< prev index next >

src/hotspot/share/gc/g1/g1ParScanThreadState.cpp

Print this page
rev 60435 : imported patch improve_inlining
rev 60436 : imported patch allocate_copy_slow


 138 
 139 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const {
 140   // Must be in the collection set--it's already been copied.
 141   oop p = task.to_source_array();
 142   assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
 143 }
 144 
 145 void G1ParScanThreadState::verify_task(ScannerTask task) const {
 146   if (task.is_narrow_oop_ptr()) {
 147     verify_task(task.to_narrow_oop_ptr());
 148   } else if (task.is_oop_ptr()) {
 149     verify_task(task.to_oop_ptr());
 150   } else if (task.is_partial_array_task()) {
 151     verify_task(task.to_partial_array_task());
 152   } else {
 153     ShouldNotReachHere();
 154   }
 155 }
 156 #endif // ASSERT
 157 
 158 void G1ParScanThreadState::trim_queue() {








































































































 159   do {
 160     // Fully drain the queue.
 161     trim_queue_to_threshold(0);
 162   } while (!_task_queue->is_empty());
















 163 }
 164 
 165 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
 166                                                       size_t word_sz,
 167                                                       bool previous_plab_refill_failed,
 168                                                       uint node_index) {
 169 
 170   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: %s region attr", dest->get_type_str());
 171 
 172   // Right now we only have two types of regions (young / old) so
 173   // let's keep the logic here simple. We can generalize it when necessary.
 174   if (dest->is_young()) {
 175     bool plab_refill_in_old_failed = false;
 176     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
 177                                                         word_sz,
 178                                                         &plab_refill_in_old_failed,
 179                                                         node_index);
 180     // Make sure that we won't attempt to copy any other objects out
 181     // of a survivor region (given that apparently we cannot allocate
 182     // any new ones) to avoid coming into this slow path again and again.


 210       return region_attr;
 211     }
 212   }
 213   return dest(region_attr);
 214 }
 215 
 216 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
 217                                                   oop const old, size_t word_sz, uint age,
 218                                                   HeapWord * const obj_ptr, uint node_index) const {
 219   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
 220   if (alloc_buf->contains(obj_ptr)) {
 221     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
 222                                                              dest_attr.type() == G1HeapRegionAttr::Old,
 223                                                              alloc_buf->word_sz() * HeapWordSize);
 224   } else {
 225     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
 226                                                               dest_attr.type() == G1HeapRegionAttr::Old);
 227   }
 228 }
 229 
 230 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr const region_attr,









































 231                                                  oop const old,
 232                                                  markWord const old_mark) {



 233   const size_t word_sz = old->size();
 234 
 235   uint age = 0;
 236   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
 237   // The second clause is to prevent premature evacuation failure in case there
 238   // is still space in survivor, but old gen is full.
 239   if (_old_gen_is_full && dest_attr.is_old()) {
 240     return handle_evacuation_failure_par(old, old_mark);
 241   }
 242   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 243   uint node_index = from_region->node_index();
 244 
 245   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
 246 
 247   // PLAB allocations should succeed most of the time, so we'll
 248   // normally check against NULL once and that's it.
 249   if (obj_ptr == NULL) {
 250     bool plab_refill_failed = false;
 251     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_attr, word_sz, &plab_refill_failed, node_index);
 252     if (obj_ptr == NULL) {
 253       assert(region_attr.is_in_cset(), "Unexpected region attr type: %s", region_attr.get_type_str());
 254       obj_ptr = allocate_in_next_plab(&dest_attr, word_sz, plab_refill_failed, node_index);
 255       if (obj_ptr == NULL) {
 256         // This will either forward-to-self, or detect that someone else has
 257         // installed a forwarding pointer.
 258         return handle_evacuation_failure_par(old, old_mark);
 259       }
 260     }
 261     update_numa_stats(node_index);
 262 
 263     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 264       // The events are checked individually as part of the actual commit
 265       report_promotion_event(dest_attr, old, word_sz, age, obj_ptr, node_index);
 266     }
 267   }
 268 
 269   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 270   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 271 
 272 #ifndef PRODUCT
 273   // Should this evacuation fail?
 274   if (_g1h->evacuation_should_fail()) {
 275     // Doing this after all the allocation attempts also tests the
 276     // undo_allocation() method too.
 277     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 278     return handle_evacuation_failure_par(old, old_mark);
 279   }
 280 #endif // !PRODUCT
 281 
 282   // We're going to allocate linearly, so might as well prefetch ahead.
 283   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 284 
 285   const oop obj = oop(obj_ptr);
 286   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
 287   if (forward_ptr == NULL) {
 288     Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
 289 

