1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "gc/parallel/adjoiningGenerations.hpp"
  28 #include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp"
  29 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
  30 #include "gc/parallel/gcTaskManager.hpp"
  31 #include "gc/parallel/generationSizer.hpp"
  32 #include "gc/parallel/objectStartArray.inline.hpp"
  33 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  34 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  35 #include "gc/parallel/psMarkSweepProxy.hpp"
  36 #include "gc/parallel/psMemoryPool.hpp"
  37 #include "gc/parallel/psParallelCompact.inline.hpp"
  38 #include "gc/parallel/psPromotionManager.hpp"
  39 #include "gc/parallel/psScavenge.hpp"
  40 #include "gc/parallel/vmPSOperations.hpp"
  41 #include "gc/shared/gcHeapSummary.hpp"
  42 #include "gc/shared/gcLocker.hpp"
  43 #include "gc/shared/gcWhen.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/metaspaceCounters.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/vmThread.hpp"
  50 #include "services/memoryManager.hpp"
  51 #include "services/memTracker.hpp"
  52 #include "utilities/macros.hpp"
  53 #include "utilities/vmError.hpp"
  54 
  55 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  56 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  57 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  58 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  59 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  60 
  61 jint ParallelScavengeHeap::initialize() {
  62   size_t heap_size = _collector_policy->max_heap_byte_size();
  63 
  64   if (AllocateOldGenAt != NULL && UseAdaptiveGCBoundary) {
  65     heap_size = AdjoiningGenerationsForHeteroHeap::required_reserved_memory(_collector_policy);
  66   }
  67 
  68   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
  69 
  70   os::trace_page_sizes("Heap",
  71                        _collector_policy->min_heap_byte_size(),
  72                        heap_size,
  73                        generation_alignment(),
  74                        heap_rs.base(),
  75                        heap_rs.size());
  76 
  77   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  78 
  79   PSCardTable* card_table = new PSCardTable(reserved_region());
  80   card_table->initialize();
  81   CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
  82   barrier_set->initialize();
  83   BarrierSet::set_barrier_set(barrier_set);
  84 
  85   // Make up the generations
  86   // Calculate the maximum size that a generation can grow.  This
  87   // includes growth into the other generation.  Note that the
  88   // parameter _max_gen_size is kept as the maximum
  89   // size of the generation as the boundaries currently stand.
  90   // _max_gen_size is still used as that value.
  91   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  92   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  93 
  94   if (AllocateOldGenAt != NULL && UseAdaptiveGCBoundary) {
  95     _gens = new AdjoiningGenerationsForHeteroHeap(heap_rs, _collector_policy->max_heap_byte_size() /* total_size_limit */,
  96                                                   _collector_policy, generation_alignment());
  97   }
  98   else {
  99     _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
 100   }
 101 
 102   _old_gen = _gens->old_gen();
 103   _young_gen = _gens->young_gen();
 104 
 105   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
 106   const size_t old_capacity = _old_gen->capacity_in_bytes();
 107   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 108   _size_policy =
 109     new PSAdaptiveSizePolicy(eden_capacity,
 110                              initial_promo_size,
 111                              young_gen()->to_space()->capacity_in_bytes(),
 112                              _collector_policy->gen_alignment(),
 113                              max_gc_pause_sec,
 114                              max_gc_minor_pause_sec,
 115                              GCTimeRatio
 116                              );
 117 
 118   assert(AllocateOldGenAt != NULL || !UseAdaptiveGCBoundary ||
 119     (old_gen()->virtual_space()->high_boundary() ==
 120      young_gen()->virtual_space()->low_boundary()),
 121     "Boundaries must meet");
 122   // initialize the policy counters - 2 collectors, 2 generations
 123   _gc_policy_counters =
 124     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
 125 
 126   // Set up the GCTaskManager
 127   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 128 
