1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/atomic.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "semaphore_posix.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/align.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 #ifndef _GNU_SOURCE
 110   #define _GNU_SOURCE
 111   #include <sched.h>
 112   #undef _GNU_SOURCE
 113 #else
 114   #include <sched.h>
 115 #endif
 116 
 117 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 118 // getrusage() is prepared to handle the associated failure.
 119 #ifndef RUSAGE_THREAD
 120   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 #define MAX_SECS 100000000
 126 
 127 // for timer info max values which include all bits
 128 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 129 
 130 #define LARGEPAGES_BIT (1 << 6)
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Linux::_physical_memory = 0;
 134 
 135 address   os::Linux::_initial_thread_stack_bottom = NULL;
 136 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 137 
 138 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 139 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 140 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 141 Mutex* os::Linux::_createThread_lock = NULL;
 142 pthread_t os::Linux::_main_thread;
 143 int os::Linux::_page_size = -1;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 uint32_t os::Linux::_os_version = 0;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 
 149 static jlong initial_time_count=0;
 150 
 151 static int clock_tics_per_sec = 100;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 // Signal number used to suspend/resume a thread
 158 
 159 // do not use any signal number less than SIGSEGV, see 4355769
 160 static int SR_signum = SIGUSR2;
 161 sigset_t SR_sigset;
 162 
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 
 167 julong os::available_memory() {
 168   return Linux::available_memory();
 169 }
 170 
 171 julong os::Linux::available_memory() {
 172   // values in struct sysinfo are "unsigned long"
 173   struct sysinfo si;
 174   sysinfo(&si);
 175 
 176   return (julong)si.freeram * si.mem_unit;
 177 }
 178 
 179 julong os::physical_memory() {
 180   return Linux::physical_memory();
 181 }
 182 
 183 // Return true if user is running as root.
 184 
 185 bool os::have_special_privileges() {
 186   static bool init = false;
 187   static bool privileges = false;
 188   if (!init) {
 189     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 190     init = true;
 191   }
 192   return privileges;
 193 }
 194 
 195 
 196 #ifndef SYS_gettid
 197 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 198   #ifdef __ia64__
 199     #define SYS_gettid 1105
 200   #else
 201     #ifdef __i386__
 202       #define SYS_gettid 224
 203     #else
 204       #ifdef __amd64__
 205         #define SYS_gettid 186
 206       #else
 207         #ifdef __sparc__
 208           #define SYS_gettid 143
 209         #else
 210           #error define gettid for the arch
 211         #endif
 212       #endif
 213     #endif
 214   #endif
 215 #endif
 216 
 217 
 218 // pid_t gettid()
 219 //
 220 // Returns the kernel thread id of the currently running thread. Kernel
 221 // thread id is used to access /proc.
 222 pid_t os::Linux::gettid() {
 223   int rslt = syscall(SYS_gettid);
 224   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 225   return (pid_t)rslt;
 226 }
 227 
 228 // Most versions of linux have a bug where the number of processors are
 229 // determined by looking at the /proc file system.  In a chroot environment,
 230 // the system call returns 1.  This causes the VM to act as if it is
 231 // a single processor and elide locking (see is_MP() call).
 232 static bool unsafe_chroot_detected = false;
 233 static const char *unstable_chroot_error = "/proc file system not found.\n"
 234                      "Java may be unstable running multithreaded in a chroot "
 235                      "environment on Linux when /proc filesystem is not mounted.";
 236 
 237 void os::Linux::initialize_system_info() {
 238   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 239   if (processor_count() == 1) {
 240     pid_t pid = os::Linux::gettid();
 241     char fname[32];
 242     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 243     FILE *fp = fopen(fname, "r");
 244     if (fp == NULL) {
 245       unsafe_chroot_detected = true;
 246     } else {
 247       fclose(fp);
 248     }
 249   }
 250   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 251   assert(processor_count() > 0, "linux error");
 252 }
 253 
 254 void os::init_system_properties_values() {
 255   // The next steps are taken in the product version:
 256   //
 257   // Obtain the JAVA_HOME value from the location of libjvm.so.
 258   // This library should be located at:
 259   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 260   //
 261   // If "/jre/lib/" appears at the right place in the path, then we
 262   // assume libjvm.so is installed in a JDK and we use this path.
 263   //
 264   // Otherwise exit with message: "Could not create the Java virtual machine."
 265   //
 266   // The following extra steps are taken in the debugging version:
 267   //
 268   // If "/jre/lib/" does NOT appear at the right place in the path
 269   // instead of exit check for $JAVA_HOME environment variable.
 270   //
 271   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 272   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 273   // it looks like libjvm.so is installed there
 274   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 275   //
 276   // Otherwise exit.
 277   //
 278   // Important note: if the location of libjvm.so changes this
 279   // code needs to be changed accordingly.
 280 
 281   // See ld(1):
 282   //      The linker uses the following search paths to locate required
 283   //      shared libraries:
 284   //        1: ...
 285   //        ...
 286   //        7: The default directories, normally /lib and /usr/lib.
 287 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 288   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 289 #else
 290   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 291 #endif
 292 
 293 // Base path of extensions installed on the system.
 294 #define SYS_EXT_DIR     "/usr/java/packages"
 295 #define EXTENSIONS_DIR  "/lib/ext"
 296 
 297   // Buffer that fits several sprintfs.
 298   // Note that the space for the colon and the trailing null are provided
 299   // by the nulls included by the sizeof operator.
 300   const size_t bufsize =
 301     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 302          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 303   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 304 
 305   // sysclasspath, java_home, dll_dir
 306   {
 307     char *pslash;
 308     os::jvm_path(buf, bufsize);
 309 
 310     // Found the full path to libjvm.so.
 311     // Now cut the path to <java_home>/jre if we can.
 312     pslash = strrchr(buf, '/');
 313     if (pslash != NULL) {
 314       *pslash = '\0';            // Get rid of /libjvm.so.
 315     }
 316     pslash = strrchr(buf, '/');
 317     if (pslash != NULL) {
 318       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 319     }
 320     Arguments::set_dll_dir(buf);
 321 
 322     if (pslash != NULL) {
 323       pslash = strrchr(buf, '/');
 324       if (pslash != NULL) {
 325         *pslash = '\0';        // Get rid of /lib.
 326       }
 327     }
 328     Arguments::set_java_home(buf);
 329     set_boot_path('/', ':');
 330   }
 331 
 332   // Where to look for native libraries.
 333   //
 334   // Note: Due to a legacy implementation, most of the library path
 335   // is set in the launcher. This was to accomodate linking restrictions
 336   // on legacy Linux implementations (which are no longer supported).
 337   // Eventually, all the library path setting will be done here.
 338   //
 339   // However, to prevent the proliferation of improperly built native
 340   // libraries, the new path component /usr/java/packages is added here.
 341   // Eventually, all the library path setting will be done here.
 342   {
 343     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 344     // should always exist (until the legacy problem cited above is
 345     // addressed).
 346     const char *v = ::getenv("LD_LIBRARY_PATH");
 347     const char *v_colon = ":";
 348     if (v == NULL) { v = ""; v_colon = ""; }
 349     // That's +1 for the colon and +1 for the trailing '\0'.
 350     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 351                                                      strlen(v) + 1 +
 352                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 353                                                      mtInternal);
 354     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 355     Arguments::set_library_path(ld_library_path);
 356     FREE_C_HEAP_ARRAY(char, ld_library_path);
 357   }
 358 
 359   // Extensions directories.
 360   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 361   Arguments::set_ext_dirs(buf);
 362 
 363   FREE_C_HEAP_ARRAY(char, buf);
 364 
 365 #undef DEFAULT_LIBPATH
 366 #undef SYS_EXT_DIR
 367 #undef EXTENSIONS_DIR
 368 }
 369 
 370 ////////////////////////////////////////////////////////////////////////////////
 371 // breakpoint support
 372 
 373 void os::breakpoint() {
 374   BREAKPOINT;
 375 }
 376 
 377 extern "C" void breakpoint() {
 378   // use debugger to set breakpoint here
 379 }
 380 
 381 ////////////////////////////////////////////////////////////////////////////////
 382 // signal support
 383 
 384 debug_only(static bool signal_sets_initialized = false);
 385 static sigset_t unblocked_sigs, vm_sigs;
 386 
 387 bool os::Linux::is_sig_ignored(int sig) {
 388   struct sigaction oact;
 389   sigaction(sig, (struct sigaction*)NULL, &oact);
 390   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 391                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 392   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 393     return true;
 394   } else {
 395     return false;
 396   }
 397 }
 398 
 399 void os::Linux::signal_sets_init() {
 400   // Should also have an assertion stating we are still single-threaded.
 401   assert(!signal_sets_initialized, "Already initialized");
 402   // Fill in signals that are necessarily unblocked for all threads in
 403   // the VM. Currently, we unblock the following signals:
 404   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 405   //                         by -Xrs (=ReduceSignalUsage));
 406   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 407   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 408   // the dispositions or masks wrt these signals.
 409   // Programs embedding the VM that want to use the above signals for their
 410   // own purposes must, at this time, use the "-Xrs" option to prevent
 411   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 412   // (See bug 4345157, and other related bugs).
 413   // In reality, though, unblocking these signals is really a nop, since
 414   // these signals are not blocked by default.
 415   sigemptyset(&unblocked_sigs);
 416   sigaddset(&unblocked_sigs, SIGILL);
 417   sigaddset(&unblocked_sigs, SIGSEGV);
 418   sigaddset(&unblocked_sigs, SIGBUS);
 419   sigaddset(&unblocked_sigs, SIGFPE);
 420 #if defined(PPC64)
 421   sigaddset(&unblocked_sigs, SIGTRAP);
 422 #endif
 423   sigaddset(&unblocked_sigs, SR_signum);
 424 
 425   if (!ReduceSignalUsage) {
 426     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 427       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 428     }
 429     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 430       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 431     }
 432     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 433       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 434     }
 435   }
 436   // Fill in signals that are blocked by all but the VM thread.
 437   sigemptyset(&vm_sigs);
 438   if (!ReduceSignalUsage) {
 439     sigaddset(&vm_sigs, BREAK_SIGNAL);
 440   }
 441   debug_only(signal_sets_initialized = true);
 442 
 443 }
 444 
 445 // These are signals that are unblocked while a thread is running Java.
 446 // (For some reason, they get blocked by default.)
 447 sigset_t* os::Linux::unblocked_signals() {
 448   assert(signal_sets_initialized, "Not initialized");
 449   return &unblocked_sigs;
 450 }
 451 
 452 // These are the signals that are blocked while a (non-VM) thread is
 453 // running Java. Only the VM thread handles these signals.
 454 sigset_t* os::Linux::vm_signals() {
 455   assert(signal_sets_initialized, "Not initialized");
 456   return &vm_sigs;
 457 }
 458 
 459 void os::Linux::hotspot_sigmask(Thread* thread) {
 460 
 461   //Save caller's signal mask before setting VM signal mask
 462   sigset_t caller_sigmask;
 463   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 464 
 465   OSThread* osthread = thread->osthread();
 466   osthread->set_caller_sigmask(caller_sigmask);
 467 
 468   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 469 
 470   if (!ReduceSignalUsage) {
 471     if (thread->is_VM_thread()) {
 472       // Only the VM thread handles BREAK_SIGNAL ...
 473       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 474     } else {
 475       // ... all other threads block BREAK_SIGNAL
 476       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 477     }
 478   }
 479 }
 480 
 481 //////////////////////////////////////////////////////////////////////////////
 482 // detecting pthread library
 483 
 484 void os::Linux::libpthread_init() {
 485   // Save glibc and pthread version strings.
 486 #if !defined(_CS_GNU_LIBC_VERSION) || \
 487     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 488   #error "glibc too old (< 2.3.2)"
 489 #endif
 490 
 491   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 492   assert(n > 0, "cannot retrieve glibc version");
 493   char *str = (char *)malloc(n, mtInternal);
 494   confstr(_CS_GNU_LIBC_VERSION, str, n);
 495   os::Linux::set_glibc_version(str);
 496 
 497   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 498   assert(n > 0, "cannot retrieve pthread version");
 499   str = (char *)malloc(n, mtInternal);
 500   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 501   os::Linux::set_libpthread_version(str);
 502 }
 503 
 504 /////////////////////////////////////////////////////////////////////////////
 505 // thread stack expansion
 506 
 507 // os::Linux::manually_expand_stack() takes care of expanding the thread
 508 // stack. Note that this is normally not needed: pthread stacks allocate
 509 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 510 // committed. Therefore it is not necessary to expand the stack manually.
 511 //
 512 // Manually expanding the stack was historically needed on LinuxThreads
 513 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 514 // it is kept to deal with very rare corner cases:
 515 //
 516 // For one, user may run the VM on an own implementation of threads
 517 // whose stacks are - like the old LinuxThreads - implemented using
 518 // mmap(MAP_GROWSDOWN).
 519 //
 520 // Also, this coding may be needed if the VM is running on the primordial
 521 // thread. Normally we avoid running on the primordial thread; however,
 522 // user may still invoke the VM on the primordial thread.
 523 //
 524 // The following historical comment describes the details about running
 525 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 526 
 527 
 528 // Force Linux kernel to expand current thread stack. If "bottom" is close
 529 // to the stack guard, caller should block all signals.
 530 //
 531 // MAP_GROWSDOWN:
 532 //   A special mmap() flag that is used to implement thread stacks. It tells
 533 //   kernel that the memory region should extend downwards when needed. This
 534 //   allows early versions of LinuxThreads to only mmap the first few pages
 535 //   when creating a new thread. Linux kernel will automatically expand thread
 536 //   stack as needed (on page faults).
 537 //
 538 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 539 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 540 //   region, it's hard to tell if the fault is due to a legitimate stack
 541 //   access or because of reading/writing non-exist memory (e.g. buffer
 542 //   overrun). As a rule, if the fault happens below current stack pointer,
 543 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 544 //   application (see Linux kernel fault.c).
 545 //
 546 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 547 //   stack overflow detection.
 548 //
 549 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 550 //   not use MAP_GROWSDOWN.
 551 //
 552 // To get around the problem and allow stack banging on Linux, we need to
 553 // manually expand thread stack after receiving the SIGSEGV.
 554 //
 555 // There are two ways to expand thread stack to address "bottom", we used
 556 // both of them in JVM before 1.5:
 557 //   1. adjust stack pointer first so that it is below "bottom", and then
 558 //      touch "bottom"
 559 //   2. mmap() the page in question
 560 //
 561 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 562 // if current sp is already near the lower end of page 101, and we need to
 563 // call mmap() to map page 100, it is possible that part of the mmap() frame
 564 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 565 // That will destroy the mmap() frame and cause VM to crash.
 566 //
 567 // The following code works by adjusting sp first, then accessing the "bottom"
 568 // page to force a page fault. Linux kernel will then automatically expand the
 569 // stack mapping.
 570 //
 571 // _expand_stack_to() assumes its frame size is less than page size, which
 572 // should always be true if the function is not inlined.
 573 
 574 static void NOINLINE _expand_stack_to(address bottom) {
 575   address sp;
 576   size_t size;
 577   volatile char *p;
 578 
 579   // Adjust bottom to point to the largest address within the same page, it
 580   // gives us a one-page buffer if alloca() allocates slightly more memory.
 581   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 582   bottom += os::Linux::page_size() - 1;
 583 
 584   // sp might be slightly above current stack pointer; if that's the case, we
 585   // will alloca() a little more space than necessary, which is OK. Don't use
 586   // os::current_stack_pointer(), as its result can be slightly below current
 587   // stack pointer, causing us to not alloca enough to reach "bottom".
 588   sp = (address)&sp;
 589 
 590   if (sp > bottom) {
 591     size = sp - bottom;
 592     p = (volatile char *)alloca(size);
 593     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 594     p[0] = '\0';
 595   }
 596 }
 597 
 598 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 599   assert(t!=NULL, "just checking");
 600   assert(t->osthread()->expanding_stack(), "expand should be set");
 601   assert(t->stack_base() != NULL, "stack_base was not initialized");
 602 
 603   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 604     sigset_t mask_all, old_sigset;
 605     sigfillset(&mask_all);
 606     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 607     _expand_stack_to(addr);
 608     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 609     return true;
 610   }
 611   return false;
 612 }
 613 
 614 //////////////////////////////////////////////////////////////////////////////
 615 // create new thread
 616 
 617 // Thread start routine for all newly created threads
 618 static void *thread_native_entry(Thread *thread) {
 619   // Try to randomize the cache line index of hot stack frames.
 620   // This helps when threads of the same stack traces evict each other's
 621   // cache lines. The threads can be either from the same JVM instance, or
 622   // from different JVM instances. The benefit is especially true for
 623   // processors with hyperthreading technology.
 624   static int counter = 0;
 625   int pid = os::current_process_id();
 626   alloca(((pid ^ counter++) & 7) * 128);
 627 
 628   thread->initialize_thread_current();
 629 
 630   OSThread* osthread = thread->osthread();
 631   Monitor* sync = osthread->startThread_lock();
 632 
 633   osthread->set_thread_id(os::current_thread_id());
 634 
 635   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 636     os::current_thread_id(), (uintx) pthread_self());
 637 
 638   if (UseNUMA) {
 639     int lgrp_id = os::numa_get_group_id();
 640     if (lgrp_id != -1) {
 641       thread->set_lgrp_id(lgrp_id);
 642     }
 643   }
 644   // initialize signal mask for this thread
 645   os::Linux::hotspot_sigmask(thread);
 646 
 647   // initialize floating point control register
 648   os::Linux::init_thread_fpu_state();
 649 
 650   // handshaking with parent thread
 651   {
 652     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 653 
 654     // notify parent thread
 655     osthread->set_state(INITIALIZED);
 656     sync->notify_all();
 657 
 658     // wait until os::start_thread()
 659     while (osthread->get_state() == INITIALIZED) {
 660       sync->wait(Mutex::_no_safepoint_check_flag);
 661     }
 662   }
 663 
 664   // call one more level start routine
 665   thread->run();
 666 
 667   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 668     os::current_thread_id(), (uintx) pthread_self());
 669 
 670   // If a thread has not deleted itself ("delete this") as part of its
 671   // termination sequence, we have to ensure thread-local-storage is
 672   // cleared before we actually terminate. No threads should ever be
 673   // deleted asynchronously with respect to their termination.
 674   if (Thread::current_or_null_safe() != NULL) {
 675     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 676     thread->clear_thread_current();
 677   }
 678 
 679   return 0;
 680 }
 681 
 682 bool os::create_thread(Thread* thread, ThreadType thr_type,
 683                        size_t req_stack_size) {
 684   assert(thread->osthread() == NULL, "caller responsible");
 685 
 686   // Allocate the OSThread object
 687   OSThread* osthread = new OSThread(NULL, NULL);
 688   if (osthread == NULL) {
 689     return false;
 690   }
 691 
 692   // set the correct thread state
 693   osthread->set_thread_type(thr_type);
 694 
 695   // Initial state is ALLOCATED but not INITIALIZED
 696   osthread->set_state(ALLOCATED);
 697 
 698   thread->set_osthread(osthread);
 699 
 700   // init thread attributes
 701   pthread_attr_t attr;
 702   pthread_attr_init(&attr);
 703   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 704 
 705   // Calculate stack size if it's not specified by caller.
 706   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 707   // In the Linux NPTL pthread implementation the guard size mechanism
 708   // is not implemented properly. The posix standard requires adding
 709   // the size of the guard pages to the stack size, instead Linux
 710   // takes the space out of 'stacksize'. Thus we adapt the requested
 711   // stack_size by the size of the guard pages to mimick proper
 712   // behaviour. However, be careful not to end up with a size
 713   // of zero due to overflow. Don't add the guard page in that case.
 714   size_t guard_size = os::Linux::default_guard_size(thr_type);
 715   if (stack_size <= SIZE_MAX - guard_size) {
 716     stack_size += guard_size;
 717   }
 718   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 719 
 720   int status = pthread_attr_setstacksize(&attr, stack_size);
 721   assert_status(status == 0, status, "pthread_attr_setstacksize");
 722 
 723   // Configure glibc guard page.
 724   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 725 
 726   ThreadState state;
 727 
 728   {
 729     pthread_t tid;
 730     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 731 
 732     char buf[64];
 733     if (ret == 0) {
 734       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 735         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 736     } else {
 737       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 738         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 739     }
 740 
 741     pthread_attr_destroy(&attr);
 742 
 743     if (ret != 0) {
 744       // Need to clean up stuff we've allocated so far
 745       thread->set_osthread(NULL);
 746       delete osthread;
 747       return false;
 748     }
 749 
 750     // Store pthread info into the OSThread
 751     osthread->set_pthread_id(tid);
 752 
 753     // Wait until child thread is either initialized or aborted
 754     {
 755       Monitor* sync_with_child = osthread->startThread_lock();
 756       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 757       while ((state = osthread->get_state()) == ALLOCATED) {
 758         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 759       }
 760     }
 761   }
 762 
 763   // Aborted due to thread limit being reached
 764   if (state == ZOMBIE) {
 765     thread->set_osthread(NULL);
 766     delete osthread;
 767     return false;
 768   }
 769 
 770   // The thread is returned suspended (in state INITIALIZED),
 771   // and is started higher up in the call chain
 772   assert(state == INITIALIZED, "race condition");
 773   return true;
 774 }
 775 
 776 /////////////////////////////////////////////////////////////////////////////
 777 // attach existing thread
 778 
 779 // bootstrap the main thread
 780 bool os::create_main_thread(JavaThread* thread) {
 781   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 782   return create_attached_thread(thread);
 783 }
 784 
 785 bool os::create_attached_thread(JavaThread* thread) {
 786 #ifdef ASSERT
 787   thread->verify_not_published();
 788 #endif
 789 
 790   // Allocate the OSThread object
 791   OSThread* osthread = new OSThread(NULL, NULL);
 792 
 793   if (osthread == NULL) {
 794     return false;
 795   }
 796 
 797   // Store pthread info into the OSThread
 798   osthread->set_thread_id(os::Linux::gettid());
 799   osthread->set_pthread_id(::pthread_self());
 800 
 801   // initialize floating point control register
 802   os::Linux::init_thread_fpu_state();
 803 
 804   // Initial thread state is RUNNABLE
 805   osthread->set_state(RUNNABLE);
 806 
 807   thread->set_osthread(osthread);
 808 
 809   if (UseNUMA) {
 810     int lgrp_id = os::numa_get_group_id();
 811     if (lgrp_id != -1) {
 812       thread->set_lgrp_id(lgrp_id);
 813     }
 814   }
 815 
 816   if (os::Linux::is_initial_thread()) {
 817     // If current thread is initial thread, its stack is mapped on demand,
 818     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 819     // the entire stack region to avoid SEGV in stack banging.
