< prev index next >

src/jdk.incubator.vector/share/classes/jdk/incubator/vector/ByteVector.java

Print this page
rev 54658 : refactored mask and shuffle creation methods, moved classes to top-level
rev 54660 : Javadoc changes

*** 122,151 **** * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(VectorSpecies<Byte>, ByteBuffer, int, VectorMask) method} as follows: * <pre>{@code ! * return this.fromByteBuffer(ByteBuffer.wrap(a), i, this.maskAllTrue()); * }</pre> * * @param species species of desired vector * @param a the byte array ! * @param ix the offset into the array * @return a vector loaded from a byte array * @throws IndexOutOfBoundsException if {@code i < 0} or ! * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)} */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int ix) { Objects.requireNonNull(a); ! ix = VectorIntrinsics.checkIndex(ix, a.length, species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(), ! a, ((long) ix) + Unsafe.ARRAY_BYTE_BASE_OFFSET, ! a, ix, species, (c, idx, s) -> { ByteBuffer bbc = ByteBuffer.wrap(c, idx, a.length - idx).order(ByteOrder.nativeOrder()); ByteBuffer tb = bbc; return ((ByteSpecies)s).op(i -> tb.get()); }); --- 122,151 ---- * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(VectorSpecies, ByteBuffer, int, VectorMask) method} as follows: * <pre>{@code ! * return fromByteBuffer(species, ByteBuffer.wrap(a), offset, VectorMask.allTrue()); * }</pre> * * @param species species of desired vector * @param a the byte array ! * @param offset the offset into the array * @return a vector loaded from a byte array * @throws IndexOutOfBoundsException if {@code i < 0} or ! * {@code offset > a.length - (species.length() * species.elementSize() / Byte.SIZE)} */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int offset) { Objects.requireNonNull(a); ! offset = VectorIntrinsics.checkIndex(offset, a.length, species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(), ! a, ((long) offset) + Unsafe.ARRAY_BYTE_BASE_OFFSET, ! a, offset, species, (c, idx, s) -> { ByteBuffer bbc = ByteBuffer.wrap(c, idx, a.length - idx).order(ByteOrder.nativeOrder()); ByteBuffer tb = bbc; return ((ByteSpecies)s).op(i -> tb.get()); });
*** 158,289 **** * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(VectorSpecies<Byte>, ByteBuffer, int, VectorMask) method} as follows: * <pre>{@code ! * return this.fromByteBuffer(ByteBuffer.wrap(a), i, m); * }</pre> * * @param species species of desired vector * @param a the byte array ! * @param ix the offset into the array * @param m the mask * @return a vector loaded from a byte array ! * @throws IndexOutOfBoundsException if {@code i < 0} or ! * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)} ! * @throws IndexOutOfBoundsException if the offset is {@code < 0}, ! * or {@code > a.length}, * for any vector lane index {@code N} where the mask at lane {@code N} * is set ! * {@code i >= a.length - (N * this.elementSize() / Byte.SIZE)} */ @ForceInline ! public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int ix, VectorMask<Byte> m) { ! return zero(species).blend(fromByteArray(species, a, ix), m); } /** * Loads a vector from an array starting at offset. * <p> * For each vector lane, where {@code N} is the vector lane index, the ! * array element at index {@code i + N} is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array ! * @param i the offset into the array * @return the vector loaded from an array ! * @throws IndexOutOfBoundsException if {@code i < 0}, or ! * {@code i > a.length - this.length()} */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i){ Objects.requireNonNull(a); ! i = VectorIntrinsics.checkIndex(i, a.length, species.length()); return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(), ! a, (((long) i) << ARRAY_SHIFT) + Unsafe.ARRAY_BYTE_BASE_OFFSET, ! a, i, species, (c, idx, s) -> ((ByteSpecies)s).op(n -> c[idx + n])); } /** * Loads a vector from an array starting at offset and using a mask. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the array element at ! * index {@code i + N} is placed into the resulting vector at lane index * {@code N}, otherwise the default element value is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array ! * @param i the offset into the array * @param m the mask * @return the vector loaded from an array ! * @throws IndexOutOfBoundsException if {@code i < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} ! * is set {@code i > a.length - N} */ @ForceInline ! public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i, VectorMask<Byte> m) { ! return zero(species).blend(fromArray(species, a, i), m); } /** * Loads a vector from an array using indexes obtained from an index * map. * <p> * For each vector lane, where {@code N} is the vector lane index, the ! * array element at index {@code i + indexMap[j + N]} is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array ! * @param i the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param indexMap the index map ! * @param j the offset into the index map * @return the vector loaded from an array ! * @throws IndexOutOfBoundsException if {@code j < 0}, or ! * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} the result of ! * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length} */ ! public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i, int[] indexMap, int j) { ! return ((ByteSpecies)species).op(n -> a[i + indexMap[j + n]]); } /** * Loads a vector from an array using indexes obtained from an index * map and using a mask. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the array element at ! * index {@code i + indexMap[j + N]} is placed into the resulting vector * at lane index {@code N}. * * @param species species of desired vector * @param a the array ! * @param i the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param m the mask * @param indexMap the index map ! * @param j the offset into the index map * @return the vector loaded from an array ! * @throws IndexOutOfBoundsException if {@code j < 0}, or ! * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} where the mask at lane ! * {@code N} is set the result of {@code i + indexMap[j + N]} is * {@code < 0} or {@code >= a.length} */ ! public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i, VectorMask<Byte> m, int[] indexMap, int j) { ! return ((ByteSpecies)species).op(m, n -> a[i + indexMap[j + n]]); } /** * Loads a vector from a {@link ByteBuffer byte buffer} starting at an * offset into the byte buffer. --- 158,286 ---- * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(VectorSpecies, ByteBuffer, int, VectorMask) method} as follows: * <pre>{@code ! * return fromByteBuffer(species, ByteBuffer.wrap(a), offset, m); * }</pre> * * @param species species of desired vector * @param a the byte array ! * @param offset the offset into the array * @param m the mask * @return a vector loaded from a byte array ! * @throws IndexOutOfBoundsException if {@code offset < 0} or * for any vector lane index {@code N} where the mask at lane {@code N} * is set ! * {@code offset >= a.length - (N * species.elementSize() / Byte.SIZE)} */ @ForceInline ! public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int offset, VectorMask<Byte> m) { ! return zero(species).blend(fromByteArray(species, a, offset), m); } /** * Loads a vector from an array starting at offset. * <p> * For each vector lane, where {@code N} is the vector lane index, the ! * array element at index {@code offset + N} is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array ! * @param offset the offset into the array * @return the vector loaded from an array ! * @throws IndexOutOfBoundsException if {@code offset < 0}, or ! * {@code offset > a.length - species.length()} */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int offset){ Objects.requireNonNull(a); ! offset = VectorIntrinsics.checkIndex(offset, a.length, species.length()); return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(), ! a, (((long) offset) << ARRAY_SHIFT) + Unsafe.ARRAY_BYTE_BASE_OFFSET, ! a, offset, species, (c, idx, s) -> ((ByteSpecies)s).op(n -> c[idx + n])); } /** * Loads a vector from an array starting at offset and using a mask. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the array element at ! * index {@code offset + N} is placed into the resulting vector at lane index * {@code N}, otherwise the default element value is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array ! * @param offset the offset into the array * @param m the mask * @return the vector loaded from an array ! * @throws IndexOutOfBoundsException if {@code offset < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} ! * is set {@code offset > a.length - N} */ @ForceInline ! public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int offset, VectorMask<Byte> m) { ! return zero(species).blend(fromArray(species, a, offset), m); } /** * Loads a vector from an array using indexes obtained from an index * map. * <p> * For each vector lane, where {@code N} is the vector lane index, the ! * array element at index {@code a_offset + indexMap[i_offset + N]} is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array ! * @param a_offset the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param indexMap the index map ! * @param i_offset the offset into the index map * @return the vector loaded from an array ! * @throws IndexOutOfBoundsException if {@code i_offset < 0}, or ! * {@code i_offset > indexMap.length - species.length()}, * or for any vector lane index {@code N} the result of ! * {@code a_offset + indexMap[i_offset + N]} is {@code < 0} or {@code >= a.length} */ ! public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int a_offset, int[] indexMap, int i_offset) { ! return ((ByteSpecies)species).op(n -> a[a_offset + indexMap[i_offset + n]]); } /** * Loads a vector from an array using indexes obtained from an index * map and using a mask. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the array element at ! * index {@code a_offset + indexMap[i_offset + N]} is placed into the resulting vector * at lane index {@code N}. * * @param species species of desired vector * @param a the array ! * @param a_offset the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param m the mask * @param indexMap the index map ! * @param i_offset the offset into the index map * @return the vector loaded from an array ! * @throws IndexOutOfBoundsException if {@code i_offset < 0}, or ! * {@code i_offset > indexMap.length - species.length()}, * or for any vector lane index {@code N} where the mask at lane ! * {@code N} is set the result of {@code a_offset + indexMap[i_offset + N]} is * {@code < 0} or {@code >= a.length} */ ! public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int a_offset, VectorMask<Byte> m, int[] indexMap, int i_offset) { ! return ((ByteSpecies)species).op(m, n -> a[a_offset + indexMap[i_offset + n]]); } /** * Loads a vector from a {@link ByteBuffer byte buffer} starting at an * offset into the byte buffer.
*** 291,325 **** * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(VectorSpecies<Byte>, ByteBuffer, int, VectorMask)} method} as follows: * <pre>{@code ! * return this.fromByteBuffer(b, i, this.maskAllTrue()) * }</pre> * * @param species species of desired vector * @param bb the byte buffer ! * @param ix the offset into the byte buffer * @return a vector loaded from a byte buffer * @throws IndexOutOfBoundsException if the offset is {@code < 0}, * or {@code > b.limit()}, * or if there are fewer than ! * {@code this.length() * this.elementSize() / Byte.SIZE} bytes * remaining in the byte buffer from the given offset */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int ix) { if (bb.order() != ByteOrder.nativeOrder()) { throw new IllegalArgumentException(); } ! ix = VectorIntrinsics.checkIndex(ix, bb.limit(), species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(), ! U.getReference(bb, BYTE_BUFFER_HB), U.getLong(bb, BUFFER_ADDRESS) + ix, ! bb, ix, species, (c, idx, s) -> { ByteBuffer bbc = c.duplicate().position(idx).order(ByteOrder.nativeOrder()); ByteBuffer tb = bbc; return ((ByteSpecies)s).op(i -> tb.get()); }); --- 288,322 ---- * Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. * <p> * This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting ! * {@link #fromByteBuffer(VectorSpecies, ByteBuffer, int, VectorMask)} method} as follows: * <pre>{@code ! * return fromByteBuffer(b, offset, VectorMask.allTrue()) * }</pre> * * @param species species of desired vector * @param bb the byte buffer ! * @param offset the offset into the byte buffer * @return a vector loaded from a byte buffer * @throws IndexOutOfBoundsException if the offset is {@code < 0}, * or {@code > b.limit()}, * or if there are fewer than ! * {@code species.length() * species.elementSize() / Byte.SIZE} bytes * remaining in the byte buffer from the given offset */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int offset) { if (bb.order() != ByteOrder.nativeOrder()) { throw new IllegalArgumentException(); } ! offset = VectorIntrinsics.checkIndex(offset, bb.limit(), species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(), ! U.getReference(bb, BYTE_BUFFER_HB), U.getLong(bb, BUFFER_ADDRESS) + offset, ! bb, offset, species, (c, idx, s) -> { ByteBuffer bbc = c.duplicate().position(idx).order(ByteOrder.nativeOrder()); ByteBuffer tb = bbc; return ((ByteSpecies)s).op(i -> tb.get()); });
*** 333,457 **** * {@link java.nio.Buffer buffer} for the primitive element type, * according to the native byte order of the underlying platform, and * the returned vector is loaded with a mask from a primitive array * obtained from the primitive buffer. * The following pseudocode expresses the behaviour, where ! * {@coce EBuffer} is the primitive buffer type, {@code e} is the ! * primitive element type, and {@code ESpecies<S>} is the primitive * species for {@code e}: * <pre>{@code * EBuffer eb = b.duplicate(). ! * order(ByteOrder.nativeOrder()).position(i). * asEBuffer(); ! * e[] es = new e[this.length()]; * for (int n = 0; n < t.length; n++) { * if (m.isSet(n)) * es[n] = eb.get(n); * } ! * Vector<E> r = ((ESpecies<S>)this).fromArray(es, 0, m); * }</pre> * * @param species species of desired vector * @param bb the byte buffer ! * @param ix the offset into the byte buffer * @param m the mask * @return a vector loaded from a byte buffer * @throws IndexOutOfBoundsException if the offset is {@code < 0}, * or {@code > b.limit()}, * for any vector lane index {@code N} where the mask at lane {@code N} * is set ! * {@code i >= b.limit() - (N * this.elementSize() / Byte.SIZE)} */ @ForceInline ! public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int ix, VectorMask<Byte> m) { ! return zero(species).blend(fromByteBuffer(species, bb, ix), m); } /** * Returns a vector where all lane elements are set to the primitive * value {@code e}. * ! * @param s species of the desired vector * @param e the value * @return a vector of vector where all lane elements are set to * the primitive value {@code e} */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector broadcast(VectorSpecies<Byte> s, byte e) { return VectorIntrinsics.broadcastCoerced( ! (Class<ByteVector>) s.boxType(), byte.class, s.length(), ! e, s, ((bits, sp) -> ((ByteSpecies)sp).op(i -> (byte)bits))); } /** ! * Returns a vector where each lane element is set to a given ! * primitive value. * <p> * For each vector lane, where {@code N} is the vector lane index, the * the primitive value at index {@code N} is placed into the resulting * vector at lane index {@code N}. * ! * @param s species of the desired