(end(), top()) >= size) {
 403 //       // enough room for an object of size
 404 //       ...
 405 // and then additions like
 406 //       ... top() + size ...
 407 // are safe because we know that top() is at least size below end().
 408 inline size_t pointer_delta(const volatile void* left,
 409                             const volatile void* right,
 410                             size_t element_size) {
 411   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 412 }
 413 
 414 // A version specialized for HeapWord*'s.
 415 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 416   return pointer_delta(left, right, sizeof(HeapWord));
 417 }
 418 // A version specialized for MetaWord*'s.
 419 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 420   return pointer_delta(left, right, sizeof(MetaWord));
 421 }
 422 
 423 //
 424 // ANSI C++ does not allow casting from one pointer type to a function pointer
 425 // directly without at best a warning. This macro accomplishes it silently
 426 // In every case that is present at this point the value be cast is a pointer
 427 // to a C linkage function. In some case the type used for the cast reflects
 428 // that linkage and a picky compiler would not complain. In other cases because
 429 // there is no convenient place to place a typedef with extern C linkage (i.e
 430 // a platform dependent header file) it doesn't. At this point no compiler seems
 431 // picky enough to catch these instances (which are few). It is possible that
 432 // using templates could fix these for all cases. This use of templates is likely
 433 // so far from the middle of the road that it is likely to be problematic in
 434 // many C++ compilers.
 435 //
 436 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 437 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 438 
 439 // Need the correct linkage to call qsort without warnings
 440 extern "C" {
 441   typedef int (*_sort_Fn)(const void *, const void *);
 442 }
 443 
 444 // Unsigned byte types for os and stream.hpp
 445 
 446 // Unsigned one, two, four and eigth byte quantities used for describing
 447 // the .class file format. See JVM book chapter 4.
 448 
 449 typedef jubyte  u1;
 450 typedef jushort u2;
 451 typedef juint   u4;
 452 typedef julong  u8;
 453 
 454 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 455 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 456 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 457 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 458 
 459 typedef jbyte  s1;
 460 typedef jshort s2;
 461 typedef jint   s4;
 462 typedef jlong  s8;
 463 
 464 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 465 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 466 const jshort min_jshort = -(1 << 15);    // smallest jshort
 467 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 468 
 469 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 470 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 471 
 472 //----------------------------------------------------------------------------------------------------
 473 // JVM spec restrictions
 474 
 475 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 476 
 477 //----------------------------------------------------------------------------------------------------
 478 // Object alignment, in units of HeapWords.
 479 //
 480 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 481 // reference fields can be naturally aligned.
 482 
 483 extern int MinObjAlignment;
 484 extern int MinObjAlignmentInBytes;
 485 extern int MinObjAlignmentInBytesMask;
 486 
 487 extern int LogMinObjAlignment;
 488 extern int LogMinObjAlignmentInBytes;
 489 
 490 const int LogKlassAlignmentInBytes = 3;
 491 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 492 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 493 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 494 
 495 // Maximal size of heap where unscaled compression can be used. Also upper bound
 496 // for heap placement: 4GB.
 497 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 498 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 499 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 500 extern uint64_t OopEncodingHeapMax;
 501 
 502 // Maximal size of compressed class space. Above this limit compression is not possible.
 503 // Also upper bound for placement of zero based class space. (Class space is further limited
 504 // to be < 3G, see arguments.cpp.)
 505 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 506 
 507 // Machine dependent stuff
 508 
 509 // The maximum size of the code cache.  Can be overridden by targets.
 510 #define CODE_CACHE_SIZE_LIMIT (2*G)
 511 // Allow targets to reduce the default size of the code cache.
 512 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 513 
 514 #include CPU_HEADER(globalDefinitions)
 515 
 516 // To assure the IRIW property on processors that are not multiple copy
 517 // atomic, sync instructions must be issued between volatile reads to
 518 // assure their ordering, instead of after volatile stores.
 519 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 520 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 521 #ifdef CPU_MULTI_COPY_ATOMIC
 522 // Not needed.
 523 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 524 #else
 525 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment.
 526 // Final decision is subject to JEP 188: Java Memory Model Update.
 527 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false);
 528 #endif
 529 
 530 // The expected size in bytes of a cache line, used to pad data structures.
