1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
  27 
  28 // statics
  29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  30 bool          CMSCollector::_full_gc_requested          = false;
  31 
  32 //////////////////////////////////////////////////////////////////
  33 // In support of CMS/VM thread synchronization
  34 //////////////////////////////////////////////////////////////////
  35 // We split use of the CGC_lock into 2 "levels".
  36 // The low-level locking is of the usual CGC_lock monitor. We introduce
  37 // a higher level "token" (hereafter "CMS token") built on top of the
  38 // low level monitor (hereafter "CGC lock").
  39 // The token-passing protocol gives priority to the VM thread. The
  40 // CMS-lock doesn't provide any fairness guarantees, but clients
  41 // should ensure that it is only held for very short, bounded
  42 // durations.
  43 //
  44 // When either of the CMS thread or the VM thread is involved in
  45 // collection operations during which it does not want the other
  46 // thread to interfere, it obtains the CMS token.
  47 //
  48 // If either thread tries to get the token while the other has
  49 // it, that thread waits. However, if the VM thread and CMS thread
  50 // both want the token, then the VM thread gets priority while the
  51 // CMS thread waits. This ensures, for instance, that the "concurrent"
  52 // phases of the CMS thread's work do not block out the VM thread
  53 // for long periods of time as the CMS thread continues to hog
  54 // the token. (See bug 4616232).
  55 //
  56 // The baton-passing functions are, however, controlled by the
  57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  58 // and here the low-level CMS lock, not the high level token,
  59 // ensures mutual exclusion.
  60 //
  61 // Two important conditions that we have to satisfy:
  62 // 1. if a thread does a low-level wait on the CMS lock, then it
  63 //    relinquishes the CMS token if it were holding that token
  64 //    when it acquired the low-level CMS lock.
  65 // 2. any low-level notifications on the low-level lock
  66 //    should only be sent when a thread has relinquished the token.
  67 //
  68 // In the absence of either property, we'd have potential deadlock.
  69 //
  70 // We protect each of the CMS (concurrent and sequential) phases
  71 // with the CMS _token_, not the CMS _lock_.
  72 //
  73 // The only code protected by CMS lock is the token acquisition code
  74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
  75 // baton-passing code.
  76 //
  77 // Unfortunately, i couldn't come up with a good abstraction to factor and
  78 // hide the naked CGC_lock manipulation in the baton-passing code
  79 // further below. That's something we should try to do. Also, the proof
  80 // of correctness of this 2-level locking scheme is far from obvious,
  81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
  82 // that there may be a theoretical possibility of delay/starvation in the
  83 // low-level lock/wait/notify scheme used for the baton-passing because of
  84 // potential intereference with the priority scheme embodied in the
  85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
  86 // invocation further below and marked with "XXX 20011219YSR".
  87 // Indeed, as we note elsewhere, this may become yet more slippery
  88 // in the presence of multiple CMS and/or multiple VM threads. XXX
  89 
  90 class CMSTokenSync: public StackObj {
  91  private:
  92   bool _is_cms_thread;
  93  public:
  94   CMSTokenSync(bool is_cms_thread):
  95     _is_cms_thread(is_cms_thread) {
  96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
  97            "Incorrect argument to constructor");
  98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
  99   }
 100 
 101   ~CMSTokenSync() {
 102     assert(_is_cms_thread ?
 103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 105           "Incorrect state");
 106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 107   }
 108 };
 109 
 110 // Convenience class that does a CMSTokenSync, and then acquires
 111 // upto three locks.
 112 class CMSTokenSyncWithLocks: public CMSTokenSync {
 113  private:
 114   // Note: locks are acquired in textual declaration order
 115   // and released in the opposite order
 116   MutexLockerEx _locker1, _locker2, _locker3;
 117  public:
 118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 120     CMSTokenSync(is_cms_thread),
 121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 124   { }
 125 };
 126 
 127 
 128 // Wrapper class to temporarily disable icms during a foreground cms collection.
 129 class ICMSDisabler: public StackObj {
 130  public:
 131   // The ctor disables icms and wakes up the thread so it notices the change;
 132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 133   // CMSIncrementalMode.
 134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 136 };
 137 
 138 //////////////////////////////////////////////////////////////////
 139 //  Concurrent Mark-Sweep Generation /////////////////////////////
 140 //////////////////////////////////////////////////////////////////
 141 
 142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 143 
 144 // This struct contains per-thread things necessary to support parallel
 145 // young-gen collection.
 146 class CMSParGCThreadState: public CHeapObj {
 147  public:
 148   CFLS_LAB lab;
 149   PromotionInfo promo;
 150 
 151   // Constructor.
 152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 153     promo.setSpace(cfls);
 154   }
 155 };
 156 
 157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 158      ReservedSpace rs, size_t initial_byte_size, int level,
 159      CardTableRS* ct, bool use_adaptive_freelists,
 160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
 161   CardGeneration(rs, initial_byte_size, level, ct),
 162   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 163   _debug_collection_type(Concurrent_collection_type)
 164 {
 165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 166   HeapWord* end    = (HeapWord*) _virtual_space.high();
 167 
 168   _direct_allocated_words = 0;
 169   NOT_PRODUCT(
 170     _numObjectsPromoted = 0;
 171     _numWordsPromoted = 0;
 172     _numObjectsAllocated = 0;
 173     _numWordsAllocated = 0;
 174   )
 175 
 176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 177                                            use_adaptive_freelists,
 178                                            dictionaryChoice);
 179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 180   if (_cmsSpace == NULL) {
 181     vm_exit_during_initialization(
 182       "CompactibleFreeListSpace allocation failure");
 183   }
 184   _cmsSpace->_gen = this;
 185 
 186   _gc_stats = new CMSGCStats();
 187 
 188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 189   // offsets match. The ability to tell free chunks from objects
 190   // depends on this property.
 191   debug_only(
 192     FreeChunk* junk = NULL;
 193     assert(UseCompressedOops ||
 194            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 195            "Offset of FreeChunk::_prev within FreeChunk must match"
 196            "  that of OopDesc::_klass within OopDesc");
 197   )
 198   if (ParallelGCThreads > 0) {
 199     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 200     _par_gc_thread_states =
 201       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
 202     if (_par_gc_thread_states == NULL) {
 203       vm_exit_during_initialization("Could not allocate par gc structs");
 204     }
 205     for (uint i = 0; i < ParallelGCThreads; i++) {
 206       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 207       if (_par_gc_thread_states[i] == NULL) {
 208         vm_exit_during_initialization("Could not allocate par gc structs");
 209       }
 210     }
 211   } else {
 212     _par_gc_thread_states = NULL;
 213   }
 214   _incremental_collection_failed = false;
 215   // The "dilatation_factor" is the expansion that can occur on
 216   // account of the fact that the minimum object size in the CMS
 217   // generation may be larger than that in, say, a contiguous young
 218   //  generation.
 219   // Ideally, in the calculation below, we'd compute the dilatation
 220   // factor as: MinChunkSize/(promoting_gen's min object size)
 221   // Since we do not have such a general query interface for the
 222   // promoting generation, we'll instead just use the mimimum
 223   // object size (which today is a header's worth of space);
 224   // note that all arithmetic is in units of HeapWords.
 225   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 226   assert(_dilatation_factor >= 1.0, "from previous assert");
 227 }
 228 
 229 
 230 // The field "_initiating_occupancy" represents the occupancy percentage
 231 // at which we trigger a new collection cycle.  Unless explicitly specified
 232 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
 233 // is calculated by:
 234 //
 235 //   Let "f" be MinHeapFreeRatio in
 236 //
 237 //    _intiating_occupancy = 100-f +
 238 //                           f * (CMSTrigger[Perm]Ratio/100)
 239 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
 240 //
 241 // That is, if we assume the heap is at its desired maximum occupancy at the
 242 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
 243 // space be allocated before initiating a new collection cycle.
 244 //
 245 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
 246   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
 247   if (io >= 0) {
 248     _initiating_occupancy = (double)io / 100.0;
 249   } else {
 250     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 251                              (double)(tr * MinHeapFreeRatio) / 100.0)
 252                             / 100.0;
 253   }
 254 }
 255 
 256 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 257   assert(collector() != NULL, "no collector");
 258   collector()->ref_processor_init();
 259 }
 260 
 261 void CMSCollector::ref_processor_init() {
 262   if (_ref_processor == NULL) {
 263     // Allocate and initialize a reference processor
 264     _ref_processor = ReferenceProcessor::create_ref_processor(
 265         _span,                               // span
 266         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
 267         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
 268         &_is_alive_closure,
 269         ParallelGCThreads,
 270         ParallelRefProcEnabled);
 271     // Initialize the _ref_processor field of CMSGen
 272     _cmsGen->set_ref_processor(_ref_processor);
 273 
 274     // Allocate a dummy ref processor for perm gen.
 275     ReferenceProcessor* rp2 = new ReferenceProcessor();
 276     if (rp2 == NULL) {
 277       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
 278     }
 279     _permGen->set_ref_processor(rp2);
 280   }
 281 }
 282 
 283 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 284   GenCollectedHeap* gch = GenCollectedHeap::heap();
 285   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 286     "Wrong type of heap");
 287   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 288     gch->gen_policy()->size_policy();
 289   assert(sp->is_gc_cms_adaptive_size_policy(),
 290     "Wrong type of size policy");
 291   return sp;
 292 }
 293 
 294 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 295   CMSGCAdaptivePolicyCounters* results =
 296     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 297   assert(
 298     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 299     "Wrong gc policy counter kind");
 300   return results;
 301 }
 302 
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307 
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 310 
 311   _space_counters = new GSpaceCounters(gen_name, 0,
 312                                        _virtual_space.reserved_size(),
 313                                        this, _gen_counters);
 314 }
 315 
 316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 317   _cms_gen(cms_gen)
 318 {
 319   assert(alpha <= 100, "bad value");
 320   _saved_alpha = alpha;
 321 
 322   // Initialize the alphas to the bootstrap value of 100.
 323   _gc0_alpha = _cms_alpha = 100;
 324 
 325   _cms_begin_time.update();
 326   _cms_end_time.update();
 327 
 328   _gc0_duration = 0.0;
 329   _gc0_period = 0.0;
 330   _gc0_promoted = 0;
 331 
 332   _cms_duration = 0.0;
 333   _cms_period = 0.0;
 334   _cms_allocated = 0;
 335 
 336   _cms_used_at_gc0_begin = 0;
 337   _cms_used_at_gc0_end = 0;
 338   _allow_duty_cycle_reduction = false;
 339   _valid_bits = 0;
 340   _icms_duty_cycle = CMSIncrementalDutyCycle;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = gch->get_gen(0)->capacity();
 358   if (HandlePromotionFailure) {
 359     expected_promotion = MIN2(
 360         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
 361         expected_promotion);
 362   }
 363   if (cms_free > expected_promotion) {
 364     // Start a cms collection if there isn't enough space to promote
 365     // for the next minor collection.  Use the padded average as
 366     // a safety factor.
 367     cms_free -= expected_promotion;
 368 
 369     // Adjust by the safety factor.
 370     double cms_free_dbl = (double)cms_free;
 371     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 372     // Apply a further correction factor which tries to adjust
 373     // for recent occurance of concurrent mode failures.
 374     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 375     cms_free_dbl = cms_free_dbl * cms_adjustment;
 376 
 377     if (PrintGCDetails && Verbose) {
 378       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 379         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 380         cms_free, expected_promotion);
 381       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 382         cms_free_dbl, cms_consumption_rate() + 1.0);
 383     }
 384     // Add 1 in case the consumption rate goes to zero.
 385     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 386   }
 387   return 0.0;
 388 }
 389 
 390 // Compare the duration of the cms collection to the
 391 // time remaining before the cms generation is empty.
 392 // Note that the time from the start of the cms collection
 393 // to the start of the cms sweep (less than the total
 394 // duration of the cms collection) can be used.  This
 395 // has been tried and some applications experienced
 396 // promotion failures early in execution.  This was
 397 // possibly because the averages were not accurate
 398 // enough at the beginning.
 399 double CMSStats::time_until_cms_start() const {
 400   // We add "gc0_period" to the "work" calculation
 401   // below because this query is done (mostly) at the
 402   // end of a scavenge, so we need to conservatively
 403   // account for that much possible delay
 404   // in the query so as to avoid concurrent mode failures
 405   // due to starting the collection just a wee bit too
 406   // late.
 407   double work = cms_duration() + gc0_period();
 408   double deadline = time_until_cms_gen_full();
 409   // If a concurrent mode failure occurred recently, we want to be
 410   // more conservative and halve our expected time_until_cms_gen_full()
 411   if (work > deadline) {
 412     if (Verbose && PrintGCDetails) {
 413       gclog_or_tty->print(
 414         " CMSCollector: collect because of anticipated promotion "
 415         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 416         gc0_period(), time_until_cms_gen_full());
 417     }
 418     return 0.0;
 419   }
 420   return work - deadline;
 421 }
 422 
 423 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 424 // amount of change to prevent wild oscillation.
 425 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 426                                               unsigned int new_duty_cycle) {
 427   assert(old_duty_cycle <= 100, "bad input value");
 428   assert(new_duty_cycle <= 100, "bad input value");
 429 
 430   // Note:  use subtraction with caution since it may underflow (values are
 431   // unsigned).  Addition is safe since we're in the range 0-100.
 432   unsigned int damped_duty_cycle = new_duty_cycle;
 433   if (new_duty_cycle < old_duty_cycle) {
 434     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 435     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 436       damped_duty_cycle = old_duty_cycle - largest_delta;
 437     }
 438   } else if (new_duty_cycle > old_duty_cycle) {
 439     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 440     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 441       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 442     }
 443   }
 444   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 445 
 446   if (CMSTraceIncrementalPacing) {
 447     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 448                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 449   }
 450   return damped_duty_cycle;
 451 }
 452 
 453 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 454   assert(CMSIncrementalPacing && valid(),
 455          "should be handled in icms_update_duty_cycle()");
 456 
 457   double cms_time_so_far = cms_timer().seconds();
 458   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 459   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 460 
 461   // Avoid division by 0.
 462   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 463   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 464 
 465   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 466   if (new_duty_cycle > _icms_duty_cycle) {
 467     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 468     if (new_duty_cycle > 2) {
 469       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 470                                                 new_duty_cycle);
 471     }
 472   } else if (_allow_duty_cycle_reduction) {
 473     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 474     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 475     // Respect the minimum duty cycle.
 476     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 477     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 478   }
 479 
 480   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 481     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 482   }
 483 
 484   _allow_duty_cycle_reduction = false;
 485   return _icms_duty_cycle;
 486 }
 487 
 488 #ifndef PRODUCT
 489 void CMSStats::print_on(outputStream *st) const {
 490   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 491   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 492                gc0_duration(), gc0_period(), gc0_promoted());
 493   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 494             cms_duration(), cms_duration_per_mb(),
 495             cms_period(), cms_allocated());
 496   st->print(",cms_since_beg=%g,cms_since_end=%g",
 497             cms_time_since_begin(), cms_time_since_end());
 498   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 499             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 500   if (CMSIncrementalMode) {
 501     st->print(",dc=%d", icms_duty_cycle());
 502   }
 503 
 504   if (valid()) {
 505     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 506               promotion_rate(), cms_allocation_rate());
 507     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 508               cms_consumption_rate(), time_until_cms_gen_full());
 509   }
 510   st->print(" ");
 511 }
 512 #endif // #ifndef PRODUCT
 513 
 514 CMSCollector::CollectorState CMSCollector::_collectorState =
 515                              CMSCollector::Idling;
 516 bool CMSCollector::_foregroundGCIsActive = false;
 517 bool CMSCollector::_foregroundGCShouldWait = false;
 518 
 519 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 520                            ConcurrentMarkSweepGeneration* permGen,
 521                            CardTableRS*                   ct,
 522                            ConcurrentMarkSweepPolicy*     cp):
 523   _cmsGen(cmsGen),
 524   _permGen(permGen),
 525   _ct(ct),
 526   _ref_processor(NULL),    // will be set later
 527   _conc_workers(NULL),     // may be set later
 528   _abort_preclean(false),
 529   _start_sampling(false),
 530   _between_prologue_and_epilogue(false),
 531   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 532   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
 533   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 534                  -1 /* lock-free */, "No_lock" /* dummy */),
 535   _modUnionClosure(&_modUnionTable),
 536   _modUnionClosurePar(&_modUnionTable),
 537   // Adjust my span to cover old (cms) gen and perm gen
 538   _span(cmsGen->reserved()._union(permGen->reserved())),
 539   // Construct the is_alive_closure with _span & markBitMap
 540   _is_alive_closure(_span, &_markBitMap),
 541   _restart_addr(NULL),
 542   _overflow_list(NULL),
 543   _preserved_oop_stack(NULL),
 544   _preserved_mark_stack(NULL),
 545   _stats(cmsGen),
 546   _eden_chunk_array(NULL),     // may be set in ctor body
 547   _eden_chunk_capacity(0),     // -- ditto --
 548   _eden_chunk_index(0),        // -- ditto --
 549   _survivor_plab_array(NULL),  // -- ditto --
 550   _survivor_chunk_array(NULL), // -- ditto --
 551   _survivor_chunk_capacity(0), // -- ditto --
 552   _survivor_chunk_index(0),    // -- ditto --
 553   _ser_pmc_preclean_ovflw(0),
 554   _ser_kac_preclean_ovflw(0),
 555   _ser_pmc_remark_ovflw(0),
 556   _par_pmc_remark_ovflw(0),
 557   _ser_kac_ovflw(0),
 558   _par_kac_ovflw(0),
 559 #ifndef PRODUCT
 560   _num_par_pushes(0),
 561 #endif
 562   _collection_count_start(0),
 563   _verifying(false),
 564   _icms_start_limit(NULL),
 565   _icms_stop_limit(NULL),
 566   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 567   _completed_initialization(false),
 568   _collector_policy(cp),
 569   _should_unload_classes(false),
 570   _concurrent_cycles_since_last_unload(0),
 571   _roots_scanning_options(0),
 572   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 573   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
 574 {
 575   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 576     ExplicitGCInvokesConcurrent = true;
 577   }
 578   // Now expand the span and allocate the collection support structures
 579   // (MUT, marking bit map etc.) to cover both generations subject to
 580   // collection.
 581 
 582   // First check that _permGen is adjacent to _cmsGen and above it.
 583   assert(   _cmsGen->reserved().word_size()  > 0
 584          && _permGen->reserved().word_size() > 0,
 585          "generations should not be of zero size");
 586   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
 587          "_cmsGen and _permGen should not overlap");
 588   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
 589          "_cmsGen->end() different from _permGen->start()");
 590 
 591   // For use by dirty card to oop closures.
 592   _cmsGen->cmsSpace()->set_collector(this);
 593   _permGen->cmsSpace()->set_collector(this);
 594 
 595   // Allocate MUT and marking bit map
 596   {
 597     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 598     if (!_markBitMap.allocate(_span)) {
 599       warning("Failed to allocate CMS Bit Map");
 600       return;
 601     }
 602     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 603   }
 604   {
 605     _modUnionTable.allocate(_span);
 606     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 607   }
 608 
 609   if (!_markStack.allocate(MarkStackSize)) {
 610     warning("Failed to allocate CMS Marking Stack");
 611     return;
 612   }
 613   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
 614     warning("Failed to allocate CMS Revisit Stack");
 615     return;
 616   }
 617 
 618   // Support for multi-threaded concurrent phases
 619   if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
 620     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 621       // just for now
 622       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 623     }
 624     if (ConcGCThreads > 1) {
 625       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 626                                  ConcGCThreads, true);
 627       if (_conc_workers == NULL) {
 628         warning("GC/CMS: _conc_workers allocation failure: "
 629               "forcing -CMSConcurrentMTEnabled");
 630         CMSConcurrentMTEnabled = false;
 631       }
 632     } else {
 633       CMSConcurrentMTEnabled = false;
 634     }
 635   }
 636   if (!CMSConcurrentMTEnabled) {
 637     ConcGCThreads = 0;
 638   } else {
 639     // Turn off CMSCleanOnEnter optimization temporarily for
 640     // the MT case where it's not fixed yet; see 6178663.
 641     CMSCleanOnEnter = false;
 642   }
 643   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 644          "Inconsistency");
 645 
 646   // Parallel task queues; these are shared for the
 647   // concurrent and stop-world phases of CMS, but
 648   // are not shared with parallel scavenge (ParNew).
 649   {
 650     uint i;
 651     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 652 
 653     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 654          || ParallelRefProcEnabled)
 655         && num_queues > 0) {
 656       _task_queues = new OopTaskQueueSet(num_queues);
 657       if (_task_queues == NULL) {
 658         warning("task_queues allocation failure.");
 659         return;
 660       }
 661       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
 662       if (_hash_seed == NULL) {
 663         warning("_hash_seed array allocation failure");
 664         return;
 665       }
 666 
 667       // XXX use a global constant instead of 64!
 668       typedef struct OopTaskQueuePadded {
 669         OopTaskQueue work_queue;
 670         char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
 671       } OopTaskQueuePadded;
 672 
 673       for (i = 0; i < num_queues; i++) {
 674         OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
 675         if (q_padded == NULL) {
 676           warning("work_queue allocation failure.");
 677           return;
 678         }
 679         _task_queues->register_queue(i, &q_padded->work_queue);
 680       }
 681       for (i = 0; i < num_queues; i++) {
 682         _task_queues->queue(i)->initialize();
 683         _hash_seed[i] = 17;  // copied from ParNew
 684       }
 685     }
 686   }
 687 
 688   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 689   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
 690 
 691   // Clip CMSBootstrapOccupancy between 0 and 100.
 692   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
 693                          /(double)100;
 694 
 695   _full_gcs_since_conc_gc = 0;
 696 
 697   // Now tell CMS generations the identity of their collector
 698   ConcurrentMarkSweepGeneration::set_collector(this);
 699 
 700   // Create & start a CMS thread for this CMS collector
 701   _cmsThread = ConcurrentMarkSweepThread::start(this);
 702   assert(cmsThread() != NULL, "CMS Thread should have been created");
 703   assert(cmsThread()->collector() == this,
 704          "CMS Thread should refer to this gen");
 705   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 706 
 707   // Support for parallelizing young gen rescan
 708   GenCollectedHeap* gch = GenCollectedHeap::heap();
 709   _young_gen = gch->prev_gen(_cmsGen);
 710   if (gch->supports_inline_contig_alloc()) {
 711     _top_addr = gch->top_addr();
 712     _end_addr = gch->end_addr();
 713     assert(_young_gen != NULL, "no _young_gen");
 714     _eden_chunk_index = 0;
 715     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 716     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
 717     if (_eden_chunk_array == NULL) {
 718       _eden_chunk_capacity = 0;
 719       warning("GC/CMS: _eden_chunk_array allocation failure");
 720     }
 721   }
 722   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 723 
 724   // Support for parallelizing survivor space rescan
 725   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 726     const size_t max_plab_samples =
 727       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 728 
 729     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
 730     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
 731     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
 732     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 733         || _cursor == NULL) {
 734       warning("Failed to allocate survivor plab/chunk array");
 735       if (_survivor_plab_array  != NULL) {
 736         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 737         _survivor_plab_array = NULL;
 738       }
 739       if (_survivor_chunk_array != NULL) {
 740         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 741         _survivor_chunk_array = NULL;
 742       }
 743       if (_cursor != NULL) {
 744         FREE_C_HEAP_ARRAY(size_t, _cursor);
 745         _cursor = NULL;
 746       }
 747     } else {
 748       _survivor_chunk_capacity = 2*max_plab_samples;
 749       for (uint i = 0; i < ParallelGCThreads; i++) {
 750         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
 751         if (vec == NULL) {
 752           warning("Failed to allocate survivor plab array");
 753           for (int j = i; j > 0; j--) {
 754             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
 755           }
 756           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 757           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 758           _survivor_plab_array = NULL;
 759           _survivor_chunk_array = NULL;
 760           _survivor_chunk_capacity = 0;
 761           break;
 762         } else {
 763           ChunkArray* cur =
 764             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 765                                                         max_plab_samples);
 766           assert(cur->end() == 0, "Should be 0");
 767           assert(cur->array() == vec, "Should be vec");
 768           assert(cur->capacity() == max_plab_samples, "Error");
 769         }
 770       }
 771     }
 772   }
 773   assert(   (   _survivor_plab_array  != NULL
 774              && _survivor_chunk_array != NULL)
 775          || (   _survivor_chunk_capacity == 0
 776              && _survivor_chunk_index == 0),
 777          "Error");
 778 
 779   // Choose what strong roots should be scanned depending on verification options
 780   // and perm gen collection mode.
 781   if (!CMSClassUnloadingEnabled) {
 782     // If class unloading is disabled we want to include all classes into the root set.
 783     add_root_scanning_option(SharedHeap::SO_AllClasses);
 784   } else {
 785     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 786   }
 787 
 788   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 789   _gc_counters = new CollectorCounters("CMS", 1);
 790   _completed_initialization = true;
 791   _inter_sweep_timer.start();  // start of time
 792 #ifdef SPARC
 793   // Issue a stern warning, but allow use for experimentation and debugging.
 794   if (VM_Version::is_sun4v() && UseMemSetInBOT) {
 795     assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
 796     warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
 797             " on sun4v; please understand that you are using at your own risk!");
 798   }
 799 #endif
 800 }
 801 
 802 const char* ConcurrentMarkSweepGeneration::name() const {
 803   return "concurrent mark-sweep generation";
 804 }
 805 void ConcurrentMarkSweepGeneration::update_counters() {
 806   if (UsePerfData) {
 807     _space_counters->update_all();
 808     _gen_counters->update_all();
 809   }
 810 }
 811 
 812 // this is an optimized version of update_counters(). it takes the
 813 // used value as a parameter rather than computing it.
 814 //
 815 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 816   if (UsePerfData) {
 817     _space_counters->update_used(used);
 818     _space_counters->update_capacity();
 819     _gen_counters->update_all();
 820   }
 821 }
 822 
 823 void ConcurrentMarkSweepGeneration::print() const {
 824   Generation::print();
 825   cmsSpace()->print();
 826 }
 827 
 828 #ifndef PRODUCT
 829 void ConcurrentMarkSweepGeneration::print_statistics() {
 830   cmsSpace()->printFLCensus(0);
 831 }
 832 #endif
 833 
 834 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 835   GenCollectedHeap* gch = GenCollectedHeap::heap();
 836   if (PrintGCDetails) {
 837     if (Verbose) {
 838       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 839         level(), short_name(), s, used(), capacity());
 840     } else {
 841       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 842         level(), short_name(), s, used() / K, capacity() / K);
 843     }
 844   }
 845   if (Verbose) {
 846     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 847               gch->used(), gch->capacity());
 848   } else {
 849     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 850               gch->used() / K, gch->capacity() / K);
 851   }
 852 }
 853 
 854 size_t
 855 ConcurrentMarkSweepGeneration::contiguous_available() const {
 856   // dld proposes an improvement in precision here. If the committed
 857   // part of the space ends in a free block we should add that to
 858   // uncommitted size in the calculation below. Will make this
 859   // change later, staying with the approximation below for the
 860   // time being. -- ysr.
 861   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 862 }
 863 
 864 size_t
 865 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 866   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 867 }
 868 
 869 size_t ConcurrentMarkSweepGeneration::max_available() const {
 870   return free() + _virtual_space.uncommitted_size();
 871 }
 872 
 873 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
 874     size_t max_promotion_in_bytes,
 875     bool younger_handles_promotion_failure) const {
 876 
 877   // This is the most conservative test.  Full promotion is
 878   // guaranteed if this is used. The multiplicative factor is to
 879   // account for the worst case "dilatation".
 880   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
 881   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
 882     adjusted_max_promo_bytes = (double)max_uintx;
 883   }
 884   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
 885 
 886   if (younger_handles_promotion_failure && !result) {
 887     // Full promotion is not guaranteed because fragmentation
 888     // of the cms generation can prevent the full promotion.
 889     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
 890 
 891     if (!result) {
 892       // With promotion failure handling the test for the ability
 893       // to support the promotion does not have to be guaranteed.
 894       // Use an average of the amount promoted.
 895       result = max_available() >= (size_t)
 896         gc_stats()->avg_promoted()->padded_average();
 897       if (PrintGC && Verbose && result) {
 898         gclog_or_tty->print_cr(
 899           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
 900           " max_available: " SIZE_FORMAT
 901           " avg_promoted: " SIZE_FORMAT,
 902           max_available(), (size_t)
 903           gc_stats()->avg_promoted()->padded_average());
 904       }
 905     } else {
 906       if (PrintGC && Verbose) {
 907         gclog_or_tty->print_cr(
 908           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
 909           " max_available: " SIZE_FORMAT
 910           " adj_max_promo_bytes: " SIZE_FORMAT,
 911           max_available(), (size_t)adjusted_max_promo_bytes);
 912       }
 913     }
 914   } else {
 915     if (PrintGC && Verbose) {
 916       gclog_or_tty->print_cr(
 917         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
 918         " contiguous_available: " SIZE_FORMAT
 919         " adj_max_promo_bytes: " SIZE_FORMAT,
 920         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
 921     }
 922   }
 923   return result;
 924 }
 925 
 926 // At a promotion failure dump information on block layout in heap
 927 // (cms old generation).
 928 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 929   if (CMSDumpAtPromotionFailure) {
 930     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 931   }
 932 }
 933 
 934 CompactibleSpace*
 935 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 936   return _cmsSpace;
 937 }
 938 
 939 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 940   // Clear the promotion information.  These pointers can be adjusted
 941   // along with all the other pointers into the heap but
 942   // compaction is expected to be a rare event with
 943   // a heap using cms so don't do it without seeing the need.
 944   if (ParallelGCThreads > 0) {
 945     for (uint i = 0; i < ParallelGCThreads; i++) {
 946       _par_gc_thread_states[i]->promo.reset();
 947     }
 948   }
 949 }
 950 
 951 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 952   blk->do_space(_cmsSpace);
 953 }
 954 
 955 void ConcurrentMarkSweepGeneration::compute_new_size() {
 956   assert_locked_or_safepoint(Heap_lock);
 957 
 958   // If incremental collection failed, we just want to expand
 959   // to the limit.
 960   if (incremental_collection_failed()) {
 961     clear_incremental_collection_failed();
 962     grow_to_reserved();
 963     return;
 964   }
 965 
 966   size_t expand_bytes = 0;
 967   double free_percentage = ((double) free()) / capacity();
 968   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 969   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 970 
 971   // compute expansion delta needed for reaching desired free percentage
 972   if (free_percentage < desired_free_percentage) {
 973     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 974     assert(desired_capacity >= capacity(), "invalid expansion size");
 975     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 976   }
 977   if (expand_bytes > 0) {
 978     if (PrintGCDetails && Verbose) {
 979       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 980       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 981       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 982       gclog_or_tty->print_cr("  Desired free fraction %f",
 983         desired_free_percentage);
 984       gclog_or_tty->print_cr("  Maximum free fraction %f",
 985         maximum_free_percentage);
 986       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 987       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 988         desired_capacity/1000);
 989       int prev_level = level() - 1;
 990       if (prev_level >= 0) {
 991         size_t prev_size = 0;
 992         GenCollectedHeap* gch = GenCollectedHeap::heap();
 993         Generation* prev_gen = gch->_gens[prev_level];
 994         prev_size = prev_gen->capacity();
 995           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 996                                  prev_size/1000);
 997       }
 998       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 999         unsafe_max_alloc_nogc()/1000);
1000       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
1001         contiguous_available()/1000);
1002       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
1003         expand_bytes);
1004     }
1005     // safe if expansion fails
1006     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
1007     if (PrintGCDetails && Verbose) {
1008       gclog_or_tty->print_cr("  Expanded free fraction %f",
1009         ((double) free()) / capacity());
1010     }
1011   }
1012 }
1013 
1014 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1015   return cmsSpace()->freelistLock();
1016 }
1017 
1018 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1019                                                   bool   tlab) {
1020   CMSSynchronousYieldRequest yr;
1021   MutexLockerEx x(freelistLock(),
1022                   Mutex::_no_safepoint_check_flag);
1023   return have_lock_and_allocate(size, tlab);
1024 }
1025 
1026 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1027                                                   bool   tlab) {
1028   assert_lock_strong(freelistLock());
1029   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1030   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1031   // Allocate the object live (grey) if the background collector has
1032   // started marking. This is necessary because the marker may
1033   // have passed this address and consequently this object will
1034   // not otherwise be greyed and would be incorrectly swept up.
1035   // Note that if this object contains references, the writing
1036   // of those references will dirty the card containing this object
1037   // allowing the object to be blackened (and its references scanned)
1038   // either during a preclean phase or at the final checkpoint.
1039   if (res != NULL) {
1040     collector()->direct_allocated(res, adjustedSize);
1041     _direct_allocated_words += adjustedSize;
1042     // allocation counters
1043     NOT_PRODUCT(
1044       _numObjectsAllocated++;
1045       _numWordsAllocated += (int)adjustedSize;
1046     )
1047   }
1048   return res;
1049 }
1050 
1051 // In the case of direct allocation by mutators in a generation that
1052 // is being concurrently collected, the object must be allocated
1053 // live (grey) if the background collector has started marking.
1054 // This is necessary because the marker may
1055 // have passed this address and consequently this object will
1056 // not otherwise be greyed and would be incorrectly swept up.
1057 // Note that if this object contains references, the writing
1058 // of those references will dirty the card containing this object
1059 // allowing the object to be blackened (and its references scanned)
1060 // either during a preclean phase or at the final checkpoint.
1061 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1062   assert(_markBitMap.covers(start, size), "Out of bounds");
1063   if (_collectorState >= Marking) {
1064     MutexLockerEx y(_markBitMap.lock(),
1065                     Mutex::_no_safepoint_check_flag);
1066     // [see comments preceding SweepClosure::do_blk() below for details]
1067     // 1. need to mark the object as live so it isn't collected
1068     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1069     // 3. need to mark the end of the object so sweeper can skip over it
1070     //    if it's uninitialized when the sweeper reaches it.
1071     _markBitMap.mark(start);          // object is live
1072     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1073     _markBitMap.mark(start + size - 1);
1074                                       // mark end of object
1075   }
1076   // check that oop looks uninitialized
1077   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1078 }
1079 
1080 void CMSCollector::promoted(bool par, HeapWord* start,
1081                             bool is_obj_array, size_t obj_size) {
1082   assert(_markBitMap.covers(start), "Out of bounds");
1083   // See comment in direct_allocated() about when objects should
1084   // be allocated live.
1085   if (_collectorState >= Marking) {
1086     // we already hold the marking bit map lock, taken in
1087     // the prologue
1088     if (par) {
1089       _markBitMap.par_mark(start);
1090     } else {
1091       _markBitMap.mark(start);
1092     }
1093     // We don't need to mark the object as uninitialized (as
1094     // in direct_allocated above) because this is being done with the
1095     // world stopped and the object will be initialized by the
1096     // time the sweeper gets to look at it.
1097     assert(SafepointSynchronize::is_at_safepoint(),
1098            "expect promotion only at safepoints");
1099 
1100     if (_collectorState < Sweeping) {
1101       // Mark the appropriate cards in the modUnionTable, so that
1102       // this object gets scanned before the sweep. If this is
1103       // not done, CMS generation references in the object might
1104       // not get marked.
1105       // For the case of arrays, which are otherwise precisely
1106       // marked, we need to dirty the entire array, not just its head.
1107       if (is_obj_array) {
1108         // The [par_]mark_range() method expects mr.end() below to
1109         // be aligned to the granularity of a bit's representation
1110         // in the heap. In the case of the MUT below, that's a
1111         // card size.
1112         MemRegion mr(start,
1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1114                         CardTableModRefBS::card_size /* bytes */));
1115         if (par) {
1116           _modUnionTable.par_mark_range(mr);
1117         } else {
1118           _modUnionTable.mark_range(mr);
1119         }
1120       } else {  // not an obj array; we can just mark the head
1121         if (par) {
1122           _modUnionTable.par_mark(start);
1123         } else {
1124           _modUnionTable.mark(start);
1125         }
1126       }
1127     }
1128   }
1129 }
1130 
1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1132 {
1133   size_t delta = pointer_delta(addr, space->bottom());
1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1135 }
1136 
1137 void CMSCollector::icms_update_allocation_limits()
1138 {
1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1141 
1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1143   if (CMSTraceIncrementalPacing) {
1144     stats().print();
1145   }
1146 
1147   assert(duty_cycle <= 100, "invalid duty cycle");
1148   if (duty_cycle != 0) {
1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
1150     // then compute the offset from the endpoints of the space.
1151     size_t free_words = eden->free() / HeapWordSize;
1152     double free_words_dbl = (double)free_words;
1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
1155 
1156     _icms_start_limit = eden->top() + offset_words;
1157     _icms_stop_limit = eden->end() - offset_words;
1158 
1159     // The limits may be adjusted (shifted to the right) by
1160     // CMSIncrementalOffset, to allow the application more mutator time after a
1161     // young gen gc (when all mutators were stopped) and before CMS starts and
1162     // takes away one or more cpus.
1163     if (CMSIncrementalOffset != 0) {
1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1165       size_t adjustment = (size_t)adjustment_dbl;
1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1168         _icms_start_limit += adjustment;
1169         _icms_stop_limit = tmp_stop;
1170       }
1171     }
1172   }
1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1174     _icms_start_limit = _icms_stop_limit = eden->end();
1175   }
1176 
1177   // Install the new start limit.
1178   eden->set_soft_end(_icms_start_limit);
1179 
1180   if (CMSTraceIncrementalMode) {
1181     gclog_or_tty->print(" icms alloc limits:  "
1182                            PTR_FORMAT "," PTR_FORMAT
1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1184                            _icms_start_limit, _icms_stop_limit,
1185                            percent_of_space(eden, _icms_start_limit),
1186                            percent_of_space(eden, _icms_stop_limit));
1187     if (Verbose) {
1188       gclog_or_tty->print("eden:  ");
1189       eden->print_on(gclog_or_tty);
1190     }
1191   }
1192 }
1193 
1194 // Any changes here should try to maintain the invariant
1195 // that if this method is called with _icms_start_limit
1196 // and _icms_stop_limit both NULL, then it should return NULL
1197 // and not notify the icms thread.
1198 HeapWord*
1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1200                                        size_t word_size)
1201 {
1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1203   // nop.
1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1205     if (top <= _icms_start_limit) {
1206       if (CMSTraceIncrementalMode) {
1207         space->print_on(gclog_or_tty);
1208         gclog_or_tty->stamp();
1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1210                                ", new limit=" PTR_FORMAT
1211                                " (" SIZE_FORMAT "%%)",
1212                                top, _icms_stop_limit,
1213                                percent_of_space(space, _icms_stop_limit));
1214       }
1215       ConcurrentMarkSweepThread::start_icms();
1216       assert(top < _icms_stop_limit, "Tautology");
1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1218         return _icms_stop_limit;
1219       }
1220 
1221       // The allocation will cross both the _start and _stop limits, so do the
1222       // stop notification also and return end().
1223       if (CMSTraceIncrementalMode) {
1224         space->print_on(gclog_or_tty);
1225         gclog_or_tty->stamp();
1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1227                                ", new limit=" PTR_FORMAT
1228                                " (" SIZE_FORMAT "%%)",
1229                                top, space->end(),
1230                                percent_of_space(space, space->end()));
1231       }
1232       ConcurrentMarkSweepThread::stop_icms();
1233       return space->end();
1234     }
1235 
1236     if (top <= _icms_stop_limit) {
1237       if (CMSTraceIncrementalMode) {
1238         space->print_on(gclog_or_tty);
1239         gclog_or_tty->stamp();
1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1241                                ", new limit=" PTR_FORMAT
1242                                " (" SIZE_FORMAT "%%)",
1243                                top, space->end(),
1244                                percent_of_space(space, space->end()));
1245       }
1246       ConcurrentMarkSweepThread::stop_icms();
1247       return space->end();
1248     }
1249 
1250     if (CMSTraceIncrementalMode) {
1251       space->print_on(gclog_or_tty);
1252       gclog_or_tty->stamp();
1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1254                              ", new limit=" PTR_FORMAT,
1255                              top, NULL);
1256     }
1257   }
1258 
1259   return NULL;
1260 }
1261 
1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1264   // allocate, copy and if necessary update promoinfo --
1265   // delegate to underlying space.