vector * @param es the given primitive values ! * @return a vector where each lane element is set to a given primitive ! * value ! * @throws IndexOutOfBoundsException if {@code es.length < this.length()} */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector scalars(VectorSpecies<Byte> s, byte... es) { Objects.requireNonNull(es); ! int ix = VectorIntrinsics.checkIndex(0, es.length, s.length()); ! return VectorIntrinsics.load((Class<ByteVector>) s.boxType(), byte.class, s.length(), es, Unsafe.ARRAY_BYTE_BASE_OFFSET, ! es, ix, s, (c, idx, sp) -> ((ByteSpecies)sp).op(n -> c[idx + n])); } /** * Returns a vector where the first lane element is set to the primtive * value {@code e}, all other lane elements are set to the default * value. * ! * @param s species of the desired vector * @param e the value * @return a vector where the first lane element is set to the primitive * value {@code e} */ @ForceInline ! public static final ByteVector single(VectorSpecies<Byte> s, byte e) { ! return zero(s).with(0, e); } /** * Returns a vector where each lane element is set to a randomly * generated primitive value. * * The semantics are equivalent to calling * (byte){@link ThreadLocalRandom#nextInt()} * ! * @param s species of the desired vector * @return a vector where each lane elements is set to a randomly * generated primitive value */ ! public static ByteVector random(VectorSpecies<Byte> s) { ThreadLocalRandom r = ThreadLocalRandom.current(); ! return ((ByteSpecies)s).op(i -> (byte) r.nextInt()); } // Ops @Override public abstract ByteVector add(Vector<Byte> v); /** * Adds this vector to the broadcast of an input scalar. * <p> ! * This is a vector binary operation where the primitive addition operation ! * ({@code +}) is applied to lane elements. * * @param s the input scalar * @return the result of adding this vector to the broadcast of an input * scalar */ --- 330,454 ---- * {@link java.nio.Buffer buffer} for the primitive element type, * according to the native byte order of the underlying platform, and * the returned vector is loaded with a mask from a primitive array * obtained from the primitive buffer. * The following pseudocode expresses the behaviour, where ! * {@code EBuffer} is the primitive buffer type, {@code e} is the ! * primitive element type, and {@code ESpecies} is the primitive * species for {@code e}: * <pre>{@code * EBuffer eb = b.duplicate(). ! * order(ByteOrder.nativeOrder()).position(offset). * asEBuffer(); ! * e[] es = new e[species.length()]; * for (int n = 0; n < t.length; n++) { * if (m.isSet(n)) * es[n] = eb.get(n); * } ! * EVector r = EVector.fromArray(es, 0, m); * }</pre> * * @param species species of desired vector * @param bb the byte buffer ! * @param offset the offset into the byte buffer * @param m the mask * @return a vector loaded from a byte buffer * @throws IndexOutOfBoundsException if the offset is {@code < 0}, * or {@code > b.limit()}, * for any vector lane index {@code N} where the mask at lane {@code N} * is set ! * {@code offset >= b.limit() - (N * species.elementSize() / Byte.SIZE)} */ @ForceInline ! public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int offset, VectorMask<Byte> m) { ! return zero(species).blend(fromByteBuffer(species, bb, offset), m); } /** * Returns a vector where all lane elements are set to the primitive * value {@code e}. * ! * @param species species of the desired vector * @param e the value * @return a vector of vector where all lane elements are set to * the primitive value {@code e} */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector broadcast(VectorSpecies<Byte> species, byte e) { return VectorIntrinsics.broadcastCoerced( ! (Class<ByteVector>) species.boxType(), byte.class, species.length(), ! e, species, ((bits, sp) -> ((ByteSpecies)sp).op(i -> (byte)bits))); } /** ! * Returns a vector where each lane element is set to given ! * primitive values. * <p> * For each vector lane, where {@code N} is the vector lane index, the * the primitive value at index {@code N} is placed into the resulting * vector at lane index {@code N}. * ! * @param species species of the desired vector * @param es the given primitive values ! * @return a vector where each lane element is set to given primitive ! * values ! * @throws IndexOutOfBoundsException if {@code es.length < species.length()} */ @ForceInline @SuppressWarnings("unchecked") ! public static ByteVector scalars(VectorSpecies<Byte> species, byte... es) { Objects.requireNonNull(es); ! int ix = VectorIntrinsics.checkIndex(0, es.length, species.length()); ! return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(), es, Unsafe.ARRAY_BYTE_BASE_OFFSET, ! es, ix, species, (c, idx, sp) -> ((ByteSpecies)sp).op(n -> c[idx + n])); } /** * Returns a vector where the first lane element is set to the primtive * value {@code e}, all other lane elements are set to the default * value. * ! * @param species species of the desired vector * @param e the value * @return a vector where the first lane element is set to the primitive * value {@code e} */ @ForceInline ! public static final ByteVector single(VectorSpecies<Byte> species, byte e) { ! return zero(species).with(0, e); } /** * Returns a vector where each lane element is set to a randomly * generated primitive value. * * The semantics are equivalent to calling * (byte){@link ThreadLocalRandom#nextInt()} * ! * @param species species of the desired vector * @return a vector where each lane elements is set to a randomly * generated primitive value */ ! public static ByteVector random(VectorSpecies<Byte> species) { ThreadLocalRandom r = ThreadLocalRandom.current(); ! return ((ByteSpecies)species).op(i -> (byte) r.nextInt()); } // Ops @Override public abstract ByteVector add(Vector<Byte> v); /** * Adds this vector to the broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the primitive addition operation ! * ({@code +}) to each lane. * * @param s the input scalar * @return the result of adding this vector to the broadcast of an input * scalar */
*** 462,473 **** /** * Adds this vector to broadcast of an input scalar, * selecting lane elements controlled by a mask. * <p> ! * This is a vector binary operation where the primitive addition operation ! * ({@code +}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of adding this vector to the broadcast of an input * scalar --- 459,470 ---- /** * Adds this vector to broadcast of an input scalar, * selecting lane elements controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive addition operation ! * ({@code +}) to each lane. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of adding this vector to the broadcast of an input * scalar
*** 478,489 **** public abstract ByteVector sub(Vector<Byte> v); /** * Subtracts the broadcast of an input scalar from this vector. * <p> ! * This is a vector binary operation where the primitive subtraction ! * operation ({@code -}) is applied to lane elements. * * @param s the input scalar * @return the result of subtracting the broadcast of an input * scalar from this vector */ --- 475,486 ---- public abstract ByteVector sub(Vector<Byte> v); /** * Subtracts the broadcast of an input scalar from this vector. * <p> ! * This is a lane-wise binary operation which applies the primitive subtraction ! * operation ({@code -}) to each lane. * * @param s the input scalar * @return the result of subtracting the broadcast of an input * scalar from this vector */
*** 494,505 **** /** * Subtracts the broadcast of an input scalar from this vector, selecting * lane elements controlled by a mask. * <p> ! * This is a vector binary operation where the primitive subtraction ! * operation ({@code -}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of subtracting the broadcast of an input * scalar from this vector --- 491,502 ---- /** * Subtracts the broadcast of an input scalar from this vector, selecting * lane elements controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive subtraction ! * operation ({@code -}) to each lane. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of subtracting the broadcast of an input * scalar from this vector
*** 510,521 **** public abstract ByteVector mul(Vector<Byte> v); /** * Multiplies this vector with the broadcast of an input scalar. * <p> ! * This is a vector binary operation where the primitive multiplication ! * operation ({@code *}) is applied to lane elements. * * @param s the input scalar * @return the result of multiplying this vector with the broadcast of an * input scalar */ --- 507,518 ---- public abstract ByteVector mul(Vector<Byte> v); /** * Multiplies this vector with the broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the primitive multiplication ! * operation ({@code *}) to each lane. * * @param s the input scalar * @return the result of multiplying this vector with the broadcast of an * input scalar */
*** 526,537 **** /** * Multiplies this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> ! * This is a vector binary operation where the primitive multiplication ! * operation ({@code *}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of multiplying this vector with the broadcast of an * input scalar --- 523,534 ---- /** * Multiplies this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive multiplication ! * operation ({@code *}) to each lane. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of multiplying this vector with the broadcast of an * input scalar
*** 557,568 **** public abstract ByteVector min(Vector<Byte> v, VectorMask<Byte> m); /** * Returns the minimum of this vector and the broadcast of an input scalar. * <p> ! * This is a vector binary operation where the operation ! * {@code (a, b) -> Math.min(a, b)} is applied to lane elements. * * @param s the input scalar * @return the minimum of this vector and the broadcast of an input scalar */ public abstract ByteVector min(byte s); --- 554,565 ---- public abstract ByteVector min(Vector<Byte> v, VectorMask<Byte> m); /** * Returns the minimum of this vector and the broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the operation ! * {@code (a, b) -> Math.min(a, b)} to each lane. * * @param s the input scalar * @return the minimum of this vector and the broadcast of an input scalar */ public abstract ByteVector min(byte s);
*** 574,585 **** public abstract ByteVector max(Vector<Byte> v, VectorMask<Byte> m); /** * Returns the maximum of this vector and the broadcast of an input scalar. * <p> ! * This is a vector binary operation where the operation ! * {@code (a, b) -> Math.max(a, b)} is applied to lane elements. * * @param s the input scalar * @return the maximum of this vector and the broadcast of an input scalar */ public abstract ByteVector max(byte s); --- 571,582 ---- public abstract ByteVector max(Vector<Byte> v, VectorMask<Byte> m); /** * Returns the maximum of this vector and the broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the operation ! * {@code (a, b) -> Math.max(a, b)} to each lane. * * @param s the input scalar * @return the maximum of this vector and the broadcast of an input scalar */ public abstract ByteVector max(byte s);
*** 588,599 **** public abstract VectorMask<Byte> equal(Vector<Byte> v); /** * Tests if this vector is equal to the broadcast of an input scalar. * <p> ! * This is a vector binary test operation where the primitive equals ! * operation ({@code ==}) is applied to lane elements. * * @param s the input scalar * @return the result mask of testing if this vector is equal to the * broadcast of an input scalar */ --- 585,596 ---- public abstract VectorMask<Byte> equal(Vector<Byte> v); /** * Tests if this vector is equal to the broadcast of an input scalar. * <p> ! * This is a lane-wise binary test operation which applies the primitive equals ! * operation ({@code ==}) each lane. * * @param s the input scalar * @return the result mask of testing if this vector is equal to the * broadcast of an input scalar */
*** 603,614 **** public abstract VectorMask<Byte> notEqual(Vector<Byte> v); /** * Tests if this vector is not equal to the broadcast of an input scalar. * <p> ! * This is a vector binary test operation where the primitive not equals ! * operation ({@code !=}) is applied to lane elements. * * @param s the input scalar * @return the result mask of testing if this vector is not equal to the * broadcast of an input scalar */ --- 600,611 ---- public abstract VectorMask<Byte> notEqual(Vector<Byte> v); /** * Tests if this vector is not equal to the broadcast of an input scalar. * <p> ! * This is a lane-wise binary test operation which applies the primitive not equals ! * operation ({@code !=}) to each lane. * * @param s the input scalar * @return the result mask of testing if this vector is not equal to the * broadcast of an input scalar */
*** 618,629 **** public abstract VectorMask<Byte> lessThan(Vector<Byte> v); /** * Tests if this vector is less than the broadcast of an input scalar. * <p> ! * This is a vector binary test operation where the primitive less than ! * operation ({@code <}) is applied to lane elements. * * @param s the input scalar * @return the mask result of testing if this vector is less than the * broadcast of an input scalar */ --- 615,626 ---- public abstract VectorMask<Byte> lessThan(Vector<Byte> v); /** * Tests if this vector is less than the broadcast of an input scalar. * <p> ! * This is a lane-wise binary test operation which applies the primitive less than ! * operation ({@code <}) to each lane. * * @param s the input scalar * @return the mask result of testing if this vector is less than the * broadcast of an input scalar */
*** 633,644 **** public abstract VectorMask<Byte> lessThanEq(Vector<Byte> v); /** * Tests if this vector is less or equal to the broadcast of an input scalar. * <p> ! * This is a vector binary test operation where the primitive less than ! * or equal to operation ({@code <=}) is applied to lane elements. * * @param s the input scalar * @return the mask result of testing if this vector is less than or equal * to the broadcast of an input scalar */ --- 630,641 ---- public abstract VectorMask<Byte> lessThanEq(Vector<Byte> v); /** * Tests if this vector is less or equal to the broadcast of an input scalar. * <p> ! * This is a lane-wise binary test operation which applies the primitive less than ! * or equal to operation ({@code <=}) to each lane. * * @param s the input scalar * @return the mask result of testing if this vector is less than or equal * to the broadcast of an input scalar */
*** 648,659 **** public abstract VectorMask<Byte> greaterThan(Vector<Byte> v); /** * Tests if this vector is greater than the broadcast of an input scalar. * <p> ! * This is a vector binary test operation where the primitive greater than ! * operation ({@code >}) is applied to lane elements. * * @param s the input scalar * @return the mask result of testing if this vector is greater than the * broadcast of an input scalar */ --- 645,656 ---- public abstract VectorMask<Byte> greaterThan(Vector<Byte> v); /** * Tests if this vector is greater than the broadcast of an input scalar. * <p> ! * This is a lane-wise binary test operation which applies the primitive greater than ! * operation ({@code >}) to each lane. * * @param s the input scalar * @return the mask result of testing if this vector is greater than the * broadcast of an input scalar */
*** 664,675 **** /** * Tests if this vector is greater than or equal to the broadcast of an * input scalar. * <p> ! * This is a vector binary test operation where the primitive greater than ! * or equal to operation ({@code >=}) is applied to lane elements. * * @param s