 531 #ifndef DEFAULT_CACHE_LINE_SIZE
 532   #define DEFAULT_CACHE_LINE_SIZE 64
 533 #endif
 534 
 535 
 536 //----------------------------------------------------------------------------------------------------
 537 // Utility macros for compilers
 538 // used to silence compiler warnings
 539 
 540 #define Unused_Variable(var) var
 541 
 542 
 543 //----------------------------------------------------------------------------------------------------
 544 // Miscellaneous
 545 
 546 // 6302670 Eliminate Hotspot __fabsf dependency
 547 // All fabs() callers should call this function instead, which will implicitly
 548 // convert the operand to double, avoiding a dependency on __fabsf which
 549 // doesn't exist in early versions of Solaris 8.
 550 inline double fabsd(double value) {
 551   return fabs(value);
 552 }
 553 
 554 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 555 // is zero, return 0.0.
 556 template<typename T>
 557 inline double percent_of(T numerator, T denominator) {
 558   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 559 }
 560 
 561 //----------------------------------------------------------------------------------------------------
 562 // Special casts
 563 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 564 typedef union {
 565   jfloat f;
 566   jint i;
 567 } FloatIntConv;
 568 
 569 typedef union {
 570   jdouble d;
 571   jlong l;
 572   julong ul;
 573 } DoubleLongConv;
 574 
 575 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 576 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 577 
 578 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 579 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 580 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 581 
 582 inline jint low (jlong value)                    { return jint(value); }
 583 inline jint high(jlong value)                    { return jint(value >> 32); }
 584 
 585 // the fancy casts are a hopefully portable way
 586 // to do unsigned 32 to 64 bit type conversion
 587 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 588                                                    *value |= (jlong)(julong)(juint)low; }
 589 
 590 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 591                                                    *value |= (jlong)high       << 32; }
 592 
 593 inline jlong jlong_from(jint h, jint l) {
 594   jlong result = 0; // initialization to avoid warning
 595   set_high(&result, h);
 596   set_low(&result,  l);
 597   return result;
 598 }
 599 
 600 union jlong_accessor {
 601   jint  words[2];
 602   jlong long_value;
 603 };
 604 
 605 void basic_types_init(); // cannot define here; uses assert
 606 
 607 
 608 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 609 enum BasicType {
 610 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS.
 611   T_BOOLEAN     = JVM_T_BOOLEAN,
 612   T_CHAR        = JVM_T_CHAR,
 613   T_FLOAT       = JVM_T_FLOAT,
 614   T_DOUBLE      = JVM_T_DOUBLE,
 615   T_BYTE        = JVM_T_BYTE,
 616   T_SHORT       = JVM_T_SHORT,
 617   T_INT         = JVM_T_INT,
 618   T_LONG        = JVM_T_LONG,
 619   // The remaining values are not part of any standard.
 620   // T_OBJECT and T_VOID denote two more semantic choices
 621   // for method return values.
 622   // T_OBJECT and T_ARRAY describe signature syntax.
 623   // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe
 624   // internal references within the JVM as if they were Java
 625   // types in their own right.
 626   T_OBJECT      = 12,
 627   T_ARRAY       = 13,
 628   T_VOID        = 14,
 629   T_ADDRESS     = 15,
 630   T_NARROWOOP   = 16,
 631   T_METADATA    = 17,
 632   T_NARROWKLASS = 18,
 633   T_CONFLICT    = 19, // for stack value type with conflicting contents
 634   T_ILLEGAL     = 99
 635 };
 636 
 637 #define SIGNATURE_TYPES_DO(F, N)                \
 638     F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N)      \
 639     F(JVM_SIGNATURE_CHAR,    T_CHAR,    N)      \
 640     F(JVM_SIGNATURE_FLOAT,   T_FLOAT,   N)      \
 641     F(JVM_SIGNATURE_DOUBLE,  T_DOUBLE,  N)      \
 642     F(JVM_SIGNATURE_BYTE,    T_BYTE,    N)      \
 643     F(JVM_SIGNATURE_SHORT,   T_SHORT,   N)      \
 644     F(JVM_SIGNATURE_INT,     T_INT,     N)      \
 645     F(JVM_SIGNATURE_LONG,    T_LONG,    N)      \
 646     F(JVM_SIGNATURE_CLASS,   T_OBJECT,  N)      \
 647     F(JVM_SIGNATURE_ARRAY,   T_ARRAY,   N)      \
 648     F(JVM_SIGNATURE_VOID,    T_VOID,    N)      \
 649     /*end*/
 650 
 651 inline bool is_java_type(BasicType t) {
 652   return T_BOOLEAN <= t && t <= T_VOID;
 653 }
 654 
 655 inline bool is_java_primitive(BasicType t) {
 656   return T_BOOLEAN <= t && t <= T_LONG;
 657 }
 658 
 659 inline bool is_subword_type(BasicType t) {
 660   // these guys are processed exactly like T_INT in calling sequences:
 661   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 662 }
