< prev index next >

src/jdk.incubator.vector/share/classes/jdk/incubator/vector/X-Vector.java.template

Print this page
rev 54658 : refactored mask and shuffle creation methods, moved classes to top-level

*** 56,86 **** $type$ apply(int i, $type$ a); } abstract $abstractvectortype$ uOp(FUnOp f); ! abstract $abstractvectortype$ uOp(Mask<$Boxtype$> m, FUnOp f); // Binary operator interface FBinOp { $type$ apply(int i, $type$ a, $type$ b); } abstract $abstractvectortype$ bOp(Vector<$Boxtype$> v, FBinOp f); ! abstract $abstractvectortype$ bOp(Vector<$Boxtype$> v, Mask<$Boxtype$> m, FBinOp f); // Trinary operator interface FTriOp { $type$ apply(int i, $type$ a, $type$ b, $type$ c); } abstract $abstractvectortype$ tOp(Vector<$Boxtype$> v1, Vector<$Boxtype$> v2, FTriOp f); ! abstract $abstractvectortype$ tOp(Vector<$Boxtype$> v1, Vector<$Boxtype$> v2, Mask<$Boxtype$> m, FTriOp f); // Reduction operator abstract $type$ rOp($type$ v, FBinOp f); --- 56,86 ---- $type$ apply(int i, $type$ a); } abstract $abstractvectortype$ uOp(FUnOp f); ! abstract $abstractvectortype$ uOp(VectorMask<$Boxtype$> m, FUnOp f); // Binary operator interface FBinOp { $type$ apply(int i, $type$ a, $type$ b); } abstract $abstractvectortype$ bOp(Vector<$Boxtype$> v, FBinOp f); ! abstract $abstractvectortype$ bOp(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m, FBinOp f); // Trinary operator interface FTriOp { $type$ apply(int i, $type$ a, $type$ b, $type$ c); } abstract $abstractvectortype$ tOp(Vector<$Boxtype$> v1, Vector<$Boxtype$> v2, FTriOp f); ! abstract $abstractvectortype$ tOp(Vector<$Boxtype$> v1, Vector<$Boxtype$> v2, VectorMask<$Boxtype$> m, FTriOp f); // Reduction operator abstract $type$ rOp($type$ v, FBinOp f);
*** 88,108 **** interface FBinTest { boolean apply(int i, $type$ a, $type$ b); } ! abstract Mask<$Boxtype$> bTest(Vector<$Boxtype$> v, FBinTest f); // Foreach interface FUnCon { void apply(int i, $type$ a); } abstract void forEach(FUnCon f); ! abstract void forEach(Mask<$Boxtype$> m, FUnCon f); // Static factories /** * Returns a vector where all lane elements are set to the default --- 88,108 ---- interface FBinTest { boolean apply(int i, $type$ a, $type$ b); } ! abstract VectorMask<$Boxtype$> bTest(Vector<$Boxtype$> v, FBinTest f); // Foreach interface FUnCon { void apply(int i, $type$ a); } abstract void forEach(FUnCon f); ! abstract void forEach(VectorMask<$Boxtype$> m, FUnCon f); // Static factories /** * Returns a vector where all lane elements are set to the default
*** 111,121 **** * @param species species of desired vector * @return a zero vector of given species */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ zero(Species<$Boxtype$> species) { #if[FP] return VectorIntrinsics.broadcastCoerced((Class<$Type$Vector>) species.boxType(), $type$.class, species.length(), $Type$.$type$To$Bitstype$Bits(0.0f), species, ((bits, s) -> (($Type$Species)s).op(i -> $Type$.$bitstype$BitsTo$Type$(($bitstype$)bits)))); #else[FP] --- 111,121 ---- * @param species species of desired vector * @return a zero vector of given species */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ zero(VectorSpecies<$Boxtype$> species) { #if[FP] return VectorIntrinsics.broadcastCoerced((Class<$Type$Vector>) species.boxType(), $type$.class, species.length(), $Type$.$type$To$Bitstype$Bits(0.0f), species, ((bits, s) -> (($Type$Species)s).op(i -> $Type$.$bitstype$BitsTo$Type$(($bitstype$)bits)))); #else[FP]
*** 131,141 **** * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(Species<$Boxtype$>, ByteBuffer, int, Mask) method} as follows: * <pre>{@code * return this.fromByteBuffer(ByteBuffer.wrap(a), i, this.maskAllTrue()); * }</pre> * * @param species species of desired vector --- 131,141 ---- * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(VectorSpecies<$Boxtype$>, ByteBuffer, int, VectorMask) method} as follows: * <pre>{@code * return this.fromByteBuffer(ByteBuffer.wrap(a), i, this.maskAllTrue()); * }</pre> * * @param species species of desired vector
*** 145,155 **** * @throws IndexOutOfBoundsException if {@code i < 0} or * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)} */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromByteArray(Species<$Boxtype$> species, byte[] a, int ix) { Objects.requireNonNull(a); ix = VectorIntrinsics.checkIndex(ix, a.length, species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class<$abstractvectortype$>) species.boxType(), $type$.class, species.length(), a, ((long) ix) + Unsafe.ARRAY_BYTE_BASE_OFFSET, a, ix, species, --- 145,155 ---- * @throws IndexOutOfBoundsException if {@code i < 0} or * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)} */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromByteArray(VectorSpecies<$Boxtype$> species, byte[] a, int ix) { Objects.requireNonNull(a); ix = VectorIntrinsics.checkIndex(ix, a.length, species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class<$abstractvectortype$>) species.boxType(), $type$.class, species.length(), a, ((long) ix) + Unsafe.ARRAY_BYTE_BASE_OFFSET, a, ix, species,
*** 167,177 **** * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(Species<$Boxtype$>, ByteBuffer, int, Mask) method} as follows: * <pre>{@code * return this.fromByteBuffer(ByteBuffer.wrap(a), i, m); * }</pre> * * @param species species of desired vector --- 167,177 ---- * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(VectorSpecies<$Boxtype$>, ByteBuffer, int, VectorMask) method} as follows: * <pre>{@code * return this.fromByteBuffer(ByteBuffer.wrap(a), i, m); * }</pre> * * @param species species of desired vector
*** 186,196 **** * for any vector lane index {@code N} where the mask at lane {@code N} * is set * {@code i >= a.length - (N * this.elementSize() / Byte.SIZE)} */ @ForceInline ! public static $abstractvectortype$ fromByteArray(Species<$Boxtype$> species, byte[] a, int ix, Mask<$Boxtype$> m) { return zero(species).blend(fromByteArray(species, a, ix), m); } /** * Loads a vector from an array starting at offset. --- 186,196 ---- * for any vector lane index {@code N} where the mask at lane {@code N} * is set * {@code i >= a.length - (N * this.elementSize() / Byte.SIZE)} */ @ForceInline ! public static $abstractvectortype$ fromByteArray(VectorSpecies<$Boxtype$> species, byte[] a, int ix, VectorMask<$Boxtype$> m) { return zero(species).blend(fromByteArray(species, a, ix), m); } /** * Loads a vector from an array starting at offset.
*** 206,216 **** * @throws IndexOutOfBoundsException if {@code i < 0}, or * {@code i > a.length - this.length()} */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromArray(Species<$Boxtype$> species, $type$[] a, int i){ Objects.requireNonNull(a); i = VectorIntrinsics.checkIndex(i, a.length, species.length()); return VectorIntrinsics.load((Class<$abstractvectortype$>) species.boxType(), $type$.class, species.length(), a, (((long) i) << ARRAY_SHIFT) + Unsafe.ARRAY_$TYPE$_BASE_OFFSET, a, i, species, --- 206,216 ---- * @throws IndexOutOfBoundsException if {@code i < 0}, or * {@code i > a.length - this.length()} */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromArray(VectorSpecies<$Boxtype$> species, $type$[] a, int i){ Objects.requireNonNull(a); i = VectorIntrinsics.checkIndex(i, a.length, species.length()); return VectorIntrinsics.load((Class<$abstractvectortype$>) species.boxType(), $type$.class, species.length(), a, (((long) i) << ARRAY_SHIFT) + Unsafe.ARRAY_$TYPE$_BASE_OFFSET, a, i, species,
*** 235,245 **** * @throws IndexOutOfBoundsException if {@code i < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} * is set {@code i > a.length - N} */ @ForceInline ! public static $abstractvectortype$ fromArray(Species<$Boxtype$> species, $type$[] a, int i, Mask<$Boxtype$> m) { return zero(species).blend(fromArray(species, a, i), m); } /** * Loads a vector from an array using indexes obtained from an index --- 235,245 ---- * @throws IndexOutOfBoundsException if {@code i < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} * is set {@code i > a.length - N} */ @ForceInline ! public static $abstractvectortype$ fromArray(VectorSpecies<$Boxtype$> species, $type$[] a, int i, VectorMask<$Boxtype$> m) { return zero(species).blend(fromArray(species, a, i), m); } /** * Loads a vector from an array using indexes obtained from an index
*** 261,277 **** * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} the result of * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length} */ #if[byteOrShort] ! public static $abstractvectortype$ fromArray(Species<$Boxtype$> species, $type$[] a, int i, int[] indexMap, int j) { return (($Type$Species)species).op(n -> a[i + indexMap[j + n]]); } #else[byteOrShort] @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromArray(Species<$Boxtype$> species, $type$[] a, int i, int[] indexMap, int j) { Objects.requireNonNull(a); Objects.requireNonNull(indexMap); #if[longOrDouble] if (species.length() == 1) { --- 261,277 ---- * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} the result of * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length} */ #if[byteOrShort] ! public static $abstractvectortype$ fromArray(VectorSpecies<$Boxtype$> species, $type$[] a, int i, int[] indexMap, int j) { return (($Type$Species)species).op(n -> a[i + indexMap[j + n]]); } #else[byteOrShort] @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromArray(VectorSpecies<$Boxtype$> species, $type$[] a, int i, int[] indexMap, int j) { Objects.requireNonNull(a); Objects.requireNonNull(indexMap); #if[longOrDouble] if (species.length() == 1) {
*** 285,295 **** vix = VectorIntrinsics.checkIndex(vix, a.length); return VectorIntrinsics.loadWithMap((Class<$abstractvectortype$>) species.boxType(), $type$.class, species.length(), IntVector.species(species.indexShape()).boxType(), a, Unsafe.ARRAY_$TYPE$_BASE_OFFSET, vix, a, i, indexMap, j, species, ! ($type$[] c, int idx, int[] iMap, int idy, Species<$Boxtype$> s) -> (($Type$Species)s).op(n -> c[idx + iMap[idy+n]])); } #end[byteOrShort] /** --- 285,295 ---- vix = VectorIntrinsics.checkIndex(vix, a.length); return VectorIntrinsics.loadWithMap((Class<$abstractvectortype$>) species.boxType(), $type$.class, species.length(), IntVector.species(species.indexShape()).boxType(), a, Unsafe.ARRAY_$TYPE$_BASE_OFFSET, vix, a, i, indexMap, j, species, ! ($type$[] c, int idx, int[] iMap, int idy, VectorSpecies<$Boxtype$> s) -> (($Type$Species)s).op(n -> c[idx + iMap[idy+n]])); } #end[byteOrShort] /**
*** 315,331 **** * or for any vector lane index {@code N} where the mask at lane * {@code N} is set the result of {@code i + indexMap[j + N]} is * {@code < 0} or {@code >= a.length} */ #if[byteOrShort] ! public static $abstractvectortype$ fromArray(Species<$Boxtype$> species, $type$[] a, int i, Mask<$Boxtype$> m, int[] indexMap, int j) { return (($Type$Species)species).op(m, n -> a[i + indexMap[j + n]]); } #else[byteOrShort] @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromArray(Species<$Boxtype$> species, $type$[] a, int i, Mask<$Boxtype$> m, int[] indexMap, int j) { // @@@ This can result in out of bounds errors for unset mask lanes return zero(species).blend(fromArray(species, a, i, indexMap, j), m); } #end[byteOrShort] --- 315,331 ---- * or for any vector lane index {@code N} where the mask at lane * {@code N} is set the result of {@code i + indexMap[j + N]} is * {@code < 0} or {@code >= a.length} */ #if[byteOrShort] ! public static $abstractvectortype$ fromArray(VectorSpecies<$Boxtype$> species, $type$[] a, int i, VectorMask<$Boxtype$> m, int[] indexMap, int j) { return (($Type$Species)species).op(m, n -> a[i + indexMap[j + n]]); } #else[byteOrShort] @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromArray(VectorSpecies<$Boxtype$> species, $type$[] a, int i, VectorMask<$Boxtype$> m, int[] indexMap, int j) { // @@@ This can result in out of bounds errors for unset mask lanes return zero(species).blend(fromArray(species, a, i, indexMap, j), m); } #end[byteOrShort]
*** 337,347 **** * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(Species<$Boxtype$>, ByteBuffer, int, Mask)} method} as follows: * <pre>{@code * return this.fromByteBuffer(b, i, this.maskAllTrue()) * }</pre> * * @param species species of desired vector --- 337,347 ---- * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(VectorSpecies<$Boxtype$>, ByteBuffer, int, VectorMask)} method} as follows: * <pre>{@code * return this.fromByteBuffer(b, i, this.maskAllTrue()) * }</pre> * * @param species species of desired vector
*** 354,364 **** * {@code this.length() * this.elementSize() / Byte.SIZE} bytes * remaining in the byte buffer from the given offset */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromByteBuffer(Species<$Boxtype$> species, ByteBuffer bb, int ix) { if (bb.order() != ByteOrder.nativeOrder()) { throw new IllegalArgumentException(); } ix = VectorIntrinsics.checkIndex(ix, bb.limit(), species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class<$abstractvectortype$>) species.boxType(), $type$.class, species.length(), --- 354,364 ---- * {@code this.length() * this.elementSize() / Byte.SIZE} bytes * remaining in the byte buffer from the given offset */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ fromByteBuffer(VectorSpecies<$Boxtype$> species, ByteBuffer bb, int ix) { if (bb.order() != ByteOrder.nativeOrder()) { throw new IllegalArgumentException(); } ix = VectorIntrinsics.checkIndex(ix, bb.limit(), species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class<$abstractvectortype$>) species.boxType(), $type$.class, species.length(),
*** 406,416 **** * for any vector lane index {@code N} where the mask at lane {@code N} * is set * {@code i >= b.limit() - (N * this.elementSize() / Byte.SIZE)} */ @ForceInline ! public static $abstractvectortype$ fromByteBuffer(Species<$Boxtype$> species, ByteBuffer bb, int ix, Mask<$Boxtype$> m) { return zero(species).blend(fromByteBuffer(species, bb, ix), m); } /** * Returns a vector where all lane elements are set to the primitive --- 406,416 ---- * for any vector lane index {@code N} where the mask at lane {@code N} * is set * {@code i >= b.limit() - (N * this.elementSize() / Byte.SIZE)} */ @ForceInline ! public static $abstractvectortype$ fromByteBuffer(VectorSpecies<$Boxtype$> species, ByteBuffer bb, int ix, VectorMask<$Boxtype$> m) { return zero(species).blend(fromByteBuffer(species, bb, ix), m); } /** * Returns a vector where all lane elements are set to the primitive
*** 422,441 **** * the primitive value {@code e} */ #if[FP] @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ broadcast(Species<$Boxtype$> s, $type$ e) { return VectorIntrinsics.broadcastCoerced( (Class<$abstractvectortype$>) s.boxType(), $type$.class, s.length(), $Type$.$type$To$Bitstype$Bits(e), s, ((bits, sp) -> (($Type$Species)sp).op(i -> $Type$.$bitstype$BitsTo$Type$(($bitstype$)bits)))); } #else[FP] @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ broadcast(Species<$Boxtype$> s, $type$ e) { return VectorIntrinsics.broadcastCoerced( (Class<$abstractvectortype$>) s.boxType(), $type$.class, s.length(), e, s, ((bits, sp) -> (($Type$Species)sp).op(i -> ($type$)bits))); } --- 422,441 ---- * the primitive value {@code e} */ #if[FP] @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ broadcast(VectorSpecies<$Boxtype$> s, $type$ e) { return VectorIntrinsics.broadcastCoerced( (Class<$abstractvectortype$>) s.boxType(), $type$.class, s.length(), $Type$.$type$To$Bitstype$Bits(e), s, ((bits, sp) -> (($Type$Species)sp).op(i -> $Type$.$bitstype$BitsTo$Type$(($bitstype$)bits)))); } #else[FP] @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ broadcast(VectorSpecies<$Boxtype$> s, $type$ e) { return VectorIntrinsics.broadcastCoerced( (Class<$abstractvectortype$>) s.boxType(), $type$.class, s.length(), e, s, ((bits, sp) -> (($Type$Species)sp).op(i -> ($type$)bits))); }
*** 455,465 **** * value * @throws IndexOutOfBoundsException if {@code es.length < this.length()} */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ scalars(Species<$Boxtype$> s, $type$... es) { Objects.requireNonNull(es); int ix = VectorIntrinsics.checkIndex(0, es.length, s.length()); return VectorIntrinsics.load((Class<$abstractvectortype$>) s.boxType(), $type$.class, s.length(), es, Unsafe.ARRAY_$TYPE$_BASE_OFFSET, es, ix, s, --- 455,465 ---- * value * @throws IndexOutOfBoundsException if {@code es.length < this.length()} */ @ForceInline @SuppressWarnings("unchecked") ! public static $abstractvectortype$ scalars(VectorSpecies<$Boxtype$> s, $type$... es) { Objects.requireNonNull(es); int ix = VectorIntrinsics.checkIndex(0, es.length, s.length()); return VectorIntrinsics.load((Class<$abstractvectortype$>) s.boxType(), $type$.class, s.length(), es, Unsafe.ARRAY_$TYPE$_BASE_OFFSET, es, ix, s,
*** 475,485 **** * @param e the value * @return a vector where the first lane element is set to the primitive * value {@code e} */ @ForceInline ! public static final $abstractvectortype$ single(Species<$Boxtype$> s, $type$ e) { return zero(s).with(0, e); } /** * Returns a vector where each lane element is set to a randomly --- 475,485 ---- * @param e the value * @return a vector where the first lane element is set to the primitive * value {@code e} */ @ForceInline ! public static final $abstractvectortype$ single(VectorSpecies<$Boxtype$> s, $type$ e) { return zero(s).with(0, e); } /** * Returns a vector where each lane element is set to a randomly
*** 495,746 **** * @param s species of the desired vector * @return a vector where each lane elements is set to a randomly * generated primitive value */ #if[intOrLong] ! public static $abstractvectortype$ random(Species<$Boxtype$> s) { ThreadLocalRandom r = ThreadLocalRandom.current(); return (($Type$Species)s).op(i -> r.next$Type$()); } #else[intOrLong] #if[FP] ! public static $abstractvectortype$ random(Species<$Boxtype$> s) { ThreadLocalRandom r = ThreadLocalRandom.current(); return (($Type$Species)s).op(i -> r.next$Type$()); } #else[FP] ! public static $abstractvectortype$ random(Species<$Boxtype$> s) { ThreadLocalRandom r = ThreadLocalRandom.current(); return (($Type$Species)s).op(i -> ($type$) r.nextInt()); } #end[FP] #end[intOrLong] - /** - * Returns a mask where each lane is set or unset according to given - * {@code boolean} values - * <p> - * For each mask lane, where {@code N} is the mask lane index, - * if the given {@code boolean} value at index {@code N} is {@code true} - * then the mask lane at index {@code N} is set, otherwise it is unset. - * - * @param species mask species - * @param bits the given {@code boolean} values - * @return a mask where each lane is set or unset according to the given {@code boolean} value - * @throws IndexOutOfBoundsException if {@code bits.length < species.length()} - */ - @ForceInline - public static Mask<$Boxtype$> maskFromValues(Species<$Boxtype$> species, boolean... bits) { - if (species.boxType() == $Type$MaxVector.class) - return new $Type$MaxVector.$Type$MaxMask(bits); - switch (species.bitSize()) { - case 64: return new $Type$64Vector.$Type$64Mask(bits); - case 128: return new $Type$128Vector.$Type$128Mask(bits); - case 256: return new $Type$256Vector.$Type$256Mask(bits); - case 512: return new $Type$512Vector.$Type$512Mask(bits); - default: throw new IllegalArgumentException(Integer.toString(species.bitSize())); - } - } - - // @@@ This is a bad implementation -- makes lambdas capturing -- fix this - static Mask<$Boxtype$> trueMask(Species<$Boxtype$> species) { - if (species.boxType() == $Type$MaxVector.class) - return $Type$MaxVector.$Type$MaxMask.TRUE_MASK; - switch (species.bitSize()) { - case 64: return $Type$64Vector.$Type$64Mask.TRUE_MASK; - case 128: return $Type$128Vector.$Type$128Mask.TRUE_MASK; - case 256: return $Type$256Vector.$Type$256Mask.TRUE_MASK; - case 512: return $Type$512Vector.$Type$512Mask.TRUE_MASK; - default: throw new IllegalArgumentException(Integer.toString(species.bitSize())); - } - } - - static Mask<$Boxtype$> falseMask(Species<$Boxtype$> species) { - if (species.boxType() == $Type$MaxVector.class) - return $Type$MaxVector.$Type$MaxMask.FALSE_MASK; - switch (species.bitSize()) { - case 64: return $Type$64Vector.$Type$64Mask.FALSE_MASK; - case 128: return $Type$128Vector.$Type$128Mask.FALSE_MASK; - case 256: return $Type$256Vector.$Type$256Mask.FALSE_MASK; - case 512: return $Type$512Vector.