 129   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 130     return JNI_ENOMEM;
 131   }
 132 
 133   return JNI_OK;
 134 }
 135 
 136 void ParallelScavengeHeap::initialize_serviceability() {
 137 
 138   _eden_pool = new EdenMutableSpacePool(_young_gen,
 139                                         _young_gen->eden_space(),
 140                                         "PS Eden Space",
 141                                         false /* support_usage_threshold */);
 142 
 143   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,
 144                                                 "PS Survivor Space",
 145                                                 false /* support_usage_threshold */);
 146 
 147   _old_pool = new PSGenerationPool(_old_gen,
 148                                    "PS Old Gen",
 149                                    true /* support_usage_threshold */);
 150 
 151   _young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
 152   _old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
 153 
 154   _old_manager->add_pool(_eden_pool);
 155   _old_manager->add_pool(_survivor_pool);
 156   _old_manager->add_pool(_old_pool);
 157 
 158   _young_manager->add_pool(_eden_pool);
 159   _young_manager->add_pool(_survivor_pool);
 160 
 161 }
 162 
 163 void ParallelScavengeHeap::post_initialize() {
 164   CollectedHeap::post_initialize();
 165   // Need to init the tenuring threshold
 166   PSScavenge::initialize();
 167   if (UseParallelOldGC) {
 168     PSParallelCompact::post_initialize();
 169   } else {
 170     PSMarkSweepProxy::initialize();
 171   }
 172   PSPromotionManager::initialize();
 173 }
 174 
 175 void ParallelScavengeHeap::update_counters() {
 176   young_gen()->update_counters();
 177   old_gen()->update_counters();
 178   MetaspaceCounters::update_performance_counters();
 179   CompressedClassSpaceCounters::update_performance_counters();
 180 }
 181 
 182 size_t ParallelScavengeHeap::capacity() const {
 183   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 184   return value;
 185 }
 186 
 187 size_t ParallelScavengeHeap::used() const {
 188   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 189   return value;
 190 }
 191 
 192 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 193   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 194 }
 195 
 196 
 197 size_t ParallelScavengeHeap::max_capacity() const {
 198   size_t estimated = reserved_region().byte_size();
 199   if (UseAdaptiveSizePolicy) {
 200     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 201   } else {
 202     estimated -= young_gen()->to_space()->capacity_in_bytes();
 203   }
 204   return MAX2(estimated, capacity());
 205 }
 206 
 207 bool ParallelScavengeHeap::is_in(const void* p) const {
 208   return young_gen()->is_in(p) || old_gen()->is_in(p);
 209 }
 210 
 211 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 212   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
 213 }
 214 
 215 // There are two levels of allocation policy here.
 216 //
 217 // When an allocation request fails, the requesting thread must invoke a VM
 218 // operation, transfer control to the VM thread, and await the results of a
 219 // garbage collection. That is quite expensive, and we should avoid doing it
 220 // multiple times if possible.
 221 //
 222 // To accomplish this, we have a basic allocation policy, and also a
 223 // failed allocation policy.
 224 //
 225 // The basic allocation policy controls how you allocate memory without
 226 // attempting garbage collection. It is okay to grab locks and
 227 // expand the heap, if that can be done without coming to a safepoint.
 228 // It is likely that the basic allocation policy will not be very
 229 // aggressive.
 230 //
 231 // The failed allocation policy is invoked from the VM thread after
 232 // the basic allocation policy is unable to satisfy a mem_allocate
 233 // request. This policy needs to cover the entire range of collection,
 234 // heap expansion, and out-of-memory conditions. It should make every
 235 // attempt to allocate the requested memory.
 236 
 237 // Basic allocation policy. Should never be called at a safepoint, or
 238 // from the VM thread.
 239 //
 240 // This method must handle cases where many mem_allocate requests fail
 241 // simultaneously. When that happens, only one VM operation will succeed,
 242 // and the rest will not be executed. For that reason, this method loops
 243 // during failed allocation attempts. If the java heap becomes exhausted,
 244 // we rely on the size_policy object to force a bail out.