 663 
 664 inline bool is_signed_subword_type(BasicType t) {
 665   return (t == T_BYTE || t == T_SHORT);
 666 }
 667 
 668 inline bool is_double_word_type(BasicType t) {
 669   return (t == T_DOUBLE || t == T_LONG);
 670 }
 671 
 672 inline bool is_reference_type(BasicType t) {
 673   return (t == T_OBJECT || t == T_ARRAY);
 674 }
 675 
 676 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 677 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 678 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 679 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 680 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 681 extern BasicType name2type(const char* name);
 682 
 683 // Auxiliary math routines
 684 // least common multiple
 685 extern size_t lcm(size_t a, size_t b);
 686 
 687 
 688 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 689 enum BasicTypeSize {
 690   T_BOOLEAN_size     = 1,
 691   T_CHAR_size        = 1,
 692   T_FLOAT_size       = 1,
 693   T_DOUBLE_size      = 2,
 694   T_BYTE_size        = 1,
 695   T_SHORT_size       = 1,
 696   T_INT_size         = 1,
 697   T_LONG_size        = 2,
 698   T_OBJECT_size      = 1,
 699   T_ARRAY_size       = 1,
 700   T_NARROWOOP_size   = 1,
 701   T_NARROWKLASS_size = 1,
 702   T_VOID_size        = 0
 703 };
 704 
 705 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc.
 706 inline int parameter_type_word_count(BasicType t) {
 707   if (is_double_word_type(t))  return 2;
 708   assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please");
 709   assert(type2size[t] == 1, "must be");
 710   return 1;
 711 }
 712 
 713 // maps a BasicType to its instance field storage type:
 714 // all sub-word integral types are widened to T_INT
 715 extern BasicType type2field[T_CONFLICT+1];
 716 extern BasicType type2wfield[T_CONFLICT+1];
 717 
 718 
 719 // size in bytes
 720 enum ArrayElementSize {
 721   T_BOOLEAN_aelem_bytes     = 1,
 722   T_CHAR_aelem_bytes        = 2,
 723   T_FLOAT_aelem_bytes       = 4,
 724   T_DOUBLE_aelem_bytes      = 8,
 725   T_BYTE_aelem_bytes        = 1,
 726   T_SHORT_aelem_bytes       = 2,
 727   T_INT_aelem_bytes         = 4,
 728   T_LONG_aelem_bytes        = 8,
 729 #ifdef _LP64
 730   T_OBJECT_aelem_bytes      = 8,
 731   T_ARRAY_aelem_bytes       = 8,
 732 #else
 733   T_OBJECT_aelem_bytes      = 4,
 734   T_ARRAY_aelem_bytes       = 4,
 735 #endif
 736   T_NARROWOOP_aelem_bytes   = 4,
 737   T_NARROWKLASS_aelem_bytes = 4,
 738   T_VOID_aelem_bytes        = 0
 739 };
 740 
 741 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 742 #ifdef ASSERT
 743 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 744 #else
 745 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 746 #endif
 747 
 748 
 749 // JavaValue serves as a container for arbitrary Java values.
 750 
 751 class JavaValue {
 752 
 753  public:
 754   typedef union JavaCallValue {
 755     jfloat   f;
 756     jdouble  d;
 757     jint     i;
 758     jlong    l;
 759     jobject  h;
 760   } JavaCallValue;
 761 
 762  private:
 763   BasicType _type;
 764   JavaCallValue _value;
 765 
 766  public:
 767   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 768 
 769   JavaValue(jfloat value) {
 770     _type    = T_FLOAT;
 771     _value.f = value;
 772   }
 773 
 774   JavaValue(jdouble value) {
 775     _type    = T_DOUBLE;
 776     _value.d = value;
 777   }
 778 
 779  jfloat get_jfloat() const { return _value.f; }
 780  jdouble get_jdouble() const { return _value.d; }
 781  jint get_jint() const { return _value.i; }
 782  jlong get_jlong() const { return _value.l; }
 783  jobject get_jobject() const { return _value.h; }
 784  JavaCallValue* get_value_addr() { return &_value; }
 785  BasicType get_type() const { return _type; }
 786 
 787  void set_jfloat(jfloat f) { _value.f = f;}
 788  void set_jdouble(jdouble d) { _value.d = d;}
 789  void set_jint(jint i) { _value.i = i;}
 790  void set_jlong(jlong l) { _value.l = l;}
 791  void set_jobject(jobject h) { _value.h = h;}
 792  void set_type(BasicType t) { _type = t; }
 793 
 794  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 795  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 796  jchar get_jchar() const { return (jchar) (_value.i);}
 797  jshort get_jshort() const { return (jshort) (_value.i);}
 798 
 799 };
 800 
 801 
 802 // TosState describes the top-of-stack state before and after the execution of
 803 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 804 // registers. The TosState corresponds to the 'machine representation' of this cached
 805 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 806 // as well as a 5th state in case the top-of-stack value is actually on the top
 807 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 808 // state when it comes to machine representation but is used separately for (oop)
 809 // type specific operations (e.g. verification code).