 820     // It is also useful to get around the heap-stack-gap problem on SuSE
 821     // kernel (see 4821821 for details). We first expand stack to the top
 822     // of yellow zone, then enable stack yellow zone (order is significant,
 823     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 824     // is no gap between the last two virtual memory regions.
 825 
 826     JavaThread *jt = (JavaThread *)thread;
 827     address addr = jt->stack_reserved_zone_base();
 828     assert(addr != NULL, "initialization problem?");
 829     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 830 
 831     osthread->set_expanding_stack();
 832     os::Linux::manually_expand_stack(jt, addr);
 833     osthread->clear_expanding_stack();
 834   }
 835 
 836   // initialize signal mask for this thread
 837   // and save the caller's signal mask
 838   os::Linux::hotspot_sigmask(thread);
 839 
 840   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 841     os::current_thread_id(), (uintx) pthread_self());
 842 
 843   return true;
 844 }
 845 
 846 void os::pd_start_thread(Thread* thread) {
 847   OSThread * osthread = thread->osthread();
 848   assert(osthread->get_state() != INITIALIZED, "just checking");
 849   Monitor* sync_with_child = osthread->startThread_lock();
 850   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 851   sync_with_child->notify();
 852 }
 853 
 854 // Free Linux resources related to the OSThread
 855 void os::free_thread(OSThread* osthread) {
 856   assert(osthread != NULL, "osthread not set");
 857 
 858   // We are told to free resources of the argument thread,
 859   // but we can only really operate on the current thread.
 860   assert(Thread::current()->osthread() == osthread,
 861          "os::free_thread but not current thread");
 862 
 863 #ifdef ASSERT
 864   sigset_t current;
 865   sigemptyset(&current);
 866   pthread_sigmask(SIG_SETMASK, NULL, &current);
 867   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 868 #endif
 869 
 870   // Restore caller's signal mask
 871   sigset_t sigmask = osthread->caller_sigmask();
 872   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 873 
 874   delete osthread;
 875 }
 876 
 877 //////////////////////////////////////////////////////////////////////////////
 878 // initial thread
 879 
 880 // Check if current thread is the initial thread, similar to Solaris thr_main.
 881 bool os::Linux::is_initial_thread(void) {
 882   char dummy;
 883   // If called before init complete, thread stack bottom will be null.
 884   // Can be called if fatal error occurs before initialization.
 885   if (initial_thread_stack_bottom() == NULL) return false;
 886   assert(initial_thread_stack_bottom() != NULL &&
 887          initial_thread_stack_size()   != 0,
 888          "os::init did not locate initial thread's stack region");
 889   if ((address)&dummy >= initial_thread_stack_bottom() &&
 890       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 891     return true;
 892   } else {
 893     return false;
 894   }
 895 }
 896 
 897 // Find the virtual memory area that contains addr
 898 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 899   FILE *fp = fopen("/proc/self/maps", "r");
 900   if (fp) {
 901     address low, high;
 902     while (!feof(fp)) {
 903       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 904         if (low <= addr && addr < high) {
 905           if (vma_low)  *vma_low  = low;
 906           if (vma_high) *vma_high = high;
 907           fclose(fp);
 908           return true;
 909         }
 910       }
 911       for (;;) {
 912         int ch = fgetc(fp);
 913         if (ch == EOF || ch == (int)'\n') break;
 914       }
 915     }
 916     fclose(fp);
 917   }
 918   return false;
 919 }
 920 
 921 // Locate initial thread stack. This special handling of initial thread stack
 922 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 923 // bogus value for the primordial process thread. While the launcher has created
 924 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 925 // JNI invocation API from a primordial thread.
 926 void os::Linux::capture_initial_stack(size_t max_size) {
 927 
 928   // max_size is either 0 (which means accept OS default for thread stacks) or
 929   // a user-specified value known to be at least the minimum needed. If we
 930   // are actually on the primordial thread we can make it appear that we have a
 931   // smaller max_size stack by inserting the guard pages at that location. But we
 932   // cannot do anything to emulate a larger stack than what has been provided by
 933   // the OS or threading library. In fact if we try to use a stack greater than
 934   // what is set by rlimit then we will crash the hosting process.
 935 
 936   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 937   // If this is "unlimited" then it will be a huge value.
 938   struct rlimit rlim;
 939   getrlimit(RLIMIT_STACK, &rlim);
 940   size_t stack_size = rlim.rlim_cur;
 941 
 942   // 6308388: a bug in ld.so will relocate its own .data section to the
 943   //   lower end of primordial stack; reduce ulimit -s value a little bit
 944   //   so we won't install guard page on ld.so's data section.
 945   stack_size -= 2 * page_size();
 946 
 947   // Try to figure out where the stack base (top) is. This is harder.
 948   //
 949   // When an application is started, glibc saves the initial stack pointer in
 950   // a global variable "__libc_stack_end", which is then used by system
 951   // libraries. __libc_stack_end should be pretty close to stack top. The
 952   // variable is available since the very early days. However, because it is
 953   // a private interface, it could disappear in the future.
 954   //
 955   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 956   // to __libc_stack_end, it is very close to stack top, but isn't the real
 957   // stack top. Note that /proc may not exist if VM is running as a chroot
 958   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 959   // /proc/<pid>/stat could change in the future (though unlikely).
 960   //
 961   // We try __libc_stack_end first. If that doesn't work, look for
 962   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 963   // as a hint, which should work well in most cases.
 964 
 965   uintptr_t stack_start;
 966 
 967   // try __libc_stack_end first
 968   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 969   if (p && *p) {
 970     stack_start = *p;
 971   } else {
 972     // see if we can get the start_stack field from /proc/self/stat
 973     FILE *fp;
 974     int pid;
 975     char state;
 976     int ppid;
 977     int pgrp;
 978     int session;
 979     int nr;
 980     int tpgrp;
 981     unsigned long flags;
 982     unsigned long minflt;
 983     unsigned long cminflt;
 984     unsigned long majflt;
 985     unsigned long cmajflt;
 986     unsigned long utime;
 987     unsigned long stime;
 988     long cutime;
 989     long cstime;
 990     long prio;
 991     long nice;
 992     long junk;
 993     long it_real;
 994     uintptr_t start;
 995     uintptr_t vsize;
 996     intptr_t rss;
 997     uintptr_t rsslim;
 998     uintptr_t scodes;
 999     uintptr_t ecode;
1000     int i;
1001 
1002     // Figure what the primordial thread stack base is. Code is inspired
1003     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1004     // followed by command name surrounded by parentheses, state, etc.
1005     char stat[2048];
1006     int statlen;
1007 
1008     fp = fopen("/proc/self/stat", "r");
1009     if (fp) {
1010       statlen = fread(stat, 1, 2047, fp);
1011       stat[statlen] = '\0';
1012       fclose(fp);
1013 
1014       // Skip pid and the command string. Note that we could be dealing with
1015       // weird command names, e.g. user could decide to rename java launcher
1016       // to "java 1.4.2 :)", then the stat file would look like
1017       //                1234 (java 1.4.2 :)) R ... ...
1018       // We don't really need to know the command string, just find the last
1019       // occurrence of ")" and then start parsing from there. See bug 4726580.
1020       char * s = strrchr(stat, ')');
1021 
1022       i = 0;
1023       if (s) {
1024         // Skip blank chars
1025         do { s++; } while (s && isspace(*s));
1026 
1027 #define _UFM UINTX_FORMAT
1028 #define _DFM INTX_FORMAT
1029 
1030         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1031         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1032         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1033                    &state,          // 3  %c
1034                    &ppid,           // 4  %d
1035                    &pgrp,           // 5  %d
1036                    &session,        // 6  %d
1037                    &nr,             // 7  %d
1038                    &tpgrp,          // 8  %d
1039                    &flags,          // 9  %lu
1040                    &minflt,         // 10 %lu
1041                    &cminflt,        // 11 %lu
1042                    &majflt,         // 12 %lu
1043                    &cmajflt,        // 13 %lu
1044                    &utime,          // 14 %lu
1045                    &stime,          // 15 %lu
1046                    &cutime,         // 16 %ld
1047                    &cstime,         // 17 %ld
1048                    &prio,           // 18 %ld
1049                    &nice,           // 19 %ld
1050                    &junk,           // 20 %ld
1051                    &it_real,        // 21 %ld
1052                    &start,          // 22 UINTX_FORMAT
1053                    &vsize,          // 23 UINTX_FORMAT
1054                    &rss,            // 24 INTX_FORMAT
1055                    &rsslim,         // 25 UINTX_FORMAT
1056                    &scodes,         // 26 UINTX_FORMAT
1057                    &ecode,          // 27 UINTX_FORMAT
1058                    &stack_start);   // 28 UINTX_FORMAT
1059       }
1060 
1061 #undef _UFM
1062 #undef _DFM
1063 
1064       if (i != 28 - 2) {
1065         assert(false, "Bad conversion from /proc/self/stat");
1066         // product mode - assume we are the initial thread, good luck in the
1067         // embedded case.
1068         warning("Can't detect initial thread stack location - bad conversion");
1069         stack_start = (uintptr_t) &rlim;
1070       }
1071     } else {
1072       // For some reason we can't open /proc/self/stat (for example, running on
1073       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1074       // most cases, so don't abort:
1075       warning("Can't detect initial thread stack location - no /proc/self/stat");
1076       stack_start = (uintptr_t) &rlim;
1077     }
1078   }
1079 
1080   // Now we have a pointer (stack_start) very close to the stack top, the
1081   // next thing to do is to figure out the exact location of stack top. We
1082   // can find out the virtual memory area that contains stack_start by
1083   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1084   // and its upper limit is the real stack top. (again, this would fail if
1085   // running inside chroot, because /proc may not exist.)
1086 
1087   uintptr_t stack_top;
1088   address low, high;
1089   if (find_vma((address)stack_start, &low, &high)) {
1090     // success, "high" is the true stack top. (ignore "low", because initial
1091     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1092     stack_top = (uintptr_t)high;
1093   } else {
1094     // failed, likely because /proc/self/maps does not exist
1095     warning("Can't detect initial thread stack location - find_vma failed");
1096     // best effort: stack_start is normally within a few pages below the real
1097     // stack top, use it as stack top, and reduce stack size so we won't put
1098     // guard page outside stack.
1099     stack_top = stack_start;
1100     stack_size -= 16 * page_size();
1101   }
1102 
1103   // stack_top could be partially down the page so align it
1104   stack_top = align_up(stack_top, page_size());
1105 
1106   // Allowed stack value is minimum of max_size and what we derived from rlimit
1107   if (max_size > 0) {
1108     _initial_thread_stack_size = MIN2(max_size, stack_size);
1109   } else {
1110     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1111     // clamp it at 8MB as we do on Solaris
1112     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1113   }
1114   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1115   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1116 
1117   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1118 
1119   if (log_is_enabled(Info, os, thread)) {
1120     // See if we seem to be on primordial process thread
1121     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1122                       uintptr_t(&rlim) < stack_top;
1123 
1124     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1125                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1126                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1127                          stack_top, intptr_t(_initial_thread_stack_bottom));
1128   }
1129 }
1130 
1131 ////////////////////////////////////////////////////////////////////////////////
1132 // time support
1133 
1134 // Time since start-up in seconds to a fine granularity.
1135 // Used by VMSelfDestructTimer and the MemProfiler.
1136 double os::elapsedTime() {
1137 
1138   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1139 }
1140 
1141 jlong os::elapsed_counter() {
1142   return javaTimeNanos() - initial_time_count;
1143 }
1144 
1145 jlong os::elapsed_frequency() {
1146   return NANOSECS_PER_SEC; // nanosecond resolution
1147 }
1148 
1149 bool os::supports_vtime() { return true; }
1150 bool os::enable_vtime()   { return false; }
1151 bool os::vtime_enabled()  { return false; }
1152 
1153 double os::elapsedVTime() {
1154   struct rusage usage;
1155   int retval = getrusage(RUSAGE_THREAD, &usage);
1156   if (retval == 0) {
1157     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1158   } else {
1159     // better than nothing, but not much
1160     return elapsedTime();
1161   }
1162 }
1163 
1164 jlong os::javaTimeMillis() {
1165   timeval time;
1166   int status = gettimeofday(&time, NULL);
1167   assert(status != -1, "linux error");
1168   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1169 }
1170 
1171 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1172   timeval time;
1173   int status = gettimeofday(&time, NULL);
1174   assert(status != -1, "linux error");
1175   seconds = jlong(time.tv_sec);
1176   nanos = jlong(time.tv_usec) * 1000;
1177 }
1178 
1179 
1180 #ifndef CLOCK_MONOTONIC
1181   #define CLOCK_MONOTONIC (1)
1182 #endif
1183 
1184 void os::Linux::clock_init() {
1185   // we do dlopen's in this particular order due to bug in linux
1186   // dynamical loader (see 6348968) leading to crash on exit
1187   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1188   if (handle == NULL) {
1189     handle = dlopen("librt.so", RTLD_LAZY);
1190   }
1191 
1192   if (handle) {
1193     int (*clock_getres_func)(clockid_t, struct timespec*) =
1194            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1195     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1196            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1197     if (clock_getres_func && clock_gettime_func) {
1198       // See if monotonic clock is supported by the kernel. Note that some
1199       // early implementations simply return kernel jiffies (updated every
1200       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1201       // for nano time (though the monotonic property is still nice to have).
1202       // It's fixed in newer kernels, however clock_getres() still returns
1203       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1204       // resolution for now. Hopefully as people move to new kernels, this
1205       // won't be a problem.
1206       struct timespec res;
1207       struct timespec tp;
1208       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1209           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1210         // yes, monotonic clock is supported
1211         _clock_gettime = clock_gettime_func;
1212         return;
1213       } else {
1214         // close librt if there is no monotonic clock
1215         dlclose(handle);
1216       }
1217     }
1218   }
1219   warning("No monotonic clock was available - timed services may " \
1220           "be adversely affected if the time-of-day clock changes");
1221 }
1222 
1223 #ifndef SYS_clock_getres
1224   #if defined(X86) || defined(PPC64) || defined(S390)
1225     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1226     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1227   #else
1228     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1229     #define sys_clock_getres(x,y)  -1
1230   #endif
1231 #else
1232   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1233 #endif
1234 
1235 void os::Linux::fast_thread_clock_init() {
1236   if (!UseLinuxPosixThreadCPUClocks) {
1237     return;
1238   }
1239   clockid_t clockid;
1240   struct timespec tp;
1241   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1242       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1243 
1244   // Switch to using fast clocks for thread cpu time if
1245   // the sys_clock_getres() returns 0 error code.
1246   // Note, that some kernels may support the current thread
1247   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1248   // returned by the pthread_getcpuclockid().
1249   // If the fast Posix clocks are supported then the sys_clock_getres()
1250   // must return at least tp.tv_sec == 0 which means a resolution
1251   // better than 1 sec. This is extra check for reliability.
1252 
1253   if (pthread_getcpuclockid_func &&
1254       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1255       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1256     _supports_fast_thread_cpu_time = true;
1257     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1258   }
1259 }
1260 
1261 jlong os::javaTimeNanos() {
1262   if (os::supports_monotonic_clock()) {
1263     struct timespec tp;
1264     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1265     assert(status == 0, "gettime error");
1266     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1267     return result;
1268   } else {
1269     timeval time;
1270     int status = gettimeofday(&time, NULL);
1271     assert(status != -1, "linux error");
1272     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1273     return 1000 * usecs;
1274   }
1275 }
1276 
1277 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1278   if (os::supports_monotonic_clock()) {
1279     info_ptr->max_value = ALL_64_BITS;
1280 
1281     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1282     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1283     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1284   } else {
1285     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1286     info_ptr->max_value = ALL_64_BITS;
1287 
1288     // gettimeofday is a real time clock so it skips
1289     info_ptr->may_skip_backward = true;
1290     info_ptr->may_skip_forward = true;
1291   }
1292 
1293   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1294 }
1295 
1296 // Return the real, user, and system times in seconds from an
1297 // arbitrary fixed point in the past.
1298 bool os::getTimesSecs(double* process_real_time,
1299                       double* process_user_time,
1300                       double* process_system_time) {
1301   struct tms ticks;
1302   clock_t real_ticks = times(&ticks);
1303 
1304   if (real_ticks == (clock_t) (-1)) {
1305     return false;
1306   } else {
1307     double ticks_per_second = (double) clock_tics_per_sec;
1308     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1309     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1310     *process_real_time = ((double) real_ticks) / ticks_per_second;
1311 
1312     return true;
1313   }
1314 }
1315 
1316 
1317 char * os::local_time_string(char *buf, size_t buflen) {
1318   struct tm t;
1319   time_t long_time;
1320   time(&long_time);
1321   localtime_r(&long_time, &t);
1322   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1323                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1324                t.tm_hour, t.tm_min, t.tm_sec);
1325   return buf;
1326 }
1327 
1328 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1329   return localtime_r(clock, res);
1330 }
1331 
1332 ////////////////////////////////////////////////////////////////////////////////
1333 // runtime exit support
1334 
1335 // Note: os::shutdown() might be called very early during initialization, or
1336 // called from signal handler. Before adding something to os::shutdown(), make
1337 // sure it is async-safe and can handle partially initialized VM.
1338 void os::shutdown() {
1339 
1340   // allow PerfMemory to attempt cleanup of any persistent resources
1341   perfMemory_exit();
1342 
1343   // needs to remove object in file system
1344   AttachListener::abort();
1345 
1346   // flush buffered output, finish log files
1347   ostream_abort();
1348 
1349   // Check for abort hook
1350   abort_hook_t abort_hook = Arguments::abort_hook();
1351   if (abort_hook != NULL) {
1352     abort_hook();
1353   }
1354 
1355 }
1356 
1357 // Note: os::abort() might be called very early during initialization, or
1358 // called from signal handler. Before adding something to os::abort(), make
1359 // sure it is async-safe and can handle partially initialized VM.
1360 void os::abort(bool dump_core, void* siginfo, const void* context) {
1361   os::shutdown();
1362   if (dump_core) {
1363 #ifndef PRODUCT
1364     fdStream out(defaultStream::output_fd());
1365     out.print_raw("Current thread is ");
1366     char buf[16];
1367     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1368     out.print_raw_cr(buf);
1369     out.print_raw_cr("Dumping core ...");
1370 #endif
1371     ::abort(); // dump core
1372   }
1373 
1374   ::exit(1);
1375 }
1376 
1377 // Die immediately, no exit hook, no abort hook, no cleanup.
1378 void os::die() {
1379   ::abort();
1380 }
1381 
1382 
1383 // This method is a copy of JDK's sysGetLastErrorString
1384 // from src/solaris/hpi/src/system_md.c
1385 
1386 size_t os::lasterror(char *buf, size_t len) {
1387   if (errno == 0)  return 0;
1388 
1389   const char *s = os::strerror(errno);
1390   size_t n = ::strlen(s);
1391   if (n >= len) {
1392     n = len - 1;
1393   }
1394   ::strncpy(buf, s, n);
1395   buf[n] = '\0';
1396   return n;
1397 }
1398 
1399 // thread_id is kernel thread id (similar to Solaris LWP id)
1400 intx os::current_thread_id() { return os::Linux::gettid(); }
1401 int os::current_process_id() {
1402   return ::getpid();
1403 }
1404 
1405 // DLL functions
1406 
1407 const char* os::dll_file_extension() { return ".so"; }
1408 
1409 // This must be hard coded because it's the system's temporary
1410 // directory not the java application's temp directory, ala java.io.tmpdir.
1411 const char* os::get_temp_directory() { return "/tmp"; }
1412 
1413 static bool file_exists(const char* filename) {
1414   struct stat statbuf;
1415   if (filename == NULL || strlen(filename) == 0) {
1416     return false;
1417   }
1418   return os::stat(filename, &statbuf) == 0;
1419 }
1420 
1421 // check if addr is inside libjvm.so
1422 bool os::address_is_in_vm(address addr) {
1423   static address libjvm_base_addr;
1424   Dl_info dlinfo;
1425 
1426   if (libjvm_base_addr == NULL) {
1427     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1428       libjvm_base_addr = (address)dlinfo.dli_fbase;
1429     }
1430     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1431   }
1432 
1433   if (dladdr((void *)addr, &dlinfo) != 0) {
1434     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1435   }
1436 
1437   return false;
1438 }
1439 
1440 bool os::dll_address_to_function_name(address addr, char *buf,
1441                                       int buflen, int *offset,
1442                                       bool demangle) {
1443   // buf is not optional, but offset is optional
1444   assert(buf != NULL, "sanity check");
1445 
1446   Dl_info dlinfo;
1447 
1448   if (dladdr((void*)addr, &dlinfo) != 0) {
1449     // see if we have a matching symbol
1450     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1451       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1452         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1453       }
1454       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1455       return true;
1456     }
1457     // no matching symbol so try for just file info
1458     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1459       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1460                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1461         return true;
1462       }
1463     }
1464   }
1465 
1466   buf[0] = '\0';
1467   if (offset != NULL) *offset = -1;
1468   return false;
1469 }
1470 
1471 struct _address_to_library_name {
1472   address addr;          // input : memory address
1473   size_t  buflen;        //         size of fname
1474   char*   fname;         // output: library name
1475   address base;          //         library base addr
1476 };
1477 
1478 static int address_to_library_name_callback(struct dl_phdr_info *info,
1479                                             size_t size, void *data) {
1480   int i;
1481   bool found = false;
1482   address libbase = NULL;
1483   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1484 
1485   // iterate through all loadable segments
1486   for (i = 0; i < info->dlpi_phnum; i++) {
1487     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1488     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1489       // base address of a library is the lowest address of its loaded
1490       // segments.
1491       if (libbase == NULL || libbase > segbase) {
1492         libbase = segbase;
1493       }
1494       // see if 'addr' is within current segment
1495       if (segbase <= d->addr &&
1496           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1497         found = true;
1498       }
1499     }
1500   }
1501 
1502   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1503   // so dll_address_to_library_name() can fall through to use dladdr() which
1504   // can figure out executable name from argv[0].
