1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  34 #include "gc_implementation/g1/g1Log.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.hpp"
  37 #include "gc_implementation/g1/heapRegion.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  40 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  41 #include "gc_implementation/shared/vmGCOperations.hpp"
  42 #include "gc_implementation/shared/gcTimer.hpp"
  43 #include "gc_implementation/shared/gcTrace.hpp"
  44 #include "gc_implementation/shared/gcTraceTime.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/referencePolicy.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/prefetch.inline.hpp"
  53 #include "services/memTracker.hpp"
  54 
  55 // Concurrent marking bit map wrapper
  56 
  57 CMBitMapRO::CMBitMapRO(int shifter) :
  58   _bm(),
  59   _shifter(shifter) {
  60   _bmStartWord = 0;
  61   _bmWordSize = 0;
  62 }
  63 
  64 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  65                                                const HeapWord* limit) const {
  66   // First we must round addr *up* to a possible object boundary.
  67   addr = (HeapWord*)align_size_up((intptr_t)addr,
  68                                   HeapWordSize << _shifter);
  69   size_t addrOffset = heapWordToOffset(addr);
  70   if (limit == NULL) {
  71     limit = _bmStartWord + _bmWordSize;
  72   }
  73   size_t limitOffset = heapWordToOffset(limit);
  74   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  75   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  76   assert(nextAddr >= addr, "get_next_one postcondition");
  77   assert(nextAddr == limit || isMarked(nextAddr),
  78          "get_next_one postcondition");
  79   return nextAddr;
  80 }
  81 
  82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  83                                                  const HeapWord* limit) const {
  84   size_t addrOffset = heapWordToOffset(addr);
  85   if (limit == NULL) {
  86     limit = _bmStartWord + _bmWordSize;
  87   }
  88   size_t limitOffset = heapWordToOffset(limit);
  89   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  90   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  91   assert(nextAddr >= addr, "get_next_one postcondition");
  92   assert(nextAddr == limit || !isMarked(nextAddr),
  93          "get_next_one postcondition");
  94   return nextAddr;
  95 }
  96 
  97 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  98   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  99   return (int) (diff >> _shifter);
 100 }
 101 
 102 #ifndef PRODUCT
 103 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 104   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 105   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 106          "size inconsistency");
 107   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 108          _bmWordSize  == heap_rs.word_size();
 109 }
 110 #endif
 111 
 112 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 113   _bm.print_on_error(st, prefix);
 114 }
 115 
 116 size_t CMBitMap::compute_size(size_t heap_size) {
 117   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 118 }
 119 
 120 size_t CMBitMap::mark_distance() {
 121   return MinObjAlignmentInBytes * BitsPerByte;
 122 }
 123 
 124 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 125   _bmStartWord = heap.start();
 126   _bmWordSize = heap.word_size();
 127 
 128   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 129   _bm.set_size(_bmWordSize >> _shifter);
 130 
 131   storage->set_mapping_changed_listener(&_listener);
 132 }
 133 
 134 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 135   if (zero_filled) {
 136     return;
 137   }
 138   // We need to clear the bitmap on commit, removing any existing information.
 139   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 140   _bm->clearRange(mr);
 141 }
 142 
 143 // Closure used for clearing the given mark bitmap.
 144 class ClearBitmapHRClosure : public HeapRegionClosure {
 145  private:
 146   ConcurrentMark* _cm;
 147   CMBitMap* _bitmap;
 148   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 149  public:
 150   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 151     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 152   }
 153 
 154   virtual bool doHeapRegion(HeapRegion* r) {
 155     size_t const chunk_size_in_words = M / HeapWordSize;
 156 
 157     HeapWord* cur = r->bottom();
 158     HeapWord* const end = r->end();
 159 
 160     while (cur < end) {
 161       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 162       _bitmap->clearRange(mr);
 163 
 164       cur += chunk_size_in_words;
 165 
 166       // Abort iteration if after yielding the marking has been aborted.
 167       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 168         return true;
 169       }
 170       // Repeat the asserts from before the start of the closure. We will do them
 171       // as asserts here to minimize their overhead on the product. However, we
 172       // will have them as guarantees at the beginning / end of the bitmap
 173       // clearing to get some checking in the product.
 174       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 175       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 176     }
 177 
 178     return false;
 179   }
 180 };
 181 
 182 void CMBitMap::clearAll() {
 183   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 184   G1CollectedHeap::heap()->heap_region_iterate(&cl);
 185   guarantee(cl.complete(), "Must have completed iteration.");
 186   return;
 187 }
 188 
 189 void CMBitMap::markRange(MemRegion mr) {
 190   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 191   assert(!mr.is_empty(), "unexpected empty region");
 192   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 193           ((HeapWord *) mr.end())),
 194          "markRange memory region end is not card aligned");
 195   // convert address range into offset range
 196   _bm.at_put_range(heapWordToOffset(mr.start()),
 197                    heapWordToOffset(mr.end()), true);
 198 }
 199 
 200 void CMBitMap::clearRange(MemRegion mr) {
 201   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 202   assert(!mr.is_empty(), "unexpected empty region");
 203   // convert address range into offset range
 204   _bm.at_put_range(heapWordToOffset(mr.start()),
 205                    heapWordToOffset(mr.end()), false);
 206 }
 207 
 208 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 209                                             HeapWord* end_addr) {
 210   HeapWord* start = getNextMarkedWordAddress(addr);
 211   start = MIN2(start, end_addr);
 212   HeapWord* end   = getNextUnmarkedWordAddress(start);
 213   end = MIN2(end, end_addr);
 214   assert(start <= end, "Consistency check");
 215   MemRegion mr(start, end);
 216   if (!mr.is_empty()) {
 217     clearRange(mr);
 218   }
 219   return mr;
 220 }
 221 
 222 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 223   _base(NULL), _cm(cm)
 224 #ifdef ASSERT
 225   , _drain_in_progress(false)
 226   , _drain_in_progress_yields(false)
 227 #endif
 228 {}
 229 
 230 bool CMMarkStack::allocate(size_t capacity) {
 231   // allocate a stack of the requisite depth
 232   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 233   if (!rs.is_reserved()) {
 234     warning("ConcurrentMark MarkStack allocation failure");
 235     return false;
 236   }
 237   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 238   if (!_virtual_space.initialize(rs, rs.size())) {
 239     warning("ConcurrentMark MarkStack backing store failure");
 240     // Release the virtual memory reserved for the marking stack
 241     rs.release();
 242     return false;
 243   }
 244   assert(_virtual_space.committed_size() == rs.size(),
 245          "Didn't reserve backing store for all of ConcurrentMark stack?");
 246   _base = (oop*) _virtual_space.low();
 247   setEmpty();
 248   _capacity = (jint) capacity;
 249   _saved_index = -1;
 250   _should_expand = false;
 251   NOT_PRODUCT(_max_depth = 0);
 252   return true;
 253 }
 254 
 255 void CMMarkStack::expand() {
 256   // Called, during remark, if we've overflown the marking stack during marking.
 257   assert(isEmpty(), "stack should been emptied while handling overflow");
 258   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 259   // Clear expansion flag
 260   _should_expand = false;
 261   if (_capacity == (jint) MarkStackSizeMax) {
 262     if (PrintGCDetails && Verbose) {
 263       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 264     }
 265     return;
 266   }
 267   // Double capacity if possible
 268   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 269   // Do not give up existing stack until we have managed to
 270   // get the double capacity that we desired.
 271   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 272                                                            sizeof(oop)));
 273   if (rs.is_reserved()) {
 274     // Release the backing store associated with old stack
 275     _virtual_space.release();
 276     // Reinitialize virtual space for new stack
 277     if (!_virtual_space.initialize(rs, rs.size())) {
 278       fatal("Not enough swap for expanded marking stack capacity");
 279     }
 280     _base = (oop*)(_virtual_space.low());
 281     _index = 0;
 282     _capacity = new_capacity;
 283   } else {
 284     if (PrintGCDetails && Verbose) {
 285       // Failed to double capacity, continue;
 286       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 287                           SIZE_FORMAT "K to " SIZE_FORMAT "K",
 288                           _capacity / K, new_capacity / K);
 289     }
 290   }
 291 }
 292 
 293 void CMMarkStack::set_should_expand() {
 294   // If we're resetting the marking state because of an
 295   // marking stack overflow, record that we should, if
 296   // possible, expand the stack.
 297   _should_expand = _cm->has_overflown();
 298 }
 299 
 300 CMMarkStack::~CMMarkStack() {
 301   if (_base != NULL) {
 302     _base = NULL;
 303     _virtual_space.release();
 304   }
 305 }
 306 
 307 void CMMarkStack::par_push(oop ptr) {
 308   while (true) {
 309     if (isFull()) {
 310       _overflow = true;
 311       return;
 312     }
 313     // Otherwise...
 314     jint index = _index;
 315     jint next_index = index+1;
 316     jint res = Atomic::cmpxchg(next_index, &_index, index);
 317     if (res == index) {
 318       _base[index] = ptr;
 319       // Note that we don't maintain this atomically.  We could, but it
 320       // doesn't seem necessary.
 321       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 322       return;
 323     }
 324     // Otherwise, we need to try again.
 325   }
 326 }
 327 
 328 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 329   while (true) {
 330     if (isFull()) {
 331       _overflow = true;
 332       return;
 333     }
 334     // Otherwise...
 335     jint index = _index;
 336     jint next_index = index + n;
 337     if (next_index > _capacity) {
 338       _overflow = true;
 339       return;
 340     }
 341     jint res = Atomic::cmpxchg(next_index, &_index, index);
 342     if (res == index) {
 343       for (int i = 0; i < n; i++) {
 344         int  ind = index + i;
 345         assert(ind < _capacity, "By overflow test above.");
 346         _base[ind] = ptr_arr[i];
 347       }
 348       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 349       return;
 350     }
 351     // Otherwise, we need to try again.
 352   }
 353 }
 354 
 355 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 356   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 357   jint start = _index;
 358   jint next_index = start + n;
 359   if (next_index > _capacity) {
 360     _overflow = true;
 361     return;
 362   }
 363   // Otherwise.
 364   _index = next_index;
 365   for (int i = 0; i < n; i++) {
 366     int ind = start + i;
 367     assert(ind < _capacity, "By overflow test above.");
 368     _base[ind] = ptr_arr[i];
 369   }
 370   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 371 }
 372 
 373 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 374   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 375   jint index = _index;
 376   if (index == 0) {
 377     *n = 0;
 378     return false;
 379   } else {
 380     int k = MIN2(max, index);
 381     jint  new_ind = index - k;
 382     for (int j = 0; j < k; j++) {
 383       ptr_arr[j] = _base[new_ind + j];
 384     }
 385     _index = new_ind;
 386     *n = k;
 387     return true;
 388   }
 389 }
 390 
 391 template<class OopClosureClass>
 392 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 393   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 394          || SafepointSynchronize::is_at_safepoint(),
 395          "Drain recursion must be yield-safe.");
 396   bool res = true;
 397   debug_only(_drain_in_progress = true);
 398   debug_only(_drain_in_progress_yields = yield_after);
 399   while (!isEmpty()) {
 400     oop newOop = pop();
 401     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 402     assert(newOop->is_oop(), "Expected an oop");
 403     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 404            "only grey objects on this stack");
 405     newOop->oop_iterate(cl);
 406     if (yield_after && _cm->do_yield_check()) {
 407       res = false;
 408       break;
 409     }
 410   }
 411   debug_only(_drain_in_progress = false);
 412   return res;
 413 }
 414 
 415 void CMMarkStack::note_start_of_gc() {
 416   assert(_saved_index == -1,
 417          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 418   _saved_index = _index;
 419 }
 420 
 421 void CMMarkStack::note_end_of_gc() {
 422   // This is intentionally a guarantee, instead of an assert. If we
 423   // accidentally add something to the mark stack during GC, it
 424   // will be a correctness issue so it's better if we crash. we'll
 425   // only check this once per GC anyway, so it won't be a performance
 426   // issue in any way.
 427   guarantee(_saved_index == _index,
 428             err_msg("saved index: %d index: %d", _saved_index, _index));
 429   _saved_index = -1;
 430 }
 431 
 432 void CMMarkStack::oops_do(OopClosure* f) {
 433   assert(_saved_index == _index,
 434          err_msg("saved index: %d index: %d", _saved_index, _index));
 435   for (int i = 0; i < _index; i += 1) {
 436     f->do_oop(&_base[i]);
 437   }
 438 }
 439 
 440 CMRootRegions::CMRootRegions() :
 441   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 442   _should_abort(false),  _next_survivor(NULL) { }
 443 
 444 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 445   _young_list = g1h->young_list();
 446   _cm = cm;
 447 }
 448 
 449 void CMRootRegions::prepare_for_scan() {
 450   assert(!scan_in_progress(), "pre-condition");
 451 
 452   // Currently, only survivors can be root regions.
 453   assert(_next_survivor == NULL, "pre-condition");
 454   _next_survivor = _young_list->first_survivor_region();
 455   _scan_in_progress = (_next_survivor != NULL);
 456   _should_abort = false;
 457 }
 458 
 459 HeapRegion* CMRootRegions::claim_next() {
 460   if (_should_abort) {
 461     // If someone has set the should_abort flag, we return NULL to
 462     // force the caller to bail out of their loop.
 463     return NULL;
 464   }
 465 
 466   // Currently, only survivors can be root regions.
 467   HeapRegion* res = _next_survivor;
 468   if (res != NULL) {
 469     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 470     // Read it again in case it changed while we were waiting for the lock.
 471     res = _next_survivor;
 472     if (res != NULL) {
 473       if (res == _young_list->last_survivor_region()) {
 474         // We just claimed the last survivor so store NULL to indicate
 475         // that we're done.
 476         _next_survivor = NULL;
 477       } else {
 478         _next_survivor = res->get_next_young_region();
 479       }
 480     } else {
 481       // Someone else claimed the last survivor while we were trying
 482       // to take the lock so nothing else to do.
 483     }
 484   }
 485   assert(res == NULL || res->is_survivor(), "post-condition");
 486 
 487   return res;
 488 }
 489 
 490 void CMRootRegions::scan_finished() {
 491   assert(scan_in_progress(), "pre-condition");
 492 
 493   // Currently, only survivors can be root regions.
 494   if (!_should_abort) {
 495     assert(_next_survivor == NULL, "we should have claimed all survivors");
 496   }
 497   _next_survivor = NULL;
 498 
 499   {
 500     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 501     _scan_in_progress = false;
 502     RootRegionScan_lock->notify_all();
 503   }
 504 }
 505 
 506 bool CMRootRegions::wait_until_scan_finished() {
 507   if (!scan_in_progress()) return false;
 508 
 509   {
 510     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 511     while (scan_in_progress()) {
 512       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 513     }
 514   }
 515   return true;
 516 }
 517 
 518 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 519 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 520 #endif // _MSC_VER
 521 
 522 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 523   return MAX2((n_par_threads + 2) / 4, 1U);
 524 }
 525 
 526 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 527   _g1h(g1h),
 528   _markBitMap1(),
 529   _markBitMap2(),
 530   _parallel_marking_threads(0),
 531   _max_parallel_marking_threads(0),
 532   _sleep_factor(0.0),
 533   _marking_task_overhead(1.0),
 534   _cleanup_sleep_factor(0.0),
 535   _cleanup_task_overhead(1.0),
 536   _cleanup_list("Cleanup List"),
 537   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 538   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 539             CardTableModRefBS::card_shift,
 540             false /* in_resource_area*/),
 541 
 542   _prevMarkBitMap(&_markBitMap1),
 543   _nextMarkBitMap(&_markBitMap2),
 544 
 545   _markStack(this),
 546   // _finger set in set_non_marking_state
 547 
 548   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 549   // _active_tasks set in set_non_marking_state
 550   // _tasks set inside the constructor
 551   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 552   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 553 
 554   _has_overflown(false),
 555   _concurrent(false),
 556   _has_aborted(false),
 557   _aborted_gc_id(GCId::undefined()),
 558   _restart_for_overflow(false),
 559   _concurrent_marking_in_progress(false),
 560 
 561   // _verbose_level set below
 562 
 563   _init_times(),
 564   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 565   _cleanup_times(),
 566   _total_counting_time(0.0),
 567   _total_rs_scrub_time(0.0),
 568 
 569   _parallel_workers(NULL),
 570 
 571   _count_card_bitmaps(NULL),
 572   _count_marked_bytes(NULL),
 573   _completed_initialization(false) {
 574   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 575   if (verbose_level < no_verbose) {
 576     verbose_level = no_verbose;
 577   }
 578   if (verbose_level > high_verbose) {
 579     verbose_level = high_verbose;
 580   }
 581   _verbose_level = verbose_level;
 582 
 583   if (verbose_low()) {
 584     gclog_or_tty->print_cr("[global] init, heap start = " PTR_FORMAT", "
 585                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 586   }
 587 
 588   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 589   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 590 
 591   // Create & start a ConcurrentMark thread.
 592   _cmThread = new ConcurrentMarkThread(this);
 593   assert(cmThread() != NULL, "CM Thread should have been created");
 594   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 595   if (_cmThread->osthread() == NULL) {
 596       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 597   }
 598 
 599   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 600   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 601   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 602 
 603   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 604   satb_qs.set_buffer_size(G1SATBBufferSize);
 605 
 606   _root_regions.init(_g1h, this);
 607 
 608   if (ConcGCThreads > ParallelGCThreads) {
 609     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 610             "than ParallelGCThreads (" UINTX_FORMAT ").",
 611             ConcGCThreads, ParallelGCThreads);
 612     return;
 613   }
 614   if (ParallelGCThreads == 0) {
 615     // if we are not running with any parallel GC threads we will not
 616     // spawn any marking threads either
 617     _parallel_marking_threads =       0;
 618     _max_parallel_marking_threads =   0;
 619     _sleep_factor             =     0.0;
 620     _marking_task_overhead    =     1.0;
 621   } else {
 622     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 623       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 624       // if both are set
 625       _sleep_factor             = 0.0;
 626       _marking_task_overhead    = 1.0;
 627     } else if (G1MarkingOverheadPercent > 0) {
 628       // We will calculate the number of parallel marking threads based
 629       // on a target overhead with respect to the soft real-time goal
 630       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 631       double overall_cm_overhead =
 632         (double) MaxGCPauseMillis * marking_overhead /
 633         (double) GCPauseIntervalMillis;
 634       double cpu_ratio = 1.0 / os::initial_active_processor_count();
 635       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 636       double marking_task_overhead =
 637         overall_cm_overhead / marking_thread_num * os::initial_active_processor_count();
 638       double sleep_factor =
 639                          (1.0 - marking_task_overhead) / marking_task_overhead;
 640 
 641       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 642       _sleep_factor             = sleep_factor;
 643       _marking_task_overhead    = marking_task_overhead;
 644     } else {
 645       // Calculate the number of parallel marking threads by scaling
 646       // the number of parallel GC threads.
 647       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 648       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 649       _sleep_factor             = 0.0;
 650       _marking_task_overhead    = 1.0;
 651     }
 652 
 653     assert(ConcGCThreads > 0, "Should have been set");
 654     _parallel_marking_threads = (uint) ConcGCThreads;
 655     _max_parallel_marking_threads = _parallel_marking_threads;
 656 
 657     if (parallel_marking_threads() > 1) {
 658       _cleanup_task_overhead = 1.0;
 659     } else {
 660       _cleanup_task_overhead = marking_task_overhead();
 661     }
 662     _cleanup_sleep_factor =
 663                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 664 
 665 #if 0
 666     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 667     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 668     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 669     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 670     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 671 #endif
 672 
 673     guarantee(parallel_marking_threads() > 0, "peace of mind");
 674     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 675          _max_parallel_marking_threads, false, true);
 676     if (_parallel_workers == NULL) {
 677       vm_exit_during_initialization("Failed necessary allocation.");
 678     } else {
 679       _parallel_workers->initialize_workers();
 680     }
 681   }
 682 
 683   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 684     uintx mark_stack_size =
 685       MIN2(MarkStackSizeMax,
 686           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 687     // Verify that the calculated value for MarkStackSize is in range.