 245 HeapWord* ParallelScavengeHeap::mem_allocate(
 246                                      size_t size,
 247                                      bool* gc_overhead_limit_was_exceeded) {
 248   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 249   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 250   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 251 
 252   // In general gc_overhead_limit_was_exceeded should be false so
 253   // set it so here and reset it to true only if the gc time
 254   // limit is being exceeded as checked below.
 255   *gc_overhead_limit_was_exceeded = false;
 256 
 257   HeapWord* result = young_gen()->allocate(size);
 258 
 259   uint loop_count = 0;
 260   uint gc_count = 0;
 261   uint gclocker_stalled_count = 0;
 262 
 263   while (result == NULL) {
 264     // We don't want to have multiple collections for a single filled generation.
 265     // To prevent this, each thread tracks the total_collections() value, and if
 266     // the count has changed, does not do a new collection.
 267     //
 268     // The collection count must be read only while holding the heap lock. VM
 269     // operations also hold the heap lock during collections. There is a lock
 270     // contention case where thread A blocks waiting on the Heap_lock, while
 271     // thread B is holding it doing a collection. When thread A gets the lock,
 272     // the collection count has already changed. To prevent duplicate collections,
 273     // The policy MUST attempt allocations during the same period it reads the
 274     // total_collections() value!
 275     {
 276       MutexLocker ml(Heap_lock);
 277       gc_count = total_collections();
 278 
 279       result = young_gen()->allocate(size);
 280       if (result != NULL) {
 281         return result;
 282       }
 283 
 284       // If certain conditions hold, try allocating from the old gen.
 285       result = mem_allocate_old_gen(size);
 286       if (result != NULL) {
 287         return result;
 288       }
 289 
 290       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 291         return NULL;
 292       }
 293 
 294       // Failed to allocate without a gc.
 295       if (GCLocker::is_active_and_needs_gc()) {
 296         // If this thread is not in a jni critical section, we stall
 297         // the requestor until the critical section has cleared and
 298         // GC allowed. When the critical section clears, a GC is
 299         // initiated by the last thread exiting the critical section; so
 300         // we retry the allocation sequence from the beginning of the loop,
 301         // rather than causing more, now probably unnecessary, GC attempts.
 302         JavaThread* jthr = JavaThread::current();
 303         if (!jthr->in_critical()) {
 304           MutexUnlocker mul(Heap_lock);
 305           GCLocker::stall_until_clear();
 306           gclocker_stalled_count += 1;
 307           continue;
 308         } else {
 309           if (CheckJNICalls) {
 310             fatal("Possible deadlock due to allocating while"
 311                   " in jni critical section");
 312           }
 313           return NULL;
 314         }
 315       }
 316     }
 317 
 318     if (result == NULL) {
 319       // Generate a VM operation
 320       VM_ParallelGCFailedAllocation op(size, gc_count);
 321       VMThread::execute(&op);
 322 
 323       // Did the VM operation execute? If so, return the result directly.
 324       // This prevents us from looping until time out on requests that can
 325       // not be satisfied.
 326       if (op.prologue_succeeded()) {
 327         assert(is_in_or_null(op.result()), "result not in heap");
 328 
 329         // If GC was locked out during VM operation then retry allocation
 330         // and/or stall as necessary.
 331         if (op.gc_locked()) {
 332           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 333           continue;  // retry and/or stall as necessary
 334         }
 335 
 336         // Exit the loop if the gc time limit has been exceeded.
 337         // The allocation must have failed above ("result" guarding
 338         // this path is NULL) and the most recent collection has exceeded the
 339         // gc overhead limit (although enough may have been collected to
 340         // satisfy the allocation).  Exit the loop so that an out-of-memory
 341         // will be thrown (return a NULL ignoring the contents of
 342         // op.result()),
 343         // but clear gc_overhead_limit_exceeded so that the next collection
 344         // starts with a clean slate (i.e., forgets about previous overhead
 345         // excesses).  Fill op.result() with a filler object so that the
 346         // heap remains parsable.