$Type$512Mask.FALSE_MASK; - default: throw new IllegalArgumentException(Integer.toString(species.bitSize())); - } - } - - /** - * Loads a mask from a {@code boolean} array starting at an offset. - * <p> - * For each mask lane, where {@code N} is the mask lane index, - * if the array element at index {@code ix + N} is {@code true} then the - * mask lane at index {@code N} is set, otherwise it is unset. - * - * @param species mask species - * @param bits the {@code boolean} array - * @param ix the offset into the array - * @return the mask loaded from a {@code boolean} array - * @throws IndexOutOfBoundsException if {@code ix < 0}, or - * {@code ix > bits.length - species.length()} - */ - @ForceInline - @SuppressWarnings("unchecked") - public static Mask<$Boxtype$> maskFromArray(Species<$Boxtype$> species, boolean[] bits, int ix) { - Objects.requireNonNull(bits); - ix = VectorIntrinsics.checkIndex(ix, bits.length, species.length()); - return VectorIntrinsics.load((Class<Mask<$Boxtype$>>) species.maskType(), $bitstype$.class, species.length(), - bits, (((long) ix) << ARRAY_SHIFT) + Unsafe.ARRAY_BOOLEAN_BASE_OFFSET, - bits, ix, species, - (c, idx, s) -> (Mask<$Boxtype$>) (($Type$Species)s).opm(n -> c[idx + n])); - } - - /** - * Returns a mask where all lanes are set. - * - * @param species mask species - * @return a mask where all lanes are set - */ - @ForceInline - @SuppressWarnings("unchecked") - public static Mask<$Boxtype$> maskAllTrue(Species<$Boxtype$> species) { - return VectorIntrinsics.broadcastCoerced((Class<Mask<$Boxtype$>>) species.maskType(), $bitstype$.class, species.length(), - ($bitstype$)-1, species, - ((z, s) -> trueMask(s))); - } - - /** - * Returns a mask where all lanes are unset. - * - * @param species mask species - * @return a mask where all lanes are unset - */ - @ForceInline - @SuppressWarnings("unchecked") - public static Mask<$Boxtype$> maskAllFalse(Species<$Boxtype$> species) { - return VectorIntrinsics.broadcastCoerced((Class<Mask<$Boxtype$>>) species.maskType(), $bitstype$.class, species.length(), - 0, species, - ((z, s) -> falseMask(s))); - } - - /** - * Returns a shuffle of mapped indexes where each lane element is - * the result of applying a mapping function to the corresponding lane - * index. - * <p> - * Care should be taken to ensure Shuffle values produced from this - * method are consumed as constants to ensure optimal generation of - * code. For example, values held in static final fields or values - * held in loop constant local variables. - * <p> - * This method behaves as if a shuffle is created from an array of - * mapped indexes as follows: - * <pre>{@code - * int[] a = new int[species.length()]; - * for (int i = 0; i < a.length; i++) { - * a[i] = f.applyAsInt(i); - * } - * return this.shuffleFromValues(a); - * }</pre> - * - * @param species shuffle species - * @param f the lane index mapping function - * @return a shuffle of mapped indexes - */ - @ForceInline - public static Shuffle<$Boxtype$> shuffle(Species<$Boxtype$> species, IntUnaryOperator f) { - if (species.boxType() == $Type$MaxVector.class) - return new $Type$MaxVector.$Type$MaxShuffle(f); - switch (species.bitSize()) { - case 64: return new $Type$64Vector.$Type$64Shuffle(f); - case 128: return new $Type$128Vector.$Type$128Shuffle(f); - case 256: return new $Type$256Vector.$Type$256Shuffle(f); - case 512: return new $Type$512Vector.$Type$512Shuffle(f); - default: throw new IllegalArgumentException(Integer.toString(species.bitSize())); - } - } - - /** - * Returns a shuffle where each lane element is the value of its - * corresponding lane index. - * <p> - * This method behaves as if a shuffle is created from an identity - * index mapping function as follows: - * <pre>{@code - * return this.shuffle(i -> i); - * }</pre> - * - * @param species shuffle species - * @return a shuffle of lane indexes - */ - @ForceInline - public static Shuffle<$Boxtype$> shuffleIota(Species<$Boxtype$> species) { - if (species.boxType() == $Type$MaxVector.class) - return new $Type$MaxVector.$Type$MaxShuffle(AbstractShuffle.IDENTITY); - switch (species.bitSize()) { - case 64: return new $Type$64Vector.$Type$64Shuffle(AbstractShuffle.IDENTITY); - case 128: return new $Type$128Vector.$Type$128Shuffle(AbstractShuffle.IDENTITY); - case 256: return new $Type$256Vector.$Type$256Shuffle(AbstractShuffle.IDENTITY); - case 512: return new $Type$512Vector.$Type$512Shuffle(AbstractShuffle.IDENTITY); - default: throw new IllegalArgumentException(Integer.toString(species.bitSize())); - } - } - - /** - * Returns a shuffle where each lane element is set to a given - * {@code int} value logically AND'ed by the species length minus one. - * <p> - * For each shuffle lane, where {@code N} is the shuffle lane index, the - * the {@code int} value at index {@code N} logically AND'ed by - * {@code species.length() - 1} is placed into the resulting shuffle at - * lane index {@code N}. - * - * @param species shuffle species - * @param ixs the given {@code int} values - * @return a shuffle where each lane element is set to a given - * {@code int} value - * @throws IndexOutOfBoundsException if the number of int values is - * {@code < species.length()} - */ - @ForceInline - public static Shuffle<$Boxtype$> shuffleFromValues(Species<$Boxtype$> species, int... ixs) { - if (species.boxType() == $Type$MaxVector.class) - return new $Type$MaxVector.$Type$MaxShuffle(ixs); - switch (species.bitSize()) { - case 64: return new $Type$64Vector.$Type$64Shuffle(ixs); - case 128: return new $Type$128Vector.$Type$128Shuffle(ixs); - case 256: return new $Type$256Vector.$Type$256Shuffle(ixs); - case 512: return new $Type$512Vector.$Type$512Shuffle(ixs); - default: throw new IllegalArgumentException(Integer.toString(species.bitSize())); - } - } - - /** - * Loads a shuffle from an {@code int} array starting at an offset. - * <p> - * For each shuffle lane, where {@code N} is the shuffle lane index, the - * array element at index {@code i + N} logically AND'ed by - * {@code species.length() - 1} is placed into the resulting shuffle at lane - * index {@code N}. - * - * @param species shuffle species - * @param ixs the {@code int} array - * @param i the offset into the array - * @return a shuffle loaded from the {@code int} array - * @throws IndexOutOfBoundsException if {@code i < 0}, or - * {@code i > a.length - species.length()} - */ - @ForceInline - public static Shuffle<$Boxtype$> shuffleFromArray(Species<$Boxtype$> species, int[] ixs, int i) { - if (species.boxType() == $Type$MaxVector.class) - return new $Type$MaxVector.$Type$MaxShuffle(ixs, i); - switch (species.bitSize()) { - case 64: return new $Type$64Vector.$Type$64Shuffle(ixs, i); - case 128: return new $Type$128Vector.$Type$128Shuffle(ixs, i); - case 256: return new $Type$256Vector.$Type$256Shuffle(ixs, i); - case 512: return new $Type$512Vector.$Type$512Shuffle(ixs, i); - default: throw new IllegalArgumentException(Integer.toString(species.bitSize())); - } - } - // Ops @Override public abstract $abstractvectortype$ add(Vector<$Boxtype$> v); --- 495,522 ---- * @param s species of the desired vector * @return a vector where each lane elements is set to a randomly * generated primitive value */ #if[intOrLong] ! public static $abstractvectortype$ random(VectorSpecies<$Boxtype$> s) { ThreadLocalRandom r = ThreadLocalRandom.current(); return (($Type$Species)s).op(i -> r.next$Type$()); } #else[intOrLong] #if[FP] ! public static $abstractvectortype$ random(VectorSpecies<$Boxtype$> s) { ThreadLocalRandom r = ThreadLocalRandom.current(); return (($Type$Species)s).op(i -> r.next$Type$()); } #else[FP] ! public static $abstractvectortype$ random(VectorSpecies<$Boxtype$> s) { ThreadLocalRandom r = ThreadLocalRandom.current(); return (($Type$Species)s).op(i -> ($type$) r.nextInt()); } #end[FP] #end[intOrLong] // Ops @Override public abstract $abstractvectortype$ add(Vector<$Boxtype$> v);
*** 755,765 **** * scalar */ public abstract $abstractvectortype$ add($type$ s); @Override ! public abstract $abstractvectortype$ add(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Adds this vector to broadcast of an input scalar, * selecting lane elements controlled by a mask. * <p> --- 531,541 ---- * scalar */ public abstract $abstractvectortype$ add($type$ s); @Override ! public abstract $abstractvectortype$ add(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Adds this vector to broadcast of an input scalar, * selecting lane elements controlled by a mask. * <p>
*** 769,779 **** * @param s the input scalar * @param m the mask controlling lane selection * @return the result of adding this vector to the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ add($type$ s, Mask<$Boxtype$> m); @Override public abstract $abstractvectortype$ sub(Vector<$Boxtype$> v); /** --- 545,555 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return the result of adding this vector to the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ add($type$ s, VectorMask<$Boxtype$> m); @Override public abstract $abstractvectortype$ sub(Vector<$Boxtype$> v); /**
*** 787,797 **** * scalar from this vector */ public abstract $abstractvectortype$ sub($type$ s); @Override ! public abstract $abstractvectortype$ sub(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Subtracts the broadcast of an input scalar from this vector, selecting * lane elements controlled by a mask. * <p> --- 563,573 ---- * scalar from this vector */ public abstract $abstractvectortype$ sub($type$ s); @Override ! public abstract $abstractvectortype$ sub(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Subtracts the broadcast of an input scalar from this vector, selecting * lane elements controlled by a mask. * <p>
*** 801,811 **** * @param s the input scalar * @param m the mask controlling lane selection * @return the result of subtracting the broadcast of an input * scalar from this vector */ ! public abstract $abstractvectortype$ sub($type$ s, Mask<$Boxtype$> m); @Override public abstract $abstractvectortype$ mul(Vector<$Boxtype$> v); /** --- 577,587 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return the result of subtracting the broadcast of an input * scalar from this vector */ ! public abstract $abstractvectortype$ sub($type$ s, VectorMask<$Boxtype$> m); @Override public abstract $abstractvectortype$ mul(Vector<$Boxtype$> v); /**
*** 819,829 **** * input scalar */ public abstract $abstractvectortype$ mul($type$ s); @Override ! public abstract $abstractvectortype$ mul(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Multiplies this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> --- 595,605 ---- * input scalar */ public abstract $abstractvectortype$ mul($type$ s); @Override ! public abstract $abstractvectortype$ mul(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Multiplies this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p>
*** 833,861 **** * @param s the input scalar * @param m the mask controlling lane selection * @return the result of multiplying this vector with the broadcast of an * input scalar */ ! public abstract $abstractvectortype$ mul($type$ s, Mask<$Boxtype$> m); @Override public abstract $abstractvectortype$ neg(); @Override ! public abstract $abstractvectortype$ neg(Mask<$Boxtype$> m); @Override public abstract $abstractvectortype$ abs(); @Override ! public abstract $abstractvectortype$ abs(Mask<$Boxtype$> m); @Override public abstract $abstractvectortype$ min(Vector<$Boxtype$> v); @Override ! public abstract $abstractvectortype$ min(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Returns