the input scalar * @return the mask result of testing if this vector is greater than or * equal to the broadcast of an input scalar */ --- 661,672 ---- /** * Tests if this vector is greater than or equal to the broadcast of an * input scalar. * <p> ! * This is a lane-wise binary test operation which applies the primitive greater than ! * or equal to operation ({@code >=}) to each lane. * * @param s the input scalar * @return the mask result of testing if this vector is greater than or * equal to the broadcast of an input scalar */
*** 720,742 **** /** * Bitwise ANDs this vector with an input vector. * <p> ! * This is a vector binary operation where the primitive bitwise AND ! * operation ({@code &}) is applied to lane elements. * * @param v the input vector * @return the bitwise AND of this vector with the input vector */ public abstract ByteVector and(Vector<Byte> v); /** * Bitwise ANDs this vector with the broadcast of an input scalar. * <p> ! * This is a vector binary operation where the primitive bitwise AND ! * operation ({@code &}) is applied to lane elements. * * @param s the input scalar * @return the bitwise AND of this vector with the broadcast of an input * scalar */ --- 717,739 ---- /** * Bitwise ANDs this vector with an input vector. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise AND ! * operation ({@code &}) to each lane. * * @param v the input vector * @return the bitwise AND of this vector with the input vector */ public abstract ByteVector and(Vector<Byte> v); /** * Bitwise ANDs this vector with the broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise AND ! * operation ({@code &}) to each lane. * * @param s the input scalar * @return the bitwise AND of this vector with the broadcast of an input * scalar */
*** 744,755 **** /** * Bitwise ANDs this vector with an input vector, selecting lane elements * controlled by a mask. * <p> ! * This is a vector binary operation where the primitive bitwise AND ! * operation ({@code &}) is applied to lane elements. * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the input vector */ --- 741,752 ---- /** * Bitwise ANDs this vector with an input vector, selecting lane elements * controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise AND ! * operation ({@code &}) to each lane. * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the input vector */
*** 757,768 **** /** * Bitwise ANDs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> ! * This is a vector binary operation where the primitive bitwise AND ! * operation ({@code &}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the broadcast of an input * scalar --- 754,765 ---- /** * Bitwise ANDs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise AND ! * operation ({@code &}) to each lane. * * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the broadcast of an input * scalar
*** 770,792 **** public abstract ByteVector and(byte s, VectorMask<Byte> m); /** * Bitwise ORs this vector with an input vector. * <p> ! * This is a vector binary operation where the primitive bitwise OR ! * operation ({@code |}) is applied to lane elements. * * @param v the input vector * @return the bitwise OR of this vector with the input vector */ public abstract ByteVector or(Vector<Byte> v); /** * Bitwise ORs this vector with the broadcast of an input scalar. * <p> ! * This is a vector binary operation where the primitive bitwise OR ! * operation ({@code |}) is applied to lane elements. * * @param s the input scalar * @return the bitwise OR of this vector with the broadcast of an input * scalar */ --- 767,789 ---- public abstract ByteVector and(byte s, VectorMask<Byte> m); /** * Bitwise ORs this vector with an input vector. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise OR ! * operation ({@code |}) to each lane. * * @param v the input vector * @return the bitwise OR of this vector with the input vector */ public abstract ByteVector or(Vector<Byte> v); /** * Bitwise ORs this vector with the broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise OR ! * operation ({@code |}) to each lane. * * @param s the input scalar * @return the bitwise OR of this vector with the broadcast of an input * scalar */
*** 794,805 **** /** * Bitwise ORs this vector with an input vector, selecting lane elements * controlled by a mask. * <p> ! * This is a vector binary operation where the primitive bitwise OR ! * operation ({@code |}) is applied to lane elements. * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the input vector */ --- 791,802 ---- /** * Bitwise ORs this vector with an input vector, selecting lane elements * controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise OR ! * operation ({@code |}) to each lane. * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the input vector */
*** 807,818 **** /** * Bitwise ORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> ! * This is a vector binary operation where the primitive bitwise OR ! * operation ({@code |}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the broadcast of an input * scalar --- 804,815 ---- /** * Bitwise ORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise OR ! * operation ({@code |}) to each lane. * * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the broadcast of an input * scalar
*** 820,842 **** public abstract ByteVector or(byte s, VectorMask<Byte> m); /** * Bitwise XORs this vector with an input vector. * <p> ! * This is a vector binary operation where the primitive bitwise XOR ! * operation ({@code ^}) is applied to lane elements. * * @param v the input vector * @return the bitwise XOR of this vector with the input vector */ public abstract ByteVector xor(Vector<Byte> v); /** * Bitwise XORs this vector with the broadcast of an input scalar. * <p> ! * This is a vector binary operation where the primitive bitwise XOR ! * operation ({@code ^}) is applied to lane elements. * * @param s the input scalar * @return the bitwise XOR of this vector with the broadcast of an input * scalar */ --- 817,839 ---- public abstract ByteVector or(byte s, VectorMask<Byte> m); /** * Bitwise XORs this vector with an input vector. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise XOR ! * operation ({@code ^}) to each lane. * * @param v the input vector * @return the bitwise XOR of this vector with the input vector */ public abstract ByteVector xor(Vector<Byte> v); /** * Bitwise XORs this vector with the broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise XOR ! * operation ({@code ^}) to each lane. * * @param s the input scalar * @return the bitwise XOR of this vector with the broadcast of an input * scalar */
*** 844,855 **** /** * Bitwise XORs this vector with an input vector, selecting lane elements * controlled by a mask. * <p> ! * This is a vector binary operation where the primitive bitwise XOR ! * operation ({@code ^}) is applied to lane elements. * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the input vector */ --- 841,852 ---- /** * Bitwise XORs this vector with an input vector, selecting lane elements * controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise XOR ! * operation ({@code ^}) to each lane. * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the input vector */
*** 857,868 **** /** * Bitwise XORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> ! * This is a vector binary operation where the primitive bitwise XOR ! * operation ({@code ^}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the broadcast of an input * scalar --- 854,865 ---- /** * Bitwise XORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive bitwise XOR ! * operation ({@code ^}) to each lane. * * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the broadcast of an input * scalar
*** 870,902 **** public abstract ByteVector xor(byte