1505   if (found && info->dlpi_name && info->dlpi_name[0]) {
1506     d->base = libbase;
1507     if (d->fname) {
1508       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1509     }
1510     return 1;
1511   }
1512   return 0;
1513 }
1514 
1515 bool os::dll_address_to_library_name(address addr, char* buf,
1516                                      int buflen, int* offset) {
1517   // buf is not optional, but offset is optional
1518   assert(buf != NULL, "sanity check");
1519 
1520   Dl_info dlinfo;
1521   struct _address_to_library_name data;
1522 
1523   // There is a bug in old glibc dladdr() implementation that it could resolve
1524   // to wrong library name if the .so file has a base address != NULL. Here
1525   // we iterate through the program headers of all loaded libraries to find
1526   // out which library 'addr' really belongs to. This workaround can be
1527   // removed once the minimum requirement for glibc is moved to 2.3.x.
1528   data.addr = addr;
1529   data.fname = buf;
1530   data.buflen = buflen;
1531   data.base = NULL;
1532   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1533 
1534   if (rslt) {
1535     // buf already contains library name
1536     if (offset) *offset = addr - data.base;
1537     return true;
1538   }
1539   if (dladdr((void*)addr, &dlinfo) != 0) {
1540     if (dlinfo.dli_fname != NULL) {
1541       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1542     }
1543     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1544       *offset = addr - (address)dlinfo.dli_fbase;
1545     }
1546     return true;
1547   }
1548 
1549   buf[0] = '\0';
1550   if (offset) *offset = -1;
1551   return false;
1552 }
1553 
1554 // Loads .dll/.so and
1555 // in case of error it checks if .dll/.so was built for the
1556 // same architecture as Hotspot is running on
1557 
1558 
1559 // Remember the stack's state. The Linux dynamic linker will change
1560 // the stack to 'executable' at most once, so we must safepoint only once.
1561 bool os::Linux::_stack_is_executable = false;
1562 
1563 // VM operation that loads a library.  This is necessary if stack protection
1564 // of the Java stacks can be lost during loading the library.  If we
1565 // do not stop the Java threads, they can stack overflow before the stacks
1566 // are protected again.
1567 class VM_LinuxDllLoad: public VM_Operation {
1568  private:
1569   const char *_filename;
1570   char *_ebuf;
1571   int _ebuflen;
1572   void *_lib;
1573  public:
1574   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1575     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1576   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1577   void doit() {
1578     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1579     os::Linux::_stack_is_executable = true;
1580   }
1581   void* loaded_library() { return _lib; }
1582 };
1583 
1584 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1585   void * result = NULL;
1586   bool load_attempted = false;
1587 
1588   // Check whether the library to load might change execution rights
1589   // of the stack. If they are changed, the protection of the stack
1590   // guard pages will be lost. We need a safepoint to fix this.
1591   //
1592   // See Linux man page execstack(8) for more info.
1593   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1594     if (!ElfFile::specifies_noexecstack(filename)) {
1595       if (!is_init_completed()) {
1596         os::Linux::_stack_is_executable = true;
1597         // This is OK - No Java threads have been created yet, and hence no
1598         // stack guard pages to fix.
1599         //
1600         // This should happen only when you are building JDK7 using a very
1601         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1602         //
1603         // Dynamic loader will make all stacks executable after
1604         // this function returns, and will not do that again.
1605         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1606       } else {
1607         warning("You have loaded library %s which might have disabled stack guard. "
1608                 "The VM will try to fix the stack guard now.\n"
1609                 "It's highly recommended that you fix the library with "
1610                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1611                 filename);
1612 
1613         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1614         JavaThread *jt = JavaThread::current();
1615         if (jt->thread_state() != _thread_in_native) {
1616           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1617           // that requires ExecStack. Cannot enter safe point. Let's give up.
1618           warning("Unable to fix stack guard. Giving up.");
1619         } else {
1620           if (!LoadExecStackDllInVMThread) {
1621             // This is for the case where the DLL has an static
1622             // constructor function that executes JNI code. We cannot
1623             // load such DLLs in the VMThread.
1624             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1625           }
1626 
1627           ThreadInVMfromNative tiv(jt);
1628           debug_only(VMNativeEntryWrapper vew;)
1629 
1630           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1631           VMThread::execute(&op);
1632           if (LoadExecStackDllInVMThread) {
1633             result = op.loaded_library();
1634           }
1635           load_attempted = true;
1636         }
1637       }
1638     }
1639   }
1640 
1641   if (!load_attempted) {
1642     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1643   }
1644 
1645   if (result != NULL) {
1646     // Successful loading
1647     return result;
1648   }
1649 
1650   Elf32_Ehdr elf_head;
1651   int diag_msg_max_length=ebuflen-strlen(ebuf);
1652   char* diag_msg_buf=ebuf+strlen(ebuf);
1653 
1654   if (diag_msg_max_length==0) {
1655     // No more space in ebuf for additional diagnostics message
1656     return NULL;
1657   }
1658 
1659 
1660   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1661 
1662   if (file_descriptor < 0) {
1663     // Can't open library, report dlerror() message
1664     return NULL;
1665   }
1666 
1667   bool failed_to_read_elf_head=
1668     (sizeof(elf_head)!=
1669      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1670 
1671   ::close(file_descriptor);
1672   if (failed_to_read_elf_head) {
1673     // file i/o error - report dlerror() msg
1674     return NULL;
1675   }
1676 
1677   typedef struct {
1678     Elf32_Half    code;         // Actual value as defined in elf.h
1679     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1680     unsigned char elf_class;    // 32 or 64 bit
1681     unsigned char endianess;    // MSB or LSB
1682     char*         name;         // String representation
1683   } arch_t;
1684 
1685 #ifndef EM_486
1686   #define EM_486          6               /* Intel 80486 */
1687 #endif
1688 #ifndef EM_AARCH64
1689   #define EM_AARCH64    183               /* ARM AARCH64 */
1690 #endif
1691 
1692   static const arch_t arch_array[]={
1693     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1694     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1695     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1696     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1697     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1698     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1699     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1700     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1701 #if defined(VM_LITTLE_ENDIAN)
1702     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1703     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1704 #else
1705     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1706     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1707 #endif
1708     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1709     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1710     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1711     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1712     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1713     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1714     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1715     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1716   };
1717 
1718 #if  (defined IA32)
1719   static  Elf32_Half running_arch_code=EM_386;
1720 #elif   (defined AMD64)
1721   static  Elf32_Half running_arch_code=EM_X86_64;
1722 #elif  (defined IA64)
1723   static  Elf32_Half running_arch_code=EM_IA_64;
1724 #elif  (defined __sparc) && (defined _LP64)
1725   static  Elf32_Half running_arch_code=EM_SPARCV9;
1726 #elif  (defined __sparc) && (!defined _LP64)
1727   static  Elf32_Half running_arch_code=EM_SPARC;
1728 #elif  (defined __powerpc64__)
1729   static  Elf32_Half running_arch_code=EM_PPC64;
1730 #elif  (defined __powerpc__)
1731   static  Elf32_Half running_arch_code=EM_PPC;
1732 #elif  (defined AARCH64)
1733   static  Elf32_Half running_arch_code=EM_AARCH64;
1734 #elif  (defined ARM)
1735   static  Elf32_Half running_arch_code=EM_ARM;
1736 #elif  (defined S390)
1737   static  Elf32_Half running_arch_code=EM_S390;
1738 #elif  (defined ALPHA)
1739   static  Elf32_Half running_arch_code=EM_ALPHA;
1740 #elif  (defined MIPSEL)
1741   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1742 #elif  (defined PARISC)
1743   static  Elf32_Half running_arch_code=EM_PARISC;
1744 #elif  (defined MIPS)
1745   static  Elf32_Half running_arch_code=EM_MIPS;
1746 #elif  (defined M68K)
1747   static  Elf32_Half running_arch_code=EM_68K;
1748 #elif  (defined SH)
1749   static  Elf32_Half running_arch_code=EM_SH;
1750 #else
1751     #error Method os::dll_load requires that one of following is defined:\
1752         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1753 #endif
1754 
1755   // Identify compatability class for VM's architecture and library's architecture
1756   // Obtain string descriptions for architectures
1757 
1758   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1759   int running_arch_index=-1;
1760 
1761   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1762     if (running_arch_code == arch_array[i].code) {
1763       running_arch_index    = i;
1764     }
1765     if (lib_arch.code == arch_array[i].code) {
1766       lib_arch.compat_class = arch_array[i].compat_class;
1767       lib_arch.name         = arch_array[i].name;
1768     }
1769   }
1770 
1771   assert(running_arch_index != -1,
1772          "Didn't find running architecture code (running_arch_code) in arch_array");
1773   if (running_arch_index == -1) {
1774     // Even though running architecture detection failed
1775     // we may still continue with reporting dlerror() message
1776     return NULL;
1777   }
1778 
1779   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1780     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1781     return NULL;
1782   }
1783 
1784 #ifndef S390
1785   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1786     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1787     return NULL;
1788   }
1789 #endif // !S390
1790 
1791   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1792     if (lib_arch.name!=NULL) {
1793       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1794                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1795                  lib_arch.name, arch_array[running_arch_index].name);
1796     } else {
1797       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1798                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1799                  lib_arch.code,
1800                  arch_array[running_arch_index].name);
1801     }
1802   }
1803 
1804   return NULL;
1805 }
1806 
1807 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1808                                 int ebuflen) {
1809   void * result = ::dlopen(filename, RTLD_LAZY);
1810   if (result == NULL) {
1811     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1812     ebuf[ebuflen-1] = '\0';
1813   }
1814   return result;
1815 }
1816 
1817 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1818                                        int ebuflen) {
1819   void * result = NULL;
1820   if (LoadExecStackDllInVMThread) {
1821     result = dlopen_helper(filename, ebuf, ebuflen);
1822   }
1823 
1824   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1825   // library that requires an executable stack, or which does not have this
1826   // stack attribute set, dlopen changes the stack attribute to executable. The
1827   // read protection of the guard pages gets lost.
1828   //
1829   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1830   // may have been queued at the same time.
1831 
1832   if (!_stack_is_executable) {
1833     JavaThread *jt = Threads::first();
1834 
1835     while (jt) {
1836       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1837           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1838         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1839           warning("Attempt to reguard stack yellow zone failed.");
1840         }
1841       }
1842       jt = jt->next();
1843     }
1844   }
1845 
1846   return result;
1847 }
1848 
1849 void* os::dll_lookup(void* handle, const char* name) {
1850   void* res = dlsym(handle, name);
1851   return res;
1852 }
1853 
1854 void* os::get_default_process_handle() {
1855   return (void*)::dlopen(NULL, RTLD_LAZY);
1856 }
1857 
1858 static bool _print_ascii_file(const char* filename, outputStream* st) {
1859   int fd = ::open(filename, O_RDONLY);
1860   if (fd == -1) {
1861     return false;
1862   }
1863 
1864   char buf[33];
1865   int bytes;
1866   buf[32] = '\0';
1867   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1868     st->print_raw(buf, bytes);
1869   }
1870 
1871   ::close(fd);
1872 
1873   return true;
1874 }
1875 
1876 void os::print_dll_info(outputStream *st) {
1877   st->print_cr("Dynamic libraries:");
1878 
1879   char fname[32];
1880   pid_t pid = os::Linux::gettid();
1881 
1882   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1883 
1884   if (!_print_ascii_file(fname, st)) {
1885     st->print("Can not get library information for pid = %d\n", pid);
1886   }
1887 }
1888 
1889 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1890   FILE *procmapsFile = NULL;
1891 
1892   // Open the procfs maps file for the current process
1893   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1894     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1895     char line[PATH_MAX + 100];
1896 
1897     // Read line by line from 'file'
1898     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1899       u8 base, top, offset, inode;
1900       char permissions[5];
1901       char device[6];
1902       char name[PATH_MAX + 1];
1903 
1904       // Parse fields from line
1905       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1906              &base, &top, permissions, &offset, device, &inode, name);
1907 
1908       // Filter by device id '00:00' so that we only get file system mapped files.
1909       if (strcmp(device, "00:00") != 0) {
1910 
1911         // Call callback with the fields of interest
1912         if(callback(name, (address)base, (address)top, param)) {
1913           // Oops abort, callback aborted
1914           fclose(procmapsFile);
1915           return 1;
1916         }
1917       }
1918     }
1919     fclose(procmapsFile);
1920   }
1921   return 0;
1922 }
1923 
1924 void os::print_os_info_brief(outputStream* st) {
1925   os::Linux::print_distro_info(st);
1926 
1927   os::Posix::print_uname_info(st);
1928 
1929   os::Linux::print_libversion_info(st);
1930 
1931 }
1932 
1933 void os::print_os_info(outputStream* st) {
1934   st->print("OS:");
1935 
1936   os::Linux::print_distro_info(st);
1937 
1938   os::Posix::print_uname_info(st);
1939 
1940   // Print warning if unsafe chroot environment detected
1941   if (unsafe_chroot_detected) {
1942     st->print("WARNING!! ");
1943     st->print_cr("%s", unstable_chroot_error);
1944   }
1945 
1946   os::Linux::print_libversion_info(st);
1947 
1948   os::Posix::print_rlimit_info(st);
1949 
1950   os::Posix::print_load_average(st);
1951 
1952   os::Linux::print_full_memory_info(st);
1953 }
1954 
1955 // Try to identify popular distros.
1956 // Most Linux distributions have a /etc/XXX-release file, which contains
1957 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1958 // file that also contains the OS version string. Some have more than one
1959 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1960 // /etc/redhat-release.), so the order is important.
1961 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1962 // their own specific XXX-release file as well as a redhat-release file.
1963 // Because of this the XXX-release file needs to be searched for before the
1964 // redhat-release file.
1965 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1966 // search for redhat-release / SuSE-release needs to be before lsb-release.
1967 // Since the lsb-release file is the new standard it needs to be searched
1968 // before the older style release files.
1969 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1970 // next to last resort.  The os-release file is a new standard that contains
1971 // distribution information and the system-release file seems to be an old
1972 // standard that has been replaced by the lsb-release and os-release files.
1973 // Searching for the debian_version file is the last resort.  It contains
1974 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1975 // "Debian " is printed before the contents of the debian_version file.
1976 
1977 const char* distro_files[] = {
1978   "/etc/oracle-release",
1979   "/etc/mandriva-release",
1980   "/etc/mandrake-release",
1981   "/etc/sun-release",
1982   "/etc/redhat-release",
1983   "/etc/SuSE-release",
1984   "/etc/lsb-release",
1985   "/etc/turbolinux-release",
1986   "/etc/gentoo-release",
1987   "/etc/ltib-release",
1988   "/etc/angstrom-version",
1989   "/etc/system-release",
1990   "/etc/os-release",
1991   NULL };
1992 
1993 void os::Linux::print_distro_info(outputStream* st) {
1994   for (int i = 0;; i++) {
1995     const char* file = distro_files[i];
1996     if (file == NULL) {
1997       break;  // done
1998     }
1999     // If file prints, we found it.
2000     if (_print_ascii_file(file, st)) {
2001       return;
2002     }
2003   }
2004 
2005   if (file_exists("/etc/debian_version")) {
2006     st->print("Debian ");
2007     _print_ascii_file("/etc/debian_version", st);
2008   } else {
2009     st->print("Linux");
2010   }
2011   st->cr();
2012 }
2013 
2014 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2015   char buf[256];
2016   while (fgets(buf, sizeof(buf), fp)) {
2017     // Edit out extra stuff in expected format
2018     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2019       char* ptr = strstr(buf, "\"");  // the name is in quotes
2020       if (ptr != NULL) {
2021         ptr++; // go beyond first quote
2022         char* nl = strchr(ptr, '\"');
2023         if (nl != NULL) *nl = '\0';
2024         strncpy(distro, ptr, length);
2025       } else {
2026         ptr = strstr(buf, "=");
2027         ptr++; // go beyond equals then
2028         char* nl = strchr(ptr, '\n');
2029         if (nl != NULL) *nl = '\0';
2030         strncpy(distro, ptr, length);
2031       }
2032       return;
2033     } else if (get_first_line) {
2034       char* nl = strchr(buf, '\n');
2035       if (nl != NULL) *nl = '\0';
2036       strncpy(distro, buf, length);
2037       return;
2038     }
2039   }
2040   // print last line and close
2041   char* nl = strchr(buf, '\n');
2042   if (nl != NULL) *nl = '\0';
2043   strncpy(distro, buf, length);
2044 }
2045 
2046 static void parse_os_info(char* distro, size_t length, const char* file) {
2047   FILE* fp = fopen(file, "r");
2048   if (fp != NULL) {
2049     // if suse format, print out first line
2050     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2051     parse_os_info_helper(fp, distro, length, get_first_line);
2052     fclose(fp);
2053   }
2054 }
2055 
2056 void os::get_summary_os_info(char* buf, size_t buflen) {
2057   for (int i = 0;; i++) {
2058     const char* file = distro_files[i];
2059     if (file == NULL) {
2060       break; // ran out of distro_files
2061     }
2062     if (file_exists(file)) {
2063       parse_os_info(buf, buflen, file);
2064       return;
2065     }
2066   }
2067   // special case for debian
2068   if (file_exists("/etc/debian_version")) {
2069     strncpy(buf, "Debian ", buflen);
2070     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2071   } else {
2072     strncpy(buf, "Linux", buflen);
2073   }
2074 }
2075 
2076 void os::Linux::print_libversion_info(outputStream* st) {
2077   // libc, pthread
2078   st->print("libc:");
2079   st->print("%s ", os::Linux::glibc_version());
2080   st->print("%s ", os::Linux::libpthread_version());
2081   st->cr();
2082 }
2083 
2084 void os::Linux::print_full_memory_info(outputStream* st) {
2085   st->print("\n/proc/meminfo:\n");
2086   _print_ascii_file("/proc/meminfo", st);
2087   st->cr();
2088 }
2089 
2090 void os::print_memory_info(outputStream* st) {
2091 
2092   st->print("Memory:");
2093   st->print(" %dk page", os::vm_page_size()>>10);
2094 
2095   // values in struct sysinfo are "unsigned long"
2096   struct sysinfo si;
2097   sysinfo(&si);
2098 
2099   st->print(", physical " UINT64_FORMAT "k",
2100             os::physical_memory() >> 10);
2101   st->print("(" UINT64_FORMAT "k free)",
2102             os::available_memory() >> 10);
2103   st->print(", swap " UINT64_FORMAT "k",
2104             ((jlong)si.totalswap * si.mem_unit) >> 10);
2105   st->print("(" UINT64_FORMAT "k free)",
2106             ((jlong)si.freeswap * si.mem_unit) >> 10);
2107   st->cr();
2108 }
2109 
2110 // Print the first "model name" line and the first "flags" line
2111 // that we find and nothing more. We assume "model name" comes
2112 // before "flags" so if we find a second "model name", then the
2113 // "flags" field is considered missing.
2114 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2115 #if defined(IA32) || defined(AMD64)
2116   // Other platforms have less repetitive cpuinfo files
2117   FILE *fp = fopen("/proc/cpuinfo", "r");
2118   if (fp) {
2119     while (!feof(fp)) {
2120       if (fgets(buf, buflen, fp)) {
2121         // Assume model name comes before flags
2122         bool model_name_printed = false;
2123         if (strstr(buf, "model name") != NULL) {
2124           if (!model_name_printed) {
2125             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2126             st->print_raw(buf);
2127             model_name_printed = true;
2128           } else {
2129             // model name printed but not flags?  Odd, just return
2130             fclose(fp);
2131             return true;
2132           }
2133         }
2134         // print the flags line too
2135         if (strstr(buf, "flags") != NULL) {
2136           st->print_raw(buf);
2137           fclose(fp);
2138           return true;
2139         }
2140       }
2141     }
2142     fclose(fp);
2143   }
2144 #endif // x86 platforms
2145   return false;
2146 }
2147 
2148 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2149   // Only print the model name if the platform provides this as a summary
2150   if (!print_model_name_and_flags(st, buf, buflen)) {
2151     st->print("\n/proc/cpuinfo:\n");
2152     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2153       st->print_cr("  <Not Available>");
2154     }
2155   }
2156 }
2157 
2158 #if defined(AMD64) || defined(IA32) || defined(X32)
2159 const char* search_string = "model name";
2160 #elif defined(M68K)
2161 const char* search_string = "CPU";
2162 #elif defined(PPC64)
2163 const char* search_string = "cpu";
2164 #elif defined(S390)
2165 const char* search_string = "processor";
2166 #elif defined(SPARC)
2167 const char* search_string = "cpu";
2168 #else
2169 const char* search_string = "Processor";
2170 #endif
2171 
2172 // Parses the cpuinfo file for string representing the model name.
2173 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2174   FILE* fp = fopen("/proc/cpuinfo", "r");
2175   if (fp != NULL) {
2176     while (!feof(fp)) {
2177       char buf[256];
2178       if (fgets(buf, sizeof(buf), fp)) {
2179         char* start = strstr(buf, search_string);
2180         if (start != NULL) {
2181           char *ptr = start + strlen(search_string);
2182           char *end = buf + strlen(buf);
2183           while (ptr != end) {
2184              // skip whitespace and colon for the rest of the name.
