< prev index next >

src/hotspot/share/gc/g1/g1ParScanThreadState.cpp

Print this page
rev 60435 : imported patch improve_inlining
rev 60436 : imported patch allocate_copy_slow

*** 153,167 **** ShouldNotReachHere(); } } #endif // ASSERT ! void G1ParScanThreadState::trim_queue() { do { ! // Fully drain the queue. ! trim_queue_to_threshold(0); ! } while (!_task_queue->is_empty()); } HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, size_t word_sz, bool previous_plab_refill_failed, --- 153,287 ---- ShouldNotReachHere(); } } #endif // ASSERT ! template <class T> void G1ParScanThreadState::do_oop_evac(T* p) { ! // Reference should not be NULL here as such are never pushed to the task queue. ! oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); ! ! // Although we never intentionally push references outside of the collection ! // set, due to (benign) races in the claim mechanism during RSet scanning more ! // than one thread might claim the same card. So the same card may be ! // processed multiple times, and so we might get references into old gen here. ! // So we need to redo this check. ! const G1HeapRegionAttr region_attr = _g1h->region_attr(obj); ! // References pushed onto the work stack should never point to a humongous region ! // as they are not added to the collection set due to above precondition. ! assert(!region_attr.is_humongous(), ! "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT, ! p2i(obj), _g1h->addr_to_region(cast_from_oop<HeapWord*>(obj)), p2i(p)); ! ! if (!region_attr.is_in_cset()) { ! // In this case somebody else already did all the work. ! return; ! } ! ! markWord m = obj->mark_raw(); ! if (m.is_marked()) { ! obj = (oop) m.decode_pointer(); ! } else { ! obj = do_copy_to_survivor_space(region_attr, obj, m); ! } ! RawAccess<IS_NOT_NULL>::oop_store(p, obj); ! ! assert(obj != NULL, "Must be"); ! if (HeapRegion::is_in_same_region(p, obj)) { ! return; ! } ! HeapRegion* from = _g1h->heap_region_containing(p); ! if (!from->is_young()) { ! enqueue_card_if_tracked(_g1h->region_attr(obj), p, obj); ! } ! } ! ! void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) { ! oop from_obj = task.to_source_array(); ! ! assert(_g1h->is_in_reserved(from_obj), "must be in heap."); ! assert(from_obj->is_objArray(), "must be obj array"); ! objArrayOop from_obj_array = objArrayOop(from_obj); ! // The from-space object contains the real length. ! int length = from_obj_array->length(); ! ! assert(from_obj->is_forwarded(), "must be forwarded"); ! oop to_obj = from_obj->forwardee(); ! assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); ! objArrayOop to_obj_array = objArrayOop(to_obj); ! // We keep track of the next start index in the length field of the ! // to-space object. ! int next_index = to_obj_array->length(); ! assert(0 <= next_index && next_index < length, ! "invariant, next index: %d, length: %d", next_index, length); ! ! int start = next_index; ! int end = length; ! int remainder = end - start; ! // We'll try not to push a range that's smaller than ParGCArrayScanChunk. ! if (remainder > 2 * ParGCArrayScanChunk) { ! end = start + ParGCArrayScanChunk; ! to_obj_array->set_length(end); ! // Push the remainder before we process the range in case another ! // worker has run out of things to do and can steal it. ! push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); ! } else { ! assert(length == end, "sanity"); ! // We'll process the final range for this object. Restore the length ! // so that the heap remains parsable in case of evacuation failure. ! to_obj_array->set_length(end); ! } ! ! HeapRegion* hr = _g1h->heap_region_containing(to_obj); ! G1ScanInYoungSetter x(&_scanner, hr->is_young()); ! // Process indexes [start,end). It will also process the header ! // along with the first chunk (i.e., the chunk with start == 0). ! // Note that at this point the length field of to_obj_array is not ! // correct given that we are using it to keep track of the next ! // start index. oop_iterate_range() (thankfully!) ignores the length ! // field and only relies on the start / end parameters. It does ! // however return the size of the object which will be incorrect. So ! // we have to ignore it even if we wanted to use it. ! to_obj_array->oop_iterate_range(&_scanner, start, end); ! } ! ! void G1ParScanThreadState::dispatch_task(ScannerTask task) { ! verify_task(task); ! if (task.is_narrow_oop_ptr()) { ! do_oop_evac(task.to_narrow_oop_ptr()); ! } else if (task.is_oop_ptr()) { ! do_oop_evac(task.to_oop_ptr()); ! } else { ! do_partial_array(task.to_partial_array_task()); ! } ! } ! ! // Process tasks until overflow queue is empty and local queue ! // contains no more than threshold entries. NOINLINE to prevent ! // inlining into steal_and_trim_queue. ! ATTRIBUTE_FLATTEN NOINLINE ! void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) { ! ScannerTask task; do { ! while (_task_queue->pop_overflow(task)) { ! if (!