the minimum of this vector and the broadcast of an input scalar. * <p> * This is a vector binary operation where the operation --- 609,637 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return the result of multiplying this vector with the broadcast of an * input scalar */ ! public abstract $abstractvectortype$ mul($type$ s, VectorMask<$Boxtype$> m); @Override public abstract $abstractvectortype$ neg(); @Override ! public abstract $abstractvectortype$ neg(VectorMask<$Boxtype$> m); @Override public abstract $abstractvectortype$ abs(); @Override ! public abstract $abstractvectortype$ abs(VectorMask<$Boxtype$> m); @Override public abstract $abstractvectortype$ min(Vector<$Boxtype$> v); @Override ! public abstract $abstractvectortype$ min(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Returns the minimum of this vector and the broadcast of an input scalar. * <p> * This is a vector binary operation where the operation
*** 868,878 **** @Override public abstract $abstractvectortype$ max(Vector<$Boxtype$> v); @Override ! public abstract $abstractvectortype$ max(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Returns the maximum of this vector and the broadcast of an input scalar. * <p> * This is a vector binary operation where the operation --- 644,654 ---- @Override public abstract $abstractvectortype$ max(Vector<$Boxtype$> v); @Override ! public abstract $abstractvectortype$ max(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Returns the maximum of this vector and the broadcast of an input scalar. * <p> * This is a vector binary operation where the operation
*** 882,892 **** * @return the maximum of this vector and the broadcast of an input scalar */ public abstract $abstractvectortype$ max($type$ s); @Override ! public abstract Mask<$Boxtype$> equal(Vector<$Boxtype$> v); /** * Tests if this vector is equal to the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive equals --- 658,668 ---- * @return the maximum of this vector and the broadcast of an input scalar */ public abstract $abstractvectortype$ max($type$ s); @Override ! public abstract VectorMask<$Boxtype$> equal(Vector<$Boxtype$> v); /** * Tests if this vector is equal to the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive equals
*** 894,907 **** * * @param s the input scalar * @return the result mask of testing if this vector is equal to the * broadcast of an input scalar */ ! public abstract Mask<$Boxtype$> equal($type$ s); @Override ! public abstract Mask<$Boxtype$> notEqual(Vector<$Boxtype$> v); /** * Tests if this vector is not equal to the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive not equals --- 670,683 ---- * * @param s the input scalar * @return the result mask of testing if this vector is equal to the * broadcast of an input scalar */ ! public abstract VectorMask<$Boxtype$> equal($type$ s); @Override ! public abstract VectorMask<$Boxtype$> notEqual(Vector<$Boxtype$> v); /** * Tests if this vector is not equal to the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive not equals
*** 909,922 **** * * @param s the input scalar * @return the result mask of testing if this vector is not equal to the * broadcast of an input scalar */ ! public abstract Mask<$Boxtype$> notEqual($type$ s); @Override ! public abstract Mask<$Boxtype$> lessThan(Vector<$Boxtype$> v); /** * Tests if this vector is less than the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive less than --- 685,698 ---- * * @param s the input scalar * @return the result mask of testing if this vector is not equal to the * broadcast of an input scalar */ ! public abstract VectorMask<$Boxtype$> notEqual($type$ s); @Override ! public abstract VectorMask<$Boxtype$> lessThan(Vector<$Boxtype$> v); /** * Tests if this vector is less than the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive less than
*** 924,937 **** * * @param s the input scalar * @return the mask result of testing if this vector is less than the * broadcast of an input scalar */ ! public abstract Mask<$Boxtype$> lessThan($type$ s); @Override ! public abstract Mask<$Boxtype$> lessThanEq(Vector<$Boxtype$> v); /** * Tests if this vector is less or equal to the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive less than --- 700,713 ---- * * @param s the input scalar * @return the mask result of testing if this vector is less than the * broadcast of an input scalar */ ! public abstract VectorMask<$Boxtype$> lessThan($type$ s); @Override ! public abstract VectorMask<$Boxtype$> lessThanEq(Vector<$Boxtype$> v); /** * Tests if this vector is less or equal to the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive less than
*** 939,952 **** * * @param s the input scalar * @return the mask result of testing if this vector is less than or equal * to the broadcast of an input scalar */ ! public abstract Mask<$Boxtype$> lessThanEq($type$ s); @Override ! public abstract Mask<$Boxtype$> greaterThan(Vector<$Boxtype$> v); /** * Tests if this vector is greater than the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive greater than --- 715,728 ---- * * @param s the input scalar * @return the mask result of testing if this vector is less than or equal * to the broadcast of an input scalar */ ! public abstract VectorMask<$Boxtype$> lessThanEq($type$ s); @Override ! public abstract VectorMask<$Boxtype$> greaterThan(Vector<$Boxtype$> v); /** * Tests if this vector is greater than the broadcast of an input scalar. * <p> * This is a vector binary test operation where the primitive greater than
*** 954,967 **** * * @param s the input scalar * @return the mask result of testing if this vector is greater than the * broadcast of an input scalar */ ! public abstract Mask<$Boxtype$> greaterThan($type$ s); @Override ! public abstract Mask<$Boxtype$> greaterThanEq(Vector<$Boxtype$> v); /** * Tests if this vector is greater than or equal to the broadcast of an * input scalar. * <p> --- 730,743 ---- * * @param s the input scalar * @return the mask result of testing if this vector is greater than the * broadcast of an input scalar */ ! public abstract VectorMask<$Boxtype$> greaterThan($type$ s); @Override ! public abstract VectorMask<$Boxtype$> greaterThanEq(Vector<$Boxtype$> v); /** * Tests if this vector is greater than or equal to the broadcast of an * input scalar. * <p>
*** 970,983 **** * * @param s the input scalar * @return the mask result of testing if this vector is greater than or * equal to the broadcast of an input scalar */ ! public abstract Mask<$Boxtype$> greaterThanEq($type$ s); @Override ! public abstract $abstractvectortype$ blend(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Blends the lane elements of this vector with those of the broadcast of an * input scalar, selecting lanes controlled by a mask. * <p> --- 746,759 ---- * * @param s the input scalar * @return the mask result of testing if this vector is greater than or * equal to the broadcast of an input scalar */ ! public abstract VectorMask<$Boxtype$> greaterThanEq($type$ s); @Override ! public abstract $abstractvectortype$ blend(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Blends the lane elements of this vector with those of the broadcast of an * input scalar, selecting lanes controlled by a mask. * <p>
*** 990,1010 **** * @param s the input scalar * @param m the mask controlling lane selection * @return the result of blending the lane elements of this vector with * those of the broadcast of an input scalar */ ! public abstract $abstractvectortype$ blend($type$ s, Mask<$Boxtype$> m); @Override public abstract $abstractvectortype$ rearrange(Vector<$Boxtype$> v, ! Shuffle<$Boxtype$> s, Mask<$Boxtype$> m); @Override ! public abstract $abstractvectortype$ rearrange(Shuffle<$Boxtype$> m); @Override ! public abstract $abstractvectortype$ reshape(Species<$Boxtype$> s); @Override public abstract $abstractvectortype$ rotateEL(int i); @Override --- 766,786 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return the result of blending the lane elements of this vector with * those of the broadcast of an input scalar */ ! public abstract $abstractvectortype$ blend($type$ s, VectorMask<$Boxtype$> m); @Override public abstract $abstractvectortype$ rearrange(Vector<$Boxtype$> v, ! VectorShuffle<$Boxtype$> s, VectorMask<$Boxtype$> m); @Override ! public abstract $abstractvectortype$ rearrange(VectorShuffle<$Boxtype$> m); @Override ! public abstract $abstractvectortype$ reshape(VectorSpecies<$Boxtype$> s); @Override public abstract $abstractvectortype$ rotateEL(int i); @Override
*** 1049,1059 **** * * @param v the input vector * @param m the mask controlling lane selection * @return the result of dividing this vector by the input vector */ ! public abstract $abstractvectortype$ div(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Divides this vector by the broadcast of an input scalar, selecting lane * elements controlled by a mask. * <p> --- 825,835 ---- * * @param v the input vector * @param m the mask controlling lane selection * @return the result of dividing this vector by the input vector */ ! public abstract $abstractvectortype$ div(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Divides this vector by the broadcast of an input scalar, selecting lane * elements controlled by a mask. * <p>
*** 1063,1073 **** * @param s the input scalar * @param m the mask controlling lane selection * @return the result of dividing this vector by the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ div($type$ s, Mask<$Boxtype$> m); /** * Calculates the square root of this vector. * <p> * This is a vector unary operation where the {@link Math#sqrt} operation --- 839,849 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return the result of dividing this vector by the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ div($type$ s, VectorMask<$Boxtype$> m); /** * Calculates the square root of this vector. * <p> * This is a vector unary operation where the {@link Math#sqrt} operation
*** 1085,1095 **** * is applied to lane elements. * * @param m the mask controlling lane selection * @return the square root of this vector */ ! public $abstractvectortype$ sqrt(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.sqrt((double) a)); } /** * Calculates the trigonometric tangent of this vector. --- 861,871 ---- * is applied to lane elements. * * @param m the mask controlling lane selection * @return the square root of this vector */ ! public $abstractvectortype$ sqrt(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.sqrt((double) a)); } /** * Calculates the trigonometric tangent of this vector.