2185              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2186                break;
2187              }
2188              ptr++;
2189           }
2190           if (ptr != end) {
2191             // reasonable string, get rid of newline and keep the rest
2192             char* nl = strchr(buf, '\n');
2193             if (nl != NULL) *nl = '\0';
2194             strncpy(cpuinfo, ptr, length);
2195             fclose(fp);
2196             return;
2197           }
2198         }
2199       }
2200     }
2201     fclose(fp);
2202   }
2203   // cpuinfo not found or parsing failed, just print generic string.  The entire
2204   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2205 #if   defined(AARCH64)
2206   strncpy(cpuinfo, "AArch64", length);
2207 #elif defined(AMD64)
2208   strncpy(cpuinfo, "x86_64", length);
2209 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2210   strncpy(cpuinfo, "ARM", length);
2211 #elif defined(IA32)
2212   strncpy(cpuinfo, "x86_32", length);
2213 #elif defined(IA64)
2214   strncpy(cpuinfo, "IA64", length);
2215 #elif defined(PPC)
2216   strncpy(cpuinfo, "PPC64", length);
2217 #elif defined(S390)
2218   strncpy(cpuinfo, "S390", length);
2219 #elif defined(SPARC)
2220   strncpy(cpuinfo, "sparcv9", length);
2221 #elif defined(ZERO_LIBARCH)
2222   strncpy(cpuinfo, ZERO_LIBARCH, length);
2223 #else
2224   strncpy(cpuinfo, "unknown", length);
2225 #endif
2226 }
2227 
2228 static void print_signal_handler(outputStream* st, int sig,
2229                                  char* buf, size_t buflen);
2230 
2231 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2232   st->print_cr("Signal Handlers:");
2233   print_signal_handler(st, SIGSEGV, buf, buflen);
2234   print_signal_handler(st, SIGBUS , buf, buflen);
2235   print_signal_handler(st, SIGFPE , buf, buflen);
2236   print_signal_handler(st, SIGPIPE, buf, buflen);
2237   print_signal_handler(st, SIGXFSZ, buf, buflen);
2238   print_signal_handler(st, SIGILL , buf, buflen);
2239   print_signal_handler(st, SR_signum, buf, buflen);
2240   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2241   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2242   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2243   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2244 #if defined(PPC64)
2245   print_signal_handler(st, SIGTRAP, buf, buflen);
2246 #endif
2247 }
2248 
2249 static char saved_jvm_path[MAXPATHLEN] = {0};
2250 
2251 // Find the full path to the current module, libjvm.so
2252 void os::jvm_path(char *buf, jint buflen) {
2253   // Error checking.
2254   if (buflen < MAXPATHLEN) {
2255     assert(false, "must use a large-enough buffer");
2256     buf[0] = '\0';
2257     return;
2258   }
2259   // Lazy resolve the path to current module.
2260   if (saved_jvm_path[0] != 0) {
2261     strcpy(buf, saved_jvm_path);
2262     return;
2263   }
2264 
2265   char dli_fname[MAXPATHLEN];
2266   bool ret = dll_address_to_library_name(
2267                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2268                                          dli_fname, sizeof(dli_fname), NULL);
2269   assert(ret, "cannot locate libjvm");
2270   char *rp = NULL;
2271   if (ret && dli_fname[0] != '\0') {
2272     rp = os::Posix::realpath(dli_fname, buf, buflen);
2273   }
2274   if (rp == NULL) {
2275     return;
2276   }
2277 
2278   if (Arguments::sun_java_launcher_is_altjvm()) {
2279     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2280     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2281     // If "/jre/lib/" appears at the right place in the string, then
2282     // assume we are installed in a JDK and we're done. Otherwise, check
2283     // for a JAVA_HOME environment variable and fix up the path so it
2284     // looks like libjvm.so is installed there (append a fake suffix
2285     // hotspot/libjvm.so).
2286     const char *p = buf + strlen(buf) - 1;
2287     for (int count = 0; p > buf && count < 5; ++count) {
2288       for (--p; p > buf && *p != '/'; --p)
2289         /* empty */ ;
2290     }
2291 
2292     if (strncmp(p, "/jre/lib/", 9) != 0) {
2293       // Look for JAVA_HOME in the environment.
2294       char* java_home_var = ::getenv("JAVA_HOME");
2295       if (java_home_var != NULL && java_home_var[0] != 0) {
2296         char* jrelib_p;
2297         int len;
2298 
2299         // Check the current module name "libjvm.so".
2300         p = strrchr(buf, '/');
2301         if (p == NULL) {
2302           return;
2303         }
2304         assert(strstr(p, "/libjvm") == p, "invalid library name");
2305 
2306         rp = os::Posix::realpath(java_home_var, buf, buflen);
2307         if (rp == NULL) {
2308           return;
2309         }
2310 
2311         // determine if this is a legacy image or modules image
2312         // modules image doesn't have "jre" subdirectory
2313         len = strlen(buf);
2314         assert(len < buflen, "Ran out of buffer room");
2315         jrelib_p = buf + len;
2316         snprintf(jrelib_p, buflen-len, "/jre/lib");
2317         if (0 != access(buf, F_OK)) {
2318           snprintf(jrelib_p, buflen-len, "/lib");
2319         }
2320 
2321         if (0 == access(buf, F_OK)) {
2322           // Use current module name "libjvm.so"
2323           len = strlen(buf);
2324           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2325         } else {
2326           // Go back to path of .so
2327           rp = os::Posix::realpath(dli_fname, buf, buflen);
2328           if (rp == NULL) {
2329             return;
2330           }
2331         }
2332       }
2333     }
2334   }
2335 
2336   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2337   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2338 }
2339 
2340 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2341   // no prefix required, not even "_"
2342 }
2343 
2344 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2345   // no suffix required
2346 }
2347 
2348 ////////////////////////////////////////////////////////////////////////////////
2349 // sun.misc.Signal support
2350 
2351 static volatile jint sigint_count = 0;
2352 
2353 static void UserHandler(int sig, void *siginfo, void *context) {
2354   // 4511530 - sem_post is serialized and handled by the manager thread. When
2355   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2356   // don't want to flood the manager thread with sem_post requests.
2357   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2358     return;
2359   }
2360 
2361   // Ctrl-C is pressed during error reporting, likely because the error
2362   // handler fails to abort. Let VM die immediately.
2363   if (sig == SIGINT && VMError::is_error_reported()) {
2364     os::die();
2365   }
2366 
2367   os::signal_notify(sig);
2368 }
2369 
2370 void* os::user_handler() {
2371   return CAST_FROM_FN_PTR(void*, UserHandler);
2372 }
2373 
2374 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2375   struct timespec ts;
2376   // Semaphore's are always associated with CLOCK_REALTIME
2377   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2378   // see unpackTime for discussion on overflow checking
2379   if (sec >= MAX_SECS) {
2380     ts.tv_sec += MAX_SECS;
2381     ts.tv_nsec = 0;
2382   } else {
2383     ts.tv_sec += sec;
2384     ts.tv_nsec += nsec;
2385     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2386       ts.tv_nsec -= NANOSECS_PER_SEC;
2387       ++ts.tv_sec; // note: this must be <= max_secs
2388     }
2389   }
2390 
2391   return ts;
2392 }
2393 
2394 extern "C" {
2395   typedef void (*sa_handler_t)(int);
2396   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2397 }
2398 
2399 void* os::signal(int signal_number, void* handler) {
2400   struct sigaction sigAct, oldSigAct;
2401 
2402   sigfillset(&(sigAct.sa_mask));
2403   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2404   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2405 
2406   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2407     // -1 means registration failed
2408     return (void *)-1;
2409   }
2410 
2411   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2412 }
2413 
2414 void os::signal_raise(int signal_number) {
2415   ::raise(signal_number);
2416 }
2417 
2418 // The following code is moved from os.cpp for making this
2419 // code platform specific, which it is by its very nature.
2420 
2421 // Will be modified when max signal is changed to be dynamic
2422 int os::sigexitnum_pd() {
2423   return NSIG;
2424 }
2425 
2426 // a counter for each possible signal value
2427 static volatile jint pending_signals[NSIG+1] = { 0 };
2428 
2429 // Linux(POSIX) specific hand shaking semaphore.
2430 static sem_t sig_sem;
2431 static PosixSemaphore sr_semaphore;
2432 
2433 void os::signal_init_pd() {
2434   // Initialize signal structures
2435   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2436 
2437   // Initialize signal semaphore
2438   ::sem_init(&sig_sem, 0, 0);
2439 }
2440 
2441 void os::signal_notify(int sig) {
2442   Atomic::inc(&pending_signals[sig]);
2443   ::sem_post(&sig_sem);
2444 }
2445 
2446 static int check_pending_signals(bool wait) {
2447   Atomic::store(0, &sigint_count);
2448   for (;;) {
2449     for (int i = 0; i < NSIG + 1; i++) {
2450       jint n = pending_signals[i];
2451       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2452         return i;
2453       }
2454     }
2455     if (!wait) {
2456       return -1;
2457     }
2458     JavaThread *thread = JavaThread::current();
2459     ThreadBlockInVM tbivm(thread);
2460 
2461     bool threadIsSuspended;
2462     do {
2463       thread->set_suspend_equivalent();
2464       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2465       ::sem_wait(&sig_sem);
2466 
2467       // were we externally suspended while we were waiting?
2468       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2469       if (threadIsSuspended) {
2470         // The semaphore has been incremented, but while we were waiting
2471         // another thread suspended us. We don't want to continue running
2472         // while suspended because that would surprise the thread that
2473         // suspended us.
2474         ::sem_post(&sig_sem);
2475 
2476         thread->java_suspend_self();
2477       }
2478     } while (threadIsSuspended);
2479   }
2480 }
2481 
2482 int os::signal_lookup() {
2483   return check_pending_signals(false);
2484 }
2485 
2486 int os::signal_wait() {
2487   return check_pending_signals(true);
2488 }
2489 
2490 ////////////////////////////////////////////////////////////////////////////////
2491 // Virtual Memory
2492 
2493 int os::vm_page_size() {
2494   // Seems redundant as all get out
2495   assert(os::Linux::page_size() != -1, "must call os::init");
2496   return os::Linux::page_size();
2497 }
2498 
2499 // Solaris allocates memory by pages.
2500 int os::vm_allocation_granularity() {
2501   assert(os::Linux::page_size() != -1, "must call os::init");
2502   return os::Linux::page_size();
2503 }
2504 
2505 // Rationale behind this function:
2506 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2507 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2508 //  samples for JITted code. Here we create private executable mapping over the code cache
2509 //  and then we can use standard (well, almost, as mapping can change) way to provide
2510 //  info for the reporting script by storing timestamp and location of symbol
2511 void linux_wrap_code(char* base, size_t size) {
2512   static volatile jint cnt = 0;
2513 
2514   if (!UseOprofile) {
2515     return;
2516   }
2517 
2518   char buf[PATH_MAX+1];
2519   int num = Atomic::add(1, &cnt);
2520 
2521   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2522            os::get_temp_directory(), os::current_process_id(), num);
2523   unlink(buf);
2524 
2525   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2526 
2527   if (fd != -1) {
2528     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2529     if (rv != (off_t)-1) {
2530       if (::write(fd, "", 1) == 1) {
2531         mmap(base, size,
2532              PROT_READ|PROT_WRITE|PROT_EXEC,
2533              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2534       }
2535     }
2536     ::close(fd);
2537     unlink(buf);
2538   }
2539 }
2540 
2541 static bool recoverable_mmap_error(int err) {
2542   // See if the error is one we can let the caller handle. This
2543   // list of errno values comes from JBS-6843484. I can't find a
2544   // Linux man page that documents this specific set of errno
2545   // values so while this list currently matches Solaris, it may
2546   // change as we gain experience with this failure mode.
2547   switch (err) {
2548   case EBADF:
2549   case EINVAL:
2550   case ENOTSUP:
2551     // let the caller deal with these errors
2552     return true;
2553 
2554   default:
2555     // Any remaining errors on this OS can cause our reserved mapping
2556     // to be lost. That can cause confusion where different data
2557     // structures think they have the same memory mapped. The worst
2558     // scenario is if both the VM and a library think they have the
2559     // same memory mapped.
2560     return false;
2561   }
2562 }
2563 
2564 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2565                                     int err) {
2566   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2567           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2568           os::strerror(err), err);
2569 }
2570 
2571 static void warn_fail_commit_memory(char* addr, size_t size,
2572                                     size_t alignment_hint, bool exec,
2573                                     int err) {
2574   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2575           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2576           alignment_hint, exec, os::strerror(err), err);
2577 }
2578 
2579 // NOTE: Linux kernel does not really reserve the pages for us.
2580 //       All it does is to check if there are enough free pages
2581 //       left at the time of mmap(). This could be a potential
2582 //       problem.
2583 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2584   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2585   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2586                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2587   if (res != (uintptr_t) MAP_FAILED) {
2588     if (UseNUMAInterleaving) {
2589       numa_make_global(addr, size);
2590     }
2591     return 0;
2592   }
2593 
2594   int err = errno;  // save errno from mmap() call above
2595 
2596   if (!recoverable_mmap_error(err)) {
2597     warn_fail_commit_memory(addr, size, exec, err);
2598     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2599   }
2600 
2601   return err;
2602 }
2603 
2604 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2605   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2606 }
2607 
2608 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2609                                   const char* mesg) {
2610   assert(mesg != NULL, "mesg must be specified");
2611   int err = os::Linux::commit_memory_impl(addr, size, exec);
2612   if (err != 0) {
2613     // the caller wants all commit errors to exit with the specified mesg:
2614     warn_fail_commit_memory(addr, size, exec, err);
2615     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2616   }
2617 }
2618 
2619 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2620 #ifndef MAP_HUGETLB
2621   #define MAP_HUGETLB 0x40000
2622 #endif
2623 
2624 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2625 #ifndef MADV_HUGEPAGE
2626   #define MADV_HUGEPAGE 14
2627 #endif
2628 
2629 int os::Linux::commit_memory_impl(char* addr, size_t size,
2630                                   size_t alignment_hint, bool exec) {
2631   int err = os::Linux::commit_memory_impl(addr, size, exec);
2632   if (err == 0) {
2633     realign_memory(addr, size, alignment_hint);
2634   }
2635   return err;
2636 }
2637 
2638 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2639                           bool exec) {
2640   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2641 }
2642 
2643 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2644                                   size_t alignment_hint, bool exec,
2645                                   const char* mesg) {
2646   assert(mesg != NULL, "mesg must be specified");
2647   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2648   if (err != 0) {
2649     // the caller wants all commit errors to exit with the specified mesg:
2650     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2651     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2652   }
2653 }
2654 
2655 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2656   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2657     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2658     // be supported or the memory may already be backed by huge pages.
2659     ::madvise(addr, bytes, MADV_HUGEPAGE);
2660   }
2661 }
2662 
2663 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2664   // This method works by doing an mmap over an existing mmaping and effectively discarding
2665   // the existing pages. However it won't work for SHM-based large pages that cannot be
2666   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2667   // small pages on top of the SHM segment. This method always works for small pages, so we
2668   // allow that in any case.
2669   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2670     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2671   }
2672 }
2673 
2674 void os::numa_make_global(char *addr, size_t bytes) {
2675   Linux::numa_interleave_memory(addr, bytes);
2676 }
2677 
2678 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2679 // bind policy to MPOL_PREFERRED for the current thread.
2680 #define USE_MPOL_PREFERRED 0
2681 
2682 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2683   // To make NUMA and large pages more robust when both enabled, we need to ease
2684   // the requirements on where the memory should be allocated. MPOL_BIND is the
2685   // default policy and it will force memory to be allocated on the specified
2686   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2687   // the specified node, but will not force it. Using this policy will prevent
2688   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2689   // free large pages.
2690   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2691   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2692 }
2693 
2694 bool os::numa_topology_changed() { return false; }
2695 
2696 size_t os::numa_get_groups_num() {
2697   // Return just the number of nodes in which it's possible to allocate memory
2698   // (in numa terminology, configured nodes).
2699   return Linux::numa_num_configured_nodes();
2700 }
2701 
2702 int os::numa_get_group_id() {
2703   int cpu_id = Linux::sched_getcpu();
2704   if (cpu_id != -1) {
2705     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2706     if (lgrp_id != -1) {
2707       return lgrp_id;
2708     }
2709   }
2710   return 0;
2711 }
2712 
2713 int os::Linux::get_existing_num_nodes() {
2714   size_t node;
2715   size_t highest_node_number = Linux::numa_max_node();
2716   int num_nodes = 0;
2717 
2718   // Get the total number of nodes in the system including nodes without memory.
2719   for (node = 0; node <= highest_node_number; node++) {
2720     if (isnode_in_existing_nodes(node)) {
2721       num_nodes++;
2722     }
2723   }
2724   return num_nodes;
2725 }
2726 
2727 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2728   size_t highest_node_number = Linux::numa_max_node();
2729   size_t i = 0;
2730 
2731   // Map all node ids in which is possible to allocate memory. Also nodes are
2732   // not always consecutively available, i.e. available from 0 to the highest
2733   // node number.
2734   for (size_t node = 0; node <= highest_node_number; node++) {
2735     if (Linux::isnode_in_configured_nodes(node)) {
2736       ids[i++] = node;
2737     }
2738   }
2739   return i;
2740 }
2741 
2742 bool os::get_page_info(char *start, page_info* info) {
2743   return false;
2744 }
2745 
2746 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2747                      page_info* page_found) {
2748   return end;
2749 }
2750 
2751 
2752 int os::Linux::sched_getcpu_syscall(void) {
2753   unsigned int cpu = 0;
2754   int retval = -1;
2755 
2756 #if defined(IA32)
2757   #ifndef SYS_getcpu
2758     #define SYS_getcpu 318
2759   #endif
2760   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2761 #elif defined(AMD64)
2762 // Unfortunately we have to bring all these macros here from vsyscall.h
2763 // to be able to compile on old linuxes.
2764   #define __NR_vgetcpu 2
2765   #define VSYSCALL_START (-10UL << 20)
2766   #define VSYSCALL_SIZE 1024
2767   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2768   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2769   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2770   retval = vgetcpu(&cpu, NULL, NULL);
2771 #endif
2772 
2773   return (retval == -1) ? retval : cpu;
2774 }
2775 
2776 void os::Linux::sched_getcpu_init() {
2777   // sched_getcpu() should be in libc.
2778   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2779                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2780 
2781   // If it's not, try a direct syscall.
2782   if (sched_getcpu() == -1) {
2783     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2784                                     (void*)&sched_getcpu_syscall));
2785   }
2786 }
2787 
2788 // Something to do with the numa-aware allocator needs these symbols
2789 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2790 extern "C" JNIEXPORT void numa_error(char *where) { }
2791 
2792 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2793 // load symbol from base version instead.
2794 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2795   void *f = dlvsym(handle, name, "libnuma_1.1");
2796   if (f == NULL) {
2797     f = dlsym(handle, name);
2798   }
2799   return f;
2800 }
2801 
2802 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2803 // Return NULL if the symbol is not defined in this particular version.
2804 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2805   return dlvsym(handle, name, "libnuma_1.2");
2806 }
2807 
2808 bool os::Linux::libnuma_init() {
2809   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2810     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2811     if (handle != NULL) {
2812       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2813                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2814       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2815                                        libnuma_dlsym(handle, "numa_max_node")));
2816       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2817                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2818       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2819                                         libnuma_dlsym(handle, "numa_available")));
2820       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2821                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2822       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2823                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2824       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2825                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2826       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2827                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2828       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2829                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2830       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2831                                        libnuma_dlsym(handle, "numa_distance")));
2832 
2833       if (numa_available() != -1) {
2834         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2835         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2836         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2837         // Create an index -> node mapping, since nodes are not always consecutive
2838         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2839         rebuild_nindex_to_node_map();
2840         // Create a cpu -> node mapping
2841         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2842         rebuild_cpu_to_node_map();
2843         return true;
2844       }
2845     }
2846   }
2847   return false;
2848 }
2849 
2850 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2851   // Creating guard page is very expensive. Java thread has HotSpot
2852   // guard pages, only enable glibc guard page for non-Java threads.
2853   // (Remember: compiler thread is a Java thread, too!)
2854   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2855 }
2856 
2857 void os::Linux::rebuild_nindex_to_node_map() {
2858   int highest_node_number = Linux::numa_max_node();
2859 
2860   nindex_to_node()->clear();
2861   for (int node = 0; node <= highest_node_number; node++) {
2862     if (Linux::isnode_in_existing_nodes(node)) {
2863       nindex_to_node()->append(node);
2864     }
2865   }
2866 }
2867 
2868 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2869 // The table is later used in get_node_by_cpu().
2870 void os::Linux::rebuild_cpu_to_node_map() {
2871   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2872                               // in libnuma (possible values are starting from 16,
2873                               // and continuing up with every other power of 2, but less
2874                               // than the maximum number of CPUs supported by kernel), and
2875                               // is a subject to change (in libnuma version 2 the requirements
2876                               // are more reasonable) we'll just hardcode the number they use
2877                               // in the library.
2878   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2879 
2880   size_t cpu_num = processor_count();
2881   size_t cpu_map_size = NCPUS / BitsPerCLong;
2882   size_t cpu_map_valid_size =
2883     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2884 
2885   cpu_to_node()->clear();
2886   cpu_to_node()->at_grow(cpu_num - 1);
2887 
2888   size_t node_num = get_existing_num_nodes();
2889 
2890   int distance = 0;
2891   int closest_distance = INT_MAX;
2892   int closest_node = 0;
2893   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2894   for (size_t i = 0; i < node_num; i++) {
2895     // Check if node is configured (not a memory-less node). If it is not, find
2896     // the closest configured node.
2897     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2898       closest_distance = INT_MAX;
2899       // Check distance from all remaining nodes in the system. Ignore distance
2900       // from itself and from another non-configured node.
2901       for (size_t m = 0; m < node_num; m++) {
2902         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2903           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2904           // If a closest node is found, update. There is always at least one
2905           // configured node in the system so there is always at least one node
2906           // close.
2907           if (distance != 0 && distance < closest_distance) {
2908             closest_distance = distance;
2909             closest_node = nindex_to_node()->at(m);
2910           }
2911         }
2912       }
2913      } else {
2914        // Current node is already a configured node.
2915        closest_node = nindex_to_node()->at(i);
2916      }
2917 
2918     // Get cpus from the original node and map them to the closest node. If node
2919     // is a configured node (not a memory-less node), then original node and
2920     // closest node are the same.
2921     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2922       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2923         if (cpu_map[j] != 0) {
2924           for (size_t k = 0; k < BitsPerCLong; k++) {
2925             if (cpu_map[j] & (1UL << k)) {
2926               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2927             }
2928           }
2929         }
2930       }
2931     }
2932   }
2933   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2934 }
2935 
2936 int os::Linux::get_node_by_cpu(int cpu_id) {
2937   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2938     return cpu_to_node()->at(cpu_id);
2939   }
2940   return -1;
2941 }
2942 
2943 GrowableArray<int>* os::Linux::_cpu_to_node;
2944 GrowableArray<int>* os::Linux::_nindex_to_node;
2945 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2946 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2947 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2948 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2949 os::Linux::numa_available_func_t os::Linux::_numa_available;
2950 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2951 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2952 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2953 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2954 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2955 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2956 unsigned long* os::Linux::_numa_all_nodes;
2957 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2958 struct bitmask* os::Linux::_numa_nodes_ptr;
2959 
2960 bool os::pd_uncommit_memory(char* addr, size_t size) {
2961   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2962                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2963   return res  != (uintptr_t) MAP_FAILED;
2964 }
2965 
2966 static address get_stack_commited_bottom(address bottom, size_t size) {
2967   address nbot = bottom;
2968   address ntop = bottom + size;
2969 
2970   size_t page_sz = os::vm_page_size();
2971   unsigned pages = size / page_sz;
2972 
2973   unsigned char vec[1];
2974   unsigned imin = 1, imax = pages + 1, imid;
2975   int mincore_return_value = 0;
2976 
2977   assert(imin <= imax, "Unexpected page size");
2978 
2979   while (imin < imax) {
2980     imid = (imax + imin) / 2;
2981     nbot = ntop - (imid * page_sz);
2982 
2983     // Use a trick with mincore to check whether the page is mapped or not.
