1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/gcTimer.hpp"
  27 #include "gc_implementation/shared/gcTrace.hpp"
  28 #include "gc_implementation/shared/spaceDecorator.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/blockOffsetTable.inline.hpp"
  32 #include "memory/cardTableRS.hpp"
  33 #include "memory/gcLocker.inline.hpp"
  34 #include "memory/genCollectedHeap.hpp"
  35 #include "memory/genMarkSweep.hpp"
  36 #include "memory/genOopClosures.hpp"
  37 #include "memory/genOopClosures.inline.hpp"
  38 #include "memory/generation.hpp"
  39 #include "memory/generation.inline.hpp"
  40 #include "memory/space.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/java.hpp"
  43 #include "utilities/copy.hpp"
  44 #include "utilities/events.hpp"
  45 
  46 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  47 
  48 Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
  49   _level(level),
  50   _ref_processor(NULL) {
  51   if (!_virtual_space.initialize(rs, initial_size)) {
  52     vm_exit_during_initialization("Could not reserve enough space for "
  53                     "object heap");
  54   }
  55   // Mangle all of the the initial generation.
  56   if (ZapUnusedHeapArea) {
  57     MemRegion mangle_region((HeapWord*)_virtual_space.low(),
  58       (HeapWord*)_virtual_space.high());
  59     SpaceMangler::mangle_region(mangle_region);
  60   }
  61   _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
  62           (HeapWord*)_virtual_space.high_boundary());
  63 }
  64 
  65 GenerationSpec* Generation::spec() {
  66   GenCollectedHeap* gch = GenCollectedHeap::heap();
  67   assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
  68   return gch->_gen_specs[level()];
  69 }
  70 
  71 size_t Generation::max_capacity() const {
  72   return reserved().byte_size();
  73 }
  74 
  75 void Generation::print_heap_change(size_t prev_used) const {
  76   if (PrintGCDetails && Verbose) {
  77     gclog_or_tty->print(" "  SIZE_FORMAT
  78                         "->" SIZE_FORMAT
  79                         "("  SIZE_FORMAT ")",
  80                         prev_used, used(), capacity());
  81   } else {
  82     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  83                         "->" SIZE_FORMAT "K"
  84                         "("  SIZE_FORMAT "K)",
  85                         prev_used / K, used() / K, capacity() / K);
  86   }
  87 }
  88 
  89 // By default we get a single threaded default reference processor;
  90 // generations needing multi-threaded refs processing or discovery override this method.
  91 void Generation::ref_processor_init() {
  92   assert(_ref_processor == NULL, "a reference processor already exists");
  93   assert(!_reserved.is_empty(), "empty generation?");
  94   _ref_processor = new ReferenceProcessor(_reserved);    // a vanilla reference processor
  95   if (_ref_processor == NULL) {
  96     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
  97   }
  98 }
  99 
 100 void Generation::print() const { print_on(tty); }
 101 
 102 void Generation::print_on(outputStream* st)  const {
 103   st->print(" %-20s", name());
 104   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 105              capacity()/K, used()/K);
 106   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 107               _virtual_space.low_boundary(),
 108               _virtual_space.high(),
 109               _virtual_space.high_boundary());
 110 }
 111 
 112 void Generation::print_summary_info() { print_summary_info_on(tty); }
 113 
 114 void Generation::print_summary_info_on(outputStream* st) {
 115   StatRecord* sr = stat_record();
 116   double time = sr->accumulated_time.seconds();
 117   st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
 118                "%d GC's, avg GC time %3.7f]",
 119                level(), time, sr->invocations,
 120                sr->invocations > 0 ? time / sr->invocations : 0.0);
 121 }
 122 
 123 // Utility iterator classes
 124 
 125 class GenerationIsInReservedClosure : public SpaceClosure {
 126  public:
 127   const void* _p;
 128   Space* sp;
 129   virtual void do_space(Space* s) {
 130     if (sp == NULL) {
 131       if (s->is_in_reserved(_p)) sp = s;
 132     }
 133   }
 134   GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
 135 };
 136 
 137 class GenerationIsInClosure : public SpaceClosure {
 138  public:
 139   const void* _p;
 140   Space* sp;
 141   virtual void do_space(Space* s) {
 142     if (sp == NULL) {
 143       if (s->is_in(_p)) sp = s;
 144     }
 145   }
 146   GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
 147 };
 148 
 149 bool Generation::is_in(const void* p) const {
 150   GenerationIsInClosure blk(p);
 151   ((Generation*)this)->space_iterate(&blk);
 152   return blk.sp != NULL;
 153 }
 154 
 155 DefNewGeneration* Generation::as_DefNewGeneration() {
 156   assert((kind() == Generation::DefNew) ||
 157          (kind() == Generation::ParNew) ||
 158          (kind() == Generation::ASParNew),
 159     "Wrong youngest generation type");
 160   return (DefNewGeneration*) this;
 161 }
 162 
 163 Generation* Generation::next_gen() const {
 164   GenCollectedHeap* gch = GenCollectedHeap::heap();
 165   int next = level() + 1;
 166   if (next < gch->_n_gens) {
 167     return gch->_gens[next];
 168   } else {
 169     return NULL;
 170   }
 171 }
 172 
 173 size_t Generation::max_contiguous_available() const {
 174   // The largest number of contiguous free words in this or any higher generation.