1266   assert_lock_strong(freelistLock());
1267 
1268 #ifndef PRODUCT
1269   if (Universe::heap()->promotion_should_fail()) {
1270     return NULL;
1271   }
1272 #endif  // #ifndef PRODUCT
1273 
1274   oop res = _cmsSpace->promote(obj, obj_size);
1275   if (res == NULL) {
1276     // expand and retry
1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
1279       CMSExpansionCause::_satisfy_promotion);
1280     // Since there's currently no next generation, we don't try to promote
1281     // into a more senior generation.
1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1283                                "is made to pass on a possibly failing "
1284                                "promotion to next generation");
1285     res = _cmsSpace->promote(obj, obj_size);
1286   }
1287   if (res != NULL) {
1288     // See comment in allocate() about when objects should
1289     // be allocated live.
1290     assert(obj->is_oop(), "Will dereference klass pointer below");
1291     collector()->promoted(false,           // Not parallel
1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
1293     // promotion counters
1294     NOT_PRODUCT(
1295       _numObjectsPromoted++;
1296       _numWordsPromoted +=
1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1298     )
1299   }
1300   return res;
1301 }
1302 
1303 
1304 HeapWord*
1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1306                                              HeapWord* top,
1307                                              size_t word_sz)
1308 {
1309   return collector()->allocation_limit_reached(space, top, word_sz);
1310 }
1311 
1312 // Things to support parallel young-gen collection.
1313 oop
1314 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1315                                            oop old, markOop m,
1316                                            size_t word_sz) {
1317 #ifndef PRODUCT
1318   if (Universe::heap()->promotion_should_fail()) {
1319     return NULL;
1320   }
1321 #endif  // #ifndef PRODUCT
1322 
1323   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1324   PromotionInfo* promoInfo = &ps->promo;
1325   // if we are tracking promotions, then first ensure space for
1326   // promotion (including spooling space for saving header if necessary).
1327   // then allocate and copy, then track promoted info if needed.
1328   // When tracking (see PromotionInfo::track()), the mark word may
1329   // be displaced and in this case restoration of the mark word
1330   // occurs in the (oop_since_save_marks_)iterate phase.
1331   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1332     // Out of space for allocating spooling buffers;
1333     // try expanding and allocating spooling buffers.
1334     if (!expand_and_ensure_spooling_space(promoInfo)) {
1335       return NULL;
1336     }
1337   }
1338   assert(promoInfo->has_spooling_space(), "Control point invariant");
1339   HeapWord* obj_ptr = ps->lab.alloc(word_sz);
1340   if (obj_ptr == NULL) {
1341      obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
1342      if (obj_ptr == NULL) {
1343        return NULL;
1344      }
1345   }
1346   oop obj = oop(obj_ptr);
1347   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1348   // Otherwise, copy the object.  Here we must be careful to insert the
1349   // klass pointer last, since this marks the block as an allocated object.
1350   // Except with compressed oops it's the mark word.
1351   HeapWord* old_ptr = (HeapWord*)old;
1352   if (word_sz > (size_t)oopDesc::header_size()) {
1353     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1354                                  obj_ptr + oopDesc::header_size(),
1355                                  word_sz - oopDesc::header_size());
1356   }
1357 
1358   if (UseCompressedOops) {
1359     // Copy gap missed by (aligned) header size calculation above
1360     obj->set_klass_gap(old->klass_gap());
1361   }
1362 
1363   // Restore the mark word copied above.
1364   obj->set_mark(m);
1365 
1366   // Now we can track the promoted object, if necessary.  We take care
1367   // to delay the transition from uninitialized to full object
1368   // (i.e., insertion of klass pointer) until after, so that it
1369   // atomically becomes a promoted object.
1370   if (promoInfo->tracking()) {
1371     promoInfo->track((PromotedObject*)obj, old->klass());
1372   }
1373 
1374   // Finally, install the klass pointer (this should be volatile).
1375   obj->set_klass(old->klass());
1376 
1377   assert(old->is_oop(), "Will dereference klass ptr below");
1378   collector()->promoted(true,          // parallel
1379                         obj_ptr, old->is_objArray(), word_sz);
1380 
1381   NOT_PRODUCT(
1382     Atomic::inc(&_numObjectsPromoted);
1383     Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
1384                 &_numWordsPromoted);
1385   )
1386 
1387   return obj;
1388 }
1389 
1390 void
1391 ConcurrentMarkSweepGeneration::
1392 par_promote_alloc_undo(int thread_num,
1393                        HeapWord* obj, size_t word_sz) {
1394   // CMS does not support promotion undo.
1395   ShouldNotReachHere();
1396 }
1397 
1398 void
1399 ConcurrentMarkSweepGeneration::
1400 par_promote_alloc_done(int thread_num) {
1401   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1402   ps->lab.retire(thread_num);
1403 }
1404 
1405 void
1406 ConcurrentMarkSweepGeneration::
1407 par_oop_since_save_marks_iterate_done(int thread_num) {
1408   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1409   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1410   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1411 }
1412 
1413 // XXXPERM
1414 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1415                                                    size_t size,
1416                                                    bool   tlab)
1417 {
1418   // We allow a STW collection only if a full
1419   // collection was requested.
1420   return full || should_allocate(size, tlab); // FIX ME !!!
1421   // This and promotion failure handling are connected at the
1422   // hip and should be fixed by untying them.
1423 }
1424 
1425 bool CMSCollector::shouldConcurrentCollect() {
1426   if (_full_gc_requested) {
1427     if (Verbose && PrintGCDetails) {
1428       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1429                              " gc request (or gc_locker)");
1430     }
1431     return true;
1432   }
1433 
1434   // For debugging purposes, change the type of collection.
1435   // If the rotation is not on the concurrent collection
1436   // type, don't start a concurrent collection.
1437   NOT_PRODUCT(
1438     if (RotateCMSCollectionTypes &&
1439         (_cmsGen->debug_collection_type() !=
1440           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1441       assert(_cmsGen->debug_collection_type() !=
1442         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1443         "Bad cms collection type");
1444       return false;
1445     }
1446   )
1447 
1448   FreelistLocker x(this);
1449   // ------------------------------------------------------------------
1450   // Print out lots of information which affects the initiation of
1451   // a collection.
1452   if (PrintCMSInitiationStatistics && stats().valid()) {
1453     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1454     gclog_or_tty->stamp();
1455     gclog_or_tty->print_cr("");
1456     stats().print_on(gclog_or_tty);
1457     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1458       stats().time_until_cms_gen_full());
1459     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1460     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1461                            _cmsGen->contiguous_available());
1462     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1463     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1464     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1465     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1466     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
1467   }
1468   // ------------------------------------------------------------------
1469 
1470   // If the estimated time to complete a cms collection (cms_duration())
1471   // is less than the estimated time remaining until the cms generation
1472   // is full, start a collection.
1473   if (!UseCMSInitiatingOccupancyOnly) {
1474     if (stats().valid()) {
1475       if (stats().time_until_cms_start() == 0.0) {
1476         return true;
1477       }
1478     } else {
1479       // We want to conservatively collect somewhat early in order
1480       // to try and "bootstrap" our CMS/promotion statistics;
1481       // this branch will not fire after the first successful CMS
1482       // collection because the stats should then be valid.
1483       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1484         if (Verbose && PrintGCDetails) {
1485           gclog_or_tty->print_cr(
1486             " CMSCollector: collect for bootstrapping statistics:"
1487             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1488             _bootstrap_occupancy);
1489         }
1490         return true;
1491       }
1492     }
1493   }
1494 
1495   // Otherwise, we start a collection cycle if either the perm gen or
1496   // old gen want a collection cycle started. Each may use
1497   // an appropriate criterion for making this decision.
1498   // XXX We need to make sure that the gen expansion
1499   // criterion dovetails well with this. XXX NEED TO FIX THIS
1500   if (_cmsGen->should_concurrent_collect()) {
1501     if (Verbose && PrintGCDetails) {
1502       gclog_or_tty->print_cr("CMS old gen initiated");
1503     }
1504     return true;
1505   }
1506 
1507   // We start a collection if we believe an incremental collection may fail;
1508   // this is not likely to be productive in practice because it's probably too
1509   // late anyway.
1510   GenCollectedHeap* gch = GenCollectedHeap::heap();
1511   assert(gch->collector_policy()->is_two_generation_policy(),
1512          "You may want to check the correctness of the following");
1513   if (gch->incremental_collection_will_fail()) {
1514     if (PrintGCDetails && Verbose) {
1515       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1516     }
1517     return true;
1518   }
1519 
1520   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
1521     bool res = update_should_unload_classes();
1522     if (res) {
1523       if (Verbose && PrintGCDetails) {
1524         gclog_or_tty->print_cr("CMS perm gen initiated");
1525       }
1526       return true;
1527     }
1528   }
1529   return false;
1530 }
1531 
1532 // Clear _expansion_cause fields of constituent generations
1533 void CMSCollector::clear_expansion_cause() {
1534   _cmsGen->clear_expansion_cause();
1535   _permGen->clear_expansion_cause();
1536 }
1537 
1538 // We should be conservative in starting a collection cycle.  To
1539 // start too eagerly runs the risk of collecting too often in the
1540 // extreme.  To collect too rarely falls back on full collections,
1541 // which works, even if not optimum in terms of concurrent work.
1542 // As a work around for too eagerly collecting, use the flag
1543 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1544 // giving the user an easily understandable way of controlling the
1545 // collections.
1546 // We want to start a new collection cycle if any of the following
1547 // conditions hold:
1548 // . our current occupancy exceeds the configured initiating occupancy
1549 //   for this generation, or
1550 // . we recently needed to expand this space and have not, since that
1551 //   expansion, done a collection of this generation, or
1552 // . the underlying space believes that it may be a good idea to initiate
1553 //   a concurrent collection (this may be based on criteria such as the
1554 //   following: the space uses linear allocation and linear allocation is
1555 //   going to fail, or there is believed to be excessive fragmentation in
1556 //   the generation, etc... or ...
1557 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1558 //   the case of the old generation, not the perm generation; see CR 6543076):
1559 //   we may be approaching a point at which allocation requests may fail because
1560 //   we will be out of sufficient free space given allocation rate estimates.]
1561 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1562 
1563   assert_lock_strong(freelistLock());
1564   if (occupancy() > initiating_occupancy()) {
1565     if (PrintGCDetails && Verbose) {
1566       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1567         short_name(), occupancy(), initiating_occupancy());
1568     }
1569     return true;
1570   }
1571   if (UseCMSInitiatingOccupancyOnly) {
1572     return false;
1573   }
1574   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1575     if (PrintGCDetails && Verbose) {
1576       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1577         short_name());
1578     }
1579     return true;
1580   }
1581   if (_cmsSpace->should_concurrent_collect()) {
1582     if (PrintGCDetails && Verbose) {
1583       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1584         short_name());
1585     }
1586     return true;
1587   }
1588   return false;
1589 }
1590 
1591 void ConcurrentMarkSweepGeneration::collect(bool   full,
1592                                             bool   clear_all_soft_refs,
1593                                             size_t size,
1594                                             bool   tlab)
1595 {
1596   collector()->collect(full, clear_all_soft_refs, size, tlab);
1597 }
1598 
1599 void CMSCollector::collect(bool   full,
1600                            bool   clear_all_soft_refs,
1601                            size_t size,
1602                            bool   tlab)
1603 {
1604   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1605     // For debugging purposes skip the collection if the state
1606     // is not currently idle
1607     if (TraceCMSState) {
1608       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1609         Thread::current(), full, _collectorState);
1610     }
1611     return;
1612   }
1613 
1614   // The following "if" branch is present for defensive reasons.
1615   // In the current uses of this interface, it can be replaced with:
1616   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1617   // But I am not placing that assert here to allow future
1618   // generality in invoking this interface.
1619   if (GC_locker::is_active()) {
1620     // A consistency test for GC_locker
1621     assert(GC_locker::needs_gc(), "Should have been set already");
1622     // Skip this foreground collection, instead
1623     // expanding the heap if necessary.
1624     // Need the free list locks for the call to free() in compute_new_size()
1625     compute_new_size();
1626     return;
1627   }
1628   acquire_control_and_collect(full, clear_all_soft_refs);
1629   _full_gcs_since_conc_gc++;
1630 
1631 }
1632 
1633 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
1634   GenCollectedHeap* gch = GenCollectedHeap::heap();
1635   unsigned int gc_count = gch->total_full_collections();
1636   if (gc_count == full_gc_count) {
1637     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1638     _full_gc_requested = true;
1639     CGC_lock->notify();   // nudge CMS thread
1640   }
1641 }
1642 
1643 
1644 // The foreground and background collectors need to coordinate in order
1645 // to make sure that they do not mutually interfere with CMS collections.
1646 // When a background collection is active,
1647 // the foreground collector may need to take over (preempt) and
1648 // synchronously complete an ongoing collection. Depending on the
1649 // frequency of the background collections and the heap usage
1650 // of the application, this preemption can be seldom or frequent.
1651 // There are only certain
1652 // points in the background collection that the "collection-baton"
1653 // can be passed to the foreground collector.
1654 //
1655 // The foreground collector will wait for the baton before
1656 // starting any part of the collection.  The foreground collector
1657 // will only wait at one location.
1658 //
1659 // The background collector will yield the baton before starting a new
1660 // phase of the collection (e.g., before initial marking, marking from roots,
1661 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1662 // of the loop which switches the phases. The background collector does some
1663 // of the phases (initial mark, final re-mark) with the world stopped.
1664 // Because of locking involved in stopping the world,
1665 // the foreground collector should not block waiting for the background
1666 // collector when it is doing a stop-the-world phase.  The background
1667 // collector will yield the baton at an additional point just before
1668 // it enters a stop-the-world phase.  Once the world is stopped, the
1669 // background collector checks the phase of the collection.  If the
1670 // phase has not changed, it proceeds with the collection.  If the
1671 // phase has changed, it skips that phase of the collection.  See
1672 // the comments on the use of the Heap_lock in collect_in_background().
1673 //
1674 // Variable used in baton passing.
1675 //   _foregroundGCIsActive - Set to true by the foreground collector when
1676 //      it wants the baton.  The foreground clears it when it has finished
1677 //      the collection.
1678 //   _foregroundGCShouldWait - Set to true by the background collector
1679 //        when it is running.  The foreground collector waits while
1680 //      _foregroundGCShouldWait is true.
1681 //  CGC_lock - monitor used to protect access to the above variables
1682 //      and to notify the foreground and background collectors.
1683 //  _collectorState - current state of the CMS collection.
1684 //
1685 // The foreground collector
1686 //   acquires the CGC_lock
1687 //   sets _foregroundGCIsActive
1688 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1689 //     various locks acquired in preparation for the collection
1690 //     are released so as not to block the background collector
1691 //     that is in the midst of a collection
1692 //   proceeds with the collection
1693 //   clears _foregroundGCIsActive
1694 //   returns
1695 //
1696 // The background collector in a loop iterating on the phases of the
1697 //      collection
1698 //   acquires the CGC_lock
1699 //   sets _foregroundGCShouldWait
1700 //   if _foregroundGCIsActive is set
1701 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1702 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1703 //     and exits the loop.
1704 //   otherwise
1705 //     proceed with that phase of the collection
1706 //     if the phase is a stop-the-world phase,
1707 //       yield the baton once more just before enqueueing
1708 //       the stop-world CMS operation (executed by the VM thread).
1709 //   returns after all phases of the collection are done
1710 //
1711 
1712 void CMSCollector::acquire_control_and_collect(bool full,
1713         bool clear_all_soft_refs) {
1714   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1715   assert(!Thread::current()->is_ConcurrentGC_thread(),
1716          "shouldn't try to acquire control from self!");
1717 
1718   // Start the protocol for acquiring control of the
1719   // collection from the background collector (aka CMS thread).
1720   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1721          "VM thread should have CMS token");
1722   // Remember the possibly interrupted state of an ongoing
1723   // concurrent collection
1724   CollectorState first_state = _collectorState;
1725 
1726   // Signal to a possibly ongoing concurrent collection that
1727   // we want to do a foreground collection.
1728   _foregroundGCIsActive = true;
1729 
1730   // Disable incremental mode during a foreground collection.
1731   ICMSDisabler icms_disabler;
1732 
1733   // release locks and wait for a notify from the background collector
1734   // releasing the locks in only necessary for phases which
1735   // do yields to improve the granularity of the collection.
1736   assert_lock_strong(bitMapLock());
1737   // We need to lock the Free list lock for the space that we are
1738   // currently collecting.
1739   assert(haveFreelistLocks(), "Must be holding free list locks");
1740   bitMapLock()->unlock();
1741   releaseFreelistLocks();
1742   {
1743     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1744     if (_foregroundGCShouldWait) {
1745       // We are going to be waiting for action for the CMS thread;
1746       // it had better not be gone (for instance at shutdown)!
1747       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1748              "CMS thread must be running");
1749       // Wait here until the background collector gives us the go-ahead
1750       ConcurrentMarkSweepThread::clear_CMS_flag(
1751         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1752       // Get a possibly blocked CMS thread going:
1753       //   Note that we set _foregroundGCIsActive true above,
1754       //   without protection of the CGC_lock.
1755       CGC_lock->notify();
1756       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1757              "Possible deadlock");
1758       while (_foregroundGCShouldWait) {
1759         // wait for notification
1760         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1761         // Possibility of delay/starvation here, since CMS token does
1762         // not know to give priority to VM thread? Actually, i think
1763         // there wouldn't be any delay/starvation, but the proof of
1764         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1765       }
1766       ConcurrentMarkSweepThread::set_CMS_flag(
1767         ConcurrentMarkSweepThread::CMS_vm_has_token);
1768     }
1769   }
1770   // The CMS_token is already held.  Get back the other locks.
1771   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1772          "VM thread should have CMS token");
1773   getFreelistLocks();
1774   bitMapLock()->lock_without_safepoint_check();
1775   if (TraceCMSState) {
1776     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1777       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1778     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1779   }
1780 
1781   // Check if we need to do a compaction, or if not, whether
1782   // we need to start the mark-sweep from scratch.
1783   bool should_compact    = false;
1784   bool should_start_over = false;
1785   decide_foreground_collection_type(clear_all_soft_refs,
1786     &should_compact, &should_start_over);
1787 
1788 NOT_PRODUCT(
1789   if (RotateCMSCollectionTypes) {
1790     if (_cmsGen->debug_collection_type() ==
1791         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1792       should_compact = true;
1793     } else if (_cmsGen->debug_collection_type() ==
1794                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1795       should_compact = false;
1796     }
1797   }
1798 )
1799 
1800   if (PrintGCDetails && first_state > Idling) {
1801     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1802     if (GCCause::is_user_requested_gc(cause) ||
1803         GCCause::is_serviceability_requested_gc(cause)) {
1804       gclog_or_tty->print(" (concurrent mode interrupted)");
1805     } else {
1806       gclog_or_tty->print(" (concurrent mode failure)");
1807     }
1808   }
1809 
1810   if (should_compact) {
1811     // If the collection is being acquired from the background
1812     // collector, there may be references on the discovered
1813     // references lists that have NULL referents (being those
1814     // that were concurrently cleared by a mutator) or
1815     // that are no longer active (having been enqueued concurrently
1816     // by the mutator).
1817     // Scrub the list of those references because Mark-Sweep-Compact
1818     // code assumes referents are not NULL and that all discovered
1819     // Reference objects are active.
1820     ref_processor()->clean_up_discovered_references();
1821 
1822     do_compaction_work(clear_all_soft_refs);
1823 
1824     // Has the GC time limit been exceeded?
1825     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1826     size_t max_eden_size = young_gen->max_capacity() -
1827                            young_gen->to()->capacity() -
1828                            young_gen->from()->capacity();
1829     GenCollectedHeap* gch = GenCollectedHeap::heap();
1830     GCCause::Cause gc_cause = gch->gc_cause();
1831     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1832                                            young_gen->eden()->used(),
1833                                            _cmsGen->max_capacity(),
1834                                            max_eden_size,
1835                                            full,
1836                                            gc_cause,
1837                                            gch->collector_policy());
1838   } else {
1839     do_mark_sweep_work(clear_all_soft_refs, first_state,
1840       should_start_over);
1841   }
1842   // Reset the expansion cause, now that we just completed
1843   // a collection cycle.
1844   clear_expansion_cause();
1845   _foregroundGCIsActive = false;
1846   return;
1847 }
1848 
1849 // Resize the perm generation and the tenured generation
1850 // after obtaining the free list locks for the
1851 // two generations.
1852 void CMSCollector::compute_new_size() {
1853   assert_locked_or_safepoint(Heap_lock);
1854   FreelistLocker z(this);
1855   _permGen->compute_new_size();
1856   _cmsGen->compute_new_size();
1857 }
1858 
1859 // A work method used by foreground collection to determine
1860 // what type of collection (compacting or not, continuing or fresh)
1861 // it should do.
1862 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1863 // and CMSCompactWhenClearAllSoftRefs the default in the future
1864 // and do away with the flags after a suitable period.
1865 void CMSCollector::decide_foreground_collection_type(
1866   bool clear_all_soft_refs, bool* should_compact,
1867   bool* should_start_over) {
1868   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1869   // flag is set, and we have either requested a System.gc() or
1870   // the number of full gc's since the last concurrent cycle
1871   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1872   // or if an incremental collection has failed
1873   GenCollectedHeap* gch = GenCollectedHeap::heap();
1874   assert(gch->collector_policy()->is_two_generation_policy(),
1875          "You may want to check the correctness of the following");
1876   // Inform cms gen if this was due to partial collection failing.
1877   // The CMS gen may use this fact to determine its expansion policy.
1878   if (gch->incremental_collection_will_fail()) {
1879     assert(!_cmsGen->incremental_collection_failed(),
1880            "Should have been noticed, reacted to and cleared");
1881     _cmsGen->set_incremental_collection_failed();
1882   }
1883   *should_compact =
1884     UseCMSCompactAtFullCollection &&
1885     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1886      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1887      gch->incremental_collection_will_fail());
1888   *should_start_over = false;
1889   if (clear_all_soft_refs && !*should_compact) {
1890     // We are about to do a last ditch collection attempt
1891     // so it would normally make sense to do a compaction
1892     // to reclaim as much space as possible.
1893     if (CMSCompactWhenClearAllSoftRefs) {
1894       // Default: The rationale is that in this case either
1895       // we are past the final marking phase, in which case
1896       // we'd have to start over, or so little has been done
1897       // that there's little point in saving that work. Compaction
1898       // appears to be the sensible choice in either case.
1899       *should_compact = true;
1900     } else {
1901       // We have been asked to clear all soft refs, but not to
1902       // compact. Make sure that we aren't past the final checkpoint
1903       // phase, for that is where we process soft refs. If we are already
1904       // past that phase, we'll need to redo the refs discovery phase and
1905       // if necessary clear soft refs that weren't previously
1906       // cleared. We do so by remembering the phase in which
1907       // we came in, and if we are past the refs processing
1908       // phase, we'll choose to just redo the mark-sweep
1909       // collection from scratch.
1910       if (_collectorState > FinalMarking) {
1911         // We are past the refs processing phase;
1912         // start over and do a fresh synchronous CMS cycle
1913         _collectorState = Resetting; // skip to reset to start new cycle
1914         reset(false /* == !asynch */);
1915         *should_start_over = true;
1916       } // else we can continue a possibly ongoing current cycle
1917     }
1918   }
1919 }
1920 
1921 // A work method used by the foreground collector to do
1922 // a mark-sweep-compact.
1923 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1924   GenCollectedHeap* gch = GenCollectedHeap::heap();
1925   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
1926   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
1927     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
1928       "collections passed to foreground collector", _full_gcs_since_conc_gc);
1929   }
1930 
1931   // Sample collection interval time and reset for collection pause.
1932   if (UseAdaptiveSizePolicy) {
1933     size_policy()->msc_collection_begin();
1934   }
1935 
1936   // Temporarily widen the span of the weak reference processing to
1937   // the entire heap.
1938   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1939   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
1940 
1941   // Temporarily, clear the "is_alive_non_header" field of the
1942   // reference processor.
1943   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
1944 
1945   // Temporarily make reference _processing_ single threaded (non-MT).
1946   ReferenceProcessorMTProcMutator z(ref_processor(), false);
1947 
1948   // Temporarily make refs discovery atomic
1949   ReferenceProcessorAtomicMutator w(ref_processor(), true);
1950 
1951   ref_processor()->set_enqueuing_is_done(false);
1952   ref_processor()->enable_discovery();
1953   ref_processor()->setup_policy(clear_all_soft_refs);
1954   // If an asynchronous collection finishes, the _modUnionTable is
1955   // all clear.  If we are assuming the collection from an asynchronous
1956   // collection, clear the _modUnionTable.
1957   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1958     "_modUnionTable should be clear if the baton was not passed");
1959   _modUnionTable.clear_all();
1960 
1961   // We must adjust the allocation statistics being maintained
1962   // in the free list space. We do so by reading and clearing
1963   // the sweep timer and updating the block flux rate estimates below.
1964   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1965   if (_inter_sweep_timer.is_active()) {
1966     _inter_sweep_timer.stop();
1967     // Note that we do not use this sample to update the _inter_sweep_estimate.
1968     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1969                                             _inter_sweep_estimate.padded_average(),
1970                                             _intra_sweep_estimate.padded_average());
1971   }
1972 
1973   {
1974     TraceCMSMemoryManagerStats();
1975   }
1976   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
1977     ref_processor(), clear_all_soft_refs);
1978   #ifdef ASSERT
1979     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1980     size_t free_size = cms_space->free();
1981     assert(free_size ==
1982            pointer_delta(cms_space->end(), cms_space->compaction_top())
1983            * HeapWordSize,
1984       "All the free space should be compacted into one chunk at top");
1985     assert(cms_space->dictionary()->totalChunkSize(
1986                                       debug_only(cms_space->freelistLock())) == 0 ||
1987            cms_space->totalSizeInIndexedFreeLists() == 0,
1988       "All the free space should be in a single chunk");
1989     size_t num = cms_space->totalCount();
1990     assert((free_size == 0 && num == 0) ||
1991            (free_size > 0  && (num == 1 || num == 2)),
1992          "There should be at most 2 free chunks after compaction");
1993   #endif // ASSERT
1994   _collectorState = Resetting;
1995   assert(_restart_addr == NULL,
1996          "Should have been NULL'd before baton was passed");
1997   reset(false /* == !asynch */);
1998   _cmsGen->reset_after_compaction();
1999   _concurrent_cycles_since_last_unload = 0;
2000 
2001   if (verifying() && !should_unload_classes()) {
2002     perm_gen_verify_bit_map()->clear_all();
2003   }
2004 
2005   // Clear any data recorded in the PLAB chunk arrays.
2006   if (_survivor_plab_array != NULL) {
2007     reset_survivor_plab_arrays();
2008   }
2009 
2010   // Adjust the per-size allocation stats for the next epoch.
2011   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2012   // Restart the "inter sweep timer" for the next epoch.
2013   _inter_sweep_timer.reset();
2014   _inter_sweep_timer.start();
2015 
2016   // Sample collection pause time and reset for collection interval.
2017   if (UseAdaptiveSizePolicy) {
2018     size_policy()->msc_collection_end(gch->gc_cause());
2019   }
2020 
2021   // For a mark-sweep-compact, compute_new_size() will be called
2022   // in the heap's do_collection() method.
2023 }
2024 
2025 // A work method used by the foreground collector to do
2026 // a mark-sweep, after taking over from a possibly on-going
2027 // concurrent mark-sweep collection.
2028 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2029   CollectorState first_state, bool should_start_over) {
2030   if (PrintGC && Verbose) {
2031     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2032       "collector with count %d",
2033       _full_gcs_since_conc_gc);
2034   }
2035   switch (_collectorState) {
2036     case Idling:
2037       if (first_state == Idling || should_start_over) {
2038         // The background GC was not active, or should
2039         // restarted from scratch;  start the cycle.
2040         _collectorState = InitialMarking;
2041       }
2042       // If first_state was not Idling, then a background GC
2043       // was in progress and has now finished.  No need to do it
2044       // again.  Leave the state as Idling.
2045       break;
2046     case Precleaning:
2047       // In the foreground case don't do the precleaning since
2048       // it is not done concurrently and there is extra work
2049       // required.
2050       _collectorState = FinalMarking;
2051   }
2052   if (PrintGCDetails &&
2053       (_collectorState > Idling ||
2054        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
2055     gclog_or_tty->print(" (concurrent mode failure)");
2056   }
2057   collect_in_foreground(clear_all_soft_refs);
2058 
2059   // For a mark-sweep, compute_new_size() will be called
2060   // in the heap's do_collection() method.
2061 }
2062 
2063 
2064 void CMSCollector::getFreelistLocks() const {
2065   // Get locks for all free lists in all generations that this
2066   // collector is responsible for
2067   _cmsGen->freelistLock()->lock_without_safepoint_check();
2068   _permGen->freelistLock()->lock_without_safepoint_check();
2069 }
2070 
2071 void CMSCollector::releaseFreelistLocks() const {
2072   // Release locks for all free lists in all generations that this
2073   // collector is responsible for
2074   _cmsGen->freelistLock()->unlock();
2075   _permGen->freelistLock()->unlock();
2076 }
2077 
2078 bool CMSCollector::haveFreelistLocks() const {
2079   // Check locks for all free lists in all generations that this
2080   // collector is responsible for
2081   assert_lock_strong(_cmsGen->freelistLock());
2082   assert_lock_strong(_permGen->freelistLock());
2083   PRODUCT_ONLY(ShouldNotReachHere());
2084   return true;
2085 }
2086 
2087 // A utility class that is used by the CMS collector to
2088 // temporarily "release" the foreground collector from its
2089 // usual obligation to wait for the background collector to
2090 // complete an ongoing phase before proceeding.
2091 class ReleaseForegroundGC: public StackObj {
2092  private:
2093   CMSCollector* _c;
2094  public:
2095   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2096     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2097     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2098     // allow a potentially blocked foreground collector to proceed
2099     _c->_foregroundGCShouldWait = false;
2100     if (_c->_foregroundGCIsActive) {
2101       CGC_lock->notify();
2102     }
2103     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2104            "Possible deadlock");
2105   }
2106 
2107   ~ReleaseForegroundGC() {
2108     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2109     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2110     _c->_foregroundGCShouldWait = true;
2111   }
2112 };
2113 
2114 // There are separate collect_in_background and collect_in_foreground because of
2115 // the different locking requirements of the background collector and the
2116 // foreground collector.  There was originally an attempt to share
2117 // one "collect" method between the background collector and the foreground
2118 // collector but the if-then-else required made it cleaner to have
2119 // separate methods.
2120 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
2121   assert(Thread::current()->is_ConcurrentGC_thread(),
2122     "A CMS asynchronous collection is only allowed on a CMS thread.");
2123 
2124   GenCollectedHeap* gch = GenCollectedHeap::heap();
2125   {
2126     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2127     MutexLockerEx hl(Heap_lock, safepoint_check);
2128     FreelistLocker fll(this);
2129     MutexLockerEx x(CGC_lock, safepoint_check);
2130     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2131       // The foreground collector is active or we're
2132       // not using asynchronous collections.  Skip this
2133       // background collection.
2134       assert(!_foregroundGCShouldWait, "Should be clear");
2135       return;
2136     } else {
2137       assert(_collectorState == Idling, "Should be idling before start.");
2138       _collectorState = InitialMarking;
2139       // Reset the expansion cause, now that we are about to begin
2140       // a new cycle.
2141       clear_expansion_cause();
2142     }
2143     // Decide if we want to enable class unloading as part of the
2144     // ensuing concurrent GC cycle.
2145     update_should_unload_classes();
2146     _full_gc_requested = false;           // acks all outstanding full gc requests
2147     // Signal that we are about to start a collection
2148     gch->increment_total_full_collections();  // ... starting a collection cycle
2149     _collection_count_start = gch->total_full_collections();
2150   }
2151 
2152   // Used for PrintGC
2153   size_t prev_used;
2154   if (PrintGC && Verbose) {
2155     prev_used = _cmsGen->used(); // XXXPERM
2156   }
2157 
2158   // The change of the collection state is normally done at this level;
2159   // the exceptions are phases that are executed while the world is
2160   // stopped.  For those phases the change of state is done while the
2161   // world is stopped.  For baton passing purposes this allows the
2162   // background collector to finish the phase and change state atomically.
2163   // The foreground collector cannot wait on a phase that is done
2164   // while the world is stopped because the foreground collector already
2165   // has the world stopped and would deadlock.
2166   while (_collectorState != Idling) {
2167     if (TraceCMSState) {
2168       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2169         Thread::current(), _collectorState);
2170     }
2171     // The foreground collector
2172     //   holds the Heap_lock throughout its collection.
2173     //   holds the CMS token (but not the lock)
2174     //     except while it is waiting for the background collector to yield.
2175     //
2176     // The foreground collector should be blocked (not for long)
2177     //   if the background collector is about to start a phase
2178     //   executed with world stopped.  If the background
2179     //   collector has already started such a phase, the
2180     //   foreground collector is blocked waiting for the
2181     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2182     //   are executed in the VM thread.
2183     //
2184     // The locking order is
2185     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2186     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2187     //   CMS token  (claimed in
2188     //                stop_world_and_do() -->
2189     //                  safepoint_synchronize() -->
2190     //                    CMSThread::synchronize())
2191 
2192     {
2193       // Check if the FG collector wants us to yield.
2194       CMSTokenSync x(true); // is cms thread
2195       if (waitForForegroundGC()) {
2196         // We yielded to a foreground GC, nothing more to be
2197         // done this round.
2198         assert(_foregroundGCShouldWait == false, "We set it to false in "
2199                "waitForForegroundGC()");
2200         if (TraceCMSState) {
2201           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2202             " exiting collection CMS state %d",
2203             Thread::current(), _collectorState);
2204         }
2205         return;
2206       } else {
2207         // The background collector can run but check to see if the
2208         // foreground collector has done a collection while the
2209         // background collector was waiting to get the CGC_lock
2210         // above.  If yes, break so that _foregroundGCShouldWait
2211         // is cleared before returning.
2212         if (_collectorState == Idling) {
2213           break;
2214         }
2215       }
2216     }
2217 
2218     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2219       "should be waiting");
2220 
2221     switch (_collectorState) {
2222       case InitialMarking:
2223         {
2224           ReleaseForegroundGC x(this);
2225           stats().record_cms_begin();
2226 
2227           VM_CMS_Initial_Mark initial_mark_op(this);
2228           VMThread::execute(&initial_mark_op);
2229         }
2230         // The collector state may be any legal state at this point
2231         // since the background collector may have yielded to the
2232         // foreground collector.
2233         break;
2234       case Marking:
2235         // initial marking in checkpointRootsInitialWork has been completed
2236         if (markFromRoots(true)) { // we were successful
2237           assert(_collectorState == Precleaning, "Collector state should "
2238             "have changed");
2239         } else {
2240           assert(_foregroundGCIsActive, "Internal state inconsistency");
2241         }
2242         break;
2243       case Precleaning:
2244         if (UseAdaptiveSizePolicy) {
2245           size_policy()->concurrent_precleaning_begin();
2246         }
2247         // marking from roots in markFromRoots has been completed
2248         preclean();
2249         if (UseAdaptiveSizePolicy) {
2250           size_policy()->concurrent_precleaning_end();
2251         }
2252         assert(_collectorState == AbortablePreclean ||
2253                _collectorState == FinalMarking,
2254                "Collector state should have changed");
2255         break;
2256       case AbortablePreclean:
2257         if (UseAdaptiveSizePolicy) {
2258         size_policy()->concurrent_phases_resume();
2259         }
2260         abortable_preclean();
2261         if (UseAdaptiveSizePolicy) {
2262           size_policy()->concurrent_precleaning_end();
2263         }
2264         assert(_collectorState == FinalMarking, "Collector state should "
2265           "have changed");
2266         break;
2267       case FinalMarking:
2268         {
2269           ReleaseForegroundGC x(this);
2270 
2271           VM_CMS_Final_Remark final_remark_op(this);
2272           VMThread::execute(&final_remark_op);
2273         }
2274         assert(_foregroundGCShouldWait, "block post-condition");
2275         break;
2276       case Sweeping:
2277         if (UseAdaptiveSizePolicy) {
2278           size_policy()->concurrent_sweeping_begin();
2279         }
2280         // final marking in checkpointRootsFinal has been completed
2281         sweep(true);
2282         assert(_collectorState == Resizing, "Collector state change "
2283           "to Resizing must be done under the free_list_lock");
2284         _full_gcs_since_conc_gc = 0;
2285 
2286         // Stop the timers for adaptive size policy for the concurrent phases
2287         if (UseAdaptiveSizePolicy) {
2288           size_policy()->concurrent_sweeping_end();
2289           size_policy()->concurrent_phases_end(gch->gc_cause(),
2290                                              gch->prev_gen(_cmsGen)->capacity(),
2291                                              _cmsGen->free());
2292         }
2293 
2294       case Resizing: {
2295         // Sweeping has been completed...
2296         // At this point the background collection has completed.
2297         // Don't move the call to compute_new_size() down
2298         // into code that might be executed if the background
2299         // collection was preempted.
2300         {
2301           ReleaseForegroundGC x(this);   // unblock FG collection
2302           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2303           CMSTokenSync        z(true);   // not strictly needed.
2304           if (_collectorState == Resizing) {
2305             compute_new_size();
2306             _collectorState = Resetting;
2307           } else {
2308             assert(_collectorState == Idling, "The state should only change"
2309                    " because the foreground collector has finished the collection");
2310           }
2311         }
2312         break;
2313       }
2314       case Resetting:
2315         // CMS heap resizing has been completed
2316         reset(true);
2317         assert(_collectorState == Idling, "Collector state should "
2318           "have changed");
2319         stats().record_cms_end();
2320         // Don't move the concurrent_phases_end() and compute_new_size()
2321         // calls to here because a preempted background collection
2322         // has it's state set to "Resetting".
2323         break;
2324       case Idling:
2325       default:
2326         ShouldNotReachHere();
2327         break;
2328     }
2329     if (TraceCMSState) {
2330       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2331         Thread::current(), _collectorState);
2332     }
2333     assert(_foregroundGCShouldWait, "block post-condition");
2334   }
2335 
2336   // Should this be in gc_epilogue?
2337   collector_policy()->counters()->update_counters();
2338 
2339   {
2340     // Clear _foregroundGCShouldWait and, in the event that the
2341     // foreground collector is waiting, notify it, before
2342     // returning.
2343     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2344     _foregroundGCShouldWait = false;
2345     if (_foregroundGCIsActive) {
2346       CGC_lock->notify();
2347     }
2348     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2349            "Possible deadlock");
2350   }
2351   if (TraceCMSState) {
2352     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2353       " exiting collection CMS state %d",
2354       Thread::current(), _collectorState);
2355   }
2356   if (PrintGC && Verbose) {
2357     _cmsGen->print_heap_change(prev_used);
2358   }
2359 }
2360 
2361 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
2362   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2363          "Foreground collector should be waiting, not executing");
2364   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2365     "may only be done by the VM Thread with the world stopped");
2366   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2367          "VM thread should have CMS token");
2368 
2369   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2370     true, gclog_or_tty);)
2371   if (UseAdaptiveSizePolicy) {
2372     size_policy()->ms_collection_begin();
2373   }
2374   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2375 
2376   HandleMark hm;  // Discard invalid handles created during verification
2377 
2378   if (VerifyBeforeGC &&
2379       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2380     Universe::verify(true);
2381   }
2382 
2383   // Snapshot the soft reference policy to be used in this collection cycle.