 688     // It would be nice to use the private utility routine from Arguments.
 689     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 690       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 691               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 692               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 693       return;
 694     }
 695     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 696   } else {
 697     // Verify MarkStackSize is in range.
 698     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 699       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 700         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 701           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 702                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 703                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 704           return;
 705         }
 706       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 707         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 708           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 709                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 710                   MarkStackSize, MarkStackSizeMax);
 711           return;
 712         }
 713       }
 714     }
 715   }
 716 
 717   if (!_markStack.allocate(MarkStackSize)) {
 718     warning("Failed to allocate CM marking stack");
 719     return;
 720   }
 721 
 722   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 723   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 724 
 725   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 726   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 727 
 728   BitMap::idx_t card_bm_size = _card_bm.size();
 729 
 730   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 731   _active_tasks = _max_worker_id;
 732 
 733   size_t max_regions = (size_t) _g1h->max_regions();
 734   for (uint i = 0; i < _max_worker_id; ++i) {
 735     CMTaskQueue* task_queue = new CMTaskQueue();
 736     task_queue->initialize();
 737     _task_queues->register_queue(i, task_queue);
 738 
 739     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 740     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 741 
 742     _tasks[i] = new CMTask(i, this,
 743                            _count_marked_bytes[i],
 744                            &_count_card_bitmaps[i],
 745                            task_queue, _task_queues);
 746 
 747     _accum_task_vtime[i] = 0.0;
 748   }
 749 
 750   // Calculate the card number for the bottom of the heap. Used
 751   // in biasing indexes into the accounting card bitmaps.
 752   _heap_bottom_card_num =
 753     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 754                                 CardTableModRefBS::card_shift);
 755 
 756   // Clear all the liveness counting data
 757   clear_all_count_data();
 758 
 759   // so that the call below can read a sensible value
 760   _heap_start = g1h->reserved_region().start();
 761   set_non_marking_state();
 762   _completed_initialization = true;
 763 }
 764 
 765 void ConcurrentMark::reset() {
 766   // Starting values for these two. This should be called in a STW
 767   // phase.
 768   MemRegion reserved = _g1h->g1_reserved();
 769   _heap_start = reserved.start();
 770   _heap_end   = reserved.end();
 771 
 772   // Separated the asserts so that we know which one fires.
 773   assert(_heap_start != NULL, "heap bounds should look ok");
 774   assert(_heap_end != NULL, "heap bounds should look ok");
 775   assert(_heap_start < _heap_end, "heap bounds should look ok");
 776 
 777   // Reset all the marking data structures and any necessary flags
 778   reset_marking_state();
 779 
 780   if (verbose_low()) {
 781     gclog_or_tty->print_cr("[global] resetting");
 782   }
 783 
 784   // We do reset all of them, since different phases will use
 785   // different number of active threads. So, it's easiest to have all
 786   // of them ready.
 787   for (uint i = 0; i < _max_worker_id; ++i) {
 788     _tasks[i]->reset(_nextMarkBitMap);
 789   }
 790 
 791   // we need this to make sure that the flag is on during the evac
 792   // pause with initial mark piggy-backed
 793   set_concurrent_marking_in_progress();
 794 }
 795 
 796 
 797 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 798   _markStack.set_should_expand();
 799   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 800   if (clear_overflow) {
 801     clear_has_overflown();
 802   } else {
 803     assert(has_overflown(), "pre-condition");
 804   }
 805   _finger = _heap_start;
 806 
 807   for (uint i = 0; i < _max_worker_id; ++i) {
 808     CMTaskQueue* queue = _task_queues->queue(i);
 809     queue->set_empty();
 810   }
 811 }
 812 
 813 void ConcurrentMark::set_concurrency(uint active_tasks) {
 814   assert(active_tasks <= _max_worker_id, "we should not have more");
 815 
 816   _active_tasks = active_tasks;
 817   // Need to update the three data structures below according to the
 818   // number of active threads for this phase.
 819   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 820   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 821   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 822 }
 823 
 824 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 825   set_concurrency(active_tasks);
 826 
 827   _concurrent = concurrent;
 828   // We propagate this to all tasks, not just the active ones.
 829   for (uint i = 0; i < _max_worker_id; ++i)
 830     _tasks[i]->set_concurrent(concurrent);
 831 
 832   if (concurrent) {
 833     set_concurrent_marking_in_progress();
 834   } else {
 835     // We currently assume that the concurrent flag has been set to
 836     // false before we start remark. At this point we should also be
 837     // in a STW phase.
 838     assert(!concurrent_marking_in_progress(), "invariant");
 839     assert(out_of_regions(),
 840            err_msg("only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 841                    p2i(_finger), p2i(_heap_end)));
 842   }
 843 }
 844 
 845 void ConcurrentMark::set_non_marking_state() {
 846   // We set the global marking state to some default values when we're
 847   // not doing marking.
 848   reset_marking_state();
 849   _active_tasks = 0;
 850   clear_concurrent_marking_in_progress();
 851 }
 852 
 853 ConcurrentMark::~ConcurrentMark() {
 854   // The ConcurrentMark instance is never freed.
 855   ShouldNotReachHere();
 856 }
 857 
 858 void ConcurrentMark::clearNextBitmap() {
 859   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 860 
 861   // Make sure that the concurrent mark thread looks to still be in
 862   // the current cycle.
 863   guarantee(cmThread()->during_cycle(), "invariant");
 864 
 865   // We are finishing up the current cycle by clearing the next
 866   // marking bitmap and getting it ready for the next cycle. During
 867   // this time no other cycle can start. So, let's make sure that this
 868   // is the case.
 869   guarantee(!g1h->mark_in_progress(), "invariant");
 870 
 871   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 872   g1h->heap_region_iterate(&cl);
 873 
 874   // Clear the liveness counting data. If the marking has been aborted, the abort()
 875   // call already did that.
 876   if (cl.complete()) {
 877     clear_all_count_data();
 878   }
 879 
 880   // Repeat the asserts from above.
 881   guarantee(cmThread()->during_cycle(), "invariant");
 882   guarantee(!g1h->mark_in_progress(), "invariant");
 883 }
 884 
 885 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 886   CMBitMap* _bitmap;
 887   bool _error;
 888  public:
 889   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 890   }
 891 
 892   virtual bool doHeapRegion(HeapRegion* r) {
 893     // This closure can be called concurrently to the mutator, so we must make sure
 894     // that the result of the getNextMarkedWordAddress() call is compared to the
 895     // value passed to it as limit to detect any found bits.
 896     // We can use the region's orig_end() for the limit and the comparison value
 897     // as it always contains the "real" end of the region that never changes and
 898     // has no side effects.
 899     // Due to the latter, there can also be no problem with the compiler generating
 900     // reloads of the orig_end() call.
 901     HeapWord* end = r->orig_end();
 902     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 903   }
 904 };
 905 
 906 bool ConcurrentMark::nextMarkBitmapIsClear() {
 907   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 908   _g1h->heap_region_iterate(&cl);
 909   return cl.complete();
 910 }
 911 
 912 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 913 public:
 914   bool doHeapRegion(HeapRegion* r) {
 915     if (!r->continuesHumongous()) {
 916       r->note_start_of_marking();
 917     }
 918     return false;
 919   }
 920 };
 921 
 922 void ConcurrentMark::checkpointRootsInitialPre() {
 923   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 924   G1CollectorPolicy* g1p = g1h->g1_policy();
 925 
 926   _has_aborted = false;
 927 
 928 #ifndef PRODUCT
 929   if (G1PrintReachableAtInitialMark) {
 930     print_reachable("at-cycle-start",
 931                     VerifyOption_G1UsePrevMarking, true /* all */);
 932   }
 933 #endif
 934 
 935   // Initialise marking structures. This has to be done in a STW phase.
 936   reset();
 937 
 938   // For each region note start of marking.
 939   NoteStartOfMarkHRClosure startcl;
 940   g1h->heap_region_iterate(&startcl);
 941 }
 942 
 943 
 944 void ConcurrentMark::checkpointRootsInitialPost() {
 945   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 946 
 947   // If we force an overflow during remark, the remark operation will
 948   // actually abort and we'll restart concurrent marking. If we always
 949   // force an oveflow during remark we'll never actually complete the
 950   // marking phase. So, we initilize this here, at the start of the
 951   // cycle, so that at the remaining overflow number will decrease at
 952   // every remark and we'll eventually not need to cause one.
 953   force_overflow_stw()->init();
 954 
 955   // Start Concurrent Marking weak-reference discovery.
 956   ReferenceProcessor* rp = g1h->ref_processor_cm();
 957   // enable ("weak") refs discovery
 958   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 959   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 960 
 961   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 962   // This is the start of  the marking cycle, we're expected all
 963   // threads to have SATB queues with active set to false.
 964   satb_mq_set.set_active_all_threads(true, /* new active value */
 965                                      false /* expected_active */);
 966 
 967   _root_regions.prepare_for_scan();
 968 
 969   // update_g1_committed() will be called at the end of an evac pause
 970   // when marking is on. So, it's also called at the end of the
 971   // initial-mark pause to update the heap end, if the heap expands
 972   // during it. No need to call it here.
 973 }
 974 
 975 /*
 976  * Notice that in the next two methods, we actually leave the STS
 977  * during the barrier sync and join it immediately afterwards. If we
 978  * do not do this, the following deadlock can occur: one thread could
 979  * be in the barrier sync code, waiting for the other thread to also
 980  * sync up, whereas another one could be trying to yield, while also
 981  * waiting for the other threads to sync up too.
 982  *
 983  * Note, however, that this code is also used during remark and in
 984  * this case we should not attempt to leave / enter the STS, otherwise
 985  * we'll either hit an asseert (debug / fastdebug) or deadlock
 986  * (product). So we should only leave / enter the STS if we are
 987  * operating concurrently.
 988  *
 989  * Because the thread that does the sync barrier has left the STS, it
 990  * is possible to be suspended for a Full GC or an evacuation pause
 991  * could occur. This is actually safe, since the entering the sync
 992  * barrier is one of the last things do_marking_step() does, and it
 993  * doesn't manipulate any data structures afterwards.
 994  */
 995 
 996 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 997   if (verbose_low()) {
 998     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 999   }
1000 
1001   if (concurrent()) {
1002     SuspendibleThreadSet::leave();
1003   }
1004 
1005   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1006 
1007   if (concurrent()) {
1008     SuspendibleThreadSet::join();
1009   }
1010   // at this point everyone should have synced up and not be doing any
1011   // more work
1012 
1013   if (verbose_low()) {
1014     if (barrier_aborted) {
1015       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1016     } else {
1017       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1018     }
1019   }
1020 
1021   if (barrier_aborted) {
1022     // If the barrier aborted we ignore the overflow condition and
1023     // just abort the whole marking phase as quickly as possible.
1024     return;
1025   }
1026 
1027   // If we're executing the concurrent phase of marking, reset the marking
1028   // state; otherwise the marking state is reset after reference processing,
1029   // during the remark pause.
1030   // If we reset here as a result of an overflow during the remark we will
1031   // see assertion failures from any subsequent set_concurrency_and_phase()
1032   // calls.
1033   if (concurrent()) {
1034     // let the task associated with with worker 0 do this
1035     if (worker_id == 0) {
1036       // task 0 is responsible for clearing the global data structures
1037       // We should be here because of an overflow. During STW we should
1038       // not clear the overflow flag since we rely on it being true when
1039       // we exit this method to abort the pause and restart concurent
1040       // marking.
1041       reset_marking_state(true /* clear_overflow */);
1042       force_overflow()->update();
1043 
1044       if (G1Log::fine()) {
1045         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1046         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1047       }
1048     }
1049   }
1050 
1051   // after this, each task should reset its own data structures then
1052   // then go into the second barrier
1053 }
1054 
1055 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1056   if (verbose_low()) {
1057     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1058   }
1059 
1060   if (concurrent()) {
1061     SuspendibleThreadSet::leave();
1062   }
1063 
1064   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1065 
1066   if (concurrent()) {
1067     SuspendibleThreadSet::join();
1068   }
1069   // at this point everything should be re-initialized and ready to go
1070 
1071   if (verbose_low()) {
1072     if (barrier_aborted) {
1073       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1074     } else {
1075       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1076     }
1077   }
1078 }
1079 
1080 #ifndef PRODUCT
1081 void ForceOverflowSettings::init() {
1082   _num_remaining = G1ConcMarkForceOverflow;
1083   _force = false;
1084   update();
1085 }
1086 
1087 void ForceOverflowSettings::update() {
1088   if (_num_remaining > 0) {
1089     _num_remaining -= 1;
1090     _force = true;
1091   } else {
1092     _force = false;
1093   }
1094 }
1095 
1096 bool ForceOverflowSettings::should_force() {
1097   if (_force) {
1098     _force = false;
1099     return true;
1100   } else {
1101     return false;
1102   }
1103 }
1104 #endif // !PRODUCT
1105 
1106 class CMConcurrentMarkingTask: public AbstractGangTask {
1107 private:
1108   ConcurrentMark*       _cm;
1109   ConcurrentMarkThread* _cmt;
1110 
1111 public:
1112   void work(uint worker_id) {
1113     assert(Thread::current()->is_ConcurrentGC_thread(),
1114            "this should only be done by a conc GC thread");
1115     ResourceMark rm;
1116 
1117     double start_vtime = os::elapsedVTime();
1118 
1119     SuspendibleThreadSet::join();
1120 
1121     assert(worker_id < _cm->active_tasks(), "invariant");
1122     CMTask* the_task = _cm->task(worker_id);
1123     the_task->record_start_time();
1124     if (!_cm->has_aborted()) {
1125       do {
1126         double start_vtime_sec = os::elapsedVTime();
1127         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1128 
1129         the_task->do_marking_step(mark_step_duration_ms,
1130                                   true  /* do_termination */,
1131                                   false /* is_serial*/);
1132 
1133         double end_vtime_sec = os::elapsedVTime();
1134         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1135         _cm->clear_has_overflown();
1136 
1137         _cm->do_yield_check(worker_id);
1138 
1139         jlong sleep_time_ms;
1140         if (!_cm->has_aborted() && the_task->has_aborted()) {
1141           sleep_time_ms =
1142             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1143           SuspendibleThreadSet::leave();
1144           os::sleep(Thread::current(), sleep_time_ms, false);
1145           SuspendibleThreadSet::join();
1146         }
1147       } while (!_cm->has_aborted() && the_task->has_aborted());
1148     }
1149     the_task->record_end_time();
1150     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1151 
1152     SuspendibleThreadSet::leave();
1153 
1154     double end_vtime = os::elapsedVTime();
1155     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1156   }
1157 
1158   CMConcurrentMarkingTask(ConcurrentMark* cm,
1159                           ConcurrentMarkThread* cmt) :
1160       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1161 
1162   ~CMConcurrentMarkingTask() { }
1163 };
1164 
1165 // Calculates the number of active workers for a concurrent
1166 // phase.
1167 uint ConcurrentMark::calc_parallel_marking_threads() {
1168   if (G1CollectedHeap::use_parallel_gc_threads()) {
1169     uint n_conc_workers = 0;
1170     if (!UseDynamicNumberOfGCThreads ||
1171         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1172          !ForceDynamicNumberOfGCThreads)) {
1173       n_conc_workers = max_parallel_marking_threads();
1174     } else {
1175       n_conc_workers =
1176         AdaptiveSizePolicy::calc_default_active_workers(
1177                                      max_parallel_marking_threads(),
1178                                      1, /* Minimum workers */
1179                                      parallel_marking_threads(),
1180                                      Threads::number_of_non_daemon_threads());
1181       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1182       // that scaling has already gone into "_max_parallel_marking_threads".
1183     }
1184     assert(n_conc_workers > 0, "Always need at least 1");
1185     return n_conc_workers;
1186   }
1187   // If we are not running with any parallel GC threads we will not
1188   // have spawned any marking threads either. Hence the number of
1189   // concurrent workers should be 0.
1190   return 0;
1191 }
1192 
1193 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1194   // Currently, only survivors can be root regions.
1195   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1196   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1197 
1198   const uintx interval = PrefetchScanIntervalInBytes;
1199   HeapWord* curr = hr->bottom();
1200   const HeapWord* end = hr->top();
1201   while (curr < end) {
1202     Prefetch::read(curr, interval);
1203     oop obj = oop(curr);
1204     int size = obj->oop_iterate(&cl);
1205     assert(size == obj->size(), "sanity");
1206     curr += size;
1207   }
1208 }
1209 
1210 class CMRootRegionScanTask : public AbstractGangTask {
1211 private:
1212   ConcurrentMark* _cm;
1213 
1214 public:
1215   CMRootRegionScanTask(ConcurrentMark* cm) :
1216     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1217 
1218   void work(uint worker_id) {
1219     assert(Thread::current()->is_ConcurrentGC_thread(),
1220            "this should only be done by a conc GC thread");
1221 
1222     CMRootRegions* root_regions = _cm->root_regions();
1223     HeapRegion* hr = root_regions->claim_next();
1224     while (hr != NULL) {
1225       _cm->scanRootRegion(hr, worker_id);
1226       hr = root_regions->claim_next();
1227     }
1228   }
1229 };
1230 
1231 void ConcurrentMark::scanRootRegions() {
1232   // Start of concurrent marking.
1233   ClassLoaderDataGraph::clear_claimed_marks();
1234 
1235   // scan_in_progress() will have been set to true only if there was
1236   // at least one root region to scan. So, if it's false, we
1237   // should not attempt to do any further work.
1238   if (root_regions()->scan_in_progress()) {
1239     _parallel_marking_threads = calc_parallel_marking_threads();
1240     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1241            "Maximum number of marking threads exceeded");
1242     uint active_workers = MAX2(1U, parallel_marking_threads());
1243 
1244     CMRootRegionScanTask task(this);
1245     if (use_parallel_marking_threads()) {
1246       _parallel_workers->set_active_workers((int) active_workers);
1247       _parallel_workers->run_task(&task);
1248     } else {
1249       task.work(0);
1250     }
1251 
1252     // It's possible that has_aborted() is true here without actually
1253     // aborting the survivor scan earlier. This is OK as it's
1254     // mainly used for sanity checking.
1255     root_regions()->scan_finished();
1256   }
1257 }
1258 
1259 void ConcurrentMark::markFromRoots() {
1260   // we might be tempted to assert that:
1261   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1262   //        "inconsistent argument?");
1263   // However that wouldn't be right, because it's possible that
1264   // a safepoint is indeed in progress as a younger generation
1265   // stop-the-world GC happens even as we mark in this generation.
1266 
1267   _restart_for_overflow = false;
1268   force_overflow_conc()->init();
1269 
1270   // _g1h has _n_par_threads
1271   _parallel_marking_threads = calc_parallel_marking_threads();
1272   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1273     "Maximum number of marking threads exceeded");
1274 
1275   uint active_workers = MAX2(1U, parallel_marking_threads());
1276 
1277   // Parallel task terminator is set in "set_concurrency_and_phase()"
1278   set_concurrency_and_phase(active_workers, true /* concurrent */);
1279 
1280   CMConcurrentMarkingTask markingTask(this, cmThread());
1281   if (use_parallel_marking_threads()) {
1282     _parallel_workers->set_active_workers((int)active_workers);
1283     // Don't set _n_par_threads because it affects MT in process_roots()
1284     // and the decisions on that MT processing is made elsewhere.
1285     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1286     _parallel_workers->run_task(&markingTask);
1287   } else {
1288     markingTask.work(0);
1289   }
1290   print_stats();
1291 }
1292 
1293 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1294   // world is stopped at this checkpoint
1295   assert(SafepointSynchronize::is_at_safepoint(),
1296          "world should be stopped");
1297 
1298   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1299 
1300   // If a full collection has happened, we shouldn't do this.
