< prev index next >

src/hotspot/share/gc/g1/g1ParScanThreadState.cpp

Print this page
rev 60436 : imported patch allocate_copy_slow

*** 345,404 **** _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age, dest_attr.type() == G1HeapRegionAttr::Old); } } // Private inline function, for direct internal use and providing the // implementation of the public not-inline function. oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr, oop const old, markWord const old_mark) { const size_t word_sz = old->size(); uint age = 0; G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); - // The second clause is to prevent premature evacuation failure in case there - // is still space in survivor, but old gen is full. - if (_old_gen_is_full && dest_attr.is_old()) { - return handle_evacuation_failure_par(old, old_mark); - } HeapRegion* const from_region = _g1h->heap_region_containing(old); uint node_index = from_region->node_index(); HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); // PLAB allocations should succeed most of the time, so we'll // normally check against NULL once and that's it. if (obj_ptr == NULL) { ! bool plab_refill_failed = false; ! obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_attr, word_sz, &plab_refill_failed, node_index); ! if (obj_ptr == NULL) { ! assert(region_attr.is_in_cset(), "Unexpected region attr type: %s", region_attr.get_type_str()); ! obj_ptr = allocate_in_next_plab(&dest_attr, word_sz, plab_refill_failed, node_index); if (obj_ptr == NULL) { // This will either forward-to-self, or detect that someone else has // installed a forwarding pointer. return handle_evacuation_failure_par(old, old_mark); } } - update_numa_stats(node_index); - - if (_g1h->_gc_tracer_stw->should_report_promotion_events()) { - // The events are checked individually as part of the actual commit - report_promotion_event(dest_attr, old, word_sz, age, obj_ptr, node_index); - } - } assert(obj_ptr != NULL, "when we get here, allocation should have succeeded"); assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); #ifndef PRODUCT // Should this evacuation fail? if (_g1h->evacuation_should_fail()) { // Doing this after all the allocation attempts also tests the // undo_allocation() method too. ! _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); return handle_evacuation_failure_par(old, old_mark); } #endif // !PRODUCT // We're going to allocate linearly, so might as well prefetch ahead. --- 345,430 ---- _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age, dest_attr.type() == G1HeapRegionAttr::Old); } } + NOINLINE + HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr, + oop old, + size_t word_sz, + uint age, + uint node_index) { + HeapWord* obj_ptr = NULL; + // Try slow-path allocation unless we're allocating old and old is already full. + if (!(dest_attr->is_old() && _old_gen_is_full)) { + bool plab_refill_failed = false; + obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr, + word_sz, + &plab_refill_failed, + node_index); + if (obj_ptr == NULL) { + obj_ptr = allocate_in_next_plab(dest_attr, + word_sz, + plab_refill_failed, + node_index); + } + } + if (obj_ptr != NULL) { + update_numa_stats(node_index); + if (_g1h->_gc_tracer_stw->should_report_promotion_events()) { + // The events are checked individually as part of the actual commit + report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index); + } + } + return obj_ptr; + } + + NOINLINE + void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr, + HeapWord* obj_ptr, + size_t word_sz, + uint node_index) { + _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); + } + // Private inline function, for direct internal use and providing the // implementation of the public not-inline function. oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr, oop const old, markWord const old_mark) { + assert(region_attr.is_in_cset(), + "Unexpected region attr type: %s", region_attr.get_type_str()); + const size_t word_sz = old->size(); uint age = 0; G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); HeapRegion* const from_region = _g1h->heap_region_containing(old); uint node_index = from_region->node_index(); HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); // PLAB allocations should succeed most of the time, so we'll // normally check against NULL once and that's it. if (obj_ptr == NULL) { ! obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index); if (obj_ptr == NULL) { // This will either forward-to-self, or detect that someone else has // installed a forwarding pointer. return handle_evacuation_failure_par(old, old_mark); } } assert(obj_ptr != NULL, "when we get here, allocation should have succeeded"); assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); #ifndef PRODUCT // Should this evacuation fail? if (_g1h->evacuation_should_fail()) { // Doing this after all the allocation attempts also tests the // undo_allocation() method too. ! undo_allocation(dest_attr, obj_ptr, word_sz, node_index); return handle_evacuation_failure_par(old, old_mark); } #endif // !PRODUCT // We're going to allocate linearly, so might as well prefetch ahead.
*** 407,420 **** const oop obj = oop(obj_ptr); const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); if (forward_ptr == NULL) { Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz); const uint young_index = from_region->young_index_in_cset(); - assert((from_region->is_young() && young_index > 0) || (!from_region->is_young() && young_index == 0), "invariant" ); if (dest_attr.is_young()) { if (age < markWord::max_age) { age++; } --- 433,448 ---- const oop obj = oop(obj_ptr); const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); if (forward_ptr == NULL) { Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz); + { const uint young_index = from_region->young_index_in_cset(); assert((from_region->is_young() && young_index > 0) || (!from_region->is_young() && young_index == 0), "invariant" ); + _surviving_young_words[young_index] += word_sz; + } if (dest_attr.is_young()) { if (age < markWord::max_age) { age++; }
*** 444,455 **** is_to_young, _worker_id, obj); } - _surviving_young_words[young_index] += word_sz; - if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { // We keep track of the next start index in the length field of // the to-space object. The actual length can be found in the // length field of the from-space object. arrayOop(obj)->set_length(0); --- 472,481 ----
*** 526,535 **** --- 552,562 ---- size_t used_memory = pss->oops_into_optional_region(hr)->used_memory(); _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory); } } + NOINLINE oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) { assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old)); oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed); if (forward_ptr == NULL) {
< prev index next >