2384   ref_processor()->setup_policy(clear_all_soft_refs);
2385 
2386   bool init_mark_was_synchronous = false; // until proven otherwise
2387   while (_collectorState != Idling) {
2388     if (TraceCMSState) {
2389       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2390         Thread::current(), _collectorState);
2391     }
2392     switch (_collectorState) {
2393       case InitialMarking:
2394         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2395         checkpointRootsInitial(false);
2396         assert(_collectorState == Marking, "Collector state should have changed"
2397           " within checkpointRootsInitial()");
2398         break;
2399       case Marking:
2400         // initial marking in checkpointRootsInitialWork has been completed
2401         if (VerifyDuringGC &&
2402             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2403           gclog_or_tty->print("Verify before initial mark: ");
2404           Universe::verify(true);
2405         }
2406         {
2407           bool res = markFromRoots(false);
2408           assert(res && _collectorState == FinalMarking, "Collector state should "
2409             "have changed");
2410           break;
2411         }
2412       case FinalMarking:
2413         if (VerifyDuringGC &&
2414             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2415           gclog_or_tty->print("Verify before re-mark: ");
2416           Universe::verify(true);
2417         }
2418         checkpointRootsFinal(false, clear_all_soft_refs,
2419                              init_mark_was_synchronous);
2420         assert(_collectorState == Sweeping, "Collector state should not "
2421           "have changed within checkpointRootsFinal()");
2422         break;
2423       case Sweeping:
2424         // final marking in checkpointRootsFinal has been completed
2425         if (VerifyDuringGC &&
2426             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2427           gclog_or_tty->print("Verify before sweep: ");
2428           Universe::verify(true);
2429         }
2430         sweep(false);
2431         assert(_collectorState == Resizing, "Incorrect state");
2432         break;
2433       case Resizing: {
2434         // Sweeping has been completed; the actual resize in this case
2435         // is done separately; nothing to be done in this state.
2436         _collectorState = Resetting;
2437         break;
2438       }
2439       case Resetting:
2440         // The heap has been resized.
2441         if (VerifyDuringGC &&
2442             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2443           gclog_or_tty->print("Verify before reset: ");
2444           Universe::verify(true);
2445         }
2446         reset(false);
2447         assert(_collectorState == Idling, "Collector state should "
2448           "have changed");
2449         break;
2450       case Precleaning:
2451       case AbortablePreclean:
2452         // Elide the preclean phase
2453         _collectorState = FinalMarking;
2454         break;
2455       default:
2456         ShouldNotReachHere();
2457     }
2458     if (TraceCMSState) {
2459       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2460         Thread::current(), _collectorState);
2461     }
2462   }
2463 
2464   if (UseAdaptiveSizePolicy) {
2465     GenCollectedHeap* gch = GenCollectedHeap::heap();
2466     size_policy()->ms_collection_end(gch->gc_cause());
2467   }
2468 
2469   if (VerifyAfterGC &&
2470       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2471     Universe::verify(true);
2472   }
2473   if (TraceCMSState) {
2474     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2475       " exiting collection CMS state %d",
2476       Thread::current(), _collectorState);
2477   }
2478 }
2479 
2480 bool CMSCollector::waitForForegroundGC() {
2481   bool res = false;
2482   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2483          "CMS thread should have CMS token");
2484   // Block the foreground collector until the
2485   // background collectors decides whether to
2486   // yield.
2487   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2488   _foregroundGCShouldWait = true;
2489   if (_foregroundGCIsActive) {
2490     // The background collector yields to the
2491     // foreground collector and returns a value
2492     // indicating that it has yielded.  The foreground
2493     // collector can proceed.
2494     res = true;
2495     _foregroundGCShouldWait = false;
2496     ConcurrentMarkSweepThread::clear_CMS_flag(
2497       ConcurrentMarkSweepThread::CMS_cms_has_token);
2498     ConcurrentMarkSweepThread::set_CMS_flag(
2499       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2500     // Get a possibly blocked foreground thread going
2501     CGC_lock->notify();
2502     if (TraceCMSState) {
2503       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2504         Thread::current(), _collectorState);
2505     }
2506     while (_foregroundGCIsActive) {
2507       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2508     }
2509     ConcurrentMarkSweepThread::set_CMS_flag(
2510       ConcurrentMarkSweepThread::CMS_cms_has_token);
2511     ConcurrentMarkSweepThread::clear_CMS_flag(
2512       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2513   }
2514   if (TraceCMSState) {
2515     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2516       Thread::current(), _collectorState);
2517   }
2518   return res;
2519 }
2520 
2521 // Because of the need to lock the free lists and other structures in
2522 // the collector, common to all the generations that the collector is
2523 // collecting, we need the gc_prologues of individual CMS generations
2524 // delegate to their collector. It may have been simpler had the
2525 // current infrastructure allowed one to call a prologue on a
2526 // collector. In the absence of that we have the generation's
2527 // prologue delegate to the collector, which delegates back
2528 // some "local" work to a worker method in the individual generations
2529 // that it's responsible for collecting, while itself doing any
2530 // work common to all generations it's responsible for. A similar
2531 // comment applies to the  gc_epilogue()'s.
2532 // The role of the varaible _between_prologue_and_epilogue is to
2533 // enforce the invocation protocol.
2534 void CMSCollector::gc_prologue(bool full) {
2535   // Call gc_prologue_work() for each CMSGen and PermGen that
2536   // we are responsible for.
2537 
2538   // The following locking discipline assumes that we are only called
2539   // when the world is stopped.
2540   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2541 
2542   // The CMSCollector prologue must call the gc_prologues for the
2543   // "generations" (including PermGen if any) that it's responsible
2544   // for.
2545 
2546   assert(   Thread::current()->is_VM_thread()
2547          || (   CMSScavengeBeforeRemark
2548              && Thread::current()->is_ConcurrentGC_thread()),
2549          "Incorrect thread type for prologue execution");
2550 
2551   if (_between_prologue_and_epilogue) {
2552     // We have already been invoked; this is a gc_prologue delegation
2553     // from yet another CMS generation that we are responsible for, just
2554     // ignore it since all relevant work has already been done.
2555     return;
2556   }
2557 
2558   // set a bit saying prologue has been called; cleared in epilogue
2559   _between_prologue_and_epilogue = true;
2560   // Claim locks for common data structures, then call gc_prologue_work()
2561   // for each CMSGen and PermGen that we are responsible for.
2562 
2563   getFreelistLocks();   // gets free list locks on constituent spaces
2564   bitMapLock()->lock_without_safepoint_check();
2565 
2566   // Should call gc_prologue_work() for all cms gens we are responsible for
2567   bool registerClosure =    _collectorState >= Marking
2568                          && _collectorState < Sweeping;
2569   ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
2570                                                : &_modUnionClosure;
2571   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2572   _permGen->gc_prologue_work(full, registerClosure, muc);
2573 
2574   if (!full) {
2575     stats().record_gc0_begin();
2576   }
2577 }
2578 
2579 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2580   // Delegate to CMScollector which knows how to coordinate between
2581   // this and any other CMS generations that it is responsible for
2582   // collecting.
2583   collector()->gc_prologue(full);
2584 }
2585 
2586 // This is a "private" interface for use by this generation's CMSCollector.
2587 // Not to be called directly by any other entity (for instance,
2588 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2589 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2590   bool registerClosure, ModUnionClosure* modUnionClosure) {
2591   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2592   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2593     "Should be NULL");
2594   if (registerClosure) {
2595     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2596   }
2597   cmsSpace()->gc_prologue();
2598   // Clear stat counters
2599   NOT_PRODUCT(
2600     assert(_numObjectsPromoted == 0, "check");
2601     assert(_numWordsPromoted   == 0, "check");
2602     if (Verbose && PrintGC) {
2603       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2604                           SIZE_FORMAT" bytes concurrently",
2605       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2606     }
2607     _numObjectsAllocated = 0;
2608     _numWordsAllocated   = 0;
2609   )
2610 }
2611 
2612 void CMSCollector::gc_epilogue(bool full) {
2613   // The following locking discipline assumes that we are only called
2614   // when the world is stopped.
2615   assert(SafepointSynchronize::is_at_safepoint(),
2616          "world is stopped assumption");
2617 
2618   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2619   // if linear allocation blocks need to be appropriately marked to allow the
2620   // the blocks to be parsable. We also check here whether we need to nudge the
2621   // CMS collector thread to start a new cycle (if it's not already active).
2622   assert(   Thread::current()->is_VM_thread()
2623          || (   CMSScavengeBeforeRemark
2624              && Thread::current()->is_ConcurrentGC_thread()),
2625          "Incorrect thread type for epilogue execution");
2626 
2627   if (!_between_prologue_and_epilogue) {
2628     // We have already been invoked; this is a gc_epilogue delegation
2629     // from yet another CMS generation that we are responsible for, just
2630     // ignore it since all relevant work has already been done.
2631     return;
2632   }
2633   assert(haveFreelistLocks(), "must have freelist locks");
2634   assert_lock_strong(bitMapLock());
2635 
2636   _cmsGen->gc_epilogue_work(full);
2637   _permGen->gc_epilogue_work(full);
2638 
2639   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2640     // in case sampling was not already enabled, enable it
2641     _start_sampling = true;
2642   }
2643   // reset _eden_chunk_array so sampling starts afresh
2644   _eden_chunk_index = 0;
2645 
2646   size_t cms_used   = _cmsGen->cmsSpace()->used();
2647   size_t perm_used  = _permGen->cmsSpace()->used();
2648 
2649   // update performance counters - this uses a special version of
2650   // update_counters() that allows the utilization to be passed as a
2651   // parameter, avoiding multiple calls to used().
2652   //
2653   _cmsGen->update_counters(cms_used);
2654   _permGen->update_counters(perm_used);
2655 
2656   if (CMSIncrementalMode) {
2657     icms_update_allocation_limits();
2658   }
2659 
2660   bitMapLock()->unlock();
2661   releaseFreelistLocks();
2662 
2663   _between_prologue_and_epilogue = false;  // ready for next cycle
2664 }
2665 
2666 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2667   collector()->gc_epilogue(full);
2668 
2669   // Also reset promotion tracking in par gc thread states.
2670   if (ParallelGCThreads > 0) {
2671     for (uint i = 0; i < ParallelGCThreads; i++) {
2672       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2673     }
2674   }
2675 }
2676 
2677 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2678   assert(!incremental_collection_failed(), "Should have been cleared");
2679   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2680   cmsSpace()->gc_epilogue();
2681     // Print stat counters
2682   NOT_PRODUCT(
2683     assert(_numObjectsAllocated == 0, "check");
2684     assert(_numWordsAllocated == 0, "check");
2685     if (Verbose && PrintGC) {
2686       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2687                           SIZE_FORMAT" bytes",
2688                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2689     }
2690     _numObjectsPromoted = 0;
2691     _numWordsPromoted   = 0;
2692   )
2693 
2694   if (PrintGC && Verbose) {
2695     // Call down the chain in contiguous_available needs the freelistLock
2696     // so print this out before releasing the freeListLock.
2697     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2698                         contiguous_available());
2699   }
2700 }
2701 
2702 #ifndef PRODUCT
2703 bool CMSCollector::have_cms_token() {
2704   Thread* thr = Thread::current();
2705   if (thr->is_VM_thread()) {
2706     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2707   } else if (thr->is_ConcurrentGC_thread()) {
2708     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2709   } else if (thr->is_GC_task_thread()) {
2710     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2711            ParGCRareEvent_lock->owned_by_self();
2712   }
2713   return false;
2714 }
2715 #endif
2716 
2717 // Check reachability of the given heap address in CMS generation,
2718 // treating all other generations as roots.
2719 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2720   // We could "guarantee" below, rather than assert, but i'll
2721   // leave these as "asserts" so that an adventurous debugger
2722   // could try this in the product build provided some subset of
2723   // the conditions were met, provided they were intersted in the
2724   // results and knew that the computation below wouldn't interfere
2725   // with other concurrent computations mutating the structures
2726   // being read or written.
2727   assert(SafepointSynchronize::is_at_safepoint(),
2728          "Else mutations in object graph will make answer suspect");
2729   assert(have_cms_token(), "Should hold cms token");
2730   assert(haveFreelistLocks(), "must hold free list locks");
2731   assert_lock_strong(bitMapLock());
2732 
2733   // Clear the marking bit map array before starting, but, just
2734   // for kicks, first report if the given address is already marked
2735   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2736                 _markBitMap.isMarked(addr) ? "" : " not");
2737 
2738   if (verify_after_remark()) {
2739     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2740     bool result = verification_mark_bm()->isMarked(addr);
2741     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2742                            result ? "IS" : "is NOT");
2743     return result;
2744   } else {
2745     gclog_or_tty->print_cr("Could not compute result");
2746     return false;
2747   }
2748 }
2749 
2750 ////////////////////////////////////////////////////////
2751 // CMS Verification Support
2752 ////////////////////////////////////////////////////////
2753 // Following the remark phase, the following invariant
2754 // should hold -- each object in the CMS heap which is
2755 // marked in markBitMap() should be marked in the verification_mark_bm().
2756 
2757 class VerifyMarkedClosure: public BitMapClosure {
2758   CMSBitMap* _marks;
2759   bool       _failed;
2760 
2761  public:
2762   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2763 
2764   bool do_bit(size_t offset) {
2765     HeapWord* addr = _marks->offsetToHeapWord(offset);
2766     if (!_marks->isMarked(addr)) {
2767       oop(addr)->print_on(gclog_or_tty);
2768       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2769       _failed = true;
2770     }
2771     return true;
2772   }
2773 
2774   bool failed() { return _failed; }
2775 };
2776 
2777 bool CMSCollector::verify_after_remark() {
2778   gclog_or_tty->print(" [Verifying CMS Marking... ");
2779   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2780   static bool init = false;
2781 
2782   assert(SafepointSynchronize::is_at_safepoint(),
2783          "Else mutations in object graph will make answer suspect");
2784   assert(have_cms_token(),
2785          "Else there may be mutual interference in use of "
2786          " verification data structures");
2787   assert(_collectorState > Marking && _collectorState <= Sweeping,
2788          "Else marking info checked here may be obsolete");
2789   assert(haveFreelistLocks(), "must hold free list locks");
2790   assert_lock_strong(bitMapLock());
2791 
2792 
2793   // Allocate marking bit map if not already allocated
2794   if (!init) { // first time
2795     if (!verification_mark_bm()->allocate(_span)) {
2796       return false;
2797     }
2798     init = true;
2799   }
2800 
2801   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2802 
2803   // Turn off refs discovery -- so we will be tracing through refs.
2804   // This is as intended, because by this time
2805   // GC must already have cleared any refs that need to be cleared,
2806   // and traced those that need to be marked; moreover,
2807   // the marking done here is not going to intefere in any
2808   // way with the marking information used by GC.
2809   NoRefDiscovery no_discovery(ref_processor());
2810 
2811   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2812 
2813   // Clear any marks from a previous round
2814   verification_mark_bm()->clear_all();
2815   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2816   verify_work_stacks_empty();
2817 
2818   GenCollectedHeap* gch = GenCollectedHeap::heap();
2819   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2820   // Update the saved marks which may affect the root scans.
2821   gch->save_marks();
2822 
2823   if (CMSRemarkVerifyVariant == 1) {
2824     // In this first variant of verification, we complete
2825     // all marking, then check if the new marks-verctor is
2826     // a subset of the CMS marks-vector.
2827     verify_after_remark_work_1();
2828   } else if (CMSRemarkVerifyVariant == 2) {
2829     // In this second variant of verification, we flag an error
2830     // (i.e. an object reachable in the new marks-vector not reachable
2831     // in the CMS marks-vector) immediately, also indicating the
2832     // identify of an object (A) that references the unmarked object (B) --
2833     // presumably, a mutation to A failed to be picked up by preclean/remark?
2834     verify_after_remark_work_2();
2835   } else {
2836     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2837             CMSRemarkVerifyVariant);
2838   }
2839   gclog_or_tty->print(" done] ");
2840   return true;
2841 }
2842 
2843 void CMSCollector::verify_after_remark_work_1() {
2844   ResourceMark rm;
2845   HandleMark  hm;
2846   GenCollectedHeap* gch = GenCollectedHeap::heap();
2847 
2848   // Mark from roots one level into CMS
2849   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2850   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2851 
2852   gch->gen_process_strong_roots(_cmsGen->level(),
2853                                 true,   // younger gens are roots
2854                                 true,   // activate StrongRootsScope
2855                                 true,   // collecting perm gen
2856                                 SharedHeap::ScanningOption(roots_scanning_options()),
2857                                 &notOlder,
2858                                 true,   // walk code active on stacks
2859                                 NULL);
2860 
2861   // Now mark from the roots
2862   assert(_revisitStack.isEmpty(), "Should be empty");
2863   MarkFromRootsClosure markFromRootsClosure(this, _span,
2864     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
2865     false /* don't yield */, true /* verifying */);
2866   assert(_restart_addr == NULL, "Expected pre-condition");
2867   verification_mark_bm()->iterate(&markFromRootsClosure);
2868   while (_restart_addr != NULL) {
2869     // Deal with stack overflow: by restarting at the indicated
2870     // address.
2871     HeapWord* ra = _restart_addr;
2872     markFromRootsClosure.reset(ra);
2873     _restart_addr = NULL;
2874     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2875   }
2876   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2877   verify_work_stacks_empty();
2878   // Should reset the revisit stack above, since no class tree
2879   // surgery is forthcoming.
2880   _revisitStack.reset(); // throwing away all contents
2881 
2882   // Marking completed -- now verify that each bit marked in
2883   // verification_mark_bm() is also marked in markBitMap(); flag all
2884   // errors by printing corresponding objects.
2885   VerifyMarkedClosure vcl(markBitMap());
2886   verification_mark_bm()->iterate(&vcl);
2887   if (vcl.failed()) {
2888     gclog_or_tty->print("Verification failed");
2889     Universe::heap()->print_on(gclog_or_tty);
2890     fatal("CMS: failed marking verification after remark");
2891   }
2892 }
2893 
2894 void CMSCollector::verify_after_remark_work_2() {
2895   ResourceMark rm;
2896   HandleMark  hm;
2897   GenCollectedHeap* gch = GenCollectedHeap::heap();
2898 
2899   // Mark from roots one level into CMS
2900   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2901                                      markBitMap());
2902   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2903   gch->gen_process_strong_roots(_cmsGen->level(),
2904                                 true,   // younger gens are roots
2905                                 true,   // activate StrongRootsScope
2906                                 true,   // collecting perm gen
2907                                 SharedHeap::ScanningOption(roots_scanning_options()),
2908                                 &notOlder,
2909                                 true,   // walk code active on stacks
2910                                 NULL);
2911 
2912   // Now mark from the roots
2913   assert(_revisitStack.isEmpty(), "Should be empty");
2914   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2915     verification_mark_bm(), markBitMap(), verification_mark_stack());
2916   assert(_restart_addr == NULL, "Expected pre-condition");
2917   verification_mark_bm()->iterate(&markFromRootsClosure);
2918   while (_restart_addr != NULL) {
2919     // Deal with stack overflow: by restarting at the indicated
2920     // address.
2921     HeapWord* ra = _restart_addr;
2922     markFromRootsClosure.reset(ra);
2923     _restart_addr = NULL;
2924     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2925   }
2926   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2927   verify_work_stacks_empty();
2928   // Should reset the revisit stack above, since no class tree
2929   // surgery is forthcoming.
2930   _revisitStack.reset(); // throwing away all contents
2931 
2932   // Marking completed -- now verify that each bit marked in
2933   // verification_mark_bm() is also marked in markBitMap(); flag all
2934   // errors by printing corresponding objects.
2935   VerifyMarkedClosure vcl(markBitMap());
2936   verification_mark_bm()->iterate(&vcl);
2937   assert(!vcl.failed(), "Else verification above should not have succeeded");
2938 }
2939 
2940 void ConcurrentMarkSweepGeneration::save_marks() {
2941   // delegate to CMS space
2942   cmsSpace()->save_marks();
2943   for (uint i = 0; i < ParallelGCThreads; i++) {
2944     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2945   }
2946 }
2947 
2948 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2949   return cmsSpace()->no_allocs_since_save_marks();
2950 }
2951 
2952 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2953                                                                 \
2954 void ConcurrentMarkSweepGeneration::                            \
2955 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2956   cl->set_generation(this);                                     \
2957   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2958   cl->reset_generation();                                       \
2959   save_marks();                                                 \
2960 }
2961 
2962 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2963 
2964 void
2965 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
2966 {
2967   // Not currently implemented; need to do the following. -- ysr.
2968   // dld -- I think that is used for some sort of allocation profiler.  So it
2969   // really means the objects allocated by the mutator since the last
2970   // GC.  We could potentially implement this cheaply by recording only
2971   // the direct allocations in a side data structure.
2972   //
2973   // I think we probably ought not to be required to support these
2974   // iterations at any arbitrary point; I think there ought to be some
2975   // call to enable/disable allocation profiling in a generation/space,
2976   // and the iterator ought to return the objects allocated in the
2977   // gen/space since the enable call, or the last iterator call (which
2978   // will probably be at a GC.)  That way, for gens like CM&S that would
2979   // require some extra data structure to support this, we only pay the
2980   // cost when it's in use...
2981   cmsSpace()->object_iterate_since_last_GC(blk);
2982 }
2983 
2984 void
2985 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
2986   cl->set_generation(this);
2987   younger_refs_in_space_iterate(_cmsSpace, cl);
2988   cl->reset_generation();
2989 }
2990 
2991 void
2992 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
2993   if (freelistLock()->owned_by_self()) {
2994     Generation::oop_iterate(mr, cl);
2995   } else {
2996     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2997     Generation::oop_iterate(mr, cl);
2998   }
2999 }
3000 
3001 void
3002 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
3003   if (freelistLock()->owned_by_self()) {
3004     Generation::oop_iterate(cl);
3005   } else {
3006     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3007     Generation::oop_iterate(cl);
3008   }
3009 }
3010 
3011 void
3012 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3013   if (freelistLock()->owned_by_self()) {
3014     Generation::object_iterate(cl);
3015   } else {
3016     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3017     Generation::object_iterate(cl);
3018   }
3019 }
3020 
3021 void
3022 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3023   if (freelistLock()->owned_by_self()) {
3024     Generation::safe_object_iterate(cl);
3025   } else {
3026     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3027     Generation::safe_object_iterate(cl);
3028   }
3029 }
3030 
3031 void
3032 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
3033 }
3034 
3035 void
3036 ConcurrentMarkSweepGeneration::post_compact() {
3037 }
3038 
3039 void
3040 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3041   // Fix the linear allocation blocks to look like free blocks.
3042 
3043   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3044   // are not called when the heap is verified during universe initialization and
3045   // at vm shutdown.
3046   if (freelistLock()->owned_by_self()) {
3047     cmsSpace()->prepare_for_verify();
3048   } else {
3049     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3050     cmsSpace()->prepare_for_verify();
3051   }
3052 }
3053 
3054 void
3055 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
3056   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3057   // are not called when the heap is verified during universe initialization and
3058   // at vm shutdown.
3059   if (freelistLock()->owned_by_self()) {
3060     cmsSpace()->verify(false /* ignored */);
3061   } else {
3062     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3063     cmsSpace()->verify(false /* ignored */);
3064   }
3065 }
3066 
3067 void CMSCollector::verify(bool allow_dirty /* ignored */) {
3068   _cmsGen->verify(allow_dirty);
3069   _permGen->verify(allow_dirty);
3070 }
3071 
3072 #ifndef PRODUCT
3073 bool CMSCollector::overflow_list_is_empty() const {
3074   assert(_num_par_pushes >= 0, "Inconsistency");
3075   if (_overflow_list == NULL) {
3076     assert(_num_par_pushes == 0, "Inconsistency");
3077   }
3078   return _overflow_list == NULL;
3079 }
3080 
3081 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3082 // merely consolidate assertion checks that appear to occur together frequently.
3083 void CMSCollector::verify_work_stacks_empty() const {
3084   assert(_markStack.isEmpty(), "Marking stack should be empty");
3085   assert(overflow_list_is_empty(), "Overflow list should be empty");
3086 }
3087 
3088 void CMSCollector::verify_overflow_empty() const {
3089   assert(overflow_list_is_empty(), "Overflow list should be empty");
3090   assert(no_preserved_marks(), "No preserved marks");
3091 }
3092 #endif // PRODUCT
3093 
3094 // Decide if we want to enable class unloading as part of the
3095 // ensuing concurrent GC cycle. We will collect the perm gen and
3096 // unload classes if it's the case that:
3097 // (1) an explicit gc request has been made and the flag
3098 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3099 // (2) (a) class unloading is enabled at the command line, and
3100 //     (b) (i)   perm gen threshold has been crossed, or
3101 //         (ii)  old gen is getting really full, or
3102 //         (iii) the previous N CMS collections did not collect the
3103 //               perm gen
3104 // NOTE: Provided there is no change in the state of the heap between
3105 // calls to this method, it should have idempotent results. Moreover,
3106 // its results should be monotonically increasing (i.e. going from 0 to 1,
3107 // but not 1 to 0) between successive calls between which the heap was
3108 // not collected. For the implementation below, it must thus rely on
3109 // the property that concurrent_cycles_since_last_unload()
3110 // will not decrease unless a collection cycle happened and that
3111 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
3112 // themselves also monotonic in that sense. See check_monotonicity()
3113 // below.
3114 bool CMSCollector::update_should_unload_classes() {
3115   _should_unload_classes = false;
3116   // Condition 1 above
3117   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3118     _should_unload_classes = true;
3119   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3120     // Disjuncts 2.b.(i,ii,iii) above
3121     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3122                               CMSClassUnloadingMaxInterval)
3123                            || _permGen->should_concurrent_collect()
3124                            || _cmsGen->is_too_full();
3125   }
3126   return _should_unload_classes;
3127 }
3128 
3129 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3130   bool res = should_concurrent_collect();
3131   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3132   return res;
3133 }
3134 
3135 void CMSCollector::setup_cms_unloading_and_verification_state() {
3136   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3137                              || VerifyBeforeExit;
3138   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
3139                              |   SharedHeap::SO_CodeCache;
3140 
3141   if (should_unload_classes()) {   // Should unload classes this cycle
3142     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3143     set_verifying(should_verify);    // Set verification state for this cycle
3144     return;                            // Nothing else needs to be done at this time
3145   }
3146 
3147   // Not unloading classes this cycle
3148   assert(!should_unload_classes(), "Inconsitency!");
3149   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3150     // We were not verifying, or we _were_ unloading classes in the last cycle,
3151     // AND some verification options are enabled this cycle; in this case,
3152     // we must make sure that the deadness map is allocated if not already so,
3153     // and cleared (if already allocated previously --
3154     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
3155     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
3156       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
3157         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
3158                 "permanent generation verification disabled");
3159         return;  // Note that we leave verification disabled, so we'll retry this
3160                  // allocation next cycle. We _could_ remember this failure
3161                  // and skip further attempts and permanently disable verification
3162                  // attempts if that is considered more desirable.
3163       }
3164       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
3165               "_perm_gen_ver_bit_map inconsistency?");
3166     } else {
3167       perm_gen_verify_bit_map()->clear_all();
3168     }
3169     // Include symbols, strings and code cache elements to prevent their resurrection.
3170     add_root_scanning_option(rso);
3171     set_verifying(true);
3172   } else if (verifying() && !should_verify) {
3173     // We were verifying, but some verification flags got disabled.
3174     set_verifying(false);
3175     // Exclude symbols, strings and code cache elements from root scanning to
3176     // reduce IM and RM pauses.
3177     remove_root_scanning_option(rso);
3178   }
3179 }
3180 
3181 
3182 #ifndef PRODUCT
3183 HeapWord* CMSCollector::block_start(const void* p) const {
3184   const HeapWord* addr = (HeapWord*)p;
3185   if (_span.contains(p)) {
3186     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3187       return _cmsGen->cmsSpace()->block_start(p);
3188     } else {
3189       assert(_permGen->cmsSpace()->is_in_reserved(addr),
3190              "Inconsistent _span?");
3191       return _permGen->cmsSpace()->block_start(p);
3192     }
3193   }
3194   return NULL;
3195 }
3196 #endif
3197 
3198 HeapWord*
3199 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3200                                                    bool   tlab,
3201                                                    bool   parallel) {
3202   assert(!tlab, "Can't deal with TLAB allocation");
3203   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3204   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3205     CMSExpansionCause::_satisfy_allocation);
3206   if (GCExpandToAllocateDelayMillis > 0) {
3207     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3208   }
3209   return have_lock_and_allocate(word_size, tlab);
3210 }
3211 
3212 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3213 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3214 // to CardGeneration and share it...
3215 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3216   return CardGeneration::expand(bytes, expand_bytes);
3217 }
3218 
3219 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3220   CMSExpansionCause::Cause cause)
3221 {
3222 
3223   bool success = expand(bytes, expand_bytes);
3224 
3225   // remember why we expanded; this information is used
3226   // by shouldConcurrentCollect() when making decisions on whether to start
3227   // a new CMS cycle.
3228   if (success) {
3229     set_expansion_cause(cause);
3230     if (PrintGCDetails && Verbose) {
3231       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3232         CMSExpansionCause::to_string(cause));
3233     }
3234   }
3235 }
3236 
3237 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3238   HeapWord* res = NULL;
3239   MutexLocker x(ParGCRareEvent_lock);
3240   while (true) {
3241     // Expansion by some other thread might make alloc OK now:
3242     res = ps->lab.alloc(word_sz);
3243     if (res != NULL) return res;
3244     // If there's not enough expansion space available, give up.
3245     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3246       return NULL;
3247     }
3248     // Otherwise, we try expansion.
3249     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3250       CMSExpansionCause::_allocate_par_lab);
3251     // Now go around the loop and try alloc again;
3252     // A competing par_promote might beat us to the expansion space,
3253     // so we may go around the loop again if promotion fails agaion.
3254     if (GCExpandToAllocateDelayMillis > 0) {
3255       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3256     }
3257   }
3258 }
3259 
3260 
3261 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3262   PromotionInfo* promo) {
3263   MutexLocker x(ParGCRareEvent_lock);
3264   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3265   while (true) {
3266     // Expansion by some other thread might make alloc OK now:
3267     if (promo->ensure_spooling_space()) {
3268       assert(promo->has_spooling_space(),
3269              "Post-condition of successful ensure_spooling_space()");
3270       return true;
3271     }
3272     // If there's not enough expansion space available, give up.
3273     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3274       return false;
3275     }
3276     // Otherwise, we try expansion.
3277     expand(refill_size_bytes, MinHeapDeltaBytes,
3278       CMSExpansionCause::_allocate_par_spooling_space);
3279     // Now go around the loop and try alloc again;
3280     // A competing allocation might beat us to the expansion space,
3281     // so we may go around the loop again if allocation fails again.
3282     if (GCExpandToAllocateDelayMillis > 0) {
3283       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3284     }
3285   }
3286 }
3287 
3288 
3289 
3290 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3291   assert_locked_or_safepoint(Heap_lock);
3292   size_t size = ReservedSpace::page_align_size_down(bytes);
3293   if (size > 0) {
3294     shrink_by(size);
3295   }
3296 }
3297 
3298 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3299   assert_locked_or_safepoint(Heap_lock);
3300   bool result = _virtual_space.expand_by(bytes);
3301   if (result) {
3302     HeapWord* old_end = _cmsSpace->end();
3303     size_t new_word_size =
3304       heap_word_size(_virtual_space.committed_size());
3305     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3306     _bts->resize(new_word_size);  // resize the block offset shared array
3307     Universe::heap()->barrier_set()->resize_covered_region(mr);
3308     // Hmmmm... why doesn't CFLS::set_end verify locking?
3309     // This is quite ugly; FIX ME XXX
3310     _cmsSpace->assert_locked(freelistLock());
3311     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3312 
3313     // update the space and generation capacity counters
3314     if (UsePerfData) {
3315       _space_counters->update_capacity();
3316       _gen_counters->update_all();
3317     }
3318 
3319     if (Verbose && PrintGC) {
3320       size_t new_mem_size = _virtual_space.committed_size();
3321       size_t old_mem_size = new_mem_size - bytes;
3322       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
3323                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3324     }
3325   }
3326   return result;
3327 }
3328 
3329 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3330   assert_locked_or_safepoint(Heap_lock);
3331   bool success = true;
3332   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3333   if (remaining_bytes > 0) {
3334     success = grow_by(remaining_bytes);
3335     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3336   }
3337   return success;
3338 }
3339 
3340 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3341   assert_locked_or_safepoint(Heap_lock);
3342   assert_lock_strong(freelistLock());
3343   // XXX Fix when compaction is implemented.
3344   warning("Shrinking of CMS not yet implemented");
3345   return;
3346 }
3347 
3348 
3349 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3350 // phases.
3351 class CMSPhaseAccounting: public StackObj {
3352  public:
3353   CMSPhaseAccounting(CMSCollector *collector,
3354                      const char *phase,
3355                      bool print_cr = true);
3356   ~CMSPhaseAccounting();
3357 
3358  private:
3359   CMSCollector *_collector;
3360   const char *_phase;
3361   elapsedTimer _wallclock;
3362   bool _print_cr;
3363 
3364  public:
3365   // Not MT-safe; so do not pass around these StackObj's
3366   // where they may be accessed by other threads.
3367   jlong wallclock_millis() {
3368     assert(_wallclock.is_active(), "Wall clock should not stop");
3369     _wallclock.stop();  // to record time
3370     jlong ret = _wallclock.milliseconds();
3371     _wallclock.start(); // restart
3372     return ret;
3373   }
3374 };
3375 
3376 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3377                                        const char *phase,
3378                                        bool print_cr) :
3379   _collector(collector), _phase(phase), _print_cr(print_cr) {
3380 
3381   if (PrintCMSStatistics != 0) {
3382     _collector->resetYields();
3383   }
3384   if (PrintGCDetails && PrintGCTimeStamps) {
3385     gclog_or_tty->date_stamp(PrintGCDateStamps);
3386     gclog_or_tty->stamp();
3387     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
3388       _collector->cmsGen()->short_name(), _phase);
3389   }
3390   _collector->resetTimer();
3391   _wallclock.start();
3392   _collector->startTimer();
3393 }
3394 
3395 CMSPhaseAccounting::~CMSPhaseAccounting() {
3396   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3397   _collector->stopTimer();
3398   _wallclock.stop();
3399   if (PrintGCDetails) {
3400     gclog_or_tty->date_stamp(PrintGCDateStamps);
3401     if (PrintGCTimeStamps) {
3402       gclog_or_tty->stamp();
3403       gclog_or_tty->print(": ");
3404     }
3405     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3406                  _collector->cmsGen()->short_name(),
3407                  _phase, _collector->timerValue(), _wallclock.seconds());
3408     if (_print_cr) {
3409       gclog_or_tty->print_cr("");
3410     }
3411     if (PrintCMSStatistics != 0) {
3412       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3413                     _collector->yields());
3414     }
3415   }
3416 }
3417 
3418 // CMS work
3419 
3420 // Checkpoint the roots into this generation from outside
3421 // this generation. [Note this initial checkpoint need only
3422 // be approximate -- we'll do a catch up phase subsequently.]
3423 void CMSCollector::checkpointRootsInitial(bool asynch) {
3424   assert(_collectorState == InitialMarking, "Wrong collector state");
3425   check_correct_thread_executing();
3426   TraceCMSMemoryManagerStats tms(_collectorState);
3427   ReferenceProcessor* rp = ref_processor();
3428   SpecializationStats::clear();
3429   assert(_restart_addr == NULL, "Control point invariant");
3430   if (asynch) {
3431     // acquire locks for subsequent manipulations
3432     MutexLockerEx x(bitMapLock(),
3433                     Mutex::_no_safepoint_check_flag);
3434     checkpointRootsInitialWork(asynch);
3435     rp->verify_no_references_recorded();
3436     rp->enable_discovery(); // enable ("weak") refs discovery
3437     _collectorState = Marking;
3438   } else {
3439     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3440     // which recognizes if we are a CMS generation, and doesn't try to turn on
3441     // discovery; verify that they aren't meddling.
3442     assert(!rp->discovery_is_atomic(),
3443            "incorrect setting of discovery predicate");
3444     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3445            "ref discovery for this generation kind");
3446     // already have locks
3447     checkpointRootsInitialWork(asynch);
3448     rp->enable_discovery(); // now enable ("weak") refs discovery
3449     _collectorState = Marking;
3450   }
3451   SpecializationStats::print();
3452 }
3453 
3454 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3455   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3456   assert(_collectorState == InitialMarking, "just checking");
3457 
3458   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3459   // precede our marking with a collection of all
3460   // younger generations to keep floating garbage to a minimum.
3461   // XXX: we won't do this for now -- it's an optimization to be done later.
3462 
3463   // already have locks
3464   assert_lock_strong(bitMapLock());
3465   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3466 
3467   // Setup the verification and class unloading state for this
3468   // CMS collection cycle.
3469   setup_cms_unloading_and_verification_state();
3470 
3471   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
3472     PrintGCDetails && Verbose, true, gclog_or_tty);)
3473   if (UseAdaptiveSizePolicy) {
3474     size_policy()->checkpoint_roots_initial_begin();
3475   }
3476 
3477   // Reset all the PLAB chunk arrays if necessary.
3478   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3479     reset_survivor_plab_arrays();
3480   }
3481 
3482   ResourceMark rm;
3483   HandleMark  hm;
3484 
3485   FalseClosure falseClosure;
3486   // In the case of a synchronous collection, we will elide the
3487   // remark step, so it's important to catch all the nmethod oops
3488   // in this step.
3489   // The final 'true' flag to gen_process_strong_roots will ensure this.
3490   // If 'async' is true, we can relax the nmethod tracing.
3491   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3492   GenCollectedHeap* gch = GenCollectedHeap::heap();
3493 
3494   verify_work_stacks_empty();
3495   verify_overflow_empty();
3496 
3497   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3498   // Update the saved marks which may affect the root scans.
3499   gch->save_marks();
3500 
3501   // weak reference processing has not started yet.
3502   ref_processor()->set_enqueuing_is_done(false);
3503 
3504   {
3505     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
3506     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3507     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3508     gch->gen_process_strong_roots(_cmsGen->level(),
3509                                   true,   // younger gens are roots
3510                                   true,   // activate StrongRootsScope
3511                                   true,   // collecting perm gen
3512                                   SharedHeap::ScanningOption(roots_scanning_options()),
3513                                   &notOlder,
3514                                   true,   // walk all of code cache if (so & SO_CodeCache)
3515                                   NULL);
3516   }
3517 
3518   // Clear mod-union table; it will be dirtied in the prologue of
3519   // CMS generation per each younger generation collection.
3520 
3521   assert(_modUnionTable.isAllClear(),
3522        "Was cleared in most recent final checkpoint phase"
3523        " or no bits are set in the gc_prologue before the start of the next "
3524        "subsequent marking phase.");
3525 
3526   // Temporarily disabled, since pre/post-consumption closures don't
3527   // care about precleaned cards
3528   #if 0
3529   {
3530     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
3531                              (HeapWord*)_virtual_space.high());
3532     _ct->ct_bs()->preclean_dirty_cards(mr);
3533   }
3534   #endif
3535 
3536   // Save the end of the used_region of the constituent generations
3537   // to be used to limit the extent of sweep in each generation.
3538   save_sweep_limits();
3539   if (UseAdaptiveSizePolicy) {
3540     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3541   }
3542   verify_overflow_empty();
3543 }
3544 
3545 bool CMSCollector::markFromRoots(bool asynch) {
3546   // we might be tempted to assert that:
3547   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3548   //        "inconsistent argument?");
3549   // However that wouldn't be right, because it's possible that
3550   // a safepoint is indeed in progress as a younger generation
3551   // stop-the-world GC happens even as we mark in this generation.
3552   assert(_collectorState == Marking, "inconsistent state?");
3553   check_correct_thread_executing();
3554   verify_overflow_empty();
3555 
3556   bool res;
3557   if (asynch) {
3558 
3559     // Start the timers for adaptive size policy for the concurrent phases
3560     // Do it here so that the foreground MS can use the concurrent
3561     // timer since a foreground MS might has the sweep done concurrently
3562     // or STW.
3563     if (UseAdaptiveSizePolicy) {
3564       size_policy()->concurrent_marking_begin();
3565     }
3566 
3567     // Weak ref discovery note: We may be discovering weak
3568     // refs in this generation concurrent (but interleaved) with
3569     // weak ref discovery by a younger generation collector.