s, VectorMask<Byte> m); /** * Bitwise NOTs this vector. * <p> ! * This is a vector unary operation where the primitive bitwise NOT ! * operation ({@code ~}) is applied to lane elements. * * @return the bitwise NOT of this vector */ public abstract ByteVector not(); /** * Bitwise NOTs this vector, selecting lane elements controlled by a mask. * <p> ! * This is a vector unary operation where the primitive bitwise NOT ! * operation ({@code ~}) is applied to lane elements. * * @param m the mask controlling lane selection * @return the bitwise NOT of this vector */ public abstract ByteVector not(VectorMask<Byte> m); /** * Logically left shifts this vector by the broadcast of an input scalar. * <p> ! * This is a vector binary operation where the primitive logical left shift ! * operation ({@code <<}) is applied to lane elements to left shift the * element by shift value as specified by the input scalar. Only the 3 * lowest-order bits of shift value are used. It is as if the shift value * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. * --- 867,899 ---- public abstract ByteVector xor(byte s, VectorMask<Byte> m); /** * Bitwise NOTs this vector. * <p> ! * This is a lane-wise unary operation which applies the primitive bitwise NOT ! * operation ({@code ~}) to each lane. * * @return the bitwise NOT of this vector */ public abstract ByteVector not(); /** * Bitwise NOTs this vector, selecting lane elements controlled by a mask. * <p> ! * This is a lane-wise unary operation which applies the primitive bitwise NOT ! * operation ({@code ~}) to each lane. * * @param m the mask controlling lane selection * @return the bitwise NOT of this vector */ public abstract ByteVector not(VectorMask<Byte> m); /** * Logically left shifts this vector by the broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the primitive logical left shift ! * operation ({@code <<}) to each lane to left shift the * element by shift value as specified by the input scalar. Only the 3 * lowest-order bits of shift value are used. It is as if the shift value * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. *
*** 908,919 **** /** * Logically left shifts this vector by the broadcast of an input scalar, * selecting lane elements controlled by a mask. * <p> ! * This is a vector binary operation where the primitive logical left shift ! * operation ({@code <<}) is applied to lane elements to left shift the * element by shift value as specified by the input scalar. Only the 3 * lowest-order bits of shift value are used. It is as if the shift value * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. * --- 905,916 ---- /** * Logically left shifts this vector by the broadcast of an input scalar, * selecting lane elements controlled by a mask. * <p> ! * This is a lane-wise binary operation which applies the primitive logical left shift ! * operation ({@code <<}) to each lane to left shift the * element by shift value as specified by the input scalar. Only the 3 * lowest-order bits of shift value are used. It is as if the shift value * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. *
*** 929,940 **** /** * Logically right shifts (or unsigned right shifts) this vector by the * broadcast of an input scalar. * <p> ! * This is a vector binary operation where the primitive logical right shift ! * operation ({@code >>>}) is applied to lane elements to logically right shift the * element by shift value as specified by the input scalar. Only the 3 * lowest-order bits of shift value are used. It is as if the shift value * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. * --- 926,937 ---- /** * Logically right shifts (or unsigned right shifts) this vector by the * broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the primitive logical right shift ! * operation ({@code >>>}) to each lane to logically right shift the * element by shift value as specified by the input scalar. Only the 3 * lowest-order bits of shift value are used. It is as if the shift value * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. *
*** 947,958 **** /** * Logically right shifts (or unsigned right shifts) this vector by the * broadcast of an input scalar, selecting lane elements controlled by a * mask. * <p> ! * This is a vector binary operation where the primitive logical right shift ! * operation ({@code >>>}) is applied to lane elements to logically right shift the * element by shift value as specified by the input scalar. Only the 3 * lowest-order bits of shift value are used. It is as if the shift value * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. * --- 944,955 ---- /** * Logically right shifts (or unsigned right shifts) this vector by the * broadcast of an input scalar, selecting lane elements controlled by a * mask. * <p> ! * This is a lane-wise binary operation which applies the primitive logical right shift ! * operation ({@code >>}) to each lane to logically right shift the * element by shift value as specified by the input scalar. Only the 3 * lowest-order bits of shift value are used. It is as if the shift value * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. *
*** 966,977 **** /** * Arithmetically right shifts (or signed right shifts) this vector by the * broadcast of an input scalar. * <p> ! * This is a vector binary operation where the primitive arithmetic right ! * shift operation ({@code >>}) is applied to lane elements to arithmetically * right shift the element by shift value as specified by the input scalar. * Only the 3 lowest-order bits of shift value are used. It is as if the shift * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. * --- 963,974 ---- /** * Arithmetically right shifts (or signed right shifts) this vector by the * broadcast of an input scalar. * <p> ! * This is a lane-wise binary operation which applies the primitive arithmetic right ! * shift operation ({@code >>}) to each lane to arithmetically * right shift the element by shift value as specified by the input scalar. * Only the 3 lowest-order bits of shift value are used. It is as if the shift * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. *
*** 984,995 **** /** * Arithmetically right shifts (or signed right shifts) this vector by the * broadcast of an input scalar, selecting lane elements controlled by a * mask. * <p> ! * This is a vector binary operation where the primitive arithmetic right ! * shift operation ({@code >>}) is applied to lane elements to arithmetically * right shift the element by shift value as specified by the input scalar. * Only the 3 lowest-order bits of shift value are used. It is as if the shift * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. * --- 981,992 ---- /** * Arithmetically right shifts (or signed right shifts) this vector by the * broadcast of an input scalar, selecting lane elements controlled by a * mask. * <p> ! * This is a lane-wise binary operation which applies the primitive arithmetic right ! * shift operation ({@code >>}) to each lane to arithmetically * right shift the element by shift value as specified by the input scalar. * Only the 3 lowest-order bits of shift value are used. It is as if the shift * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7. * The shift distance actually used is therefore always in the range 0 to 7, inclusive. *
*** 1016,1075 **** // Type specific horizontal reductions /** * Adds all lane elements of this vector. * <p> ! * This is an associative vector reduction operation where the addition ! * operation ({@code +}) is applied to lane elements, * and the identity value is {@code 0}. * * @return the addition of all the lane elements of this vector */ public abstract byte addAll(); /** * Adds all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative vector reduction operation where the addition ! * operation ({@code +}) is applied to lane