*** 1116,1126 **** * described in {@link $abstractvectortype$#tan} * * @param m the mask controlling lane selection * @return the tangent of this vector */ ! public $abstractvectortype$ tan(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.tan((double) a)); } /** * Calculates the hyperbolic tangent of this vector. --- 892,902 ---- * described in {@link $abstractvectortype$#tan} * * @param m the mask controlling lane selection * @return the tangent of this vector */ ! public $abstractvectortype$ tan(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.tan((double) a)); } /** * Calculates the hyperbolic tangent of this vector.
*** 1147,1157 **** * described in {@link $abstractvectortype$#tanh} * * @param m the mask controlling lane selection * @return the hyperbolic tangent of this vector */ ! public $abstractvectortype$ tanh(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.tanh((double) a)); } /** * Calculates the trigonometric sine of this vector. --- 923,933 ---- * described in {@link $abstractvectortype$#tanh} * * @param m the mask controlling lane selection * @return the hyperbolic tangent of this vector */ ! public $abstractvectortype$ tanh(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.tanh((double) a)); } /** * Calculates the trigonometric sine of this vector.
*** 1178,1188 **** * described in {@link $abstractvectortype$#sin} * * @param m the mask controlling lane selection * @return the sine of this vector */ ! public $abstractvectortype$ sin(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.sin((double) a)); } /** * Calculates the hyperbolic sine of this vector. --- 954,964 ---- * described in {@link $abstractvectortype$#sin} * * @param m the mask controlling lane selection * @return the sine of this vector */ ! public $abstractvectortype$ sin(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.sin((double) a)); } /** * Calculates the hyperbolic sine of this vector.
*** 1209,1219 **** * described in {@link $abstractvectortype$#sinh} * * @param m the mask controlling lane selection * @return the hyperbolic sine of this vector */ ! public $abstractvectortype$ sinh(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.sinh((double) a)); } /** * Calculates the trigonometric cosine of this vector. --- 985,995 ---- * described in {@link $abstractvectortype$#sinh} * * @param m the mask controlling lane selection * @return the hyperbolic sine of this vector */ ! public $abstractvectortype$ sinh(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.sinh((double) a)); } /** * Calculates the trigonometric cosine of this vector.
*** 1240,1250 **** * described in {@link $abstractvectortype$#cos} * * @param m the mask controlling lane selection * @return the cosine of this vector */ ! public $abstractvectortype$ cos(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.cos((double) a)); } /** * Calculates the hyperbolic cosine of this vector. --- 1016,1026 ---- * described in {@link $abstractvectortype$#cos} * * @param m the mask controlling lane selection * @return the cosine of this vector */ ! public $abstractvectortype$ cos(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.cos((double) a)); } /** * Calculates the hyperbolic cosine of this vector.
*** 1271,1281 **** * described in {@link $abstractvectortype$#cosh} * * @param m the mask controlling lane selection * @return the hyperbolic cosine of this vector */ ! public $abstractvectortype$ cosh(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.cosh((double) a)); } /** * Calculates the arc sine of this vector. --- 1047,1057 ---- * described in {@link $abstractvectortype$#cosh} * * @param m the mask controlling lane selection * @return the hyperbolic cosine of this vector */ ! public $abstractvectortype$ cosh(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.cosh((double) a)); } /** * Calculates the arc sine of this vector.
*** 1302,1312 **** * described in {@link $abstractvectortype$#asin} * * @param m the mask controlling lane selection * @return the arc sine of this vector */ ! public $abstractvectortype$ asin(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.asin((double) a)); } /** * Calculates the arc cosine of this vector. --- 1078,1088 ---- * described in {@link $abstractvectortype$#asin} * * @param m the mask controlling lane selection * @return the arc sine of this vector */ ! public $abstractvectortype$ asin(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.asin((double) a)); } /** * Calculates the arc cosine of this vector.
*** 1333,1343 **** * described in {@link $abstractvectortype$#acos} * * @param m the mask controlling lane selection * @return the arc cosine of this vector */ ! public $abstractvectortype$ acos(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.acos((double) a)); } /** * Calculates the arc tangent of this vector. --- 1109,1119 ---- * described in {@link $abstractvectortype$#acos} * * @param m the mask controlling lane selection * @return the arc cosine of this vector */ ! public $abstractvectortype$ acos(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.acos((double) a)); } /** * Calculates the arc tangent of this vector.
*** 1364,1374 **** * described in {@link $abstractvectortype$#atan} * * @param m the mask controlling lane selection * @return the arc tangent of this vector */ ! public $abstractvectortype$ atan(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.atan((double) a)); } /** * Calculates the arc tangent of this vector divided by an input vector. --- 1140,1150 ---- * described in {@link $abstractvectortype$#atan} * * @param m the mask controlling lane selection * @return the arc tangent of this vector */ ! public $abstractvectortype$ atan(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.atan((double) a)); } /** * Calculates the arc tangent of this vector divided by an input vector.
*** 1414,1424 **** * * @param v the input vector * @param m the mask controlling lane selection * @return the arc tangent of this vector divided by the input vector */ ! public $abstractvectortype$ atan2(Vector<$Boxtype$> v, Mask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) Math.atan2((double) a, (double) b)); } /** * Calculates the arc tangent of this vector divided by the broadcast of an --- 1190,1200 ---- * * @param v the input vector * @param m the mask controlling lane selection * @return the arc tangent of this vector divided by the input vector */ ! public $abstractvectortype$ atan2(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) Math.atan2((double) a, (double) b)); } /** * Calculates the arc tangent of this vector divided by the broadcast of an
*** 1429,1439 **** * * @param s the input scalar * @param m the mask controlling lane selection * @return the arc tangent of this vector over the input vector */ ! public abstract $abstractvectortype$ atan2($type$ s, Mask<$Boxtype$> m); /** * Calculates the cube root of this vector. * <p> * This is a vector unary operation with same semantic definition as --- 1205,1215 ---- * * @param s the input scalar * @param m the mask controlling lane selection * @return the arc tangent of this vector over the input vector */ ! public abstract $abstractvectortype$ atan2($type$ s, VectorMask<$Boxtype$> m); /** * Calculates the cube root of this vector. * <p> * This is a vector unary operation with same semantic definition as
*** 1458,1468 **** * described in {@link $abstractvectortype$#cbrt} * * @param m the mask controlling lane selection * @return the cube root of this vector */ ! public $abstractvectortype$ cbrt(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.cbrt((double) a)); } /** * Calculates the natural logarithm of this vector. --- 1234,1244 ---- * described in {@link $abstractvectortype$#cbrt} * * @param m the mask controlling lane selection * @return the cube root of this vector */ ! public $abstractvectortype$ cbrt(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.cbrt((double) a)); } /** * Calculates the natural logarithm of this vector.
*** 1489,1499 **** * described in {@link $abstractvectortype$#log} * * @param m the mask controlling lane selection * @return the natural logarithm of this vector */ ! public $abstractvectortype$ log(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.log((double) a)); } /** * Calculates the base 10 logarithm of this vector. --- 1265,1275 ---- * described in {@link $abstractvectortype$#log} * * @param m the mask controlling lane selection * @return the natural logarithm of this vector */ ! public $abstractvectortype$ log(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.log((double) a)); } /** * Calculates the base 10 logarithm of this vector.
*** 1520,1530 **** * described in {@link $abstractvectortype$#log10} * * @param m the mask controlling lane selection * @return the base 10 logarithm of this vector */ ! public $abstractvectortype$ log10(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.log10((double) a)); } /** * Calculates the natural logarithm of the sum of this vector and the --- 1296,1306 ---- * described in {@link $abstractvectortype$#log10} * * @param m the mask controlling lane selection * @return the base 10 logarithm of this vector */ ! public $abstractvectortype$ log10(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.log10((double) a)); } /** * Calculates the natural logarithm of the sum of this vector and the
*** 1554,1564 **** * * @param m the mask controlling lane selection * @return the natural logarithm of the sum of this vector and the broadcast * of {@code 1} */ ! public $abstractvectortype$ log1p(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.log1p((double) a)); } /** * Calculates this vector raised to the power of an input vector. --- 1330,1340 ---- * * @param m the mask controlling lane selection * @return the natural logarithm of the sum of this vector and the broadcast * of {@code 1} */ ! public $abstractvectortype$ log1p(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.log1p((double) a)); } /** * Calculates this vector raised to the power of an input vector.