1301   if (has_aborted()) {
1302     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1303     return;
1304   }
1305 
1306   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1307 
1308   if (VerifyDuringGC) {
1309     HandleMark hm;  // handle scope
1310     Universe::heap()->prepare_for_verify();
1311     Universe::verify(VerifyOption_G1UsePrevMarking,
1312                      " VerifyDuringGC:(before)");
1313   }
1314   g1h->check_bitmaps("Remark Start");
1315 
1316   G1CollectorPolicy* g1p = g1h->g1_policy();
1317   g1p->record_concurrent_mark_remark_start();
1318 
1319   double start = os::elapsedTime();
1320 
1321   checkpointRootsFinalWork();
1322 
1323   double mark_work_end = os::elapsedTime();
1324 
1325   weakRefsWork(clear_all_soft_refs);
1326 
1327   if (has_overflown()) {
1328     // Oops.  We overflowed.  Restart concurrent marking.
1329     _restart_for_overflow = true;
1330     if (G1TraceMarkStackOverflow) {
1331       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1332     }
1333 
1334     // Verify the heap w.r.t. the previous marking bitmap.
1335     if (VerifyDuringGC) {
1336       HandleMark hm;  // handle scope
1337       Universe::heap()->prepare_for_verify();
1338       Universe::verify(VerifyOption_G1UsePrevMarking,
1339                        " VerifyDuringGC:(overflow)");
1340     }
1341 
1342     // Clear the marking state because we will be restarting
1343     // marking due to overflowing the global mark stack.
1344     reset_marking_state();
1345   } else {
1346     // Aggregate the per-task counting data that we have accumulated
1347     // while marking.
1348     aggregate_count_data();
1349 
1350     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1351     // We're done with marking.
1352     // This is the end of  the marking cycle, we're expected all
1353     // threads to have SATB queues with active set to true.
1354     satb_mq_set.set_active_all_threads(false, /* new active value */
1355                                        true /* expected_active */);
1356 
1357     if (VerifyDuringGC) {
1358       HandleMark hm;  // handle scope
1359       Universe::heap()->prepare_for_verify();
1360       Universe::verify(VerifyOption_G1UseNextMarking,
1361                        " VerifyDuringGC:(after)");
1362     }
1363     g1h->check_bitmaps("Remark End");
1364     assert(!restart_for_overflow(), "sanity");
1365     // Completely reset the marking state since marking completed
1366     set_non_marking_state();
1367   }
1368 
1369   // Expand the marking stack, if we have to and if we can.
1370   if (_markStack.should_expand()) {
1371     _markStack.expand();
1372   }
1373 
1374   // Statistics
1375   double now = os::elapsedTime();
1376   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1377   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1378   _remark_times.add((now - start) * 1000.0);
1379 
1380   g1p->record_concurrent_mark_remark_end();
1381 
1382   G1CMIsAliveClosure is_alive(g1h);
1383   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1384 }
1385 
1386 // Base class of the closures that finalize and verify the
1387 // liveness counting data.
1388 class CMCountDataClosureBase: public HeapRegionClosure {
1389 protected:
1390   G1CollectedHeap* _g1h;
1391   ConcurrentMark* _cm;
1392   CardTableModRefBS* _ct_bs;
1393 
1394   BitMap* _region_bm;
1395   BitMap* _card_bm;
1396 
1397   // Takes a region that's not empty (i.e., it has at least one
1398   // live object in it and sets its corresponding bit on the region
1399   // bitmap to 1. If the region is "starts humongous" it will also set
1400   // to 1 the bits on the region bitmap that correspond to its
1401   // associated "continues humongous" regions.
1402   void set_bit_for_region(HeapRegion* hr) {
1403     assert(!hr->continuesHumongous(), "should have filtered those out");
1404 
1405     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1406     if (!hr->startsHumongous()) {
1407       // Normal (non-humongous) case: just set the bit.
1408       _region_bm->par_at_put(index, true);
1409     } else {
1410       // Starts humongous case: calculate how many regions are part of
1411       // this humongous region and then set the bit range.
1412       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1413       _region_bm->par_at_put_range(index, end_index, true);
1414     }
1415   }
1416 
1417 public:
1418   CMCountDataClosureBase(G1CollectedHeap* g1h,
1419                          BitMap* region_bm, BitMap* card_bm):
1420     _g1h(g1h), _cm(g1h->concurrent_mark()),
1421     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1422     _region_bm(region_bm), _card_bm(card_bm) { }
1423 };
1424 
1425 // Closure that calculates the # live objects per region. Used
1426 // for verification purposes during the cleanup pause.
1427 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1428   CMBitMapRO* _bm;
1429   size_t _region_marked_bytes;
1430 
1431 public:
1432   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1433                          BitMap* region_bm, BitMap* card_bm) :
1434     CMCountDataClosureBase(g1h, region_bm, card_bm),
1435     _bm(bm), _region_marked_bytes(0) { }
1436 
1437   bool doHeapRegion(HeapRegion* hr) {
1438 
1439     if (hr->continuesHumongous()) {
1440       // We will ignore these here and process them when their
1441       // associated "starts humongous" region is processed (see
1442       // set_bit_for_heap_region()). Note that we cannot rely on their
1443       // associated "starts humongous" region to have their bit set to
1444       // 1 since, due to the region chunking in the parallel region
1445       // iteration, a "continues humongous" region might be visited
1446       // before its associated "starts humongous".
1447       return false;
1448     }
1449 
1450     HeapWord* ntams = hr->next_top_at_mark_start();
1451     HeapWord* start = hr->bottom();
1452 
1453     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1454            err_msg("Preconditions not met - "
1455                    "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1456                    p2i(start), p2i(ntams), p2i(hr->end())));
1457 
1458     // Find the first marked object at or after "start".
1459     start = _bm->getNextMarkedWordAddress(start, ntams);
1460 
1461     size_t marked_bytes = 0;
1462 
1463     while (start < ntams) {
1464       oop obj = oop(start);
1465       int obj_sz = obj->size();
1466       HeapWord* obj_end = start + obj_sz;
1467 
1468       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1469       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1470 
1471       // Note: if we're looking at the last region in heap - obj_end
1472       // could be actually just beyond the end of the heap; end_idx
1473       // will then correspond to a (non-existent) card that is also
1474       // just beyond the heap.
1475       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1476         // end of object is not card aligned - increment to cover
1477         // all the cards spanned by the object
1478         end_idx += 1;
1479       }
1480 
1481       // Set the bits in the card BM for the cards spanned by this object.
1482       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1483 
1484       // Add the size of this object to the number of marked bytes.
1485       marked_bytes += (size_t)obj_sz * HeapWordSize;
1486 
1487       // Find the next marked object after this one.
1488       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1489     }
1490 
1491     // Mark the allocated-since-marking portion...
1492     HeapWord* top = hr->top();
1493     if (ntams < top) {
1494       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1495       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1496 
1497       // Note: if we're looking at the last region in heap - top
1498       // could be actually just beyond the end of the heap; end_idx
1499       // will then correspond to a (non-existent) card that is also
1500       // just beyond the heap.
1501       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1502         // end of object is not card aligned - increment to cover
1503         // all the cards spanned by the object
1504         end_idx += 1;
1505       }
1506       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1507 
1508       // This definitely means the region has live objects.
1509       set_bit_for_region(hr);
1510     }
1511 
1512     // Update the live region bitmap.
1513     if (marked_bytes > 0) {
1514       set_bit_for_region(hr);
1515     }
1516 
1517     // Set the marked bytes for the current region so that
1518     // it can be queried by a calling verificiation routine
1519     _region_marked_bytes = marked_bytes;
1520 
1521     return false;
1522   }
1523 
1524   size_t region_marked_bytes() const { return _region_marked_bytes; }
1525 };
1526 
1527 // Heap region closure used for verifying the counting data
1528 // that was accumulated concurrently and aggregated during
1529 // the remark pause. This closure is applied to the heap
1530 // regions during the STW cleanup pause.
1531 
1532 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1533   G1CollectedHeap* _g1h;
1534   ConcurrentMark* _cm;
1535   CalcLiveObjectsClosure _calc_cl;
1536   BitMap* _region_bm;   // Region BM to be verified
1537   BitMap* _card_bm;     // Card BM to be verified
1538   bool _verbose;        // verbose output?
1539 
1540   BitMap* _exp_region_bm; // Expected Region BM values
1541   BitMap* _exp_card_bm;   // Expected card BM values
1542 
1543   int _failures;
1544 
1545 public:
1546   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1547                                 BitMap* region_bm,
1548                                 BitMap* card_bm,
1549                                 BitMap* exp_region_bm,
1550                                 BitMap* exp_card_bm,
1551                                 bool verbose) :
1552     _g1h(g1h), _cm(g1h->concurrent_mark()),
1553     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1554     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1555     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1556     _failures(0) { }
1557 
1558   int failures() const { return _failures; }
1559 
1560   bool doHeapRegion(HeapRegion* hr) {
1561     if (hr->continuesHumongous()) {
1562       // We will ignore these here and process them when their
1563       // associated "starts humongous" region is processed (see
1564       // set_bit_for_heap_region()). Note that we cannot rely on their
1565       // associated "starts humongous" region to have their bit set to
1566       // 1 since, due to the region chunking in the parallel region
1567       // iteration, a "continues humongous" region might be visited
1568       // before its associated "starts humongous".
1569       return false;
1570     }
1571 
1572     int failures = 0;
1573 
1574     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1575     // this region and set the corresponding bits in the expected region
1576     // and card bitmaps.
1577     bool res = _calc_cl.doHeapRegion(hr);
1578     assert(res == false, "should be continuing");
1579 
1580     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1581                     Mutex::_no_safepoint_check_flag);
1582 
1583     // Verify the marked bytes for this region.
1584     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1585     size_t act_marked_bytes = hr->next_marked_bytes();
1586 
1587     // We're not OK if expected marked bytes > actual marked bytes. It means
1588     // we have missed accounting some objects during the actual marking.
1589     if (exp_marked_bytes > act_marked_bytes) {
1590       if (_verbose) {
1591         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1592                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1593                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1594       }
1595       failures += 1;
1596     }
1597 
1598     // Verify the bit, for this region, in the actual and expected
1599     // (which was just calculated) region bit maps.
1600     // We're not OK if the bit in the calculated expected region
1601     // bitmap is set and the bit in the actual region bitmap is not.
1602     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1603 
1604     bool expected = _exp_region_bm->at(index);
1605     bool actual = _region_bm->at(index);
1606     if (expected && !actual) {
1607       if (_verbose) {
1608         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1609                                "expected: %s, actual: %s",
1610                                hr->hrm_index(),
1611                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1612       }
1613       failures += 1;
1614     }
1615 
1616     // Verify that the card bit maps for the cards spanned by the current
1617     // region match. We have an error if we have a set bit in the expected
1618     // bit map and the corresponding bit in the actual bitmap is not set.
1619 
1620     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1621     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1622 
1623     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1624       expected = _exp_card_bm->at(i);
1625       actual = _card_bm->at(i);
1626 
1627       if (expected && !actual) {
1628         if (_verbose) {
1629           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1630                                  "expected: %s, actual: %s",
1631                                  hr->hrm_index(), i,
1632                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1633         }
1634         failures += 1;
1635       }
1636     }
1637 
1638     if (failures > 0 && _verbose)  {
1639       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1640                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1641                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1642                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1643     }
1644 
1645     _failures += failures;
1646 
1647     // We could stop iteration over the heap when we
1648     // find the first violating region by returning true.
1649     return false;
1650   }
1651 };
1652 
1653 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1654 protected:
1655   G1CollectedHeap* _g1h;
1656   ConcurrentMark* _cm;
1657   BitMap* _actual_region_bm;
1658   BitMap* _actual_card_bm;
1659 
1660   uint    _n_workers;
1661 
1662   BitMap* _expected_region_bm;
1663   BitMap* _expected_card_bm;
1664 
1665   int  _failures;
1666   bool _verbose;
1667 
1668 public:
1669   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1670                             BitMap* region_bm, BitMap* card_bm,
1671                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1672     : AbstractGangTask("G1 verify final counting"),
1673       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1674       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1675       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1676       _failures(0), _verbose(false),
1677       _n_workers(0) {
1678     assert(VerifyDuringGC, "don't call this otherwise");
1679 
1680     // Use the value already set as the number of active threads
1681     // in the call to run_task().
1682     if (G1CollectedHeap::use_parallel_gc_threads()) {
1683       assert( _g1h->workers()->active_workers() > 0,
1684         "Should have been previously set");
1685       _n_workers = _g1h->workers()->active_workers();
1686     } else {
1687       _n_workers = 1;
1688     }
1689 
1690     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1691     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1692 
1693     _verbose = _cm->verbose_medium();
1694   }
1695 
1696   void work(uint worker_id) {
1697     assert(worker_id < _n_workers, "invariant");
1698 
1699     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1700                                             _actual_region_bm, _actual_card_bm,
1701                                             _expected_region_bm,
1702                                             _expected_card_bm,
1703                                             _verbose);
1704 
1705     if (G1CollectedHeap::use_parallel_gc_threads()) {
1706       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1707                                             worker_id,
1708                                             _n_workers,
1709                                             HeapRegion::VerifyCountClaimValue);
1710     } else {
1711       _g1h->heap_region_iterate(&verify_cl);
1712     }
1713 
1714     Atomic::add(verify_cl.failures(), &_failures);
1715   }
1716 
1717   int failures() const { return _failures; }
1718 };
1719 
1720 // Closure that finalizes the liveness counting data.
1721 // Used during the cleanup pause.
1722 // Sets the bits corresponding to the interval [NTAMS, top]
1723 // (which contains the implicitly live objects) in the
1724 // card liveness bitmap. Also sets the bit for each region,
1725 // containing live data, in the region liveness bitmap.
1726 
1727 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1728  public:
1729   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1730                               BitMap* region_bm,
1731                               BitMap* card_bm) :
1732     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1733 
1734   bool doHeapRegion(HeapRegion* hr) {
1735 
1736     if (hr->continuesHumongous()) {
1737       // We will ignore these here and process them when their
1738       // associated "starts humongous" region is processed (see
1739       // set_bit_for_heap_region()). Note that we cannot rely on their
1740       // associated "starts humongous" region to have their bit set to
1741       // 1 since, due to the region chunking in the parallel region
1742       // iteration, a "continues humongous" region might be visited
1743       // before its associated "starts humongous".
1744       return false;
1745     }
1746 
1747     HeapWord* ntams = hr->next_top_at_mark_start();
1748     HeapWord* top   = hr->top();
1749 
1750     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1751 
1752     // Mark the allocated-since-marking portion...
1753     if (ntams < top) {
1754       // This definitely means the region has live objects.
1755       set_bit_for_region(hr);
1756 
1757       // Now set the bits in the card bitmap for [ntams, top)
1758       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1759       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1760 
1761       // Note: if we're looking at the last region in heap - top
1762       // could be actually just beyond the end of the heap; end_idx
1763       // will then correspond to a (non-existent) card that is also
1764       // just beyond the heap.
1765       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1766         // end of object is not card aligned - increment to cover
1767         // all the cards spanned by the object
1768         end_idx += 1;
1769       }
1770 
1771       assert(end_idx <= _card_bm->size(),
1772              err_msg("oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1773                      end_idx, _card_bm->size()));
1774       assert(start_idx < _card_bm->size(),
1775              err_msg("oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1776                      start_idx, _card_bm->size()));
1777 
1778       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1779     }
1780 
1781     // Set the bit for the region if it contains live data
1782     if (hr->next_marked_bytes() > 0) {
1783       set_bit_for_region(hr);
1784     }
1785 
1786     return false;
1787   }
1788 };
1789 
1790 class G1ParFinalCountTask: public AbstractGangTask {
1791 protected:
1792   G1CollectedHeap* _g1h;
1793   ConcurrentMark* _cm;
1794   BitMap* _actual_region_bm;
1795   BitMap* _actual_card_bm;
1796 
1797   uint    _n_workers;
1798 
1799 public:
1800   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1801     : AbstractGangTask("G1 final counting"),
1802       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1803       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1804       _n_workers(0) {
1805     // Use the value already set as the number of active threads
1806     // in the call to run_task().
1807     if (G1CollectedHeap::use_parallel_gc_threads()) {
1808       assert( _g1h->workers()->active_workers() > 0,
1809         "Should have been previously set");
1810       _n_workers = _g1h->workers()->active_workers();
1811     } else {
1812       _n_workers = 1;
1813     }
1814   }
1815 
1816   void work(uint worker_id) {
1817     assert(worker_id < _n_workers, "invariant");
1818 
1819     FinalCountDataUpdateClosure final_update_cl(_g1h,
1820                                                 _actual_region_bm,
1821                                                 _actual_card_bm);
1822 
1823     if (G1CollectedHeap::use_parallel_gc_threads()) {
1824       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1825                                             worker_id,
1826                                             _n_workers,
1827                                             HeapRegion::FinalCountClaimValue);
1828     } else {
1829       _g1h->heap_region_iterate(&final_update_cl);
1830     }
1831   }
1832 };
1833 
1834 class G1ParNoteEndTask;
1835 
1836 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1837   G1CollectedHeap* _g1;
1838   size_t _max_live_bytes;
1839   uint _regions_claimed;
1840   size_t _freed_bytes;
1841   FreeRegionList* _local_cleanup_list;
1842   HeapRegionSetCount _old_regions_removed;
1843   HeapRegionSetCount _humongous_regions_removed;
1844   HRRSCleanupTask* _hrrs_cleanup_task;
1845   double _claimed_region_time;
1846   double _max_region_time;
1847 
1848 public:
1849   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1850                              FreeRegionList* local_cleanup_list,
1851                              HRRSCleanupTask* hrrs_cleanup_task) :
1852     _g1(g1),
1853     _max_live_bytes(0), _regions_claimed(0),
1854     _freed_bytes(0),
1855     _claimed_region_time(0.0), _max_region_time(0.0),
1856     _local_cleanup_list(local_cleanup_list),
1857     _old_regions_removed(),
1858     _humongous_regions_removed(),
1859     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1860 
1861   size_t freed_bytes() { return _freed_bytes; }
1862   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1863   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1864 
1865   bool doHeapRegion(HeapRegion *hr) {
1866     if (hr->continuesHumongous()) {
1867       return false;
1868     }
1869     // We use a claim value of zero here because all regions
1870     // were claimed with value 1 in the FinalCount task.