3570 
3571     CMSTokenSyncWithLocks ts(true, bitMapLock());
3572     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3573     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3574     res = markFromRootsWork(asynch);
3575     if (res) {
3576       _collectorState = Precleaning;
3577     } else { // We failed and a foreground collection wants to take over
3578       assert(_foregroundGCIsActive, "internal state inconsistency");
3579       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3580       if (PrintGCDetails) {
3581         gclog_or_tty->print_cr("bailing out to foreground collection");
3582       }
3583     }
3584     if (UseAdaptiveSizePolicy) {
3585       size_policy()->concurrent_marking_end();
3586     }
3587   } else {
3588     assert(SafepointSynchronize::is_at_safepoint(),
3589            "inconsistent with asynch == false");
3590     if (UseAdaptiveSizePolicy) {
3591       size_policy()->ms_collection_marking_begin();
3592     }
3593     // already have locks
3594     res = markFromRootsWork(asynch);
3595     _collectorState = FinalMarking;
3596     if (UseAdaptiveSizePolicy) {
3597       GenCollectedHeap* gch = GenCollectedHeap::heap();
3598       size_policy()->ms_collection_marking_end(gch->gc_cause());
3599     }
3600   }
3601   verify_overflow_empty();
3602   return res;
3603 }
3604 
3605 bool CMSCollector::markFromRootsWork(bool asynch) {
3606   // iterate over marked bits in bit map, doing a full scan and mark
3607   // from these roots using the following algorithm:
3608   // . if oop is to the right of the current scan pointer,
3609   //   mark corresponding bit (we'll process it later)
3610   // . else (oop is to left of current scan pointer)
3611   //   push oop on marking stack
3612   // . drain the marking stack
3613 
3614   // Note that when we do a marking step we need to hold the
3615   // bit map lock -- recall that direct allocation (by mutators)
3616   // and promotion (by younger generation collectors) is also
3617   // marking the bit map. [the so-called allocate live policy.]
3618   // Because the implementation of bit map marking is not
3619   // robust wrt simultaneous marking of bits in the same word,
3620   // we need to make sure that there is no such interference
3621   // between concurrent such updates.
3622 
3623   // already have locks
3624   assert_lock_strong(bitMapLock());
3625 
3626   // Clear the revisit stack, just in case there are any
3627   // obsolete contents from a short-circuited previous CMS cycle.
3628   _revisitStack.reset();
3629   verify_work_stacks_empty();
3630   verify_overflow_empty();
3631   assert(_revisitStack.isEmpty(), "tabula rasa");
3632   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
3633   bool result = false;
3634   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3635     result = do_marking_mt(asynch);
3636   } else {
3637     result = do_marking_st(asynch);
3638   }
3639   return result;
3640 }
3641 
3642 // Forward decl
3643 class CMSConcMarkingTask;
3644 
3645 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3646   CMSCollector*       _collector;
3647   CMSConcMarkingTask* _task;
3648   bool _yield;
3649  protected:
3650   virtual void yield();
3651  public:
3652   // "n_threads" is the number of threads to be terminated.
3653   // "queue_set" is a set of work queues of other threads.
3654   // "collector" is the CMS collector associated with this task terminator.
3655   // "yield" indicates whether we need the gang as a whole to yield.
3656   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
3657                            CMSCollector* collector, bool yield) :
3658     ParallelTaskTerminator(n_threads, queue_set),
3659     _collector(collector),
3660     _yield(yield) { }
3661 
3662   void set_task(CMSConcMarkingTask* task) {
3663     _task = task;
3664   }
3665 };
3666 
3667 // MT Concurrent Marking Task
3668 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3669   CMSCollector* _collector;
3670   YieldingFlexibleWorkGang* _workers;        // the whole gang
3671   int           _n_workers;                  // requested/desired # workers
3672   bool          _asynch;
3673   bool          _result;
3674   CompactibleFreeListSpace*  _cms_space;
3675   CompactibleFreeListSpace* _perm_space;
3676   HeapWord*     _global_finger;
3677   HeapWord*     _restart_addr;
3678 
3679   //  Exposed here for yielding support
3680   Mutex* const _bit_map_lock;
3681 
3682   // The per thread work queues, available here for stealing
3683   OopTaskQueueSet*  _task_queues;
3684   CMSConcMarkingTerminator _term;
3685 
3686  public:
3687   CMSConcMarkingTask(CMSCollector* collector,
3688                  CompactibleFreeListSpace* cms_space,
3689                  CompactibleFreeListSpace* perm_space,
3690                  bool asynch, int n_workers,
3691                  YieldingFlexibleWorkGang* workers,
3692                  OopTaskQueueSet* task_queues):
3693     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3694     _collector(collector),
3695     _cms_space(cms_space),
3696     _perm_space(perm_space),
3697     _asynch(asynch), _n_workers(n_workers), _result(true),
3698     _workers(workers), _task_queues(task_queues),
3699     _term(n_workers, task_queues, _collector, asynch),
3700     _bit_map_lock(collector->bitMapLock())
3701   {
3702     assert(n_workers <= workers->total_workers(),
3703            "Else termination won't work correctly today"); // XXX FIX ME!
3704     _requested_size = n_workers;
3705     _term.set_task(this);
3706     assert(_cms_space->bottom() < _perm_space->bottom(),
3707            "Finger incorrectly initialized below");
3708     _restart_addr = _global_finger = _cms_space->bottom();
3709   }
3710 
3711 
3712   OopTaskQueueSet* task_queues()  { return _task_queues; }
3713 
3714   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3715 
3716   HeapWord** global_finger_addr() { return &_global_finger; }
3717 
3718   CMSConcMarkingTerminator* terminator() { return &_term; }
3719 
3720   void work(int i);
3721 
3722   virtual void coordinator_yield();  // stuff done by coordinator
3723   bool result() { return _result; }
3724 
3725   void reset(HeapWord* ra) {
3726     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3727     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
3728     assert(ra             <  _perm_space->end(), "ra too large");
3729     _restart_addr = _global_finger = ra;
3730     _term.reset_for_reuse();
3731   }
3732 
3733   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3734                                            OopTaskQueue* work_q);
3735 
3736  private:
3737   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3738   void do_work_steal(int i);
3739   void bump_global_finger(HeapWord* f);
3740 };
3741 
3742 void CMSConcMarkingTerminator::yield() {
3743   if (ConcurrentMarkSweepThread::should_yield() &&
3744       !_collector->foregroundGCIsActive() &&
3745       _yield) {
3746     _task->yield();
3747   } else {
3748     ParallelTaskTerminator::yield();
3749   }
3750 }
3751 
3752 ////////////////////////////////////////////////////////////////
3753 // Concurrent Marking Algorithm Sketch
3754 ////////////////////////////////////////////////////////////////
3755 // Until all tasks exhausted (both spaces):
3756 // -- claim next available chunk
3757 // -- bump global finger via CAS
3758 // -- find first object that starts in this chunk
3759 //    and start scanning bitmap from that position
3760 // -- scan marked objects for oops
3761 // -- CAS-mark target, and if successful:
3762 //    . if target oop is above global finger (volatile read)
3763 //      nothing to do
3764 //    . if target oop is in chunk and above local finger
3765 //        then nothing to do
3766 //    . else push on work-queue
3767 // -- Deal with possible overflow issues:
3768 //    . local work-queue overflow causes stuff to be pushed on
3769 //      global (common) overflow queue
3770 //    . always first empty local work queue
3771 //    . then get a batch of oops from global work queue if any
3772 //    . then do work stealing
3773 // -- When all tasks claimed (both spaces)
3774 //    and local work queue empty,
3775 //    then in a loop do:
3776 //    . check global overflow stack; steal a batch of oops and trace
3777 //    . try to steal from other threads oif GOS is empty
3778 //    . if neither is available, offer termination
3779 // -- Terminate and return result
3780 //
3781 void CMSConcMarkingTask::work(int i) {
3782   elapsedTimer _timer;
3783   ResourceMark rm;
3784   HandleMark hm;
3785 
3786   DEBUG_ONLY(_collector->verify_overflow_empty();)
3787 
3788   // Before we begin work, our work queue should be empty
3789   assert(work_queue(i)->size() == 0, "Expected to be empty");
3790   // Scan the bitmap covering _cms_space, tracing through grey objects.
3791   _timer.start();
3792   do_scan_and_mark(i, _cms_space);
3793   _timer.stop();
3794   if (PrintCMSStatistics != 0) {
3795     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3796       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3797   }
3798 
3799   // ... do the same for the _perm_space
3800   _timer.reset();
3801   _timer.start();
3802   do_scan_and_mark(i, _perm_space);
3803   _timer.stop();
3804   if (PrintCMSStatistics != 0) {
3805     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
3806       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3807   }
3808 
3809   // ... do work stealing
3810   _timer.reset();
3811   _timer.start();
3812   do_work_steal(i);
3813   _timer.stop();
3814   if (PrintCMSStatistics != 0) {
3815     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3816       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3817   }
3818   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3819   assert(work_queue(i)->size() == 0, "Should have been emptied");
3820   // Note that under the current task protocol, the
3821   // following assertion is true even of the spaces
3822   // expanded since the completion of the concurrent
3823   // marking. XXX This will likely change under a strict
3824   // ABORT semantics.
3825   assert(_global_finger >  _cms_space->end() &&
3826          _global_finger >= _perm_space->end(),
3827          "All tasks have been completed");
3828   DEBUG_ONLY(_collector->verify_overflow_empty();)
3829 }
3830 
3831 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3832   HeapWord* read = _global_finger;
3833   HeapWord* cur  = read;
3834   while (f > read) {
3835     cur = read;
3836     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3837     if (cur == read) {
3838       // our cas succeeded
3839       assert(_global_finger >= f, "protocol consistency");
3840       break;
3841     }
3842   }
3843 }
3844 
3845 // This is really inefficient, and should be redone by
3846 // using (not yet available) block-read and -write interfaces to the
3847 // stack and the work_queue. XXX FIX ME !!!
3848 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3849                                                       OopTaskQueue* work_q) {
3850   // Fast lock-free check
3851   if (ovflw_stk->length() == 0) {
3852     return false;
3853   }
3854   assert(work_q->size() == 0, "Shouldn't steal");
3855   MutexLockerEx ml(ovflw_stk->par_lock(),
3856                    Mutex::_no_safepoint_check_flag);
3857   // Grab up to 1/4 the size of the work queue
3858   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3859                     (size_t)ParGCDesiredObjsFromOverflowList);
3860   num = MIN2(num, ovflw_stk->length());
3861   for (int i = (int) num; i > 0; i--) {
3862     oop cur = ovflw_stk->pop();
3863     assert(cur != NULL, "Counted wrong?");
3864     work_q->push(cur);
3865   }
3866   return num > 0;
3867 }
3868 
3869 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3870   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3871   int n_tasks = pst->n_tasks();
3872   // We allow that there may be no tasks to do here because
3873   // we are restarting after a stack overflow.
3874   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3875   int nth_task = 0;
3876 
3877   HeapWord* aligned_start = sp->bottom();
3878   if (sp->used_region().contains(_restart_addr)) {
3879     // Align down to a card boundary for the start of 0th task
3880     // for this space.
3881     aligned_start =
3882       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3883                                  CardTableModRefBS::card_size);
3884   }
3885 
3886   size_t chunk_size = sp->marking_task_size();
3887   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3888     // Having claimed the nth task in this space,
3889     // compute the chunk that it corresponds to:
3890     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3891                                aligned_start + (nth_task+1)*chunk_size);
3892     // Try and bump the global finger via a CAS;
3893     // note that we need to do the global finger bump
3894     // _before_ taking the intersection below, because
3895     // the task corresponding to that region will be
3896     // deemed done even if the used_region() expands
3897     // because of allocation -- as it almost certainly will
3898     // during start-up while the threads yield in the
3899     // closure below.
3900     HeapWord* finger = span.end();
3901     bump_global_finger(finger);   // atomically
3902     // There are null tasks here corresponding to chunks
3903     // beyond the "top" address of the space.
3904     span = span.intersection(sp->used_region());
3905     if (!span.is_empty()) {  // Non-null task
3906       HeapWord* prev_obj;
3907       assert(!span.contains(_restart_addr) || nth_task == 0,
3908              "Inconsistency");
3909       if (nth_task == 0) {
3910         // For the 0th task, we'll not need to compute a block_start.
3911         if (span.contains(_restart_addr)) {
3912           // In the case of a restart because of stack overflow,
3913           // we might additionally skip a chunk prefix.
3914           prev_obj = _restart_addr;
3915         } else {
3916           prev_obj = span.start();
3917         }
3918       } else {
3919         // We want to skip the first object because
3920         // the protocol is to scan any object in its entirety
3921         // that _starts_ in this span; a fortiori, any
3922         // object starting in an earlier span is scanned
3923         // as part of an earlier claimed task.
3924         // Below we use the "careful" version of block_start
3925         // so we do not try to navigate uninitialized objects.
3926         prev_obj = sp->block_start_careful(span.start());
3927         // Below we use a variant of block_size that uses the
3928         // Printezis bits to avoid waiting for allocated
3929         // objects to become initialized/parsable.
3930         while (prev_obj < span.start()) {
3931           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3932           if (sz > 0) {
3933             prev_obj += sz;
3934           } else {
3935             // In this case we may end up doing a bit of redundant
3936             // scanning, but that appears unavoidable, short of
3937             // locking the free list locks; see bug 6324141.
3938             break;
3939           }
3940         }
3941       }
3942       if (prev_obj < span.end()) {
3943         MemRegion my_span = MemRegion(prev_obj, span.end());
3944         // Do the marking work within a non-empty span --
3945         // the last argument to the constructor indicates whether the
3946         // iteration should be incremental with periodic yields.
3947         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3948                                     &_collector->_markBitMap,
3949                                     work_queue(i),
3950                                     &_collector->_markStack,
3951                                     &_collector->_revisitStack,
3952                                     _asynch);
3953         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3954       } // else nothing to do for this task
3955     }   // else nothing to do for this task
3956   }
3957   // We'd be tempted to assert here that since there are no
3958   // more tasks left to claim in this space, the global_finger
3959   // must exceed space->top() and a fortiori space->end(). However,
3960   // that would not quite be correct because the bumping of
3961   // global_finger occurs strictly after the claiming of a task,
3962   // so by the time we reach here the global finger may not yet
3963   // have been bumped up by the thread that claimed the last
3964   // task.
3965   pst->all_tasks_completed();
3966 }
3967 
3968 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
3969  private:
3970   MemRegion     _span;
3971   CMSBitMap*    _bit_map;
3972   CMSMarkStack* _overflow_stack;
3973   OopTaskQueue* _work_queue;
3974  protected:
3975   DO_OOP_WORK_DEFN
3976  public:
3977   Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
3978                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
3979                          CMSMarkStack* revisit_stack):
3980     Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
3981     _span(_collector->_span),
3982     _work_queue(work_queue),
3983     _bit_map(bit_map),
3984     _overflow_stack(overflow_stack)
3985   { }
3986   virtual void do_oop(oop* p);
3987   virtual void do_oop(narrowOop* p);
3988   void trim_queue(size_t max);
3989   void handle_stack_overflow(HeapWord* lost);
3990 };
3991 
3992 // Grey object scanning during work stealing phase --
3993 // the salient assumption here is that any references
3994 // that are in these stolen objects being scanned must
3995 // already have been initialized (else they would not have
3996 // been published), so we do not need to check for
3997 // uninitialized objects before pushing here.
3998 void Par_ConcMarkingClosure::do_oop(oop obj) {
3999   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4000   HeapWord* addr = (HeapWord*)obj;
4001   // Check if oop points into the CMS generation
4002   // and is not marked
4003   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4004     // a white object ...
4005     // If we manage to "claim" the object, by being the
4006     // first thread to mark it, then we push it on our
4007     // marking stack
4008     if (_bit_map->par_mark(addr)) {     // ... now grey
4009       // push on work queue (grey set)
4010       bool simulate_overflow = false;
4011       NOT_PRODUCT(
4012         if (CMSMarkStackOverflowALot &&
4013             _collector->simulate_overflow()) {
4014           // simulate a stack overflow
4015           simulate_overflow = true;
4016         }
4017       )
4018       if (simulate_overflow ||
4019           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4020         // stack overflow
4021         if (PrintCMSStatistics != 0) {
4022           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4023                                  SIZE_FORMAT, _overflow_stack->capacity());
4024         }
4025         // We cannot assert that the overflow stack is full because
4026         // it may have been emptied since.
4027         assert(simulate_overflow ||
4028                _work_queue->size() == _work_queue->max_elems(),
4029               "Else push should have succeeded");
4030         handle_stack_overflow(addr);
4031       }
4032     } // Else, some other thread got there first
4033   }
4034 }
4035 
4036 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4037 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4038 
4039 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4040   while (_work_queue->size() > max) {
4041     oop new_oop;
4042     if (_work_queue->pop_local(new_oop)) {
4043       assert(new_oop->is_oop(), "Should be an oop");
4044       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4045       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4046       assert(new_oop->is_parsable(), "Should be parsable");
4047       new_oop->oop_iterate(this);  // do_oop() above
4048     }
4049   }
4050 }
4051 
4052 // Upon stack overflow, we discard (part of) the stack,
4053 // remembering the least address amongst those discarded
4054 // in CMSCollector's _restart_address.
4055 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4056   // We need to do this under a mutex to prevent other
4057   // workers from interfering with the work done below.
4058   MutexLockerEx ml(_overflow_stack->par_lock(),
4059                    Mutex::_no_safepoint_check_flag);
4060   // Remember the least grey address discarded
4061   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4062   _collector->lower_restart_addr(ra);
4063   _overflow_stack->reset();  // discard stack contents
4064   _overflow_stack->expand(); // expand the stack if possible
4065 }
4066 
4067 
4068 void CMSConcMarkingTask::do_work_steal(int i) {
4069   OopTaskQueue* work_q = work_queue(i);
4070   oop obj_to_scan;
4071   CMSBitMap* bm = &(_collector->_markBitMap);
4072   CMSMarkStack* ovflw = &(_collector->_markStack);
4073   CMSMarkStack* revisit = &(_collector->_revisitStack);
4074   int* seed = _collector->hash_seed(i);
4075   Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw, revisit);
4076   while (true) {
4077     cl.trim_queue(0);
4078     assert(work_q->size() == 0, "Should have been emptied above");
4079     if (get_work_from_overflow_stack(ovflw, work_q)) {
4080       // Can't assert below because the work obtained from the
4081       // overflow stack may already have been stolen from us.
4082       // assert(work_q->size() > 0, "Work from overflow stack");
4083       continue;
4084     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4085       assert(obj_to_scan->is_oop(), "Should be an oop");
4086       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4087       obj_to_scan->oop_iterate(&cl);
4088     } else if (terminator()->offer_termination()) {
4089       assert(work_q->size() == 0, "Impossible!");
4090       break;
4091     }
4092   }
4093 }
4094 
4095 // This is run by the CMS (coordinator) thread.
4096 void CMSConcMarkingTask::coordinator_yield() {
4097   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4098          "CMS thread should hold CMS token");
4099   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4100   // First give up the locks, then yield, then re-lock
4101   // We should probably use a constructor/destructor idiom to
4102   // do this unlock/lock or modify the MutexUnlocker class to
4103   // serve our purpose. XXX
4104   assert_lock_strong(_bit_map_lock);
4105   _bit_map_lock->unlock();
4106   ConcurrentMarkSweepThread::desynchronize(true);
4107   ConcurrentMarkSweepThread::acknowledge_yield_request();
4108   _collector->stopTimer();
4109   if (PrintCMSStatistics != 0) {
4110     _collector->incrementYields();
4111   }
4112   _collector->icms_wait();
4113 
4114   // It is possible for whichever thread initiated the yield request
4115   // not to get a chance to wake up and take the bitmap lock between
4116   // this thread releasing it and reacquiring it. So, while the
4117   // should_yield() flag is on, let's sleep for a bit to give the
4118   // other thread a chance to wake up. The limit imposed on the number
4119   // of iterations is defensive, to avoid any unforseen circumstances
4120   // putting us into an infinite loop. Since it's always been this
4121   // (coordinator_yield()) method that was observed to cause the
4122   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4123   // which is by default non-zero. For the other seven methods that
4124   // also perform the yield operation, as are using a different
4125   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4126   // can enable the sleeping for those methods too, if necessary.
4127   // See 6442774.
4128   //
4129   // We really need to reconsider the synchronization between the GC
4130   // thread and the yield-requesting threads in the future and we
4131   // should really use wait/notify, which is the recommended
4132   // way of doing this type of interaction. Additionally, we should
4133   // consolidate the eight methods that do the yield operation and they
4134   // are almost identical into one for better maintenability and
4135   // readability. See 6445193.
4136   //
4137   // Tony 2006.06.29
4138   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4139                    ConcurrentMarkSweepThread::should_yield() &&
4140                    !CMSCollector::foregroundGCIsActive(); ++i) {
4141     os::sleep(Thread::current(), 1, false);
4142     ConcurrentMarkSweepThread::acknowledge_yield_request();
4143   }
4144 
4145   ConcurrentMarkSweepThread::synchronize(true);
4146   _bit_map_lock->lock_without_safepoint_check();
4147   _collector->startTimer();
4148 }
4149 
4150 bool CMSCollector::do_marking_mt(bool asynch) {
4151   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4152   // In the future this would be determined ergonomically, based
4153   // on #cpu's, # active mutator threads (and load), and mutation rate.
4154   int num_workers = ConcGCThreads;
4155 
4156   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4157   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
4158 
4159   CMSConcMarkingTask tsk(this, cms_space, perm_space,
4160                          asynch, num_workers /* number requested XXX */,
4161                          conc_workers(), task_queues());
4162 
4163   // Since the actual number of workers we get may be different
4164   // from the number we requested above, do we need to do anything different
4165   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4166   // class?? XXX
4167   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4168   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
4169 
4170   // Refs discovery is already non-atomic.
4171   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4172   // Mutate the Refs discovery so it is MT during the
4173   // multi-threaded marking phase.
4174   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
4175   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
4176   conc_workers()->start_task(&tsk);
4177   while (tsk.yielded()) {
4178     tsk.coordinator_yield();
4179     conc_workers()->continue_task(&tsk);
4180   }
4181   // If the task was aborted, _restart_addr will be non-NULL
4182   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4183   while (_restart_addr != NULL) {
4184     // XXX For now we do not make use of ABORTED state and have not
4185     // yet implemented the right abort semantics (even in the original
4186     // single-threaded CMS case). That needs some more investigation
4187     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4188     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4189     // If _restart_addr is non-NULL, a marking stack overflow
4190     // occurred; we need to do a fresh marking iteration from the
4191     // indicated restart address.
4192     if (_foregroundGCIsActive && asynch) {
4193       // We may be running into repeated stack overflows, having
4194       // reached the limit of the stack size, while making very
4195       // slow forward progress. It may be best to bail out and
4196       // let the foreground collector do its job.
4197       // Clear _restart_addr, so that foreground GC
4198       // works from scratch. This avoids the headache of
4199       // a "rescan" which would otherwise be needed because
4200       // of the dirty mod union table & card table.
4201       _restart_addr = NULL;
4202       return false;
4203     }
4204     // Adjust the task to restart from _restart_addr
4205     tsk.reset(_restart_addr);
4206     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4207                   _restart_addr);
4208     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
4209                   _restart_addr);
4210     _restart_addr = NULL;
4211     // Get the workers going again
4212     conc_workers()->start_task(&tsk);
4213     while (tsk.yielded()) {
4214       tsk.coordinator_yield();
4215       conc_workers()->continue_task(&tsk);
4216     }
4217   }
4218   assert(tsk.completed(), "Inconsistency");
4219   assert(tsk.result() == true, "Inconsistency");
4220   return true;
4221 }
4222 
4223 bool CMSCollector::do_marking_st(bool asynch) {
4224   ResourceMark rm;
4225   HandleMark   hm;
4226 
4227   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4228     &_markStack, &_revisitStack, CMSYield && asynch);
4229   // the last argument to iterate indicates whether the iteration
4230   // should be incremental with periodic yields.
4231   _markBitMap.iterate(&markFromRootsClosure);
4232   // If _restart_addr is non-NULL, a marking stack overflow
4233   // occurred; we need to do a fresh iteration from the
4234   // indicated restart address.
4235   while (_restart_addr != NULL) {
4236     if (_foregroundGCIsActive && asynch) {
4237       // We may be running into repeated stack overflows, having
4238       // reached the limit of the stack size, while making very
4239       // slow forward progress. It may be best to bail out and
4240       // let the foreground collector do its job.
4241       // Clear _restart_addr, so that foreground GC
4242       // works from scratch. This avoids the headache of
4243       // a "rescan" which would otherwise be needed because
4244       // of the dirty mod union table & card table.
4245       _restart_addr = NULL;
4246       return false;  // indicating failure to complete marking
4247     }
4248     // Deal with stack overflow:
4249     // we restart marking from _restart_addr
4250     HeapWord* ra = _restart_addr;
4251     markFromRootsClosure.reset(ra);
4252     _restart_addr = NULL;
4253     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4254   }
4255   return true;
4256 }
4257 
4258 void CMSCollector::preclean() {
4259   check_correct_thread_executing();
4260   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4261   verify_work_stacks_empty();
4262   verify_overflow_empty();
4263   _abort_preclean = false;
4264   if (CMSPrecleaningEnabled) {
4265     _eden_chunk_index = 0;
4266     size_t used = get_eden_used();
4267     size_t capacity = get_eden_capacity();
4268     // Don't start sampling unless we will get sufficiently
4269     // many samples.
4270     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4271                 * CMSScheduleRemarkEdenPenetration)) {
4272       _start_sampling = true;
4273     } else {
4274       _start_sampling = false;
4275     }
4276     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4277     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4278     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4279   }
4280   CMSTokenSync x(true); // is cms thread
4281   if (CMSPrecleaningEnabled) {
4282     sample_eden();
4283     _collectorState = AbortablePreclean;
4284   } else {
4285     _collectorState = FinalMarking;
4286   }
4287   verify_work_stacks_empty();
4288   verify_overflow_empty();
4289 }
4290 
4291 // Try and schedule the remark such that young gen
4292 // occupancy is CMSScheduleRemarkEdenPenetration %.
4293 void CMSCollector::abortable_preclean() {
4294   check_correct_thread_executing();
4295   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4296   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4297 
4298   // If Eden's current occupancy is below this threshold,
4299   // immediately schedule the remark; else preclean
4300   // past the next scavenge in an effort to
4301   // schedule the pause as described avove. By choosing
4302   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4303   // we will never do an actual abortable preclean cycle.
4304   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4305     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4306     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4307     // We need more smarts in the abortable preclean
4308     // loop below to deal with cases where allocation
4309     // in young gen is very very slow, and our precleaning
4310     // is running a losing race against a horde of
4311     // mutators intent on flooding us with CMS updates
4312     // (dirty cards).
4313     // One, admittedly dumb, strategy is to give up
4314     // after a certain number of abortable precleaning loops
4315     // or after a certain maximum time. We want to make
4316     // this smarter in the next iteration.
4317     // XXX FIX ME!!! YSR
4318     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4319     while (!(should_abort_preclean() ||
4320              ConcurrentMarkSweepThread::should_terminate())) {
4321       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4322       cumworkdone += workdone;
4323       loops++;
4324       // Voluntarily terminate abortable preclean phase if we have
4325       // been at it for too long.
4326       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4327           loops >= CMSMaxAbortablePrecleanLoops) {
4328         if (PrintGCDetails) {
4329           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4330         }
4331         break;
4332       }
4333       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4334         if (PrintGCDetails) {
4335           gclog_or_tty->print(" CMS: abort preclean due to time ");
4336         }
4337         break;
4338       }
4339       // If we are doing little work each iteration, we should
4340       // take a short break.
4341       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4342         // Sleep for some time, waiting for work to accumulate
4343         stopTimer();
4344         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4345         startTimer();
4346         waited++;
4347       }
4348     }
4349     if (PrintCMSStatistics > 0) {
4350       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4351                           loops, waited, cumworkdone);
4352     }
4353   }
4354   CMSTokenSync x(true); // is cms thread
4355   if (_collectorState != Idling) {
4356     assert(_collectorState == AbortablePreclean,
4357            "Spontaneous state transition?");
4358     _collectorState = FinalMarking;
4359   } // Else, a foreground collection completed this CMS cycle.
4360   return;
4361 }
4362 
4363 // Respond to an Eden sampling opportunity
4364 void CMSCollector::sample_eden() {
4365   // Make sure a young gc cannot sneak in between our
4366   // reading and recording of a sample.
4367   assert(Thread::current()->is_ConcurrentGC_thread(),
4368          "Only the cms thread may collect Eden samples");
4369   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4370          "Should collect samples while holding CMS token");
4371   if (!_start_sampling) {
4372     return;
4373   }
4374   if (_eden_chunk_array) {
4375     if (_eden_chunk_index < _eden_chunk_capacity) {
4376       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4377       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4378              "Unexpected state of Eden");
4379       // We'd like to check that what we just sampled is an oop-start address;
4380       // however, we cannot do that here since the object may not yet have been
4381       // initialized. So we'll instead do the check when we _use_ this sample
4382       // later.
4383       if (_eden_chunk_index == 0 ||
4384           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4385                          _eden_chunk_array[_eden_chunk_index-1])
4386            >= CMSSamplingGrain)) {
4387         _eden_chunk_index++;  // commit sample
4388       }
4389     }
4390   }
4391   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4392     size_t used = get_eden_used();
4393     size_t capacity = get_eden_capacity();
4394     assert(used <= capacity, "Unexpected state of Eden");
4395     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4396       _abort_preclean = true;
4397     }
4398   }
4399 }
4400 
4401 
4402 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4403   assert(_collectorState == Precleaning ||
4404          _collectorState == AbortablePreclean, "incorrect state");
4405   ResourceMark rm;
4406   HandleMark   hm;
4407   // Do one pass of scrubbing the discovered reference lists
4408   // to remove any reference objects with strongly-reachable
4409   // referents.
4410   if (clean_refs) {
4411     ReferenceProcessor* rp = ref_processor();
4412     CMSPrecleanRefsYieldClosure yield_cl(this);
4413     assert(rp->span().equals(_span), "Spans should be equal");
4414     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4415                                    &_markStack, &_revisitStack,
4416                                    true /* preclean */);
4417     CMSDrainMarkingStackClosure complete_trace(this,
4418                                    _span, &_markBitMap, &_markStack,
4419                                    &keep_alive, true /* preclean */);
4420 
4421     // We don't want this step to interfere with a young
4422     // collection because we don't want to take CPU
4423     // or memory bandwidth away from the young GC threads
4424     // (which may be as many as there are CPUs).
4425     // Note that we don't need to protect ourselves from
4426     // interference with mutators because they can't
4427     // manipulate the discovered reference lists nor affect
4428     // the computed reachability of the referents, the
4429     // only properties manipulated by the precleaning
4430     // of these reference lists.
4431     stopTimer();
4432     CMSTokenSyncWithLocks x(true /* is cms thread */,
4433                             bitMapLock());
4434     startTimer();
4435     sample_eden();
4436 
4437     // The following will yield to allow foreground
4438     // collection to proceed promptly. XXX YSR:
4439     // The code in this method may need further
4440     // tweaking for better performance and some restructuring
4441     // for cleaner interfaces.
4442     rp->preclean_discovered_references(
4443           rp->is_alive_non_header(), &keep_alive, &complete_trace,
4444           &yield_cl, should_unload_classes());
4445   }
4446 
4447   if (clean_survivor) {  // preclean the active survivor space(s)
4448     assert(_young_gen->kind() == Generation::DefNew ||
4449            _young_gen->kind() == Generation::ParNew ||
4450            _young_gen->kind() == Generation::ASParNew,
4451          "incorrect type for cast");
4452     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4453     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4454                              &_markBitMap, &_modUnionTable,
4455                              &_markStack, &_revisitStack,
4456                              true /* precleaning phase */);
4457     stopTimer();
4458     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4459                              bitMapLock());
4460     startTimer();
4461     unsigned int before_count =
4462       GenCollectedHeap::heap()->total_collections();
4463     SurvivorSpacePrecleanClosure
4464       sss_cl(this, _span, &_markBitMap, &_markStack,
4465              &pam_cl, before_count, CMSYield);
4466     DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4467     dng->from()->object_iterate_careful(&sss_cl);
4468     dng->to()->object_iterate_careful(&sss_cl);
4469   }
4470   MarkRefsIntoAndScanClosure
4471     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4472              &_markStack, &_revisitStack, this, CMSYield,
4473              true /* precleaning phase */);
4474   // CAUTION: The following closure has persistent state that may need to
4475   // be reset upon a decrease in the sequence of addresses it
4476   // processes.
4477   ScanMarkedObjectsAgainCarefullyClosure
4478     smoac_cl(this, _span,
4479       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
4480 
4481   // Preclean dirty cards in ModUnionTable and CardTable using
4482   // appropriate convergence criterion;
4483   // repeat CMSPrecleanIter times unless we find that
4484   // we are losing.
4485   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4486   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4487          "Bad convergence multiplier");
4488   assert(CMSPrecleanThreshold >= 100,
4489          "Unreasonably low CMSPrecleanThreshold");
4490 
4491   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4492   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4493        numIter < CMSPrecleanIter;
4494        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4495     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4496     if (CMSPermGenPrecleaningEnabled) {
4497       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
4498     }
4499     if (Verbose && PrintGCDetails) {
4500       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4501     }
4502     // Either there are very few dirty cards, so re-mark
4503     // pause will be small anyway, or our pre-cleaning isn't
4504     // that much faster than the rate at which cards are being
4505     // dirtied, so we might as well stop and re-mark since
4506     // precleaning won't improve our re-mark time by much.
4507     if (curNumCards <= CMSPrecleanThreshold ||
4508         (numIter > 0 &&
4509          (curNumCards * CMSPrecleanDenominator >
4510          lastNumCards * CMSPrecleanNumerator))) {
4511       numIter++;
4512       cumNumCards += curNumCards;
4513       break;
4514     }
4515   }
4516   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4517   if (CMSPermGenPrecleaningEnabled) {
4518     curNumCards += preclean_card_table(_permGen, &smoac_cl);
4519   }
4520   cumNumCards += curNumCards;
4521   if (PrintGCDetails && PrintCMSStatistics != 0) {
4522     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4523                   curNumCards, cumNumCards, numIter);
4524   }
4525   return cumNumCards;   // as a measure of useful work done
4526 }
4527 
4528 // PRECLEANING NOTES:
4529 // Precleaning involves:
4530 // . reading the bits of the modUnionTable and clearing the set bits.
4531 // . For the cards corresponding to the set bits, we scan the
4532 //   objects on those cards. This means we need the free_list_lock
4533 //   so that we can safely iterate over the CMS space when scanning
4534 //   for oops.
4535 // . When we scan the objects, we'll be both reading and setting
4536 //   marks in the marking bit map, so we'll need the marking bit map.
4537 // . For protecting _collector_state transitions, we take the CGC_lock.
4538 //   Note that any races in the reading of of card table entries by the
4539 //   CMS thread on the one hand and the clearing of those entries by the
4540 //   VM thread or the setting of those entries by the mutator threads on the
4541 //   other are quite benign. However, for efficiency it makes sense to keep
4542 //   the VM thread from racing with the CMS thread while the latter is
4543 //   dirty card info to the modUnionTable. We therefore also use the
4544 //   CGC_lock to protect the reading of the card table and the mod union
4545 //   table by the CM thread.
4546 // . We run concurrently with mutator updates, so scanning
4547 //   needs to be done carefully  -- we should not try to scan
4548 //   potentially uninitialized objects.
4549 //
4550 // Locking strategy: While holding the CGC_lock, we scan over and
4551 // reset a maximal dirty range of the mod union / card tables, then lock
4552 // the free_list_lock and bitmap lock to do a full marking, then
4553 // release these locks; and repeat the cycle. This allows for a
4554 // certain amount of fairness in the sharing of these locks between
4555 // the CMS collector on the one hand, and the VM thread and the
4556 // mutators on the other.
4557 
4558 // NOTE: preclean_mod_union_table() and preclean_card_table()
4559 // further below are largely identical; if you need to modify
4560 // one of these methods, please check the other method too.
4561 
4562 size_t CMSCollector::preclean_mod_union_table(
4563   ConcurrentMarkSweepGeneration* gen,
4564   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4565   verify_work_stacks_empty();
4566   verify_overflow_empty();
4567 
4568   // Turn off checking for this method but turn it back on
4569   // selectively.  There are yield points in this method
4570   // but it is difficult to turn the checking off just around
4571   // the yield points.  It is simpler to selectively turn
4572   // it on.
4573   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4574 
4575   // strategy: starting with the first card, accumulate contiguous
4576   // ranges of dirty cards; clear these cards, then scan the region
4577   // covered by these cards.
4578 
4579   // Since all of the MUT is committed ahead, we can just use
4580   // that, in case the generations expand while we are precleaning.
4581   // It might also be fine to just use the committed part of the
4582   // generation, but we might potentially miss cards when the
4583   // generation is rapidly expanding while we are in the midst
4584   // of precleaning.
4585   HeapWord* startAddr = gen->reserved().start();
4586   HeapWord* endAddr   = gen->reserved().end();
4587 
4588   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4589 
4590   size_t numDirtyCards, cumNumDirtyCards;
4591   HeapWord *nextAddr, *lastAddr;
4592   for (cumNumDirtyCards = numDirtyCards = 0,
4593        nextAddr = lastAddr = startAddr;
4594        nextAddr < endAddr;
4595        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4596 
4597     ResourceMark rm;
4598     HandleMark   hm;
4599 
4600     MemRegion dirtyRegion;
4601     {
4602       stopTimer();
4603       // Potential yield point
4604       CMSTokenSync ts(true);
4605       startTimer();
4606       sample_eden();
4607       // Get dirty region starting at nextOffset (inclusive),
4608       // simultaneously clearing it.
4609       dirtyRegion =
4610         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4611       assert(dirtyRegion.start() >= nextAddr,
4612              "returned region inconsistent?");
4613     }
4614     // Remember where the next search should begin.
4615     // The returned region (if non-empty) is a right open interval,
4616     // so lastOffset is obtained from the right end of that
4617     // interval.
4618     lastAddr = dirtyRegion.end();
4619     // Should do something more transparent and less hacky XXX
4620     numDirtyCards =
4621       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4622 
4623     // We'll scan the cards in the dirty region (with periodic
4624     // yields for foreground GC as needed).
4625     if (!dirtyRegion.is_empty()) {
4626       assert(numDirtyCards > 0, "consistency check");
4627       HeapWord* stop_point = NULL;
4628       stopTimer();
4629       // Potential yield point
4630       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4631                                bitMapLock());
4632       startTimer();
4633       {
4634         verify_work_stacks_empty();
4635         verify_overflow_empty();
4636         sample_eden();
4637         DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4638         stop_point =
4639           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4640       }
4641       if (stop_point != NULL) {
4642         // The careful iteration stopped early either because it found an
4643         // uninitialized object, or because we were in the midst of an
4644         // "abortable preclean", which should now be aborted. Redirty
4645         // the bits corresponding to the partially-scanned or unscanned
4646         // cards. We'll either restart at the next block boundary or
4647         // abort the preclean.
4648         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
4649                (_collectorState == AbortablePreclean && should_abort_preclean()),
4650                "Unparsable objects should only be in perm gen.");
4651         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4652         if (should_abort_preclean()) {
4653           break; // out of preclean loop
4654         } else {
4655           // Compute the next address at which preclean should pick up;
4656           // might need bitMapLock in order to read P-bits.
4657           lastAddr = next_card_start_after_block(stop_point);
4658         }
4659       }
4660     } else {
4661       assert(lastAddr == endAddr, "consistency check");
4662       assert(numDirtyCards == 0, "consistency check");
4663       break;
4664     }
4665   }
4666   verify_work_stacks_empty();
4667   verify_overflow_empty();
4668   return cumNumDirtyCards;
4669 }
4670 
4671 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4672 // below are largely identical; if you need to modify
4673 // one of these methods, please check the other method too.
4674 
4675 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4676   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4677   // strategy: it's similar to precleamModUnionTable above, in that
4678   // we accumulate contiguous ranges of dirty cards, mark these cards
4679   // precleaned, then scan the region covered by these cards.
4680   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4681   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4682 
4683   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4684 
4685   size_t numDirtyCards, cumNumDirtyCards;
4686   HeapWord *lastAddr, *nextAddr;
4687 
4688   for (cumNumDirtyCards = numDirtyCards = 0,
4689        nextAddr = lastAddr = startAddr;
4690        nextAddr < endAddr;
4691        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4692 
4693     ResourceMark rm;
4694     HandleMark   hm;
4695 
4696     MemRegion dirtyRegion;
4697     {
4698       // See comments in "Precleaning notes" above on why we
4699       // do this locking. XXX Could the locking overheads be
4700       // too high when dirty cards are sparse? [I don't think so.]