2984     // mincore sets vec to 1 if page resides in memory and to 0 if page
2985     // is swapped output but if page we are asking for is unmapped
2986     // it returns -1,ENOMEM
2987     mincore_return_value = mincore(nbot, page_sz, vec);
2988 
2989     if (mincore_return_value == -1) {
2990       // Page is not mapped go up
2991       // to find first mapped page
2992       if (errno != EAGAIN) {
2993         assert(errno == ENOMEM, "Unexpected mincore errno");
2994         imax = imid;
2995       }
2996     } else {
2997       // Page is mapped go down
2998       // to find first not mapped page
2999       imin = imid + 1;
3000     }
3001   }
3002 
3003   nbot = nbot + page_sz;
3004 
3005   // Adjust stack bottom one page up if last checked page is not mapped
3006   if (mincore_return_value == -1) {
3007     nbot = nbot + page_sz;
3008   }
3009 
3010   return nbot;
3011 }
3012 
3013 
3014 // Linux uses a growable mapping for the stack, and if the mapping for
3015 // the stack guard pages is not removed when we detach a thread the
3016 // stack cannot grow beyond the pages where the stack guard was
3017 // mapped.  If at some point later in the process the stack expands to
3018 // that point, the Linux kernel cannot expand the stack any further
3019 // because the guard pages are in the way, and a segfault occurs.
3020 //
3021 // However, it's essential not to split the stack region by unmapping
3022 // a region (leaving a hole) that's already part of the stack mapping,
3023 // so if the stack mapping has already grown beyond the guard pages at
3024 // the time we create them, we have to truncate the stack mapping.
3025 // So, we need to know the extent of the stack mapping when
3026 // create_stack_guard_pages() is called.
3027 
3028 // We only need this for stacks that are growable: at the time of
3029 // writing thread stacks don't use growable mappings (i.e. those
3030 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3031 // only applies to the main thread.
3032 
3033 // If the (growable) stack mapping already extends beyond the point
3034 // where we're going to put our guard pages, truncate the mapping at
3035 // that point by munmap()ping it.  This ensures that when we later
3036 // munmap() the guard pages we don't leave a hole in the stack
3037 // mapping. This only affects the main/initial thread
3038 
3039 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3040   if (os::Linux::is_initial_thread()) {
3041     // As we manually grow stack up to bottom inside create_attached_thread(),
3042     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3043     // we don't need to do anything special.
3044     // Check it first, before calling heavy function.
3045     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3046     unsigned char vec[1];
3047 
3048     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3049       // Fallback to slow path on all errors, including EAGAIN
3050       stack_extent = (uintptr_t) get_stack_commited_bottom(
3051                                                            os::Linux::initial_thread_stack_bottom(),
3052                                                            (size_t)addr - stack_extent);
3053     }
3054 
3055     if (stack_extent < (uintptr_t)addr) {
3056       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3057     }
3058   }
3059 
3060   return os::commit_memory(addr, size, !ExecMem);
3061 }
3062 
3063 // If this is a growable mapping, remove the guard pages entirely by
3064 // munmap()ping them.  If not, just call uncommit_memory(). This only
3065 // affects the main/initial thread, but guard against future OS changes
3066 // It's safe to always unmap guard pages for initial thread because we
3067 // always place it right after end of the mapped region
3068 
3069 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3070   uintptr_t stack_extent, stack_base;
3071 
3072   if (os::Linux::is_initial_thread()) {
3073     return ::munmap(addr, size) == 0;
3074   }
3075 
3076   return os::uncommit_memory(addr, size);
3077 }
3078 
3079 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3080 // at 'requested_addr'. If there are existing memory mappings at the same
3081 // location, however, they will be overwritten. If 'fixed' is false,
3082 // 'requested_addr' is only treated as a hint, the return value may or
3083 // may not start from the requested address. Unlike Linux mmap(), this
3084 // function returns NULL to indicate failure.
3085 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3086   char * addr;
3087   int flags;
3088 
3089   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3090   if (fixed) {
3091     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3092     flags |= MAP_FIXED;
3093   }
3094 
3095   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3096   // touch an uncommitted page. Otherwise, the read/write might
3097   // succeed if we have enough swap space to back the physical page.
3098   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3099                        flags, -1, 0);
3100 
3101   return addr == MAP_FAILED ? NULL : addr;
3102 }
3103 
3104 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3105 //   (req_addr != NULL) or with a given alignment.
3106 //  - bytes shall be a multiple of alignment.
3107 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3108 //  - alignment sets the alignment at which memory shall be allocated.
3109 //     It must be a multiple of allocation granularity.
3110 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3111 //  req_addr or NULL.
3112 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3113 
3114   size_t extra_size = bytes;
3115   if (req_addr == NULL && alignment > 0) {
3116     extra_size += alignment;
3117   }
3118 
3119   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3120     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3121     -1, 0);
3122   if (start == MAP_FAILED) {
3123     start = NULL;
3124   } else {
3125     if (req_addr != NULL) {
3126       if (start != req_addr) {
3127         ::munmap(start, extra_size);
3128         start = NULL;
3129       }
3130     } else {
3131       char* const start_aligned = align_up(start, alignment);
3132       char* const end_aligned = start_aligned + bytes;
3133       char* const end = start + extra_size;
3134       if (start_aligned > start) {
3135         ::munmap(start, start_aligned - start);
3136       }
3137       if (end_aligned < end) {
3138         ::munmap(end_aligned, end - end_aligned);
3139       }
3140       start = start_aligned;
3141     }
3142   }
3143   return start;
3144 }
3145 
3146 static int anon_munmap(char * addr, size_t size) {
3147   return ::munmap(addr, size) == 0;
3148 }
3149 
3150 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3151                             size_t alignment_hint) {
3152   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3153 }
3154 
3155 bool os::pd_release_memory(char* addr, size_t size) {
3156   return anon_munmap(addr, size);
3157 }
3158 
3159 static bool linux_mprotect(char* addr, size_t size, int prot) {
3160   // Linux wants the mprotect address argument to be page aligned.
3161   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3162 
3163   // According to SUSv3, mprotect() should only be used with mappings
3164   // established by mmap(), and mmap() always maps whole pages. Unaligned
3165   // 'addr' likely indicates problem in the VM (e.g. trying to change
3166   // protection of malloc'ed or statically allocated memory). Check the
3167   // caller if you hit this assert.
3168   assert(addr == bottom, "sanity check");
3169 
3170   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3171   return ::mprotect(bottom, size, prot) == 0;
3172 }
3173 
3174 // Set protections specified
3175 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3176                         bool is_committed) {
3177   unsigned int p = 0;
3178   switch (prot) {
3179   case MEM_PROT_NONE: p = PROT_NONE; break;
3180   case MEM_PROT_READ: p = PROT_READ; break;
3181   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3182   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3183   default:
3184     ShouldNotReachHere();
3185   }
3186   // is_committed is unused.
3187   return linux_mprotect(addr, bytes, p);
3188 }
3189 
3190 bool os::guard_memory(char* addr, size_t size) {
3191   return linux_mprotect(addr, size, PROT_NONE);
3192 }
3193 
3194 bool os::unguard_memory(char* addr, size_t size) {
3195   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3196 }
3197 
3198 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3199                                                     size_t page_size) {
3200   bool result = false;
3201   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3202                  MAP_ANONYMOUS|MAP_PRIVATE,
3203                  -1, 0);
3204   if (p != MAP_FAILED) {
3205     void *aligned_p = align_up(p, page_size);
3206 
3207     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3208 
3209     munmap(p, page_size * 2);
3210   }
3211 
3212   if (warn && !result) {
3213     warning("TransparentHugePages is not supported by the operating system.");
3214   }
3215 
3216   return result;
3217 }
3218 
3219 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3220   bool result = false;
3221   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3222                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3223                  -1, 0);
3224 
3225   if (p != MAP_FAILED) {
3226     // We don't know if this really is a huge page or not.
3227     FILE *fp = fopen("/proc/self/maps", "r");
3228     if (fp) {
3229       while (!feof(fp)) {
3230         char chars[257];
3231         long x = 0;
3232         if (fgets(chars, sizeof(chars), fp)) {
3233           if (sscanf(chars, "%lx-%*x", &x) == 1
3234               && x == (long)p) {
3235             if (strstr (chars, "hugepage")) {
3236               result = true;
3237               break;
3238             }
3239           }
3240         }
3241       }
3242       fclose(fp);
3243     }
3244     munmap(p, page_size);
3245   }
3246 
3247   if (warn && !result) {
3248     warning("HugeTLBFS is not supported by the operating system.");
3249   }
3250 
3251   return result;
3252 }
3253 
3254 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3255 //
3256 // From the coredump_filter documentation:
3257 //
3258 // - (bit 0) anonymous private memory
3259 // - (bit 1) anonymous shared memory
3260 // - (bit 2) file-backed private memory
3261 // - (bit 3) file-backed shared memory
3262 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3263 //           effective only if the bit 2 is cleared)
3264 // - (bit 5) hugetlb private memory
3265 // - (bit 6) hugetlb shared memory
3266 //
3267 static void set_coredump_filter(void) {
3268   FILE *f;
3269   long cdm;
3270 
3271   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3272     return;
3273   }
3274 
3275   if (fscanf(f, "%lx", &cdm) != 1) {
3276     fclose(f);
3277     return;
3278   }
3279 
3280   rewind(f);
3281 
3282   if ((cdm & LARGEPAGES_BIT) == 0) {
3283     cdm |= LARGEPAGES_BIT;
3284     fprintf(f, "%#lx", cdm);
3285   }
3286 
3287   fclose(f);
3288 }
3289 
3290 // Large page support
3291 
3292 static size_t _large_page_size = 0;
3293 
3294 size_t os::Linux::find_large_page_size() {
3295   size_t large_page_size = 0;
3296 
3297   // large_page_size on Linux is used to round up heap size. x86 uses either
3298   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3299   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3300   // page as large as 256M.
3301   //
3302   // Here we try to figure out page size by parsing /proc/meminfo and looking
3303   // for a line with the following format:
3304   //    Hugepagesize:     2048 kB
3305   //
3306   // If we can't determine the value (e.g. /proc is not mounted, or the text
3307   // format has been changed), we'll use the largest page size supported by
3308   // the processor.
3309 
3310 #ifndef ZERO
3311   large_page_size =
3312     AARCH64_ONLY(2 * M)
3313     AMD64_ONLY(2 * M)
3314     ARM32_ONLY(2 * M)
3315     IA32_ONLY(4 * M)
3316     IA64_ONLY(256 * M)
3317     PPC_ONLY(4 * M)
3318     S390_ONLY(1 * M)
3319     SPARC_ONLY(4 * M);
3320 #endif // ZERO
3321 
3322   FILE *fp = fopen("/proc/meminfo", "r");
3323   if (fp) {
3324     while (!feof(fp)) {
3325       int x = 0;
3326       char buf[16];
3327       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3328         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3329           large_page_size = x * K;
3330           break;
3331         }
3332       } else {
3333         // skip to next line
3334         for (;;) {
3335           int ch = fgetc(fp);
3336           if (ch == EOF || ch == (int)'\n') break;
3337         }
3338       }
3339     }
3340     fclose(fp);
3341   }
3342 
3343   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3344     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3345             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3346             proper_unit_for_byte_size(large_page_size));
3347   }
3348 
3349   return large_page_size;
3350 }
3351 
3352 size_t os::Linux::setup_large_page_size() {
3353   _large_page_size = Linux::find_large_page_size();
3354   const size_t default_page_size = (size_t)Linux::page_size();
3355   if (_large_page_size > default_page_size) {
3356     _page_sizes[0] = _large_page_size;
3357     _page_sizes[1] = default_page_size;
3358     _page_sizes[2] = 0;
3359   }
3360 
3361   return _large_page_size;
3362 }
3363 
3364 bool os::Linux::setup_large_page_type(size_t page_size) {
3365   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3366       FLAG_IS_DEFAULT(UseSHM) &&
3367       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3368 
3369     // The type of large pages has not been specified by the user.
3370 
3371     // Try UseHugeTLBFS and then UseSHM.
3372     UseHugeTLBFS = UseSHM = true;
3373 
3374     // Don't try UseTransparentHugePages since there are known
3375     // performance issues with it turned on. This might change in the future.
3376     UseTransparentHugePages = false;
3377   }
3378 
3379   if (UseTransparentHugePages) {
3380     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3381     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3382       UseHugeTLBFS = false;
3383       UseSHM = false;
3384       return true;
3385     }
3386     UseTransparentHugePages = false;
3387   }
3388 
3389   if (UseHugeTLBFS) {
3390     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3391     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3392       UseSHM = false;
3393       return true;
3394     }
3395     UseHugeTLBFS = false;
3396   }
3397 
3398   return UseSHM;
3399 }
3400 
3401 void os::large_page_init() {
3402   if (!UseLargePages &&
3403       !UseTransparentHugePages &&
3404       !UseHugeTLBFS &&
3405       !UseSHM) {
3406     // Not using large pages.
3407     return;
3408   }
3409 
3410   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3411     // The user explicitly turned off large pages.
3412     // Ignore the rest of the large pages flags.
3413     UseTransparentHugePages = false;
3414     UseHugeTLBFS = false;
3415     UseSHM = false;
3416     return;
3417   }
3418 
3419   size_t large_page_size = Linux::setup_large_page_size();
3420   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3421 
3422   set_coredump_filter();
3423 }
3424 
3425 #ifndef SHM_HUGETLB
3426   #define SHM_HUGETLB 04000
3427 #endif
3428 
3429 #define shm_warning_format(format, ...)              \
3430   do {                                               \
3431     if (UseLargePages &&                             \
3432         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3433          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3434          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3435       warning(format, __VA_ARGS__);                  \
3436     }                                                \
3437   } while (0)
3438 
3439 #define shm_warning(str) shm_warning_format("%s", str)
3440 
3441 #define shm_warning_with_errno(str)                \
3442   do {                                             \
3443     int err = errno;                               \
3444     shm_warning_format(str " (error = %d)", err);  \
3445   } while (0)
3446 
3447 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3448   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3449 
3450   if (!is_aligned(alignment, SHMLBA)) {
3451     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3452     return NULL;
3453   }
3454 
3455   // To ensure that we get 'alignment' aligned memory from shmat,
3456   // we pre-reserve aligned virtual memory and then attach to that.
3457 
3458   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3459   if (pre_reserved_addr == NULL) {
3460     // Couldn't pre-reserve aligned memory.
3461     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3462     return NULL;
3463   }
3464 
3465   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3466   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3467 
3468   if ((intptr_t)addr == -1) {
3469     int err = errno;
3470     shm_warning_with_errno("Failed to attach shared memory.");
3471 
3472     assert(err != EACCES, "Unexpected error");
3473     assert(err != EIDRM,  "Unexpected error");
3474     assert(err != EINVAL, "Unexpected error");
3475 
3476     // Since we don't know if the kernel unmapped the pre-reserved memory area
3477     // we can't unmap it, since that would potentially unmap memory that was
3478     // mapped from other threads.
3479     return NULL;
3480   }
3481 
3482   return addr;
3483 }
3484 
3485 static char* shmat_at_address(int shmid, char* req_addr) {
3486   if (!is_aligned(req_addr, SHMLBA)) {
3487     assert(false, "Requested address needs to be SHMLBA aligned");
3488     return NULL;
3489   }
3490 
3491   char* addr = (char*)shmat(shmid, req_addr, 0);
3492 
3493   if ((intptr_t)addr == -1) {
3494     shm_warning_with_errno("Failed to attach shared memory.");
3495     return NULL;
3496   }
3497 
3498   return addr;
3499 }
3500 
3501 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3502   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3503   if (req_addr != NULL) {
3504     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3505     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3506     return shmat_at_address(shmid, req_addr);
3507   }
3508 
3509   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3510   // return large page size aligned memory addresses when req_addr == NULL.
3511   // However, if the alignment is larger than the large page size, we have
3512   // to manually ensure that the memory returned is 'alignment' aligned.
3513   if (alignment > os::large_page_size()) {
3514     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3515     return shmat_with_alignment(shmid, bytes, alignment);
3516   } else {
3517     return shmat_at_address(shmid, NULL);
3518   }
3519 }
3520 
3521 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3522                                             char* req_addr, bool exec) {
3523   // "exec" is passed in but not used.  Creating the shared image for
3524   // the code cache doesn't have an SHM_X executable permission to check.
3525   assert(UseLargePages && UseSHM, "only for SHM large pages");
3526   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3527   assert(is_aligned(req_addr, alignment), "Unaligned address");
3528 
3529   if (!is_aligned(bytes, os::large_page_size())) {
3530     return NULL; // Fallback to small pages.
3531   }
3532 
3533   // Create a large shared memory region to attach to based on size.
3534   // Currently, size is the total size of the heap.
3535   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3536   if (shmid == -1) {
3537     // Possible reasons for shmget failure:
3538     // 1. shmmax is too small for Java heap.
3539     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3540     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3541     // 2. not enough large page memory.
3542     //    > check available large pages: cat /proc/meminfo
3543     //    > increase amount of large pages:
3544     //          echo new_value > /proc/sys/vm/nr_hugepages
3545     //      Note 1: different Linux may use different name for this property,
3546     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3547     //      Note 2: it's possible there's enough physical memory available but
3548     //            they are so fragmented after a long run that they can't
3549     //            coalesce into large pages. Try to reserve large pages when
3550     //            the system is still "fresh".
3551     shm_warning_with_errno("Failed to reserve shared memory.");
3552     return NULL;
3553   }
3554 
3555   // Attach to the region.
3556   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3557 
3558   // Remove shmid. If shmat() is successful, the actual shared memory segment
3559   // will be deleted when it's detached by shmdt() or when the process
3560   // terminates. If shmat() is not successful this will remove the shared
3561   // segment immediately.
3562   shmctl(shmid, IPC_RMID, NULL);
3563 
3564   return addr;
3565 }
3566 
3567 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3568                                         int error) {
3569   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3570 
3571   bool warn_on_failure = UseLargePages &&
3572       (!FLAG_IS_DEFAULT(UseLargePages) ||
3573        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3574        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3575 
3576   if (warn_on_failure) {
3577     char msg[128];
3578     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3579                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3580     warning("%s", msg);
3581   }
3582 }
3583 
3584 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3585                                                         char* req_addr,
3586                                                         bool exec) {
3587   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3588   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3589   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3590 
3591   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3592   char* addr = (char*)::mmap(req_addr, bytes, prot,
3593                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3594                              -1, 0);
3595 
3596   if (addr == MAP_FAILED) {
3597     warn_on_large_pages_failure(req_addr, bytes, errno);
3598     return NULL;
3599   }
3600 
3601   assert(is_aligned(addr, os::large_page_size()), "Must be");
3602 
3603   return addr;
3604 }
3605 
3606 // Reserve memory using mmap(MAP_HUGETLB).
3607 //  - bytes shall be a multiple of alignment.
3608 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3609 //  - alignment sets the alignment at which memory shall be allocated.
3610 //     It must be a multiple of allocation granularity.
3611 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3612 //  req_addr or NULL.
3613 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3614                                                          size_t alignment,
3615                                                          char* req_addr,
3616                                                          bool exec) {
3617   size_t large_page_size = os::large_page_size();
3618   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3619 
3620   assert(is_aligned(req_addr, alignment), "Must be");
3621   assert(is_aligned(bytes, alignment), "Must be");
3622 
3623   // First reserve - but not commit - the address range in small pages.
3624   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3625 
3626   if (start == NULL) {
3627     return NULL;
3628   }
3629 
3630   assert(is_aligned(start, alignment), "Must be");
3631 
3632   char* end = start + bytes;
3633 
3634   // Find the regions of the allocated chunk that can be promoted to large pages.
3635   char* lp_start = align_up(start, large_page_size);
3636   char* lp_end   = align_down(end, large_page_size);
3637 
3638   size_t lp_bytes = lp_end - lp_start;
3639 
3640   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3641 
3642   if (lp_bytes == 0) {
3643     // The mapped region doesn't even span the start and the end of a large page.
3644     // Fall back to allocate a non-special area.
3645     ::munmap(start, end - start);
3646     return NULL;
3647   }
3648 
3649   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3650 
3651   void* result;
3652 
3653   // Commit small-paged leading area.
3654   if (start != lp_start) {
3655     result = ::mmap(start, lp_start - start, prot,
3656                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3657                     -1, 0);
3658     if (result == MAP_FAILED) {
3659       ::munmap(lp_start, end - lp_start);
3660       return NULL;
3661     }
3662   }
3663 
3664   // Commit large-paged area.
3665   result = ::mmap(lp_start, lp_bytes, prot,
3666                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3667                   -1, 0);
3668   if (result == MAP_FAILED) {
3669     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3670     // If the mmap above fails, the large pages region will be unmapped and we
3671     // have regions before and after with small pages. Release these regions.
3672     //
3673     // |  mapped  |  unmapped  |  mapped  |
3674     // ^          ^            ^          ^
3675     // start      lp_start     lp_end     end
3676     //
3677     ::munmap(start, lp_start - start);
3678     ::munmap(lp_end, end - lp_end);
3679     return NULL;
3680   }
3681 
3682   // Commit small-paged trailing area.