*** 1605,1615 **** * * @param v the input vector * @param m the mask controlling lane selection * @return this vector raised to the power of an input vector */ ! public $abstractvectortype$ pow(Vector<$Boxtype$> v, Mask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) Math.pow((double) a, (double) b)); } /** * Calculates this vector raised to the power of the broadcast of an input --- 1381,1391 ---- * * @param v the input vector * @param m the mask controlling lane selection * @return this vector raised to the power of an input vector */ ! public $abstractvectortype$ pow(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) Math.pow((double) a, (double) b)); } /** * Calculates this vector raised to the power of the broadcast of an input
*** 1621,1631 **** * @param s the input scalar * @param m the mask controlling lane selection * @return this vector raised to the power of the broadcast of an input * scalar. */ ! public abstract $abstractvectortype$ pow($type$ s, Mask<$Boxtype$> m); /** * Calculates the broadcast of Euler's number {@code e} raised to the power * of this vector. * <p> --- 1397,1407 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return this vector raised to the power of the broadcast of an input * scalar. */ ! public abstract $abstractvectortype$ pow($type$ s, VectorMask<$Boxtype$> m); /** * Calculates the broadcast of Euler's number {@code e} raised to the power * of this vector. * <p>
*** 1653,1663 **** * * @param m the mask controlling lane selection * @return the broadcast of Euler's number {@code e} raised to the power of * this vector */ ! public $abstractvectortype$ exp(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.exp((double) a)); } /** * Calculates the broadcast of Euler's number {@code e} raised to the power --- 1429,1439 ---- * * @param m the mask controlling lane selection * @return the broadcast of Euler's number {@code e} raised to the power of * this vector */ ! public $abstractvectortype$ exp(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.exp((double) a)); } /** * Calculates the broadcast of Euler's number {@code e} raised to the power
*** 1698,1708 **** * * @param m the mask controlling lane selection * @return the broadcast of Euler's number {@code e} raised to the power of * this vector minus the broadcast of {@code -1} */ ! public $abstractvectortype$ expm1(Mask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.expm1((double) a)); } /** * Calculates the product of this vector and a first input vector summed --- 1474,1484 ---- * * @param m the mask controlling lane selection * @return the broadcast of Euler's number {@code e} raised to the power of * this vector minus the broadcast of {@code -1} */ ! public $abstractvectortype$ expm1(VectorMask<$Boxtype$> m) { return uOp(m, (i, a) -> ($type$) Math.expm1((double) a)); } /** * Calculates the product of this vector and a first input vector summed
*** 1757,1767 **** * @param v2 the second input vector * @param m the mask controlling lane selection * @return the product of this vector and the first input vector summed with * the second input vector */ ! public $abstractvectortype$ fma(Vector<$Boxtype$> v1, Vector<$Boxtype$> v2, Mask<$Boxtype$> m) { return tOp(v1, v2, m, (i, a, b, c) -> Math.fma(a, b, c)); } /** * Calculates the product of this vector and the broadcast of a first input --- 1533,1543 ---- * @param v2 the second input vector * @param m the mask controlling lane selection * @return the product of this vector and the first input vector summed with * the second input vector */ ! public $abstractvectortype$ fma(Vector<$Boxtype$> v1, Vector<$Boxtype$> v2, VectorMask<$Boxtype$> m) { return tOp(v1, v2, m, (i, a, b, c) -> Math.fma(a, b, c)); } /** * Calculates the product of this vector and the broadcast of a first input
*** 1779,1789 **** * @param s2 the second input scalar * @param m the mask controlling lane selection * @return the product of this vector and the broadcast of a first input * scalar summed with the broadcast of a second input scalar */ ! public abstract $abstractvectortype$ fma($type$ s1, $type$ s2, Mask<$Boxtype$> m); /** * Calculates square root of the sum of the squares of this vector and an * input vector. * More specifically as if the following (ignoring any differences in --- 1555,1565 ---- * @param s2 the second input scalar * @param m the mask controlling lane selection * @return the product of this vector and the broadcast of a first input * scalar summed with the broadcast of a second input scalar */ ! public abstract $abstractvectortype$ fma($type$ s1, $type$ s2, VectorMask<$Boxtype$> m); /** * Calculates square root of the sum of the squares of this vector and an * input vector. * More specifically as if the following (ignoring any differences in
*** 1846,1856 **** * @param v the input vector * @param m the mask controlling lane selection * @return square root of the sum of the squares of this vector and an input * vector */ ! public $abstractvectortype$ hypot(Vector<$Boxtype$> v, Mask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) Math.hypot((double) a, (double) b)); } /** * Calculates square root of the sum of the squares of this vector and the --- 1622,1632 ---- * @param v the input vector * @param m the mask controlling lane selection * @return square root of the sum of the squares of this vector and an input * vector */ ! public $abstractvectortype$ hypot(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) Math.hypot((double) a, (double) b)); } /** * Calculates square root of the sum of the squares of this vector and the
*** 1868,1878 **** * @param s the input scalar * @param m the mask controlling lane selection * @return square root of the sum of the squares of this vector and the * broadcast of an input scalar */ ! public abstract $abstractvectortype$ hypot($type$ s, Mask<$Boxtype$> m); #end[FP] #if[BITWISE] /** --- 1644,1654 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return square root of the sum of the squares of this vector and the * broadcast of an input scalar */ ! public abstract $abstractvectortype$ hypot($type$ s, VectorMask<$Boxtype$> m); #end[FP] #if[BITWISE] /**
*** 1907,1917 **** * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the input vector */ ! public abstract $abstractvectortype$ and(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Bitwise ANDs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> --- 1683,1693 ---- * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the input vector */ ! public abstract $abstractvectortype$ and(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Bitwise ANDs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p>
*** 1921,1931 **** * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ and($type$ s, Mask<$Boxtype$> m); /** * Bitwise ORs this vector with an input vector. * <p> * This is a vector binary operation where the primitive bitwise OR --- 1697,1707 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ and($type$ s, VectorMask<$Boxtype$> m); /** * Bitwise ORs this vector with an input vector. * <p> * This is a vector binary operation where the primitive bitwise OR
*** 1957,1967 **** * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the input vector */ ! public abstract $abstractvectortype$ or(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Bitwise ORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> --- 1733,1743 ---- * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the input vector */ ! public abstract $abstractvectortype$ or(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Bitwise ORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p>
*** 1971,1981 **** * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ or($type$ s, Mask<$Boxtype$> m); /** * Bitwise XORs this vector with an input vector. * <p> * This is a vector binary operation where the primitive bitwise XOR --- 1747,1757 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ or($type$ s, VectorMask<$Boxtype$> m); /** * Bitwise XORs this vector with an input vector. * <p> * This is a vector binary operation where the primitive bitwise XOR
*** 2007,2017 **** * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the input vector */ ! public abstract $abstractvectortype$ xor(Vector<$Boxtype$> v, Mask<$Boxtype$> m); /** * Bitwise XORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> --- 1783,1793 ---- * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the input vector */ ! public abstract $abstractvectortype$ xor(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m); /** * Bitwise XORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p>
*** 2021,2031 **** * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ xor($type$ s, Mask<$Boxtype$> m); /** * Bitwise NOTs this vector. * <p> * This is a vector unary operation where the primitive bitwise NOT --- 1797,1807 ---- * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the broadcast of an input * scalar */ ! public abstract $abstractvectortype$ xor($type$ s, VectorMask<$Boxtype$> m); /** * Bitwise NOTs this vector. * <p> * This is a vector unary operation where the primitive bitwise NOT
*** 2042,2052 **** * operation ({@code ~}) is applied to lane elements. * * @param m the mask controlling lane selection * @return the bitwise NOT of this vector */ ! public abstract $abstractvectortype$ not(Mask<$Boxtype$> m); #if[byte] /** * Logically left shifts this vector by the broadcast of an input scalar. * <p> --- 1818,1828 ---- * operation ({@code ~}) is applied to lane elements. * * @param m the mask controlling lane selection * @return the bitwise NOT of this vector */ ! public abstract $abstractvectortype$ not(VectorMask<$Boxtype$> m); #if[byte] /** * Logically left shifts this vector by the broadcast of an input scalar. * <p>
*** 2140,2150 **** * @param m the mask controlling lane selection * @return the result of logically left shifting this vector by the * broadcast of an input scalar */ #end[intOrLong] ! public abstract $abstractvectortype$ shiftL(int s, Mask<$Boxtype$> m); #if[intOrLong] /** * Logically left shifts this vector by an input vector. * <p> --- 1916,1926 ---- * @param m the mask controlling lane selection * @return the result of logically left shifting this vector by the * broadcast of an input scalar */ #end[intOrLong] ! public abstract $abstractvectortype$ shiftL(int s, VectorMask<$Boxtype$> m); #if[intOrLong] /** * Logically left shifts this vector by an input vector. * <p>
*** 2167,2177 **** * @param v the input vector * @param m the mask controlling lane selection * @return the result of logically left shifting this vector by the input * vector */ ! public $abstractvectortype$ shiftL(Vector<$Boxtype$> v, Mask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) (a << b)); } #end[intOrLong] // logical, or unsigned, shift right --- 1943,1953 ---- * @param v the input vector * @param m the mask controlling lane selection * @return the result of logically left shifting this vector by the input * vector */ ! public $abstractvectortype$ shiftL(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) (a << b)); } #end[intOrLong] // logical, or unsigned, shift right
*** 2276,2286 **** * @param m the mask controlling lane selection * @return the result of logically right shifting this vector by the * broadcast of an input scalar */ #end[intOrLong] ! public abstract $abstractvectortype$ shiftR(int s, Mask<$Boxtype$> m); #if[intOrLong] /** * Logically right shifts (or unsigned right shifts) this vector by an * input vector. --- 2052,2062 ---- * @param m the mask controlling lane selection * @return the result of logically right shifting this vector by the * broadcast of an input scalar */ #end[intOrLong] ! public abstract $abstractvectortype$ shiftR(int s, VectorMask<$Boxtype$> m); #if[intOrLong] /** * Logically right shifts (or unsigned right shifts) this vector by an * input vector.