4701       stopTimer();
4702       CMSTokenSync x(true); // is cms thread
4703       startTimer();
4704       sample_eden();
4705       // Get and clear dirty region from card table
4706       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4707                                     MemRegion(nextAddr, endAddr),
4708                                     true,
4709                                     CardTableModRefBS::precleaned_card_val());
4710 
4711       assert(dirtyRegion.start() >= nextAddr,
4712              "returned region inconsistent?");
4713     }
4714     lastAddr = dirtyRegion.end();
4715     numDirtyCards =
4716       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4717 
4718     if (!dirtyRegion.is_empty()) {
4719       stopTimer();
4720       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4721       startTimer();
4722       sample_eden();
4723       verify_work_stacks_empty();
4724       verify_overflow_empty();
4725       DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4726       HeapWord* stop_point =
4727         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4728       if (stop_point != NULL) {
4729         // The careful iteration stopped early because it found an
4730         // uninitialized object.  Redirty the bits corresponding to the
4731         // partially-scanned or unscanned cards, and start again at the
4732         // next block boundary.
4733         assert(CMSPermGenPrecleaningEnabled ||
4734                (_collectorState == AbortablePreclean && should_abort_preclean()),
4735                "Unparsable objects should only be in perm gen.");
4736         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4737         if (should_abort_preclean()) {
4738           break; // out of preclean loop
4739         } else {
4740           // Compute the next address at which preclean should pick up.
4741           lastAddr = next_card_start_after_block(stop_point);
4742         }
4743       }
4744     } else {
4745       break;
4746     }
4747   }
4748   verify_work_stacks_empty();
4749   verify_overflow_empty();
4750   return cumNumDirtyCards;
4751 }
4752 
4753 void CMSCollector::checkpointRootsFinal(bool asynch,
4754   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4755   assert(_collectorState == FinalMarking, "incorrect state transition?");
4756   check_correct_thread_executing();
4757   // world is stopped at this checkpoint
4758   assert(SafepointSynchronize::is_at_safepoint(),
4759          "world should be stopped");
4760   TraceCMSMemoryManagerStats tms(_collectorState);
4761   verify_work_stacks_empty();
4762   verify_overflow_empty();
4763 
4764   SpecializationStats::clear();
4765   if (PrintGCDetails) {
4766     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4767                         _young_gen->used() / K,
4768                         _young_gen->capacity() / K);
4769   }
4770   if (asynch) {
4771     if (CMSScavengeBeforeRemark) {
4772       GenCollectedHeap* gch = GenCollectedHeap::heap();
4773       // Temporarily set flag to false, GCH->do_collection will
4774       // expect it to be false and set to true
4775       FlagSetting fl(gch->_is_gc_active, false);
4776       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
4777         PrintGCDetails && Verbose, true, gclog_or_tty);)
4778       int level = _cmsGen->level() - 1;
4779       if (level >= 0) {
4780         gch->do_collection(true,        // full (i.e. force, see below)
4781                            false,       // !clear_all_soft_refs
4782                            0,           // size
4783                            false,       // is_tlab
4784                            level        // max_level
4785                           );
4786       }
4787     }
4788     FreelistLocker x(this);
4789     MutexLockerEx y(bitMapLock(),
4790                     Mutex::_no_safepoint_check_flag);
4791     assert(!init_mark_was_synchronous, "but that's impossible!");
4792     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4793   } else {
4794     // already have all the locks
4795     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4796                              init_mark_was_synchronous);
4797   }
4798   verify_work_stacks_empty();
4799   verify_overflow_empty();
4800   SpecializationStats::print();
4801 }
4802 
4803 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4804   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4805 
4806   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
4807 
4808   assert(haveFreelistLocks(), "must have free list locks");
4809   assert_lock_strong(bitMapLock());
4810 
4811   if (UseAdaptiveSizePolicy) {
4812     size_policy()->checkpoint_roots_final_begin();
4813   }
4814 
4815   ResourceMark rm;
4816   HandleMark   hm;
4817 
4818   GenCollectedHeap* gch = GenCollectedHeap::heap();
4819 
4820   if (should_unload_classes()) {
4821     CodeCache::gc_prologue();
4822   }
4823   assert(haveFreelistLocks(), "must have free list locks");
4824   assert_lock_strong(bitMapLock());
4825 
4826   DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());)
4827   if (!init_mark_was_synchronous) {
4828     // We might assume that we need not fill TLAB's when
4829     // CMSScavengeBeforeRemark is set, because we may have just done
4830     // a scavenge which would have filled all TLAB's -- and besides
4831     // Eden would be empty. This however may not always be the case --
4832     // for instance although we asked for a scavenge, it may not have
4833     // happened because of a JNI critical section. We probably need
4834     // a policy for deciding whether we can in that case wait until
4835     // the critical section releases and then do the remark following
4836     // the scavenge, and skip it here. In the absence of that policy,
4837     // or of an indication of whether the scavenge did indeed occur,
4838     // we cannot rely on TLAB's having been filled and must do
4839     // so here just in case a scavenge did not happen.
4840     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4841     // Update the saved marks which may affect the root scans.
4842     gch->save_marks();
4843 
4844     {
4845       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4846 
4847       // Note on the role of the mod union table:
4848       // Since the marker in "markFromRoots" marks concurrently with
4849       // mutators, it is possible for some reachable objects not to have been
4850       // scanned. For instance, an only reference to an object A was
4851       // placed in object B after the marker scanned B. Unless B is rescanned,
4852       // A would be collected. Such updates to references in marked objects
4853       // are detected via the mod union table which is the set of all cards
4854       // dirtied since the first checkpoint in this GC cycle and prior to
4855       // the most recent young generation GC, minus those cleaned up by the
4856       // concurrent precleaning.
4857       if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
4858         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
4859         do_remark_parallel();
4860       } else {
4861         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4862                     gclog_or_tty);
4863         do_remark_non_parallel();
4864       }
4865     }
4866   } else {
4867     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
4868     // The initial mark was stop-world, so there's no rescanning to
4869     // do; go straight on to the next step below.
4870   }
4871   verify_work_stacks_empty();
4872   verify_overflow_empty();
4873 
4874   {
4875     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
4876     refProcessingWork(asynch, clear_all_soft_refs);
4877   }
4878   verify_work_stacks_empty();
4879   verify_overflow_empty();
4880 
4881   if (should_unload_classes()) {
4882     CodeCache::gc_epilogue();
4883   }
4884 
4885   // If we encountered any (marking stack / work queue) overflow
4886   // events during the current CMS cycle, take appropriate
4887   // remedial measures, where possible, so as to try and avoid
4888   // recurrence of that condition.
4889   assert(_markStack.isEmpty(), "No grey objects");
4890   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4891                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4892   if (ser_ovflw > 0) {
4893     if (PrintCMSStatistics != 0) {
4894       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4895         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4896         ", kac_preclean="SIZE_FORMAT")",
4897         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4898         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4899     }
4900     _markStack.expand();
4901     _ser_pmc_remark_ovflw = 0;
4902     _ser_pmc_preclean_ovflw = 0;
4903     _ser_kac_preclean_ovflw = 0;
4904     _ser_kac_ovflw = 0;
4905   }
4906   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4907     if (PrintCMSStatistics != 0) {
4908       gclog_or_tty->print_cr("Work queue overflow (benign) "
4909         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4910         _par_pmc_remark_ovflw, _par_kac_ovflw);
4911     }
4912     _par_pmc_remark_ovflw = 0;
4913     _par_kac_ovflw = 0;
4914   }
4915   if (PrintCMSStatistics != 0) {
4916      if (_markStack._hit_limit > 0) {
4917        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4918                               _markStack._hit_limit);
4919      }
4920      if (_markStack._failed_double > 0) {
4921        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4922                               " current capacity "SIZE_FORMAT,
4923                               _markStack._failed_double,
4924                               _markStack.capacity());
4925      }
4926   }
4927   _markStack._hit_limit = 0;
4928   _markStack._failed_double = 0;
4929 
4930   // Check that all the klasses have been checked
4931   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
4932 
4933   if ((VerifyAfterGC || VerifyDuringGC) &&
4934       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4935     verify_after_remark();
4936   }
4937 
4938   // Change under the freelistLocks.
4939   _collectorState = Sweeping;
4940   // Call isAllClear() under bitMapLock
4941   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
4942     " final marking");
4943   if (UseAdaptiveSizePolicy) {
4944     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
4945   }
4946 }
4947 
4948 // Parallel remark task
4949 class CMSParRemarkTask: public AbstractGangTask {
4950   CMSCollector* _collector;
4951   WorkGang*     _workers;
4952   int           _n_workers;
4953   CompactibleFreeListSpace* _cms_space;
4954   CompactibleFreeListSpace* _perm_space;
4955 
4956   // The per-thread work queues, available here for stealing.
4957   OopTaskQueueSet*       _task_queues;
4958   ParallelTaskTerminator _term;
4959 
4960  public:
4961   CMSParRemarkTask(CMSCollector* collector,
4962                    CompactibleFreeListSpace* cms_space,
4963                    CompactibleFreeListSpace* perm_space,
4964                    int n_workers, WorkGang* workers,
4965                    OopTaskQueueSet* task_queues):
4966     AbstractGangTask("Rescan roots and grey objects in parallel"),
4967     _collector(collector),
4968     _cms_space(cms_space), _perm_space(perm_space),
4969     _n_workers(n_workers),
4970     _workers(workers),
4971     _task_queues(task_queues),
4972     _term(workers->total_workers(), task_queues) { }
4973 
4974   OopTaskQueueSet* task_queues() { return _task_queues; }
4975 
4976   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4977 
4978   ParallelTaskTerminator* terminator() { return &_term; }
4979 
4980   void work(int i);
4981 
4982  private:
4983   // Work method in support of parallel rescan ... of young gen spaces
4984   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
4985                              ContiguousSpace* space,
4986                              HeapWord** chunk_array, size_t chunk_top);
4987 
4988   // ... of  dirty cards in old space
4989   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4990                                   Par_MarkRefsIntoAndScanClosure* cl);
4991 
4992   // ... work stealing for the above
4993   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4994 };
4995 
4996 void CMSParRemarkTask::work(int i) {
4997   elapsedTimer _timer;
4998   ResourceMark rm;
4999   HandleMark   hm;
5000 
5001   // ---------- rescan from roots --------------
5002   _timer.start();
5003   GenCollectedHeap* gch = GenCollectedHeap::heap();
5004   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5005     _collector->_span, _collector->ref_processor(),
5006     &(_collector->_markBitMap),
5007     work_queue(i), &(_collector->_revisitStack));
5008 
5009   // Rescan young gen roots first since these are likely
5010   // coarsely partitioned and may, on that account, constitute
5011   // the critical path; thus, it's best to start off that
5012   // work first.
5013   // ---------- young gen roots --------------
5014   {
5015     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5016     EdenSpace* eden_space = dng->eden();
5017     ContiguousSpace* from_space = dng->from();
5018     ContiguousSpace* to_space   = dng->to();
5019 
5020     HeapWord** eca = _collector->_eden_chunk_array;
5021     size_t     ect = _collector->_eden_chunk_index;
5022     HeapWord** sca = _collector->_survivor_chunk_array;
5023     size_t     sct = _collector->_survivor_chunk_index;
5024 
5025     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5026     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5027 
5028     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
5029     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
5030     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
5031 
5032     _timer.stop();
5033     if (PrintCMSStatistics != 0) {
5034       gclog_or_tty->print_cr(
5035         "Finished young gen rescan work in %dth thread: %3.3f sec",
5036         i, _timer.seconds());
5037     }
5038   }
5039 
5040   // ---------- remaining roots --------------
5041   _timer.reset();
5042   _timer.start();
5043   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5044                                 false,     // yg was scanned above
5045                                 false,     // this is parallel code
5046                                 true,      // collecting perm gen
5047                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5048                                 &par_mrias_cl,
5049                                 true,   // walk all of code cache if (so & SO_CodeCache)
5050                                 NULL);
5051   assert(_collector->should_unload_classes()
5052          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5053          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5054   _timer.stop();
5055   if (PrintCMSStatistics != 0) {
5056     gclog_or_tty->print_cr(
5057       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5058       i, _timer.seconds());
5059   }
5060 
5061   // ---------- rescan dirty cards ------------
5062   _timer.reset();
5063   _timer.start();
5064 
5065   // Do the rescan tasks for each of the two spaces
5066   // (cms_space and perm_space) in turn.
5067   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
5068   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
5069   _timer.stop();
5070   if (PrintCMSStatistics != 0) {
5071     gclog_or_tty->print_cr(
5072       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5073       i, _timer.seconds());
5074   }
5075 
5076   // ---------- steal work from other threads ...
5077   // ---------- ... and drain overflow list.
5078   _timer.reset();
5079   _timer.start();
5080   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
5081   _timer.stop();
5082   if (PrintCMSStatistics != 0) {
5083     gclog_or_tty->print_cr(
5084       "Finished work stealing in %dth thread: %3.3f sec",
5085       i, _timer.seconds());
5086   }
5087 }
5088 
5089 void
5090 CMSParRemarkTask::do_young_space_rescan(int i,
5091   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5092   HeapWord** chunk_array, size_t chunk_top) {
5093   // Until all tasks completed:
5094   // . claim an unclaimed task
5095   // . compute region boundaries corresponding to task claimed
5096   //   using chunk_array
5097   // . par_oop_iterate(cl) over that region
5098 
5099   ResourceMark rm;
5100   HandleMark   hm;
5101 
5102   SequentialSubTasksDone* pst = space->par_seq_tasks();
5103   assert(pst->valid(), "Uninitialized use?");
5104 
5105   int nth_task = 0;
5106   int n_tasks  = pst->n_tasks();
5107 
5108   HeapWord *start, *end;
5109   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5110     // We claimed task # nth_task; compute its boundaries.
5111     if (chunk_top == 0) {  // no samples were taken
5112       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5113       start = space->bottom();
5114       end   = space->top();
5115     } else if (nth_task == 0) {
5116       start = space->bottom();
5117       end   = chunk_array[nth_task];
5118     } else if (nth_task < (jint)chunk_top) {
5119       assert(nth_task >= 1, "Control point invariant");
5120       start = chunk_array[nth_task - 1];
5121       end   = chunk_array[nth_task];
5122     } else {
5123       assert(nth_task == (jint)chunk_top, "Control point invariant");
5124       start = chunk_array[chunk_top - 1];
5125       end   = space->top();
5126     }
5127     MemRegion mr(start, end);
5128     // Verify that mr is in space
5129     assert(mr.is_empty() || space->used_region().contains(mr),
5130            "Should be in space");
5131     // Verify that "start" is an object boundary
5132     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5133            "Should be an oop");
5134     space->par_oop_iterate(mr, cl);
5135   }
5136   pst->all_tasks_completed();
5137 }
5138 
5139 void
5140 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5141   CompactibleFreeListSpace* sp, int i,
5142   Par_MarkRefsIntoAndScanClosure* cl) {
5143   // Until all tasks completed:
5144   // . claim an unclaimed task
5145   // . compute region boundaries corresponding to task claimed
5146   // . transfer dirty bits ct->mut for that region
5147   // . apply rescanclosure to dirty mut bits for that region
5148 
5149   ResourceMark rm;
5150   HandleMark   hm;
5151 
5152   OopTaskQueue* work_q = work_queue(i);
5153   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5154   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5155   // CAUTION: This closure has state that persists across calls to
5156   // the work method dirty_range_iterate_clear() in that it has
5157   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5158   // use of that state in the imbedded UpwardsObjectClosure instance
5159   // assumes that the cards are always iterated (even if in parallel
5160   // by several threads) in monotonically increasing order per each
5161   // thread. This is true of the implementation below which picks
5162   // card ranges (chunks) in monotonically increasing order globally
5163   // and, a-fortiori, in monotonically increasing order per thread
5164   // (the latter order being a subsequence of the former).
5165   // If the work code below is ever reorganized into a more chaotic
5166   // work-partitioning form than the current "sequential tasks"
5167   // paradigm, the use of that persistent state will have to be
5168   // revisited and modified appropriately. See also related
5169   // bug 4756801 work on which should examine this code to make
5170   // sure that the changes there do not run counter to the
5171   // assumptions made here and necessary for correctness and
5172   // efficiency. Note also that this code might yield inefficient
5173   // behaviour in the case of very large objects that span one or
5174   // more work chunks. Such objects would potentially be scanned
5175   // several times redundantly. Work on 4756801 should try and
5176   // address that performance anomaly if at all possible. XXX
5177   MemRegion  full_span  = _collector->_span;
5178   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5179   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
5180   MarkFromDirtyCardsClosure
5181     greyRescanClosure(_collector, full_span, // entire span of interest
5182                       sp, bm, work_q, rs, cl);
5183 
5184   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5185   assert(pst->valid(), "Uninitialized use?");
5186   int nth_task = 0;
5187   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5188   MemRegion span = sp->used_region();
5189   HeapWord* start_addr = span.start();
5190   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5191                                            alignment);
5192   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5193   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5194          start_addr, "Check alignment");
5195   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5196          chunk_size, "Check alignment");
5197 
5198   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5199     // Having claimed the nth_task, compute corresponding mem-region,
5200     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5201     // The alignment restriction ensures that we do not need any
5202     // synchronization with other gang-workers while setting or
5203     // clearing bits in thus chunk of the MUT.
5204     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5205                                     start_addr + (nth_task+1)*chunk_size);
5206     // The last chunk's end might be way beyond end of the
5207     // used region. In that case pull back appropriately.
5208     if (this_span.end() > end_addr) {
5209       this_span.set_end(end_addr);
5210       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5211     }
5212     // Iterate over the dirty cards covering this chunk, marking them
5213     // precleaned, and setting the corresponding bits in the mod union
5214     // table. Since we have been careful to partition at Card and MUT-word
5215     // boundaries no synchronization is needed between parallel threads.
5216     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5217                                                  &modUnionClosure);
5218 
5219     // Having transferred these marks into the modUnionTable,
5220     // rescan the marked objects on the dirty cards in the modUnionTable.
5221     // Even if this is at a synchronous collection, the initial marking
5222     // may have been done during an asynchronous collection so there
5223     // may be dirty bits in the mod-union table.
5224     _collector->_modUnionTable.dirty_range_iterate_clear(
5225                   this_span, &greyRescanClosure);
5226     _collector->_modUnionTable.verifyNoOneBitsInRange(
5227                                  this_span.start(),
5228                                  this_span.end());
5229   }
5230   pst->all_tasks_completed();  // declare that i am done
5231 }
5232 
5233 // . see if we can share work_queues with ParNew? XXX
5234 void
5235 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5236                                 int* seed) {
5237   OopTaskQueue* work_q = work_queue(i);
5238   NOT_PRODUCT(int num_steals = 0;)
5239   oop obj_to_scan;
5240   CMSBitMap* bm = &(_collector->_markBitMap);
5241 
5242   while (true) {
5243     // Completely finish any left over work from (an) earlier round(s)
5244     cl->trim_queue(0);
5245     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5246                                          (size_t)ParGCDesiredObjsFromOverflowList);
5247     // Now check if there's any work in the overflow list
5248     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5249                                                 work_q)) {
5250       // found something in global overflow list;
5251       // not yet ready to go stealing work from others.
5252       // We'd like to assert(work_q->size() != 0, ...)
5253       // because we just took work from the overflow list,
5254       // but of course we can't since all of that could have
5255       // been already stolen from us.
5256       // "He giveth and He taketh away."
5257       continue;
5258     }
5259     // Verify that we have no work before we resort to stealing
5260     assert(work_q->size() == 0, "Have work, shouldn't steal");
5261     // Try to steal from other queues that have work
5262     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5263       NOT_PRODUCT(num_steals++;)
5264       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5265       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5266       // Do scanning work
5267       obj_to_scan->oop_iterate(cl);
5268       // Loop around, finish this work, and try to steal some more
5269     } else if (terminator()->offer_termination()) {
5270         break;  // nirvana from the infinite cycle
5271     }
5272   }
5273   NOT_PRODUCT(
5274     if (PrintCMSStatistics != 0) {
5275       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5276     }
5277   )
5278   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5279          "Else our work is not yet done");
5280 }
5281 
5282 // Return a thread-local PLAB recording array, as appropriate.
5283 void* CMSCollector::get_data_recorder(int thr_num) {
5284   if (_survivor_plab_array != NULL &&
5285       (CMSPLABRecordAlways ||
5286        (_collectorState > Marking && _collectorState < FinalMarking))) {
5287     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5288     ChunkArray* ca = &_survivor_plab_array[thr_num];
5289     ca->reset();   // clear it so that fresh data is recorded
5290     return (void*) ca;
5291   } else {
5292     return NULL;
5293   }
5294 }
5295 
5296 // Reset all the thread-local PLAB recording arrays
5297 void CMSCollector::reset_survivor_plab_arrays() {
5298   for (uint i = 0; i < ParallelGCThreads; i++) {
5299     _survivor_plab_array[i].reset();
5300   }
5301 }
5302 
5303 // Merge the per-thread plab arrays into the global survivor chunk
5304 // array which will provide the partitioning of the survivor space
5305 // for CMS rescan.
5306 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
5307   assert(_survivor_plab_array  != NULL, "Error");
5308   assert(_survivor_chunk_array != NULL, "Error");
5309   assert(_collectorState == FinalMarking, "Error");
5310   for (uint j = 0; j < ParallelGCThreads; j++) {
5311     _cursor[j] = 0;
5312   }
5313   HeapWord* top = surv->top();
5314   size_t i;
5315   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5316     HeapWord* min_val = top;          // Higher than any PLAB address
5317     uint      min_tid = 0;            // position of min_val this round
5318     for (uint j = 0; j < ParallelGCThreads; j++) {
5319       ChunkArray* cur_sca = &_survivor_plab_array[j];
5320       if (_cursor[j] == cur_sca->end()) {
5321         continue;
5322       }
5323       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5324       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5325       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5326       if (cur_val < min_val) {
5327         min_tid = j;
5328         min_val = cur_val;
5329       } else {
5330         assert(cur_val < top, "All recorded addresses should be less");
5331       }
5332     }
5333     // At this point min_val and min_tid are respectively
5334     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5335     // and the thread (j) that witnesses that address.
5336     // We record this address in the _survivor_chunk_array[i]
5337     // and increment _cursor[min_tid] prior to the next round i.
5338     if (min_val == top) {
5339       break;
5340     }
5341     _survivor_chunk_array[i] = min_val;
5342     _cursor[min_tid]++;
5343   }
5344   // We are all done; record the size of the _survivor_chunk_array
5345   _survivor_chunk_index = i; // exclusive: [0, i)
5346   if (PrintCMSStatistics > 0) {
5347     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5348   }
5349   // Verify that we used up all the recorded entries
5350   #ifdef ASSERT
5351     size_t total = 0;
5352     for (uint j = 0; j < ParallelGCThreads; j++) {
5353       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5354       total += _cursor[j];
5355     }
5356     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5357     // Check that the merged array is in sorted order
5358     if (total > 0) {
5359       for (size_t i = 0; i < total - 1; i++) {
5360         if (PrintCMSStatistics > 0) {
5361           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5362                               i, _survivor_chunk_array[i]);
5363         }
5364         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5365                "Not sorted");
5366       }
5367     }
5368   #endif // ASSERT
5369 }
5370 
5371 // Set up the space's par_seq_tasks structure for work claiming
5372 // for parallel rescan of young gen.
5373 // See ParRescanTask where this is currently used.
5374 void
5375 CMSCollector::
5376 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5377   assert(n_threads > 0, "Unexpected n_threads argument");
5378   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5379 
5380   // Eden space
5381   {
5382     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5383     assert(!pst->valid(), "Clobbering existing data?");
5384     // Each valid entry in [0, _eden_chunk_index) represents a task.
5385     size_t n_tasks = _eden_chunk_index + 1;
5386     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5387     pst->set_par_threads(n_threads);
5388     pst->set_n_tasks((int)n_tasks);
5389   }
5390 
5391   // Merge the survivor plab arrays into _survivor_chunk_array
5392   if (_survivor_plab_array != NULL) {
5393     merge_survivor_plab_arrays(dng->from());
5394   } else {
5395     assert(_survivor_chunk_index == 0, "Error");
5396   }
5397 
5398   // To space
5399   {
5400     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5401     assert(!pst->valid(), "Clobbering existing data?");
5402     pst->set_par_threads(n_threads);
5403     pst->set_n_tasks(1);
5404     assert(pst->valid(), "Error");
5405   }
5406 
5407   // From space
5408   {
5409     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5410     assert(!pst->valid(), "Clobbering existing data?");
5411     size_t n_tasks = _survivor_chunk_index + 1;
5412     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5413     pst->set_par_threads(n_threads);
5414     pst->set_n_tasks((int)n_tasks);
5415     assert(pst->valid(), "Error");
5416   }
5417 }
5418 
5419 // Parallel version of remark
5420 void CMSCollector::do_remark_parallel() {
5421   GenCollectedHeap* gch = GenCollectedHeap::heap();
5422   WorkGang* workers = gch->workers();
5423   assert(workers != NULL, "Need parallel worker threads.");
5424   int n_workers = workers->total_workers();
5425   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5426   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
5427 
5428   CMSParRemarkTask tsk(this,
5429     cms_space, perm_space,
5430     n_workers, workers, task_queues());
5431 
5432   // Set up for parallel process_strong_roots work.
5433   gch->set_par_threads(n_workers);
5434   // We won't be iterating over the cards in the card table updating
5435   // the younger_gen cards, so we shouldn't call the following else
5436   // the verification code as well as subsequent younger_refs_iterate
5437   // code would get confused. XXX
5438   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5439 
5440   // The young gen rescan work will not be done as part of
5441   // process_strong_roots (which currently doesn't knw how to
5442   // parallelize such a scan), but rather will be broken up into
5443   // a set of parallel tasks (via the sampling that the [abortable]
5444   // preclean phase did of EdenSpace, plus the [two] tasks of
5445   // scanning the [two] survivor spaces. Further fine-grain
5446   // parallelization of the scanning of the survivor spaces
5447   // themselves, and of precleaning of the younger gen itself
5448   // is deferred to the future.
5449   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5450 
5451   // The dirty card rescan work is broken up into a "sequence"
5452   // of parallel tasks (per constituent space) that are dynamically
5453   // claimed by the parallel threads.
5454   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5455   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
5456 
5457   // It turns out that even when we're using 1 thread, doing the work in a
5458   // separate thread causes wide variance in run times.  We can't help this
5459   // in the multi-threaded case, but we special-case n=1 here to get
5460   // repeatable measurements of the 1-thread overhead of the parallel code.
5461   if (n_workers > 1) {
5462     // Make refs discovery MT-safe
5463     ReferenceProcessorMTMutator mt(ref_processor(), true);
5464     GenCollectedHeap::StrongRootsScope srs(gch);
5465     workers->run_task(&tsk);
5466   } else {
5467     GenCollectedHeap::StrongRootsScope srs(gch);
5468     tsk.work(0);
5469   }
5470   gch->set_par_threads(0);  // 0 ==> non-parallel.
5471   // restore, single-threaded for now, any preserved marks
5472   // as a result of work_q overflow
5473   restore_preserved_marks_if_any();
5474 }
5475 
5476 // Non-parallel version of remark
5477 void CMSCollector::do_remark_non_parallel() {
5478   ResourceMark rm;
5479   HandleMark   hm;
5480   GenCollectedHeap* gch = GenCollectedHeap::heap();
5481   MarkRefsIntoAndScanClosure
5482     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
5483              &_markStack, &_revisitStack, this,
5484              false /* should_yield */, false /* not precleaning */);
5485   MarkFromDirtyCardsClosure
5486     markFromDirtyCardsClosure(this, _span,
5487                               NULL,  // space is set further below
5488                               &_markBitMap, &_markStack, &_revisitStack,
5489                               &mrias_cl);
5490   {
5491     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
5492     // Iterate over the dirty cards, setting the corresponding bits in the
5493     // mod union table.
5494     {
5495       ModUnionClosure modUnionClosure(&_modUnionTable);
5496       _ct->ct_bs()->dirty_card_iterate(
5497                       _cmsGen->used_region(),
5498                       &modUnionClosure);
5499       _ct->ct_bs()->dirty_card_iterate(
5500                       _permGen->used_region(),
5501                       &modUnionClosure);
5502     }
5503     // Having transferred these marks into the modUnionTable, we just need
5504     // to rescan the marked objects on the dirty cards in the modUnionTable.
5505     // The initial marking may have been done during an asynchronous
5506     // collection so there may be dirty bits in the mod-union table.
5507     const int alignment =
5508       CardTableModRefBS::card_size * BitsPerWord;
5509     {
5510       // ... First handle dirty cards in CMS gen
5511       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5512       MemRegion ur = _cmsGen->used_region();
5513       HeapWord* lb = ur.start();
5514       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5515       MemRegion cms_span(lb, ub);
5516       _modUnionTable.dirty_range_iterate_clear(cms_span,
5517                                                &markFromDirtyCardsClosure);
5518       verify_work_stacks_empty();
5519       if (PrintCMSStatistics != 0) {
5520         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5521           markFromDirtyCardsClosure.num_dirty_cards());
5522       }
5523     }
5524     {
5525       // .. and then repeat for dirty cards in perm gen
5526       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
5527       MemRegion ur = _permGen->used_region();
5528       HeapWord* lb = ur.start();
5529       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5530       MemRegion perm_span(lb, ub);
5531       _modUnionTable.dirty_range_iterate_clear(perm_span,
5532                                                &markFromDirtyCardsClosure);
5533       verify_work_stacks_empty();
5534       if (PrintCMSStatistics != 0) {
5535         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
5536           markFromDirtyCardsClosure.num_dirty_cards());
5537       }
5538     }
5539   }
5540   if (VerifyDuringGC &&
5541       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5542     HandleMark hm;  // Discard invalid handles created during verification
5543     Universe::verify(true);
5544   }
5545   {
5546     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
5547 
5548     verify_work_stacks_empty();
5549 
5550     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5551     GenCollectedHeap::StrongRootsScope srs(gch);
5552     gch->gen_process_strong_roots(_cmsGen->level(),
5553                                   true,  // younger gens as roots
5554                                   false, // use the local StrongRootsScope
5555                                   true,  // collecting perm gen
5556                                   SharedHeap::ScanningOption(roots_scanning_options()),
5557                                   &mrias_cl,
5558                                   true,   // walk code active on stacks
5559                                   NULL);
5560     assert(should_unload_classes()
5561            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5562            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5563   }
5564   verify_work_stacks_empty();
5565   // Restore evacuated mark words, if any, used for overflow list links
5566   if (!CMSOverflowEarlyRestoration) {
5567     restore_preserved_marks_if_any();
5568   }
5569   verify_overflow_empty();
5570 }
5571 
5572 ////////////////////////////////////////////////////////
5573 // Parallel Reference Processing Task Proxy Class
5574 ////////////////////////////////////////////////////////
5575 class CMSRefProcTaskProxy: public AbstractGangTask {
5576   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5577   CMSCollector*          _collector;
5578   CMSBitMap*             _mark_bit_map;
5579   const MemRegion        _span;
5580   OopTaskQueueSet*       _task_queues;
5581   ParallelTaskTerminator _term;
5582   ProcessTask&           _task;
5583 
5584 public:
5585   CMSRefProcTaskProxy(ProcessTask&     task,
5586                       CMSCollector*    collector,
5587                       const MemRegion& span,
5588                       CMSBitMap*       mark_bit_map,
5589                       int              total_workers,
5590                       OopTaskQueueSet* task_queues):
5591     AbstractGangTask("Process referents by policy in parallel"),
5592     _task(task),
5593     _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
5594     _task_queues(task_queues),
5595     _term(total_workers, task_queues)
5596     {
5597       assert(_collector->_span.equals(_span) && !_span.is_empty(),
5598              "Inconsistency in _span");
5599     }
5600 
5601   OopTaskQueueSet* task_queues() { return _task_queues; }
5602 
5603   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5604 
5605   ParallelTaskTerminator* terminator() { return &_term; }
5606 
5607   void do_work_steal(int i,
5608                      CMSParDrainMarkingStackClosure* drain,
5609                      CMSParKeepAliveClosure* keep_alive,
5610                      int* seed);
5611 
5612   virtual void work(int i);
5613 };
5614 
5615 void CMSRefProcTaskProxy::work(int i) {
5616   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5617   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5618                                         _mark_bit_map,
5619                                         &_collector->_revisitStack,
5620                                         work_queue(i));
5621   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5622                                                  _mark_bit_map,
5623                                                  &_collector->_revisitStack,
5624                                                  work_queue(i));
5625   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5626   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
5627   if (_task.marks_oops_alive()) {
5628     do_work_steal(i, &par_drain_stack, &par_keep_alive,
5629                   _collector->hash_seed(i));
5630   }
5631   assert(work_queue(i)->size() == 0, "work_queue should be empty");
5632   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5633 }
5634 
5635 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5636   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5637   EnqueueTask& _task;
5638 
5639 public:
5640   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5641     : AbstractGangTask("Enqueue reference objects in parallel"),
5642       _task(task)
5643   { }
5644 
5645   virtual void work(int i)
5646   {
5647     _task.work(i);
5648   }
5649 };
5650 
5651 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5652   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
5653   OopTaskQueue* work_queue):
5654    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
5655    _span(span),
5656    _bit_map(bit_map),
5657    _work_queue(work_queue),
5658    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
5659    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5660                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5661 { }
5662 
5663 // . see if we can share work_queues with ParNew? XXX
5664 void CMSRefProcTaskProxy::do_work_steal(int i,
5665   CMSParDrainMarkingStackClosure* drain,
5666   CMSParKeepAliveClosure* keep_alive,
5667   int* seed) {
5668   OopTaskQueue* work_q = work_queue(i);
5669   NOT_PRODUCT(int num_steals = 0;)
5670   oop obj_to_scan;
5671 
5672   while (true) {
5673     // Completely finish any left over work from (an) earlier round(s)
5674     drain->trim_queue(0);
5675     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5676                                          (size_t)ParGCDesiredObjsFromOverflowList);
5677     // Now check if there's any work in the overflow list
5678     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5679                                                 work_q)) {
5680       // Found something in global overflow list;
5681       // not yet ready to go stealing work from others.
5682       // We'd like to assert(work_q->size() != 0, ...)
5683       // because we just took work from the overflow list,
5684       // but of course we can't, since all of that might have
5685       // been already stolen from us.
5686       continue;
5687     }
5688     // Verify that we have no work before we resort to stealing
5689     assert(work_q->size() == 0, "Have work, shouldn't steal");
5690     // Try to steal from other queues that have work
5691     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5692       NOT_PRODUCT(num_steals++;)
5693       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5694       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5695       // Do scanning work
5696       obj_to_scan->oop_iterate(keep_alive);
5697       // Loop around, finish this work, and try to steal some more
5698     } else if (terminator()->offer_termination()) {
5699       break;  // nirvana from the infinite cycle
5700     }
5701   }
5702   NOT_PRODUCT(
5703     if (PrintCMSStatistics != 0) {
5704       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5705     }
5706   )
5707 }
5708 
5709 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5710 {
5711   GenCollectedHeap* gch = GenCollectedHeap::heap();
5712   WorkGang* workers = gch->workers();
5713   assert(workers != NULL, "Need parallel worker threads.");
5714   int n_workers = workers->total_workers();
5715   CMSRefProcTaskProxy rp_task(task, &_collector,
5716                               _collector.ref_processor()->span(),
5717                               _collector.markBitMap(),
5718                               n_workers, _collector.task_queues());
5719   workers->run_task(&rp_task);
5720 }
5721 
5722 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5723 {
5724 
5725   GenCollectedHeap* gch = GenCollectedHeap::heap();
5726   WorkGang* workers = gch->workers();
5727   assert(workers != NULL, "Need parallel worker threads.");
5728   CMSRefEnqueueTaskProxy enq_task(task);
5729   workers->run_task(&enq_task);
5730 }
5731 
5732 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5733 
5734   ResourceMark rm;
5735   HandleMark   hm;
5736 
5737   ReferenceProcessor* rp = ref_processor();
5738   assert(rp->span().equals(_span), "Spans should be equal");
5739   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5740   // Process weak references.
5741   rp->setup_policy(clear_all_soft_refs);
5742   verify_work_stacks_empty();
5743 
5744   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5745                                           &_markStack, &_revisitStack,
5746                                           false /* !preclean */);
5747   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5748                                 _span, &_markBitMap, &_markStack,
5749                                 &cmsKeepAliveClosure, false /* !preclean */);
5750   {
5751     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
5752     if (rp->processing_is_mt()) {
5753       CMSRefProcTaskExecutor task_executor(*this);
5754       rp->process_discovered_references(&_is_alive_closure,
5755                                         &cmsKeepAliveClosure,
5756                                         &cmsDrainMarkingStackClosure,
5757                                         &task_executor);
5758     } else {
5759       rp->process_discovered_references(&_is_alive_closure,
5760                                         &cmsKeepAliveClosure,
5761                                         &cmsDrainMarkingStackClosure,
5762                                         NULL);
5763     }
5764     verify_work_stacks_empty();
5765   }
5766 
5767   if (should_unload_classes()) {
5768     {
5769       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
5770 
5771       // Follow SystemDictionary roots and unload classes
5772       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5773 
5774       // Follow CodeCache roots and unload any methods marked for unloading
5775       CodeCache::do_unloading(&_is_alive_closure,
5776                               &cmsKeepAliveClosure,
5777                               purged_class);
5778 
5779       cmsDrainMarkingStackClosure.do_void();
5780       verify_work_stacks_empty();
5781 
5782       // Update subklass/sibling/implementor links in KlassKlass descendants
5783       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
5784       oop k;
5785       while ((k = _revisitStack.pop()) != NULL) {
5786         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
5787                        &_is_alive_closure,
5788                        &cmsKeepAliveClosure);
5789       }
5790       assert(!ClassUnloading ||
5791              (_markStack.isEmpty() && overflow_list_is_empty()),
5792              "Should not have found new reachable objects");
5793       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
5794       cmsDrainMarkingStackClosure.do_void();
5795       verify_work_stacks_empty();
5796     }
5797 
5798     {
5799       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
5800       // Now clean up stale oops in SymbolTable and StringTable
5801       SymbolTable::unlink(&_is_alive_closure);
5802       StringTable::unlink(&_is_alive_closure);
5803     }
5804   }
5805 
5806   verify_work_stacks_empty();
5807   // Restore any preserved marks as a result of mark stack or
5808   // work queue overflow
5809   restore_preserved_marks_if_any();  // done single-threaded for now
5810 
5811   rp->set_enqueuing_is_done(true);
5812   if (rp->processing_is_mt()) {
5813     CMSRefProcTaskExecutor task_executor(*this);
5814     rp->enqueue_discovered_references(&task_executor);
5815   } else {
5816     rp->enqueue_discovered_references(NULL);
5817   }
5818   rp->verify_no_references_recorded();
5819   assert(!rp->discovery_enabled(), "should have been disabled");
5820 
5821   // JVMTI object tagging is based on JNI weak refs. If any of these
5822   // refs were cleared then JVMTI needs to update its maps and
5823   // maybe post ObjectFrees to agents.
5824   JvmtiExport::cms_ref_processing_epilogue();
5825 }
5826 
5827 #ifndef PRODUCT
5828 void CMSCollector::check_correct_thread_executing() {
5829   Thread* t = Thread::current();
5830   // Only the VM thread or the CMS thread should be here.
5831   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5832          "Unexpected thread type");
5833   // If this is the vm thread, the foreground process
5834   // should not be waiting.  Note that _foregroundGCIsActive is
5835   // true while the foreground collector is waiting.
5836   if (_foregroundGCShouldWait) {
5837     // We cannot be the VM thread
5838     assert(t->is_ConcurrentGC_thread(),
5839            "Should be CMS thread");
5840   } else {
5841     // We can be the CMS thread only if we are in a stop-world
5842     // phase of CMS collection.
5843     if (t->is_ConcurrentGC_thread()) {
5844       assert(_collectorState == InitialMarking ||
5845              _collectorState == FinalMarking,
5846              "Should be a stop-world phase");
5847       // The CMS thread should be holding the CMS_token.
5848       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5849              "Potential interference with concurrently "
5850              "executing VM thread");
5851     }
5852   }
5853 }
5854 #endif
5855 
5856 void CMSCollector::sweep(bool asynch) {
5857   assert(_collectorState == Sweeping, "just checking");
5858   check_correct_thread_executing();
5859   verify_work_stacks_empty();
5860   verify_overflow_empty();
5861   increment_sweep_count();
5862   TraceCMSMemoryManagerStats tms(_collectorState);
5863 
5864   _inter_sweep_timer.stop();
5865   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5866   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
5867 
5868   // PermGen verification support: If perm gen sweeping is disabled in
5869   // this cycle, we preserve the perm gen object "deadness" information
5870   // in the perm_gen_verify_bit_map. In order to do that we traverse
5871   // all blocks in perm gen and mark all dead objects.