3683   if (lp_end != end) {
3684     result = ::mmap(lp_end, end - lp_end, prot,
3685                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3686                     -1, 0);
3687     if (result == MAP_FAILED) {
3688       ::munmap(start, lp_end - start);
3689       return NULL;
3690     }
3691   }
3692 
3693   return start;
3694 }
3695 
3696 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3697                                                    size_t alignment,
3698                                                    char* req_addr,
3699                                                    bool exec) {
3700   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3701   assert(is_aligned(req_addr, alignment), "Must be");
3702   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3703   assert(is_power_of_2(os::large_page_size()), "Must be");
3704   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3705 
3706   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3707     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3708   } else {
3709     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3710   }
3711 }
3712 
3713 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3714                                  char* req_addr, bool exec) {
3715   assert(UseLargePages, "only for large pages");
3716 
3717   char* addr;
3718   if (UseSHM) {
3719     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3720   } else {
3721     assert(UseHugeTLBFS, "must be");
3722     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3723   }
3724 
3725   if (addr != NULL) {
3726     if (UseNUMAInterleaving) {
3727       numa_make_global(addr, bytes);
3728     }
3729 
3730     // The memory is committed
3731     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3732   }
3733 
3734   return addr;
3735 }
3736 
3737 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3738   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3739   return shmdt(base) == 0;
3740 }
3741 
3742 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3743   return pd_release_memory(base, bytes);
3744 }
3745 
3746 bool os::release_memory_special(char* base, size_t bytes) {
3747   bool res;
3748   if (MemTracker::tracking_level() > NMT_minimal) {
3749     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3750     res = os::Linux::release_memory_special_impl(base, bytes);
3751     if (res) {
3752       tkr.record((address)base, bytes);
3753     }
3754 
3755   } else {
3756     res = os::Linux::release_memory_special_impl(base, bytes);
3757   }
3758   return res;
3759 }
3760 
3761 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3762   assert(UseLargePages, "only for large pages");
3763   bool res;
3764 
3765   if (UseSHM) {
3766     res = os::Linux::release_memory_special_shm(base, bytes);
3767   } else {
3768     assert(UseHugeTLBFS, "must be");
3769     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3770   }
3771   return res;
3772 }
3773 
3774 size_t os::large_page_size() {
3775   return _large_page_size;
3776 }
3777 
3778 // With SysV SHM the entire memory region must be allocated as shared
3779 // memory.
3780 // HugeTLBFS allows application to commit large page memory on demand.
3781 // However, when committing memory with HugeTLBFS fails, the region
3782 // that was supposed to be committed will lose the old reservation
3783 // and allow other threads to steal that memory region. Because of this
3784 // behavior we can't commit HugeTLBFS memory.
3785 bool os::can_commit_large_page_memory() {
3786   return UseTransparentHugePages;
3787 }
3788 
3789 bool os::can_execute_large_page_memory() {
3790   return UseTransparentHugePages || UseHugeTLBFS;
3791 }
3792 
3793 // Reserve memory at an arbitrary address, only if that area is
3794 // available (and not reserved for something else).
3795 
3796 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3797   const int max_tries = 10;
3798   char* base[max_tries];
3799   size_t size[max_tries];
3800   const size_t gap = 0x000000;
3801 
3802   // Assert only that the size is a multiple of the page size, since
3803   // that's all that mmap requires, and since that's all we really know
3804   // about at this low abstraction level.  If we need higher alignment,
3805   // we can either pass an alignment to this method or verify alignment
3806   // in one of the methods further up the call chain.  See bug 5044738.
3807   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3808 
3809   // Repeatedly allocate blocks until the block is allocated at the
3810   // right spot.
3811 
3812   // Linux mmap allows caller to pass an address as hint; give it a try first,
3813   // if kernel honors the hint then we can return immediately.
3814   char * addr = anon_mmap(requested_addr, bytes, false);
3815   if (addr == requested_addr) {
3816     return requested_addr;
3817   }
3818 
3819   if (addr != NULL) {
3820     // mmap() is successful but it fails to reserve at the requested address
3821     anon_munmap(addr, bytes);
3822   }
3823 
3824   int i;
3825   for (i = 0; i < max_tries; ++i) {
3826     base[i] = reserve_memory(bytes);
3827 
3828     if (base[i] != NULL) {
3829       // Is this the block we wanted?
3830       if (base[i] == requested_addr) {
3831         size[i] = bytes;
3832         break;
3833       }
3834 
3835       // Does this overlap the block we wanted? Give back the overlapped
3836       // parts and try again.
3837 
3838       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3839       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3840         unmap_memory(base[i], top_overlap);
3841         base[i] += top_overlap;
3842         size[i] = bytes - top_overlap;
3843       } else {
3844         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3845         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3846           unmap_memory(requested_addr, bottom_overlap);
3847           size[i] = bytes - bottom_overlap;
3848         } else {
3849           size[i] = bytes;
3850         }
3851       }
3852     }
3853   }
3854 
3855   // Give back the unused reserved pieces.
3856 
3857   for (int j = 0; j < i; ++j) {
3858     if (base[j] != NULL) {
3859       unmap_memory(base[j], size[j]);
3860     }
3861   }
3862 
3863   if (i < max_tries) {
3864     return requested_addr;
3865   } else {
3866     return NULL;
3867   }
3868 }
3869 
3870 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3871   return ::read(fd, buf, nBytes);
3872 }
3873 
3874 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3875   return ::pread(fd, buf, nBytes, offset);
3876 }
3877 
3878 // Short sleep, direct OS call.
3879 //
3880 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3881 // sched_yield(2) will actually give up the CPU:
3882 //
3883 //   * Alone on this pariticular CPU, keeps running.
3884 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3885 //     (pre 2.6.39).
3886 //
3887 // So calling this with 0 is an alternative.
3888 //
3889 void os::naked_short_sleep(jlong ms) {
3890   struct timespec req;
3891 
3892   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3893   req.tv_sec = 0;
3894   if (ms > 0) {
3895     req.tv_nsec = (ms % 1000) * 1000000;
3896   } else {
3897     req.tv_nsec = 1;
3898   }
3899 
3900   nanosleep(&req, NULL);
3901 
3902   return;
3903 }
3904 
3905 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3906 void os::infinite_sleep() {
3907   while (true) {    // sleep forever ...
3908     ::sleep(100);   // ... 100 seconds at a time
3909   }
3910 }
3911 
3912 // Used to convert frequent JVM_Yield() to nops
3913 bool os::dont_yield() {
3914   return DontYieldALot;
3915 }
3916 
3917 void os::naked_yield() {
3918   sched_yield();
3919 }
3920 
3921 ////////////////////////////////////////////////////////////////////////////////
3922 // thread priority support
3923 
3924 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3925 // only supports dynamic priority, static priority must be zero. For real-time
3926 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3927 // However, for large multi-threaded applications, SCHED_RR is not only slower
3928 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3929 // of 5 runs - Sep 2005).
3930 //
3931 // The following code actually changes the niceness of kernel-thread/LWP. It
3932 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3933 // not the entire user process, and user level threads are 1:1 mapped to kernel
3934 // threads. It has always been the case, but could change in the future. For
3935 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3936 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3937 
3938 int os::java_to_os_priority[CriticalPriority + 1] = {
3939   19,              // 0 Entry should never be used
3940 
3941    4,              // 1 MinPriority
3942    3,              // 2
3943    2,              // 3
3944 
3945    1,              // 4
3946    0,              // 5 NormPriority
3947   -1,              // 6
3948 
3949   -2,              // 7
3950   -3,              // 8
3951   -4,              // 9 NearMaxPriority
3952 
3953   -5,              // 10 MaxPriority
3954 
3955   -5               // 11 CriticalPriority
3956 };
3957 
3958 static int prio_init() {
3959   if (ThreadPriorityPolicy == 1) {
3960     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3961     // if effective uid is not root. Perhaps, a more elegant way of doing
3962     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3963     if (geteuid() != 0) {
3964       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3965         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3966       }
3967       ThreadPriorityPolicy = 0;
3968     }
3969   }
3970   if (UseCriticalJavaThreadPriority) {
3971     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3972   }
3973   return 0;
3974 }
3975 
3976 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3977   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3978 
3979   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3980   return (ret == 0) ? OS_OK : OS_ERR;
3981 }
3982 
3983 OSReturn os::get_native_priority(const Thread* const thread,
3984                                  int *priority_ptr) {
3985   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3986     *priority_ptr = java_to_os_priority[NormPriority];
3987     return OS_OK;
3988   }
3989 
3990   errno = 0;
3991   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3992   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3993 }
3994 
3995 // Hint to the underlying OS that a task switch would not be good.
3996 // Void return because it's a hint and can fail.
3997 void os::hint_no_preempt() {}
3998 
3999 ////////////////////////////////////////////////////////////////////////////////
4000 // suspend/resume support
4001 
4002 //  The low-level signal-based suspend/resume support is a remnant from the
4003 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4004 //  within hotspot. Currently used by JFR's OSThreadSampler
4005 //
4006 //  The remaining code is greatly simplified from the more general suspension
4007 //  code that used to be used.
4008 //
4009 //  The protocol is quite simple:
4010 //  - suspend:
4011 //      - sends a signal to the target thread
4012 //      - polls the suspend state of the osthread using a yield loop
4013 //      - target thread signal handler (SR_handler) sets suspend state
4014 //        and blocks in sigsuspend until continued
4015 //  - resume:
4016 //      - sets target osthread state to continue
4017 //      - sends signal to end the sigsuspend loop in the SR_handler
4018 //
4019 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4020 //  but is checked for NULL in SR_handler as a thread termination indicator.
4021 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4022 //
4023 //  Note that resume_clear_context() and suspend_save_context() are needed
4024 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4025 //  which in part is used by:
4026 //    - Forte Analyzer: AsyncGetCallTrace()
4027 //    - StackBanging: get_frame_at_stack_banging_point()
4028 
4029 static void resume_clear_context(OSThread *osthread) {
4030   osthread->set_ucontext(NULL);
4031   osthread->set_siginfo(NULL);
4032 }
4033 
4034 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4035                                  ucontext_t* context) {
4036   osthread->set_ucontext(context);
4037   osthread->set_siginfo(siginfo);
4038 }
4039 
4040 // Handler function invoked when a thread's execution is suspended or
4041 // resumed. We have to be careful that only async-safe functions are
4042 // called here (Note: most pthread functions are not async safe and
4043 // should be avoided.)
4044 //
4045 // Note: sigwait() is a more natural fit than sigsuspend() from an
4046 // interface point of view, but sigwait() prevents the signal hander
4047 // from being run. libpthread would get very confused by not having
4048 // its signal handlers run and prevents sigwait()'s use with the
4049 // mutex granting granting signal.
4050 //
4051 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4052 //
4053 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4054   // Save and restore errno to avoid confusing native code with EINTR
4055   // after sigsuspend.
4056   int old_errno = errno;
4057 
4058   Thread* thread = Thread::current_or_null_safe();
4059   assert(thread != NULL, "Missing current thread in SR_handler");
4060 
4061   // On some systems we have seen signal delivery get "stuck" until the signal
4062   // mask is changed as part of thread termination. Check that the current thread
4063   // has not already terminated (via SR_lock()) - else the following assertion
4064   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4065   // destructor has completed.
4066 
4067   if (thread->SR_lock() == NULL) {
4068     return;
4069   }
4070 
4071   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4072 
4073   OSThread* osthread = thread->osthread();
4074 
4075   os::SuspendResume::State current = osthread->sr.state();
4076   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4077     suspend_save_context(osthread, siginfo, context);
4078 
4079     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4080     os::SuspendResume::State state = osthread->sr.suspended();
4081     if (state == os::SuspendResume::SR_SUSPENDED) {
4082       sigset_t suspend_set;  // signals for sigsuspend()
4083       sigemptyset(&suspend_set);
4084       // get current set of blocked signals and unblock resume signal
4085       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4086       sigdelset(&suspend_set, SR_signum);
4087 
4088       sr_semaphore.signal();
4089       // wait here until we are resumed
4090       while (1) {
4091         sigsuspend(&suspend_set);
4092 
4093         os::SuspendResume::State result = osthread->sr.running();
4094         if (result == os::SuspendResume::SR_RUNNING) {
4095           sr_semaphore.signal();
4096           break;
4097         }
4098       }
4099 
4100     } else if (state == os::SuspendResume::SR_RUNNING) {
4101       // request was cancelled, continue
4102     } else {
4103       ShouldNotReachHere();
4104     }
4105 
4106     resume_clear_context(osthread);
4107   } else if (current == os::SuspendResume::SR_RUNNING) {
4108     // request was cancelled, continue
4109   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4110     // ignore
4111   } else {
4112     // ignore
4113   }
4114 
4115   errno = old_errno;
4116 }
4117 
4118 static int SR_initialize() {
4119   struct sigaction act;
4120   char *s;
4121 
4122   // Get signal number to use for suspend/resume
4123   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4124     int sig = ::strtol(s, 0, 10);
4125     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4126         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4127       SR_signum = sig;
4128     } else {
4129       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4130               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4131     }
4132   }
4133 
4134   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4135          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4136 
4137   sigemptyset(&SR_sigset);
4138   sigaddset(&SR_sigset, SR_signum);
4139 
4140   // Set up signal handler for suspend/resume
4141   act.sa_flags = SA_RESTART|SA_SIGINFO;
4142   act.sa_handler = (void (*)(int)) SR_handler;
4143 
4144   // SR_signum is blocked by default.
4145   // 4528190 - We also need to block pthread restart signal (32 on all
4146   // supported Linux platforms). Note that LinuxThreads need to block
4147   // this signal for all threads to work properly. So we don't have
4148   // to use hard-coded signal number when setting up the mask.
4149   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4150 
4151   if (sigaction(SR_signum, &act, 0) == -1) {
4152     return -1;
4153   }
4154 
4155   // Save signal flag
4156   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4157   return 0;
4158 }
4159 
4160 static int sr_notify(OSThread* osthread) {
4161   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4162   assert_status(status == 0, status, "pthread_kill");
4163   return status;
4164 }
4165 
4166 // "Randomly" selected value for how long we want to spin
4167 // before bailing out on suspending a thread, also how often
4168 // we send a signal to a thread we want to resume
4169 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4170 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4171 
4172 // returns true on success and false on error - really an error is fatal
4173 // but this seems the normal response to library errors
4174 static bool do_suspend(OSThread* osthread) {
4175   assert(osthread->sr.is_running(), "thread should be running");
4176   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4177 
4178   // mark as suspended and send signal
4179   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4180     // failed to switch, state wasn't running?
4181     ShouldNotReachHere();
4182     return false;
4183   }
4184 
4185   if (sr_notify(osthread) != 0) {
4186     ShouldNotReachHere();
4187   }
4188 
4189   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4190   while (true) {
4191     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4192       break;
4193     } else {
4194       // timeout
4195       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4196       if (cancelled == os::SuspendResume::SR_RUNNING) {
4197         return false;
4198       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4199         // make sure that we consume the signal on the semaphore as well
4200         sr_semaphore.wait();
4201         break;
4202       } else {
4203         ShouldNotReachHere();
4204         return false;
4205       }
4206     }
4207   }
4208 
4209   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4210   return true;
4211 }
4212 
4213 static void do_resume(OSThread* osthread) {
4214   assert(osthread->sr.is_suspended(), "thread should be suspended");
4215   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4216 
4217   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4218     // failed to switch to WAKEUP_REQUEST
4219     ShouldNotReachHere();
4220     return;
4221   }
4222 
4223   while (true) {
4224     if (sr_notify(osthread) == 0) {
4225       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4226         if (osthread->sr.is_running()) {
4227           return;
4228         }
4229       }
4230     } else {
4231       ShouldNotReachHere();
4232     }
4233   }
4234 
4235   guarantee(osthread->sr.is_running(), "Must be running!");
4236 }
4237 
4238 ///////////////////////////////////////////////////////////////////////////////////
4239 // signal handling (except suspend/resume)
4240 
4241 // This routine may be used by user applications as a "hook" to catch signals.
4242 // The user-defined signal handler must pass unrecognized signals to this
4243 // routine, and if it returns true (non-zero), then the signal handler must
4244 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4245 // routine will never retun false (zero), but instead will execute a VM panic
4246 // routine kill the process.
4247 //
4248 // If this routine returns false, it is OK to call it again.  This allows
4249 // the user-defined signal handler to perform checks either before or after
4250 // the VM performs its own checks.  Naturally, the user code would be making
4251 // a serious error if it tried to handle an exception (such as a null check
4252 // or breakpoint) that the VM was generating for its own correct operation.
4253 //
4254 // This routine may recognize any of the following kinds of signals:
4255 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4256 // It should be consulted by handlers for any of those signals.
4257 //
4258 // The caller of this routine must pass in the three arguments supplied
4259 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4260 // field of the structure passed to sigaction().  This routine assumes that
4261 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4262 //
4263 // Note that the VM will print warnings if it detects conflicting signal
4264 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4265 //
4266 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4267                                                  siginfo_t* siginfo,
4268                                                  void* ucontext,
4269                                                  int abort_if_unrecognized);
4270 
4271 void signalHandler(int sig, siginfo_t* info, void* uc) {
4272   assert(info != NULL && uc != NULL, "it must be old kernel");
4273   int orig_errno = errno;  // Preserve errno value over signal handler.
4274   JVM_handle_linux_signal(sig, info, uc, true);
4275   errno = orig_errno;
4276 }
4277 
4278 
4279 // This boolean allows users to forward their own non-matching signals
4280 // to JVM_handle_linux_signal, harmlessly.
4281 bool os::Linux::signal_handlers_are_installed = false;
4282 
4283 // For signal-chaining
4284 struct sigaction sigact[NSIG];
4285 uint64_t sigs = 0;
4286 #if (64 < NSIG-1)
4287 #error "Not all signals can be encoded in sigs. Adapt its type!"
4288 #endif
4289 bool os::Linux::libjsig_is_loaded = false;
4290 typedef struct sigaction *(*get_signal_t)(int);
4291 get_signal_t os::Linux::get_signal_action = NULL;
4292 
4293 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4294   struct sigaction *actp = NULL;
4295 
4296   if (libjsig_is_loaded) {
4297     // Retrieve the old signal handler from libjsig
4298     actp = (*get_signal_action)(sig);
4299   }
4300   if (actp == NULL) {
4301     // Retrieve the preinstalled signal handler from jvm
4302     actp = get_preinstalled_handler(sig);
4303   }
4304 
4305   return actp;
4306 }
4307 
4308 static bool call_chained_handler(struct sigaction *actp, int sig,
4309                                  siginfo_t *siginfo, void *context) {
4310   // Call the old signal handler
4311   if (actp->sa_handler == SIG_DFL) {
4312     // It's more reasonable to let jvm treat it as an unexpected exception
4313     // instead of taking the default action.
4314     return false;
4315   } else if (actp->sa_handler != SIG_IGN) {
4316     if ((actp->sa_flags & SA_NODEFER) == 0) {
4317       // automaticlly block the signal
4318       sigaddset(&(actp->sa_mask), sig);
4319     }
4320 
4321     sa_handler_t hand = NULL;
4322     sa_sigaction_t sa = NULL;
4323     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4324     // retrieve the chained handler
4325     if (siginfo_flag_set) {
4326       sa = actp->sa_sigaction;
4327     } else {
4328       hand = actp->sa_handler;
4329     }
4330 
4331     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4332       actp->sa_handler = SIG_DFL;
4333     }
4334 
4335     // try to honor the signal mask
4336     sigset_t oset;
4337     sigemptyset(&oset);
4338     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4339 
4340     // call into the chained handler
4341     if (siginfo_flag_set) {
4342       (*sa)(sig, siginfo, context);
4343     } else {
4344       (*hand)(sig);
4345     }
4346 
4347     // restore the signal mask
4348     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4349   }
4350   // Tell jvm's signal handler the signal is taken care of.
4351   return true;
4352 }
4353 
4354 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4355   bool chained = false;
4356   // signal-chaining
4357   if (UseSignalChaining) {
4358     struct sigaction *actp = get_chained_signal_action(sig);
4359     if (actp != NULL) {
4360       chained = call_chained_handler(actp, sig, siginfo, context);
4361     }
4362   }
4363   return chained;
4364 }
4365 
4366 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4367   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4368     return &sigact[sig];
4369   }
4370   return NULL;
4371 }
4372 
4373 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4374   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4375   sigact[sig] = oldAct;
4376   sigs |= (uint64_t)1 << (sig-1);
4377 }
4378 
4379 // for diagnostic
4380 int sigflags[NSIG];
4381 
4382 int os::Linux::get_our_sigflags(int sig) {
4383   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4384   return sigflags[sig];
4385 }
4386 
4387 void os::Linux::set_our_sigflags(int sig, int flags) {
4388   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4389   if (sig > 0 && sig < NSIG) {
4390     sigflags[sig] = flags;
4391   }
4392 }
4393 
4394 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4395   // Check for overwrite.
4396   struct sigaction oldAct;
4397   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4398 
4399   void* oldhand = oldAct.sa_sigaction
4400                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4401                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4402   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4403       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4404       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4405     if (AllowUserSignalHandlers || !set_installed) {
4406       // Do not overwrite; user takes responsibility to forward to us.
4407       return;
4408     } else if (UseSignalChaining) {
4409       // save the old handler in jvm
4410       save_preinstalled_handler(sig, oldAct);
4411       // libjsig also interposes the sigaction() call below and saves the
4412       // old sigaction on it own.
4413     } else {
4414       fatal("Encountered unexpected pre-existing sigaction handler "
4415             "%#lx for signal %d.", (long)oldhand, sig);
4416     }
4417   }
4418 
4419   struct sigaction sigAct;
4420   sigfillset(&(sigAct.sa_mask));
4421   sigAct.sa_handler = SIG_DFL;
4422   if (!set_installed) {
4423     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4424   } else {
4425     sigAct.sa_sigaction = signalHandler;
4426     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4427   }
4428   // Save flags, which are set by ours
4429   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4430   sigflags[sig] = sigAct.sa_flags;
4431 
4432   int ret = sigaction(sig, &sigAct, &oldAct);
4433   assert(ret == 0, "check");
4434 
4435   void* oldhand2  = oldAct.sa_sigaction
4436                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4437                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4438   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4439 }
4440 
4441 // install signal handlers for signals that HotSpot needs to
4442 // handle in order to support Java-level exception handling.