1871     _g1->reset_gc_time_stamps(hr);
1872     double start = os::elapsedTime();
1873     _regions_claimed++;
1874     hr->note_end_of_marking();
1875     _max_live_bytes += hr->max_live_bytes();
1876 
1877     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1878       _freed_bytes += hr->used();
1879       hr->set_containing_set(NULL);
1880       if (hr->isHumongous()) {
1881         assert(hr->startsHumongous(), "we should only see starts humongous");
1882         _humongous_regions_removed.increment(1u, hr->capacity());
1883         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1884       } else {
1885         _old_regions_removed.increment(1u, hr->capacity());
1886         _g1->free_region(hr, _local_cleanup_list, true);
1887       }
1888     } else {
1889       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1890     }
1891 
1892     double region_time = (os::elapsedTime() - start);
1893     _claimed_region_time += region_time;
1894     if (region_time > _max_region_time) {
1895       _max_region_time = region_time;
1896     }
1897     return false;
1898   }
1899 
1900   size_t max_live_bytes() { return _max_live_bytes; }
1901   uint regions_claimed() { return _regions_claimed; }
1902   double claimed_region_time_sec() { return _claimed_region_time; }
1903   double max_region_time_sec() { return _max_region_time; }
1904 };
1905 
1906 class G1ParNoteEndTask: public AbstractGangTask {
1907   friend class G1NoteEndOfConcMarkClosure;
1908 
1909 protected:
1910   G1CollectedHeap* _g1h;
1911   size_t _max_live_bytes;
1912   size_t _freed_bytes;
1913   FreeRegionList* _cleanup_list;
1914 
1915 public:
1916   G1ParNoteEndTask(G1CollectedHeap* g1h,
1917                    FreeRegionList* cleanup_list) :
1918     AbstractGangTask("G1 note end"), _g1h(g1h),
1919     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1920 
1921   void work(uint worker_id) {
1922     double start = os::elapsedTime();
1923     FreeRegionList local_cleanup_list("Local Cleanup List");
1924     HRRSCleanupTask hrrs_cleanup_task;
1925     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1926                                            &hrrs_cleanup_task);
1927     if (G1CollectedHeap::use_parallel_gc_threads()) {
1928       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1929                                             _g1h->workers()->active_workers(),
1930                                             HeapRegion::NoteEndClaimValue);
1931     } else {
1932       _g1h->heap_region_iterate(&g1_note_end);
1933     }
1934     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1935 
1936     // Now update the lists
1937     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1938     {
1939       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1940       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1941       _max_live_bytes += g1_note_end.max_live_bytes();
1942       _freed_bytes += g1_note_end.freed_bytes();
1943 
1944       // If we iterate over the global cleanup list at the end of
1945       // cleanup to do this printing we will not guarantee to only
1946       // generate output for the newly-reclaimed regions (the list
1947       // might not be empty at the beginning of cleanup; we might
1948       // still be working on its previous contents). So we do the
1949       // printing here, before we append the new regions to the global
1950       // cleanup list.
1951 
1952       G1HRPrinter* hr_printer = _g1h->hr_printer();
1953       if (hr_printer->is_active()) {
1954         FreeRegionListIterator iter(&local_cleanup_list);
1955         while (iter.more_available()) {
1956           HeapRegion* hr = iter.get_next();
1957           hr_printer->cleanup(hr);
1958         }
1959       }
1960 
1961       _cleanup_list->add_ordered(&local_cleanup_list);
1962       assert(local_cleanup_list.is_empty(), "post-condition");
1963 
1964       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1965     }
1966   }
1967   size_t max_live_bytes() { return _max_live_bytes; }
1968   size_t freed_bytes() { return _freed_bytes; }
1969 };
1970 
1971 class G1ParScrubRemSetTask: public AbstractGangTask {
1972 protected:
1973   G1RemSet* _g1rs;
1974   BitMap* _region_bm;
1975   BitMap* _card_bm;
1976 public:
1977   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1978                        BitMap* region_bm, BitMap* card_bm) :
1979     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1980     _region_bm(region_bm), _card_bm(card_bm) { }
1981 
1982   void work(uint worker_id) {
1983     if (G1CollectedHeap::use_parallel_gc_threads()) {
1984       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1985                        HeapRegion::ScrubRemSetClaimValue);
1986     } else {
1987       _g1rs->scrub(_region_bm, _card_bm);
1988     }
1989   }
1990 
1991 };
1992 
1993 void ConcurrentMark::cleanup() {
1994   // world is stopped at this checkpoint
1995   assert(SafepointSynchronize::is_at_safepoint(),
1996          "world should be stopped");
1997   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1998 
1999   // If a full collection has happened, we shouldn't do this.
2000   if (has_aborted()) {
2001     g1h->set_marking_complete(); // So bitmap clearing isn't confused
2002     return;
2003   }
2004 
2005   g1h->verify_region_sets_optional();
2006 
2007   if (VerifyDuringGC) {
2008     HandleMark hm;  // handle scope
2009     Universe::heap()->prepare_for_verify();
2010     Universe::verify(VerifyOption_G1UsePrevMarking,
2011                      " VerifyDuringGC:(before)");
2012   }
2013   g1h->check_bitmaps("Cleanup Start");
2014 
2015   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
2016   g1p->record_concurrent_mark_cleanup_start();
2017 
2018   double start = os::elapsedTime();
2019 
2020   HeapRegionRemSet::reset_for_cleanup_tasks();
2021 
2022   uint n_workers;
2023 
2024   // Do counting once more with the world stopped for good measure.
2025   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2026 
2027   if (G1CollectedHeap::use_parallel_gc_threads()) {
2028    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2029            "sanity check");
2030 
2031     g1h->set_par_threads();
2032     n_workers = g1h->n_par_threads();
2033     assert(g1h->n_par_threads() == n_workers,
2034            "Should not have been reset");
2035     g1h->workers()->run_task(&g1_par_count_task);
2036     // Done with the parallel phase so reset to 0.
2037     g1h->set_par_threads(0);
2038 
2039     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2040            "sanity check");
2041   } else {
2042     n_workers = 1;
2043     g1_par_count_task.work(0);
2044   }
2045 
2046   if (VerifyDuringGC) {
2047     // Verify that the counting data accumulated during marking matches
2048     // that calculated by walking the marking bitmap.
2049 
2050     // Bitmaps to hold expected values
2051     BitMap expected_region_bm(_region_bm.size(), true);
2052     BitMap expected_card_bm(_card_bm.size(), true);
2053 
2054     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2055                                                  &_region_bm,
2056                                                  &_card_bm,
2057                                                  &expected_region_bm,
2058                                                  &expected_card_bm);
2059 
2060     if (G1CollectedHeap::use_parallel_gc_threads()) {
2061       g1h->set_par_threads((int)n_workers);
2062       g1h->workers()->run_task(&g1_par_verify_task);
2063       // Done with the parallel phase so reset to 0.
2064       g1h->set_par_threads(0);
2065 
2066       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2067              "sanity check");
2068     } else {
2069       g1_par_verify_task.work(0);
2070     }
2071 
2072     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2073   }
2074 
2075   size_t start_used_bytes = g1h->used();
2076   g1h->set_marking_complete();
2077 
2078   double count_end = os::elapsedTime();
2079   double this_final_counting_time = (count_end - start);
2080   _total_counting_time += this_final_counting_time;
2081 
2082   if (G1PrintRegionLivenessInfo) {
2083     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2084     _g1h->heap_region_iterate(&cl);
2085   }
2086 
2087   // Install newly created mark bitMap as "prev".
2088   swapMarkBitMaps();
2089 
2090   g1h->reset_gc_time_stamp();
2091 
2092   // Note end of marking in all heap regions.
2093   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2094   if (G1CollectedHeap::use_parallel_gc_threads()) {
2095     g1h->set_par_threads((int)n_workers);
2096     g1h->workers()->run_task(&g1_par_note_end_task);
2097     g1h->set_par_threads(0);
2098 
2099     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2100            "sanity check");
2101   } else {
2102     g1_par_note_end_task.work(0);
2103   }
2104   g1h->check_gc_time_stamps();
2105 
2106   if (!cleanup_list_is_empty()) {
2107     // The cleanup list is not empty, so we'll have to process it
2108     // concurrently. Notify anyone else that might be wanting free
2109     // regions that there will be more free regions coming soon.
2110     g1h->set_free_regions_coming();
2111   }
2112 
2113   // call below, since it affects the metric by which we sort the heap
2114   // regions.
2115   if (G1ScrubRemSets) {
2116     double rs_scrub_start = os::elapsedTime();
2117     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2118     if (G1CollectedHeap::use_parallel_gc_threads()) {
2119       g1h->set_par_threads((int)n_workers);
2120       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2121       g1h->set_par_threads(0);
2122 
2123       assert(g1h->check_heap_region_claim_values(
2124                                             HeapRegion::ScrubRemSetClaimValue),
2125              "sanity check");
2126     } else {
2127       g1_par_scrub_rs_task.work(0);
2128     }
2129 
2130     double rs_scrub_end = os::elapsedTime();
2131     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2132     _total_rs_scrub_time += this_rs_scrub_time;
2133   }
2134 
2135   // this will also free any regions totally full of garbage objects,
2136   // and sort the regions.
2137   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2138 
2139   // Statistics.
2140   double end = os::elapsedTime();
2141   _cleanup_times.add((end - start) * 1000.0);
2142 
2143   if (G1Log::fine()) {
2144     g1h->print_size_transition(gclog_or_tty,
2145                                start_used_bytes,
2146                                g1h->used(),
2147                                g1h->capacity());
2148   }
2149 
2150   // Clean up will have freed any regions completely full of garbage.
2151   // Update the soft reference policy with the new heap occupancy.
2152   Universe::update_heap_info_at_gc();
2153 
2154   if (VerifyDuringGC) {
2155     HandleMark hm;  // handle scope
2156     Universe::heap()->prepare_for_verify();
2157     Universe::verify(VerifyOption_G1UsePrevMarking,
2158                      " VerifyDuringGC:(after)");
2159   }
2160   g1h->check_bitmaps("Cleanup End");
2161 
2162   g1h->verify_region_sets_optional();
2163 
2164   // We need to make this be a "collection" so any collection pause that
2165   // races with it goes around and waits for completeCleanup to finish.
2166   g1h->increment_total_collections();
2167 
2168   // Clean out dead classes and update Metaspace sizes.
2169   if (ClassUnloadingWithConcurrentMark) {
2170     ClassLoaderDataGraph::purge();
2171   }
2172   MetaspaceGC::compute_new_size();
2173 
2174   // We reclaimed old regions so we should calculate the sizes to make
2175   // sure we update the old gen/space data.
2176   g1h->g1mm()->update_sizes();
2177   g1h->allocation_context_stats().update_after_mark();
2178 
2179   g1h->trace_heap_after_concurrent_cycle();
2180 }
2181 
2182 void ConcurrentMark::completeCleanup() {
2183   if (has_aborted()) return;
2184 
2185   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2186 
2187   _cleanup_list.verify_optional();
2188   FreeRegionList tmp_free_list("Tmp Free List");
2189 
2190   if (G1ConcRegionFreeingVerbose) {
2191     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2192                            "cleanup list has %u entries",
2193                            _cleanup_list.length());
2194   }
2195 
2196   // No one else should be accessing the _cleanup_list at this point,
2197   // so it is not necessary to take any locks
2198   while (!_cleanup_list.is_empty()) {
2199     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2200     assert(hr != NULL, "Got NULL from a non-empty list");
2201     hr->par_clear();
2202     tmp_free_list.add_ordered(hr);
2203 
2204     // Instead of adding one region at a time to the secondary_free_list,
2205     // we accumulate them in the local list and move them a few at a
2206     // time. This also cuts down on the number of notify_all() calls
2207     // we do during this process. We'll also append the local list when
2208     // _cleanup_list is empty (which means we just removed the last
2209     // region from the _cleanup_list).
2210     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2211         _cleanup_list.is_empty()) {
2212       if (G1ConcRegionFreeingVerbose) {
2213         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2214                                "appending %u entries to the secondary_free_list, "
2215                                "cleanup list still has %u entries",
2216                                tmp_free_list.length(),
2217                                _cleanup_list.length());
2218       }
2219 
2220       {
2221         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2222         g1h->secondary_free_list_add(&tmp_free_list);
2223         SecondaryFreeList_lock->notify_all();
2224       }
2225 
2226       if (G1StressConcRegionFreeing) {
2227         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2228           os::sleep(Thread::current(), (jlong) 1, false);
2229         }
2230       }
2231     }
2232   }
2233   assert(tmp_free_list.is_empty(), "post-condition");
2234 }
2235 
2236 // Supporting Object and Oop closures for reference discovery
2237 // and processing in during marking
2238 
2239 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2240   HeapWord* addr = (HeapWord*)obj;
2241   return addr != NULL &&
2242          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2243 }
2244 
2245 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2246 // Uses the CMTask associated with a worker thread (for serial reference
2247 // processing the CMTask for worker 0 is used) to preserve (mark) and
2248 // trace referent objects.
2249 //
2250 // Using the CMTask and embedded local queues avoids having the worker
2251 // threads operating on the global mark stack. This reduces the risk
2252 // of overflowing the stack - which we would rather avoid at this late
2253 // state. Also using the tasks' local queues removes the potential
2254 // of the workers interfering with each other that could occur if
2255 // operating on the global stack.
2256 
2257 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2258   ConcurrentMark* _cm;
2259   CMTask*         _task;
2260   int             _ref_counter_limit;
2261   int             _ref_counter;
2262   bool            _is_serial;
2263  public:
2264   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2265     _cm(cm), _task(task), _is_serial(is_serial),
2266     _ref_counter_limit(G1RefProcDrainInterval) {
2267     assert(_ref_counter_limit > 0, "sanity");
2268     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2269     _ref_counter = _ref_counter_limit;
2270   }
2271 
2272   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2273   virtual void do_oop(      oop* p) { do_oop_work(p); }
2274 
2275   template <class T> void do_oop_work(T* p) {
2276     if (!_cm->has_overflown()) {
2277       oop obj = oopDesc::load_decode_heap_oop(p);
2278       if (_cm->verbose_high()) {
2279         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2280                                "*" PTR_FORMAT " = " PTR_FORMAT,
2281                                _task->worker_id(), p2i(p), p2i((void*) obj));
2282       }
2283 
2284       _task->deal_with_reference(obj);
2285       _ref_counter--;
2286 
2287       if (_ref_counter == 0) {
2288         // We have dealt with _ref_counter_limit references, pushing them
2289         // and objects reachable from them on to the local stack (and
2290         // possibly the global stack). Call CMTask::do_marking_step() to
2291         // process these entries.
2292         //
2293         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2294         // there's nothing more to do (i.e. we're done with the entries that
2295         // were pushed as a result of the CMTask::deal_with_reference() calls
2296         // above) or we overflow.
2297         //
2298         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2299         // flag while there may still be some work to do. (See the comment at
2300         // the beginning of CMTask::do_marking_step() for those conditions -
2301         // one of which is reaching the specified time target.) It is only
2302         // when CMTask::do_marking_step() returns without setting the
2303         // has_aborted() flag that the marking step has completed.
2304         do {
2305           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2306           _task->do_marking_step(mark_step_duration_ms,
2307                                  false      /* do_termination */,
2308                                  _is_serial);
2309         } while (_task->has_aborted() && !_cm->has_overflown());
2310         _ref_counter = _ref_counter_limit;
2311       }
2312     } else {
2313       if (_cm->verbose_high()) {
2314          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2315       }
2316     }
2317   }
2318 };
2319 
2320 // 'Drain' oop closure used by both serial and parallel reference processing.
2321 // Uses the CMTask associated with a given worker thread (for serial
2322 // reference processing the CMtask for worker 0 is used). Calls the
2323 // do_marking_step routine, with an unbelievably large timeout value,
2324 // to drain the marking data structures of the remaining entries
2325 // added by the 'keep alive' oop closure above.
2326 
2327 class G1CMDrainMarkingStackClosure: public VoidClosure {
2328   ConcurrentMark* _cm;
2329   CMTask*         _task;
2330   bool            _is_serial;
2331  public:
2332   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2333     _cm(cm), _task(task), _is_serial(is_serial) {
2334     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2335   }
2336 
2337   void do_void() {
2338     do {
2339       if (_cm->verbose_high()) {
2340         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2341                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2342       }
2343 
2344       // We call CMTask::do_marking_step() to completely drain the local
2345       // and global marking stacks of entries pushed by the 'keep alive'
2346       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2347       //
2348       // CMTask::do_marking_step() is called in a loop, which we'll exit
2349       // if there's nothing more to do (i.e. we'completely drained the
2350       // entries that were pushed as a a result of applying the 'keep alive'
2351       // closure to the entries on the discovered ref lists) or we overflow
2352       // the global marking stack.
2353       //
2354       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2355       // flag while there may still be some work to do. (See the comment at
2356       // the beginning of CMTask::do_marking_step() for those conditions -
2357       // one of which is reaching the specified time target.) It is only
2358       // when CMTask::do_marking_step() returns without setting the
2359       // has_aborted() flag that the marking step has completed.
2360 
2361       _task->do_marking_step(1000000000.0 /* something very large */,
2362                              true         /* do_termination */,
2363                              _is_serial);
2364     } while (_task->has_aborted() && !_cm->has_overflown());
2365   }
2366 };
2367 
2368 // Implementation of AbstractRefProcTaskExecutor for parallel
2369 // reference processing at the end of G1 concurrent marking
2370 
2371 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2372 private:
2373   G1CollectedHeap* _g1h;
2374   ConcurrentMark*  _cm;
2375   WorkGang*        _workers;
2376   int              _active_workers;
2377 
2378 public:
2379   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2380                         ConcurrentMark* cm,
2381                         WorkGang* workers,
2382                         int n_workers) :
2383     _g1h(g1h), _cm(cm),
2384     _workers(workers), _active_workers(n_workers) { }
2385 
2386   // Executes the given task using concurrent marking worker threads.
2387   virtual void execute(ProcessTask& task);
2388   virtual void execute(EnqueueTask& task);
2389 };
2390 
2391 class G1CMRefProcTaskProxy: public AbstractGangTask {
2392   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2393   ProcessTask&     _proc_task;
2394   G1CollectedHeap* _g1h;
2395   ConcurrentMark*  _cm;
2396 
2397 public:
2398   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2399                      G1CollectedHeap* g1h,
2400                      ConcurrentMark* cm) :
2401     AbstractGangTask("Process reference objects in parallel"),
2402     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2403     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2404     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2405   }
2406 
2407   virtual void work(uint worker_id) {
2408     ResourceMark rm;
2409     HandleMark hm;
2410     CMTask* task = _cm->task(worker_id);
2411     G1CMIsAliveClosure g1_is_alive(_g1h);
2412     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2413     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2414 
2415     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2416   }
2417 };
2418 
2419 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2420   assert(_workers != NULL, "Need parallel worker threads.");
2421   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2422 
2423   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2424 
2425   // We need to reset the concurrency level before each
2426   // proxy task execution, so that the termination protocol
2427   // and overflow handling in CMTask::do_marking_step() knows
2428   // how many workers to wait for.
2429   _cm->set_concurrency(_active_workers);
2430   _g1h->set_par_threads(_active_workers);
2431   _workers->run_task(&proc_task_proxy);
2432   _g1h->set_par_threads(0);
2433 }
2434 
2435 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2436   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2437   EnqueueTask& _enq_task;
2438 
2439 public:
2440   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2441     AbstractGangTask("Enqueue reference objects in parallel"),
2442     _enq_task(enq_task) { }
2443 
2444   virtual void work(uint worker_id) {
2445     _enq_task.work(worker_id);
2446   }
2447 };
2448 
2449 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2450   assert(_workers != NULL, "Need parallel worker threads.");
2451   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2452 
2453   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2454 
2455   // Not strictly necessary but...
2456   //
2457   // We need to reset the concurrency level before each
2458   // proxy task execution, so that the termination protocol
2459   // and overflow handling in CMTask::do_marking_step() knows
2460   // how many workers to wait for.
2461   _cm->set_concurrency(_active_workers);
2462   _g1h->set_par_threads(_active_workers);
2463   _workers->run_task(&enq_task_proxy);
2464   _g1h->set_par_threads(0);
2465 }
2466 
2467 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2468   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2469 }
2470 
2471 // Helper class to get rid of some boilerplate code.
2472 class G1RemarkGCTraceTime : public GCTraceTime {
2473   static bool doit_and_prepend(bool doit) {
2474     if (doit) {
2475       gclog_or_tty->put(' ');
2476     }
2477     return doit;
2478   }
2479 
2480  public:
2481   G1RemarkGCTraceTime(const char* title, bool doit)
2482     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
2483         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
2484   }
2485 };
2486 
2487 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2488   if (has_overflown()) {
2489     // Skip processing the discovered references if we have
2490     // overflown the global marking stack. Reference objects
2491     // only get discovered once so it is OK to not
2492     // de-populate the discovered reference lists. We could have,
2493     // but the only benefit would be that, when marking restarts,
2494     // less reference objects are discovered.
2495     return;
2496   }
2497 
2498   ResourceMark rm;
2499   HandleMark   hm;
2500 
2501   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2502 
2503   // Is alive closure.