 175   size_t max = 0;
 176   for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
 177     size_t avail = gen->contiguous_available();
 178     if (avail > max) {
 179       max = avail;
 180     }
 181   }
 182   return max;
 183 }
 184 
 185 bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 186   size_t available = max_contiguous_available();
 187   bool   res = (available >= max_promotion_in_bytes);
 188   if (PrintGC && Verbose) {
 189     gclog_or_tty->print_cr(
 190       "Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")",
 191       res? "":" not", available, res? ">=":"<",
 192       max_promotion_in_bytes);
 193   }
 194   return res;
 195 }
 196 
 197 // Ignores "ref" and calls allocate().
 198 oop Generation::promote(oop obj, size_t obj_size) {
 199   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 200 
 201 #ifndef PRODUCT
 202   if (Universe::heap()->promotion_should_fail()) {
 203     return NULL;
 204   }
 205 #endif  // #ifndef PRODUCT
 206 
 207   HeapWord* result = allocate(obj_size, false);
 208   if (result != NULL) {
 209     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
 210     return oop(result);
 211   } else {
 212     GenCollectedHeap* gch = GenCollectedHeap::heap();
 213     return gch->handle_failed_promotion(this, obj, obj_size);
 214   }
 215 }
 216 
 217 oop Generation::par_promote(int thread_num,
 218                             oop obj, markOop m, size_t word_sz) {
 219   // Could do a bad general impl here that gets a lock.  But no.
 220   ShouldNotCallThis();
 221   return NULL;
 222 }
 223 
 224 void Generation::par_promote_alloc_undo(int thread_num,
 225                                         HeapWord* obj, size_t word_sz) {
 226   // Could do a bad general impl here that gets a lock.  But no.
 227   guarantee(false, "No good general implementation.");
 228 }
 229 
 230 Space* Generation::space_containing(const void* p) const {
 231   GenerationIsInReservedClosure blk(p);
 232   // Cast away const
 233   ((Generation*)this)->space_iterate(&blk);
 234   return blk.sp;
 235 }
 236 
 237 // Some of these are mediocre general implementations.  Should be
 238 // overridden to get better performance.