5872   if (verifying() && !should_unload_classes()) {
5873     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
5874            "Should have already been allocated");
5875     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
5876                                markBitMap(), perm_gen_verify_bit_map());
5877     if (asynch) {
5878       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
5879                                bitMapLock());
5880       _permGen->cmsSpace()->blk_iterate(&mdo);
5881     } else {
5882       // In the case of synchronous sweep, we already have
5883       // the requisite locks/tokens.
5884       _permGen->cmsSpace()->blk_iterate(&mdo);
5885     }
5886   }
5887 
5888   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5889   _intra_sweep_timer.reset();
5890   _intra_sweep_timer.start();
5891   if (asynch) {
5892     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5893     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
5894     // First sweep the old gen then the perm gen
5895     {
5896       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5897                                bitMapLock());
5898       sweepWork(_cmsGen, asynch);
5899     }
5900 
5901     // Now repeat for perm gen
5902     if (should_unload_classes()) {
5903       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
5904                              bitMapLock());
5905       sweepWork(_permGen, asynch);
5906     }
5907 
5908     // Update Universe::_heap_*_at_gc figures.
5909     // We need all the free list locks to make the abstract state
5910     // transition from Sweeping to Resetting. See detailed note
5911     // further below.
5912     {
5913       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5914                                _permGen->freelistLock());
5915       // Update heap occupancy information which is used as
5916       // input to soft ref clearing policy at the next gc.
5917       Universe::update_heap_info_at_gc();
5918       _collectorState = Resizing;
5919     }
5920   } else {
5921     // already have needed locks
5922     sweepWork(_cmsGen,  asynch);
5923 
5924     if (should_unload_classes()) {
5925       sweepWork(_permGen, asynch);
5926     }
5927     // Update heap occupancy information which is used as
5928     // input to soft ref clearing policy at the next gc.
5929     Universe::update_heap_info_at_gc();
5930     _collectorState = Resizing;
5931   }
5932   verify_work_stacks_empty();
5933   verify_overflow_empty();
5934 
5935   _intra_sweep_timer.stop();
5936   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5937 
5938   _inter_sweep_timer.reset();
5939   _inter_sweep_timer.start();
5940 
5941   update_time_of_last_gc(os::javaTimeMillis());
5942 
5943   // NOTE on abstract state transitions:
5944   // Mutators allocate-live and/or mark the mod-union table dirty
5945   // based on the state of the collection.  The former is done in
5946   // the interval [Marking, Sweeping] and the latter in the interval
5947   // [Marking, Sweeping).  Thus the transitions into the Marking state
5948   // and out of the Sweeping state must be synchronously visible
5949   // globally to the mutators.
5950   // The transition into the Marking state happens with the world
5951   // stopped so the mutators will globally see it.  Sweeping is
5952   // done asynchronously by the background collector so the transition
5953   // from the Sweeping state to the Resizing state must be done
5954   // under the freelistLock (as is the check for whether to
5955   // allocate-live and whether to dirty the mod-union table).
5956   assert(_collectorState == Resizing, "Change of collector state to"
5957     " Resizing must be done under the freelistLocks (plural)");
5958 
5959   // Now that sweeping has been completed, if the GCH's
5960   // incremental_collection_will_fail flag is set, clear it,
5961   // thus inviting a younger gen collection to promote into
5962   // this generation. If such a promotion may still fail,
5963   // the flag will be set again when a young collection is
5964   // attempted.
5965   // I think the incremental_collection_will_fail flag's use
5966   // is specific to a 2 generation collection policy, so i'll
5967   // assert that that's the configuration we are operating within.
5968   // The use of the flag can and should be generalized appropriately
5969   // in the future to deal with a general n-generation system.
5970 
5971   GenCollectedHeap* gch = GenCollectedHeap::heap();
5972   assert(gch->collector_policy()->is_two_generation_policy(),
5973          "Resetting of incremental_collection_will_fail flag"
5974          " may be incorrect otherwise");
5975   gch->clear_incremental_collection_will_fail();
5976   gch->update_full_collections_completed(_collection_count_start);
5977 }
5978 
5979 // FIX ME!!! Looks like this belongs in CFLSpace, with
5980 // CMSGen merely delegating to it.
5981 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5982   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5983   HeapWord*  minAddr        = _cmsSpace->bottom();
5984   HeapWord*  largestAddr    =
5985     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
5986   if (largestAddr == NULL) {
5987     // The dictionary appears to be empty.  In this case
5988     // try to coalesce at the end of the heap.
5989     largestAddr = _cmsSpace->end();
5990   }
5991   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5992   size_t nearLargestOffset =
5993     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5994   if (PrintFLSStatistics != 0) {
5995     gclog_or_tty->print_cr(
5996       "CMS: Large Block: " PTR_FORMAT ";"
5997       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5998       largestAddr,
5999       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6000   }
6001   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6002 }
6003 
6004 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6005   return addr >= _cmsSpace->nearLargestChunk();
6006 }
6007 
6008 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6009   return _cmsSpace->find_chunk_at_end();
6010 }
6011 
6012 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6013                                                     bool full) {
6014   // The next lower level has been collected.  Gather any statistics
6015   // that are of interest at this point.
6016   if (!full && (current_level + 1) == level()) {
6017     // Gather statistics on the young generation collection.
6018     collector()->stats().record_gc0_end(used());
6019   }
6020 }
6021 
6022 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6023   GenCollectedHeap* gch = GenCollectedHeap::heap();
6024   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6025     "Wrong type of heap");
6026   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6027     gch->gen_policy()->size_policy();
6028   assert(sp->is_gc_cms_adaptive_size_policy(),
6029     "Wrong type of size policy");
6030   return sp;
6031 }
6032 
6033 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6034   if (PrintGCDetails && Verbose) {
6035     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6036   }
6037   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6038   _debug_collection_type =
6039     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6040   if (PrintGCDetails && Verbose) {
6041     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6042   }
6043 }
6044 
6045 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6046   bool asynch) {
6047   // We iterate over the space(s) underlying this generation,
6048   // checking the mark bit map to see if the bits corresponding
6049   // to specific blocks are marked or not. Blocks that are
6050   // marked are live and are not swept up. All remaining blocks
6051   // are swept up, with coalescing on-the-fly as we sweep up
6052   // contiguous free and/or garbage blocks:
6053   // We need to ensure that the sweeper synchronizes with allocators
6054   // and stop-the-world collectors. In particular, the following
6055   // locks are used:
6056   // . CMS token: if this is held, a stop the world collection cannot occur
6057   // . freelistLock: if this is held no allocation can occur from this
6058   //                 generation by another thread
6059   // . bitMapLock: if this is held, no other thread can access or update
6060   //
6061 
6062   // Note that we need to hold the freelistLock if we use
6063   // block iterate below; else the iterator might go awry if
6064   // a mutator (or promotion) causes block contents to change
6065   // (for instance if the allocator divvies up a block).
6066   // If we hold the free list lock, for all practical purposes
6067   // young generation GC's can't occur (they'll usually need to
6068   // promote), so we might as well prevent all young generation
6069   // GC's while we do a sweeping step. For the same reason, we might
6070   // as well take the bit map lock for the entire duration
6071 
6072   // check that we hold the requisite locks
6073   assert(have_cms_token(), "Should hold cms token");
6074   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6075          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6076         "Should possess CMS token to sweep");
6077   assert_lock_strong(gen->freelistLock());
6078   assert_lock_strong(bitMapLock());
6079 
6080   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6081   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6082   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6083                                       _inter_sweep_estimate.padded_average(),
6084                                       _intra_sweep_estimate.padded_average());
6085   gen->setNearLargestChunk();
6086 
6087   {
6088     SweepClosure sweepClosure(this, gen, &_markBitMap,
6089                             CMSYield && asynch);
6090     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6091     // We need to free-up/coalesce garbage/blocks from a
6092     // co-terminal free run. This is done in the SweepClosure
6093     // destructor; so, do not remove this scope, else the
6094     // end-of-sweep-census below will be off by a little bit.
6095   }
6096   gen->cmsSpace()->sweep_completed();
6097   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6098   if (should_unload_classes()) {                // unloaded classes this cycle,
6099     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6100   } else {                                      // did not unload classes,
6101     _concurrent_cycles_since_last_unload++;     // ... increment count
6102   }
6103 }
6104 
6105 // Reset CMS data structures (for now just the marking bit map)
6106 // preparatory for the next cycle.
6107 void CMSCollector::reset(bool asynch) {
6108   GenCollectedHeap* gch = GenCollectedHeap::heap();
6109   CMSAdaptiveSizePolicy* sp = size_policy();
6110   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6111   if (asynch) {
6112     CMSTokenSyncWithLocks ts(true, bitMapLock());
6113 
6114     // If the state is not "Resetting", the foreground  thread
6115     // has done a collection and the resetting.
6116     if (_collectorState != Resetting) {
6117       assert(_collectorState == Idling, "The state should only change"
6118         " because the foreground collector has finished the collection");
6119       return;
6120     }
6121 
6122     // Clear the mark bitmap (no grey objects to start with)
6123     // for the next cycle.
6124     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6125     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6126 
6127     HeapWord* curAddr = _markBitMap.startWord();
6128     while (curAddr < _markBitMap.endWord()) {
6129       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6130       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6131       _markBitMap.clear_large_range(chunk);
6132       if (ConcurrentMarkSweepThread::should_yield() &&
6133           !foregroundGCIsActive() &&
6134           CMSYield) {
6135         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6136                "CMS thread should hold CMS token");
6137         assert_lock_strong(bitMapLock());
6138         bitMapLock()->unlock();
6139         ConcurrentMarkSweepThread::desynchronize(true);
6140         ConcurrentMarkSweepThread::acknowledge_yield_request();
6141         stopTimer();
6142         if (PrintCMSStatistics != 0) {
6143           incrementYields();
6144         }
6145         icms_wait();
6146 
6147         // See the comment in coordinator_yield()
6148         for (unsigned i = 0; i < CMSYieldSleepCount &&
6149                          ConcurrentMarkSweepThread::should_yield() &&
6150                          !CMSCollector::foregroundGCIsActive(); ++i) {
6151           os::sleep(Thread::current(), 1, false);
6152           ConcurrentMarkSweepThread::acknowledge_yield_request();
6153         }
6154 
6155         ConcurrentMarkSweepThread::synchronize(true);
6156         bitMapLock()->lock_without_safepoint_check();
6157         startTimer();
6158       }
6159       curAddr = chunk.end();
6160     }
6161     // A successful mostly concurrent collection has been done.
6162     // Because only the full (i.e., concurrent mode failure) collections
6163     // are being measured for gc overhead limits, clean the "near" flag
6164     // and count.
6165     sp->reset_gc_overhead_limit_count();
6166     _collectorState = Idling;
6167   } else {
6168     // already have the lock
6169     assert(_collectorState == Resetting, "just checking");
6170     assert_lock_strong(bitMapLock());
6171     _markBitMap.clear_all();
6172     _collectorState = Idling;
6173   }
6174 
6175   // Stop incremental mode after a cycle completes, so that any future cycles
6176   // are triggered by allocation.
6177   stop_icms();
6178 
6179   NOT_PRODUCT(
6180     if (RotateCMSCollectionTypes) {
6181       _cmsGen->rotate_debug_collection_type();
6182     }
6183   )
6184 }
6185 
6186 void CMSCollector::do_CMS_operation(CMS_op_type op) {
6187   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6188   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6189   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
6190   TraceCollectorStats tcs(counters());
6191 
6192   switch (op) {
6193     case CMS_op_checkpointRootsInitial: {
6194       checkpointRootsInitial(true);       // asynch
6195       if (PrintGC) {
6196         _cmsGen->printOccupancy("initial-mark");
6197       }
6198       break;
6199     }
6200     case CMS_op_checkpointRootsFinal: {
6201       checkpointRootsFinal(true,    // asynch
6202                            false,   // !clear_all_soft_refs
6203                            false);  // !init_mark_was_synchronous
6204       if (PrintGC) {
6205         _cmsGen->printOccupancy("remark");
6206       }
6207       break;
6208     }
6209     default:
6210       fatal("No such CMS_op");
6211   }
6212 }
6213 
6214 #ifndef PRODUCT
6215 size_t const CMSCollector::skip_header_HeapWords() {
6216   return FreeChunk::header_size();
6217 }
6218 
6219 // Try and collect here conditions that should hold when
6220 // CMS thread is exiting. The idea is that the foreground GC
6221 // thread should not be blocked if it wants to terminate
6222 // the CMS thread and yet continue to run the VM for a while
6223 // after that.
6224 void CMSCollector::verify_ok_to_terminate() const {
6225   assert(Thread::current()->is_ConcurrentGC_thread(),
6226          "should be called by CMS thread");
6227   assert(!_foregroundGCShouldWait, "should be false");
6228   // We could check here that all the various low-level locks
6229   // are not held by the CMS thread, but that is overkill; see
6230   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6231   // is checked.
6232 }
6233 #endif
6234 
6235 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6236    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6237           "missing Printezis mark?");
6238   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6239   size_t size = pointer_delta(nextOneAddr + 1, addr);
6240   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6241          "alignment problem");
6242   assert(size >= 3, "Necessary for Printezis marks to work");
6243   return size;
6244 }
6245 
6246 // A variant of the above (block_size_using_printezis_bits()) except
6247 // that we return 0 if the P-bits are not yet set.
6248 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6249   if (_markBitMap.isMarked(addr)) {
6250     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
6251     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6252     size_t size = pointer_delta(nextOneAddr + 1, addr);
6253     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6254            "alignment problem");
6255     assert(size >= 3, "Necessary for Printezis marks to work");
6256     return size;
6257   } else {
6258     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
6259     return 0;
6260   }
6261 }
6262 
6263 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6264   size_t sz = 0;
6265   oop p = (oop)addr;
6266   if (p->klass_or_null() != NULL && p->is_parsable()) {
6267     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6268   } else {
6269     sz = block_size_using_printezis_bits(addr);
6270   }
6271   assert(sz > 0, "size must be nonzero");
6272   HeapWord* next_block = addr + sz;
6273   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6274                                              CardTableModRefBS::card_size);
6275   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6276          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6277          "must be different cards");
6278   return next_card;
6279 }
6280 
6281 
6282 // CMS Bit Map Wrapper /////////////////////////////////////////
6283 
6284 // Construct a CMS bit map infrastructure, but don't create the
6285 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6286 // further below.
6287 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6288   _bm(),
6289   _shifter(shifter),
6290   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6291 {
6292   _bmStartWord = 0;
6293   _bmWordSize  = 0;
6294 }
6295 
6296 bool CMSBitMap::allocate(MemRegion mr) {
6297   _bmStartWord = mr.start();
6298   _bmWordSize  = mr.word_size();
6299   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6300                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6301   if (!brs.is_reserved()) {
6302     warning("CMS bit map allocation failure");
6303     return false;
6304   }
6305   // For now we'll just commit all of the bit map up fromt.
6306   // Later on we'll try to be more parsimonious with swap.
6307   if (!_virtual_space.initialize(brs, brs.size())) {
6308     warning("CMS bit map backing store failure");
6309     return false;
6310   }
6311   assert(_virtual_space.committed_size() == brs.size(),
6312          "didn't reserve backing store for all of CMS bit map?");
6313   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6314   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6315          _bmWordSize, "inconsistency in bit map sizing");
6316   _bm.set_size(_bmWordSize >> _shifter);
6317 
6318   // bm.clear(); // can we rely on getting zero'd memory? verify below
6319   assert(isAllClear(),
6320          "Expected zero'd memory from ReservedSpace constructor");
6321   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6322          "consistency check");
6323   return true;
6324 }
6325 
6326 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6327   HeapWord *next_addr, *end_addr, *last_addr;
6328   assert_locked();
6329   assert(covers(mr), "out-of-range error");
6330   // XXX assert that start and end are appropriately aligned
6331   for (next_addr = mr.start(), end_addr = mr.end();
6332        next_addr < end_addr; next_addr = last_addr) {
6333     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6334     last_addr = dirty_region.end();
6335     if (!dirty_region.is_empty()) {
6336       cl->do_MemRegion(dirty_region);
6337     } else {
6338       assert(last_addr == end_addr, "program logic");
6339       return;
6340     }
6341   }
6342 }
6343 
6344 #ifndef PRODUCT
6345 void CMSBitMap::assert_locked() const {
6346   CMSLockVerifier::assert_locked(lock());
6347 }
6348 
6349 bool CMSBitMap::covers(MemRegion mr) const {
6350   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6351   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6352          "size inconsistency");
6353   return (mr.start() >= _bmStartWord) &&
6354          (mr.end()   <= endWord());
6355 }
6356 
6357 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6358     return (start >= _bmStartWord && (start + size) <= endWord());
6359 }
6360 
6361 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6362   // verify that there are no 1 bits in the interval [left, right)
6363   FalseBitMapClosure falseBitMapClosure;
6364   iterate(&falseBitMapClosure, left, right);
6365 }
6366 
6367 void CMSBitMap::region_invariant(MemRegion mr)
6368 {
6369   assert_locked();
6370   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6371   assert(!mr.is_empty(), "unexpected empty region");
6372   assert(covers(mr), "mr should be covered by bit map");
6373   // convert address range into offset range
6374   size_t start_ofs = heapWordToOffset(mr.start());
6375   // Make sure that end() is appropriately aligned
6376   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6377                         (1 << (_shifter+LogHeapWordSize))),
6378          "Misaligned mr.end()");
6379   size_t end_ofs   = heapWordToOffset(mr.end());
6380   assert(end_ofs > start_ofs, "Should mark at least one bit");
6381 }
6382 
6383 #endif
6384 
6385 bool CMSMarkStack::allocate(size_t size) {
6386   // allocate a stack of the requisite depth
6387   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6388                    size * sizeof(oop)));
6389   if (!rs.is_reserved()) {
6390     warning("CMSMarkStack allocation failure");
6391     return false;
6392   }
6393   if (!_virtual_space.initialize(rs, rs.size())) {
6394     warning("CMSMarkStack backing store failure");
6395     return false;
6396   }
6397   assert(_virtual_space.committed_size() == rs.size(),
6398          "didn't reserve backing store for all of CMS stack?");
6399   _base = (oop*)(_virtual_space.low());
6400   _index = 0;
6401   _capacity = size;
6402   NOT_PRODUCT(_max_depth = 0);
6403   return true;
6404 }
6405 
6406 // XXX FIX ME !!! In the MT case we come in here holding a
6407 // leaf lock. For printing we need to take a further lock
6408 // which has lower rank. We need to recallibrate the two
6409 // lock-ranks involved in order to be able to rpint the
6410 // messages below. (Or defer the printing to the caller.
6411 // For now we take the expedient path of just disabling the
6412 // messages for the problematic case.)
6413 void CMSMarkStack::expand() {
6414   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6415   if (_capacity == MarkStackSizeMax) {
6416     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6417       // We print a warning message only once per CMS cycle.
6418       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6419     }
6420     return;
6421   }
6422   // Double capacity if possible
6423   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6424   // Do not give up existing stack until we have managed to
6425   // get the double capacity that we desired.
6426   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6427                    new_capacity * sizeof(oop)));
6428   if (rs.is_reserved()) {
6429     // Release the backing store associated with old stack
6430     _virtual_space.release();
6431     // Reinitialize virtual space for new stack
6432     if (!_virtual_space.initialize(rs, rs.size())) {
6433       fatal("Not enough swap for expanded marking stack");
6434     }
6435     _base = (oop*)(_virtual_space.low());
6436     _index = 0;
6437     _capacity = new_capacity;
6438   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6439     // Failed to double capacity, continue;
6440     // we print a detail message only once per CMS cycle.
6441     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6442             SIZE_FORMAT"K",
6443             _capacity / K, new_capacity / K);
6444   }
6445 }
6446 
6447 
6448 // Closures
6449 // XXX: there seems to be a lot of code  duplication here;
6450 // should refactor and consolidate common code.
6451 
6452 // This closure is used to mark refs into the CMS generation in
6453 // the CMS bit map. Called at the first checkpoint. This closure
6454 // assumes that we do not need to re-mark dirty cards; if the CMS
6455 // generation on which this is used is not an oldest (modulo perm gen)
6456 // generation then this will lose younger_gen cards!
6457 
6458 MarkRefsIntoClosure::MarkRefsIntoClosure(
6459   MemRegion span, CMSBitMap* bitMap):
6460     _span(span),
6461     _bitMap(bitMap)
6462 {
6463     assert(_ref_processor == NULL, "deliberately left NULL");
6464     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6465 }
6466 
6467 void MarkRefsIntoClosure::do_oop(oop obj) {
6468   // if p points into _span, then mark corresponding bit in _markBitMap
6469   assert(obj->is_oop(), "expected an oop");
6470   HeapWord* addr = (HeapWord*)obj;
6471   if (_span.contains(addr)) {
6472     // this should be made more efficient
6473     _bitMap->mark(addr);
6474   }
6475 }
6476 
6477 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6478 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6479 
6480 // A variant of the above, used for CMS marking verification.
6481 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6482   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6483     _span(span),
6484     _verification_bm(verification_bm),
6485     _cms_bm(cms_bm)
6486 {
6487     assert(_ref_processor == NULL, "deliberately left NULL");
6488     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6489 }
6490 
6491 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6492   // if p points into _span, then mark corresponding bit in _markBitMap
6493   assert(obj->is_oop(), "expected an oop");
6494   HeapWord* addr = (HeapWord*)obj;
6495   if (_span.contains(addr)) {
6496     _verification_bm->mark(addr);
6497     if (!_cms_bm->isMarked(addr)) {
6498       oop(addr)->print();
6499       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6500       fatal("... aborting");
6501     }
6502   }
6503 }
6504 
6505 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6506 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6507 
6508 //////////////////////////////////////////////////
6509 // MarkRefsIntoAndScanClosure
6510 //////////////////////////////////////////////////
6511 
6512 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6513                                                        ReferenceProcessor* rp,
6514                                                        CMSBitMap* bit_map,
6515                                                        CMSBitMap* mod_union_table,
6516                                                        CMSMarkStack*  mark_stack,
6517                                                        CMSMarkStack*  revisit_stack,
6518                                                        CMSCollector* collector,
6519                                                        bool should_yield,
6520                                                        bool concurrent_precleaning):
6521   _collector(collector),
6522   _span(span),
6523   _bit_map(bit_map),
6524   _mark_stack(mark_stack),
6525   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6526                       mark_stack, revisit_stack, concurrent_precleaning),
6527   _yield(should_yield),
6528   _concurrent_precleaning(concurrent_precleaning),
6529   _freelistLock(NULL)
6530 {
6531   _ref_processor = rp;
6532   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6533 }
6534 
6535 // This closure is used to mark refs into the CMS generation at the
6536 // second (final) checkpoint, and to scan and transitively follow
6537 // the unmarked oops. It is also used during the concurrent precleaning
6538 // phase while scanning objects on dirty cards in the CMS generation.
6539 // The marks are made in the marking bit map and the marking stack is
6540 // used for keeping the (newly) grey objects during the scan.
6541 // The parallel version (Par_...) appears further below.
6542 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6543   if (obj != NULL) {
6544     assert(obj->is_oop(), "expected an oop");
6545     HeapWord* addr = (HeapWord*)obj;
6546     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6547     assert(_collector->overflow_list_is_empty(),
6548            "overflow list should be empty");
6549     if (_span.contains(addr) &&
6550         !_bit_map->isMarked(addr)) {
6551       // mark bit map (object is now grey)
6552       _bit_map->mark(addr);
6553       // push on marking stack (stack should be empty), and drain the
6554       // stack by applying this closure to the oops in the oops popped
6555       // from the stack (i.e. blacken the grey objects)
6556       bool res = _mark_stack->push(obj);
6557       assert(res, "Should have space to push on empty stack");
6558       do {
6559         oop new_oop = _mark_stack->pop();
6560         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6561         assert(new_oop->is_parsable(), "Found unparsable oop");
6562         assert(_bit_map->isMarked((HeapWord*)new_oop),
6563                "only grey objects on this stack");
6564         // iterate over the oops in this oop, marking and pushing
6565         // the ones in CMS heap (i.e. in _span).
6566         new_oop->oop_iterate(&_pushAndMarkClosure);
6567         // check if it's time to yield
6568         do_yield_check();
6569       } while (!_mark_stack->isEmpty() ||
6570                (!_concurrent_precleaning && take_from_overflow_list()));
6571         // if marking stack is empty, and we are not doing this
6572         // during precleaning, then check the overflow list
6573     }
6574     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6575     assert(_collector->overflow_list_is_empty(),
6576            "overflow list was drained above");
6577     // We could restore evacuated mark words, if any, used for
6578     // overflow list links here because the overflow list is
6579     // provably empty here. That would reduce the maximum
6580     // size requirements for preserved_{oop,mark}_stack.
6581     // But we'll just postpone it until we are all done
6582     // so we can just stream through.
6583     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6584       _collector->restore_preserved_marks_if_any();
6585       assert(_collector->no_preserved_marks(), "No preserved marks");
6586     }
6587     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6588            "All preserved marks should have been restored above");
6589   }
6590 }
6591 
6592 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6593 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6594 
6595 void MarkRefsIntoAndScanClosure::do_yield_work() {
6596   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6597          "CMS thread should hold CMS token");
6598   assert_lock_strong(_freelistLock);
6599   assert_lock_strong(_bit_map->lock());
6600   // relinquish the free_list_lock and bitMaplock()
6601   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6602   _bit_map->lock()->unlock();
6603   _freelistLock->unlock();
6604   ConcurrentMarkSweepThread::desynchronize(true);
6605   ConcurrentMarkSweepThread::acknowledge_yield_request();
6606   _collector->stopTimer();
6607   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6608   if (PrintCMSStatistics != 0) {
6609     _collector->incrementYields();
6610   }
6611   _collector->icms_wait();
6612 
6613   // See the comment in coordinator_yield()
6614   for (unsigned i = 0;
6615        i < CMSYieldSleepCount &&
6616        ConcurrentMarkSweepThread::should_yield() &&
6617        !CMSCollector::foregroundGCIsActive();
6618        ++i) {
6619     os::sleep(Thread::current(), 1, false);
6620     ConcurrentMarkSweepThread::acknowledge_yield_request();
6621   }
6622 
6623   ConcurrentMarkSweepThread::synchronize(true);
6624   _freelistLock->lock_without_safepoint_check();
6625   _bit_map->lock()->lock_without_safepoint_check();
6626   _collector->startTimer();
6627 }
6628 
6629 ///////////////////////////////////////////////////////////
6630 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6631 //                                 MarkRefsIntoAndScanClosure
6632 ///////////////////////////////////////////////////////////
6633 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6634   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6635   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
6636   _span(span),
6637   _bit_map(bit_map),
6638   _work_queue(work_queue),
6639   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6640                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6641   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
6642                           revisit_stack)
6643 {
6644   _ref_processor = rp;
6645   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6646 }
6647 
6648 // This closure is used to mark refs into the CMS generation at the
6649 // second (final) checkpoint, and to scan and transitively follow
6650 // the unmarked oops. The marks are made in the marking bit map and
6651 // the work_queue is used for keeping the (newly) grey objects during
6652 // the scan phase whence they are also available for stealing by parallel
6653 // threads. Since the marking bit map is shared, updates are
6654 // synchronized (via CAS).
6655 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6656   if (obj != NULL) {
6657     // Ignore mark word because this could be an already marked oop
6658     // that may be chained at the end of the overflow list.
6659     assert(obj->is_oop(true), "expected an oop");
6660     HeapWord* addr = (HeapWord*)obj;
6661     if (_span.contains(addr) &&
6662         !_bit_map->isMarked(addr)) {
6663       // mark bit map (object will become grey):
6664       // It is possible for several threads to be
6665       // trying to "claim" this object concurrently;
6666       // the unique thread that succeeds in marking the
6667       // object first will do the subsequent push on
6668       // to the work queue (or overflow list).
6669       if (_bit_map->par_mark(addr)) {
6670         // push on work_queue (which may not be empty), and trim the
6671         // queue to an appropriate length by applying this closure to
6672         // the oops in the oops popped from the stack (i.e. blacken the
6673         // grey objects)
6674         bool res = _work_queue->push(obj);
6675         assert(res, "Low water mark should be less than capacity?");
6676         trim_queue(_low_water_mark);
6677       } // Else, another thread claimed the object
6678     }
6679   }
6680 }
6681 
6682 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6683 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6684 
6685 // This closure is used to rescan the marked objects on the dirty cards
6686 // in the mod union table and the card table proper.
6687 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6688   oop p, MemRegion mr) {
6689 
6690   size_t size = 0;
6691   HeapWord* addr = (HeapWord*)p;
6692   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6693   assert(_span.contains(addr), "we are scanning the CMS generation");
6694   // check if it's time to yield
6695   if (do_yield_check()) {
6696     // We yielded for some foreground stop-world work,
6697     // and we have been asked to abort this ongoing preclean cycle.
6698     return 0;
6699   }
6700   if (_bitMap->isMarked(addr)) {
6701     // it's marked; is it potentially uninitialized?
6702     if (p->klass_or_null() != NULL) {
6703       // If is_conc_safe is false, the object may be undergoing
6704       // change by the VM outside a safepoint.  Don't try to
6705       // scan it, but rather leave it for the remark phase.
6706       if (CMSPermGenPrecleaningEnabled &&
6707           (!p->is_conc_safe() || !p->is_parsable())) {
6708         // Signal precleaning to redirty the card since
6709         // the klass pointer is already installed.
6710         assert(size == 0, "Initial value");
6711       } else {
6712         assert(p->is_parsable(), "must be parsable.");
6713         // an initialized object; ignore mark word in verification below
6714         // since we are running concurrent with mutators
6715         assert(p->is_oop(true), "should be an oop");
6716         if (p->is_objArray()) {
6717           // objArrays are precisely marked; restrict scanning
6718           // to dirty cards only.
6719           size = CompactibleFreeListSpace::adjustObjectSize(
6720                    p->oop_iterate(_scanningClosure, mr));
6721         } else {
6722           // A non-array may have been imprecisely marked; we need
6723           // to scan object in its entirety.
6724           size = CompactibleFreeListSpace::adjustObjectSize(
6725                    p->oop_iterate(_scanningClosure));
6726         }
6727         #ifdef DEBUG
6728           size_t direct_size =
6729             CompactibleFreeListSpace::adjustObjectSize(p->size());
6730           assert(size == direct_size, "Inconsistency in size");
6731           assert(size >= 3, "Necessary for Printezis marks to work");
6732           if (!_bitMap->isMarked(addr+1)) {
6733             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6734           } else {
6735             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6736             assert(_bitMap->isMarked(addr+size-1),
6737                    "inconsistent Printezis mark");
6738           }
6739         #endif // DEBUG
6740       }
6741     } else {
6742       // an unitialized object
6743       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6744       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6745       size = pointer_delta(nextOneAddr + 1, addr);
6746       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6747              "alignment problem");
6748       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6749       // will dirty the card when the klass pointer is installed in the
6750       // object (signalling the completion of initialization).
6751     }
6752   } else {
6753     // Either a not yet marked object or an uninitialized object
6754     if (p->klass_or_null() == NULL || !p->is_parsable()) {
6755       // An uninitialized object, skip to the next card, since
6756       // we may not be able to read its P-bits yet.
6757       assert(size == 0, "Initial value");
6758     } else {
6759       // An object not (yet) reached by marking: we merely need to
6760       // compute its size so as to go look at the next block.
6761       assert(p->is_oop(true), "should be an oop");
6762       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6763     }
6764   }
6765   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6766   return size;
6767 }
6768 
6769 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6770   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6771          "CMS thread should hold CMS token");
6772   assert_lock_strong(_freelistLock);
6773   assert_lock_strong(_bitMap->lock());
6774   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6775   // relinquish the free_list_lock and bitMaplock()
6776   _bitMap->lock()->unlock();
6777   _freelistLock->unlock();
6778   ConcurrentMarkSweepThread::desynchronize(true);
6779   ConcurrentMarkSweepThread::acknowledge_yield_request();
6780   _collector->stopTimer();
6781   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6782   if (PrintCMSStatistics != 0) {
6783     _collector->incrementYields();
6784   }
6785   _collector->icms_wait();
6786 
6787   // See the comment in coordinator_yield()
6788   for (unsigned i = 0; i < CMSYieldSleepCount &&
6789                    ConcurrentMarkSweepThread::should_yield() &&
6790                    !CMSCollector::foregroundGCIsActive(); ++i) {
6791     os::sleep(Thread::current(), 1, false);
6792     ConcurrentMarkSweepThread::acknowledge_yield_request();
6793   }
6794 
6795   ConcurrentMarkSweepThread::synchronize(true);
6796   _freelistLock->lock_without_safepoint_check();
6797   _bitMap->lock()->lock_without_safepoint_check();
6798   _collector->startTimer();
6799 }
6800 
6801 
6802 //////////////////////////////////////////////////////////////////
6803 // SurvivorSpacePrecleanClosure
6804 //////////////////////////////////////////////////////////////////
6805 // This (single-threaded) closure is used to preclean the oops in
6806 // the survivor spaces.
6807 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6808 
6809   HeapWord* addr = (HeapWord*)p;
6810   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6811   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6812   assert(p->klass_or_null() != NULL, "object should be initializd");
6813   assert(p->is_parsable(), "must be parsable.");
6814   // an initialized object; ignore mark word in verification below
6815   // since we are running concurrent with mutators
6816   assert(p->is_oop(true), "should be an oop");
6817   // Note that we do not yield while we iterate over
6818   // the interior oops of p, pushing the relevant ones
6819   // on our marking stack.
6820   size_t size = p->oop_iterate(_scanning_closure);
6821   do_yield_check();
6822   // Observe that below, we do not abandon the preclean
6823   // phase as soon as we should; rather we empty the
6824   // marking stack before returning. This is to satisfy
6825   // some existing assertions. In general, it may be a
6826   // good idea to abort immediately and complete the marking
6827   // from the grey objects at a later time.
6828   while (!_mark_stack->isEmpty()) {
6829     oop new_oop = _mark_stack->pop();
6830     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6831     assert(new_oop->is_parsable(), "Found unparsable oop");
6832     assert(_bit_map->isMarked((HeapWord*)new_oop),
6833            "only grey objects on this stack");
6834     // iterate over the oops in this oop, marking and pushing
6835     // the ones in CMS heap (i.e. in _span).
6836     new_oop->oop_iterate(_scanning_closure);
6837     // check if it's time to yield
6838     do_yield_check();
6839   }
6840   unsigned int after_count =
6841     GenCollectedHeap::heap()->total_collections();
6842   bool abort = (_before_count != after_count) ||
6843                _collector->should_abort_preclean();
6844   return abort ? 0 : size;
6845 }
6846 
6847 void SurvivorSpacePrecleanClosure::do_yield_work() {
6848   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6849          "CMS thread should hold CMS token");
6850   assert_lock_strong(_bit_map->lock());
6851   DEBUG_ONLY(RememberKlassesChecker smx(false);)
6852   // Relinquish the bit map lock
6853   _bit_map->lock()->unlock();
6854   ConcurrentMarkSweepThread::desynchronize(true);
6855   ConcurrentMarkSweepThread::acknowledge_yield_request();
6856   _collector->stopTimer();
6857   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6858   if (PrintCMSStatistics != 0) {
6859     _collector->incrementYields();
6860   }
6861   _collector->icms_wait();
6862 
6863   // See the comment in coordinator_yield()
6864   for (unsigned i = 0; i < CMSYieldSleepCount &&
6865                        ConcurrentMarkSweepThread::should_yield() &&
6866                        !CMSCollector::foregroundGCIsActive(); ++i) {
6867     os::sleep(Thread::current(), 1, false);
6868     ConcurrentMarkSweepThread::acknowledge_yield_request();
6869   }
6870 
6871   ConcurrentMarkSweepThread::synchronize(true);
6872   _bit_map->lock()->lock_without_safepoint_check();
6873   _collector->startTimer();
6874 }
6875 
6876 // This closure is used to rescan the marked objects on the dirty cards
6877 // in the mod union table and the card table proper. In the parallel
6878 // case, although the bitMap is shared, we do a single read so the
6879 // isMarked() query is "safe".
6880 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6881   // Ignore mark word because we are running concurrent with mutators
6882   assert(p->is_oop_or_null(true), "expected an oop or null");
6883   HeapWord* addr = (HeapWord*)p;
6884   assert(_span.contains(addr), "we are scanning the CMS generation");
6885   bool is_obj_array = false;
6886   #ifdef DEBUG
6887     if (!_parallel) {
6888       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6889       assert(_collector->overflow_list_is_empty(),
6890              "overflow list should be empty");
6891 
6892     }
6893   #endif // DEBUG
6894   if (_bit_map->isMarked(addr)) {
6895     // Obj arrays are precisely marked, non-arrays are not;
6896     // so we scan objArrays precisely and non-arrays in their
6897     // entirety.
6898     if (p->is_objArray()) {
6899       is_obj_array = true;
6900       if (_parallel) {
6901         p->oop_iterate(_par_scan_closure, mr);
6902       } else {
6903         p->oop_iterate(_scan_closure, mr);
6904       }
6905     } else {
6906       if (_parallel) {
6907         p->oop_iterate(_par_scan_closure);
6908       } else {
6909         p->oop_iterate(_scan_closure);
6910       }
6911     }
6912   }
6913   #ifdef DEBUG
6914     if (!_parallel) {
6915       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6916       assert(_collector->overflow_list_is_empty(),
6917              "overflow list should be empty");
6918 
6919     }
6920   #endif // DEBUG
6921   return is_obj_array;
6922 }
6923 
6924 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6925                         MemRegion span,
6926                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6927                         CMSMarkStack*  revisitStack,
6928                         bool should_yield, bool verifying):
6929   _collector(collector),
6930   _span(span),
6931   _bitMap(bitMap),
6932   _mut(&collector->_modUnionTable),
6933   _markStack(markStack),
6934   _revisitStack(revisitStack),
6935   _yield(should_yield),
6936   _skipBits(0)
6937 {
6938   assert(_markStack->isEmpty(), "stack should be empty");
6939   _finger = _bitMap->startWord();
6940   _threshold = _finger;
6941   assert(_collector->_restart_addr == NULL, "Sanity check");
6942   assert(_span.contains(_finger), "Out of bounds _finger?");
6943   DEBUG_ONLY(_verifying = verifying;)
6944 }
6945 
6946 void MarkFromRootsClosure::reset(HeapWord* addr) {
6947   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6948   assert(_span.contains(addr), "Out of bounds _finger?");
6949   _finger = addr;
6950   _threshold = (HeapWord*)round_to(
6951                  (intptr_t)_finger, CardTableModRefBS::card_size);
6952 }
6953 
6954 // Should revisit to see if this should be restructured for
6955 // greater efficiency.
6956 bool MarkFromRootsClosure::do_bit(size_t offset) {
6957   if (_skipBits > 0) {
6958     _skipBits--;
6959     return true;
6960   }
6961   // convert offset into a HeapWord*
6962   HeapWord* addr = _bitMap->startWord() + offset;
6963   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6964          "address out of range");
6965   assert(_bitMap->isMarked(addr), "tautology");
6966   if (_bitMap->isMarked(addr+1)) {
6967     // this is an allocated but not yet initialized object
6968     assert(_skipBits == 0, "tautology");
6969     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6970     oop p = oop(addr);
6971     if (p->klass_or_null() == NULL || !p->is_parsable()) {
6972       DEBUG_ONLY(if (!_verifying) {)
6973         // We re-dirty the cards on which this object lies and increase
6974         // the _threshold so that we'll come back to scan this object
6975         // during the preclean or remark phase. (CMSCleanOnEnter)
6976         if (CMSCleanOnEnter) {
6977           size_t sz = _collector->block_size_using_printezis_bits(addr);
6978           HeapWord* end_card_addr   = (HeapWord*)round_to(
6979                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6980           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6981           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6982           // Bump _threshold to end_card_addr; note that
6983           // _threshold cannot possibly exceed end_card_addr, anyhow.
6984           // This prevents future clearing of the card as the scan proceeds
6985           // to the right.