 290     const uint young_index = from_region->young_index_in_cset();
 291 
 292     assert((from_region->is_young() && young_index >  0) ||
 293            (!from_region->is_young() && young_index == 0), "invariant" );


 294 
 295     if (dest_attr.is_young()) {
 296       if (age < markWord::max_age) {
 297         age++;
 298       }
 299       if (old_mark.has_displaced_mark_helper()) {
 300         // In this case, we have to install the mark word first,
 301         // otherwise obj looks to be forwarded (the old mark word,
 302         // which contains the forward pointer, was copied)
 303         obj->set_mark_raw(old_mark);
 304         markWord new_mark = old_mark.displaced_mark_helper().set_age(age);
 305         old_mark.set_displaced_mark_helper(new_mark);
 306       } else {
 307         obj->set_mark_raw(old_mark.set_age(age));
 308       }
 309       _age_table.add(age, word_sz);
 310     } else {
 311       obj->set_mark_raw(old_mark);
 312     }
 313 
 314     if (G1StringDedup::is_enabled()) {
 315       const bool is_from_young = region_attr.is_young();
 316       const bool is_to_young = dest_attr.is_young();
 317       assert(is_from_young == from_region->is_young(),
 318              "sanity");
 319       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 320              "sanity");
 321       G1StringDedup::enqueue_from_evacuation(is_from_young,
 322                                              is_to_young,
 323                                              _worker_id,
 324                                              obj);
 325     }
 326 
 327     _surviving_young_words[young_index] += word_sz;
 328 
 329     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 330       // We keep track of the next start index in the length field of
 331       // the to-space object. The actual length can be found in the
 332       // length field of the from-space object.
 333       arrayOop(obj)->set_length(0);
 334       do_partial_array(PartialArrayScanTask(old));
 335     } else {
 336       G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
 337       obj->oop_iterate_backwards(&_scanner);
 338     }
 339     return obj;
 340   } else {
 341     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 342     return forward_ptr;
 343   }
 344 }
 345 








 346 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 347   assert(worker_id < _n_workers, "out of bounds access");
 348   if (_states[worker_id] == NULL) {
 349     _states[worker_id] =
 350       new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length);
 351   }
 352   return _states[worker_id];
 353 }
 354 
 355 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 356   assert(_flushed, "thread local state from the per thread states should have been flushed");
 357   return _surviving_young_words_total;
 358 }
 359 
 360 void G1ParScanThreadStateSet::flush() {
 361   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 362 
 363   for (uint worker_id = 0; worker_id < _n_workers; ++worker_id) {
 364     G1ParScanThreadState* pss = _states[worker_id];
 365 


 381 
 382     delete pss;
 383     _states[worker_id] = NULL;
 384   }
 385   _flushed = true;
 386 }
 387 
 388 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
 389   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 390     G1ParScanThreadState* pss = _states[worker_index];
 391 
 392     if (pss == NULL) {
 393       continue;
 394     }
 395 
 396     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
 397     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
 398   }
 399 }
 400 

 401 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) {
 402   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 403 
 404   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
 405   if (forward_ptr == NULL) {
 406     // Forward-to-self succeeded. We are the "owner" of the object.
 407     HeapRegion* r = _g1h->heap_region_containing(old);
 408 
 409     if (!r->evacuation_failed()) {
 410       r->set_evacuation_failed(true);
 411      _g1h->hr_printer()->evac_failure(r);
 412     }
 413 
 414     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 415 
 416     G1ScanInYoungSetter x(&_scanner, r->is_young());
 417     old->oop_iterate_backwards(&_scanner);
 418 
 419     return old;
 420   } else {
 421     // Forward-to-self failed. Either someone else managed to allocate
 422     // space for this object (old != forward_ptr) or they beat us in
 423     // self-forwarding it (old == forward_ptr).
 424     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
 425            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 426            "should not be in the CSet",
 427            p2i(old), p2i(forward_ptr));
 428     return forward_ptr;
 429   }
 430 }



