 239 
 240 class GenerationBlockStartClosure : public SpaceClosure {
 241  public:
 242   const void* _p;
 243   HeapWord* _start;
 244   virtual void do_space(Space* s) {
 245     if (_start == NULL && s->is_in_reserved(_p)) {
 246       _start = s->block_start(_p);
 247     }
 248   }
 249   GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
 250 };
 251 
 252 HeapWord* Generation::block_start(const void* p) const {
 253   GenerationBlockStartClosure blk(p);
 254   // Cast away const
 255   ((Generation*)this)->space_iterate(&blk);
 256   return blk._start;
 257 }
 258 
 259 class GenerationBlockSizeClosure : public SpaceClosure {
 260  public:
 261   const HeapWord* _p;
 262   size_t size;
 263   virtual void do_space(Space* s) {
 264     if (size == 0 && s->is_in_reserved(_p)) {
 265       size = s->block_size(_p);
 266     }
 267   }
 268   GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
 269 };
 270 
 271 size_t Generation::block_size(const HeapWord* p) const {
 272   GenerationBlockSizeClosure blk(p);
 273   // Cast away const
 274   ((Generation*)this)->space_iterate(&blk);
 275   assert(blk.size > 0, "seems reasonable");
 276   return blk.size;
 277 }
 278 
 279 class GenerationBlockIsObjClosure : public SpaceClosure {
 280  public:
 281   const HeapWord* _p;
 282   bool is_obj;
 283   virtual void do_space(Space* s) {
 284     if (!is_obj && s->is_in_reserved(_p)) {
 285       is_obj |= s->block_is_obj(_p);
 286     }
 287   }
 288   GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
 289 };
 290 
 291 bool Generation::block_is_obj(const HeapWord* p) const {
 292   GenerationBlockIsObjClosure blk(p);
 293   // Cast away const
 294   ((Generation*)this)->space_iterate(&blk);
 295   return blk.is_obj;
 296 }
 297 
 298 class GenerationOopIterateClosure : public SpaceClosure {
 299  public:
 300   ExtendedOopClosure* _cl;
 301   virtual void do_space(Space* s) {
 302     s->oop_iterate(_cl);
 303   }
 304   GenerationOopIterateClosure(ExtendedOopClosure* cl) :
 305     _cl(cl) {}
 306 };
 307 
 308 void Generation::oop_iterate(ExtendedOopClosure* cl) {
 309   GenerationOopIterateClosure blk(cl);
 310   space_iterate(&blk);
 311 }
 312 
 313 void Generation::younger_refs_in_space_iterate(Space* sp,
 314                                                OopsInGenClosure* cl) {
 315   GenRemSet* rs = SharedHeap::heap()->rem_set();
 316   rs->younger_refs_in_space_iterate(sp, cl);
 317 }
 318 
 319 class GenerationObjIterateClosure : public SpaceClosure {
 320  private:
 321   ObjectClosure* _cl;
 322  public:
 323   virtual void do_space(Space* s) {
 324     s->object_iterate(_cl);
 325   }
 326   GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
 327 };
 328 
 329 void Generation::object_iterate(ObjectClosure* cl) {
 330   GenerationObjIterateClosure blk(cl);
 331   space_iterate(&blk);
 332 }
 333 
 334 class GenerationSafeObjIterateClosure : public SpaceClosure {
 335  private:
 336   ObjectClosure* _cl;
 337  public:
 338   virtual void do_space(Space* s) {
 339     s->safe_object_iterate(_cl);
 340   }
 341   GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
 342 };
 343 
 344 void Generation::safe_object_iterate(ObjectClosure* cl) {
 345   GenerationSafeObjIterateClosure blk(cl);
 346   space_iterate(&blk);
 347 }
 348 
 349 void Generation::prepare_for_compaction(CompactPoint* cp) {
 350   // Generic implementation, can be specialized
 351   CompactibleSpace* space = first_compaction_space();
 352   while (space != NULL) {
 353     space->prepare_for_compaction(cp);
 354     space = space->next_compaction_space();
 355   }
 356 }
 357 
 358 class AdjustPointersClosure: public SpaceClosure {
 359  public:
 360   void do_space(Space* sp) {
 361     sp->adjust_pointers();
 362   }
 363 };
 364 
 365 void Generation::adjust_pointers() {
 366   // Note that this is done over all spaces, not just the compactible
 367   // ones.
 368   AdjustPointersClosure blk;
 369   space_iterate(&blk, true);
 370 }
 371 
 372 void Generation::compact() {
 373   CompactibleSpace* sp = first_compaction_space();
 374   while (sp != NULL) {
 375     sp->compact();
 376     sp = sp->next_compaction_space();
 377   }
 378 }
 379 
 380 CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
 381                                int level,
 382                                GenRemSet* remset) :
 383   Generation(rs, initial_byte_size, level), _rs(remset),
 384   _shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(),
 385   _used_at_prologue()
 386 {
 387   HeapWord* start = (HeapWord*)rs.base();
 388   size_t reserved_byte_size = rs.size();
 389   assert((uintptr_t(start) & 3) == 0, "bad alignment");
 390   assert((reserved_byte_size & 3) == 0, "bad alignment");
 391   MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
 392   _bts = new BlockOffsetSharedArray(reserved_mr,
 393                                     heap_word_size(initial_byte_size));
 394   MemRegion committed_mr(start, heap_word_size(initial_byte_size));
 395   _rs->resize_covered_region(committed_mr);
 396   if (_bts == NULL)
 397     vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
 398 
 399   // Verify that the start and end of this generation is the start of a card.