_task_queue->try_push_to_taskqueue(task)) { ! dispatch_task(task); ! } ! } ! while (_task_queue->pop_local(task, threshold)) { ! dispatch_task(task); ! } ! } while (!_task_queue->overflow_empty()); ! } ! ! ATTRIBUTE_FLATTEN ! void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) { ! ScannerTask stolen_task; ! while (task_queues->steal(_worker_id, stolen_task)) { ! dispatch_task(stolen_task); ! // Processing stolen task may have added tasks to our queue. ! trim_queue(); ! } } HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, size_t word_sz, bool previous_plab_refill_failed,
*** 225,282 **** _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age, dest_attr.type() == G1HeapRegionAttr::Old); } } ! oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr const region_attr, oop const old, markWord const old_mark) { const size_t word_sz = old->size(); uint age = 0; G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); - // The second clause is to prevent premature evacuation failure in case there - // is still space in survivor, but old gen is full. - if (_old_gen_is_full && dest_attr.is_old()) { - return handle_evacuation_failure_par(old, old_mark); - } HeapRegion* const from_region = _g1h->heap_region_containing(old); uint node_index = from_region->node_index(); HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); // PLAB allocations should succeed most of the time, so we'll // normally check against NULL once and that's it. if (obj_ptr == NULL) { ! bool plab_refill_failed = false; ! obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_attr, word_sz, &plab_refill_failed, node_index); ! if (obj_ptr == NULL) { ! assert(region_attr.is_in_cset(), "Unexpected region attr type: %s", region_attr.get_type_str()); ! obj_ptr = allocate_in_next_plab(&dest_attr, word_sz, plab_refill_failed, node_index); if (obj_ptr == NULL) { // This will either forward-to-self, or detect that someone else has // installed a forwarding pointer. return handle_evacuation_failure_par(old, old_mark); } } - update_numa_stats(node_index); - - if (_g1h->_gc_tracer_stw->should_report_promotion_events()) { - // The events are checked individually as part of the actual commit - report_promotion_event(dest_attr, old, word_sz, age, obj_ptr, node_index); - } - } assert(obj_ptr != NULL, "when we get here, allocation should have succeeded"); assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); #ifndef PRODUCT // Should this evacuation fail? if (_g1h->evacuation_should_fail()) { // Doing this after all the allocation attempts also tests the // undo_allocation() method too. ! _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); return handle_evacuation_failure_par(old, old_mark); } #endif // !PRODUCT // We're going to allocate linearly, so might as well prefetch ahead. --- 345,430 ---- _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age, dest_attr.type() == G1HeapRegionAttr::Old); } } ! NOINLINE ! HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr, ! oop old, ! size_t word_sz, ! uint age, ! uint node_index) { ! HeapWord* obj_ptr = NULL; ! // Try slow-path allocation unless we're allocating old and old is already full. ! if (!(dest_attr->is_old() && _old_gen_is_full)) { ! bool plab_refill_failed = false; ! obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr, ! word_sz, ! &plab_refill_failed, ! node_index); ! if (obj_ptr == NULL) { ! obj_ptr = allocate_in_next_plab(dest_attr, ! word_sz, ! plab_refill_failed, ! node_index); ! } ! } ! if (obj_ptr != NULL) { ! update_numa_stats(node_index); ! if (_g1h->_gc_tracer_stw->should_report_promotion_events()) { ! // The events are checked individually as part of the actual commit ! report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index); ! } ! } ! return obj_ptr; ! } ! ! NOINLINE ! void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr, ! HeapWord* obj_ptr, ! size_t word_sz, ! uint node_index) { ! _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); ! } ! ! // Private inline function, for direct internal use and providing the ! // implementation of the public not-inline function. ! oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr, oop const old, markWord const