2504   G1CMIsAliveClosure g1_is_alive(g1h);
2505 
2506   // Inner scope to exclude the cleaning of the string and symbol
2507   // tables from the displayed time.
2508   {
2509     if (G1Log::finer()) {
2510       gclog_or_tty->put(' ');
2511     }
2512     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
2513 
2514     ReferenceProcessor* rp = g1h->ref_processor_cm();
2515 
2516     // See the comment in G1CollectedHeap::ref_processing_init()
2517     // about how reference processing currently works in G1.
2518 
2519     // Set the soft reference policy
2520     rp->setup_policy(clear_all_soft_refs);
2521     assert(_markStack.isEmpty(), "mark stack should be empty");
2522 
2523     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2524     // in serial reference processing. Note these closures are also
2525     // used for serially processing (by the the current thread) the
2526     // JNI references during parallel reference processing.
2527     //
2528     // These closures do not need to synchronize with the worker
2529     // threads involved in parallel reference processing as these
2530     // instances are executed serially by the current thread (e.g.
2531     // reference processing is not multi-threaded and is thus
2532     // performed by the current thread instead of a gang worker).
2533     //
2534     // The gang tasks involved in parallel reference procssing create
2535     // their own instances of these closures, which do their own
2536     // synchronization among themselves.
2537     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2538     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2539 
2540     // We need at least one active thread. If reference processing
2541     // is not multi-threaded we use the current (VMThread) thread,
2542     // otherwise we use the work gang from the G1CollectedHeap and
2543     // we utilize all the worker threads we can.
2544     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2545     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2546     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2547 
2548     // Parallel processing task executor.
2549     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2550                                               g1h->workers(), active_workers);
2551     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2552 
2553     // Set the concurrency level. The phase was already set prior to
2554     // executing the remark task.
2555     set_concurrency(active_workers);
2556 
2557     // Set the degree of MT processing here.  If the discovery was done MT,
2558     // the number of threads involved during discovery could differ from
2559     // the number of active workers.  This is OK as long as the discovered
2560     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2561     rp->set_active_mt_degree(active_workers);
2562 
2563     // Process the weak references.
2564     const ReferenceProcessorStats& stats =
2565         rp->process_discovered_references(&g1_is_alive,
2566                                           &g1_keep_alive,
2567                                           &g1_drain_mark_stack,
2568                                           executor,
2569                                           g1h->gc_timer_cm(),
2570                                           concurrent_gc_id());
2571     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2572 
2573     // The do_oop work routines of the keep_alive and drain_marking_stack
2574     // oop closures will set the has_overflown flag if we overflow the
2575     // global marking stack.
2576 
2577     assert(_markStack.overflow() || _markStack.isEmpty(),
2578             "mark stack should be empty (unless it overflowed)");
2579 
2580     if (_markStack.overflow()) {
2581       // This should have been done already when we tried to push an
2582       // entry on to the global mark stack. But let's do it again.
2583       set_has_overflown();
2584     }
2585 
2586     assert(rp->num_q() == active_workers, "why not");
2587 
2588     rp->enqueue_discovered_references(executor);
2589 
2590     rp->verify_no_references_recorded();
2591     assert(!rp->discovery_enabled(), "Post condition");
2592   }
2593 
2594   if (has_overflown()) {
2595     // We can not trust g1_is_alive if the marking stack overflowed
2596     return;
2597   }
2598 
2599   assert(_markStack.isEmpty(), "Marking should have completed");
2600 
2601   // Unload Klasses, String, Symbols, Code Cache, etc.
2602   {
2603     G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
2604 
2605     if (ClassUnloadingWithConcurrentMark) {
2606       // Cleaning of klasses depends on correct information from MetadataMarkOnStack. The CodeCache::mark_on_stack
2607       // part is too slow to be done serially, so it is handled during the weakRefsWorkParallelPart phase.
2608       // Defer the cleaning until we have complete on_stack data.
2609       MetadataOnStackMark md_on_stack(false /* Don't visit the code cache at this point */);
2610 
2611       bool purged_classes;
2612 
2613       {
2614         G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
2615         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2616       }
2617 
2618       {
2619         G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
2620         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2621       }
2622 
2623       {
2624         G1RemarkGCTraceTime trace("Deallocate Metadata", G1Log::finest());
2625         ClassLoaderDataGraph::free_deallocate_lists();
2626       }
2627     }
2628 
2629     if (G1StringDedup::is_enabled()) {
2630       G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
2631       G1StringDedup::unlink(&g1_is_alive);
2632     }
2633   }
2634 }
2635 
2636 void ConcurrentMark::swapMarkBitMaps() {
2637   CMBitMapRO* temp = _prevMarkBitMap;
2638   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2639   _nextMarkBitMap  = (CMBitMap*)  temp;
2640 }
2641 
2642 // Closure for marking entries in SATB buffers.
2643 class CMSATBBufferClosure : public SATBBufferClosure {
2644 private:
2645   CMTask* _task;
2646   G1CollectedHeap* _g1h;
2647 
2648   // This is very similar to CMTask::deal_with_reference, but with
2649   // more relaxed requirements for the argument, so this must be more
2650   // circumspect about treating the argument as an object.
2651   void do_entry(void* entry) const {
2652     _task->increment_refs_reached();
2653     HeapRegion* hr = _g1h->heap_region_containing_raw(entry);
2654     if (entry < hr->next_top_at_mark_start()) {
2655       // Until we get here, we don't know whether entry refers to a valid
2656       // object; it could instead have been a stale reference.
2657       oop obj = static_cast<oop>(entry);
2658       assert(obj->is_oop(true /* ignore mark word */),
2659              err_msg("Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj)));
2660       _task->make_reference_grey(obj, hr);
2661     }
2662   }
2663 
2664 public:
2665   CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
2666     : _task(task), _g1h(g1h) { }
2667 
2668   virtual void do_buffer(void** buffer, size_t size) {
2669     for (size_t i = 0; i < size; ++i) {
2670       do_entry(buffer[i]);
2671     }
2672   }
2673 };
2674 
2675 class G1RemarkThreadsClosure : public ThreadClosure {
2676   CMSATBBufferClosure _cm_satb_cl;
2677   G1CMOopClosure _cm_cl;
2678   MarkingCodeBlobClosure _code_cl;
2679   int _thread_parity;
2680   bool _is_par;
2681 
2682  public:
2683   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
2684     _cm_satb_cl(task, g1h),
2685     _cm_cl(g1h, g1h->concurrent_mark(), task),
2686     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2687     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
2688 
2689   void do_thread(Thread* thread) {
2690     if (thread->is_Java_thread()) {
2691       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2692         JavaThread* jt = (JavaThread*)thread;
2693 
2694         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2695         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2696         // * Alive if on the stack of an executing method
2697         // * Weakly reachable otherwise
2698         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2699         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2700         jt->nmethods_do(&_code_cl);
2701 
2702         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2703       }
2704     } else if (thread->is_VM_thread()) {
2705       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2706         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2707       }
2708     }
2709   }
2710 };
2711 
2712 class CMRemarkTask: public AbstractGangTask {
2713 private:
2714   ConcurrentMark* _cm;
2715   bool            _is_serial;
2716 public:
2717   void work(uint worker_id) {
2718     // Since all available tasks are actually started, we should
2719     // only proceed if we're supposed to be actived.
2720     if (worker_id < _cm->active_tasks()) {
2721       CMTask* task = _cm->task(worker_id);
2722       task->record_start_time();
2723       {
2724         ResourceMark rm;
2725         HandleMark hm;
2726 
2727         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
2728         Threads::threads_do(&threads_f);
2729       }
2730 
2731       do {
2732         task->do_marking_step(1000000000.0 /* something very large */,
2733                               true         /* do_termination       */,
2734                               _is_serial);
2735       } while (task->has_aborted() && !_cm->has_overflown());
2736       // If we overflow, then we do not want to restart. We instead
2737       // want to abort remark and do concurrent marking again.
2738       task->record_end_time();
2739     }
2740   }
2741 
2742   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2743     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2744     _cm->terminator()->reset_for_reuse(active_workers);
2745   }
2746 };
2747 
2748 void ConcurrentMark::checkpointRootsFinalWork() {
2749   ResourceMark rm;
2750   HandleMark   hm;
2751   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2752 
2753   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
2754 
2755   g1h->ensure_parsability(false);
2756 
2757   if (G1CollectedHeap::use_parallel_gc_threads()) {
2758     G1CollectedHeap::StrongRootsScope srs(g1h);
2759     // this is remark, so we'll use up all active threads
2760     uint active_workers = g1h->workers()->active_workers();
2761     if (active_workers == 0) {
2762       assert(active_workers > 0, "Should have been set earlier");
2763       active_workers = (uint) ParallelGCThreads;
2764       g1h->workers()->set_active_workers(active_workers);
2765     }
2766     set_concurrency_and_phase(active_workers, false /* concurrent */);
2767     // Leave _parallel_marking_threads at it's
2768     // value originally calculated in the ConcurrentMark
2769     // constructor and pass values of the active workers
2770     // through the gang in the task.
2771 
2772     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2773     // We will start all available threads, even if we decide that the
2774     // active_workers will be fewer. The extra ones will just bail out
2775     // immediately.
2776     g1h->set_par_threads(active_workers);
2777     g1h->workers()->run_task(&remarkTask);
2778     g1h->set_par_threads(0);
2779   } else {
2780     G1CollectedHeap::StrongRootsScope srs(g1h);
2781     uint active_workers = 1;
2782     set_concurrency_and_phase(active_workers, false /* concurrent */);
2783 
2784     // Note - if there's no work gang then the VMThread will be
2785     // the thread to execute the remark - serially. We have
2786     // to pass true for the is_serial parameter so that
2787     // CMTask::do_marking_step() doesn't enter the sync
2788     // barriers in the event of an overflow. Doing so will
2789     // cause an assert that the current thread is not a
2790     // concurrent GC thread.
2791     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2792     remarkTask.work(0);
2793   }
2794   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2795   guarantee(has_overflown() ||
2796             satb_mq_set.completed_buffers_num() == 0,
2797             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2798                     BOOL_TO_STR(has_overflown()),
2799                     satb_mq_set.completed_buffers_num()));
2800 
2801   print_stats();
2802 }
2803 
2804 #ifndef PRODUCT
2805 
2806 class PrintReachableOopClosure: public OopClosure {
2807 private:
2808   G1CollectedHeap* _g1h;
2809   outputStream*    _out;
2810   VerifyOption     _vo;
2811   bool             _all;
2812 
2813 public:
2814   PrintReachableOopClosure(outputStream* out,
2815                            VerifyOption  vo,
2816                            bool          all) :
2817     _g1h(G1CollectedHeap::heap()),
2818     _out(out), _vo(vo), _all(all) { }
2819 
2820   void do_oop(narrowOop* p) { do_oop_work(p); }
2821   void do_oop(      oop* p) { do_oop_work(p); }
2822 
2823   template <class T> void do_oop_work(T* p) {
2824     oop         obj = oopDesc::load_decode_heap_oop(p);
2825     const char* str = NULL;
2826     const char* str2 = "";
2827 
2828     if (obj == NULL) {
2829       str = "";
2830     } else if (!_g1h->is_in_g1_reserved(obj)) {
2831       str = " O";
2832     } else {
2833       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2834       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2835       bool marked = _g1h->is_marked(obj, _vo);
2836 
2837       if (over_tams) {
2838         str = " >";
2839         if (marked) {
2840           str2 = " AND MARKED";
2841         }
2842       } else if (marked) {
2843         str = " M";
2844       } else {
2845         str = " NOT";
2846       }
2847     }
2848 
2849     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2850                    p2i(p), p2i((void*) obj), str, str2);
2851   }
2852 };
2853 
2854 class PrintReachableObjectClosure : public ObjectClosure {
2855 private:
2856   G1CollectedHeap* _g1h;
2857   outputStream*    _out;
2858   VerifyOption     _vo;
2859   bool             _all;
2860   HeapRegion*      _hr;
2861 
2862 public:
2863   PrintReachableObjectClosure(outputStream* out,
2864                               VerifyOption  vo,
2865                               bool          all,
2866                               HeapRegion*   hr) :
2867     _g1h(G1CollectedHeap::heap()),
2868     _out(out), _vo(vo), _all(all), _hr(hr) { }
2869 
2870   void do_object(oop o) {
2871     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2872     bool marked = _g1h->is_marked(o, _vo);
2873     bool print_it = _all || over_tams || marked;
2874 
2875     if (print_it) {
2876       _out->print_cr(" "PTR_FORMAT"%s",
2877                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2878       PrintReachableOopClosure oopCl(_out, _vo, _all);
2879       o->oop_iterate_no_header(&oopCl);
2880     }
2881   }
2882 };
2883 
2884 class PrintReachableRegionClosure : public HeapRegionClosure {
2885 private:
2886   G1CollectedHeap* _g1h;
2887   outputStream*    _out;
2888   VerifyOption     _vo;
2889   bool             _all;
2890 
2891 public:
2892   bool doHeapRegion(HeapRegion* hr) {
2893     HeapWord* b = hr->bottom();
2894     HeapWord* e = hr->end();
2895     HeapWord* t = hr->top();
2896     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2897     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2898                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2899     _out->cr();
2900 
2901     HeapWord* from = b;
2902     HeapWord* to   = t;
2903 
2904     if (to > from) {
2905       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2906       _out->cr();
2907       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2908       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2909       _out->cr();
2910     }
2911 
2912     return false;
2913   }
2914 
2915   PrintReachableRegionClosure(outputStream* out,
2916                               VerifyOption  vo,
2917                               bool          all) :
2918     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2919 };
2920 
2921 void ConcurrentMark::print_reachable(const char* str,
2922                                      VerifyOption vo,
2923                                      bool all) {
2924   gclog_or_tty->cr();
2925   gclog_or_tty->print_cr("== Doing heap dump... ");
2926 
2927   if (G1PrintReachableBaseFile == NULL) {
2928     gclog_or_tty->print_cr("  #### error: no base file defined");
2929     return;
2930   }
2931 
2932   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2933       (JVM_MAXPATHLEN - 1)) {
2934     gclog_or_tty->print_cr("  #### error: file name too long");
2935     return;
2936   }
2937 
2938   char file_name[JVM_MAXPATHLEN];
2939   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2940   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2941 
2942   fileStream fout(file_name);
2943   if (!fout.is_open()) {
2944     gclog_or_tty->print_cr("  #### error: could not open file");
2945     return;
2946   }
2947 
2948   outputStream* out = &fout;
2949   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2950   out->cr();
2951 
2952   out->print_cr("--- ITERATING OVER REGIONS");
2953   out->cr();
2954   PrintReachableRegionClosure rcl(out, vo, all);
2955   _g1h->heap_region_iterate(&rcl);
2956   out->cr();
2957 
2958   gclog_or_tty->print_cr("  done");
2959   gclog_or_tty->flush();
2960 }
2961 
2962 #endif // PRODUCT
2963 
2964 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2965   // Note we are overriding the read-only view of the prev map here, via
2966   // the cast.
2967   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2968 }
2969 
2970 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2971   _nextMarkBitMap->clearRange(mr);
2972 }
2973 
2974 HeapRegion*
2975 ConcurrentMark::claim_region(uint worker_id) {
2976   // "checkpoint" the finger
2977   HeapWord* finger = _finger;
2978 
2979   // _heap_end will not change underneath our feet; it only changes at
2980   // yield points.
2981   while (finger < _heap_end) {
2982     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2983 
2984     // Note on how this code handles humongous regions. In the
2985     // normal case the finger will reach the start of a "starts
2986     // humongous" (SH) region. Its end will either be the end of the
2987     // last "continues humongous" (CH) region in the sequence, or the
2988     // standard end of the SH region (if the SH is the only region in
2989     // the sequence). That way claim_region() will skip over the CH
2990     // regions. However, there is a subtle race between a CM thread
2991     // executing this method and a mutator thread doing a humongous
2992     // object allocation. The two are not mutually exclusive as the CM
2993     // thread does not need to hold the Heap_lock when it gets
2994     // here. So there is a chance that claim_region() will come across
2995     // a free region that's in the progress of becoming a SH or a CH
2996     // region. In the former case, it will either
2997     //   a) Miss the update to the region's end, in which case it will
2998     //      visit every subsequent CH region, will find their bitmaps
2999     //      empty, and do nothing, or
3000     //   b) Will observe the update of the region's end (in which case
3001     //      it will skip the subsequent CH regions).
3002     // If it comes across a region that suddenly becomes CH, the
3003     // scenario will be similar to b). So, the race between
3004     // claim_region() and a humongous object allocation might force us
3005     // to do a bit of unnecessary work (due to some unnecessary bitmap
3006     // iterations) but it should not introduce and correctness issues.
3007     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
3008 
3009     // Above heap_region_containing_raw may return NULL as we always scan claim
3010     // until the end of the heap. In this case, just jump to the next region.
3011     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
3012 
3013     // Is the gap between reading the finger and doing the CAS too long?
3014     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
3015     if (res == finger && curr_region != NULL) {
3016       // we succeeded
3017       HeapWord*   bottom        = curr_region->bottom();
3018       HeapWord*   limit         = curr_region->next_top_at_mark_start();
3019 
3020       if (verbose_low()) {
3021         gclog_or_tty->print_cr("[%u] curr_region = " PTR_FORMAT " "
3022                                "[" PTR_FORMAT ", " PTR_FORMAT "), "
3023                                "limit = " PTR_FORMAT,
3024                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
3025       }
3026 
3027       // notice that _finger == end cannot be guaranteed here since,
3028       // someone else might have moved the finger even further
3029       assert(_finger >= end, "the finger should have moved forward");
3030 
3031       if (verbose_low()) {
3032         gclog_or_tty->print_cr("[%u] we were successful with region = "
3033                                PTR_FORMAT, worker_id, p2i(curr_region));
3034       }
3035 
3036       if (limit > bottom) {
3037         if (verbose_low()) {
3038           gclog_or_tty->print_cr("[%u] region " PTR_FORMAT " is not empty, "
3039                                  "returning it ", worker_id, p2i(curr_region));
3040         }
3041         return curr_region;
3042       } else {
3043         assert(limit == bottom,
3044                "the region limit should be at bottom");
3045         if (verbose_low()) {
3046           gclog_or_tty->print_cr("[%u] region " PTR_FORMAT " is empty, "
3047                                  "returning NULL", worker_id, p2i(curr_region));
3048         }
3049         // we return NULL and the caller should try calling
3050         // claim_region() again.