 810 
 811 enum TosState {         // describes the tos cache contents
 812   btos = 0,             // byte, bool tos cached
 813   ztos = 1,             // byte, bool tos cached
 814   ctos = 2,             // char tos cached
 815   stos = 3,             // short tos cached
 816   itos = 4,             // int tos cached
 817   ltos = 5,             // long tos cached
 818   ftos = 6,             // float tos cached
 819   dtos = 7,             // double tos cached
 820   atos = 8,             // object cached
 821   vtos = 9,             // tos not cached
 822   number_of_states,
 823   ilgl                  // illegal state: should not occur
 824 };
 825 
 826 
 827 inline TosState as_TosState(BasicType type) {
 828   switch (type) {
 829     case T_BYTE   : return btos;
 830     case T_BOOLEAN: return ztos;
 831     case T_CHAR   : return ctos;
 832     case T_SHORT  : return stos;
 833     case T_INT    : return itos;
 834     case T_LONG   : return ltos;
 835     case T_FLOAT  : return ftos;
 836     case T_DOUBLE : return dtos;
 837     case T_VOID   : return vtos;
 838     case T_ARRAY  : // fall through
 839     case T_OBJECT : return atos;
 840     default       : return ilgl;
 841   }
 842 }
 843 
 844 inline BasicType as_BasicType(TosState state) {
 845   switch (state) {
 846     case btos : return T_BYTE;
 847     case ztos : return T_BOOLEAN;
 848     case ctos : return T_CHAR;
 849     case stos : return T_SHORT;
 850     case itos : return T_INT;
 851     case ltos : return T_LONG;
 852     case ftos : return T_FLOAT;
 853     case dtos : return T_DOUBLE;
 854     case atos : return T_OBJECT;
 855     case vtos : return T_VOID;
 856     default   : return T_ILLEGAL;
 857   }
 858 }
 859 
 860 
 861 // Helper function to convert BasicType info into TosState
 862 // Note: Cannot define here as it uses global constant at the time being.
 863 TosState as_TosState(BasicType type);
 864 
 865 
 866 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 867 // information is needed by the safepoint code.
 868 //
 869 // There are 4 essential states:
 870 //
 871 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 872 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 873 //  _thread_in_vm       : Executing in the vm
 874 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 875 //
 876 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 877 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 878 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 879 //
 880 // Given a state, the xxxx_trans state can always be found by adding 1.
 881 //
 882 enum JavaThreadState {
 883   _thread_uninitialized     =  0, // should never happen (missing initialization)
 884   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 885   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 886   _thread_in_native         =  4, // running in native code
 887   _thread_in_native_trans   =  5, // corresponding transition state
 888   _thread_in_vm             =  6, // running in VM
 889   _thread_in_vm_trans       =  7, // corresponding transition state
 890   _thread_in_Java           =  8, // running in Java or in stub code
 891   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 892   _thread_blocked           = 10, // blocked in vm
 893   _thread_blocked_trans     = 11, // corresponding transition state
 894   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 895 };
 896 
 897 //----------------------------------------------------------------------------------------------------
 898 // Special constants for debugging
 899 
 900 const jint     badInt           = -3;                       // generic "bad int" value
 901 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 902 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 903 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 904 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 905 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 906 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 907 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 908 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 909 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 910 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 911 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 912 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 913 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 914 
 915 
 916 // (These must be implemented as #defines because C++ compilers are
 917 // not obligated to inline non-integral constants!)