old_mark) { + assert(region_attr.is_in_cset(), + "Unexpected region attr type: %s", region_attr.get_type_str()); + const size_t word_sz = old->size(); uint age = 0; G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); HeapRegion* const from_region = _g1h->heap_region_containing(old); uint node_index = from_region->node_index(); HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); // PLAB allocations should succeed most of the time, so we'll // normally check against NULL once and that's it. if (obj_ptr == NULL) { ! obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index); if (obj_ptr == NULL) { // This will either forward-to-self, or detect that someone else has // installed a forwarding pointer. return handle_evacuation_failure_par(old, old_mark); } } assert(obj_ptr != NULL, "when we get here, allocation should have succeeded"); assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); #ifndef PRODUCT // Should this evacuation fail? if (_g1h->evacuation_should_fail()) { // Doing this after all the allocation attempts also tests the // undo_allocation() method too. ! undo_allocation(dest_attr, obj_ptr, word_sz, node_index); return handle_evacuation_failure_par(old, old_mark); } #endif // !PRODUCT // We're going to allocate linearly, so might as well prefetch ahead.
*** 285,298 **** const oop obj = oop(obj_ptr); const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); if (forward_ptr == NULL) { Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz); const uint young_index = from_region->young_index_in_cset(); - assert((from_region->is_young() && young_index > 0) || (!from_region->is_young() && young_index == 0), "invariant" ); if (dest_attr.is_young()) { if (age < markWord::max_age) { age++; } --- 433,448 ---- const oop obj = oop(obj_ptr); const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); if (forward_ptr == NULL) { Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz); + { const uint young_index = from_region->young_index_in_cset(); assert((from_region->is_young() && young_index > 0) || (!from_region->is_young() && young_index == 0), "invariant" ); + _surviving_young_words[young_index] += word_sz; + } if (dest_attr.is_young()) { if (age < markWord::max_age) { age++; }
*** 322,333 **** is_to_young, _worker_id, obj); } - _surviving_young_words[young_index] += word_sz; - if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { // We keep track of the next start index in the length field of // the to-space object. The actual length can be found in the // length field of the from-space object. arrayOop(obj)->set_length(0); --- 472,481 ----
*** 341,350 **** --- 489,506 ---- _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); return forward_ptr; } } + // Public not-inline entry point. + ATTRIBUTE_FLATTEN + oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr, + oop old, + markWord old_mark) { + return do_copy_to_survivor_space(region_attr, old, old_mark); + } + G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) { assert(worker_id < _n_workers, "out of bounds access"); if (_states[worker_id] == NULL) { _states[worker_id] = new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length);
*** 396,405 **** --- 552,562 ---- size_t used_memory = pss->oops_into_optional_region(hr)->used_memory(); _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory); } } + NOINLINE oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) { assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old)); oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed); if (forward_ptr == NULL) {
*** 426,435 **** --- 583,619 ---- "should not be in the CSet", p2i(old), p2i(forward_ptr)); return forward_ptr; } } + + void G1ParScanThreadState::initialize_numa_stats() { + if (_numa->is_enabled()) { + LogTarget(Info, gc, heap, numa) lt; + + if (lt.is_enabled()) { + uint num_nodes = _numa->num_active_nodes(); + // Record only if there are multiple active nodes. + _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC); + memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes); + } + } + } + + void G1ParScanThreadState::flush_numa_stats() { + if (_obj_alloc_stat != NULL) { + uint node_index = _numa->index_of_current_thread(); + _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat); + } + } + + void G1ParScanThreadState::update_numa_stats(uint node_index) { + if (_obj_alloc_stat != NULL) { + _obj_alloc_stat[node_index]++; + } + } + G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, G1RedirtyCardsQueueSet* rdcqs, uint n_workers, size_t young_cset_length, size_t optional_cset_length) :
< prev index next >