 400   // If this wasn't true, a single card could span more than on generation,
 401   // which would cause problems when we commit/uncommit memory, and when we
 402   // clear and dirty cards.
 403   guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
 404   if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
 405     // Don't check at the very end of the heap as we'll assert that we're probing off
 406     // the end if we try.
 407     guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
 408   }
 409   _min_heap_delta_bytes = MinHeapDeltaBytes;
 410   _capacity_at_prologue = initial_byte_size;
 411   _used_at_prologue = 0;
 412 }
 413 
 414 bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
 415   assert_locked_or_safepoint(Heap_lock);
 416   if (bytes == 0) {
 417     return true;  // That's what grow_by(0) would return
 418   }
 419   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
 420   if (aligned_bytes == 0){
 421     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
 422     // return true with the implication that an expansion was done when it
 423     // was not.  A call to expand implies a best effort to expand by "bytes"
 424     // but not a guarantee.  Align down to give a best effort.  This is likely
 425     // the most that the generation can expand since it has some capacity to
 426     // start with.
 427     aligned_bytes = ReservedSpace::page_align_size_down(bytes);
 428   }
 429   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
 430   bool success = false;
 431   if (aligned_expand_bytes > aligned_bytes) {
 432     success = grow_by(aligned_expand_bytes);
 433   }
 434   if (!success) {
 435     success = grow_by(aligned_bytes);
 436   }
 437   if (!success) {
 438     success = grow_to_reserved();
 439   }
 440   if (PrintGC && Verbose) {
 441     if (success && GC_locker::is_active_and_needs_gc()) {
 442       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
 443     }
 444   }
 445 
 446   return success;
 447 }
 448 
 449 
 450 // No young generation references, clear this generation's cards.
 451 void CardGeneration::clear_remembered_set() {
 452   _rs->clear(reserved());
 453 }
 454 
 455 
 456 // Objects in this generation may have moved, invalidate this
 457 // generation's cards.
 458 void CardGeneration::invalidate_remembered_set() {
 459   _rs->invalidate(used_region());
 460 }
 461 
 462 
 463 void CardGeneration::compute_new_size() {
 464   assert(_shrink_factor <= 100, "invalid shrink factor");
 465   size_t current_shrink_factor = _shrink_factor;
 466   _shrink_factor = 0;
 467 
 468   // We don't have floating point command-line arguments
 469   // Note:  argument processing ensures that MinHeapFreeRatio < 100.
 470   const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
 471   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
 472 
 473   // Compute some numbers about the state of the heap.
 474   const size_t used_after_gc = used();
 475   const size_t capacity_after_gc = capacity();
 476 
 477   const double min_tmp = used_after_gc / maximum_used_percentage;
 478   size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx));
 479   // Don't shrink less than the initial generation size
 480   minimum_desired_capacity = MAX2(minimum_desired_capacity,
 481                                   spec()->init_size());
 482   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
 483 
 484   if (PrintGC && Verbose) {
 485     const size_t free_after_gc = free();
 486     const double free_percentage = ((double)free_after_gc) / capacity_after_gc;
 487     gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: ");
 488     gclog_or_tty->print_cr("  "
 489                   "  minimum_free_percentage: %6.2f"
 490                   "  maximum_used_percentage: %6.2f",
 491                   minimum_free_percentage,
 492                   maximum_used_percentage);
 493     gclog_or_tty->print_cr("  "
 494                   "   free_after_gc   : %6.1fK"
 495                   "   used_after_gc   : %6.1fK"
 496                   "   capacity_after_gc   : %6.1fK",
 497                   free_after_gc / (double) K,
 498                   used_after_gc / (double) K,
 499                   capacity_after_gc / (double) K);
 500     gclog_or_tty->print_cr("  "
 501                   "   free_percentage: %6.2f",
 502                   free_percentage);
 503   }
 504 
 505   if (capacity_after_gc < minimum_desired_capacity) {
 506     // If we have less free space than we want then expand
 507     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
 508     // Don't expand unless it's significant
 509     if (expand_bytes >= _min_heap_delta_bytes) {
 510       expand(expand_bytes, 0); // safe if expansion fails
 511     }
 512     if (PrintGC && Verbose) {
 513       gclog_or_tty->print_cr("    expanding:"
 514                     "  minimum_desired_capacity: %6.1fK"
 515                     "  expand_bytes: %6.1fK"
 516                     "  _min_heap_delta_bytes: %6.1fK",
 517                     minimum_desired_capacity / (double) K,
 518                     expand_bytes / (double) K,
 519                     _min_heap_delta_bytes / (double) K);
 520     }
 521     return;
 522   }
 523 
 524   // No expansion, now see if we want to shrink
 525   size_t shrink_bytes = 0;
 526   // We would never want to shrink more than this
 527   size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity;
 528 
 529   if (MaxHeapFreeRatio < 100) {
 530     const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
 531     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
 532     const double max_tmp = used_after_gc / minimum_used_percentage;
 533     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
 534     maximum_desired_capacity = MAX2(maximum_desired_capacity,
 535                                     spec()->init_size());
 536     if (PrintGC && Verbose) {
 537       gclog_or_tty->print_cr("  "
 538                              "  maximum_free_percentage: %6.2f"
 539                              "  minimum_used_percentage: %6.2f",
 540                              maximum_free_percentage,
 541                              minimum_used_percentage);
 542       gclog_or_tty->print_cr("  "
 543                              "  _capacity_at_prologue: %6.1fK"
 544                              "  minimum_desired_capacity: %6.1fK"
 545                              "  maximum_desired_capacity: %6.1fK",
 546                              _capacity_at_prologue / (double) K,
 547                              minimum_desired_capacity / (double) K,
 548                              maximum_desired_capacity / (double) K);
 549     }
 550     assert(minimum_desired_capacity <= maximum_desired_capacity,
 551            "sanity check");
 552 
 553     if (capacity_after_gc > maximum_desired_capacity) {
 554       // Capacity too large, compute shrinking size
 555       shrink_bytes = capacity_after_gc - maximum_desired_capacity;
 556       // We don't want shrink all the way back to initSize if people call
 557       // System.gc(), because some programs do that between "phases" and then
 558       // we'd just have to grow the heap up again for the next phase.  So we
 559       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
 560       // on the third call, and 100% by the fourth call.  But if we recompute
 561       // size without shrinking, it goes back to 0%.
 562       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
 563       assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
 564       if (current_shrink_factor == 0) {
 565         _shrink_factor = 10;
 566       } else {
 567         _shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100);
 568       }
 569       if (PrintGC && Verbose) {
 570         gclog_or_tty->print_cr("  "
 571                       "  shrinking:"
 572                       "  initSize: %.1fK"
 573                       "  maximum_desired_capacity: %.1fK",
 574                       spec()->init_size() / (double) K,
 575                       maximum_desired_capacity / (double) K);
 576         gclog_or_tty->print_cr("  "
 577                       "  shrink_bytes: %.1fK"
 578                       "  current_shrink_factor: %d"
 579                       "  new shrink factor: %d"
 580                       "  _min_heap_delta_bytes: %.1fK",
 581                       shrink_bytes / (double) K,
 582                       current_shrink_factor,
 583                       _shrink_factor,
 584                       _min_heap_delta_bytes / (double) K);
 585       }
 586     }
 587   }
 588 
 589   if (capacity_after_gc > _capacity_at_prologue) {
 590     // We might have expanded for promotions, in which case we might want to
 591     // take back that expansion if there's room after GC.  That keeps us from
 592     // stretching the heap with promotions when there's plenty of room.
 593     size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue;
 594     expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes);
 595     // We have two shrinking computations, take the largest
 596     shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion);
 597     assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
 598     if (PrintGC && Verbose) {
 599       gclog_or_tty->print_cr("  "
 600                              "  aggressive shrinking:"
 601                              "  _capacity_at_prologue: %.1fK"
 602                              "  capacity_after_gc: %.1fK"
 603                              "  expansion_for_promotion: %.1fK"
 604                              "  shrink_bytes: %.1fK",
 605                              capacity_after_gc / (double) K,
 606                              _capacity_at_prologue / (double) K,
 607                              expansion_for_promotion / (double) K,
 608                              shrink_bytes / (double) K);
 609     }
 610   }
 611   // Don't shrink unless it's significant
 612   if (shrink_bytes >= _min_heap_delta_bytes) {
 613     shrink(shrink_bytes);
 614   }
 615 }
 616 
 617 // Currently nothing to do.