 347         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 348         const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 349 
 350         if (limit_exceeded && softrefs_clear) {
 351           *gc_overhead_limit_was_exceeded = true;
 352           size_policy()->set_gc_overhead_limit_exceeded(false);
 353           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
 354           if (op.result() != NULL) {
 355             CollectedHeap::fill_with_object(op.result(), size);
 356           }
 357           return NULL;
 358         }
 359 
 360         return op.result();
 361       }
 362     }
 363 
 364     // The policy object will prevent us from looping forever. If the
 365     // time spent in gc crosses a threshold, we will bail out.
 366     loop_count++;
 367     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 368         (loop_count % QueuedAllocationWarningCount == 0)) {
 369       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
 370       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
 371     }
 372   }
 373 
 374   return result;
 375 }
 376 
 377 // A "death march" is a series of ultra-slow allocations in which a full gc is
 378 // done before each allocation, and after the full gc the allocation still
 379 // cannot be satisfied from the young gen.  This routine detects that condition;
 380 // it should be called after a full gc has been done and the allocation
 381 // attempted from the young gen. The parameter 'addr' should be the result of
 382 // that young gen allocation attempt.
 383 void
 384 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 385   if (addr != NULL) {
 386     _death_march_count = 0;  // death march has ended
 387   } else if (_death_march_count == 0) {
 388     if (should_alloc_in_eden(size)) {
 389       _death_march_count = 1;    // death march has started
 390     }
 391   }
 392 }
 393 
 394 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 395   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
 396     // Size is too big for eden, or gc is locked out.
 397     return old_gen()->allocate(size);
 398   }
 399 
 400   // If a "death march" is in progress, allocate from the old gen a limited
 401   // number of times before doing a GC.
 402   if (_death_march_count > 0) {
 403     if (_death_march_count < 64) {
 404       ++_death_march_count;
 405       return old_gen()->allocate(size);
 406     } else {
 407       _death_march_count = 0;
 408     }
 409   }
 410   return NULL;
 411 }
 412 
 413 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 414   if (UseParallelOldGC) {
 415     // The do_full_collection() parameter clear_all_soft_refs
 416     // is interpreted here as maximum_compaction which will
 417     // cause SoftRefs to be cleared.
 418     bool maximum_compaction = clear_all_soft_refs;
 419     PSParallelCompact::invoke(maximum_compaction);
 420   } else {
 421     PSMarkSweepProxy::invoke(clear_all_soft_refs);
 422   }
 423 }
 424 
 425 // Failed allocation policy. Must be called from the VM thread, and
 426 // only at a safepoint! Note that this method has policy for allocation
 427 // flow, and NOT collection policy. So we do not check for gc collection
 428 // time over limit here, that is the responsibility of the heap specific
 429 // collection methods. This method decides where to attempt allocations,
 430 // and when to attempt collections, but no collection specific policy.
 431 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 432   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 433   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 434   assert(!is_gc_active(), "not reentrant");
 435   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 436 
 437   // We assume that allocation in eden will fail unless we collect.
 438 
 439   // First level allocation failure, scavenge and allocate in young gen.
 440   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 441   const bool invoked_full_gc = PSScavenge::invoke();
 442   HeapWord* result = young_gen()->allocate(size);
 443 
 444   // Second level allocation failure.
 445   //   Mark sweep and allocate in young generation.
 446   if (result == NULL && !invoked_full_gc) {
 447     do_full_collection(false);
 448     result = young_gen()->allocate(size);
 449   }
 450 
 451   death_march_check(result, size);
 452 
 453   // Third level allocation failure.
 454   //   After mark sweep and young generation allocation failure,
 455   //   allocate in old generation.
 456   if (result == NULL) {
 457     result = old_gen()->allocate(size);
 458   }
 459 
 460   // Fourth level allocation failure. We're running out of memory.
 461   //   More complete mark sweep and allocate in young generation.