4443 
4444 void os::Linux::install_signal_handlers() {
4445   if (!signal_handlers_are_installed) {
4446     signal_handlers_are_installed = true;
4447 
4448     // signal-chaining
4449     typedef void (*signal_setting_t)();
4450     signal_setting_t begin_signal_setting = NULL;
4451     signal_setting_t end_signal_setting = NULL;
4452     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4453                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4454     if (begin_signal_setting != NULL) {
4455       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4456                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4457       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4458                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4459       libjsig_is_loaded = true;
4460       assert(UseSignalChaining, "should enable signal-chaining");
4461     }
4462     if (libjsig_is_loaded) {
4463       // Tell libjsig jvm is setting signal handlers
4464       (*begin_signal_setting)();
4465     }
4466 
4467     set_signal_handler(SIGSEGV, true);
4468     set_signal_handler(SIGPIPE, true);
4469     set_signal_handler(SIGBUS, true);
4470     set_signal_handler(SIGILL, true);
4471     set_signal_handler(SIGFPE, true);
4472 #if defined(PPC64)
4473     set_signal_handler(SIGTRAP, true);
4474 #endif
4475     set_signal_handler(SIGXFSZ, true);
4476 
4477     if (libjsig_is_loaded) {
4478       // Tell libjsig jvm finishes setting signal handlers
4479       (*end_signal_setting)();
4480     }
4481 
4482     // We don't activate signal checker if libjsig is in place, we trust ourselves
4483     // and if UserSignalHandler is installed all bets are off.
4484     // Log that signal checking is off only if -verbose:jni is specified.
4485     if (CheckJNICalls) {
4486       if (libjsig_is_loaded) {
4487         if (PrintJNIResolving) {
4488           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4489         }
4490         check_signals = false;
4491       }
4492       if (AllowUserSignalHandlers) {
4493         if (PrintJNIResolving) {
4494           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4495         }
4496         check_signals = false;
4497       }
4498     }
4499   }
4500 }
4501 
4502 // This is the fastest way to get thread cpu time on Linux.
4503 // Returns cpu time (user+sys) for any thread, not only for current.
4504 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4505 // It might work on 2.6.10+ with a special kernel/glibc patch.
4506 // For reference, please, see IEEE Std 1003.1-2004:
4507 //   http://www.unix.org/single_unix_specification
4508 
4509 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4510   struct timespec tp;
4511   int rc = os::Linux::clock_gettime(clockid, &tp);
4512   assert(rc == 0, "clock_gettime is expected to return 0 code");
4513 
4514   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4515 }
4516 
4517 void os::Linux::initialize_os_info() {
4518   assert(_os_version == 0, "OS info already initialized");
4519 
4520   struct utsname _uname;
4521 
4522   uint32_t major;
4523   uint32_t minor;
4524   uint32_t fix;
4525 
4526   int rc;
4527 
4528   // Kernel version is unknown if
4529   // verification below fails.
4530   _os_version = 0x01000000;
4531 
4532   rc = uname(&_uname);
4533   if (rc != -1) {
4534 
4535     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4536     if (rc == 3) {
4537 
4538       if (major < 256 && minor < 256 && fix < 256) {
4539         // Kernel version format is as expected,
4540         // set it overriding unknown state.
4541         _os_version = (major << 16) |
4542                       (minor << 8 ) |
4543                       (fix   << 0 ) ;
4544       }
4545     }
4546   }
4547 }
4548 
4549 uint32_t os::Linux::os_version() {
4550   assert(_os_version != 0, "not initialized");
4551   return _os_version & 0x00FFFFFF;
4552 }
4553 
4554 bool os::Linux::os_version_is_known() {
4555   assert(_os_version != 0, "not initialized");
4556   return _os_version & 0x01000000 ? false : true;
4557 }
4558 
4559 /////
4560 // glibc on Linux platform uses non-documented flag
4561 // to indicate, that some special sort of signal
4562 // trampoline is used.
4563 // We will never set this flag, and we should
4564 // ignore this flag in our diagnostic
4565 #ifdef SIGNIFICANT_SIGNAL_MASK
4566   #undef SIGNIFICANT_SIGNAL_MASK
4567 #endif
4568 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4569 
4570 static const char* get_signal_handler_name(address handler,
4571                                            char* buf, int buflen) {
4572   int offset = 0;
4573   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4574   if (found) {
4575     // skip directory names
4576     const char *p1, *p2;
4577     p1 = buf;
4578     size_t len = strlen(os::file_separator());
4579     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4580     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4581   } else {
4582     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4583   }
4584   return buf;
4585 }
4586 
4587 static void print_signal_handler(outputStream* st, int sig,
4588                                  char* buf, size_t buflen) {
4589   struct sigaction sa;
4590 
4591   sigaction(sig, NULL, &sa);
4592 
4593   // See comment for SIGNIFICANT_SIGNAL_MASK define
4594   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4595 
4596   st->print("%s: ", os::exception_name(sig, buf, buflen));
4597 
4598   address handler = (sa.sa_flags & SA_SIGINFO)
4599     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4600     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4601 
4602   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4603     st->print("SIG_DFL");
4604   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4605     st->print("SIG_IGN");
4606   } else {
4607     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4608   }
4609 
4610   st->print(", sa_mask[0]=");
4611   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4612 
4613   address rh = VMError::get_resetted_sighandler(sig);
4614   // May be, handler was resetted by VMError?
4615   if (rh != NULL) {
4616     handler = rh;
4617     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4618   }
4619 
4620   st->print(", sa_flags=");
4621   os::Posix::print_sa_flags(st, sa.sa_flags);
4622 
4623   // Check: is it our handler?
4624   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4625       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4626     // It is our signal handler
4627     // check for flags, reset system-used one!
4628     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4629       st->print(
4630                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4631                 os::Linux::get_our_sigflags(sig));
4632     }
4633   }
4634   st->cr();
4635 }
4636 
4637 
4638 #define DO_SIGNAL_CHECK(sig)                      \
4639   do {                                            \
4640     if (!sigismember(&check_signal_done, sig)) {  \
4641       os::Linux::check_signal_handler(sig);       \
4642     }                                             \
4643   } while (0)
4644 
4645 // This method is a periodic task to check for misbehaving JNI applications
4646 // under CheckJNI, we can add any periodic checks here
4647 
4648 void os::run_periodic_checks() {
4649   if (check_signals == false) return;
4650 
4651   // SEGV and BUS if overridden could potentially prevent
4652   // generation of hs*.log in the event of a crash, debugging
4653   // such a case can be very challenging, so we absolutely
4654   // check the following for a good measure:
4655   DO_SIGNAL_CHECK(SIGSEGV);
4656   DO_SIGNAL_CHECK(SIGILL);
4657   DO_SIGNAL_CHECK(SIGFPE);
4658   DO_SIGNAL_CHECK(SIGBUS);
4659   DO_SIGNAL_CHECK(SIGPIPE);
4660   DO_SIGNAL_CHECK(SIGXFSZ);
4661 #if defined(PPC64)
4662   DO_SIGNAL_CHECK(SIGTRAP);
4663 #endif
4664 
4665   // ReduceSignalUsage allows the user to override these handlers
4666   // see comments at the very top and jvm_md.h
4667   if (!ReduceSignalUsage) {
4668     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4669     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4670     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4671     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4672   }
4673 
4674   DO_SIGNAL_CHECK(SR_signum);
4675 }
4676 
4677 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4678 
4679 static os_sigaction_t os_sigaction = NULL;
4680 
4681 void os::Linux::check_signal_handler(int sig) {
4682   char buf[O_BUFLEN];
4683   address jvmHandler = NULL;
4684 
4685 
4686   struct sigaction act;
4687   if (os_sigaction == NULL) {
4688     // only trust the default sigaction, in case it has been interposed
4689     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4690     if (os_sigaction == NULL) return;
4691   }
4692 
4693   os_sigaction(sig, (struct sigaction*)NULL, &act);
4694 
4695 
4696   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4697 
4698   address thisHandler = (act.sa_flags & SA_SIGINFO)
4699     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4700     : CAST_FROM_FN_PTR(address, act.sa_handler);
4701 
4702 
4703   switch (sig) {
4704   case SIGSEGV:
4705   case SIGBUS:
4706   case SIGFPE:
4707   case SIGPIPE:
4708   case SIGILL:
4709   case SIGXFSZ:
4710     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4711     break;
4712 
4713   case SHUTDOWN1_SIGNAL:
4714   case SHUTDOWN2_SIGNAL:
4715   case SHUTDOWN3_SIGNAL:
4716   case BREAK_SIGNAL:
4717     jvmHandler = (address)user_handler();
4718     break;
4719 
4720   default:
4721     if (sig == SR_signum) {
4722       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4723     } else {
4724       return;
4725     }
4726     break;
4727   }
4728 
4729   if (thisHandler != jvmHandler) {
4730     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4731     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4732     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4733     // No need to check this sig any longer
4734     sigaddset(&check_signal_done, sig);
4735     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4736     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4737       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4738                     exception_name(sig, buf, O_BUFLEN));
4739     }
4740   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4741     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4742     tty->print("expected:");
4743     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4744     tty->cr();
4745     tty->print("  found:");
4746     os::Posix::print_sa_flags(tty, act.sa_flags);
4747     tty->cr();
4748     // No need to check this sig any longer
4749     sigaddset(&check_signal_done, sig);
4750   }
4751 
4752   // Dump all the signal
4753   if (sigismember(&check_signal_done, sig)) {
4754     print_signal_handlers(tty, buf, O_BUFLEN);
4755   }
4756 }
4757 
4758 extern void report_error(char* file_name, int line_no, char* title,
4759                          char* format, ...);
4760 
4761 // this is called _before_ the most of global arguments have been parsed
4762 void os::init(void) {
4763   char dummy;   // used to get a guess on initial stack address
4764 //  first_hrtime = gethrtime();
4765 
4766   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4767 
4768   init_random(1234567);
4769 
4770   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4771   if (Linux::page_size() == -1) {
4772     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4773           os::strerror(errno));
4774   }
4775   init_page_sizes((size_t) Linux::page_size());
4776 
4777   Linux::initialize_system_info();
4778 
4779   Linux::initialize_os_info();
4780 
4781   // main_thread points to the aboriginal thread
4782   Linux::_main_thread = pthread_self();
4783 
4784   Linux::clock_init();
4785   initial_time_count = javaTimeNanos();
4786 
4787   // retrieve entry point for pthread_setname_np
4788   Linux::_pthread_setname_np =
4789     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4790 
4791   os::Posix::init();
4792 }
4793 
4794 // To install functions for atexit system call
4795 extern "C" {
4796   static void perfMemory_exit_helper() {
4797     perfMemory_exit();
4798   }
4799 }
4800 
4801 // this is called _after_ the global arguments have been parsed
4802 jint os::init_2(void) {
4803 
4804   os::Posix::init_2();
4805 
4806   Linux::fast_thread_clock_init();
4807 
4808   // Allocate a single page and mark it as readable for safepoint polling
4809   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4810   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4811 
4812   os::set_polling_page(polling_page);
4813   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4814 
4815   if (!UseMembar) {
4816     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4817     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4818     os::set_memory_serialize_page(mem_serialize_page);
4819     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4820   }
4821 
4822   // initialize suspend/resume support - must do this before signal_sets_init()
4823   if (SR_initialize() != 0) {
4824     perror("SR_initialize failed");
4825     return JNI_ERR;
4826   }
4827 
4828   Linux::signal_sets_init();
4829   Linux::install_signal_handlers();
4830 
4831   // Check and sets minimum stack sizes against command line options
4832   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4833     return JNI_ERR;
4834   }
4835   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4836 
4837 #if defined(IA32)
4838   workaround_expand_exec_shield_cs_limit();
4839 #endif
4840 
4841   Linux::libpthread_init();
4842   Linux::sched_getcpu_init();
4843   log_info(os)("HotSpot is running with %s, %s",
4844                Linux::glibc_version(), Linux::libpthread_version());
4845 
4846   if (UseNUMA) {
4847     if (!Linux::libnuma_init()) {
4848       UseNUMA = false;
4849     } else {
4850       if ((Linux::numa_max_node() < 1)) {
4851         // There's only one node(they start from 0), disable NUMA.
4852         UseNUMA = false;
4853       }
4854     }
4855     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4856     // we can make the adaptive lgrp chunk resizing work. If the user specified
4857     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4858     // disable adaptive resizing.
4859     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4860       if (FLAG_IS_DEFAULT(UseNUMA)) {
4861         UseNUMA = false;
4862       } else {
4863         if (FLAG_IS_DEFAULT(UseLargePages) &&
4864             FLAG_IS_DEFAULT(UseSHM) &&
4865             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4866           UseLargePages = false;
4867         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4868           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4869           UseAdaptiveSizePolicy = false;
4870           UseAdaptiveNUMAChunkSizing = false;
4871         }
4872       }
4873     }
4874     if (!UseNUMA && ForceNUMA) {
4875       UseNUMA = true;
4876     }
4877   }
4878 
4879   if (MaxFDLimit) {
4880     // set the number of file descriptors to max. print out error
4881     // if getrlimit/setrlimit fails but continue regardless.
4882     struct rlimit nbr_files;
4883     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4884     if (status != 0) {
4885       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4886     } else {
4887       nbr_files.rlim_cur = nbr_files.rlim_max;
4888       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4889       if (status != 0) {
4890         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4891       }
4892     }
4893   }
4894 
4895   // Initialize lock used to serialize thread creation (see os::create_thread)
4896   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4897 
4898   // at-exit methods are called in the reverse order of their registration.
4899   // atexit functions are called on return from main or as a result of a
4900   // call to exit(3C). There can be only 32 of these functions registered
4901   // and atexit() does not set errno.
4902 
4903   if (PerfAllowAtExitRegistration) {
4904     // only register atexit functions if PerfAllowAtExitRegistration is set.
4905     // atexit functions can be delayed until process exit time, which
4906     // can be problematic for embedded VM situations. Embedded VMs should
4907     // call DestroyJavaVM() to assure that VM resources are released.
4908 
4909     // note: perfMemory_exit_helper atexit function may be removed in
4910     // the future if the appropriate cleanup code can be added to the
4911     // VM_Exit VMOperation's doit method.
4912     if (atexit(perfMemory_exit_helper) != 0) {
4913       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4914     }
4915   }
4916 
4917   // initialize thread priority policy
4918   prio_init();
4919 
4920   return JNI_OK;
4921 }
4922 
4923 // Mark the polling page as unreadable
4924 void os::make_polling_page_unreadable(void) {
4925   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4926     fatal("Could not disable polling page");
4927   }
4928 }
4929 
4930 // Mark the polling page as readable
4931 void os::make_polling_page_readable(void) {
4932   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4933     fatal("Could not enable polling page");
4934   }
4935 }
4936 
4937 // older glibc versions don't have this macro (which expands to
4938 // an optimized bit-counting function) so we have to roll our own
4939 #ifndef CPU_COUNT
4940 
4941 static int _cpu_count(const cpu_set_t* cpus) {
4942   int count = 0;
4943   // only look up to the number of configured processors
4944   for (int i = 0; i < os::processor_count(); i++) {
4945     if (CPU_ISSET(i, cpus)) {
4946       count++;
4947     }
4948   }
4949   return count;
4950 }
4951 
4952 #define CPU_COUNT(cpus) _cpu_count(cpus)
4953 
4954 #endif // CPU_COUNT
4955 
4956 // Get the current number of available processors for this process.
4957 // This value can change at any time during a process's lifetime.
4958 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4959 // If it appears there may be more than 1024 processors then we do a
4960 // dynamic check - see 6515172 for details.
4961 // If anything goes wrong we fallback to returning the number of online
4962 // processors - which can be greater than the number available to the process.
4963 int os::active_processor_count() {
4964   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4965   cpu_set_t* cpus_p = &cpus;
4966   int cpus_size = sizeof(cpu_set_t);
4967 
4968   int configured_cpus = processor_count();  // upper bound on available cpus
4969   int cpu_count = 0;
4970 
4971 // old build platforms may not support dynamic cpu sets
4972 #ifdef CPU_ALLOC
4973 
4974   // To enable easy testing of the dynamic path on different platforms we
4975   // introduce a diagnostic flag: UseCpuAllocPath
4976   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4977     // kernel may use a mask bigger than cpu_set_t
4978     log_trace(os)("active_processor_count: using dynamic path %s"
4979                   "- configured processors: %d",
4980                   UseCpuAllocPath ? "(forced) " : "",
4981                   configured_cpus);
4982     cpus_p = CPU_ALLOC(configured_cpus);
4983     if (cpus_p != NULL) {
4984       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4985       // zero it just to be safe
4986       CPU_ZERO_S(cpus_size, cpus_p);
4987     }
4988     else {
4989        // failed to allocate so fallback to online cpus
4990        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4991        log_trace(os)("active_processor_count: "
4992                      "CPU_ALLOC failed (%s) - using "
4993                      "online processor count: %d",
4994                      os::strerror(errno), online_cpus);
4995        return online_cpus;
4996     }
4997   }
4998   else {
4999     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5000                   configured_cpus);
5001   }
5002 #else // CPU_ALLOC
5003 // these stubs won't be executed
5004 #define CPU_COUNT_S(size, cpus) -1
5005 #define CPU_FREE(cpus)
5006 
5007   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5008                 configured_cpus);
5009 #endif // CPU_ALLOC
5010 
5011   // pid 0 means the current thread - which we have to assume represents the process
5012   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5013     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5014       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5015     }
5016     else {
5017       cpu_count = CPU_COUNT(cpus_p);
5018     }
5019     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5020   }
5021   else {
5022     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5023     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5024             "which may exceed available processors", os::strerror(errno), cpu_count);
5025   }
5026 
5027   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5028     CPU_FREE(cpus_p);
5029   }
5030 
5031   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5032   return cpu_count;
5033 }
5034 
5035 void os::set_native_thread_name(const char *name) {
5036   if (Linux::_pthread_setname_np) {
5037     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5038     snprintf(buf, sizeof(buf), "%s", name);
5039     buf[sizeof(buf) - 1] = '\0';
5040     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5041     // ERANGE should not happen; all other errors should just be ignored.
5042     assert(rc != ERANGE, "pthread_setname_np failed");
5043   }
5044 }
5045 
5046 bool os::distribute_processes(uint length, uint* distribution) {
5047   // Not yet implemented.
5048   return false;
5049 }
5050 
5051 bool os::bind_to_processor(uint processor_id) {
5052   // Not yet implemented.
5053   return false;
5054 }
5055 
5056 ///
5057 
5058 void os::SuspendedThreadTask::internal_do_task() {
5059   if (do_suspend(_thread->osthread())) {
5060     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5061     do_task(context);
5062     do_resume(_thread->osthread());
5063   }
5064 }
5065 
5066 ////////////////////////////////////////////////////////////////////////////////
5067 // debug support
5068 
5069 bool os::find(address addr, outputStream* st) {
5070   Dl_info dlinfo;
5071   memset(&dlinfo, 0, sizeof(dlinfo));
5072   if (dladdr(addr, &dlinfo) != 0) {
5073     st->print(PTR_FORMAT ": ", p2i(addr));
5074     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5075       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5076                 p2i(addr) - p2i(dlinfo.dli_saddr));
5077     } else if (dlinfo.dli_fbase != NULL) {
5078       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5079     } else {
5080       st->print("<absolute address>");
5081     }
5082     if (dlinfo.dli_fname != NULL) {
5083       st->print(" in %s", dlinfo.dli_fname);
5084     }
5085     if (dlinfo.dli_fbase != NULL) {
5086       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5087     }
5088     st->cr();
5089 
5090     if (Verbose) {
5091       // decode some bytes around the PC
5092       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5093       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5094       address       lowest = (address) dlinfo.dli_sname;
5095       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5096       if (begin < lowest)  begin = lowest;
5097       Dl_info dlinfo2;
5098       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5099           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5100         end = (address) dlinfo2.dli_saddr;
5101       }
5102       Disassembler::decode(begin, end, st);
5103     }
5104     return true;
5105   }
5106   return false;
5107 }
5108 
5109 ////////////////////////////////////////////////////////////////////////////////
5110 // misc
5111 
5112 // This does not do anything on Linux. This is basically a hook for being
5113 // able to use structured exception handling (thread-local exception filters)
5114 // on, e.g., Win32.
5115 void
5116 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5117                          JavaCallArguments* args, Thread* thread) {
5118   f(value, method, args, thread);
5119 }
5120 
5121 void os::print_statistics() {
5122 }
5123 
5124 bool os::message_box(const char* title, const char* message) {
5125   int i;
5126   fdStream err(defaultStream::error_fd());
5127   for (i = 0; i < 78; i++) err.print_raw("=");
5128   err.cr();
5129   err.print_raw_cr(title);
5130   for (i = 0; i < 78; i++) err.print_raw("-");
5131   err.cr();
5132   err.print_raw_cr(message);
5133   for (i = 0; i < 78; i++) err.print_raw("=");
5134   err.cr();
5135 
5136   char buf[16];
5137   // Prevent process from exiting upon "read error" without consuming all CPU
5138   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5139 
5140   return buf[0] == 'y' || buf[0] == 'Y';
5141 }
5142 
5143 int os::stat(const char *path, struct stat *sbuf) {
5144   char pathbuf[MAX_PATH];
5145   if (strlen(path) > MAX_PATH - 1) {
5146     errno = ENAMETOOLONG;
5147     return -1;
5148   }
5149   os::native_path(strcpy(pathbuf, path));
5150   return ::stat(pathbuf, sbuf);
5151 }
5152 
5153 // Is a (classpath) directory empty?
5154 bool os::dir_is_empty(const char* path) {
5155   DIR *dir = NULL;
5156   struct dirent *ptr;
5157 
5158   dir = opendir(path);
5159   if (dir == NULL) return true;
5160 
5161   // Scan the directory
5162   bool result = true;
5163   char buf[sizeof(struct dirent) + MAX_PATH];
5164   while (result && (ptr = ::readdir(dir)) != NULL) {
5165     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5166       result = false;
5167     }
5168   }
5169   closedir(dir);
5170   return result;
5171 }
5172 
5173 // This code originates from JDK's sysOpen and open64_w
5174 // from src/solaris/hpi/src/system_md.c
5175 
5176 int os::open(const char *path, int oflag, int mode) {
5177   if (strlen(path) > MAX_PATH - 1) {
5178     errno = ENAMETOOLONG;
5179     return -1;
5180   }
5181 
5182   // All file descriptors that are opened in the Java process and not
5183   // specifically destined for a subprocess should have the close-on-exec
5184   // flag set.  If we don't set it, then careless 3rd party native code
5185   // might fork and exec without closing all appropriate file descriptors
5186   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5187   // turn might:
5188   //
5189   // - cause end-of-file to fail to be detected on some file
5190   //   descriptors, resulting in mysterious hangs, or
5191   //
5192   // - might cause an fopen in the subprocess to fail on a system
5193   //   suffering from bug 1085341.