 618 void CardGeneration::prepare_for_verify() {}
 619 
 620 
 621 void OneContigSpaceCardGeneration::collect(bool   full,
 622                                            bool   clear_all_soft_refs,
 623                                            size_t size,
 624                                            bool   is_tlab) {
 625   GenCollectedHeap* gch = GenCollectedHeap::heap();
 626 
 627   SpecializationStats::clear();
 628   // Temporarily expand the span of our ref processor, so
 629   // refs discovery is over the entire heap, not just this generation
 630   ReferenceProcessorSpanMutator
 631     x(ref_processor(), gch->reserved_region());
 632 
 633   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
 634   gc_timer->register_gc_start();
 635 
 636   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
 637   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
 638 
 639   GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
 640 
 641   gc_timer->register_gc_end();
 642 
 643   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
 644 
 645   SpecializationStats::print();
 646 }
 647 
 648 HeapWord*
 649 OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size,
 650                                                   bool is_tlab,
 651                                                   bool parallel) {
 652   assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation");
 653   if (parallel) {
 654     MutexLocker x(ParGCRareEvent_lock);
 655     HeapWord* result = NULL;
 656     size_t byte_size = word_size * HeapWordSize;
 657     while (true) {
 658       expand(byte_size, _min_heap_delta_bytes);
 659       if (GCExpandToAllocateDelayMillis > 0) {
 660         os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
 661       }
 662       result = _the_space->par_allocate(word_size);
 663       if ( result != NULL) {
 664         return result;
 665       } else {
 666         // If there's not enough expansion space available, give up.
 667         if (_virtual_space.uncommitted_size() < byte_size) {
 668           return NULL;
 669         }
 670         // else try again
 671       }
 672     }
 673   } else {
 674     expand(word_size*HeapWordSize, _min_heap_delta_bytes);
 675     return _the_space->allocate(word_size);
 676   }
 677 }
 678 
 679 bool OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) {
 680   GCMutexLocker x(ExpandHeap_lock);
 681   return CardGeneration::expand(bytes, expand_bytes);
 682 }
 683 
 684 
 685 void OneContigSpaceCardGeneration::shrink(size_t bytes) {
 686   assert_locked_or_safepoint(ExpandHeap_lock);
 687   size_t size = ReservedSpace::page_align_size_down(bytes);
 688   if (size > 0) {
 689     shrink_by(size);
 690   }
 691 }
 692 
 693 
 694 size_t OneContigSpaceCardGeneration::capacity() const {
 695   return _the_space->capacity();
 696 }
 697 
 698 
 699 size_t OneContigSpaceCardGeneration::used() const {
 700   return _the_space->used();
 701 }
 702 
 703 
 704 size_t OneContigSpaceCardGeneration::free() const {
 705   return _the_space->free();
 706 }
 707 
 708 MemRegion OneContigSpaceCardGeneration::used_region() const {
 709   return the_space()->used_region();
 710 }
 711 
 712 size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const {
 713   return _the_space->free();
 714 }
 715 
 716 size_t OneContigSpaceCardGeneration::contiguous_available() const {
 717   return _the_space->free() + _virtual_space.uncommitted_size();
 718 }
 719 
 720 bool OneContigSpaceCardGeneration::grow_by(size_t bytes) {
 721   assert_locked_or_safepoint(ExpandHeap_lock);
 722   bool result = _virtual_space.expand_by(bytes);
 723   if (result) {
 724     size_t new_word_size =
 725        heap_word_size(_virtual_space.committed_size());
 726     MemRegion mr(_the_space->bottom(), new_word_size);
 727     // Expand card table
 728     Universe::heap()->barrier_set()->resize_covered_region(mr);
 729     // Expand shared block offset array
 730     _bts->resize(new_word_size);
 731 
 732     // Fix for bug #4668531
 733     if (ZapUnusedHeapArea) {
 734       MemRegion mangle_region(_the_space->end(),
 735       (HeapWord*)_virtual_space.high());
 736       SpaceMangler::mangle_region(mangle_region);
 737     }
 738 
 739     // Expand space -- also expands space's BOT
 740     // (which uses (part of) shared array above)
 741     _the_space->set_end((HeapWord*)_virtual_space.high());
 742 
 743     // update the space and generation capacity counters
 744     update_counters();
 745 
 746     if (Verbose && PrintGC) {
 747       size_t new_mem_size = _virtual_space.committed_size();