 462   if (result == NULL) {
 463     do_full_collection(true);
 464     result = young_gen()->allocate(size);
 465   }
 466 
 467   // Fifth level allocation failure.
 468   //   After more complete mark sweep, allocate in old generation.
 469   if (result == NULL) {
 470     result = old_gen()->allocate(size);
 471   }
 472 
 473   return result;
 474 }
 475 
 476 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 477   CollectedHeap::ensure_parsability(retire_tlabs);
 478   young_gen()->eden_space()->ensure_parsability();
 479 }
 480 
 481 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 482   return young_gen()->eden_space()->tlab_capacity(thr);
 483 }
 484 
 485 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 486   return young_gen()->eden_space()->tlab_used(thr);
 487 }
 488 
 489 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 490   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 491 }
 492 
 493 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) {
 494   HeapWord* result = young_gen()->allocate(requested_size);
 495   if (result != NULL) {
 496     *actual_size = requested_size;
 497   }
 498 
 499   return result;
 500 }
 501 
 502 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 503   CollectedHeap::accumulate_statistics_all_tlabs();
 504 }
 505 
 506 void ParallelScavengeHeap::resize_all_tlabs() {
 507   CollectedHeap::resize_all_tlabs();
 508 }
 509 
 510 // This method is used by System.gc() and JVMTI.
 511 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 512   assert(!Heap_lock->owned_by_self(),
 513     "this thread should not own the Heap_lock");
 514 
 515   uint gc_count      = 0;
 516   uint full_gc_count = 0;
 517   {
 518     MutexLocker ml(Heap_lock);
 519     // This value is guarded by the Heap_lock
 520     gc_count      = total_collections();
 521     full_gc_count = total_full_collections();
 522   }
 523 
 524   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 525   VMThread::execute(&op);
 526 }
 527 
 528 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 529   young_gen()->object_iterate(cl);
 530   old_gen()->object_iterate(cl);
 531 }
 532 
 533 
 534 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 535   if (young_gen()->is_in_reserved(addr)) {
 536     assert(young_gen()->is_in(addr),
 537            "addr should be in allocated part of young gen");
 538     // called from os::print_location by find or VMError
 539     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 540     Unimplemented();
 541   } else if (old_gen()->is_in_reserved(addr)) {
 542     assert(old_gen()->is_in(addr),
 543            "addr should be in allocated part of old gen");
 544     return old_gen()->start_array()->object_start((HeapWord*)addr);
 545   }
 546   return 0;
 547 }
 548 
 549 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 550   return oop(addr)->size();
 551 }
 552 
 553 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 554   return block_start(addr) == addr;
 555 }
 556 
 557 jlong ParallelScavengeHeap::millis_since_last_gc() {
 558   return UseParallelOldGC ?
 559     PSParallelCompact::millis_since_last_gc() :
 560     PSMarkSweepProxy::millis_since_last_gc();
 561 }
 562 
 563 void ParallelScavengeHeap::prepare_for_verify() {
 564   ensure_parsability(false);  // no need to retire TLABs for verification
 565 }
 566 
 567 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 568   PSOldGen* old = old_gen();
 569   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 570   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 571   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 572 
 573   PSYoungGen* young = young_gen();
 574   VirtualSpaceSummary young_summary(young->reserved().start(),
 575     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 576 
 577   MutableSpace* eden = young_gen()->eden_space();
 578   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 579 
 580   MutableSpace* from = young_gen()->from_space();
 581   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 582 
 583   MutableSpace* to = young_gen()->to_space();
 584   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 585 
 586   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 587   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 588 }
 589 
 590 void ParallelScavengeHeap::print_on(outputStream* st) const {
 591   young_gen()->print_on(st);
 592   old_gen()->print_on(st);
 593   MetaspaceUtils::print_on(st);
 594 }
 595 
 596 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 597   this->CollectedHeap::print_on_error(st);
 598 
 599   if (UseParallelOldGC) {
 600     st->cr();
 601     PSParallelCompact::print_on_error(st);
 602   }
 603 }
 604 
 605 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 606   PSScavenge::gc_task_manager()->threads_do(tc);
 607 }
 608 
 609 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 610   PSScavenge::gc_task_manager()->print_threads_on(st);
 611 }
 612 
 613 void ParallelScavengeHeap::print_tracing_info() const {
 614   AdaptiveSizePolicyOutput::print();
 615   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
 616   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
 617       UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds());
 618 }
 619 
 620 
 621 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
 622   // Why do we need the total_collections()-filter below?