*** 2304,2314 **** * @param v the input vector * @param m the mask controlling lane selection * @return the result of logically right shifting this vector by the * input vector */ ! public $abstractvectortype$ shiftR(Vector<$Boxtype$> v, Mask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) (a >>> b)); } #end[intOrLong] #if[byte] --- 2080,2090 ---- * @param v the input vector * @param m the mask controlling lane selection * @return the result of logically right shifting this vector by the * input vector */ ! public $abstractvectortype$ shiftR(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) (a >>> b)); } #end[intOrLong] #if[byte]
*** 2411,2421 **** * @param m the mask controlling lane selection * @return the result of arithmetically right shifting this vector by the * broadcast of an input scalar */ #end[intOrLong] ! public abstract $abstractvectortype$ aShiftR(int s, Mask<$Boxtype$> m); #if[intOrLong] /** * Arithmetically right shifts (or signed right shifts) this vector by an * input vector. --- 2187,2197 ---- * @param m the mask controlling lane selection * @return the result of arithmetically right shifting this vector by the * broadcast of an input scalar */ #end[intOrLong] ! public abstract $abstractvectortype$ aShiftR(int s, VectorMask<$Boxtype$> m); #if[intOrLong] /** * Arithmetically right shifts (or signed right shifts) this vector by an * input vector.
*** 2439,2449 **** * @param v the input vector * @param m the mask controlling lane selection * @return the result of arithmetically right shifting this vector by the * input vector */ ! public $abstractvectortype$ aShiftR(Vector<$Boxtype$> v, Mask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) (a >> b)); } /** * Rotates left this vector by the broadcast of an input scalar. --- 2215,2225 ---- * @param v the input vector * @param m the mask controlling lane selection * @return the result of arithmetically right shifting this vector by the * input vector */ ! public $abstractvectortype$ aShiftR(Vector<$Boxtype$> v, VectorMask<$Boxtype$> m) { return bOp(v, m, (i, a, b) -> ($type$) (a >> b)); } /** * Rotates left this vector by the broadcast of an input scalar.
*** 2477,2487 **** * @param m the mask controlling lane selection * @return the result of rotating left this vector by the broadcast of an * input scalar */ @ForceInline ! public final $abstractvectortype$ rotateL(int s, Mask<$Boxtype$> m) { return shiftL(s, m).or(shiftR(-s, m), m); } /** * Rotates right this vector by the broadcast of an input scalar. --- 2253,2263 ---- * @param m the mask controlling lane selection * @return the result of rotating left this vector by the broadcast of an * input scalar */ @ForceInline ! public final $abstractvectortype$ rotateL(int s, VectorMask<$Boxtype$> m) { return shiftL(s, m).or(shiftR(-s, m), m); } /** * Rotates right this vector by the broadcast of an input scalar.
*** 2515,2541 **** * @param m the mask controlling lane selection * @return the result of rotating right this vector by the broadcast of an * input scalar */ @ForceInline ! public final $abstractvectortype$ rotateR(int s, Mask<$Boxtype$> m) { return shiftR(s, m).or(shiftL(-s, m), m); } #end[intOrLong] #end[BITWISE] @Override public abstract void intoByteArray(byte[] a, int ix); @Override ! public abstract void intoByteArray(byte[] a, int ix, Mask<$Boxtype$> m); @Override public abstract void intoByteBuffer(ByteBuffer bb, int ix); @Override ! public abstract void intoByteBuffer(ByteBuffer bb, int ix, Mask<$Boxtype$> m); // Type specific horizontal reductions /** * Adds all lane elements of this vector. --- 2291,2317 ---- * @param m the mask controlling lane selection * @return the result of rotating right this vector by the broadcast of an * input scalar */ @ForceInline ! public final $abstractvectortype$ rotateR(int s, VectorMask<$Boxtype$> m) { return shiftR(s, m).or(shiftL(-s, m), m); } #end[intOrLong] #end[BITWISE] @Override public abstract void intoByteArray(byte[] a, int ix); @Override ! public abstract void intoByteArray(byte[] a, int ix, VectorMask<$Boxtype$> m); @Override public abstract void intoByteBuffer(ByteBuffer bb, int ix); @Override ! public abstract void intoByteBuffer(ByteBuffer bb, int ix, VectorMask<$Boxtype$> m); // Type specific horizontal reductions /** * Adds all lane elements of this vector.
*** 2587,2597 **** #end[FP] * * @param m the mask controlling lane selection * @return the addition of the selected lane elements of this vector */ ! public abstract $type$ addAll(Mask<$Boxtype$> m); /** * Multiplies all lane elements of this vector. * <p> #if[FP] --- 2363,2373 ---- #end[FP] * * @param m the mask controlling lane selection * @return the addition of the selected lane elements of this vector */ ! public abstract $type$ addAll(VectorMask<$Boxtype$> m); /** * Multiplies all lane elements of this vector. * <p> #if[FP]
*** 2639,2649 **** #end[FP] * * @param m the mask controlling lane selection * @return the multiplication of all the lane elements of this vector */ ! public abstract $type$ mulAll(Mask<$Boxtype$> m); /** * Returns the minimum lane element of this vector. * <p> * This is an associative vector reduction operation where the operation --- 2415,2425 ---- #end[FP] * * @param m the mask controlling lane selection * @return the multiplication of all the lane elements of this vector */ ! public abstract $type$ mulAll(VectorMask<$Boxtype$> m); /** * Returns the minimum lane element of this vector. * <p> * This is an associative vector reduction operation where the operation
*** 2673,2683 **** #end[FP] * * @param m the mask controlling lane selection * @return the minimum lane element of this vector */ ! public abstract $type$ minAll(Mask<$Boxtype$> m); /** * Returns the maximum lane element of this vector. * <p> * This is an associative vector reduction operation where the operation --- 2449,2459 ---- #end[FP] * * @param m the mask controlling lane selection * @return the minimum lane element of this vector */ ! public abstract $type$ minAll(VectorMask<$Boxtype$> m); /** * Returns the maximum lane element of this vector. * <p> * This is an associative vector reduction operation where the operation
*** 2707,2717 **** #end[FP] * * @param m the mask controlling lane selection * @return the maximum lane element of this vector */ ! public abstract $type$ maxAll(Mask<$Boxtype$> m); #if[BITWISE] /** * Logically ORs all lane elements of this vector. * <p> --- 2483,2493 ---- #end[FP] * * @param m the mask controlling lane selection * @return the maximum lane element of this vector */ ! public abstract $type$ maxAll(VectorMask<$Boxtype$> m); #if[BITWISE] /** * Logically ORs all lane elements of this vector. * <p>
*** 2732,2742 **** * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical OR all the lane elements of this vector */ ! public abstract $type$ orAll(Mask<$Boxtype$> m); /** * Logically ANDs all lane elements of this vector. * <p> * This is an associative vector reduction operation where the logical AND --- 2508,2518 ---- * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical OR all the lane elements of this vector */ ! public abstract $type$ orAll(VectorMask<$Boxtype$> m); /** * Logically ANDs all lane elements of this vector. * <p> * This is an associative vector reduction operation where the logical AND
*** 2756,2766 **** * and the identity value is {@code -1}. * * @param m the mask controlling lane selection * @return the logical AND all the lane elements of this vector */ ! public abstract $type$ andAll(Mask<$Boxtype$> m); /** * Logically XORs all lane elements of this vector. * <p> * This is an associative vector reduction operation where the logical XOR --- 2532,2542 ---- * and the identity value is {@code -1}. * * @param m the mask controlling lane selection * @return the logical AND all the lane elements of this vector */ ! public abstract $type$ andAll(VectorMask<$Boxtype$> m); /** * Logically XORs all lane elements of this vector. * <p> * This is an associative vector reduction operation where the logical XOR
*** 2780,2790 **** * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical XOR all the lane elements of this vector */ ! public abstract $type$ xorAll(Mask<$Boxtype$> m); #end[BITWISE] // Type specific accessors /** --- 2556,2566 ---- * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical XOR all the lane elements of this vector */ ! public abstract $type$ xorAll(VectorMask<$Boxtype$> m); #end[BITWISE] // Type specific accessors /**
*** 2863,2873 **** * @param m the mask * @throws IndexOutOfBoundsException if {@code i < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} * is set {@code i >= a.length - N} */ ! public abstract void intoArray($type$[] a, int i, Mask<$Boxtype$> m); /** * Stores this vector into an array using indexes obtained from an index * map. * <p> --- 2639,2649 ---- * @param m the mask * @throws IndexOutOfBoundsException if {@code i < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} * is set {@code i >= a.length - N} */ ! public abstract void intoArray($type$[] a, int i, VectorMask<$Boxtype$> m); /** * Stores this vector into an array using indexes obtained from an index * map. * <p>
*** 2915,2986 **** * or for any vector lane index {@code N} where the mask at lane * {@code N} is set the result of {@code i + indexMap[j + N]} is * {@code < 0} or {@code >= a.length} */ #if[byteOrShort] ! public void intoArray($type$[] a, int i, Mask<$Boxtype$> m, int[] indexMap, int j) { forEach(m, (n, e) -> a[i + indexMap[j + n]] = e); } #else[byteOrShort] ! public abstract void intoArray($type$[] a, int i, Mask<$Boxtype$> m, int[] indexMap, int j); #end[byteOrShort] // Species @Override ! public abstract Species<$Boxtype$> species(); /** ! * Class representing {@link $abstractvectortype$}'s of the same {@link Vector.Shape Shape}. */ ! static final class $Type$Species extends Vector.AbstractSpecies<$Boxtype$> { final Function<$type$[], $Type$Vector> vectorFactory; - final Function<boolean[], Vector.Mask<$Boxtype$>> maskFactory; ! private $Type$Species(Vector.Shape shape, Class<?