 431 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
 432                                                  G1RedirtyCardsQueueSet* rdcqs,
 433                                                  uint n_workers,
 434                                                  size_t young_cset_length,
 435                                                  size_t optional_cset_length) :
 436     _g1h(g1h),
 437     _rdcqs(rdcqs),
 438     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
 439     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length + 1, mtGC)),
 440     _young_cset_length(young_cset_length),
 441     _optional_cset_length(optional_cset_length),
 442     _n_workers(n_workers),
 443     _flushed(false) {
 444   for (uint i = 0; i < n_workers; ++i) {
 445     _states[i] = NULL;
 446   }
 447   memset(_surviving_young_words_total, 0, (young_cset_length + 1) * sizeof(size_t));
 448 }
 449 
 450 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {


 138 
 139 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const {
 140   // Must be in the collection set--it's already been copied.
 141   oop p = task.to_source_array();
 142   assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
 143 }
 144 
 145 void G1ParScanThreadState::verify_task(ScannerTask task) const {
 146   if (task.is_narrow_oop_ptr()) {
 147     verify_task(task.to_narrow_oop_ptr());
 148   } else if (task.is_oop_ptr()) {
 149     verify_task(task.to_oop_ptr());
 150   } else if (task.is_partial_array_task()) {
 151     verify_task(task.to_partial_array_task());
 152   } else {
 153     ShouldNotReachHere();
 154   }
 155 }
 156 #endif // ASSERT
 157 
 158 template <class T> void G1ParScanThreadState::do_oop_evac(T* p) {
 159   // Reference should not be NULL here as such are never pushed to the task queue.
 160   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
 161 
 162   // Although we never intentionally push references outside of the collection
 163   // set, due to (benign) races in the claim mechanism during RSet scanning more
 164   // than one thread might claim the same card. So the same card may be
 165   // processed multiple times, and so we might get references into old gen here.
 166   // So we need to redo this check.
 167   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
 168   // References pushed onto the work stack should never point to a humongous region
 169   // as they are not added to the collection set due to above precondition.
 170   assert(!region_attr.is_humongous(),
 171          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
 172          p2i(obj), _g1h->addr_to_region(cast_from_oop<HeapWord*>(obj)), p2i(p));
 173 
 174   if (!region_attr.is_in_cset()) {
 175     // In this case somebody else already did all the work.
 176     return;
 177   }
 178 
 179   markWord m = obj->mark_raw();
 180   if (m.is_marked()) {
 181     obj = (oop) m.decode_pointer();
 182   } else {
 183     obj = do_copy_to_survivor_space(region_attr, obj, m);
 184   }
 185   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
 186 
 187   assert(obj != NULL, "Must be");
 188   if (HeapRegion::is_in_same_region(p, obj)) {
 189     return;
 190   }
 191   HeapRegion* from = _g1h->heap_region_containing(p);
 192   if (!from->is_young()) {
 193     enqueue_card_if_tracked(_g1h->region_attr(obj), p, obj);
 194   }
 195 }
 196 
 197 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
 198   oop from_obj = task.to_source_array();
 199 
 200   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
 201   assert(from_obj->is_objArray(), "must be obj array");
 202   objArrayOop from_obj_array = objArrayOop(from_obj);
 203   // The from-space object contains the real length.
 204   int length                 = from_obj_array->length();
 205 
 206   assert(from_obj->is_forwarded(), "must be forwarded");
 207   oop to_obj                 = from_obj->forwardee();
 208   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
 209   objArrayOop to_obj_array   = objArrayOop(to_obj);
 210   // We keep track of the next start index in the length field of the
 211   // to-space object.
 212   int next_index             = to_obj_array->length();