elements, * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the addition of the selected lane elements of this vector */ public abstract byte addAll(VectorMask<Byte> m); /** * Multiplies all lane elements of this vector. * <p> ! * This is an associative vector reduction operation where the ! * multiplication operation ({@code *}) is applied to lane elements, * and the identity value is {@code 1}. * * @return the multiplication of all the lane elements of this vector */ public abstract byte mulAll(); /** * Multiplies all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative vector reduction operation where the ! * multiplication operation ({@code *}) is applied to lane elements, * and the identity value is {@code 1}. * * @param m the mask controlling lane selection * @return the multiplication of all the lane elements of this vector */ public abstract byte mulAll(VectorMask<Byte> m); /** * Returns the minimum lane element of this vector. * <p> ! * This is an associative vector reduction operation where the operation ! * {@code (a, b) -> Math.min(a, b)} is applied to lane elements, * and the identity value is * {@link Byte#MAX_VALUE}. * * @return the minimum lane element of this vector */ --- 1013,1072 ---- // Type specific horizontal reductions /** * Adds all lane elements of this vector. * <p> ! * This is an associative cross-lane reduction operation which applies the addition ! * operation ({@code +}) to lane elements, * and the identity value is {@code 0}. * * @return the addition of all the lane elements of this vector */ public abstract byte addAll(); /** * Adds all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative cross-lane reduction operation which applies the addition ! * operation ({@code +}) to lane elements, * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the addition of the selected lane elements of this vector */ public abstract byte addAll(VectorMask<Byte> m); /** * Multiplies all lane elements of this vector. * <p> ! * This is an associative cross-lane reduction operation which applies the ! * multiplication operation ({@code *}) to lane elements, * and the identity value is {@code 1}. * * @return the multiplication of all the lane elements of this vector */ public abstract byte mulAll(); /** * Multiplies all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative cross-lane reduction operation which applies the ! * multiplication operation ({@code *}) to lane elements, * and the identity value is {@code 1}. * * @param m the mask controlling lane selection * @return the multiplication of all the lane elements of this vector */ public abstract byte mulAll(VectorMask<Byte> m); /** * Returns the minimum lane element of this vector. * <p> ! * This is an associative cross-lane reduction operation which applies the operation ! * {@code (a, b) -> Math.min(a, b)} to lane elements, * and the identity value is * {@link Byte#MAX_VALUE}. * * @return the minimum lane element of this vector */
*** 1077,1088 **** /** * Returns the minimum lane element of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative vector reduction operation where the operation ! * {@code (a, b) -> Math.min(a, b)} is applied to lane elements, * and the identity value is * {@link Byte#MAX_VALUE}. * * @param m the mask controlling lane selection * @return the minimum lane element of this vector --- 1074,1085 ---- /** * Returns the minimum lane element of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative cross-lane reduction operation which applies the operation ! * {@code (a, b) -> Math.min(a, b)} to lane elements, * and the identity value is * {@link Byte#MAX_VALUE}. * * @param m the mask controlling lane selection * @return the minimum lane element of this vector
*** 1090,1101 **** public abstract byte minAll(VectorMask<Byte> m); /** * Returns the maximum lane element of this vector. * <p> ! * This is an associative vector reduction operation where the operation ! * {@code (a, b) -> Math.max(a, b)} is applied to lane elements, * and the identity value is * {@link Byte#MIN_VALUE}. * * @return the maximum lane element of this vector */ --- 1087,1098 ---- public abstract byte minAll(VectorMask<Byte> m); /** * Returns the maximum lane element of this vector. * <p> ! * This is an associative cross-lane reduction operation which applies the operation ! * {@code (a, b) -> Math.max(a, b)} to lane elements, * and the identity value is * {@link Byte#MIN_VALUE}. * * @return the maximum lane element of this vector */
*** 1103,1114 **** /** * Returns the maximum lane element of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative vector reduction operation where the operation ! * {@code (a, b) -> Math.max(a, b)} is applied to lane elements, * and the identity value is * {@link Byte#MIN_VALUE}. * * @param m the mask controlling lane selection * @return the maximum lane element of this vector --- 1100,1111 ---- /** * Returns the maximum lane element of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative cross-lane reduction operation which applies the operation ! * {@code (a, b) -> Math.max(a, b)} to lane elements, * and the identity value is * {@link Byte#MIN_VALUE}. * * @param m the mask controlling lane selection * @return the maximum lane element of this vector
*** 1116,1187 **** public abstract byte maxAll(VectorMask<Byte> m); /** * Logically ORs all lane elements of this vector. * <p> ! * This is an associative vector reduction operation where the logical OR ! * operation ({@code |}) is applied to lane elements, * and the identity value is {@code 0}. * * @return the logical OR all the lane elements of this vector */ public abstract byte orAll(); /** * Logically ORs all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative vector reduction operation where the logical OR ! * operation ({@code |}) is applied to lane elements, * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical OR all the lane elements of this vector */ public abstract byte orAll(VectorMask<Byte> m); /** * Logically ANDs all lane elements of this vector. * <p> ! * This is an associative vector reduction operation where the logical AND ! * operation ({@code |}) is applied to lane elements, * and the identity value is {@code -1}. * * @return the logical AND all the lane elements of this vector */ public abstract byte andAll(); /** * Logically ANDs all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative vector reduction operation where the logical AND ! * operation ({@code |}) is applied to lane elements, * and the identity value is {@code -1}. * * @param m the mask controlling lane selection * @return the logical AND all the lane elements of this vector */ public abstract byte andAll(VectorMask<Byte> m); /** * Logically XORs all lane elements of this vector. * <p> ! * This is an associative vector reduction operation where the logical XOR ! * operation ({@code ^}) is applied to lane elements, * and the identity value is {@code 0}. * * @return the logical XOR all the lane elements of this vector */ public abstract byte xorAll(); /** * Logically XORs all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative vector reduction operation where the logical XOR ! * operation ({@code ^}) is applied to lane elements, * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical XOR all the lane elements of this vector */ --- 1113,1184 ---- public abstract byte maxAll(VectorMask<Byte> m); /** * Logically ORs all lane elements of this vector. * <p> ! * This is an associative cross-lane reduction operation which applies the logical OR ! * operation ({@code |}) to lane elements, * and the identity value is {@code 0}. * * @return the logical OR all the lane elements of this vector */ public abstract byte orAll(); /** * Logically ORs all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative cross-lane reduction operation which applies the logical OR ! * operation ({@code |}) to lane elements, * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical OR all the lane elements of this vector */ public abstract byte orAll(VectorMask<Byte> m); /** * Logically ANDs all lane elements of this vector. * <p> ! * This is an associative cross-lane reduction operation which applies the logical AND ! * operation ({@code |}) to lane elements, * and the identity value is {@code -1}. * * @return the logical AND all the lane elements of this vector */ public abstract byte andAll(); /** * Logically ANDs all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative cross-lane reduction operation which applies the logical AND ! * operation ({@code |}) to lane elements, * and the identity value is {@code -1}. * * @param m the mask controlling lane selection * @return the logical AND all the lane elements of this vector */ public abstract byte andAll(VectorMask<Byte> m); /** * Logically XORs all lane elements of this vector. * <p> ! * This is an associative cross-lane reduction operation which applies the logical XOR ! * operation ({@code ^}) to lane elements, * and the identity value is {@code 0}. * * @return the logical XOR all the lane elements of this vector */ public abstract byte xorAll(); /** * Logically XORs all lane elements of this vector, selecting lane elements * controlled by a mask. * <p> ! * This is an associative cross-lane reduction operation which applies the logical XOR ! * operation ({@code ^}) to lane elements, * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical XOR all the lane elements of this vector */
*** 1195,1205 **** * @param i the lane index * @return the lane element at lane index {@code i} * @throws IllegalArgumentException if the index is is out of range * ({@code < 0 || >= length()}) */ ! public abstract byte get(int i); /** * Replaces the lane element of this vector at lane index {@code i} with * value {@code e}. * <p> --- 1192,1202 ---- * @param i the lane index * @return the lane element at lane index {@code i} * @throws IllegalArgumentException if the index is is out of range * ({@code < 0 || >= length()}) */ ! public abstract byte lane(int i); /** * Replaces the lane element of this vector at lane index {@code i} with * value {@code e}. * <p>
*** 1242,1323 **** /** * Stores this vector into an array starting at offset. * <p> * For each vector lane, where {@code N} is the vector lane index, * the lane element at index {@code N} is stored into the array at index ! * {@code i + N}. * * @param a the array ! * @param i the offset into the array ! * @throws IndexOutOfBoundsException if {@code i < 0}, or ! * {@code i > a.length - this.length()} */ ! public abstract void intoArray(byte[] a, int i); /** * Stores this vector into an array starting at offset and using a mask. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the lane element at ! * index {@code N} is stored into the array index {@code i + N}. * * @param a the array ! * @param i the offset into the array * @param m the mask ! * @throws IndexOutOfBoundsException if {@code i < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} ! * is set {@code i >= a.length - N} */ ! public abstract void intoArray(byte[] a, int i, VectorMask<Byte> m); /** * Stores this vector into an array using indexes obtained from an index * map. * <p> * For each vector lane, where {@code N} is the vector lane index, the * lane element at index {@code N} is stored into the array at index ! * {@code i + indexMap[j + N]}. * * @param a the array ! * @param i the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param indexMap the index map ! * @param j the offset into the index map ! * @throws IndexOutOfBoundsException if {@code j < 0}, or ! * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} the result of ! * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length} */ ! public void intoArray(byte[] a, int i, int[] indexMap, int j) { ! forEach((n, e) -> a[i + indexMap[j + n]] = e); } /** * Stores this vector into an array using indexes obtained from an index * map and using a mask. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the lane element at * index {@code N} is stored into the array at index ! * {@code i + indexMap[j + N]}. * * @param a the array ! * @param i the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param m the mask * @param indexMap the index map ! * @param j the offset into the index map * @throws IndexOutOfBoundsException if {@code j < 0}, or ! * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} where the mask at lane ! * {@code N} is set the result of {@code i + indexMap[j + N]} is * {@code < 0} or {@code >= a.length} */ ! public void intoArray(byte[] a, int i, VectorMask<Byte> m, int[] indexMap, int j) { ! forEach(m, (n, e) -> a[i + indexMap[j + n]] = e); } // Species @Override public abstract VectorSpecies<Byte> species(); --- 1239,1320 ---- /** * Stores this vector into an array starting at offset. * <p> * For each vector lane, where {@code N} is the vector lane index, * the lane element at index {@code N} is stored into the array at index ! * {@code offset + N}. * * @param a the array ! * @param offset the offset into the array ! * @throws IndexOutOfBoundsException if {@code offset < 0}, or ! * {@code offset > a.length - this.length()} */ ! public abstract void intoArray(byte[] a, int offset); /** * Stores this vector into an array starting at offset and using a mask. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the lane element at ! * index {@code N} is stored into the array index {@code offset + N}. * * @param a the array ! * @param offset the offset into the array * @param m the mask ! * @throws IndexOutOfBoundsException if {@code offset < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} ! * is set {@code offset >= a.length - N} */ ! public abstract void intoArray(byte[] a, int offset, VectorMask<Byte> m); /** * Stores this vector into an array using indexes obtained from an index * map. * <p> * For each vector lane, where {@code N} is the vector lane index, the * lane element at index {@code N} is stored into the array at index ! * {@code a_offset + indexMap[i_offset + N]}. * * @param a the array ! * @param a_offset the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param indexMap the index map ! * @param i_offset the offset into the index map ! * @throws IndexOutOfBoundsException if {@code i_offset < 0}, or ! * {@code i_offset > indexMap.length - this.length()}, * or for any vector lane index {@code N} the result of ! * {@code a_offset + indexMap[i_offset + N]} is {@code < 0} or {@code >= a.length} */ ! public void intoArray(byte[] a, int a_offset, int[] indexMap, int i_offset) { ! forEach((n, e) -> a[a_offset + indexMap[i_offset + n]] = e); } /** * Stores this vector into an array using indexes obtained from an index * map and using a mask. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the lane element at * index {@code N} is stored into the array at index ! * {@code a_offset + indexMap[i_offset + N]}. * * @param a the array ! * @param a_offset the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param m the mask * @param indexMap the index map ! * @param i_offset the offset into the index map * @throws IndexOutOfBoundsException if {@code j < 0}, or ! * {@code i_offset > indexMap.length - this.length()}, * or for any vector lane index {@code N} where the mask at lane ! * {@code N} is set the result of {@code a_offset + indexMap[i_offset + N]} is * {@code < 0} or {@code >= a.length} */ ! public void intoArray(byte[] a, int a_offset, VectorMask<Byte> m, int[] indexMap, int i_offset) { ! forEach(m, (n, e) -> a[a_offset + indexMap[i_offset + n]] = e); } // Species @Override public abstract VectorSpecies<Byte> species();
< prev index next >