3051         return NULL;
3052       }
3053     } else {
3054       assert(_finger > finger, "the finger should have moved forward");
3055       if (verbose_low()) {
3056         if (curr_region == NULL) {
3057           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
3058                                  "global finger = " PTR_FORMAT ", "
3059                                  "our finger = " PTR_FORMAT,
3060                                  worker_id, p2i(_finger), p2i(finger));
3061         } else {
3062           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
3063                                  "global finger = " PTR_FORMAT ", "
3064                                  "our finger = " PTR_FORMAT,
3065                                  worker_id, p2i(_finger), p2i(finger));
3066         }
3067       }
3068 
3069       // read it again
3070       finger = _finger;
3071     }
3072   }
3073 
3074   return NULL;
3075 }
3076 
3077 #ifndef PRODUCT
3078 enum VerifyNoCSetOopsPhase {
3079   VerifyNoCSetOopsStack,
3080   VerifyNoCSetOopsQueues
3081 };
3082 
3083 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
3084 private:
3085   G1CollectedHeap* _g1h;
3086   VerifyNoCSetOopsPhase _phase;
3087   int _info;
3088 
3089   const char* phase_str() {
3090     switch (_phase) {
3091     case VerifyNoCSetOopsStack:         return "Stack";
3092     case VerifyNoCSetOopsQueues:        return "Queue";
3093     default:                            ShouldNotReachHere();
3094     }
3095     return NULL;
3096   }
3097 
3098   void do_object_work(oop obj) {
3099     guarantee(!_g1h->obj_in_cs(obj),
3100               err_msg("obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
3101                       p2i((void*) obj), phase_str(), _info));
3102   }
3103 
3104 public:
3105   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3106 
3107   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3108     _phase = phase;
3109     _info = info;
3110   }
3111 
3112   virtual void do_oop(oop* p) {
3113     oop obj = oopDesc::load_decode_heap_oop(p);
3114     do_object_work(obj);
3115   }
3116 
3117   virtual void do_oop(narrowOop* p) {
3118     // We should not come across narrow oops while scanning marking
3119     // stacks
3120     ShouldNotReachHere();
3121   }
3122 
3123   virtual void do_object(oop obj) {
3124     do_object_work(obj);
3125   }
3126 };
3127 
3128 void ConcurrentMark::verify_no_cset_oops() {
3129   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3130   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3131     return;
3132   }
3133 
3134   VerifyNoCSetOopsClosure cl;
3135 
3136   // Verify entries on the global mark stack
3137   cl.set_phase(VerifyNoCSetOopsStack);
3138   _markStack.oops_do(&cl);
3139 
3140   // Verify entries on the task queues
3141   for (uint i = 0; i < _max_worker_id; i += 1) {
3142     cl.set_phase(VerifyNoCSetOopsQueues, i);
3143     CMTaskQueue* queue = _task_queues->queue(i);
3144     queue->oops_do(&cl);
3145   }
3146 
3147   // Verify the global finger
3148   HeapWord* global_finger = finger();
3149   if (global_finger != NULL && global_finger < _heap_end) {
3150     // The global finger always points to a heap region boundary. We
3151     // use heap_region_containing_raw() to get the containing region
3152     // given that the global finger could be pointing to a free region
3153     // which subsequently becomes continues humongous. If that
3154     // happens, heap_region_containing() will return the bottom of the
3155     // corresponding starts humongous region and the check below will
3156     // not hold any more.
3157     // Since we always iterate over all regions, we might get a NULL HeapRegion
3158     // here.
3159     HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3160     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3161               err_msg("global finger: " PTR_FORMAT " region: " HR_FORMAT,
3162                       p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3163   }
3164 
3165   // Verify the task fingers
3166   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3167   for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3168     CMTask* task = _tasks[i];
3169     HeapWord* task_finger = task->finger();
3170     if (task_finger != NULL && task_finger < _heap_end) {
3171       // See above note on the global finger verification.
3172       HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3173       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3174                 !task_hr->in_collection_set(),
3175                 err_msg("task finger: " PTR_FORMAT " region: " HR_FORMAT,
3176                         p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3177     }
3178   }
3179 }
3180 #endif // PRODUCT
3181 
3182 // Aggregate the counting data that was constructed concurrently
3183 // with marking.
3184 class AggregateCountDataHRClosure: public HeapRegionClosure {
3185   G1CollectedHeap* _g1h;
3186   ConcurrentMark* _cm;
3187   CardTableModRefBS* _ct_bs;
3188   BitMap* _cm_card_bm;
3189   uint _max_worker_id;
3190 
3191  public:
3192   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3193                               BitMap* cm_card_bm,
3194                               uint max_worker_id) :
3195     _g1h(g1h), _cm(g1h->concurrent_mark()),
3196     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3197     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3198 
3199   bool doHeapRegion(HeapRegion* hr) {
3200     if (hr->continuesHumongous()) {
3201       // We will ignore these here and process them when their
3202       // associated "starts humongous" region is processed.
3203       // Note that we cannot rely on their associated
3204       // "starts humongous" region to have their bit set to 1
3205       // since, due to the region chunking in the parallel region
3206       // iteration, a "continues humongous" region might be visited
3207       // before its associated "starts humongous".
3208       return false;
3209     }
3210 
3211     HeapWord* start = hr->bottom();
3212     HeapWord* limit = hr->next_top_at_mark_start();
3213     HeapWord* end = hr->end();
3214 
3215     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3216            err_msg("Preconditions not met - "
3217                    "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
3218                    "top: " PTR_FORMAT ", end: " PTR_FORMAT,
3219                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3220 
3221     assert(hr->next_marked_bytes() == 0, "Precondition");
3222 
3223     if (start == limit) {
3224       // NTAMS of this region has not been set so nothing to do.
3225       return false;
3226     }
3227 
3228     // 'start' should be in the heap.
3229     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3230     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
3231     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3232 
3233     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3234     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3235     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3236 
3237     // If ntams is not card aligned then we bump card bitmap index
3238     // for limit so that we get the all the cards spanned by
3239     // the object ending at ntams.
3240     // Note: if this is the last region in the heap then ntams
3241     // could be actually just beyond the end of the the heap;
3242     // limit_idx will then  correspond to a (non-existent) card
3243     // that is also outside the heap.
3244     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3245       limit_idx += 1;
3246     }
3247 
3248     assert(limit_idx <= end_idx, "or else use atomics");
3249 
3250     // Aggregate the "stripe" in the count data associated with hr.
3251     uint hrm_index = hr->hrm_index();
3252     size_t marked_bytes = 0;
3253 
3254     for (uint i = 0; i < _max_worker_id; i += 1) {
3255       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3256       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3257 
3258       // Fetch the marked_bytes in this region for task i and
3259       // add it to the running total for this region.
3260       marked_bytes += marked_bytes_array[hrm_index];
3261 
3262       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3263       // into the global card bitmap.
3264       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3265 
3266       while (scan_idx < limit_idx) {
3267         assert(task_card_bm->at(scan_idx) == true, "should be");
3268         _cm_card_bm->set_bit(scan_idx);
3269         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3270 
3271         // BitMap::get_next_one_offset() can handle the case when
3272         // its left_offset parameter is greater than its right_offset
3273         // parameter. It does, however, have an early exit if
3274         // left_offset == right_offset. So let's limit the value
3275         // passed in for left offset here.
3276         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3277         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3278       }
3279     }
3280 
3281     // Update the marked bytes for this region.
3282     hr->add_to_marked_bytes(marked_bytes);
3283 
3284     // Next heap region
3285     return false;
3286   }
3287 };
3288 
3289 class G1AggregateCountDataTask: public AbstractGangTask {
3290 protected:
3291   G1CollectedHeap* _g1h;
3292   ConcurrentMark* _cm;
3293   BitMap* _cm_card_bm;
3294   uint _max_worker_id;
3295   int _active_workers;
3296 
3297 public:
3298   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3299                            ConcurrentMark* cm,
3300                            BitMap* cm_card_bm,
3301                            uint max_worker_id,
3302                            int n_workers) :
3303     AbstractGangTask("Count Aggregation"),
3304     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3305     _max_worker_id(max_worker_id),
3306     _active_workers(n_workers) { }
3307 
3308   void work(uint worker_id) {
3309     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3310 
3311     if (G1CollectedHeap::use_parallel_gc_threads()) {
3312       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3313                                             _active_workers,
3314                                             HeapRegion::AggregateCountClaimValue);
3315     } else {
3316       _g1h->heap_region_iterate(&cl);
3317     }
3318   }
3319 };
3320 
3321 
3322 void ConcurrentMark::aggregate_count_data() {
3323   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3324                         _g1h->workers()->active_workers() :
3325                         1);
3326 
3327   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3328                                            _max_worker_id, n_workers);
3329 
3330   if (G1CollectedHeap::use_parallel_gc_threads()) {
3331     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3332            "sanity check");
3333     _g1h->set_par_threads(n_workers);
3334     _g1h->workers()->run_task(&g1_par_agg_task);
3335     _g1h->set_par_threads(0);
3336 
3337     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3338            "sanity check");
3339     _g1h->reset_heap_region_claim_values();
3340   } else {
3341     g1_par_agg_task.work(0);
3342   }
3343 }
3344 
3345 // Clear the per-worker arrays used to store the per-region counting data
3346 void ConcurrentMark::clear_all_count_data() {
3347   // Clear the global card bitmap - it will be filled during
3348   // liveness count aggregation (during remark) and the
3349   // final counting task.
3350   _card_bm.clear();
3351 
3352   // Clear the global region bitmap - it will be filled as part
3353   // of the final counting task.
3354   _region_bm.clear();
3355 
3356   uint max_regions = _g1h->max_regions();
3357   assert(_max_worker_id > 0, "uninitialized");
3358 
3359   for (uint i = 0; i < _max_worker_id; i += 1) {
3360     BitMap* task_card_bm = count_card_bitmap_for(i);
3361     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3362 
3363     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3364     assert(marked_bytes_array != NULL, "uninitialized");
3365 
3366     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3367     task_card_bm->clear();
3368   }
3369 }
3370 
3371 void ConcurrentMark::print_stats() {
3372   if (verbose_stats()) {
3373     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3374     for (size_t i = 0; i < _active_tasks; ++i) {
3375       _tasks[i]->print_stats();
3376       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3377     }
3378   }
3379 }
3380 
3381 // abandon current marking iteration due to a Full GC
3382 void ConcurrentMark::abort() {
3383   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3384   // concurrent bitmap clearing.
3385   _nextMarkBitMap->clearAll();
3386 
3387   // Note we cannot clear the previous marking bitmap here
3388   // since VerifyDuringGC verifies the objects marked during
3389   // a full GC against the previous bitmap.
3390 
3391   // Clear the liveness counting data
3392   clear_all_count_data();
3393   // Empty mark stack
3394   reset_marking_state();
3395   for (uint i = 0; i < _max_worker_id; ++i) {
3396     _tasks[i]->clear_region_fields();
3397   }
3398   _first_overflow_barrier_sync.abort();
3399   _second_overflow_barrier_sync.abort();
3400   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3401   if (!gc_id.is_undefined()) {
3402     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3403     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3404     _aborted_gc_id = gc_id;
3405    }
3406   _has_aborted = true;
3407 
3408   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3409   satb_mq_set.abandon_partial_marking();
3410   // This can be called either during or outside marking, we'll read
3411   // the expected_active value from the SATB queue set.
3412   satb_mq_set.set_active_all_threads(
3413                                  false, /* new active value */
3414                                  satb_mq_set.is_active() /* expected_active */);
3415 
3416   _g1h->trace_heap_after_concurrent_cycle();
3417   _g1h->register_concurrent_cycle_end();
3418 }
3419 
3420 const GCId& ConcurrentMark::concurrent_gc_id() {
3421   if (has_aborted()) {
3422     return _aborted_gc_id;
3423   }
3424   return _g1h->gc_tracer_cm()->gc_id();
3425 }
3426 
3427 static void print_ms_time_info(const char* prefix, const char* name,
3428                                NumberSeq& ns) {
3429   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3430                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3431   if (ns.num() > 0) {
3432     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3433                            prefix, ns.sd(), ns.maximum());
3434   }
3435 }
3436 
3437 void ConcurrentMark::print_summary_info() {
3438   gclog_or_tty->print_cr(" Concurrent marking:");
3439   print_ms_time_info("  ", "init marks", _init_times);
3440   print_ms_time_info("  ", "remarks", _remark_times);
3441   {
3442     print_ms_time_info("     ", "final marks", _remark_mark_times);
3443     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3444 
3445   }
3446   print_ms_time_info("  ", "cleanups", _cleanup_times);
3447   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3448                          _total_counting_time,
3449                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3450                           (double)_cleanup_times.num()
3451                          : 0.0));
3452   if (G1ScrubRemSets) {
3453     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3454                            _total_rs_scrub_time,
3455                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3456                             (double)_cleanup_times.num()
3457                            : 0.0));
3458   }
3459   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3460                          (_init_times.sum() + _remark_times.sum() +
3461                           _cleanup_times.sum())/1000.0);
3462   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3463                 "(%8.2f s marking).",
3464                 cmThread()->vtime_accum(),
3465                 cmThread()->vtime_mark_accum());
3466 }
3467 
3468 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3469   if (use_parallel_marking_threads()) {
3470     _parallel_workers->print_worker_threads_on(st);
3471   }
3472 }
3473 
3474 void ConcurrentMark::print_on_error(outputStream* st) const {
3475   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3476       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3477   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3478   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3479 }
3480 
3481 // We take a break if someone is trying to stop the world.
3482 bool ConcurrentMark::do_yield_check(uint worker_id) {
3483   if (SuspendibleThreadSet::should_yield()) {
3484     if (worker_id == 0) {
3485       _g1h->g1_policy()->record_concurrent_pause();
3486     }
3487     SuspendibleThreadSet::yield();
3488     return true;
3489   } else {
3490     return false;
3491   }
3492 }
3493 
3494 #ifndef PRODUCT
3495 // for debugging purposes
3496 void ConcurrentMark::print_finger() {
3497   gclog_or_tty->print_cr("heap [" PTR_FORMAT ", " PTR_FORMAT "), global finger = " PTR_FORMAT,
3498                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3499   for (uint i = 0; i < _max_worker_id; ++i) {
3500     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3501   }
3502   gclog_or_tty->cr();
3503 }
3504 #endif
3505 
3506 template<bool scan>
3507 inline void CMTask::process_grey_object(oop obj) {
3508   assert(scan || obj->is_typeArray(), "Skipping scan of grey non-typeArray");
3509   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3510 
3511   if (_cm->verbose_high()) {
3512     gclog_or_tty->print_cr("[%u] processing grey object " PTR_FORMAT,
3513                            _worker_id, p2i((void*) obj));
3514   }
3515 
3516   size_t obj_size = obj->size();
3517   _words_scanned += obj_size;
3518 
3519   if (scan) {
3520     obj->oop_iterate(_cm_oop_closure);
3521   }
3522   statsOnly( ++_objs_scanned );
3523   check_limits();
3524 }
3525 
3526 template void CMTask::process_grey_object<true>(oop);
3527 template void CMTask::process_grey_object<false>(oop);
3528 
3529 // Closure for iteration over bitmaps
3530 class CMBitMapClosure : public BitMapClosure {
3531 private:
3532   // the bitmap that is being iterated over
3533   CMBitMap*                   _nextMarkBitMap;
3534   ConcurrentMark*             _cm;
3535   CMTask*                     _task;
3536 
3537 public:
3538   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3539     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3540 
3541   bool do_bit(size_t offset) {
3542     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3543     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3544     assert( addr < _cm->finger(), "invariant");
3545 
3546     statsOnly( _task->increase_objs_found_on_bitmap() );
3547     assert(addr >= _task->finger(), "invariant");
3548 
3549     // We move that task's local finger along.
3550     _task->move_finger_to(addr);
3551 
3552     _task->scan_object(oop(addr));
3553     // we only partially drain the local queue and global stack
3554     _task->drain_local_queue(true);
3555     _task->drain_global_stack(true);
3556 
3557     // if the has_aborted flag has been raised, we need to bail out of
3558     // the iteration
3559     return !_task->has_aborted();
3560   }
3561 };
3562 
3563 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3564                                ConcurrentMark* cm,
3565                                CMTask* task)
3566   : _g1h(g1h), _cm(cm), _task(task) {
3567   assert(_ref_processor == NULL, "should be initialized to NULL");
3568 
3569   if (G1UseConcMarkReferenceProcessing) {
3570     _ref_processor = g1h->ref_processor_cm();
3571     assert(_ref_processor != NULL, "should not be NULL");
3572   }
3573 }
3574 
3575 void CMTask::setup_for_region(HeapRegion* hr) {
3576   assert(hr != NULL,
3577         "claim_region() should have filtered out NULL regions");
3578   assert(!hr->continuesHumongous(),
3579         "claim_region() should have filtered out continues humongous regions");
3580 
3581   if (_cm->verbose_low()) {
3582     gclog_or_tty->print_cr("[%u] setting up for region " PTR_FORMAT,
3583                            _worker_id, p2i(hr));
3584   }
3585 
3586   _curr_region  = hr;
3587   _finger       = hr->bottom();
3588   update_region_limit();
3589 }
3590 
3591 void CMTask::update_region_limit() {
3592   HeapRegion* hr            = _curr_region;
3593   HeapWord* bottom          = hr->bottom();
3594   HeapWord* limit           = hr->next_top_at_mark_start();
3595 
3596   if (limit == bottom) {
3597     if (_cm->verbose_low()) {
3598       gclog_or_tty->print_cr("[%u] found an empty region "
3599                              "[" PTR_FORMAT ", " PTR_FORMAT ")",
3600                              _worker_id, p2i(bottom), p2i(limit));
3601     }
3602     // The region was collected underneath our feet.
3603     // We set the finger to bottom to ensure that the bitmap
3604     // iteration that will follow this will not do anything.
3605     // (this is not a condition that holds when we set the region up,
3606     // as the region is not supposed to be empty in the first place)
3607     _finger = bottom;
3608   } else if (limit >= _region_limit) {
3609     assert(limit >= _finger, "peace of mind");
3610   } else {
3611     assert(limit < _region_limit, "only way to get here");
3612     // This can happen under some pretty unusual circumstances.  An
3613     // evacuation pause empties the region underneath our feet (NTAMS
3614     // at bottom). We then do some allocation in the region (NTAMS
3615     // stays at bottom), followed by the region being used as a GC
3616     // alloc region (NTAMS will move to top() and the objects
3617     // originally below it will be grayed). All objects now marked in
3618     // the region are explicitly grayed, if below the global finger,
3619     // and we do not need in fact to scan anything else. So, we simply
3620     // set _finger to be limit to ensure that the bitmap iteration
3621     // doesn't do anything.
3622     _finger = limit;
3623   }
3624 
3625   _region_limit = limit;
3626 }
3627 
3628 void CMTask::giveup_current_region() {
3629   assert(_curr_region != NULL, "invariant");
3630   if (_cm->verbose_low()) {
3631     gclog_or_tty->print_cr("[%u] giving up region " PTR_FORMAT,
3632                            _worker_id, p2i(_curr_region));
3633   }
3634   clear_region_fields();
3635 }
3636 
3637 void CMTask::clear_region_fields() {
3638   // Values for these three fields that indicate that we're not
3639   // holding on to a region.
3640   _curr_region   = NULL;
3641   _finger        = NULL;
3642   _region_limit  = NULL;
3643 }
3644 
3645 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3646   if (cm_oop_closure == NULL) {
3647     assert(_cm_oop_closure != NULL, "invariant");
3648   } else {
3649     assert(_cm_oop_closure == NULL, "invariant");
3650   }
3651   _cm_oop_closure = cm_oop_closure;
3652 }
3653 
3654 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3655   guarantee(nextMarkBitMap != NULL, "invariant");
3656 
3657   if (_cm->verbose_low()) {
3658     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3659   }
3660 
3661   _nextMarkBitMap                = nextMarkBitMap;
3662   clear_region_fields();
3663 
3664   _calls                         = 0;
3665   _elapsed_time_ms               = 0.0;
3666   _termination_time_ms           = 0.0;
3667   _termination_start_time_ms     = 0.0;
3668 
3669 #if _MARKING_STATS_
3670   _local_pushes                  = 0;
3671   _local_pops                    = 0;
3672   _local_max_size                = 0;
3673   _objs_scanned                  = 0;
3674   _global_pushes                 = 0;
3675   _global_pops                   = 0;
3676   _global_max_size               = 0;
3677   _global_transfers_to           = 0;
3678   _global_transfers_from         = 0;
3679   _regions_claimed               = 0;
3680   _objs_found_on_bitmap          = 0;
3681   _satb_buffers_processed        = 0;
3682   _steal_attempts                = 0;
3683   _steals                        = 0;
3684   _aborted                       = 0;
3685   _aborted_overflow              = 0;
3686   _aborted_cm_aborted            = 0;
3687   _aborted_yield                 = 0;
3688   _aborted_timed_out             = 0;
3689   _aborted_satb                  = 0;
3690   _aborted_termination           = 0;
3691 #endif // _MARKING_STATS_
3692 }
3693 
3694 bool CMTask::should_exit_termination() {
3695   regular_clock_call();
3696   // This is called when we are in the termination protocol. We should
3697   // quit if, for some reason, this task wants to abort or the global
3698   // stack is not empty (this means that we can get work from it).