 748       size_t old_mem_size = new_mem_size - bytes;
 749       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
 750                       SIZE_FORMAT "K to " SIZE_FORMAT "K",
 751                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
 752     }
 753   }
 754   return result;
 755 }
 756 
 757 
 758 bool OneContigSpaceCardGeneration::grow_to_reserved() {
 759   assert_locked_or_safepoint(ExpandHeap_lock);
 760   bool success = true;
 761   const size_t remaining_bytes = _virtual_space.uncommitted_size();
 762   if (remaining_bytes > 0) {
 763     success = grow_by(remaining_bytes);
 764     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
 765   }
 766   return success;
 767 }
 768 
 769 void OneContigSpaceCardGeneration::shrink_by(size_t bytes) {
 770   assert_locked_or_safepoint(ExpandHeap_lock);
 771   // Shrink committed space
 772   _virtual_space.shrink_by(bytes);
 773   // Shrink space; this also shrinks the space's BOT
 774   _the_space->set_end((HeapWord*) _virtual_space.high());
 775   size_t new_word_size = heap_word_size(_the_space->capacity());
 776   // Shrink the shared block offset array
 777   _bts->resize(new_word_size);
 778   MemRegion mr(_the_space->bottom(), new_word_size);
 779   // Shrink the card table
 780   Universe::heap()->barrier_set()->resize_covered_region(mr);
 781 
 782   if (Verbose && PrintGC) {
 783     size_t new_mem_size = _virtual_space.committed_size();
 784     size_t old_mem_size = new_mem_size + bytes;
 785     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 786                   name(), old_mem_size/K, new_mem_size/K);
 787   }
 788 }
 789 
 790 // Currently nothing to do.
 791 void OneContigSpaceCardGeneration::prepare_for_verify() {}
 792 
 793 
 794 // Override for a card-table generation with one contiguous
 795 // space. NOTE: For reasons that are lost in the fog of history,
 796 // this code is used when you iterate over perm gen objects,
 797 // even when one uses CDS, where the perm gen has a couple of
 798 // other spaces; this is because CompactingPermGenGen derives
 799 // from OneContigSpaceCardGeneration. This should be cleaned up,
 800 // see CR 6897789..
 801 void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) {
 802   _the_space->object_iterate(blk);
 803 }
 804 
 805 void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk,
 806                                                  bool usedOnly) {
 807   blk->do_space(_the_space);
 808 }
 809 
 810 void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) {
 811   blk->set_generation(this);
 812   younger_refs_in_space_iterate(_the_space, blk);
 813   blk->reset_generation();
 814 }
 815 
 816 void OneContigSpaceCardGeneration::save_marks() {
 817   _the_space->set_saved_mark();
 818 }
 819 
 820 
 821 void OneContigSpaceCardGeneration::reset_saved_marks() {
 822   _the_space->reset_saved_mark();
 823 }
 824 
 825 
 826 bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() {
 827   return _the_space->saved_mark_at_top();
 828 }
 829 
 830 #define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)      \
 831                                                                                 \
 832 void OneContigSpaceCardGeneration::                                             \
 833 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {                  \
 834   blk->set_generation(this);                                                    \
 835   _the_space->oop_since_save_marks_iterate##nv_suffix(blk);                     \
 836   blk->reset_generation();                                                      \
 837   save_marks();                                                                 \
 838 }
 839 
 840 ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN)
 841 
 842 #undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN
 843 
 844 
 845 void OneContigSpaceCardGeneration::gc_epilogue(bool full) {
 846   _last_gc = WaterMark(the_space(), the_space()->top());
 847 
 848   // update the generation and space performance counters
 849   update_counters();
 850   if (ZapUnusedHeapArea) {
 851     the_space()->check_mangled_unused_area_complete();
 852   }
 853 }
 854 
 855 void OneContigSpaceCardGeneration::record_spaces_top() {
 856   assert(ZapUnusedHeapArea, "Not mangling unused space");
 857   the_space()->set_top_for_allocations();
 858 }
 859 
 860 void OneContigSpaceCardGeneration::verify() {
 861   the_space()->verify();
 862 }
 863 
 864 void OneContigSpaceCardGeneration::print_on(outputStream* st)  const {
 865   Generation::print_on(st);
 866   st->print("   the");
 867   the_space()->print_on(st);
 868 }