 213   assert(0 <= next_index && next_index < length,
 214          "invariant, next index: %d, length: %d", next_index, length);
 215 
 216   int start                  = next_index;
 217   int end                    = length;
 218   int remainder              = end - start;
 219   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
 220   if (remainder > 2 * ParGCArrayScanChunk) {
 221     end = start + ParGCArrayScanChunk;
 222     to_obj_array->set_length(end);
 223     // Push the remainder before we process the range in case another
 224     // worker has run out of things to do and can steal it.
 225     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
 226   } else {
 227     assert(length == end, "sanity");
 228     // We'll process the final range for this object. Restore the length
 229     // so that the heap remains parsable in case of evacuation failure.
 230     to_obj_array->set_length(end);
 231   }
 232 
 233   HeapRegion* hr = _g1h->heap_region_containing(to_obj);
 234   G1ScanInYoungSetter x(&_scanner, hr->is_young());
 235   // Process indexes [start,end). It will also process the header
 236   // along with the first chunk (i.e., the chunk with start == 0).
 237   // Note that at this point the length field of to_obj_array is not
 238   // correct given that we are using it to keep track of the next
 239   // start index. oop_iterate_range() (thankfully!) ignores the length
 240   // field and only relies on the start / end parameters.  It does
 241   // however return the size of the object which will be incorrect. So
 242   // we have to ignore it even if we wanted to use it.
 243   to_obj_array->oop_iterate_range(&_scanner, start, end);
 244 }
 245 
 246 void G1ParScanThreadState::dispatch_task(ScannerTask task) {
 247   verify_task(task);
 248   if (task.is_narrow_oop_ptr()) {
 249     do_oop_evac(task.to_narrow_oop_ptr());
 250   } else if (task.is_oop_ptr()) {
 251     do_oop_evac(task.to_oop_ptr());
 252   } else {
 253     do_partial_array(task.to_partial_array_task());
 254   }
 255 }
 256 
 257 // Process tasks until overflow queue is empty and local queue
 258 // contains no more than threshold entries.  NOINLINE to prevent
 259 // inlining into steal_and_trim_queue.
 260 ATTRIBUTE_FLATTEN NOINLINE
 261 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
 262   ScannerTask task;
 263   do {
 264     while (_task_queue->pop_overflow(task)) {
 265       if (!_task_queue->try_push_to_taskqueue(task)) {
 266         dispatch_task(task);
 267       }
 268     }
 269     while (_task_queue->pop_local(task, threshold)) {
 270       dispatch_task(task);
 271     }
 272   } while (!_task_queue->overflow_empty());
 273 }
 274 
 275 ATTRIBUTE_FLATTEN
 276 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) {
 277   ScannerTask stolen_task;
 278   while (task_queues->steal(_worker_id, stolen_task)) {
 279     dispatch_task(stolen_task);
 280     // Processing stolen task may have added tasks to our queue.
 281     trim_queue();
 282   }
 283 }
 284 
 285 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
 286                                                       size_t word_sz,
 287                                                       bool previous_plab_refill_failed,
 288                                                       uint node_index) {
 289 
 290   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: %s region attr", dest->get_type_str());
 291 
 292   // Right now we only have two types of regions (young / old) so
 293   // let's keep the logic here simple. We can generalize it when necessary.
 294   if (dest->is_young()) {
 295     bool plab_refill_in_old_failed = false;
 296     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
 297                                                         word_sz,
 298                                                         &plab_refill_in_old_failed,
 299                                                         node_index);
 300     // Make sure that we won't attempt to copy any other objects out
 301     // of a survivor region (given that apparently we cannot allocate
 302     // any new ones) to avoid coming into this slow path again and again.