3699   return !_cm->mark_stack_empty() || has_aborted();
3700 }
3701 
3702 void CMTask::reached_limit() {
3703   assert(_words_scanned >= _words_scanned_limit ||
3704          _refs_reached >= _refs_reached_limit ,
3705          "shouldn't have been called otherwise");
3706   regular_clock_call();
3707 }
3708 
3709 void CMTask::regular_clock_call() {
3710   if (has_aborted()) return;
3711 
3712   // First, we need to recalculate the words scanned and refs reached
3713   // limits for the next clock call.
3714   recalculate_limits();
3715 
3716   // During the regular clock call we do the following
3717 
3718   // (1) If an overflow has been flagged, then we abort.
3719   if (_cm->has_overflown()) {
3720     set_has_aborted();
3721     return;
3722   }
3723 
3724   // If we are not concurrent (i.e. we're doing remark) we don't need
3725   // to check anything else. The other steps are only needed during
3726   // the concurrent marking phase.
3727   if (!concurrent()) return;
3728 
3729   // (2) If marking has been aborted for Full GC, then we also abort.
3730   if (_cm->has_aborted()) {
3731     set_has_aborted();
3732     statsOnly( ++_aborted_cm_aborted );
3733     return;
3734   }
3735 
3736   double curr_time_ms = os::elapsedVTime() * 1000.0;
3737 
3738   // (3) If marking stats are enabled, then we update the step history.
3739 #if _MARKING_STATS_
3740   if (_words_scanned >= _words_scanned_limit) {
3741     ++_clock_due_to_scanning;
3742   }
3743   if (_refs_reached >= _refs_reached_limit) {
3744     ++_clock_due_to_marking;
3745   }
3746 
3747   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3748   _interval_start_time_ms = curr_time_ms;
3749   _all_clock_intervals_ms.add(last_interval_ms);
3750 
3751   if (_cm->verbose_medium()) {
3752       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3753                         "scanned = " SIZE_FORMAT "%s, refs reached = " SIZE_FORMAT "%s",
3754                         _worker_id, last_interval_ms,
3755                         _words_scanned,
3756                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3757                         _refs_reached,
3758                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3759   }
3760 #endif // _MARKING_STATS_
3761 
3762   // (4) We check whether we should yield. If we have to, then we abort.
3763   if (SuspendibleThreadSet::should_yield()) {
3764     // We should yield. To do this we abort the task. The caller is
3765     // responsible for yielding.
3766     set_has_aborted();
3767     statsOnly( ++_aborted_yield );
3768     return;
3769   }
3770 
3771   // (5) We check whether we've reached our time quota. If we have,
3772   // then we abort.
3773   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3774   if (elapsed_time_ms > _time_target_ms) {
3775     set_has_aborted();
3776     _has_timed_out = true;
3777     statsOnly( ++_aborted_timed_out );
3778     return;
3779   }
3780 
3781   // (6) Finally, we check whether there are enough completed STAB
3782   // buffers available for processing. If there are, we abort.
3783   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3784   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3785     if (_cm->verbose_low()) {
3786       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3787                              _worker_id);
3788     }
3789     // we do need to process SATB buffers, we'll abort and restart
3790     // the marking task to do so
3791     set_has_aborted();
3792     statsOnly( ++_aborted_satb );
3793     return;
3794   }
3795 }
3796 
3797 void CMTask::recalculate_limits() {
3798   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3799   _words_scanned_limit      = _real_words_scanned_limit;
3800 
3801   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3802   _refs_reached_limit       = _real_refs_reached_limit;
3803 }
3804 
3805 void CMTask::decrease_limits() {
3806   // This is called when we believe that we're going to do an infrequent
3807   // operation which will increase the per byte scanned cost (i.e. move
3808   // entries to/from the global stack). It basically tries to decrease the
3809   // scanning limit so that the clock is called earlier.
3810 
3811   if (_cm->verbose_medium()) {
3812     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3813   }
3814 
3815   _words_scanned_limit = _real_words_scanned_limit -
3816     3 * words_scanned_period / 4;
3817   _refs_reached_limit  = _real_refs_reached_limit -
3818     3 * refs_reached_period / 4;
3819 }
3820 
3821 void CMTask::move_entries_to_global_stack() {
3822   // local array where we'll store the entries that will be popped
3823   // from the local queue
3824   oop buffer[global_stack_transfer_size];
3825 
3826   int n = 0;
3827   oop obj;
3828   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3829     buffer[n] = obj;
3830     ++n;
3831   }
3832 
3833   if (n > 0) {
3834     // we popped at least one entry from the local queue
3835 
3836     statsOnly( ++_global_transfers_to; _local_pops += n );
3837 
3838     if (!_cm->mark_stack_push(buffer, n)) {
3839       if (_cm->verbose_low()) {
3840         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3841                                _worker_id);
3842       }
3843       set_has_aborted();
3844     } else {
3845       // the transfer was successful
3846 
3847       if (_cm->verbose_medium()) {
3848         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3849                                _worker_id, n);
3850       }
3851       statsOnly( int tmp_size = _cm->mark_stack_size();
3852                  if (tmp_size > _global_max_size) {
3853                    _global_max_size = tmp_size;
3854                  }
3855                  _global_pushes += n );
3856     }
3857   }
3858 
3859   // this operation was quite expensive, so decrease the limits
3860   decrease_limits();
3861 }
3862 
3863 void CMTask::get_entries_from_global_stack() {
3864   // local array where we'll store the entries that will be popped
3865   // from the global stack.
3866   oop buffer[global_stack_transfer_size];
3867   int n;
3868   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3869   assert(n <= global_stack_transfer_size,
3870          "we should not pop more than the given limit");
3871   if (n > 0) {
3872     // yes, we did actually pop at least one entry
3873 
3874     statsOnly( ++_global_transfers_from; _global_pops += n );
3875     if (_cm->verbose_medium()) {
3876       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3877                              _worker_id, n);
3878     }
3879     for (int i = 0; i < n; ++i) {
3880       bool success = _task_queue->push(buffer[i]);
3881       // We only call this when the local queue is empty or under a
3882       // given target limit. So, we do not expect this push to fail.
3883       assert(success, "invariant");
3884     }
3885 
3886     statsOnly( int tmp_size = _task_queue->size();
3887                if (tmp_size > _local_max_size) {
3888                  _local_max_size = tmp_size;
3889                }
3890                _local_pushes += n );
3891   }
3892 
3893   // this operation was quite expensive, so decrease the limits
3894   decrease_limits();
3895 }
3896 
3897 void CMTask::drain_local_queue(bool partially) {
3898   if (has_aborted()) return;
3899 
3900   // Decide what the target size is, depending whether we're going to
3901   // drain it partially (so that other tasks can steal if they run out
3902   // of things to do) or totally (at the very end).
3903   size_t target_size;
3904   if (partially) {
3905     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3906   } else {
3907     target_size = 0;
3908   }
3909 
3910   if (_task_queue->size() > target_size) {
3911     if (_cm->verbose_high()) {
3912       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3913                              _worker_id, target_size);
3914     }
3915 
3916     oop obj;
3917     bool ret = _task_queue->pop_local(obj);
3918     while (ret) {
3919       statsOnly( ++_local_pops );
3920 
3921       if (_cm->verbose_high()) {
3922         gclog_or_tty->print_cr("[%u] popped " PTR_FORMAT, _worker_id,
3923                                p2i((void*) obj));
3924       }
3925 
3926       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3927       assert(!_g1h->is_on_master_free_list(
3928                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3929 
3930       scan_object(obj);
3931 
3932       if (_task_queue->size() <= target_size || has_aborted()) {
3933         ret = false;
3934       } else {
3935         ret = _task_queue->pop_local(obj);
3936       }
3937     }
3938 
3939     if (_cm->verbose_high()) {
3940       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
3941                              _worker_id, _task_queue->size());
3942     }
3943   }
3944 }
3945 
3946 void CMTask::drain_global_stack(bool partially) {
3947   if (has_aborted()) return;
3948 
3949   // We have a policy to drain the local queue before we attempt to
3950   // drain the global stack.
3951   assert(partially || _task_queue->size() == 0, "invariant");
3952 
3953   // Decide what the target size is, depending whether we're going to
3954   // drain it partially (so that other tasks can steal if they run out
3955   // of things to do) or totally (at the very end).  Notice that,
3956   // because we move entries from the global stack in chunks or
3957   // because another task might be doing the same, we might in fact
3958   // drop below the target. But, this is not a problem.
3959   size_t target_size;
3960   if (partially) {
3961     target_size = _cm->partial_mark_stack_size_target();
3962   } else {
3963     target_size = 0;
3964   }
3965 
3966   if (_cm->mark_stack_size() > target_size) {
3967     if (_cm->verbose_low()) {
3968       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3969                              _worker_id, target_size);
3970     }
3971 
3972     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3973       get_entries_from_global_stack();
3974       drain_local_queue(partially);
3975     }
3976 
3977     if (_cm->verbose_low()) {
3978       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3979                              _worker_id, _cm->mark_stack_size());
3980     }
3981   }
3982 }
3983 
3984 // SATB Queue has several assumptions on whether to call the par or
3985 // non-par versions of the methods. this is why some of the code is
3986 // replicated. We should really get rid of the single-threaded version
3987 // of the code to simplify things.
3988 void CMTask::drain_satb_buffers() {
3989   if (has_aborted()) return;
3990 
3991   // We set this so that the regular clock knows that we're in the
3992   // middle of draining buffers and doesn't set the abort flag when it
3993   // notices that SATB buffers are available for draining. It'd be
3994   // very counter productive if it did that. :-)
3995   _draining_satb_buffers = true;
3996 
3997   CMSATBBufferClosure satb_cl(this, _g1h);
3998   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3999 
4000   // This keeps claiming and applying the closure to completed buffers
4001   // until we run out of buffers or we need to abort.
4002   while (!has_aborted() &&
4003          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
4004     if (_cm->verbose_medium()) {
4005       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4006     }
4007     statsOnly( ++_satb_buffers_processed );
4008     regular_clock_call();
4009   }
4010 
4011   _draining_satb_buffers = false;
4012 
4013   assert(has_aborted() ||
4014          concurrent() ||
4015          satb_mq_set.completed_buffers_num() == 0, "invariant");
4016 
4017   // again, this was a potentially expensive operation, decrease the
4018   // limits to get the regular clock call early
4019   decrease_limits();
4020 }
4021 
4022 void CMTask::print_stats() {
4023   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
4024                          _worker_id, _calls);
4025   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
4026                          _elapsed_time_ms, _termination_time_ms);
4027   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4028                          _step_times_ms.num(), _step_times_ms.avg(),
4029                          _step_times_ms.sd());
4030   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
4031                          _step_times_ms.maximum(), _step_times_ms.sum());
4032 
4033 #if _MARKING_STATS_
4034   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4035                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
4036                          _all_clock_intervals_ms.sd());
4037   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
4038                          _all_clock_intervals_ms.maximum(),
4039                          _all_clock_intervals_ms.sum());
4040   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
4041                          _clock_due_to_scanning, _clock_due_to_marking);
4042   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
4043                          _objs_scanned, _objs_found_on_bitmap);
4044   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
4045                          _local_pushes, _local_pops, _local_max_size);
4046   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
4047                          _global_pushes, _global_pops, _global_max_size);
4048   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
4049                          _global_transfers_to,_global_transfers_from);
4050   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4051   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
4052   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
4053                          _steal_attempts, _steals);
4054   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
4055   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
4056                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
4057   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
4058                          _aborted_timed_out, _aborted_satb, _aborted_termination);
4059 #endif // _MARKING_STATS_
4060 }
4061 
4062 /*****************************************************************************
4063 
4064     The do_marking_step(time_target_ms, ...) method is the building
4065     block of the parallel marking framework. It can be called in parallel
4066     with other invocations of do_marking_step() on different tasks
4067     (but only one per task, obviously) and concurrently with the
4068     mutator threads, or during remark, hence it eliminates the need
4069     for two versions of the code. When called during remark, it will
4070     pick up from where the task left off during the concurrent marking
4071     phase. Interestingly, tasks are also claimable during evacuation
4072     pauses too, since do_marking_step() ensures that it aborts before
4073     it needs to yield.
4074 
4075     The data structures that it uses to do marking work are the
4076     following:
4077 
4078       (1) Marking Bitmap. If there are gray objects that appear only
4079       on the bitmap (this happens either when dealing with an overflow
4080       or when the initial marking phase has simply marked the roots
4081       and didn't push them on the stack), then tasks claim heap
4082       regions whose bitmap they then scan to find gray objects. A
4083       global finger indicates where the end of the last claimed region
4084       is. A local finger indicates how far into the region a task has
4085       scanned. The two fingers are used to determine how to gray an
4086       object (i.e. whether simply marking it is OK, as it will be
4087       visited by a task in the future, or whether it needs to be also
4088       pushed on a stack).
4089 
4090       (2) Local Queue. The local queue of the task which is accessed
4091       reasonably efficiently by the task. Other tasks can steal from
4092       it when they run out of work. Throughout the marking phase, a
4093       task attempts to keep its local queue short but not totally
4094       empty, so that entries are available for stealing by other
4095       tasks. Only when there is no more work, a task will totally
4096       drain its local queue.
4097 
4098       (3) Global Mark Stack. This handles local queue overflow. During
4099       marking only sets of entries are moved between it and the local
4100       queues, as access to it requires a mutex and more fine-grain
4101       interaction with it which might cause contention. If it
4102       overflows, then the marking phase should restart and iterate
4103       over the bitmap to identify gray objects. Throughout the marking
4104       phase, tasks attempt to keep the global mark stack at a small
4105       length but not totally empty, so that entries are available for
4106       popping by other tasks. Only when there is no more work, tasks
4107       will totally drain the global mark stack.
4108 
4109       (4) SATB Buffer Queue. This is where completed SATB buffers are
4110       made available. Buffers are regularly removed from this queue
4111       and scanned for roots, so that the queue doesn't get too
4112       long. During remark, all completed buffers are processed, as
4113       well as the filled in parts of any uncompleted buffers.
4114 
4115     The do_marking_step() method tries to abort when the time target
4116     has been reached. There are a few other cases when the
4117     do_marking_step() method also aborts:
4118 
4119       (1) When the marking phase has been aborted (after a Full GC).
4120 
4121       (2) When a global overflow (on the global stack) has been
4122       triggered. Before the task aborts, it will actually sync up with
4123       the other tasks to ensure that all the marking data structures
4124       (local queues, stacks, fingers etc.)  are re-initialized so that
4125       when do_marking_step() completes, the marking phase can
4126       immediately restart.
4127 
4128       (3) When enough completed SATB buffers are available. The
4129       do_marking_step() method only tries to drain SATB buffers right
4130       at the beginning. So, if enough buffers are available, the
4131       marking step aborts and the SATB buffers are processed at
4132       the beginning of the next invocation.
4133 
4134       (4) To yield. when we have to yield then we abort and yield
4135       right at the end of do_marking_step(). This saves us from a lot
4136       of hassle as, by yielding we might allow a Full GC. If this
4137       happens then objects will be compacted underneath our feet, the
4138       heap might shrink, etc. We save checking for this by just
4139       aborting and doing the yield right at the end.
4140 
4141     From the above it follows that the do_marking_step() method should
4142     be called in a loop (or, otherwise, regularly) until it completes.
4143 
4144     If a marking step completes without its has_aborted() flag being
4145     true, it means it has completed the current marking phase (and
4146     also all other marking tasks have done so and have all synced up).
4147 
4148     A method called regular_clock_call() is invoked "regularly" (in
4149     sub ms intervals) throughout marking. It is this clock method that
4150     checks all the abort conditions which were mentioned above and
4151     decides when the task should abort. A work-based scheme is used to
4152     trigger this clock method: when the number of object words the
4153     marking phase has scanned or the number of references the marking
4154     phase has visited reach a given limit. Additional invocations to
4155     the method clock have been planted in a few other strategic places
4156     too. The initial reason for the clock method was to avoid calling
4157     vtime too regularly, as it is quite expensive. So, once it was in
4158     place, it was natural to piggy-back all the other conditions on it
4159     too and not constantly check them throughout the code.
4160 
4161     If do_termination is true then do_marking_step will enter its
4162     termination protocol.
4163 
4164     The value of is_serial must be true when do_marking_step is being
4165     called serially (i.e. by the VMThread) and do_marking_step should
4166     skip any synchronization in the termination and overflow code.
4167     Examples include the serial remark code and the serial reference
4168     processing closures.
4169 
4170     The value of is_serial must be false when do_marking_step is
4171     being called by any of the worker threads in a work gang.
4172     Examples include the concurrent marking code (CMMarkingTask),
4173     the MT remark code, and the MT reference processing closures.
4174 
4175  *****************************************************************************/
4176 
4177 void CMTask::do_marking_step(double time_target_ms,
4178                              bool do_termination,
4179                              bool is_serial) {
4180   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4181   assert(concurrent() == _cm->concurrent(), "they should be the same");
4182 
4183   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4184   assert(_task_queues != NULL, "invariant");
4185   assert(_task_queue != NULL, "invariant");
4186   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4187 
4188   assert(!_claimed,
4189          "only one thread should claim this task at any one time");
4190 
4191   // OK, this doesn't safeguard again all possible scenarios, as it is
4192   // possible for two threads to set the _claimed flag at the same
4193   // time. But it is only for debugging purposes anyway and it will
4194   // catch most problems.
4195   _claimed = true;
4196 
4197   _start_time_ms = os::elapsedVTime() * 1000.0;
4198   statsOnly( _interval_start_time_ms = _start_time_ms );
4199 
4200   // If do_stealing is true then do_marking_step will attempt to
4201   // steal work from the other CMTasks. It only makes sense to
4202   // enable stealing when the termination protocol is enabled
4203   // and do_marking_step() is not being called serially.
4204   bool do_stealing = do_termination && !is_serial;
4205 
4206   double diff_prediction_ms =
4207     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4208   _time_target_ms = time_target_ms - diff_prediction_ms;
4209 
4210   // set up the variables that are used in the work-based scheme to
4211   // call the regular clock method
4212   _words_scanned = 0;
4213   _refs_reached  = 0;
4214   recalculate_limits();
4215 
4216   // clear all flags
4217   clear_has_aborted();
4218   _has_timed_out = false;
4219   _draining_satb_buffers = false;
4220 
4221   ++_calls;
4222 
4223   if (_cm->verbose_low()) {
4224     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4225                            "target = %1.2lfms >>>>>>>>>>",
4226                            _worker_id, _calls, _time_target_ms);
4227   }
4228 
4229   // Set up the bitmap and oop closures. Anything that uses them is
4230   // eventually called from this method, so it is OK to allocate these
4231   // statically.
4232   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4233   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4234   set_cm_oop_closure(&cm_oop_closure);
4235 
4236   if (_cm->has_overflown()) {
4237     // This can happen if the mark stack overflows during a GC pause
4238     // and this task, after a yield point, restarts. We have to abort
4239     // as we need to get into the overflow protocol which happens
4240     // right at the end of this task.
4241     set_has_aborted();
4242   }
4243 
4244   // First drain any available SATB buffers. After this, we will not
4245   // look at SATB buffers before the next invocation of this method.
4246   // If enough completed SATB buffers are queued up, the regular clock
4247   // will abort this task so that it restarts.
4248   drain_satb_buffers();
4249   // ...then partially drain the local queue and the global stack
4250   drain_local_queue(true);
4251   drain_global_stack(true);
4252 
4253   do {
4254     if (!has_aborted() && _curr_region != NULL) {
4255       // This means that we're already holding on to a region.