6986           assert(_threshold <= end_card_addr,
6987                  "Because we are just scanning into this object");
6988           if (_threshold < end_card_addr) {
6989             _threshold = end_card_addr;
6990           }
6991           if (p->klass_or_null() != NULL) {
6992             // Redirty the range of cards...
6993             _mut->mark_range(redirty_range);
6994           } // ...else the setting of klass will dirty the card anyway.
6995         }
6996       DEBUG_ONLY(})
6997       return true;
6998     }
6999   }
7000   scanOopsInOop(addr);
7001   return true;
7002 }
7003 
7004 // We take a break if we've been at this for a while,
7005 // so as to avoid monopolizing the locks involved.
7006 void MarkFromRootsClosure::do_yield_work() {
7007   // First give up the locks, then yield, then re-lock
7008   // We should probably use a constructor/destructor idiom to
7009   // do this unlock/lock or modify the MutexUnlocker class to
7010   // serve our purpose. XXX
7011   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7012          "CMS thread should hold CMS token");
7013   assert_lock_strong(_bitMap->lock());
7014   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7015   _bitMap->lock()->unlock();
7016   ConcurrentMarkSweepThread::desynchronize(true);
7017   ConcurrentMarkSweepThread::acknowledge_yield_request();
7018   _collector->stopTimer();
7019   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7020   if (PrintCMSStatistics != 0) {
7021     _collector->incrementYields();
7022   }
7023   _collector->icms_wait();
7024 
7025   // See the comment in coordinator_yield()
7026   for (unsigned i = 0; i < CMSYieldSleepCount &&
7027                        ConcurrentMarkSweepThread::should_yield() &&
7028                        !CMSCollector::foregroundGCIsActive(); ++i) {
7029     os::sleep(Thread::current(), 1, false);
7030     ConcurrentMarkSweepThread::acknowledge_yield_request();
7031   }
7032 
7033   ConcurrentMarkSweepThread::synchronize(true);
7034   _bitMap->lock()->lock_without_safepoint_check();
7035   _collector->startTimer();
7036 }
7037 
7038 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7039   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7040   assert(_markStack->isEmpty(),
7041          "should drain stack to limit stack usage");
7042   // convert ptr to an oop preparatory to scanning
7043   oop obj = oop(ptr);
7044   // Ignore mark word in verification below, since we
7045   // may be running concurrent with mutators.
7046   assert(obj->is_oop(true), "should be an oop");
7047   assert(_finger <= ptr, "_finger runneth ahead");
7048   // advance the finger to right end of this object
7049   _finger = ptr + obj->size();
7050   assert(_finger > ptr, "we just incremented it above");
7051   // On large heaps, it may take us some time to get through
7052   // the marking phase (especially if running iCMS). During
7053   // this time it's possible that a lot of mutations have
7054   // accumulated in the card table and the mod union table --
7055   // these mutation records are redundant until we have
7056   // actually traced into the corresponding card.
7057   // Here, we check whether advancing the finger would make
7058   // us cross into a new card, and if so clear corresponding
7059   // cards in the MUT (preclean them in the card-table in the
7060   // future).
7061 
7062   DEBUG_ONLY(if (!_verifying) {)
7063     // The clean-on-enter optimization is disabled by default,
7064     // until we fix 6178663.
7065     if (CMSCleanOnEnter && (_finger > _threshold)) {
7066       // [_threshold, _finger) represents the interval
7067       // of cards to be cleared  in MUT (or precleaned in card table).
7068       // The set of cards to be cleared is all those that overlap
7069       // with the interval [_threshold, _finger); note that
7070       // _threshold is always kept card-aligned but _finger isn't
7071       // always card-aligned.
7072       HeapWord* old_threshold = _threshold;
7073       assert(old_threshold == (HeapWord*)round_to(
7074               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7075              "_threshold should always be card-aligned");
7076       _threshold = (HeapWord*)round_to(
7077                      (intptr_t)_finger, CardTableModRefBS::card_size);
7078       MemRegion mr(old_threshold, _threshold);
7079       assert(!mr.is_empty(), "Control point invariant");
7080       assert(_span.contains(mr), "Should clear within span");
7081       // XXX When _finger crosses from old gen into perm gen
7082       // we may be doing unnecessary cleaning; do better in the
7083       // future by detecting that condition and clearing fewer
7084       // MUT/CT entries.
7085       _mut->clear_range(mr);
7086     }
7087   DEBUG_ONLY(})
7088   // Note: the finger doesn't advance while we drain
7089   // the stack below.
7090   PushOrMarkClosure pushOrMarkClosure(_collector,
7091                                       _span, _bitMap, _markStack,
7092                                       _revisitStack,
7093                                       _finger, this);
7094   bool res = _markStack->push(obj);
7095   assert(res, "Empty non-zero size stack should have space for single push");
7096   while (!_markStack->isEmpty()) {
7097     oop new_oop = _markStack->pop();
7098     // Skip verifying header mark word below because we are
7099     // running concurrent with mutators.
7100     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7101     // now scan this oop's oops
7102     new_oop->oop_iterate(&pushOrMarkClosure);
7103     do_yield_check();
7104   }
7105   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7106 }
7107 
7108 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7109                        CMSCollector* collector, MemRegion span,
7110                        CMSBitMap* bit_map,
7111                        OopTaskQueue* work_queue,
7112                        CMSMarkStack*  overflow_stack,
7113                        CMSMarkStack*  revisit_stack,
7114                        bool should_yield):
7115   _collector(collector),
7116   _whole_span(collector->_span),
7117   _span(span),
7118   _bit_map(bit_map),
7119   _mut(&collector->_modUnionTable),
7120   _work_queue(work_queue),
7121   _overflow_stack(overflow_stack),
7122   _revisit_stack(revisit_stack),
7123   _yield(should_yield),
7124   _skip_bits(0),
7125   _task(task)
7126 {
7127   assert(_work_queue->size() == 0, "work_queue should be empty");
7128   _finger = span.start();
7129   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7130   assert(_span.contains(_finger), "Out of bounds _finger?");
7131 }
7132 
7133 // Should revisit to see if this should be restructured for
7134 // greater efficiency.
7135 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7136   if (_skip_bits > 0) {
7137     _skip_bits--;
7138     return true;
7139   }
7140   // convert offset into a HeapWord*
7141   HeapWord* addr = _bit_map->startWord() + offset;
7142   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7143          "address out of range");
7144   assert(_bit_map->isMarked(addr), "tautology");
7145   if (_bit_map->isMarked(addr+1)) {
7146     // this is an allocated object that might not yet be initialized
7147     assert(_skip_bits == 0, "tautology");
7148     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7149     oop p = oop(addr);
7150     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7151       // in the case of Clean-on-Enter optimization, redirty card
7152       // and avoid clearing card by increasing  the threshold.
7153       return true;
7154     }
7155   }
7156   scan_oops_in_oop(addr);
7157   return true;
7158 }
7159 
7160 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7161   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7162   // Should we assert that our work queue is empty or
7163   // below some drain limit?
7164   assert(_work_queue->size() == 0,
7165          "should drain stack to limit stack usage");
7166   // convert ptr to an oop preparatory to scanning
7167   oop obj = oop(ptr);
7168   // Ignore mark word in verification below, since we
7169   // may be running concurrent with mutators.
7170   assert(obj->is_oop(true), "should be an oop");
7171   assert(_finger <= ptr, "_finger runneth ahead");
7172   // advance the finger to right end of this object
7173   _finger = ptr + obj->size();
7174   assert(_finger > ptr, "we just incremented it above");
7175   // On large heaps, it may take us some time to get through
7176   // the marking phase (especially if running iCMS). During
7177   // this time it's possible that a lot of mutations have
7178   // accumulated in the card table and the mod union table --
7179   // these mutation records are redundant until we have
7180   // actually traced into the corresponding card.
7181   // Here, we check whether advancing the finger would make
7182   // us cross into a new card, and if so clear corresponding
7183   // cards in the MUT (preclean them in the card-table in the
7184   // future).
7185 
7186   // The clean-on-enter optimization is disabled by default,
7187   // until we fix 6178663.
7188   if (CMSCleanOnEnter && (_finger > _threshold)) {
7189     // [_threshold, _finger) represents the interval
7190     // of cards to be cleared  in MUT (or precleaned in card table).
7191     // The set of cards to be cleared is all those that overlap
7192     // with the interval [_threshold, _finger); note that
7193     // _threshold is always kept card-aligned but _finger isn't
7194     // always card-aligned.
7195     HeapWord* old_threshold = _threshold;
7196     assert(old_threshold == (HeapWord*)round_to(
7197             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7198            "_threshold should always be card-aligned");
7199     _threshold = (HeapWord*)round_to(
7200                    (intptr_t)_finger, CardTableModRefBS::card_size);
7201     MemRegion mr(old_threshold, _threshold);
7202     assert(!mr.is_empty(), "Control point invariant");
7203     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7204     // XXX When _finger crosses from old gen into perm gen
7205     // we may be doing unnecessary cleaning; do better in the
7206     // future by detecting that condition and clearing fewer
7207     // MUT/CT entries.
7208     _mut->clear_range(mr);
7209   }
7210 
7211   // Note: the local finger doesn't advance while we drain
7212   // the stack below, but the global finger sure can and will.
7213   HeapWord** gfa = _task->global_finger_addr();
7214   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7215                                       _span, _bit_map,
7216                                       _work_queue,
7217                                       _overflow_stack,
7218                                       _revisit_stack,
7219                                       _finger,
7220                                       gfa, this);
7221   bool res = _work_queue->push(obj);   // overflow could occur here
7222   assert(res, "Will hold once we use workqueues");
7223   while (true) {
7224     oop new_oop;
7225     if (!_work_queue->pop_local(new_oop)) {
7226       // We emptied our work_queue; check if there's stuff that can
7227       // be gotten from the overflow stack.
7228       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7229             _overflow_stack, _work_queue)) {
7230         do_yield_check();
7231         continue;
7232       } else {  // done
7233         break;
7234       }
7235     }
7236     // Skip verifying header mark word below because we are
7237     // running concurrent with mutators.
7238     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7239     // now scan this oop's oops
7240     new_oop->oop_iterate(&pushOrMarkClosure);
7241     do_yield_check();
7242   }
7243   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7244 }
7245 
7246 // Yield in response to a request from VM Thread or
7247 // from mutators.
7248 void Par_MarkFromRootsClosure::do_yield_work() {
7249   assert(_task != NULL, "sanity");
7250   _task->yield();
7251 }
7252 
7253 // A variant of the above used for verifying CMS marking work.
7254 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7255                         MemRegion span,
7256                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7257                         CMSMarkStack*  mark_stack):
7258   _collector(collector),
7259   _span(span),
7260   _verification_bm(verification_bm),
7261   _cms_bm(cms_bm),
7262   _mark_stack(mark_stack),
7263   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7264                       mark_stack)
7265 {
7266   assert(_mark_stack->isEmpty(), "stack should be empty");
7267   _finger = _verification_bm->startWord();
7268   assert(_collector->_restart_addr == NULL, "Sanity check");
7269   assert(_span.contains(_finger), "Out of bounds _finger?");
7270 }
7271 
7272 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7273   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7274   assert(_span.contains(addr), "Out of bounds _finger?");
7275   _finger = addr;
7276 }
7277 
7278 // Should revisit to see if this should be restructured for
7279 // greater efficiency.
7280 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7281   // convert offset into a HeapWord*
7282   HeapWord* addr = _verification_bm->startWord() + offset;
7283   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7284          "address out of range");
7285   assert(_verification_bm->isMarked(addr), "tautology");
7286   assert(_cms_bm->isMarked(addr), "tautology");
7287 
7288   assert(_mark_stack->isEmpty(),
7289          "should drain stack to limit stack usage");
7290   // convert addr to an oop preparatory to scanning
7291   oop obj = oop(addr);
7292   assert(obj->is_oop(), "should be an oop");
7293   assert(_finger <= addr, "_finger runneth ahead");
7294   // advance the finger to right end of this object
7295   _finger = addr + obj->size();
7296   assert(_finger > addr, "we just incremented it above");
7297   // Note: the finger doesn't advance while we drain
7298   // the stack below.
7299   bool res = _mark_stack->push(obj);
7300   assert(res, "Empty non-zero size stack should have space for single push");
7301   while (!_mark_stack->isEmpty()) {
7302     oop new_oop = _mark_stack->pop();
7303     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7304     // now scan this oop's oops
7305     new_oop->oop_iterate(&_pam_verify_closure);
7306   }
7307   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7308   return true;
7309 }
7310 
7311 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7312   CMSCollector* collector, MemRegion span,
7313   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7314   CMSMarkStack*  mark_stack):
7315   OopClosure(collector->ref_processor()),
7316   _collector(collector),
7317   _span(span),
7318   _verification_bm(verification_bm),
7319   _cms_bm(cms_bm),
7320   _mark_stack(mark_stack)
7321 { }
7322 
7323 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7324 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7325 
7326 // Upon stack overflow, we discard (part of) the stack,
7327 // remembering the least address amongst those discarded
7328 // in CMSCollector's _restart_address.
7329 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7330   // Remember the least grey address discarded
7331   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7332   _collector->lower_restart_addr(ra);
7333   _mark_stack->reset();  // discard stack contents
7334   _mark_stack->expand(); // expand the stack if possible
7335 }
7336 
7337 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7338   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7339   HeapWord* addr = (HeapWord*)obj;
7340   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7341     // Oop lies in _span and isn't yet grey or black
7342     _verification_bm->mark(addr);            // now grey
7343     if (!_cms_bm->isMarked(addr)) {
7344       oop(addr)->print();
7345       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7346                              addr);
7347       fatal("... aborting");
7348     }
7349 
7350     if (!_mark_stack->push(obj)) { // stack overflow
7351       if (PrintCMSStatistics != 0) {
7352         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7353                                SIZE_FORMAT, _mark_stack->capacity());
7354       }
7355       assert(_mark_stack->isFull(), "Else push should have succeeded");
7356       handle_stack_overflow(addr);
7357     }
7358     // anything including and to the right of _finger
7359     // will be scanned as we iterate over the remainder of the
7360     // bit map
7361   }
7362 }
7363 
7364 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7365                      MemRegion span,
7366                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7367                      CMSMarkStack*  revisitStack,
7368                      HeapWord* finger, MarkFromRootsClosure* parent) :
7369   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
7370   _span(span),
7371   _bitMap(bitMap),
7372   _markStack(markStack),
7373   _finger(finger),
7374   _parent(parent)
7375 { }
7376 
7377 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7378                      MemRegion span,
7379                      CMSBitMap* bit_map,
7380                      OopTaskQueue* work_queue,
7381                      CMSMarkStack*  overflow_stack,
7382                      CMSMarkStack*  revisit_stack,
7383                      HeapWord* finger,
7384                      HeapWord** global_finger_addr,
7385                      Par_MarkFromRootsClosure* parent) :
7386   Par_KlassRememberingOopClosure(collector,
7387                             collector->ref_processor(),
7388                             revisit_stack),
7389   _whole_span(collector->_span),
7390   _span(span),
7391   _bit_map(bit_map),
7392   _work_queue(work_queue),
7393   _overflow_stack(overflow_stack),
7394   _finger(finger),
7395   _global_finger_addr(global_finger_addr),
7396   _parent(parent)
7397 { }
7398 
7399 // Assumes thread-safe access by callers, who are
7400 // responsible for mutual exclusion.
7401 void CMSCollector::lower_restart_addr(HeapWord* low) {
7402   assert(_span.contains(low), "Out of bounds addr");
7403   if (_restart_addr == NULL) {
7404     _restart_addr = low;
7405   } else {
7406     _restart_addr = MIN2(_restart_addr, low);
7407   }
7408 }
7409 
7410 // Upon stack overflow, we discard (part of) the stack,
7411 // remembering the least address amongst those discarded
7412 // in CMSCollector's _restart_address.
7413 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7414   // Remember the least grey address discarded
7415   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7416   _collector->lower_restart_addr(ra);
7417   _markStack->reset();  // discard stack contents
7418   _markStack->expand(); // expand the stack if possible
7419 }
7420 
7421 // Upon stack overflow, we discard (part of) the stack,
7422 // remembering the least address amongst those discarded
7423 // in CMSCollector's _restart_address.
7424 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7425   // We need to do this under a mutex to prevent other
7426   // workers from interfering with the work done below.
7427   MutexLockerEx ml(_overflow_stack->par_lock(),
7428                    Mutex::_no_safepoint_check_flag);
7429   // Remember the least grey address discarded
7430   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7431   _collector->lower_restart_addr(ra);
7432   _overflow_stack->reset();  // discard stack contents
7433   _overflow_stack->expand(); // expand the stack if possible
7434 }
7435 
7436 void PushOrMarkClosure::do_oop(oop obj) {
7437   // Ignore mark word because we are running concurrent with mutators.
7438   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7439   HeapWord* addr = (HeapWord*)obj;
7440   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7441     // Oop lies in _span and isn't yet grey or black
7442     _bitMap->mark(addr);            // now grey
7443     if (addr < _finger) {
7444       // the bit map iteration has already either passed, or
7445       // sampled, this bit in the bit map; we'll need to
7446       // use the marking stack to scan this oop's oops.
7447       bool simulate_overflow = false;
7448       NOT_PRODUCT(
7449         if (CMSMarkStackOverflowALot &&
7450             _collector->simulate_overflow()) {
7451           // simulate a stack overflow
7452           simulate_overflow = true;
7453         }
7454       )
7455       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7456         if (PrintCMSStatistics != 0) {
7457           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7458                                  SIZE_FORMAT, _markStack->capacity());
7459         }
7460         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7461         handle_stack_overflow(addr);
7462       }
7463     }
7464     // anything including and to the right of _finger
7465     // will be scanned as we iterate over the remainder of the
7466     // bit map
7467     do_yield_check();
7468   }
7469 }
7470 
7471 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7472 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7473 
7474 void Par_PushOrMarkClosure::do_oop(oop obj) {
7475   // Ignore mark word because we are running concurrent with mutators.
7476   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7477   HeapWord* addr = (HeapWord*)obj;
7478   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7479     // Oop lies in _span and isn't yet grey or black
7480     // We read the global_finger (volatile read) strictly after marking oop
7481     bool res = _bit_map->par_mark(addr);    // now grey
7482     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7483     // Should we push this marked oop on our stack?
7484     // -- if someone else marked it, nothing to do
7485     // -- if target oop is above global finger nothing to do
7486     // -- if target oop is in chunk and above local finger
7487     //      then nothing to do
7488     // -- else push on work queue
7489     if (   !res       // someone else marked it, they will deal with it
7490         || (addr >= *gfa)  // will be scanned in a later task
7491         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7492       return;
7493     }
7494     // the bit map iteration has already either passed, or
7495     // sampled, this bit in the bit map; we'll need to
7496     // use the marking stack to scan this oop's oops.
7497     bool simulate_overflow = false;
7498     NOT_PRODUCT(
7499       if (CMSMarkStackOverflowALot &&
7500           _collector->simulate_overflow()) {
7501         // simulate a stack overflow
7502         simulate_overflow = true;
7503       }
7504     )
7505     if (simulate_overflow ||
7506         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7507       // stack overflow
7508       if (PrintCMSStatistics != 0) {
7509         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7510                                SIZE_FORMAT, _overflow_stack->capacity());
7511       }
7512       // We cannot assert that the overflow stack is full because
7513       // it may have been emptied since.
7514       assert(simulate_overflow ||
7515              _work_queue->size() == _work_queue->max_elems(),
7516             "Else push should have succeeded");
7517       handle_stack_overflow(addr);
7518     }
7519     do_yield_check();
7520   }
7521 }
7522 
7523 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7524 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7525 
7526 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
7527                                              ReferenceProcessor* rp,
7528                                              CMSMarkStack* revisit_stack) :
7529   OopClosure(rp),
7530   _collector(collector),
7531   _revisit_stack(revisit_stack),
7532   _should_remember_klasses(collector->should_unload_classes()) {}
7533 
7534 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7535                                        MemRegion span,
7536                                        ReferenceProcessor* rp,
7537                                        CMSBitMap* bit_map,
7538                                        CMSBitMap* mod_union_table,
7539                                        CMSMarkStack*  mark_stack,
7540                                        CMSMarkStack*  revisit_stack,
7541                                        bool           concurrent_precleaning):
7542   KlassRememberingOopClosure(collector, rp, revisit_stack),
7543   _span(span),
7544   _bit_map(bit_map),
7545   _mod_union_table(mod_union_table),
7546   _mark_stack(mark_stack),
7547   _concurrent_precleaning(concurrent_precleaning)
7548 {
7549   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7550 }
7551 
7552 // Grey object rescan during pre-cleaning and second checkpoint phases --
7553 // the non-parallel version (the parallel version appears further below.)
7554 void PushAndMarkClosure::do_oop(oop obj) {
7555   // Ignore mark word verification. If during concurrent precleaning,
7556   // the object monitor may be locked. If during the checkpoint
7557   // phases, the object may already have been reached by a  different
7558   // path and may be at the end of the global overflow list (so
7559   // the mark word may be NULL).
7560   assert(obj->is_oop_or_null(true /* ignore mark word */),
7561          "expected an oop or NULL");
7562   HeapWord* addr = (HeapWord*)obj;
7563   // Check if oop points into the CMS generation
7564   // and is not marked
7565   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7566     // a white object ...
7567     _bit_map->mark(addr);         // ... now grey
7568     // push on the marking stack (grey set)
7569     bool simulate_overflow = false;
7570     NOT_PRODUCT(
7571       if (CMSMarkStackOverflowALot &&
7572           _collector->simulate_overflow()) {
7573         // simulate a stack overflow
7574         simulate_overflow = true;
7575       }
7576     )
7577     if (simulate_overflow || !_mark_stack->push(obj)) {
7578       if (_concurrent_precleaning) {
7579          // During precleaning we can just dirty the appropriate card(s)
7580          // in the mod union table, thus ensuring that the object remains
7581          // in the grey set  and continue. In the case of object arrays
7582          // we need to dirty all of the cards that the object spans,
7583          // since the rescan of object arrays will be limited to the
7584          // dirty cards.
7585          // Note that no one can be intefering with us in this action
7586          // of dirtying the mod union table, so no locking or atomics
7587          // are required.
7588          if (obj->is_objArray()) {
7589            size_t sz = obj->size();
7590            HeapWord* end_card_addr = (HeapWord*)round_to(
7591                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7592            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7593            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7594            _mod_union_table->mark_range(redirty_range);
7595          } else {
7596            _mod_union_table->mark(addr);
7597          }
7598          _collector->_ser_pmc_preclean_ovflw++;
7599       } else {
7600          // During the remark phase, we need to remember this oop
7601          // in the overflow list.
7602          _collector->push_on_overflow_list(obj);
7603          _collector->_ser_pmc_remark_ovflw++;
7604       }
7605     }
7606   }
7607 }
7608 
7609 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7610                                                MemRegion span,
7611                                                ReferenceProcessor* rp,
7612                                                CMSBitMap* bit_map,
7613                                                OopTaskQueue* work_queue,
7614                                                CMSMarkStack* revisit_stack):
7615   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
7616   _span(span),
7617   _bit_map(bit_map),
7618   _work_queue(work_queue)
7619 {
7620   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7621 }
7622 
7623 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7624 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7625 
7626 // Grey object rescan during second checkpoint phase --
7627 // the parallel version.
7628 void Par_PushAndMarkClosure::do_oop(oop obj) {
7629   // In the assert below, we ignore the mark word because
7630   // this oop may point to an already visited object that is
7631   // on the overflow stack (in which case the mark word has
7632   // been hijacked for chaining into the overflow stack --
7633   // if this is the last object in the overflow stack then
7634   // its mark word will be NULL). Because this object may
7635   // have been subsequently popped off the global overflow
7636   // stack, and the mark word possibly restored to the prototypical
7637   // value, by the time we get to examined this failing assert in
7638   // the debugger, is_oop_or_null(false) may subsequently start
7639   // to hold.
7640   assert(obj->is_oop_or_null(true),
7641          "expected an oop or NULL");
7642   HeapWord* addr = (HeapWord*)obj;
7643   // Check if oop points into the CMS generation
7644   // and is not marked
7645   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7646     // a white object ...
7647     // If we manage to "claim" the object, by being the
7648     // first thread to mark it, then we push it on our
7649     // marking stack
7650     if (_bit_map->par_mark(addr)) {     // ... now grey
7651       // push on work queue (grey set)
7652       bool simulate_overflow = false;
7653       NOT_PRODUCT(
7654         if (CMSMarkStackOverflowALot &&
7655             _collector->par_simulate_overflow()) {
7656           // simulate a stack overflow
7657           simulate_overflow = true;
7658         }
7659       )
7660       if (simulate_overflow || !_work_queue->push(obj)) {
7661         _collector->par_push_on_overflow_list(obj);
7662         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7663       }
7664     } // Else, some other thread got there first
7665   }
7666 }
7667 
7668 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7669 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7670 
7671 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
7672   // TBD
7673 }
7674 
7675 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
7676   // TBD
7677 }
7678 
7679 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7680   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7681   Mutex* bml = _collector->bitMapLock();
7682   assert_lock_strong(bml);
7683   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7684          "CMS thread should hold CMS token");
7685 
7686   bml->unlock();
7687   ConcurrentMarkSweepThread::desynchronize(true);
7688 
7689   ConcurrentMarkSweepThread::acknowledge_yield_request();
7690 
7691   _collector->stopTimer();
7692   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7693   if (PrintCMSStatistics != 0) {
7694     _collector->incrementYields();
7695   }
7696   _collector->icms_wait();
7697 
7698   // See the comment in coordinator_yield()
7699   for (unsigned i = 0; i < CMSYieldSleepCount &&
7700                        ConcurrentMarkSweepThread::should_yield() &&
7701                        !CMSCollector::foregroundGCIsActive(); ++i) {
7702     os::sleep(Thread::current(), 1, false);
7703     ConcurrentMarkSweepThread::acknowledge_yield_request();
7704   }
7705 
7706   ConcurrentMarkSweepThread::synchronize(true);
7707   bml->lock();
7708 
7709   _collector->startTimer();
7710 }
7711 
7712 bool CMSPrecleanRefsYieldClosure::should_return() {
7713   if (ConcurrentMarkSweepThread::should_yield()) {
7714     do_yield_work();
7715   }
7716   return _collector->foregroundGCIsActive();
7717 }
7718 
7719 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7720   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7721          "mr should be aligned to start at a card boundary");
7722   // We'd like to assert:
7723   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7724   //        "mr should be a range of cards");
7725   // However, that would be too strong in one case -- the last
7726   // partition ends at _unallocated_block which, in general, can be
7727   // an arbitrary boundary, not necessarily card aligned.
7728   if (PrintCMSStatistics != 0) {
7729     _num_dirty_cards +=
7730          mr.word_size()/CardTableModRefBS::card_size_in_words;
7731   }
7732   _space->object_iterate_mem(mr, &_scan_cl);
7733 }
7734 
7735 SweepClosure::SweepClosure(CMSCollector* collector,
7736                            ConcurrentMarkSweepGeneration* g,
7737                            CMSBitMap* bitMap, bool should_yield) :
7738   _collector(collector),
7739   _g(g),
7740   _sp(g->cmsSpace()),
7741   _limit(_sp->sweep_limit()),
7742   _freelistLock(_sp->freelistLock()),
7743   _bitMap(bitMap),
7744   _yield(should_yield),
7745   _inFreeRange(false),           // No free range at beginning of sweep
7746   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7747   _lastFreeRangeCoalesced(false),
7748   _freeFinger(g->used_region().start())
7749 {
7750   NOT_PRODUCT(
7751     _numObjectsFreed = 0;
7752     _numWordsFreed   = 0;
7753     _numObjectsLive = 0;
7754     _numWordsLive = 0;
7755     _numObjectsAlreadyFree = 0;
7756     _numWordsAlreadyFree = 0;
7757     _last_fc = NULL;
7758 
7759     _sp->initializeIndexedFreeListArrayReturnedBytes();
7760     _sp->dictionary()->initializeDictReturnedBytes();
7761   )
7762   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7763          "sweep _limit out of bounds");
7764   if (CMSTraceSweeper) {
7765     gclog_or_tty->print("\n====================\nStarting new sweep\n");
7766   }
7767 }
7768 
7769 // We need this destructor to reclaim any space at the end
7770 // of the space, which do_blk below may not have added back to
7771 // the free lists. [basically dealing with the "fringe effect"]
7772 SweepClosure::~SweepClosure() {
7773   assert_lock_strong(_freelistLock);
7774   // this should be treated as the end of a free run if any
7775   // The current free range should be returned to the free lists
7776   // as one coalesced chunk.
7777   if (inFreeRange()) {
7778     flushCurFreeChunk(freeFinger(),
7779       pointer_delta(_limit, freeFinger()));
7780     assert(freeFinger() < _limit, "the finger pointeth off base");
7781     if (CMSTraceSweeper) {
7782       gclog_or_tty->print("destructor:");
7783       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
7784                  "[coalesced:"SIZE_FORMAT"]\n",
7785                  freeFinger(), pointer_delta(_limit, freeFinger()),
7786                  lastFreeRangeCoalesced());
7787     }
7788   }
7789   NOT_PRODUCT(
7790     if (Verbose && PrintGC) {
7791       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
7792                           SIZE_FORMAT " bytes",
7793                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7794       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7795                              SIZE_FORMAT" bytes  "
7796         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7797         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7798         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7799       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
7800         sizeof(HeapWord);
7801       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7802 
7803       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7804         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7805         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
7806         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
7807         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
7808         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7809           indexListReturnedBytes);
7810         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7811           dictReturnedBytes);
7812       }
7813     }
7814   )
7815   // Now, in debug mode, just null out the sweep_limit
7816   NOT_PRODUCT(_sp->clear_sweep_limit();)
7817   if (CMSTraceSweeper) {
7818     gclog_or_tty->print("end of sweep\n================\n");
7819   }
7820 }
7821 
7822 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7823     bool freeRangeInFreeLists) {
7824   if (CMSTraceSweeper) {
7825     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
7826                freeFinger, _sp->block_size(freeFinger),
7827                freeRangeInFreeLists);
7828   }
7829   assert(!inFreeRange(), "Trampling existing free range");
7830   set_inFreeRange(true);
7831   set_lastFreeRangeCoalesced(false);
7832 
7833   set_freeFinger(freeFinger);
7834   set_freeRangeInFreeLists(freeRangeInFreeLists);
7835   if (CMSTestInFreeList) {
7836     if (freeRangeInFreeLists) {
7837       FreeChunk* fc = (FreeChunk*) freeFinger;
7838       assert(fc->isFree(), "A chunk on the free list should be free.");
7839       assert(fc->size() > 0, "Free range should have a size");
7840       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
7841     }
7842   }
7843 }
7844 
7845 // Note that the sweeper runs concurrently with mutators. Thus,
7846 // it is possible for direct allocation in this generation to happen
7847 // in the middle of the sweep. Note that the sweeper also coalesces
7848 // contiguous free blocks. Thus, unless the sweeper and the allocator
7849 // synchronize appropriately freshly allocated blocks may get swept up.
7850 // This is accomplished by the sweeper locking the free lists while
7851 // it is sweeping. Thus blocks that are determined to be free are
7852 // indeed free. There is however one additional complication:
7853 // blocks that have been allocated since the final checkpoint and
7854 // mark, will not have been marked and so would be treated as
7855 // unreachable and swept up. To prevent this, the allocator marks
7856 // the bit map when allocating during the sweep phase. This leads,
7857 // however, to a further complication -- objects may have been allocated
7858 // but not yet initialized -- in the sense that the header isn't yet
7859 // installed. The sweeper can not then determine the size of the block
7860 // in order to skip over it. To deal with this case, we use a technique
7861 // (due to Printezis) to encode such uninitialized block sizes in the
7862 // bit map. Since the bit map uses a bit per every HeapWord, but the
7863 // CMS generation has a minimum object size of 3 HeapWords, it follows
7864 // that "normal marks" won't be adjacent in the bit map (there will
7865 // always be at least two 0 bits between successive 1 bits). We make use
7866 // of these "unused" bits to represent uninitialized blocks -- the bit
7867 // corresponding to the start of the uninitialized object and the next
7868 // bit are both set. Finally, a 1 bit marks the end of the object that
7869 // started with the two consecutive 1 bits to indicate its potentially
7870 // uninitialized state.
7871 
7872 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7873   FreeChunk* fc = (FreeChunk*)addr;
7874   size_t res;
7875 
7876   // check if we are done sweepinrg
7877   if (addr == _limit) { // we have swept up to the limit, do nothing more
7878     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7879            "sweep _limit out of bounds");
7880     // help the closure application finish
7881     return pointer_delta(_sp->end(), _limit);
7882   }
7883   assert(addr <= _limit, "sweep invariant");
7884 
7885   // check if we should yield
7886   do_yield_check(addr);
7887   if (fc->isFree()) {
7888     // Chunk that is already free
7889     res = fc->size();
7890     doAlreadyFreeChunk(fc);
7891     debug_only(_sp->verifyFreeLists());
7892     assert(res == fc->size(), "Don't expect the size to change");
7893     NOT_PRODUCT(
7894       _numObjectsAlreadyFree++;
7895       _numWordsAlreadyFree += res;
7896     )
7897     NOT_PRODUCT(_last_fc = fc;)
7898   } else if (!_bitMap->isMarked(addr)) {
7899     // Chunk is fresh garbage
7900     res = doGarbageChunk(fc);
7901     debug_only(_sp->verifyFreeLists());
7902     NOT_PRODUCT(
7903       _numObjectsFreed++;
7904       _numWordsFreed += res;
7905     )
7906   } else {
7907     // Chunk that is alive.
7908     res = doLiveChunk(fc);
7909     debug_only(_sp->verifyFreeLists());
7910     NOT_PRODUCT(
7911         _numObjectsLive++;
7912         _numWordsLive += res;
7913     )
7914   }
7915   return res;
7916 }
7917 
7918 // For the smart allocation, record following
7919 //  split deaths - a free chunk is removed from its free list because
7920 //      it is being split into two or more chunks.
7921 //  split birth - a free chunk is being added to its free list because
7922 //      a larger free chunk has been split and resulted in this free chunk.
7923 //  coal death - a free chunk is being removed from its free list because
7924 //      it is being coalesced into a large free chunk.
7925 //  coal birth - a free chunk is being added to its free list because
7926 //      it was created when two or more free chunks where coalesced into
7927 //      this free chunk.
7928 //
7929 // These statistics are used to determine the desired number of free
7930 // chunks of a given size.  The desired number is chosen to be relative
7931 // to the end of a CMS sweep.  The desired number at the end of a sweep
7932 // is the
7933 //      count-at-end-of-previous-sweep (an amount that was enough)
7934 //              - count-at-beginning-of-current-sweep  (the excess)
7935 //              + split-births  (gains in this size during interval)
7936 //              - split-deaths  (demands on this size during interval)
7937 // where the interval is from the end of one sweep to the end of the
7938 // next.
7939 //
7940 // When sweeping the sweeper maintains an accumulated chunk which is
7941 // the chunk that is made up of chunks that have been coalesced.  That
7942 // will be termed the left-hand chunk.  A new chunk of garbage that
7943 // is being considered for coalescing will be referred to as the
7944 // right-hand chunk.
7945 //
7946 // When making a decision on whether to coalesce a right-hand chunk with
7947 // the current left-hand chunk, the current count vs. the desired count
7948 // of the left-hand chunk is considered.  Also if the right-hand chunk
7949 // is near the large chunk at the end of the heap (see
7950 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7951 // left-hand chunk is coalesced.
7952 //
7953 // When making a decision about whether to split a chunk, the desired count
7954 // vs. the current count of the candidate to be split is also considered.
7955 // If the candidate is underpopulated (currently fewer chunks than desired)
7956 // a chunk of an overpopulated (currently more chunks than desired) size may
7957 // be chosen.  The "hint" associated with a free list, if non-null, points
7958 // to a free list which may be overpopulated.
7959 //
7960 
7961 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
7962   size_t size = fc->size();
7963   // Chunks that cannot be coalesced are not in the
7964   // free lists.
7965   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7966     assert(_sp->verifyChunkInFreeLists(fc),
7967       "free chunk should be in free lists");
7968   }
7969   // a chunk that is already free, should not have been
7970   // marked in the bit map
7971   HeapWord* addr = (HeapWord*) fc;
7972   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7973   // Verify that the bit map has no bits marked between
7974   // addr and purported end of this block.
7975   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7976 
7977   // Some chunks cannot be coalesced in under any circumstances.
7978   // See the definition of cantCoalesce().
7979   if (!fc->cantCoalesce()) {
7980     // This chunk can potentially be coalesced.
7981     if (_sp->adaptive_freelists()) {
7982       // All the work is done in
7983       doPostIsFreeOrGarbageChunk(fc, size);
7984     } else {  // Not adaptive free lists
7985       // this is a free chunk that can potentially be coalesced by the sweeper;
7986       if (!inFreeRange()) {
7987         // if the next chunk is a free block that can't be coalesced
7988         // it doesn't make sense to remove this chunk from the free lists
7989         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7990         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
7991         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
7992             nextChunk->isFree()    &&            // which is free...
7993             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
7994           // nothing to do
7995         } else {
7996           // Potentially the start of a new free range:
7997           // Don't eagerly remove it from the free lists.
7998           // No need to remove it if it will just be put
7999           // back again.  (Also from a pragmatic point of view
8000           // if it is a free block in a region that is beyond
8001           // any allocated blocks, an assertion will fail)
8002           // Remember the start of a free run.
8003           initialize_free_range(addr, true);
8004           // end - can coalesce with next chunk
8005         }
8006       } else {
8007         // the midst of a free range, we are coalescing
8008         debug_only(record_free_block_coalesced(fc);)
8009         if (CMSTraceSweeper) {
8010           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8011         }
8012         // remove it from the free lists
8013         _sp->removeFreeChunkFromFreeLists(fc);
8014         set_lastFreeRangeCoalesced(true);
8015         // If the chunk is being coalesced and the current free range is
8016         // in the free lists, remove the current free range so that it
8017         // will be returned to the free lists in its entirety - all
8018         // the coalesced pieces included.
8019         if (freeRangeInFreeLists()) {
8020           FreeChunk* ffc = (FreeChunk*) freeFinger();
8021           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8022             "Size of free range is inconsistent with chunk size.");
8023           if (CMSTestInFreeList) {
8024             assert(_sp->verifyChunkInFreeLists(ffc),
8025               "free range is not in free lists");
8026           }
8027           _sp->removeFreeChunkFromFreeLists(ffc);
8028           set_freeRangeInFreeLists(false);
8029         }
8030       }
8031     }
8032   } else {
8033     // Code path common to both original and adaptive free lists.
8034 
8035     // cant coalesce with previous block; this should be treated
8036     // as the end of a free run if any
8037     if (inFreeRange()) {
8038       // we kicked some butt; time to pick up the garbage
8039       assert(freeFinger() < addr, "the finger pointeth off base");
8040       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
8041     }
8042     // else, nothing to do, just continue
8043   }
8044 }
8045 
8046 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
8047   // This is a chunk of garbage.  It is not in any free list.
8048   // Add it to a free list or let it possibly be coalesced into
8049   // a larger chunk.
8050   HeapWord* addr = (HeapWord*) fc;
8051   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8052 
8053   if (_sp->adaptive_freelists()) {
8054     // Verify that the bit map has no bits marked between
8055     // addr and purported end of just dead object.
8056     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8057 
8058     doPostIsFreeOrGarbageChunk(fc, size);
8059   } else {
8060     if (!inFreeRange()) {
8061       // start of a new free range
8062       assert(size > 0, "A free range should have a size");
8063       initialize_free_range(addr, false);
8064 
8065     } else {
8066       // this will be swept up when we hit the end of the
8067       // free range
8068       if (CMSTraceSweeper) {
8069         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8070       }
8071       // If the chunk is being coalesced and the current free range is
8072       // in the free lists, remove the current free range so that it
8073       // will be returned to the free lists in its entirety - all
8074       // the coalesced pieces included.
8075       if (freeRangeInFreeLists()) {
8076         FreeChunk* ffc = (FreeChunk*)freeFinger();
8077         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8078           "Size of free range is inconsistent with chunk size.");
8079         if (CMSTestInFreeList) {
8080           assert(_sp->verifyChunkInFreeLists(ffc),
8081             "free range is not in free lists");
8082         }
8083         _sp->removeFreeChunkFromFreeLists(ffc);
8084         set_freeRangeInFreeLists(false);
8085       }
8086       set_lastFreeRangeCoalesced(true);
8087     }
8088     // this will be swept up when we hit the end of the free range
8089 
8090     // Verify that the bit map has no bits marked between
8091     // addr and purported end of just dead object.