> boxType, Class<?> maskType, Function<$type$[], $Type$Vector> vectorFactory, ! Function<boolean[], Vector.Mask<$Boxtype$>> maskFactory) { ! super(shape, $type$.class, $Boxtype$.SIZE, boxType, maskType); this.vectorFactory = vectorFactory; - this.maskFactory = maskFactory; } interface FOp { $type$ apply(int i); } - interface FOpm { - boolean apply(int i); - } - $Type$Vector op(FOp f) { $type$[] res = new $type$[length()]; for (int i = 0; i < length(); i++) { res[i] = f.apply(i); } return vectorFactory.apply(res); } ! $Type$Vector op(Vector.Mask<$Boxtype$> o, FOp f) { $type$[] res = new $type$[length()]; boolean[] mbits = ((AbstractMask<$Boxtype$>)o).getBits(); for (int i = 0; i < length(); i++) { if (mbits[i]) { res[i] = f.apply(i); } } return vectorFactory.apply(res); } - - Vector.Mask<$Boxtype$> opm(IntVector.IntSpecies.FOpm f) { - boolean[] res = new boolean[length()]; - for (int i = 0; i < length(); i++) { - res[i] = (boolean)f.apply(i); - } - return maskFactory.apply(res); - } } /** * Finds the preferred species for an element type of {@code $type$}. * <p> --- 2691,2751 ---- * or for any vector lane index {@code N} where the mask at lane * {@code N} is set the result of {@code i + indexMap[j + N]} is * {@code < 0} or {@code >= a.length} */ #if[byteOrShort] ! public void intoArray($type$[] a, int i, VectorMask<$Boxtype$> m, int[] indexMap, int j) { forEach(m, (n, e) -> a[i + indexMap[j + n]] = e); } #else[byteOrShort] ! public abstract void intoArray($type$[] a, int i, VectorMask<$Boxtype$> m, int[] indexMap, int j); #end[byteOrShort] // Species @Override ! public abstract VectorSpecies<$Boxtype$> species(); /** ! * Class representing {@link $abstractvectortype$}'s of the same {@link VectorShape VectorShape}. */ ! static final class $Type$Species extends AbstractSpecies<$Boxtype$> { final Function<$type$[], $Type$Vector> vectorFactory; ! private $Type$Species(VectorShape shape, Class<?> boxType, Class<?> maskType, Function<$type$[], $Type$Vector> vectorFactory, ! Function<boolean[], VectorMask<$Boxtype$>> maskFactory, ! Function<IntUnaryOperator, VectorShuffle<$Boxtype$>> shuffleFromArrayFactory, ! fShuffleFromArray<$Boxtype$> shuffleFromOpFactory) { ! super(shape, $type$.class, $Boxtype$.SIZE, boxType, maskType, maskFactory, ! shuffleFromArrayFactory, shuffleFromOpFactory); this.vectorFactory = vectorFactory; } interface FOp { $type$ apply(int i); } $Type$Vector op(FOp f) { $type$[] res = new $type$[length()]; for (int i = 0; i < length(); i++) { res[i] = f.apply(i); } return vectorFactory.apply(res); } ! $Type$Vector op(VectorMask<$Boxtype$> o, FOp f) { $type$[] res = new $type$[length()]; boolean[] mbits = ((AbstractMask<$Boxtype$>)o).getBits(); for (int i = 0; i < length(); i++) { if (mbits[i]) { res[i] = f.apply(i); } } return vectorFactory.apply(res); } } /** * Finds the preferred species for an element type of {@code $type$}. * <p>
*** 2990,3010 **** * shuffles created from such species will be shape compatible. * * @return the preferred species for an element type of {@code $type$} */ private static $Type$Species preferredSpecies() { ! return ($Type$Species) Species.ofPreferred($type$.class); } /** * Finds a species for an element type of {@code $type$} and shape. * * @param s the shape * @return a species for an element type of {@code $type$} and shape * @throws IllegalArgumentException if no such species exists for the shape */ ! static $Type$Species species(Vector.Shape s) { Objects.requireNonNull(s); switch (s) { case S_64_BIT: return ($Type$Species) SPECIES_64; case S_128_BIT: return ($Type$Species) SPECIES_128; case S_256_BIT: return ($Type$Species) SPECIES_256; --- 2755,2775 ---- * shuffles created from such species will be shape compatible. * * @return the preferred species for an element type of {@code $type$} */ private static $Type$Species preferredSpecies() { ! return ($Type$Species) VectorSpecies.ofPreferred($type$.class); } /** * Finds a species for an element type of {@code $type$} and shape. * * @param s the shape * @return a species for an element type of {@code $type$} and shape * @throws IllegalArgumentException if no such species exists for the shape */ ! static $Type$Species species(VectorShape s) { Objects.requireNonNull(s); switch (s) { case S_64_BIT: return ($Type$Species) SPECIES_64; case S_128_BIT: return ($Type$Species) SPECIES_128; case S_256_BIT: return ($Type$Species) SPECIES_256;
*** 3012,3042 **** case S_Max_BIT: return ($Type$Species) SPECIES_MAX; default: throw new IllegalArgumentException("Bad shape: " + s); } } ! /** Species representing {@link $Type$Vector}s of {@link Vector.Shape#S_64_BIT Shape.S_64_BIT}. */ ! public static final Species<$Boxtype$> SPECIES_64 = new $Type$Species(Shape.S_64_BIT, $Type$64Vector.class, $Type$64Vector.$Type$64Mask.class, ! $Type$64Vector::new, $Type$64Vector.$Type$64Mask::new); ! ! /** Species representing {@link $Type$Vector}s of {@link Vector.Shape#S_128_BIT Shape.S_128_BIT}. */ ! public static final Species<$Boxtype$> SPECIES_128 = new $Type$Species(Shape.S_128_BIT, $Type$128Vector.class, $Type$128Vector.$Type$128Mask.class, ! $Type$128Vector::new, $Type$128Vector.$Type$128Mask::new); ! ! /** Species representing {@link $Type$Vector}s of {@link Vector.Shape#S_256_BIT Shape.S_256_BIT}. */ ! public static final Species<$Boxtype$> SPECIES_256 = new $Type$Species(Shape.S_256_BIT, $Type$256Vector.class, $Type$256Vector.$Type$256Mask.class, ! $Type$256Vector::new, $Type$256Vector.$Type$256Mask::new); ! ! /** Species representing {@link $Type$Vector}s of {@link Vector.Shape#S_512_BIT Shape.S_512_BIT}. */ ! public static final Species<$Boxtype$> SPECIES_512 = new $Type$Species(Shape.S_512_BIT, $Type$512Vector.class, $Type$512Vector.$Type$512Mask.class, ! $Type$512Vector::new, $Type$512Vector.$Type$512Mask::new); ! ! /** Species representing {@link $Type$Vector}s of {@link Vector.Shape#S_Max_BIT Shape.S_Max_BIT}. */ ! public static final Species<$Boxtype$> SPECIES_MAX = new $Type$Species(Shape.S_Max_BIT, $Type$MaxVector.class, $Type$MaxVector.$Type$MaxMask.class, ! $Type$MaxVector::new, $Type$MaxVector.$Type$MaxMask::new); /** * Preferred species for {@link $Type$Vector}s. * A preferred species is a species of maximal bit size for the platform. */ ! public static final Species<$Boxtype$> SPECIES_PREFERRED = (Species<$Boxtype$>) preferredSpecies(); } --- 2777,2812 ---- case S_Max_BIT: return ($Type$Species) SPECIES_MAX; default: throw new IllegalArgumentException("Bad shape: " + s); } } ! /** Species representing {@link $Type$Vector}s of {@link VectorShape#S_64_BIT VectorShape.S_64_BIT}. */ ! public static final VectorSpecies<$Boxtype$> SPECIES_64 = new $Type$Species(VectorShape.S_64_BIT, $Type$64Vector.class, $Type$64Vector.$Type$64Mask.class, ! $Type$64Vector::new, $Type$64Vector.$Type$64Mask::new, ! $Type$64Vector.$Type$64Shuffle::new, $Type$64Vector.$Type$64Shuffle::new); ! ! /** Species representing {@link $Type$Vector}s of {@link VectorShape#S_128_BIT VectorShape.S_128_BIT}. */ ! public static final VectorSpecies<$Boxtype$> SPECIES_128 = new $Type$Species(VectorShape.S_128_BIT, $Type$128Vector.class, $Type$128Vector.$Type$128Mask.class, ! $Type$128Vector::new, $Type$128Vector.$Type$128Mask::new, ! $Type$128Vector.$Type$128Shuffle::new, $Type$128Vector.$Type$128Shuffle::new); ! ! /** Species representing {@link $Type$Vector}s of {@link VectorShape#S_256_BIT VectorShape.S_256_BIT}. */ ! public static final VectorSpecies<$Boxtype$> SPECIES_256 = new $Type$Species(VectorShape.S_256_BIT, $Type$256Vector.class, $Type$256Vector.$Type$256Mask.class, ! $Type$256Vector::new, $Type$256Vector.$Type$256Mask::new, ! $Type$256Vector.$Type$256Shuffle::new, $Type$256Vector.$Type$256Shuffle::new); ! ! /** Species representing {@link $Type$Vector}s of {@link VectorShape#S_512_BIT VectorShape.S_512_BIT}. */ ! public static final VectorSpecies<$Boxtype$> SPECIES_512 = new $Type$Species(VectorShape.S_512_BIT, $Type$512Vector.class, $Type$512Vector.$Type$512Mask.class, ! $Type$512Vector::new, $Type$512Vector.$Type$512Mask::new, ! $Type$512Vector.$Type$512Shuffle::new, $Type$512Vector.$Type$512Shuffle::new); ! ! /** Species representing {@link $Type$Vector}s of {@link VectorShape#S_Max_BIT VectorShape.S_Max_BIT}. */ ! public static final VectorSpecies<$Boxtype$> SPECIES_MAX = new $Type$Species(VectorShape.S_Max_BIT, $Type$MaxVector.class, $Type$MaxVector.$Type$MaxMask.class, ! $Type$MaxVector::new, $Type$MaxVector.$Type$MaxMask::new, ! $Type$MaxVector.$Type$MaxShuffle::new, $Type$MaxVector.$Type$MaxShuffle::new); /** * Preferred species for {@link $Type$Vector}s. * A preferred species is a species of maximal bit size for the platform. */ ! public static final VectorSpecies<$Boxtype$> SPECIES_PREFERRED = (VectorSpecies<$Boxtype$>) preferredSpecies(); }
< prev index next >