4256       assert(_finger != NULL, "if region is not NULL, then the finger "
4257              "should not be NULL either");
4258 
4259       // We might have restarted this task after an evacuation pause
4260       // which might have evacuated the region we're holding on to
4261       // underneath our feet. Let's read its limit again to make sure
4262       // that we do not iterate over a region of the heap that
4263       // contains garbage (update_region_limit() will also move
4264       // _finger to the start of the region if it is found empty).
4265       update_region_limit();
4266       // We will start from _finger not from the start of the region,
4267       // as we might be restarting this task after aborting half-way
4268       // through scanning this region. In this case, _finger points to
4269       // the address where we last found a marked object. If this is a
4270       // fresh region, _finger points to start().
4271       MemRegion mr = MemRegion(_finger, _region_limit);
4272 
4273       if (_cm->verbose_low()) {
4274         gclog_or_tty->print_cr("[%u] we're scanning part "
4275                                "[" PTR_FORMAT ", " PTR_FORMAT ") "
4276                                "of region " HR_FORMAT,
4277                                _worker_id, p2i(_finger), p2i(_region_limit),
4278                                HR_FORMAT_PARAMS(_curr_region));
4279       }
4280 
4281       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
4282              "humongous regions should go around loop once only");
4283 
4284       // Some special cases:
4285       // If the memory region is empty, we can just give up the region.
4286       // If the current region is humongous then we only need to check
4287       // the bitmap for the bit associated with the start of the object,
4288       // scan the object if it's live, and give up the region.
4289       // Otherwise, let's iterate over the bitmap of the part of the region
4290       // that is left.
4291       // If the iteration is successful, give up the region.
4292       if (mr.is_empty()) {
4293         giveup_current_region();
4294         regular_clock_call();
4295       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
4296         if (_nextMarkBitMap->isMarked(mr.start())) {
4297           // The object is marked - apply the closure
4298           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4299           bitmap_closure.do_bit(offset);
4300         }
4301         // Even if this task aborted while scanning the humongous object
4302         // we can (and should) give up the current region.
4303         giveup_current_region();
4304         regular_clock_call();
4305       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4306         giveup_current_region();
4307         regular_clock_call();
4308       } else {
4309         assert(has_aborted(), "currently the only way to do so");
4310         // The only way to abort the bitmap iteration is to return
4311         // false from the do_bit() method. However, inside the
4312         // do_bit() method we move the _finger to point to the
4313         // object currently being looked at. So, if we bail out, we
4314         // have definitely set _finger to something non-null.
4315         assert(_finger != NULL, "invariant");
4316 
4317         // Region iteration was actually aborted. So now _finger
4318         // points to the address of the object we last scanned. If we
4319         // leave it there, when we restart this task, we will rescan
4320         // the object. It is easy to avoid this. We move the finger by
4321         // enough to point to the next possible object header (the
4322         // bitmap knows by how much we need to move it as it knows its
4323         // granularity).
4324         assert(_finger < _region_limit, "invariant");
4325         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4326         // Check if bitmap iteration was aborted while scanning the last object
4327         if (new_finger >= _region_limit) {
4328           giveup_current_region();
4329         } else {
4330           move_finger_to(new_finger);
4331         }
4332       }
4333     }
4334     // At this point we have either completed iterating over the
4335     // region we were holding on to, or we have aborted.
4336 
4337     // We then partially drain the local queue and the global stack.
4338     // (Do we really need this?)
4339     drain_local_queue(true);
4340     drain_global_stack(true);
4341 
4342     // Read the note on the claim_region() method on why it might
4343     // return NULL with potentially more regions available for
4344     // claiming and why we have to check out_of_regions() to determine
4345     // whether we're done or not.
4346     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4347       // We are going to try to claim a new region. We should have
4348       // given up on the previous one.
4349       // Separated the asserts so that we know which one fires.
4350       assert(_curr_region  == NULL, "invariant");
4351       assert(_finger       == NULL, "invariant");
4352       assert(_region_limit == NULL, "invariant");
4353       if (_cm->verbose_low()) {
4354         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4355       }
4356       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4357       if (claimed_region != NULL) {
4358         // Yes, we managed to claim one
4359         statsOnly( ++_regions_claimed );
4360 
4361         if (_cm->verbose_low()) {
4362           gclog_or_tty->print_cr("[%u] we successfully claimed "
4363                                  "region " PTR_FORMAT,
4364                                  _worker_id, p2i(claimed_region));
4365         }
4366 
4367         setup_for_region(claimed_region);
4368         assert(_curr_region == claimed_region, "invariant");
4369       }
4370       // It is important to call the regular clock here. It might take
4371       // a while to claim a region if, for example, we hit a large
4372       // block of empty regions. So we need to call the regular clock
4373       // method once round the loop to make sure it's called
4374       // frequently enough.
4375       regular_clock_call();
4376     }
4377 
4378     if (!has_aborted() && _curr_region == NULL) {
4379       assert(_cm->out_of_regions(),
4380              "at this point we should be out of regions");
4381     }
4382   } while ( _curr_region != NULL && !has_aborted());
4383 
4384   if (!has_aborted()) {
4385     // We cannot check whether the global stack is empty, since other
4386     // tasks might be pushing objects to it concurrently.
4387     assert(_cm->out_of_regions(),
4388            "at this point we should be out of regions");
4389 
4390     if (_cm->verbose_low()) {
4391       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4392     }
4393 
4394     // Try to reduce the number of available SATB buffers so that
4395     // remark has less work to do.
4396     drain_satb_buffers();
4397   }
4398 
4399   // Since we've done everything else, we can now totally drain the
4400   // local queue and global stack.
4401   drain_local_queue(false);
4402   drain_global_stack(false);
4403 
4404   // Attempt at work stealing from other task's queues.
4405   if (do_stealing && !has_aborted()) {
4406     // We have not aborted. This means that we have finished all that
4407     // we could. Let's try to do some stealing...
4408 
4409     // We cannot check whether the global stack is empty, since other
4410     // tasks might be pushing objects to it concurrently.
4411     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4412            "only way to reach here");
4413 
4414     if (_cm->verbose_low()) {
4415       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4416     }
4417 
4418     while (!has_aborted()) {
4419       oop obj;
4420       statsOnly( ++_steal_attempts );
4421 
4422       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4423         if (_cm->verbose_medium()) {
4424           gclog_or_tty->print_cr("[%u] stolen " PTR_FORMAT " successfully",
4425                                  _worker_id, p2i((void*) obj));
4426         }
4427 
4428         statsOnly( ++_steals );
4429 
4430         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4431                "any stolen object should be marked");
4432         scan_object(obj);
4433 
4434         // And since we're towards the end, let's totally drain the
4435         // local queue and global stack.
4436         drain_local_queue(false);
4437         drain_global_stack(false);
4438       } else {
4439         break;
4440       }
4441     }
4442   }
4443 
4444   // If we are about to wrap up and go into termination, check if we
4445   // should raise the overflow flag.
4446   if (do_termination && !has_aborted()) {
4447     if (_cm->force_overflow()->should_force()) {
4448       _cm->set_has_overflown();
4449       regular_clock_call();
4450     }
4451   }
4452 
4453   // We still haven't aborted. Now, let's try to get into the
4454   // termination protocol.
4455   if (do_termination && !has_aborted()) {
4456     // We cannot check whether the global stack is empty, since other
4457     // tasks might be concurrently pushing objects on it.
4458     // Separated the asserts so that we know which one fires.
4459     assert(_cm->out_of_regions(), "only way to reach here");
4460     assert(_task_queue->size() == 0, "only way to reach here");
4461 
4462     if (_cm->verbose_low()) {
4463       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4464     }
4465 
4466     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4467 
4468     // The CMTask class also extends the TerminatorTerminator class,
4469     // hence its should_exit_termination() method will also decide
4470     // whether to exit the termination protocol or not.
4471     bool finished = (is_serial ||
4472                      _cm->terminator()->offer_termination(this));
4473     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4474     _termination_time_ms +=
4475       termination_end_time_ms - _termination_start_time_ms;
4476 
4477     if (finished) {
4478       // We're all done.
4479 
4480       if (_worker_id == 0) {
4481         // let's allow task 0 to do this
4482         if (concurrent()) {
4483           assert(_cm->concurrent_marking_in_progress(), "invariant");
4484           // we need to set this to false before the next
4485           // safepoint. This way we ensure that the marking phase
4486           // doesn't observe any more heap expansions.
4487           _cm->clear_concurrent_marking_in_progress();
4488         }
4489       }
4490 
4491       // We can now guarantee that the global stack is empty, since
4492       // all other tasks have finished. We separated the guarantees so
4493       // that, if a condition is false, we can immediately find out
4494       // which one.
4495       guarantee(_cm->out_of_regions(), "only way to reach here");
4496       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4497       guarantee(_task_queue->size() == 0, "only way to reach here");
4498       guarantee(!_cm->has_overflown(), "only way to reach here");
4499       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4500 
4501       if (_cm->verbose_low()) {
4502         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4503       }
4504     } else {
4505       // Apparently there's more work to do. Let's abort this task. It
4506       // will restart it and we can hopefully find more things to do.
4507 
4508       if (_cm->verbose_low()) {
4509         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4510                                _worker_id);
4511       }
4512 
4513       set_has_aborted();
4514       statsOnly( ++_aborted_termination );
4515     }
4516   }
4517 
4518   // Mainly for debugging purposes to make sure that a pointer to the
4519   // closure which was statically allocated in this frame doesn't
4520   // escape it by accident.
4521   set_cm_oop_closure(NULL);
4522   double end_time_ms = os::elapsedVTime() * 1000.0;
4523   double elapsed_time_ms = end_time_ms - _start_time_ms;
4524   // Update the step history.
4525   _step_times_ms.add(elapsed_time_ms);
4526 
4527   if (has_aborted()) {
4528     // The task was aborted for some reason.
4529 
4530     statsOnly( ++_aborted );
4531 
4532     if (_has_timed_out) {
4533       double diff_ms = elapsed_time_ms - _time_target_ms;
4534       // Keep statistics of how well we did with respect to hitting
4535       // our target only if we actually timed out (if we aborted for
4536       // other reasons, then the results might get skewed).
4537       _marking_step_diffs_ms.add(diff_ms);
4538     }
4539 
4540     if (_cm->has_overflown()) {
4541       // This is the interesting one. We aborted because a global
4542       // overflow was raised. This means we have to restart the
4543       // marking phase and start iterating over regions. However, in
4544       // order to do this we have to make sure that all tasks stop
4545       // what they are doing and re-initialise in a safe manner. We
4546       // will achieve this with the use of two barrier sync points.
4547 
4548       if (_cm->verbose_low()) {
4549         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4550       }
4551 
4552       if (!is_serial) {
4553         // We only need to enter the sync barrier if being called
4554         // from a parallel context
4555         _cm->enter_first_sync_barrier(_worker_id);
4556 
4557         // When we exit this sync barrier we know that all tasks have
4558         // stopped doing marking work. So, it's now safe to
4559         // re-initialise our data structures. At the end of this method,
4560         // task 0 will clear the global data structures.
4561       }
4562 
4563       statsOnly( ++_aborted_overflow );
4564 
4565       // We clear the local state of this task...
4566       clear_region_fields();
4567 
4568       if (!is_serial) {
4569         // ...and enter the second barrier.
4570         _cm->enter_second_sync_barrier(_worker_id);
4571       }
4572       // At this point, if we're during the concurrent phase of
4573       // marking, everything has been re-initialized and we're
4574       // ready to restart.
4575     }
4576 
4577     if (_cm->verbose_low()) {
4578       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4579                              "elapsed = %1.2lfms <<<<<<<<<<",
4580                              _worker_id, _time_target_ms, elapsed_time_ms);
4581       if (_cm->has_aborted()) {
4582         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4583                                _worker_id);
4584       }
4585     }
4586   } else {
4587     if (_cm->verbose_low()) {
4588       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4589                              "elapsed = %1.2lfms <<<<<<<<<<",
4590                              _worker_id, _time_target_ms, elapsed_time_ms);
4591     }
4592   }
4593 
4594   _claimed = false;
4595 }
4596 
4597 CMTask::CMTask(uint worker_id,
4598                ConcurrentMark* cm,
4599                size_t* marked_bytes,
4600                BitMap* card_bm,
4601                CMTaskQueue* task_queue,
4602                CMTaskQueueSet* task_queues)
4603   : _g1h(G1CollectedHeap::heap()),
4604     _worker_id(worker_id), _cm(cm),
4605     _claimed(false),
4606     _nextMarkBitMap(NULL), _hash_seed(17),
4607     _task_queue(task_queue),
4608     _task_queues(task_queues),
4609     _cm_oop_closure(NULL),
4610     _marked_bytes_array(marked_bytes),
4611     _card_bm(card_bm) {
4612   guarantee(task_queue != NULL, "invariant");
4613   guarantee(task_queues != NULL, "invariant");
4614 
4615   statsOnly( _clock_due_to_scanning = 0;
4616              _clock_due_to_marking  = 0 );
4617 
4618   _marking_step_diffs_ms.add(0.5);
4619 }
4620 
4621 // These are formatting macros that are used below to ensure
4622 // consistent formatting. The *_H_* versions are used to format the
4623 // header for a particular value and they should be kept consistent
4624 // with the corresponding macro. Also note that most of the macros add
4625 // the necessary white space (as a prefix) which makes them a bit
4626 // easier to compose.
4627 
4628 // All the output lines are prefixed with this string to be able to
4629 // identify them easily in a large log file.
4630 #define G1PPRL_LINE_PREFIX            "###"
4631 
4632 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
4633 #ifdef _LP64
4634 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4635 #else // _LP64
4636 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4637 #endif // _LP64
4638 
4639 // For per-region info
4640 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4641 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4642 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
4643 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4644 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4645 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4646 
4647 // For summary info
4648 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
4649 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
4650 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
4651 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
4652 
4653 G1PrintRegionLivenessInfoClosure::
4654 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4655   : _out(out),
4656     _total_used_bytes(0), _total_capacity_bytes(0),
4657     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4658     _hum_used_bytes(0), _hum_capacity_bytes(0),
4659     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4660     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4661   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4662   MemRegion g1_reserved = g1h->g1_reserved();
4663   double now = os::elapsedTime();
4664 
4665   // Print the header of the output.
4666   _out->cr();
4667   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4668   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4669                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4670                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4671                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4672                  HeapRegion::GrainBytes);
4673   _out->print_cr(G1PPRL_LINE_PREFIX);
4674   _out->print_cr(G1PPRL_LINE_PREFIX
4675                 G1PPRL_TYPE_H_FORMAT
4676                 G1PPRL_ADDR_BASE_H_FORMAT
4677                 G1PPRL_BYTE_H_FORMAT
4678                 G1PPRL_BYTE_H_FORMAT
4679                 G1PPRL_BYTE_H_FORMAT
4680                 G1PPRL_DOUBLE_H_FORMAT
4681                 G1PPRL_BYTE_H_FORMAT
4682                 G1PPRL_BYTE_H_FORMAT,
4683                 "type", "address-range",
4684                 "used", "prev-live", "next-live", "gc-eff",
4685                 "remset", "code-roots");
4686   _out->print_cr(G1PPRL_LINE_PREFIX
4687                 G1PPRL_TYPE_H_FORMAT
4688                 G1PPRL_ADDR_BASE_H_FORMAT
4689                 G1PPRL_BYTE_H_FORMAT
4690                 G1PPRL_BYTE_H_FORMAT
4691                 G1PPRL_BYTE_H_FORMAT
4692                 G1PPRL_DOUBLE_H_FORMAT
4693                 G1PPRL_BYTE_H_FORMAT
4694                 G1PPRL_BYTE_H_FORMAT,
4695                 "", "",
4696                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4697                 "(bytes)", "(bytes)");
4698 }
4699 
4700 // It takes as a parameter a reference to one of the _hum_* fields, it
4701 // deduces the corresponding value for a region in a humongous region
4702 // series (either the region size, or what's left if the _hum_* field
4703 // is < the region size), and updates the _hum_* field accordingly.
4704 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4705   size_t bytes = 0;
4706   // The > 0 check is to deal with the prev and next live bytes which
4707   // could be 0.
4708   if (*hum_bytes > 0) {
4709     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4710     *hum_bytes -= bytes;
4711   }
4712   return bytes;
4713 }
4714 
4715 // It deduces the values for a region in a humongous region series
4716 // from the _hum_* fields and updates those accordingly. It assumes
4717 // that that _hum_* fields have already been set up from the "starts
4718 // humongous" region and we visit the regions in address order.
4719 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4720                                                      size_t* capacity_bytes,
4721                                                      size_t* prev_live_bytes,
4722                                                      size_t* next_live_bytes) {
4723   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4724   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4725   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4726   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4727   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4728 }
4729 
4730 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4731   const char* type       = r->get_type_str();
4732   HeapWord* bottom       = r->bottom();
4733   HeapWord* end          = r->end();
4734   size_t capacity_bytes  = r->capacity();
4735   size_t used_bytes      = r->used();
4736   size_t prev_live_bytes = r->live_bytes();
4737   size_t next_live_bytes = r->next_live_bytes();
4738   double gc_eff          = r->gc_efficiency();
4739   size_t remset_bytes    = r->rem_set()->mem_size();
4740   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4741 
4742   if (r->startsHumongous()) {
4743     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4744            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4745            "they should have been zeroed after the last time we used them");
4746     // Set up the _hum_* fields.
4747     _hum_capacity_bytes  = capacity_bytes;
4748     _hum_used_bytes      = used_bytes;
4749     _hum_prev_live_bytes = prev_live_bytes;
4750     _hum_next_live_bytes = next_live_bytes;
4751     get_hum_bytes(&used_bytes, &capacity_bytes,
4752                   &prev_live_bytes, &next_live_bytes);
4753     end = bottom + HeapRegion::GrainWords;
4754   } else if (r->continuesHumongous()) {
4755     get_hum_bytes(&used_bytes, &capacity_bytes,
4756                   &prev_live_bytes, &next_live_bytes);
4757     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4758   }
4759 
4760   _total_used_bytes      += used_bytes;
4761   _total_capacity_bytes  += capacity_bytes;
4762   _total_prev_live_bytes += prev_live_bytes;
4763   _total_next_live_bytes += next_live_bytes;
4764   _total_remset_bytes    += remset_bytes;
4765   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4766 
4767   // Print a line for this particular region.
4768   _out->print_cr(G1PPRL_LINE_PREFIX
4769                  G1PPRL_TYPE_FORMAT
4770                  G1PPRL_ADDR_BASE_FORMAT
4771                  G1PPRL_BYTE_FORMAT
4772                  G1PPRL_BYTE_FORMAT
4773                  G1PPRL_BYTE_FORMAT
4774                  G1PPRL_DOUBLE_FORMAT
4775                  G1PPRL_BYTE_FORMAT
4776                  G1PPRL_BYTE_FORMAT,
4777                  type, p2i(bottom), p2i(end),
4778                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4779                  remset_bytes, strong_code_roots_bytes);
4780 
4781   return false;
4782 }
4783 
4784 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4785   // add static memory usages to remembered set sizes
4786   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4787   // Print the footer of the output.
4788   _out->print_cr(G1PPRL_LINE_PREFIX);
4789   _out->print_cr(G1PPRL_LINE_PREFIX
4790                  " SUMMARY"
4791                  G1PPRL_SUM_MB_FORMAT("capacity")
4792                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4793                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4794                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4795                  G1PPRL_SUM_MB_FORMAT("remset")
4796                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4797                  bytes_to_mb(_total_capacity_bytes),
4798                  bytes_to_mb(_total_used_bytes),
4799                  perc(_total_used_bytes, _total_capacity_bytes),
4800                  bytes_to_mb(_total_prev_live_bytes),
4801                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4802                  bytes_to_mb(_total_next_live_bytes),
4803                  perc(_total_next_live_bytes, _total_capacity_bytes),
4804                  bytes_to_mb(_total_remset_bytes),
4805                  bytes_to_mb(_total_strong_code_roots_bytes));
4806   _out->cr();
4807 }