5194   //
5195   // (Yes, the default setting of the close-on-exec flag is a Unix
5196   // design flaw)
5197   //
5198   // See:
5199   // 1085341: 32-bit stdio routines should support file descriptors >255
5200   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5201   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5202   //
5203   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5204   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5205   // because it saves a system call and removes a small window where the flag
5206   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5207   // and we fall back to using FD_CLOEXEC (see below).
5208 #ifdef O_CLOEXEC
5209   oflag |= O_CLOEXEC;
5210 #endif
5211 
5212   int fd = ::open64(path, oflag, mode);
5213   if (fd == -1) return -1;
5214 
5215   //If the open succeeded, the file might still be a directory
5216   {
5217     struct stat64 buf64;
5218     int ret = ::fstat64(fd, &buf64);
5219     int st_mode = buf64.st_mode;
5220 
5221     if (ret != -1) {
5222       if ((st_mode & S_IFMT) == S_IFDIR) {
5223         errno = EISDIR;
5224         ::close(fd);
5225         return -1;
5226       }
5227     } else {
5228       ::close(fd);
5229       return -1;
5230     }
5231   }
5232 
5233 #ifdef FD_CLOEXEC
5234   // Validate that the use of the O_CLOEXEC flag on open above worked.
5235   // With recent kernels, we will perform this check exactly once.
5236   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5237   if (!O_CLOEXEC_is_known_to_work) {
5238     int flags = ::fcntl(fd, F_GETFD);
5239     if (flags != -1) {
5240       if ((flags & FD_CLOEXEC) != 0)
5241         O_CLOEXEC_is_known_to_work = 1;
5242       else
5243         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5244     }
5245   }
5246 #endif
5247 
5248   return fd;
5249 }
5250 
5251 
5252 // create binary file, rewriting existing file if required
5253 int os::create_binary_file(const char* path, bool rewrite_existing) {
5254   int oflags = O_WRONLY | O_CREAT;
5255   if (!rewrite_existing) {
5256     oflags |= O_EXCL;
5257   }
5258   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5259 }
5260 
5261 // return current position of file pointer
5262 jlong os::current_file_offset(int fd) {
5263   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5264 }
5265 
5266 // move file pointer to the specified offset
5267 jlong os::seek_to_file_offset(int fd, jlong offset) {
5268   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5269 }
5270 
5271 // This code originates from JDK's sysAvailable
5272 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5273 
5274 int os::available(int fd, jlong *bytes) {
5275   jlong cur, end;
5276   int mode;
5277   struct stat64 buf64;
5278 
5279   if (::fstat64(fd, &buf64) >= 0) {
5280     mode = buf64.st_mode;
5281     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5282       int n;
5283       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5284         *bytes = n;
5285         return 1;
5286       }
5287     }
5288   }
5289   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5290     return 0;
5291   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5292     return 0;
5293   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5294     return 0;
5295   }
5296   *bytes = end - cur;
5297   return 1;
5298 }
5299 
5300 // Map a block of memory.
5301 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5302                         char *addr, size_t bytes, bool read_only,
5303                         bool allow_exec) {
5304   int prot;
5305   int flags = MAP_PRIVATE;
5306 
5307   if (read_only) {
5308     prot = PROT_READ;
5309   } else {
5310     prot = PROT_READ | PROT_WRITE;
5311   }
5312 
5313   if (allow_exec) {
5314     prot |= PROT_EXEC;
5315   }
5316 
5317   if (addr != NULL) {
5318     flags |= MAP_FIXED;
5319   }
5320 
5321   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5322                                      fd, file_offset);
5323   if (mapped_address == MAP_FAILED) {
5324     return NULL;
5325   }
5326   return mapped_address;
5327 }
5328 
5329 
5330 // Remap a block of memory.
5331 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5332                           char *addr, size_t bytes, bool read_only,
5333                           bool allow_exec) {
5334   // same as map_memory() on this OS
5335   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5336                         allow_exec);
5337 }
5338 
5339 
5340 // Unmap a block of memory.
5341 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5342   return munmap(addr, bytes) == 0;
5343 }
5344 
5345 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5346 
5347 static clockid_t thread_cpu_clockid(Thread* thread) {
5348   pthread_t tid = thread->osthread()->pthread_id();
5349   clockid_t clockid;
5350 
5351   // Get thread clockid
5352   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5353   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5354   return clockid;
5355 }
5356 
5357 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5358 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5359 // of a thread.
5360 //
5361 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5362 // the fast estimate available on the platform.
5363 
5364 jlong os::current_thread_cpu_time() {
5365   if (os::Linux::supports_fast_thread_cpu_time()) {
5366     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5367   } else {
5368     // return user + sys since the cost is the same
5369     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5370   }
5371 }
5372 
5373 jlong os::thread_cpu_time(Thread* thread) {
5374   // consistent with what current_thread_cpu_time() returns
5375   if (os::Linux::supports_fast_thread_cpu_time()) {
5376     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5377   } else {
5378     return slow_thread_cpu_time(thread, true /* user + sys */);
5379   }
5380 }
5381 
5382 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5383   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5384     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5385   } else {
5386     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5387   }
5388 }
5389 
5390 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5391   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5392     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5393   } else {
5394     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5395   }
5396 }
5397 
5398 //  -1 on error.
5399 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5400   pid_t  tid = thread->osthread()->thread_id();
5401   char *s;
5402   char stat[2048];
5403   int statlen;
5404   char proc_name[64];
5405   int count;
5406   long sys_time, user_time;
5407   char cdummy;
5408   int idummy;
5409   long ldummy;
5410   FILE *fp;
5411 
5412   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5413   fp = fopen(proc_name, "r");
5414   if (fp == NULL) return -1;
5415   statlen = fread(stat, 1, 2047, fp);
5416   stat[statlen] = '\0';
5417   fclose(fp);
5418 
5419   // Skip pid and the command string. Note that we could be dealing with
5420   // weird command names, e.g. user could decide to rename java launcher
5421   // to "java 1.4.2 :)", then the stat file would look like
5422   //                1234 (java 1.4.2 :)) R ... ...
5423   // We don't really need to know the command string, just find the last
5424   // occurrence of ")" and then start parsing from there. See bug 4726580.
5425   s = strrchr(stat, ')');
5426   if (s == NULL) return -1;
5427 
5428   // Skip blank chars
5429   do { s++; } while (s && isspace(*s));
5430 
5431   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5432                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5433                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5434                  &user_time, &sys_time);
5435   if (count != 13) return -1;
5436   if (user_sys_cpu_time) {
5437     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5438   } else {
5439     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5440   }
5441 }
5442 
5443 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5444   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5445   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5446   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5447   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5448 }
5449 
5450 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5451   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5452   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5453   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5454   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5455 }
5456 
5457 bool os::is_thread_cpu_time_supported() {
5458   return true;
5459 }
5460 
5461 // System loadavg support.  Returns -1 if load average cannot be obtained.
5462 // Linux doesn't yet have a (official) notion of processor sets,
5463 // so just return the system wide load average.
5464 int os::loadavg(double loadavg[], int nelem) {
5465   return ::getloadavg(loadavg, nelem);
5466 }
5467 
5468 void os::pause() {
5469   char filename[MAX_PATH];
5470   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5471     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5472   } else {
5473     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5474   }
5475 
5476   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5477   if (fd != -1) {
5478     struct stat buf;
5479     ::close(fd);
5480     while (::stat(filename, &buf) == 0) {
5481       (void)::poll(NULL, 0, 100);
5482     }
5483   } else {
5484     jio_fprintf(stderr,
5485                 "Could not open pause file '%s', continuing immediately.\n", filename);
5486   }
5487 }
5488 
5489 extern char** environ;
5490 
5491 // Run the specified command in a separate process. Return its exit value,
5492 // or -1 on failure (e.g. can't fork a new process).
5493 // Unlike system(), this function can be called from signal handler. It
5494 // doesn't block SIGINT et al.
5495 int os::fork_and_exec(char* cmd) {
5496   const char * argv[4] = {"sh", "-c", cmd, NULL};
5497 
5498   pid_t pid = fork();
5499 
5500   if (pid < 0) {
5501     // fork failed
5502     return -1;
5503 
5504   } else if (pid == 0) {
5505     // child process
5506 
5507     execve("/bin/sh", (char* const*)argv, environ);
5508 
5509     // execve failed
5510     _exit(-1);
5511 
5512   } else  {
5513     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5514     // care about the actual exit code, for now.
5515 
5516     int status;
5517 
5518     // Wait for the child process to exit.  This returns immediately if
5519     // the child has already exited. */
5520     while (waitpid(pid, &status, 0) < 0) {
5521       switch (errno) {
5522       case ECHILD: return 0;
5523       case EINTR: break;
5524       default: return -1;
5525       }
5526     }
5527 
5528     if (WIFEXITED(status)) {
5529       // The child exited normally; get its exit code.
5530       return WEXITSTATUS(status);
5531     } else if (WIFSIGNALED(status)) {
5532       // The child exited because of a signal
5533       // The best value to return is 0x80 + signal number,
5534       // because that is what all Unix shells do, and because
5535       // it allows callers to distinguish between process exit and
5536       // process death by signal.
5537       return 0x80 + WTERMSIG(status);
5538     } else {
5539       // Unknown exit code; pass it through
5540       return status;
5541     }
5542   }
5543 }
5544 
5545 // is_headless_jre()
5546 //
5547 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5548 // in order to report if we are running in a headless jre
5549 //
5550 // Since JDK8 xawt/libmawt.so was moved into the same directory
5551 // as libawt.so, and renamed libawt_xawt.so
5552 //
5553 bool os::is_headless_jre() {
5554   struct stat statbuf;
5555   char buf[MAXPATHLEN];
5556   char libmawtpath[MAXPATHLEN];
5557   const char *xawtstr  = "/xawt/libmawt.so";
5558   const char *new_xawtstr = "/libawt_xawt.so";
5559   char *p;
5560 
5561   // Get path to libjvm.so
5562   os::jvm_path(buf, sizeof(buf));
5563 
5564   // Get rid of libjvm.so
5565   p = strrchr(buf, '/');
5566   if (p == NULL) {
5567     return false;
5568   } else {
5569     *p = '\0';
5570   }
5571 
5572   // Get rid of client or server
5573   p = strrchr(buf, '/');
5574   if (p == NULL) {
5575     return false;
5576   } else {
5577     *p = '\0';
5578   }
5579 
5580   // check xawt/libmawt.so
5581   strcpy(libmawtpath, buf);
5582   strcat(libmawtpath, xawtstr);
5583   if (::stat(libmawtpath, &statbuf) == 0) return false;
5584 
5585   // check libawt_xawt.so
5586   strcpy(libmawtpath, buf);
5587   strcat(libmawtpath, new_xawtstr);
5588   if (::stat(libmawtpath, &statbuf) == 0) return false;
5589 
5590   return true;
5591 }
5592 
5593 // Get the default path to the core file
5594 // Returns the length of the string
5595 int os::get_core_path(char* buffer, size_t bufferSize) {
5596   /*
5597    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5598    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5599    */
5600   const int core_pattern_len = 129;
5601   char core_pattern[core_pattern_len] = {0};
5602 
5603   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5604   if (core_pattern_file == -1) {
5605     return -1;
5606   }
5607 
5608   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5609   ::close(core_pattern_file);
5610   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5611     return -1;
5612   }
5613   if (core_pattern[ret-1] == '\n') {
5614     core_pattern[ret-1] = '\0';
5615   } else {
5616     core_pattern[ret] = '\0';
5617   }
5618 
5619   char *pid_pos = strstr(core_pattern, "%p");
5620   int written;
5621 
5622   if (core_pattern[0] == '/') {
5623     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5624   } else {
5625     char cwd[PATH_MAX];
5626 
5627     const char* p = get_current_directory(cwd, PATH_MAX);
5628     if (p == NULL) {
5629       return -1;
5630     }
5631 
5632     if (core_pattern[0] == '|') {
5633       written = jio_snprintf(buffer, bufferSize,
5634                              "\"%s\" (or dumping to %s/core.%d)",
5635                              &core_pattern[1], p, current_process_id());
5636     } else {
5637       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5638     }
5639   }
5640 
5641   if (written < 0) {
5642     return -1;
5643   }
5644 
5645   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5646     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5647 
5648     if (core_uses_pid_file != -1) {
5649       char core_uses_pid = 0;
5650       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5651       ::close(core_uses_pid_file);
5652 
5653       if (core_uses_pid == '1') {
5654         jio_snprintf(buffer + written, bufferSize - written,
5655                                           ".%d", current_process_id());
5656       }
5657     }
5658   }
5659 
5660   return strlen(buffer);
5661 }
5662 
5663 bool os::start_debugging(char *buf, int buflen) {
5664   int len = (int)strlen(buf);
5665   char *p = &buf[len];
5666 
5667   jio_snprintf(p, buflen-len,
5668                "\n\n"
5669                "Do you want to debug the problem?\n\n"
5670                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5671                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5672                "Otherwise, press RETURN to abort...",
5673                os::current_process_id(), os::current_process_id(),
5674                os::current_thread_id(), os::current_thread_id());
5675 
5676   bool yes = os::message_box("Unexpected Error", buf);
5677 
5678   if (yes) {
5679     // yes, user asked VM to launch debugger
5680     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5681                  os::current_process_id(), os::current_process_id());
5682 
5683     os::fork_and_exec(buf);
5684     yes = false;
5685   }
5686   return yes;
5687 }
5688 
5689 
5690 // Java/Compiler thread:
5691 //
5692 //   Low memory addresses
5693 // P0 +------------------------+
5694 //    |                        |\  Java thread created by VM does not have glibc
5695 //    |    glibc guard page    | - guard page, attached Java thread usually has
5696 //    |                        |/  1 glibc guard page.
5697 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5698 //    |                        |\
5699 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5700 //    |                        |/
5701 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5702 //    |                        |\
5703 //    |      Normal Stack      | -
5704 //    |                        |/
5705 // P2 +------------------------+ Thread::stack_base()
5706 //
5707 // Non-Java thread:
5708 //
5709 //   Low memory addresses
5710 // P0 +------------------------+
5711 //    |                        |\
5712 //    |  glibc guard page      | - usually 1 page
5713 //    |                        |/
5714 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5715 //    |                        |\
5716 //    |      Normal Stack      | -
5717 //    |                        |/
5718 // P2 +------------------------+ Thread::stack_base()
5719 //
5720 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5721 //    returned from pthread_attr_getstack().
5722 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5723 //    of the stack size given in pthread_attr. We work around this for
5724 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5725 //
5726 #ifndef ZERO
5727 static void current_stack_region(address * bottom, size_t * size) {
5728   if (os::Linux::is_initial_thread()) {
5729     // initial thread needs special handling because pthread_getattr_np()
5730     // may return bogus value.
5731     *bottom = os::Linux::initial_thread_stack_bottom();
5732     *size   = os::Linux::initial_thread_stack_size();
5733   } else {
5734     pthread_attr_t attr;
5735 
5736     int rslt = pthread_getattr_np(pthread_self(), &attr);
5737 
5738     // JVM needs to know exact stack location, abort if it fails
5739     if (rslt != 0) {
5740       if (rslt == ENOMEM) {
5741         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5742       } else {
5743         fatal("pthread_getattr_np failed with error = %d", rslt);
5744       }
5745     }
5746 
5747     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5748       fatal("Cannot locate current stack attributes!");
5749     }
5750 
5751     // Work around NPTL stack guard error.
5752     size_t guard_size = 0;
5753     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5754     if (rslt != 0) {
5755       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5756     }
5757     *bottom += guard_size;
5758     *size   -= guard_size;
5759 
5760     pthread_attr_destroy(&attr);
5761 
5762   }
5763   assert(os::current_stack_pointer() >= *bottom &&
5764          os::current_stack_pointer() < *bottom + *size, "just checking");
5765 }
5766 
5767 address os::current_stack_base() {
5768   address bottom;
5769   size_t size;
5770   current_stack_region(&bottom, &size);
5771   return (bottom + size);
5772 }
5773 
5774 size_t os::current_stack_size() {
5775   // This stack size includes the usable stack and HotSpot guard pages
5776   // (for the threads that have Hotspot guard pages).
5777   address bottom;
5778   size_t size;
5779   current_stack_region(&bottom, &size);
5780   return size;
5781 }
5782 #endif
5783 
5784 static inline struct timespec get_mtime(const char* filename) {
5785   struct stat st;
5786   int ret = os::stat(filename, &st);
5787   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5788   return st.st_mtim;
5789 }
5790 
5791 int os::compare_file_modified_times(const char* file1, const char* file2) {
5792   struct timespec filetime1 = get_mtime(file1);
5793   struct timespec filetime2 = get_mtime(file2);
5794   int diff = filetime1.tv_sec - filetime2.tv_sec;
5795   if (diff == 0) {
5796     return filetime1.tv_nsec - filetime2.tv_nsec;
5797   }
5798   return diff;
5799 }
5800 
5801 /////////////// Unit tests ///////////////
5802 
5803 #ifndef PRODUCT
5804 
5805 #define test_log(...)              \
5806   do {                             \
5807     if (VerboseInternalVMTests) {  \
5808       tty->print_cr(__VA_ARGS__);  \
5809       tty->flush();                \
5810     }                              \
5811   } while (false)
5812 
5813 class TestReserveMemorySpecial : AllStatic {
5814  public:
5815   static void small_page_write(void* addr, size_t size) {
5816     size_t page_size = os::vm_page_size();
5817 
5818     char* end = (char*)addr + size;
5819     for (char* p = (char*)addr; p < end; p += page_size) {
5820       *p = 1;
5821     }
5822   }
5823 
5824   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5825     if (!UseHugeTLBFS) {
5826       return;
5827     }
5828 
5829     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5830 
5831     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5832 
5833     if (addr != NULL) {
5834       small_page_write(addr, size);
5835 
5836       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5837     }
5838   }
5839 
5840   static void test_reserve_memory_special_huge_tlbfs_only() {
5841     if (!UseHugeTLBFS) {
5842       return;
5843     }
5844 
5845     size_t lp = os::large_page_size();
5846 
5847     for (size_t size = lp; size <= lp * 10; size += lp) {
5848       test_reserve_memory_special_huge_tlbfs_only(size);
5849     }
5850   }
5851 
5852   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5853     size_t lp = os::large_page_size();
5854     size_t ag = os::vm_allocation_granularity();
5855 
5856     // sizes to test
5857     const size_t sizes[] = {
5858       lp, lp + ag, lp + lp / 2, lp * 2,
5859       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5860       lp * 10, lp * 10 + lp / 2
5861     };
5862     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5863 
5864     // For each size/alignment combination, we test three scenarios:
5865     // 1) with req_addr == NULL
5866     // 2) with a non-null req_addr at which we expect to successfully allocate
5867     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5868     //    expect the allocation to either fail or to ignore req_addr
5869 
5870     // Pre-allocate two areas; they shall be as large as the largest allocation
5871     //  and aligned to the largest alignment we will be testing.
5872     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5873     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5874       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5875       -1, 0);
5876     assert(mapping1 != MAP_FAILED, "should work");
5877 
5878     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5879       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5880       -1, 0);
5881     assert(mapping2 != MAP_FAILED, "should work");
5882 
5883     // Unmap the first mapping, but leave the second mapping intact: the first
5884     // mapping will serve as a value for a "good" req_addr (case 2). The second
5885     // mapping, still intact, as "bad" req_addr (case 3).
5886     ::munmap(mapping1, mapping_size);
5887 
5888     // Case 1
5889     test_log("%s, req_addr NULL:", __FUNCTION__);
5890     test_log("size            align           result");
5891 
5892     for (int i = 0; i < num_sizes; i++) {
5893       const size_t size = sizes[i];
5894       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5895         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5896         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5897                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5898         if (p != NULL) {
5899           assert(is_aligned(p, alignment), "must be");
5900           small_page_write(p, size);
5901           os::Linux::release_memory_special_huge_tlbfs(p, size);
5902         }
5903       }
5904     }
5905 
5906     // Case 2
5907     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5908     test_log("size            align           req_addr         result");
5909 
5910     for (int i = 0; i < num_sizes; i++) {
5911       const size_t size = sizes[i];
5912       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5913         char* const req_addr = align_up(mapping1, alignment);
5914         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5915         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5916                  size, alignment, p2i(req_addr), p2i(p),
5917                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5918         if (p != NULL) {
5919           assert(p == req_addr, "must be");
5920           small_page_write(p, size);
5921           os::Linux::release_memory_special_huge_tlbfs(p, size);
5922         }
5923       }
5924     }
5925 
5926     // Case 3
5927     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
5928     test_log("size            align           req_addr         result");
5929 
5930     for (int i = 0; i < num_sizes; i++) {
5931       const size_t size = sizes[i];
5932       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5933         char* const req_addr = align_up(mapping2, alignment);
5934         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5935         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5936                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
5937         // as the area around req_addr contains already existing mappings, the API should always
5938         // return NULL (as per contract, it cannot return another address)
5939         assert(p == NULL, "must be");
5940       }
5941     }
5942 
5943     ::munmap(mapping2, mapping_size);
5944 
5945   }
5946 
5947   static void test_reserve_memory_special_huge_tlbfs() {
5948     if (!UseHugeTLBFS) {
5949       return;
5950     }
5951 
5952     test_reserve_memory_special_huge_tlbfs_only();
5953     test_reserve_memory_special_huge_tlbfs_mixed();
5954   }
5955 
5956   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
5957     if (!UseSHM) {
5958       return;
5959     }
5960 
5961     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
5962 
5963     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
5964 
5965     if (addr != NULL) {
5966       assert(is_aligned(addr, alignment), "Check");
5967       assert(is_aligned(addr, os::large_page_size()), "Check");
5968 
5969       small_page_write(addr, size);
5970 
5971       os::Linux::release_memory_special_shm(addr, size);
5972     }
5973   }
5974 
5975   static void test_reserve_memory_special_shm() {
5976     size_t lp = os::large_page_size();
5977     size_t ag = os::vm_allocation_granularity();
5978 
5979     for (size_t size = ag; size < lp * 3; size += ag) {
5980       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5981         test_reserve_memory_special_shm(size, alignment);
5982       }
5983     }
5984   }
5985 
5986   static void test() {
5987     test_reserve_memory_special_huge_tlbfs();
5988     test_reserve_memory_special_shm();
5989   }
5990 };
5991 
5992 void TestReserveMemorySpecial_test() {
5993   TestReserveMemorySpecial::test();
5994 }
5995 
5996 #endif