 330       return region_attr;
 331     }
 332   }
 333   return dest(region_attr);
 334 }
 335 
 336 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
 337                                                   oop const old, size_t word_sz, uint age,
 338                                                   HeapWord * const obj_ptr, uint node_index) const {
 339   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
 340   if (alloc_buf->contains(obj_ptr)) {
 341     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
 342                                                              dest_attr.type() == G1HeapRegionAttr::Old,
 343                                                              alloc_buf->word_sz() * HeapWordSize);
 344   } else {
 345     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
 346                                                               dest_attr.type() == G1HeapRegionAttr::Old);
 347   }
 348 }
 349 
 350 NOINLINE
 351 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
 352                                                    oop old,
 353                                                    size_t word_sz,
 354                                                    uint age,
 355                                                    uint node_index) {
 356   HeapWord* obj_ptr = NULL;
 357   // Try slow-path allocation unless we're allocating old and old is already full.
 358   if (!(dest_attr->is_old() && _old_gen_is_full)) {
 359     bool plab_refill_failed = false;
 360     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
 361                                                            word_sz,
 362                                                            &plab_refill_failed,
 363                                                            node_index);
 364     if (obj_ptr == NULL) {
 365       obj_ptr = allocate_in_next_plab(dest_attr,
 366                                       word_sz,
 367                                       plab_refill_failed,
 368                                       node_index);
 369     }
 370   }
 371   if (obj_ptr != NULL) {
 372     update_numa_stats(node_index);
 373     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 374       // The events are checked individually as part of the actual commit
 375       report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index);
 376     }
 377   }
 378   return obj_ptr;
 379 }
 380 
 381 NOINLINE
 382 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
 383                                            HeapWord* obj_ptr,
 384                                            size_t word_sz,
 385                                            uint node_index) {
 386   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 387 }
 388 
 389 // Private inline function, for direct internal use and providing the
 390 // implementation of the public not-inline function.
 391 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
 392                                                     oop const old,
 393                                                     markWord const old_mark) {
 394    assert(region_attr.is_in_cset(),
 395           "Unexpected region attr type: %s", region_attr.get_type_str());
 396 
 397   const size_t word_sz = old->size();
 398 
 399   uint age = 0;
 400   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);





 401   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 402   uint node_index = from_region->node_index();
 403 
 404   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
 405 
 406   // PLAB allocations should succeed most of the time, so we'll
 407   // normally check against NULL once and that's it.
 408   if (obj_ptr == NULL) {
 409     obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index);




 410     if (obj_ptr == NULL) {
 411       // This will either forward-to-self, or detect that someone else has
 412       // installed a forwarding pointer.
 413       return handle_evacuation_failure_par(old, old_mark);
 414     }
 415   }







 416 
 417   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 418   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 419 
 420 #ifndef PRODUCT
 421   // Should this evacuation fail?
 422   if (_g1h->evacuation_should_fail()) {
 423     // Doing this after all the allocation attempts also tests the
 424     // undo_allocation() method too.
 425     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 426     return handle_evacuation_failure_par(old, old_mark);
 427   }
 428 #endif // !PRODUCT
 429 
 430   // We're going to allocate linearly, so might as well prefetch ahead.
 431   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 432 
 433   const oop obj = oop(obj_ptr);
 434   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
 435   if (forward_ptr == NULL) {
 436     Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
 437 
 438     {
 439       const uint young_index = from_region->young_index_in_cset();

 440       assert((from_region->is_young() && young_index >  0) ||
 441              (!from_region->is_young() && young_index == 0), "invariant" );
 442       _surviving_young_words[young_index] += word_sz;
 443     }
 444 
 445     if (dest_attr.is_young()) {
 446       if (age < markWord::max_age) {
 447         age++;
 448       }
 449       if (old_mark.has_displaced_mark_helper()) {
 450         // In this case, we have to install the mark word first,
 451         // otherwise obj looks to be forwarded (the old mark word,
 452         // which contains the forward pointer, was copied)
 453         obj->set_mark_raw(old_mark);
 454         markWord new_mark = old_mark.displaced_mark_helper().set_age(age);
 455         old_mark.set_displaced_mark_helper(new_mark);
 456       } else {
 457         obj->set_mark_raw(old_mark.set_age(age));
 458       }
 459       _age_table.add(age, word_sz);
 460     } else {
 461       obj->set_mark_raw(old_mark);
 462     }
 463 
 464     if (G1StringDedup::is_enabled()) {
 465       const bool is_from_young = region_attr.is_young();
 466       const bool is_to_young = dest_attr.is_young();
 467       assert(is_from_young == from_region->is_young(),
 468              "sanity");
 469       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 470              "sanity");
 471       G1StringDedup::enqueue_from_evacuation(is_from_young,
 472                                              is_to_young,
 473                                              _worker_id,
 474                                              obj);
 475     }
 476 


 477     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 478       // We keep track of the next start index in the length field of
 479       // the to-space object. The actual length can be found in the
 480       // length field of the from-space object.
 481       arrayOop(obj)->set_length(0);
 482       do_partial_array(PartialArrayScanTask(old));
 483     } else {
 484       G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
 485       obj->oop_iterate_backwards(&_scanner);
 486     }
 487     return obj;
 488   } else {
 489     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
 490     return forward_ptr;
 491   }
 492 }
 493 
 494 // Public not-inline entry point.
 495 ATTRIBUTE_FLATTEN
 496 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
 497                                                  oop old,
 498                                                  markWord old_mark) {
 499   return do_copy_to_survivor_space(region_attr, old, old_mark);
 500 }
 501 
 502 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 503   assert(worker_id < _n_workers, "out of bounds access");
 504   if (_states[worker_id] == NULL) {
 505     _states[worker_id] =
 506       new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length);
 507   }
 508   return _states[worker_id];
 509 }
 510 
 511 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 512   assert(_flushed, "thread local state from the per thread states should have been flushed");
 513   return _surviving_young_words_total;
 514 }
 515 
 516 void G1ParScanThreadStateSet::flush() {
 517   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 518 
 519   for (uint worker_id = 0; worker_id < _n_workers; ++worker_id) {
 520     G1ParScanThreadState* pss = _states[worker_id];
 521 


 537 
 538     delete pss;
 539     _states[worker_id] = NULL;
 540   }
 541   _flushed = true;
 542 }
 543 
 544 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
 545   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 546     G1ParScanThreadState* pss = _states[worker_index];
 547 
 548     if (pss == NULL) {
 549       continue;
 550     }
 551 
 552     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
 553     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
 554   }
 555 }
 556 
 557 NOINLINE
 558 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) {
 559   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 560 
 561   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
 562   if (forward_ptr == NULL) {
 563     // Forward-to-self succeeded. We are the "owner" of the object.
 564     HeapRegion* r = _g1h->heap_region_containing(old);
 565 
 566     if (!r->evacuation_failed()) {
 567       r->set_evacuation_failed(true);
 568      _g1h->hr_printer()->evac_failure(r);
 569     }
 570 
 571     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 572 
 573     G1ScanInYoungSetter x(&_scanner, r->is_young());
 574     old->oop_iterate_backwards(&_scanner);
 575 
 576     return old;
 577   } else {
 578     // Forward-to-self failed. Either someone else managed to allocate
 579     // space for this object (old != forward_ptr) or they beat us in
 580     // self-forwarding it (old == forward_ptr).
 581     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
 582            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 583            "should not be in the CSet",
 584            p2i(old), p2i(forward_ptr));
 585     return forward_ptr;
 586   }
 587 }
 588 
 589 void G1ParScanThreadState::initialize_numa_stats() {
 590   if (_numa->is_enabled()) {
 591     LogTarget(Info, gc, heap, numa) lt;
 592 
 593     if (lt.is_enabled()) {
 594       uint num_nodes = _numa->num_active_nodes();
 595       // Record only if there are multiple active nodes.
 596       _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC);
 597       memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes);
 598     }
 599   }
 600 }
 601 
 602 void G1ParScanThreadState::flush_numa_stats() {
 603   if (_obj_alloc_stat != NULL) {
 604     uint node_index = _numa->index_of_current_thread();
 605     _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat);
 606   }
 607 }
 608 
 609 void G1ParScanThreadState::update_numa_stats(uint node_index) {
 610   if (_obj_alloc_stat != NULL) {
 611     _obj_alloc_stat[node_index]++;
 612   }
 613 }
 614 
 615 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
 616                                                  G1RedirtyCardsQueueSet* rdcqs,
 617                                                  uint n_workers,
 618                                                  size_t young_cset_length,
 619                                                  size_t optional_cset_length) :
 620     _g1h(g1h),
 621     _rdcqs(rdcqs),
 622     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
 623     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length + 1, mtGC)),
 624     _young_cset_length(young_cset_length),
 625     _optional_cset_length(optional_cset_length),
 626     _n_workers(n_workers),
 627     _flushed(false) {
 628   for (uint i = 0; i < n_workers; ++i) {
 629     _states[i] = NULL;
 630   }
 631   memset(_surviving_young_words_total, 0, (young_cset_length + 1) * sizeof(size_t));
 632 }
 633 
 634 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
< prev index next >