 623   if (total_collections() > 0) {
 624     log_debug(gc, verify)("Tenured");
 625     old_gen()->verify();
 626 
 627     log_debug(gc, verify)("Eden");
 628     young_gen()->verify();
 629   }
 630 }
 631 
 632 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 633   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 634   gc_tracer->report_gc_heap_summary(when, heap_summary);
 635 
 636   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 637   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 638 }
 639 
 640 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 641   CollectedHeap* heap = Universe::heap();
 642   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 643   assert(heap->kind() == CollectedHeap::Parallel, "Invalid name");
 644   return (ParallelScavengeHeap*)heap;
 645 }
 646 
 647 CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
 648   return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
 649 }
 650 
 651 PSCardTable* ParallelScavengeHeap::card_table() {
 652   return static_cast<PSCardTable*>(barrier_set()->card_table());
 653 }
 654 
 655 // Before delegating the resize to the young generation,
 656 // the reserved space for the young and old generations
 657 // may be changed to accommodate the desired resize.
 658 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 659     size_t survivor_size) {
 660   if (UseAdaptiveGCBoundary) {
 661     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 662       size_policy()->reset_bytes_absorbed_from_eden();
 663       return;  // The generation changed size already.
 664     }
 665     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 666   }
 667 
 668   // Delegate the resize to the generation.
 669   _young_gen->resize(eden_size, survivor_size);
 670 }
 671 
 672 // Before delegating the resize to the old generation,
 673 // the reserved space for the young and old generations
 674 // may be changed to accommodate the desired resize.
 675 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 676   if (UseAdaptiveGCBoundary) {
 677     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 678       size_policy()->reset_bytes_absorbed_from_eden();
 679       return;  // The generation changed size already.
 680     }
 681     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 682   }
 683 
 684   // Delegate the resize to the generation.
 685   _old_gen->resize(desired_free_space);
 686 }
 687 
 688 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 689   // nothing particular
 690 }
 691 
 692 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 693   // nothing particular
 694 }
 695 
 696 #ifndef PRODUCT
 697 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 698   if (ZapUnusedHeapArea) {
 699     young_gen()->record_spaces_top();
 700     old_gen()->record_spaces_top();
 701   }
 702 }
 703 
 704 void ParallelScavengeHeap::gen_mangle_unused_area() {
 705   if (ZapUnusedHeapArea) {
 706     young_gen()->eden_space()->mangle_unused_area();
 707     young_gen()->to_space()->mangle_unused_area();
 708     young_gen()->from_space()->mangle_unused_area();
 709     old_gen()->object_space()->mangle_unused_area();
 710   }
 711 }
 712 #endif
 713 
 714 bool ParallelScavengeHeap::is_scavengable(oop obj) {
 715   return is_in_young(obj);
 716 }
 717 
 718 void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
 719   CodeCache::register_scavenge_root_nmethod(nm);
 720 }
 721 
 722 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
 723   CodeCache::verify_scavenge_root_nmethod(nm);
 724 }
 725 
 726 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
 727   GrowableArray<GCMemoryManager*> memory_managers(2);
 728   memory_managers.append(_young_manager);
 729   memory_managers.append(_old_manager);
 730   return memory_managers;
 731 }
 732 
 733 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
 734   GrowableArray<MemoryPool*> memory_pools(3);
 735   memory_pools.append(_eden_pool);
 736   memory_pools.append(_survivor_pool);
 737   memory_pools.append(_old_pool);
 738   return memory_pools;
 739 }