 918 #define       badAddress        ((address)::badAddressVal)
 919 #define       badOop            (cast_to_oop(::badOopVal))
 920 #define       badHeapWord       (::badHeapWordVal)
 921 
 922 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 923 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 924 
 925 //----------------------------------------------------------------------------------------------------
 926 // Utility functions for bitfield manipulations
 927 
 928 const intptr_t AllBits    = ~0; // all bits set in a word
 929 const intptr_t NoBits     =  0; // no bits set in a word
 930 const jlong    NoLongBits =  0; // no bits set in a long
 931 const intptr_t OneBit     =  1; // only right_most bit set in a word
 932 
 933 // get a word with the n.th or the right-most or left-most n bits set
 934 // (note: #define used only so that they can be used in enum constant definitions)
 935 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 936 #define right_n_bits(n)   (nth_bit(n) - 1)
 937 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 938 
 939 // bit-operations using a mask m
 940 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 941 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 942 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 943 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 944 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 945 
 946 // bit-operations using the n.th bit
 947 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 948 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 949 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 950 
 951 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 952 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 953   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 954 }
 955 
 956 
 957 //----------------------------------------------------------------------------------------------------
 958 // Utility functions for integers
 959 
 960 // Avoid use of global min/max macros which may cause unwanted double
 961 // evaluation of arguments.
 962 #ifdef max
 963 #undef max
 964 #endif
 965 
 966 #ifdef min
 967 #undef min
 968 #endif
 969 
 970 // It is necessary to use templates here. Having normal overloaded
 971 // functions does not work because it is necessary to provide both 32-
 972 // and 64-bit overloaded functions, which does not work, and having
 973 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 974 // will be even more error-prone than macros.
 975 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 976 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 977 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 978 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 979 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 980 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 981 
 982 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 983 
 984 // Return the given value clamped to the range [min ... max]
 985 template<typename T>
 986 inline T clamp(T value, T min, T max) {
 987   assert(min <= max, "must be");
 988   return MIN2(MAX2(value, min), max);
 989 }
 990 
 991 // Returns largest i such that 2^i <= x.
 992 // If x == 0, the function returns -1.
 993 inline int log2_intptr(uintptr_t x) {
 994   int i = -1;
 995   uintptr_t p = 1;
 996   while (p != 0 && p <= x) {
 997     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 998     i++; p *= 2;
 999   }
1000   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1001   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1002   return i;
1003 }
1004 
1005 //* largest i such that 2^i <= x
1006 inline int log2_long(julong x) {
1007   int i = -1;
1008   julong p =  1;
1009   while (p != 0 && p <= x) {
1010     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1011     i++; p *= 2;
1012   }
1013   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1014   // (if p = 0 then overflow occurred and i = 63)
1015   return i;
1016 }
1017 
1018 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1019 inline int log2_intptr(intptr_t x) {
1020   return log2_intptr((uintptr_t)x);
1021 }
1022 
1023 inline int log2_int(int x) {
1024   STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
1025   return log2_intptr((uintptr_t)(unsigned int)x);
1026 }
1027 
1028 inline int log2_jint(jint x) {
1029   STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
1030   return log2_intptr((uintptr_t)(juint)x);
1031 }
1032 
1033 inline int log2_uint(uint x) {
1034   STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
1035   return log2_intptr((uintptr_t)x);
1036 }
1037 
1038 //  A negative value of 'x' will return '63'
1039 inline int log2_jlong(jlong x) {
1040   STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
1041   return log2_long((julong)x);
1042 }
1043 
1044 inline bool is_odd (intx x) { return x & 1;      }
1045 inline bool is_even(intx x) { return !is_odd(x); }
1046 
1047 // abs methods which cannot overflow and so are well-defined across
1048 // the entire domain of integer types.
1049 static inline unsigned int uabs(unsigned int n) {
1050   union {
1051     unsigned int result;
1052     int value;
1053   };
1054   result = n;
1055   if (value < 0) result = 0-result;
1056   return result;
1057 }
1058 static inline julong uabs(julong n) {
1059   union {
1060     julong result;
1061     jlong value;
1062   };
1063   result = n;
1064   if (value < 0) result = 0-result;
1065   return result;
1066 }
1067 static inline julong uabs(jlong n) { return uabs((julong)n); }
1068 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1069 
1070 // "to" should be greater than "from."