8092     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8093   }
8094   return size;
8095 }
8096 
8097 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
8098   HeapWord* addr = (HeapWord*) fc;
8099   // The sweeper has just found a live object. Return any accumulated
8100   // left hand chunk to the free lists.
8101   if (inFreeRange()) {
8102     if (_sp->adaptive_freelists()) {
8103       flushCurFreeChunk(freeFinger(),
8104                         pointer_delta(addr, freeFinger()));
8105     } else { // not adaptive freelists
8106       set_inFreeRange(false);
8107       // Add the free range back to the free list if it is not already
8108       // there.
8109       if (!freeRangeInFreeLists()) {
8110         assert(freeFinger() < addr, "the finger pointeth off base");
8111         if (CMSTraceSweeper) {
8112           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
8113             "[coalesced:%d]\n",
8114             freeFinger(), pointer_delta(addr, freeFinger()),
8115             lastFreeRangeCoalesced());
8116         }
8117         _sp->addChunkAndRepairOffsetTable(freeFinger(),
8118           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
8119       }
8120     }
8121   }
8122 
8123   // Common code path for original and adaptive free lists.
8124 
8125   // this object is live: we'd normally expect this to be
8126   // an oop, and like to assert the following:
8127   // assert(oop(addr)->is_oop(), "live block should be an oop");
8128   // However, as we commented above, this may be an object whose
8129   // header hasn't yet been initialized.
8130   size_t size;
8131   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8132   if (_bitMap->isMarked(addr + 1)) {
8133     // Determine the size from the bit map, rather than trying to
8134     // compute it from the object header.
8135     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8136     size = pointer_delta(nextOneAddr + 1, addr);
8137     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8138            "alignment problem");
8139 
8140     #ifdef DEBUG
8141       if (oop(addr)->klass_or_null() != NULL &&
8142           (   !_collector->should_unload_classes()
8143            || (oop(addr)->is_parsable()) &&
8144                oop(addr)->is_conc_safe())) {
8145         // Ignore mark word because we are running concurrent with mutators
8146         assert(oop(addr)->is_oop(true), "live block should be an oop");
8147         // is_conc_safe is checked before performing this assertion
8148         // because an object that is not is_conc_safe may yet have
8149         // the return from size() correct.
8150         assert(size ==
8151                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8152                "P-mark and computed size do not agree");
8153       }
8154     #endif
8155 
8156   } else {
8157     // This should be an initialized object that's alive.
8158     assert(oop(addr)->klass_or_null() != NULL &&
8159            (!_collector->should_unload_classes()
8160             || oop(addr)->is_parsable()),
8161            "Should be an initialized object");
8162     // Note that there are objects used during class redefinition
8163     // (e.g., merge_cp in VM_RedefineClasses::merge_cp_and_rewrite()
8164     // which are discarded with their is_conc_safe state still
8165     // false.  These object may be floating garbage so may be
8166     // seen here.  If they are floating garbage their size
8167     // should be attainable from their klass.  Do not that
8168     // is_conc_safe() is true for oop(addr).
8169     // Ignore mark word because we are running concurrent with mutators
8170     assert(oop(addr)->is_oop(true), "live block should be an oop");
8171     // Verify that the bit map has no bits marked between
8172     // addr and purported end of this block.
8173     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8174     assert(size >= 3, "Necessary for Printezis marks to work");
8175     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8176     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8177   }
8178   return size;
8179 }
8180 
8181 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
8182                                             size_t chunkSize) {
8183   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
8184   // scheme.
8185   bool fcInFreeLists = fc->isFree();
8186   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8187   assert((HeapWord*)fc <= _limit, "sweep invariant");
8188   if (CMSTestInFreeList && fcInFreeLists) {
8189     assert(_sp->verifyChunkInFreeLists(fc),
8190       "free chunk is not in free lists");
8191   }
8192 
8193 
8194   if (CMSTraceSweeper) {
8195     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8196   }
8197 
8198   HeapWord* addr = (HeapWord*) fc;
8199 
8200   bool coalesce;
8201   size_t left  = pointer_delta(addr, freeFinger());
8202   size_t right = chunkSize;
8203   switch (FLSCoalescePolicy) {
8204     // numeric value forms a coalition aggressiveness metric
8205     case 0:  { // never coalesce
8206       coalesce = false;
8207       break;
8208     }
8209     case 1: { // coalesce if left & right chunks on overpopulated lists
8210       coalesce = _sp->coalOverPopulated(left) &&
8211                  _sp->coalOverPopulated(right);
8212       break;
8213     }
8214     case 2: { // coalesce if left chunk on overpopulated list (default)
8215       coalesce = _sp->coalOverPopulated(left);
8216       break;
8217     }
8218     case 3: { // coalesce if left OR right chunk on overpopulated list
8219       coalesce = _sp->coalOverPopulated(left) ||
8220                  _sp->coalOverPopulated(right);
8221       break;
8222     }
8223     case 4: { // always coalesce
8224       coalesce = true;
8225       break;
8226     }
8227     default:
8228      ShouldNotReachHere();
8229   }
8230 
8231   // Should the current free range be coalesced?
8232   // If the chunk is in a free range and either we decided to coalesce above
8233   // or the chunk is near the large block at the end of the heap
8234   // (isNearLargestChunk() returns true), then coalesce this chunk.
8235   bool doCoalesce = inFreeRange() &&
8236     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
8237   if (doCoalesce) {
8238     // Coalesce the current free range on the left with the new
8239     // chunk on the right.  If either is on a free list,
8240     // it must be removed from the list and stashed in the closure.
8241     if (freeRangeInFreeLists()) {
8242       FreeChunk* ffc = (FreeChunk*)freeFinger();
8243       assert(ffc->size() == pointer_delta(addr, freeFinger()),
8244         "Size of free range is inconsistent with chunk size.");
8245       if (CMSTestInFreeList) {
8246         assert(_sp->verifyChunkInFreeLists(ffc),
8247           "Chunk is not in free lists");
8248       }
8249       _sp->coalDeath(ffc->size());
8250       _sp->removeFreeChunkFromFreeLists(ffc);
8251       set_freeRangeInFreeLists(false);
8252     }
8253     if (fcInFreeLists) {
8254       _sp->coalDeath(chunkSize);
8255       assert(fc->size() == chunkSize,
8256         "The chunk has the wrong size or is not in the free lists");
8257       _sp->removeFreeChunkFromFreeLists(fc);
8258     }
8259     set_lastFreeRangeCoalesced(true);
8260   } else {  // not in a free range and/or should not coalesce
8261     // Return the current free range and start a new one.
8262     if (inFreeRange()) {
8263       // In a free range but cannot coalesce with the right hand chunk.
8264       // Put the current free range into the free lists.
8265       flushCurFreeChunk(freeFinger(),
8266         pointer_delta(addr, freeFinger()));
8267     }
8268     // Set up for new free range.  Pass along whether the right hand
8269     // chunk is in the free lists.
8270     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8271   }
8272 }
8273 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
8274   assert(inFreeRange(), "Should only be called if currently in a free range.");
8275   assert(size > 0,
8276     "A zero sized chunk cannot be added to the free lists.");
8277   if (!freeRangeInFreeLists()) {
8278     if(CMSTestInFreeList) {
8279       FreeChunk* fc = (FreeChunk*) chunk;
8280       fc->setSize(size);
8281       assert(!_sp->verifyChunkInFreeLists(fc),
8282         "chunk should not be in free lists yet");
8283     }
8284     if (CMSTraceSweeper) {
8285       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8286                     chunk, size);
8287     }
8288     // A new free range is going to be starting.  The current
8289     // free range has not been added to the free lists yet or
8290     // was removed so add it back.
8291     // If the current free range was coalesced, then the death
8292     // of the free range was recorded.  Record a birth now.
8293     if (lastFreeRangeCoalesced()) {
8294       _sp->coalBirth(size);
8295     }
8296     _sp->addChunkAndRepairOffsetTable(chunk, size,
8297             lastFreeRangeCoalesced());
8298   }
8299   set_inFreeRange(false);
8300   set_freeRangeInFreeLists(false);
8301 }
8302 
8303 // We take a break if we've been at this for a while,
8304 // so as to avoid monopolizing the locks involved.
8305 void SweepClosure::do_yield_work(HeapWord* addr) {
8306   // Return current free chunk being used for coalescing (if any)
8307   // to the appropriate freelist.  After yielding, the next
8308   // free block encountered will start a coalescing range of
8309   // free blocks.  If the next free block is adjacent to the
8310   // chunk just flushed, they will need to wait for the next
8311   // sweep to be coalesced.
8312   if (inFreeRange()) {
8313     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
8314   }
8315 
8316   // First give up the locks, then yield, then re-lock.
8317   // We should probably use a constructor/destructor idiom to
8318   // do this unlock/lock or modify the MutexUnlocker class to
8319   // serve our purpose. XXX
8320   assert_lock_strong(_bitMap->lock());
8321   assert_lock_strong(_freelistLock);
8322   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8323          "CMS thread should hold CMS token");
8324   _bitMap->lock()->unlock();
8325   _freelistLock->unlock();
8326   ConcurrentMarkSweepThread::desynchronize(true);
8327   ConcurrentMarkSweepThread::acknowledge_yield_request();
8328   _collector->stopTimer();
8329   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8330   if (PrintCMSStatistics != 0) {
8331     _collector->incrementYields();
8332   }
8333   _collector->icms_wait();
8334 
8335   // See the comment in coordinator_yield()
8336   for (unsigned i = 0; i < CMSYieldSleepCount &&
8337                        ConcurrentMarkSweepThread::should_yield() &&
8338                        !CMSCollector::foregroundGCIsActive(); ++i) {
8339     os::sleep(Thread::current(), 1, false);
8340     ConcurrentMarkSweepThread::acknowledge_yield_request();
8341   }
8342 
8343   ConcurrentMarkSweepThread::synchronize(true);
8344   _freelistLock->lock();
8345   _bitMap->lock()->lock_without_safepoint_check();
8346   _collector->startTimer();
8347 }
8348 
8349 #ifndef PRODUCT
8350 // This is actually very useful in a product build if it can
8351 // be called from the debugger.  Compile it into the product
8352 // as needed.
8353 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
8354   return debug_cms_space->verifyChunkInFreeLists(fc);
8355 }
8356 
8357 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
8358   if (CMSTraceSweeper) {
8359     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
8360   }
8361 }
8362 #endif
8363 
8364 // CMSIsAliveClosure
8365 bool CMSIsAliveClosure::do_object_b(oop obj) {
8366   HeapWord* addr = (HeapWord*)obj;
8367   return addr != NULL &&
8368          (!_span.contains(addr) || _bit_map->isMarked(addr));
8369 }
8370 
8371 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8372                       MemRegion span,
8373                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8374                       CMSMarkStack* revisit_stack, bool cpc):
8375   KlassRememberingOopClosure(collector, NULL, revisit_stack),
8376   _span(span),
8377   _bit_map(bit_map),
8378   _mark_stack(mark_stack),
8379   _concurrent_precleaning(cpc) {
8380   assert(!_span.is_empty(), "Empty span could spell trouble");
8381 }
8382 
8383 
8384 // CMSKeepAliveClosure: the serial version
8385 void CMSKeepAliveClosure::do_oop(oop obj) {
8386   HeapWord* addr = (HeapWord*)obj;
8387   if (_span.contains(addr) &&
8388       !_bit_map->isMarked(addr)) {
8389     _bit_map->mark(addr);
8390     bool simulate_overflow = false;
8391     NOT_PRODUCT(
8392       if (CMSMarkStackOverflowALot &&
8393           _collector->simulate_overflow()) {
8394         // simulate a stack overflow
8395         simulate_overflow = true;
8396       }
8397     )
8398     if (simulate_overflow || !_mark_stack->push(obj)) {
8399       if (_concurrent_precleaning) {
8400         // We dirty the overflown object and let the remark
8401         // phase deal with it.
8402         assert(_collector->overflow_list_is_empty(), "Error");
8403         // In the case of object arrays, we need to dirty all of
8404         // the cards that the object spans. No locking or atomics
8405         // are needed since no one else can be mutating the mod union
8406         // table.
8407         if (obj->is_objArray()) {
8408           size_t sz = obj->size();
8409           HeapWord* end_card_addr =
8410             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8411           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8412           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8413           _collector->_modUnionTable.mark_range(redirty_range);
8414         } else {
8415           _collector->_modUnionTable.mark(addr);
8416         }
8417         _collector->_ser_kac_preclean_ovflw++;
8418       } else {
8419         _collector->push_on_overflow_list(obj);
8420         _collector->_ser_kac_ovflw++;
8421       }
8422     }
8423   }
8424 }
8425 
8426 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8427 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8428 
8429 // CMSParKeepAliveClosure: a parallel version of the above.
8430 // The work queues are private to each closure (thread),
8431 // but (may be) available for stealing by other threads.
8432 void CMSParKeepAliveClosure::do_oop(oop obj) {
8433   HeapWord* addr = (HeapWord*)obj;
8434   if (_span.contains(addr) &&
8435       !_bit_map->isMarked(addr)) {
8436     // In general, during recursive tracing, several threads
8437     // may be concurrently getting here; the first one to
8438     // "tag" it, claims it.
8439     if (_bit_map->par_mark(addr)) {
8440       bool res = _work_queue->push(obj);
8441       assert(res, "Low water mark should be much less than capacity");
8442       // Do a recursive trim in the hope that this will keep
8443       // stack usage lower, but leave some oops for potential stealers
8444       trim_queue(_low_water_mark);
8445     } // Else, another thread got there first
8446   }
8447 }
8448 
8449 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8450 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8451 
8452 void CMSParKeepAliveClosure::trim_queue(uint max) {
8453   while (_work_queue->size() > max) {
8454     oop new_oop;
8455     if (_work_queue->pop_local(new_oop)) {
8456       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8457       assert(_bit_map->isMarked((HeapWord*)new_oop),
8458              "no white objects on this stack!");
8459       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8460       // iterate over the oops in this oop, marking and pushing
8461       // the ones in CMS heap (i.e. in _span).
8462       new_oop->oop_iterate(&_mark_and_push);
8463     }
8464   }
8465 }
8466 
8467 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8468                                 CMSCollector* collector,
8469                                 MemRegion span, CMSBitMap* bit_map,
8470                                 CMSMarkStack* revisit_stack,
8471                                 OopTaskQueue* work_queue):
8472   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
8473   _span(span),
8474   _bit_map(bit_map),
8475   _work_queue(work_queue) { }
8476 
8477 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8478   HeapWord* addr = (HeapWord*)obj;
8479   if (_span.contains(addr) &&
8480       !_bit_map->isMarked(addr)) {
8481     if (_bit_map->par_mark(addr)) {
8482       bool simulate_overflow = false;
8483       NOT_PRODUCT(
8484         if (CMSMarkStackOverflowALot &&
8485             _collector->par_simulate_overflow()) {
8486           // simulate a stack overflow
8487           simulate_overflow = true;
8488         }
8489       )
8490       if (simulate_overflow || !_work_queue->push(obj)) {
8491         _collector->par_push_on_overflow_list(obj);
8492         _collector->_par_kac_ovflw++;
8493       }
8494     } // Else another thread got there already
8495   }
8496 }
8497 
8498 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8499 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8500 
8501 //////////////////////////////////////////////////////////////////
8502 //  CMSExpansionCause                /////////////////////////////
8503 //////////////////////////////////////////////////////////////////
8504 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8505   switch (cause) {
8506     case _no_expansion:
8507       return "No expansion";
8508     case _satisfy_free_ratio:
8509       return "Free ratio";
8510     case _satisfy_promotion:
8511       return "Satisfy promotion";
8512     case _satisfy_allocation:
8513       return "allocation";
8514     case _allocate_par_lab:
8515       return "Par LAB";
8516     case _allocate_par_spooling_space:
8517       return "Par Spooling Space";
8518     case _adaptive_size_policy:
8519       return "Ergonomics";
8520     default:
8521       return "unknown";
8522   }
8523 }
8524 
8525 void CMSDrainMarkingStackClosure::do_void() {
8526   // the max number to take from overflow list at a time
8527   const size_t num = _mark_stack->capacity()/4;
8528   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8529          "Overflow list should be NULL during concurrent phases");
8530   while (!_mark_stack->isEmpty() ||
8531          // if stack is empty, check the overflow list
8532          _collector->take_from_overflow_list(num, _mark_stack)) {
8533     oop obj = _mark_stack->pop();
8534     HeapWord* addr = (HeapWord*)obj;
8535     assert(_span.contains(addr), "Should be within span");
8536     assert(_bit_map->isMarked(addr), "Should be marked");
8537     assert(obj->is_oop(), "Should be an oop");
8538     obj->oop_iterate(_keep_alive);
8539   }
8540 }
8541 
8542 void CMSParDrainMarkingStackClosure::do_void() {
8543   // drain queue
8544   trim_queue(0);
8545 }
8546 
8547 // Trim our work_queue so its length is below max at return
8548 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8549   while (_work_queue->size() > max) {
8550     oop new_oop;
8551     if (_work_queue->pop_local(new_oop)) {
8552       assert(new_oop->is_oop(), "Expected an oop");
8553       assert(_bit_map->isMarked((HeapWord*)new_oop),
8554              "no white objects on this stack!");
8555       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8556       // iterate over the oops in this oop, marking and pushing
8557       // the ones in CMS heap (i.e. in _span).
8558       new_oop->oop_iterate(&_mark_and_push);
8559     }
8560   }
8561 }
8562 
8563 ////////////////////////////////////////////////////////////////////
8564 // Support for Marking Stack Overflow list handling and related code
8565 ////////////////////////////////////////////////////////////////////
8566 // Much of the following code is similar in shape and spirit to the
8567 // code used in ParNewGC. We should try and share that code
8568 // as much as possible in the future.
8569 
8570 #ifndef PRODUCT
8571 // Debugging support for CMSStackOverflowALot
8572 
8573 // It's OK to call this multi-threaded;  the worst thing
8574 // that can happen is that we'll get a bunch of closely
8575 // spaced simulated oveflows, but that's OK, in fact
8576 // probably good as it would exercise the overflow code
8577 // under contention.
8578 bool CMSCollector::simulate_overflow() {
8579   if (_overflow_counter-- <= 0) { // just being defensive
8580     _overflow_counter = CMSMarkStackOverflowInterval;
8581     return true;
8582   } else {
8583     return false;
8584   }
8585 }
8586 
8587 bool CMSCollector::par_simulate_overflow() {
8588   return simulate_overflow();
8589 }
8590 #endif
8591 
8592 // Single-threaded
8593 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8594   assert(stack->isEmpty(), "Expected precondition");
8595   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8596   size_t i = num;
8597   oop  cur = _overflow_list;
8598   const markOop proto = markOopDesc::prototype();
8599   NOT_PRODUCT(ssize_t n = 0;)
8600   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8601     next = oop(cur->mark());
8602     cur->set_mark(proto);   // until proven otherwise
8603     assert(cur->is_oop(), "Should be an oop");
8604     bool res = stack->push(cur);
8605     assert(res, "Bit off more than can chew?");
8606     NOT_PRODUCT(n++;)
8607   }
8608   _overflow_list = cur;
8609 #ifndef PRODUCT
8610   assert(_num_par_pushes >= n, "Too many pops?");
8611   _num_par_pushes -=n;
8612 #endif
8613   return !stack->isEmpty();
8614 }
8615 
8616 #define BUSY  (oop(0x1aff1aff))
8617 // (MT-safe) Get a prefix of at most "num" from the list.
8618 // The overflow list is chained through the mark word of
8619 // each object in the list. We fetch the entire list,
8620 // break off a prefix of the right size and return the
8621 // remainder. If other threads try to take objects from
8622 // the overflow list at that time, they will wait for
8623 // some time to see if data becomes available. If (and
8624 // only if) another thread places one or more object(s)
8625 // on the global list before we have returned the suffix
8626 // to the global list, we will walk down our local list
8627 // to find its end and append the global list to
8628 // our suffix before returning it. This suffix walk can
8629 // prove to be expensive (quadratic in the amount of traffic)
8630 // when there are many objects in the overflow list and
8631 // there is much producer-consumer contention on the list.
8632 // *NOTE*: The overflow list manipulation code here and
8633 // in ParNewGeneration:: are very similar in shape,
8634 // except that in the ParNew case we use the old (from/eden)
8635 // copy of the object to thread the list via its klass word.
8636 // Because of the common code, if you make any changes in
8637 // the code below, please check the ParNew version to see if
8638 // similar changes might be needed.
8639 // CR 6797058 has been filed to consolidate the common code.
8640 bool CMSCollector::par_take_from_overflow_list(size_t num,
8641                                                OopTaskQueue* work_q) {
8642   assert(work_q->size() == 0, "First empty local work queue");
8643   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8644   if (_overflow_list == NULL) {
8645     return false;
8646   }
8647   // Grab the entire list; we'll put back a suffix
8648   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8649   Thread* tid = Thread::current();
8650   size_t CMSOverflowSpinCount = (size_t)ParallelGCThreads;
8651   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8652   // If the list is busy, we spin for a short while,
8653   // sleeping between attempts to get the list.
8654   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8655     os::sleep(tid, sleep_time_millis, false);
8656     if (_overflow_list == NULL) {
8657       // Nothing left to take
8658       return false;
8659     } else if (_overflow_list != BUSY) {
8660       // Try and grab the prefix
8661       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8662     }
8663   }
8664   // If the list was found to be empty, or we spun long
8665   // enough, we give up and return empty-handed. If we leave
8666   // the list in the BUSY state below, it must be the case that
8667   // some other thread holds the overflow list and will set it
8668   // to a non-BUSY state in the future.
8669   if (prefix == NULL || prefix == BUSY) {
8670      // Nothing to take or waited long enough
8671      if (prefix == NULL) {
8672        // Write back the NULL in case we overwrote it with BUSY above
8673        // and it is still the same value.
8674        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8675      }
8676      return false;
8677   }
8678   assert(prefix != NULL && prefix != BUSY, "Error");
8679   size_t i = num;
8680   oop cur = prefix;
8681   // Walk down the first "num" objects, unless we reach the end.
8682   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8683   if (cur->mark() == NULL) {
8684     // We have "num" or fewer elements in the list, so there
8685     // is nothing to return to the global list.
8686     // Write back the NULL in lieu of the BUSY we wrote
8687     // above, if it is still the same value.
8688     if (_overflow_list == BUSY) {
8689       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8690     }
8691   } else {
8692     // Chop off the suffix and rerturn it to the global list.
8693     assert(cur->mark() != BUSY, "Error");
8694     oop suffix_head = cur->mark(); // suffix will be put back on global list
8695     cur->set_mark(NULL);           // break off suffix
8696     // It's possible that the list is still in the empty(busy) state
8697     // we left it in a short while ago; in that case we may be
8698     // able to place back the suffix without incurring the cost
8699     // of a walk down the list.
8700     oop observed_overflow_list = _overflow_list;
8701     oop cur_overflow_list = observed_overflow_list;
8702     bool attached = false;
8703     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8704       observed_overflow_list =
8705         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8706       if (cur_overflow_list == observed_overflow_list) {
8707         attached = true;
8708         break;
8709       } else cur_overflow_list = observed_overflow_list;
8710     }
8711     if (!attached) {
8712       // Too bad, someone else sneaked in (at least) an element; we'll need
8713       // to do a splice. Find tail of suffix so we can prepend suffix to global
8714       // list.
8715       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8716       oop suffix_tail = cur;
8717       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8718              "Tautology");
8719       observed_overflow_list = _overflow_list;
8720       do {
8721         cur_overflow_list = observed_overflow_list;
8722         if (cur_overflow_list != BUSY) {
8723           // Do the splice ...
8724           suffix_tail->set_mark(markOop(cur_overflow_list));
8725         } else { // cur_overflow_list == BUSY
8726           suffix_tail->set_mark(NULL);
8727         }
8728         // ... and try to place spliced list back on overflow_list ...
8729         observed_overflow_list =
8730           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8731       } while (cur_overflow_list != observed_overflow_list);
8732       // ... until we have succeeded in doing so.
8733     }
8734   }
8735 
8736   // Push the prefix elements on work_q
8737   assert(prefix != NULL, "control point invariant");
8738   const markOop proto = markOopDesc::prototype();
8739   oop next;
8740   NOT_PRODUCT(ssize_t n = 0;)
8741   for (cur = prefix; cur != NULL; cur = next) {
8742     next = oop(cur->mark());
8743     cur->set_mark(proto);   // until proven otherwise
8744     assert(cur->is_oop(), "Should be an oop");
8745     bool res = work_q->push(cur);
8746     assert(res, "Bit off more than we can chew?");
8747     NOT_PRODUCT(n++;)
8748   }
8749 #ifndef PRODUCT
8750   assert(_num_par_pushes >= n, "Too many pops?");
8751   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8752 #endif
8753   return true;
8754 }
8755 
8756 // Single-threaded
8757 void CMSCollector::push_on_overflow_list(oop p) {
8758   NOT_PRODUCT(_num_par_pushes++;)
8759   assert(p->is_oop(), "Not an oop");
8760   preserve_mark_if_necessary(p);
8761   p->set_mark((markOop)_overflow_list);
8762   _overflow_list = p;
8763 }
8764 
8765 // Multi-threaded; use CAS to prepend to overflow list
8766 void CMSCollector::par_push_on_overflow_list(oop p) {
8767   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8768   assert(p->is_oop(), "Not an oop");
8769   par_preserve_mark_if_necessary(p);
8770   oop observed_overflow_list = _overflow_list;
8771   oop cur_overflow_list;
8772   do {
8773     cur_overflow_list = observed_overflow_list;
8774     if (cur_overflow_list != BUSY) {
8775       p->set_mark(markOop(cur_overflow_list));
8776     } else {
8777       p->set_mark(NULL);
8778     }
8779     observed_overflow_list =
8780       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8781   } while (cur_overflow_list != observed_overflow_list);
8782 }
8783 #undef BUSY
8784 
8785 // Single threaded
8786 // General Note on GrowableArray: pushes may silently fail
8787 // because we are (temporarily) out of C-heap for expanding
8788 // the stack. The problem is quite ubiquitous and affects
8789 // a lot of code in the JVM. The prudent thing for GrowableArray
8790 // to do (for now) is to exit with an error. However, that may
8791 // be too draconian in some cases because the caller may be
8792 // able to recover without much harm. For such cases, we
8793 // should probably introduce a "soft_push" method which returns
8794 // an indication of success or failure with the assumption that
8795 // the caller may be able to recover from a failure; code in
8796 // the VM can then be changed, incrementally, to deal with such
8797 // failures where possible, thus, incrementally hardening the VM
8798 // in such low resource situations.
8799 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8800   if (_preserved_oop_stack == NULL) {
8801     assert(_preserved_mark_stack == NULL,
8802            "bijection with preserved_oop_stack");
8803     // Allocate the stacks
8804     _preserved_oop_stack  = new (ResourceObj::C_HEAP)
8805       GrowableArray<oop>(PreserveMarkStackSize, true);
8806     _preserved_mark_stack = new (ResourceObj::C_HEAP)
8807       GrowableArray<markOop>(PreserveMarkStackSize, true);
8808     if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
8809       vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
8810                             "Preserved Mark/Oop Stack for CMS (C-heap)");
8811     }
8812   }
8813   _preserved_oop_stack->push(p);
8814   _preserved_mark_stack->push(m);
8815   assert(m == p->mark(), "Mark word changed");
8816   assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
8817          "bijection");
8818 }
8819 
8820 // Single threaded
8821 void CMSCollector::preserve_mark_if_necessary(oop p) {
8822   markOop m = p->mark();
8823   if (m->must_be_preserved(p)) {
8824     preserve_mark_work(p, m);
8825   }
8826 }
8827 
8828 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8829   markOop m = p->mark();
8830   if (m->must_be_preserved(p)) {
8831     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8832     // Even though we read the mark word without holding
8833     // the lock, we are assured that it will not change
8834     // because we "own" this oop, so no other thread can
8835     // be trying to push it on the overflow list; see
8836     // the assertion in preserve_mark_work() that checks
8837     // that m == p->mark().
8838     preserve_mark_work(p, m);
8839   }
8840 }
8841 
8842 // We should be able to do this multi-threaded,
8843 // a chunk of stack being a task (this is
8844 // correct because each oop only ever appears
8845 // once in the overflow list. However, it's
8846 // not very easy to completely overlap this with
8847 // other operations, so will generally not be done
8848 // until all work's been completed. Because we
8849 // expect the preserved oop stack (set) to be small,
8850 // it's probably fine to do this single-threaded.
8851 // We can explore cleverer concurrent/overlapped/parallel
8852 // processing of preserved marks if we feel the
8853 // need for this in the future. Stack overflow should
8854 // be so rare in practice and, when it happens, its
8855 // effect on performance so great that this will
8856 // likely just be in the noise anyway.
8857 void CMSCollector::restore_preserved_marks_if_any() {
8858   if (_preserved_oop_stack == NULL) {
8859     assert(_preserved_mark_stack == NULL,
8860            "bijection with preserved_oop_stack");
8861     return;
8862   }
8863 
8864   assert(SafepointSynchronize::is_at_safepoint(),
8865          "world should be stopped");
8866   assert(Thread::current()->is_ConcurrentGC_thread() ||
8867          Thread::current()->is_VM_thread(),
8868          "should be single-threaded");
8869 
8870   int length = _preserved_oop_stack->length();
8871   assert(_preserved_mark_stack->length() == length, "bijection");
8872   for (int i = 0; i < length; i++) {
8873     oop p = _preserved_oop_stack->at(i);
8874     assert(p->is_oop(), "Should be an oop");
8875     assert(_span.contains(p), "oop should be in _span");
8876     assert(p->mark() == markOopDesc::prototype(),
8877            "Set when taken from overflow list");
8878     markOop m = _preserved_mark_stack->at(i);
8879     p->set_mark(m);
8880   }
8881   _preserved_mark_stack->clear();
8882   _preserved_oop_stack->clear();
8883   assert(_preserved_mark_stack->is_empty() &&
8884          _preserved_oop_stack->is_empty(),
8885          "stacks were cleared above");
8886 }
8887 
8888 #ifndef PRODUCT
8889 bool CMSCollector::no_preserved_marks() const {
8890   return (   (   _preserved_mark_stack == NULL
8891               && _preserved_oop_stack == NULL)
8892           || (   _preserved_mark_stack->is_empty()
8893               && _preserved_oop_stack->is_empty()));
8894 }
8895 #endif
8896 
8897 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
8898 {
8899   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
8900   CMSAdaptiveSizePolicy* size_policy =
8901     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
8902   assert(size_policy->is_gc_cms_adaptive_size_policy(),
8903     "Wrong type for size policy");
8904   return size_policy;
8905 }
8906 
8907 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
8908                                            size_t desired_promo_size) {
8909   if (cur_promo_size < desired_promo_size) {
8910     size_t expand_bytes = desired_promo_size - cur_promo_size;
8911     if (PrintAdaptiveSizePolicy && Verbose) {
8912       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
8913         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
8914         expand_bytes);
8915     }
8916     expand(expand_bytes,
8917            MinHeapDeltaBytes,
8918            CMSExpansionCause::_adaptive_size_policy);
8919   } else if (desired_promo_size < cur_promo_size) {
8920     size_t shrink_bytes = cur_promo_size - desired_promo_size;
8921     if (PrintAdaptiveSizePolicy && Verbose) {
8922       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
8923         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
8924         shrink_bytes);
8925     }
8926     shrink(shrink_bytes);
8927   }
8928 }
8929 
8930 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
8931   GenCollectedHeap* gch = GenCollectedHeap::heap();
8932   CMSGCAdaptivePolicyCounters* counters =
8933     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
8934   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
8935     "Wrong kind of counters");
8936   return counters;
8937 }
8938 
8939 
8940 void ASConcurrentMarkSweepGeneration::update_counters() {
8941   if (UsePerfData) {
8942     _space_counters->update_all();
8943     _gen_counters->update_all();
8944     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
8945     GenCollectedHeap* gch = GenCollectedHeap::heap();
8946     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
8947     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
8948       "Wrong gc statistics type");
8949     counters->update_counters(gc_stats_l);
8950   }
8951 }
8952 
8953 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
8954   if (UsePerfData) {
8955     _space_counters->update_used(used);
8956     _space_counters->update_capacity();
8957     _gen_counters->update_all();
8958 
8959     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
8960     GenCollectedHeap* gch = GenCollectedHeap::heap();
8961     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
8962     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
8963       "Wrong gc statistics type");
8964     counters->update_counters(gc_stats_l);
8965   }
8966 }
8967 
8968 // The desired expansion delta is computed so that:
8969 // . desired free percentage or greater is used
8970 void ASConcurrentMarkSweepGeneration::compute_new_size() {
8971   assert_locked_or_safepoint(Heap_lock);
8972 
8973   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
8974 
8975   // If incremental collection failed, we just want to expand
8976   // to the limit.
8977   if (incremental_collection_failed()) {
8978     clear_incremental_collection_failed();
8979     grow_to_reserved();
8980     return;
8981   }
8982 
8983   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
8984 
8985   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
8986     "Wrong type of heap");
8987   int prev_level = level() - 1;
8988   assert(prev_level >= 0, "The cms generation is the lowest generation");
8989   Generation* prev_gen = gch->get_gen(prev_level);
8990   assert(prev_gen->kind() == Generation::ASParNew,
8991     "Wrong type of young generation");
8992   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
8993   size_t cur_eden = younger_gen->eden()->capacity();
8994   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
8995   size_t cur_promo = free();
8996   size_policy->compute_tenured_generation_free_space(cur_promo,
8997                                                        max_available(),
8998                                                        cur_eden);
8999   resize(cur_promo, size_policy->promo_size());
9000 
9001   // Record the new size of the space in the cms generation
9002   // that is available for promotions.  This is temporary.
9003   // It should be the desired promo size.
9004   size_policy->avg_cms_promo()->sample(free());
9005   size_policy->avg_old_live()->sample(used());
9006 
9007   if (UsePerfData) {
9008     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9009     counters->update_cms_capacity_counter(capacity());
9010   }
9011 }
9012 
9013 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9014   assert_locked_or_safepoint(Heap_lock);
9015   assert_lock_strong(freelistLock());
9016   HeapWord* old_end = _cmsSpace->end();
9017   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9018   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9019   FreeChunk* chunk_at_end = find_chunk_at_end();
9020   if (chunk_at_end == NULL) {
9021     // No room to shrink
9022     if (PrintGCDetails && Verbose) {
9023       gclog_or_tty->print_cr("No room to shrink: old_end  "
9024         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9025         " chunk_at_end  " PTR_FORMAT,
9026         old_end, unallocated_start, chunk_at_end);
9027     }
9028     return;
9029   } else {
9030 
9031     // Find the chunk at the end of the space and determine
9032     // how much it can be shrunk.
9033     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9034     size_t aligned_shrinkable_size_in_bytes =
9035       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9036     assert(unallocated_start <= chunk_at_end->end(),
9037       "Inconsistent chunk at end of space");
9038     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9039     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9040 
9041     // Shrink the underlying space
9042     _virtual_space.shrink_by(bytes);
9043     if (PrintGCDetails && Verbose) {
9044       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9045         " desired_bytes " SIZE_FORMAT
9046         " shrinkable_size_in_bytes " SIZE_FORMAT
9047         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9048         "  bytes  " SIZE_FORMAT,
9049         desired_bytes, shrinkable_size_in_bytes,
9050         aligned_shrinkable_size_in_bytes, bytes);
9051       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9052         "  unallocated_start  " SIZE_FORMAT,
9053         old_end, unallocated_start);
9054     }
9055 
9056     // If the space did shrink (shrinking is not guaranteed),
9057     // shrink the chunk at the end by the appropriate amount.
9058     if (((HeapWord*)_virtual_space.high()) < old_end) {
9059       size_t new_word_size =
9060         heap_word_size(_virtual_space.committed_size());
9061 
9062       // Have to remove the chunk from the dictionary because it is changing
9063       // size and might be someplace elsewhere in the dictionary.
9064 
9065       // Get the chunk at end, shrink it, and put it
9066       // back.
9067       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9068       size_t word_size_change = word_size_before - new_word_size;
9069       size_t chunk_at_end_old_size = chunk_at_end->size();
9070       assert(chunk_at_end_old_size >= word_size_change,
9071         "Shrink is too large");
9072       chunk_at_end->setSize(chunk_at_end_old_size -
9073                           word_size_change);
9074       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9075         word_size_change);
9076 
9077       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9078 
9079       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9080       _bts->resize(new_word_size);  // resize the block offset shared array
9081       Universe::heap()->barrier_set()->resize_covered_region(mr);
9082       _cmsSpace->assert_locked();
9083       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9084 
9085       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9086 
9087       // update the space and generation capacity counters
9088       if (UsePerfData) {
9089         _space_counters->update_capacity();
9090         _gen_counters->update_all();
9091       }
9092 
9093       if (Verbose && PrintGCDetails) {
9094         size_t new_mem_size = _virtual_space.committed_size();
9095         size_t old_mem_size = new_mem_size + bytes;
9096         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
9097                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9098       }
9099     }
9100 
9101     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9102       "Inconsistency at end of space");
9103     assert(chunk_at_end->end() == _cmsSpace->end(),
9104       "Shrinking is inconsistent");
9105     return;
9106   }
9107 }
9108 
9109 // Transfer some number of overflown objects to usual marking
9110 // stack. Return true if some objects were transferred.
9111 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9112   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9113                     (size_t)ParGCDesiredObjsFromOverflowList);
9114 
9115   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9116   assert(_collector->overflow_list_is_empty() || res,
9117          "If list is not empty, we should have taken something");
9118   assert(!res || !_mark_stack->isEmpty(),
9119          "If we took something, it should now be on our stack");
9120   return res;
9121 }
9122 
9123 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9124   size_t res = _sp->block_size_no_stall(addr, _collector);
9125   assert(res != 0, "Should always be able to compute a size");
9126   if (_sp->block_is_obj(addr)) {
9127     if (_live_bit_map->isMarked(addr)) {
9128       // It can't have been dead in a previous cycle
9129       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9130     } else {
9131       _dead_bit_map->mark(addr);      // mark the dead object
9132     }
9133   }
9134   return res;
9135 }
9136 
9137 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase): TraceMemoryManagerStats() {
9138 
9139   switch (phase) {
9140     case CMSCollector::InitialMarking:
9141       initialize(true  /* fullGC */ ,
9142                  true  /* recordGCBeginTime */,
9143                  true  /* recordPreGCUsage */,
9144                  false /* recordPeakUsage */,
9145                  false /* recordPostGCusage */,
9146                  true  /* recordAccumulatedGCTime */,
9147                  false /* recordGCEndTime */,
9148                  false /* countCollection */  );
9149       break;
9150 
9151     case CMSCollector::FinalMarking:
9152       initialize(true  /* fullGC */ ,
9153                  false /* recordGCBeginTime */,
9154                  false /* recordPreGCUsage */,
9155                  false /* recordPeakUsage */,
9156                  false /* recordPostGCusage */,
9157                  true  /* recordAccumulatedGCTime */,
9158                  false /* recordGCEndTime */,
9159                  false /* countCollection */  );
9160       break;
9161 
9162     case CMSCollector::Sweeping:
9163       initialize(true  /* fullGC */ ,
9164                  false /* recordGCBeginTime */,
9165                  false /* recordPreGCUsage */,
9166                  true  /* recordPeakUsage */,
9167                  true  /* recordPostGCusage */,
9168                  false /* recordAccumulatedGCTime */,
9169                  true  /* recordGCEndTime */,
9170                  true  /* countCollection */  );
9171       break;
9172 
9173     default:
9174       ShouldNotReachHere();
9175   }
9176 }
9177 
9178 // when bailing out of cms in concurrent mode failure
9179 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(): TraceMemoryManagerStats() {
9180   initialize(true /* fullGC */ ,
9181              true /* recordGCBeginTime */,
9182              true /* recordPreGCUsage */,
9183              true /* recordPeakUsage */,
9184              true /* recordPostGCusage */,
9185              true /* recordAccumulatedGCTime */,
9186              true /* recordGCEndTime */,
9187              true /* countCollection */ );
9188 }
9189