1071 inline intx byte_size(void* from, void* to) {
1072   return (address)to - (address)from;
1073 }
1074 
1075 
1076 // Pack and extract shorts to/from ints:
1077 
1078 inline int extract_low_short_from_int(jint x) {
1079   return x & 0xffff;
1080 }
1081 
1082 inline int extract_high_short_from_int(jint x) {
1083   return (x >> 16) & 0xffff;
1084 }
1085 
1086 inline int build_int_from_shorts( jushort low, jushort high ) {
1087   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1088 }
1089 
1090 // Convert pointer to intptr_t, for use in printing pointers.
1091 inline intptr_t p2i(const void * p) {
1092   return (intptr_t) p;
1093 }
1094 
1095 // swap a & b
1096 template<class T> static void swap(T& a, T& b) {
1097   T tmp = a;
1098   a = b;
1099   b = tmp;
1100 }
1101 
1102 // array_size_impl is a function that takes a reference to T[N] and
1103 // returns a reference to char[N].  It is not ODR-used, so not defined.
1104 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N];
1105 
1106 #define ARRAY_SIZE(array) sizeof(array_size_impl(array))
1107 
1108 //----------------------------------------------------------------------------------------------------
1109 // Sum and product which can never overflow: they wrap, just like the
1110 // Java operations.  Note that we don't intend these to be used for
1111 // general-purpose arithmetic: their purpose is to emulate Java
1112 // operations.
1113 
1114 // The goal of this code to avoid undefined or implementation-defined
1115 // behavior.  The use of an lvalue to reference cast is explicitly
1116 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1117 // 15 in C++03]
1118 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1119 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1120   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1121   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1122   return reinterpret_cast<TYPE&>(ures);                 \
1123 }
1124 
1125 JAVA_INTEGER_OP(+, java_add, jint, juint)
1126 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1127 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1128 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1129 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1130 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1131 
1132 #undef JAVA_INTEGER_OP
1133 
1134 // Provide integer shift operations with Java semantics.  No overflow
1135 // issues - left shifts simply discard shifted out bits.  No undefined
1136 // behavior for large or negative shift quantities; instead the actual
1137 // shift distance is the argument modulo the lhs value's size in bits.
1138 // No undefined or implementation defined behavior for shifting negative
1139 // values; left shift discards bits, right shift sign extends.  We use
1140 // the same safe conversion technique as above for java_add and friends.
1141 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE)    \
1142 inline TYPE NAME (TYPE lhs, jint rhs) {                 \
1143   const uint rhs_mask = (sizeof(TYPE) * 8) - 1;         \
1144   STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63);      \
1145   XTYPE xres = static_cast<XTYPE>(lhs);                 \
1146   xres OP ## = (rhs & rhs_mask);                        \
1147   return reinterpret_cast<TYPE&>(xres);                 \
1148 }
1149 
1150 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint)
1151 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong)
1152 // For signed shift right, assume C++ implementation >> sign extends.
1153 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint)
1154 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong)
1155 // For >>> use C++ unsigned >>.
1156 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint)
1157 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong)
1158 
1159 #undef JAVA_INTEGER_SHIFT_OP
1160 
1161 //----------------------------------------------------------------------------------------------------
1162 // The goal of this code is to provide saturating operations for int/uint.
1163 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1164 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1165 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1166   jlong res = static_cast<jlong>(in1);               \
1167   res OP ## = static_cast<jlong>(in2);               \
1168   if (res > max_jint) {                              \
1169     res = max_jint;                                  \
1170   } else if (res < min_jint) {                       \
1171     res = min_jint;                                  \
1172   }                                                  \
1173   return static_cast<int>(res);                      \
1174 }
1175 
1176 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1177 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1178 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1179 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1180 
1181 #undef SATURATED_INTEGER_OP
1182 
1183 // Dereference vptr
1184 // All C++ compilers that we know of have the vtbl pointer in the first
1185 // word.  If there are exceptions, this function needs to be made compiler
1186 // specific.
1187 static inline void* dereference_vptr(const void* addr) {
1188   return *(void**)addr;
1189 }
1190 
1191 //----------------------------------------------------------------------------------------------------
1192 // String type aliases used by command line flag declarations and
1193 // processing utilities.
1194 
1195 typedef const char* ccstr;
1196 typedef const char* ccstrlist;   // represents string arguments which accumulate
1197 
1198 //----------------------------------------------------------------------------------------------------
1199 // Default hash/equals functions used by ResourceHashtable and KVHashtable
1200 
1201 template<typename K> unsigned primitive_hash(const K& k) {
1202   unsigned hash = (unsigned)((uintptr_t)k);
1203   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1204 }
1205 
1206 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1207   return k0 == k1;
1208 }
1209 
1210 
1211 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP