< prev index next >

src/jdk.incubator.vector/share/classes/jdk/incubator/vector/ByteVector.java

Print this page
rev 54658 : refactored mask and shuffle creation methods, moved classes to top-level
rev 54660 : Javadoc changes


 107      *
 108      * @param species species of desired vector
 109      * @return a zero vector of given species
 110      */
 111     @ForceInline
 112     @SuppressWarnings("unchecked")
 113     public static ByteVector zero(VectorSpecies<Byte> species) {
 114         return VectorIntrinsics.broadcastCoerced((Class<ByteVector>) species.boxType(), byte.class, species.length(),
 115                                                  0, species,
 116                                                  ((bits, s) -> ((ByteSpecies)s).op(i -> (byte)bits)));
 117     }
 118 
 119     /**
 120      * Loads a vector from a byte array starting at an offset.
 121      * <p>
 122      * Bytes are composed into primitive lane elements according to the
 123      * native byte order of the underlying platform
 124      * <p>
 125      * This method behaves as if it returns the result of calling the
 126      * byte buffer, offset, and mask accepting
 127      * {@link #fromByteBuffer(VectorSpecies<Byte>, ByteBuffer, int, VectorMask) method} as follows:
 128      * <pre>{@code
 129      * return this.fromByteBuffer(ByteBuffer.wrap(a), i, this.maskAllTrue());
 130      * }</pre>
 131      *
 132      * @param species species of desired vector
 133      * @param a the byte array
 134      * @param ix the offset into the array
 135      * @return a vector loaded from a byte array
 136      * @throws IndexOutOfBoundsException if {@code i < 0} or
 137      * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)}
 138      */
 139     @ForceInline
 140     @SuppressWarnings("unchecked")
 141     public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int ix) {
 142         Objects.requireNonNull(a);
 143         ix = VectorIntrinsics.checkIndex(ix, a.length, species.bitSize() / Byte.SIZE);
 144         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
 145                                      a, ((long) ix) + Unsafe.ARRAY_BYTE_BASE_OFFSET,
 146                                      a, ix, species,
 147                                      (c, idx, s) -> {
 148                                          ByteBuffer bbc = ByteBuffer.wrap(c, idx, a.length - idx).order(ByteOrder.nativeOrder());
 149                                          ByteBuffer tb = bbc;
 150                                          return ((ByteSpecies)s).op(i -> tb.get());
 151                                      });
 152     }
 153 
 154     /**
 155      * Loads a vector from a byte array starting at an offset and using a
 156      * mask.
 157      * <p>
 158      * Bytes are composed into primitive lane elements according to the
 159      * native byte order of the underlying platform.
 160      * <p>
 161      * This method behaves as if it returns the result of calling the
 162      * byte buffer, offset, and mask accepting
 163      * {@link #fromByteBuffer(VectorSpecies<Byte>, ByteBuffer, int, VectorMask) method} as follows:
 164      * <pre>{@code
 165      * return this.fromByteBuffer(ByteBuffer.wrap(a), i, m);
 166      * }</pre>
 167      *
 168      * @param species species of desired vector
 169      * @param a the byte array
 170      * @param ix the offset into the array
 171      * @param m the mask
 172      * @return a vector loaded from a byte array
 173      * @throws IndexOutOfBoundsException if {@code i < 0} or
 174      * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)}
 175      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
 176      * or {@code > a.length},
 177      * for any vector lane index {@code N} where the mask at lane {@code N}
 178      * is set
 179      * {@code i >= a.length - (N * this.elementSize() / Byte.SIZE)}
 180      */
 181     @ForceInline
 182     public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int ix, VectorMask<Byte> m) {
 183         return zero(species).blend(fromByteArray(species, a, ix), m);
 184     }
 185 
 186     /**
 187      * Loads a vector from an array starting at offset.
 188      * <p>
 189      * For each vector lane, where {@code N} is the vector lane index, the
 190      * array element at index {@code i + N} is placed into the
 191      * resulting vector at lane index {@code N}.
 192      *
 193      * @param species species of desired vector
 194      * @param a the array
 195      * @param i the offset into the array
 196      * @return the vector loaded from an array
 197      * @throws IndexOutOfBoundsException if {@code i < 0}, or
 198      * {@code i > a.length - this.length()}
 199      */
 200     @ForceInline
 201     @SuppressWarnings("unchecked")
 202     public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i){
 203         Objects.requireNonNull(a);
 204         i = VectorIntrinsics.checkIndex(i, a.length, species.length());
 205         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
 206                                      a, (((long) i) << ARRAY_SHIFT) + Unsafe.ARRAY_BYTE_BASE_OFFSET,
 207                                      a, i, species,
 208                                      (c, idx, s) -> ((ByteSpecies)s).op(n -> c[idx + n]));
 209     }
 210 
 211 
 212     /**
 213      * Loads a vector from an array starting at offset and using a mask.
 214      * <p>
 215      * For each vector lane, where {@code N} is the vector lane index,
 216      * if the mask lane at index {@code N} is set then the array element at
 217      * index {@code i + N} is placed into the resulting vector at lane index
 218      * {@code N}, otherwise the default element value is placed into the
 219      * resulting vector at lane index {@code N}.
 220      *
 221      * @param species species of desired vector
 222      * @param a the array
 223      * @param i the offset into the array
 224      * @param m the mask
 225      * @return the vector loaded from an array
 226      * @throws IndexOutOfBoundsException if {@code i < 0}, or
 227      * for any vector lane index {@code N} where the mask at lane {@code N}
 228      * is set {@code i > a.length - N}
 229      */
 230     @ForceInline
 231     public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i, VectorMask<Byte> m) {
 232         return zero(species).blend(fromArray(species, a, i), m);
 233     }
 234 
 235     /**
 236      * Loads a vector from an array using indexes obtained from an index
 237      * map.
 238      * <p>
 239      * For each vector lane, where {@code N} is the vector lane index, the
 240      * array element at index {@code i + indexMap[j + N]} is placed into the
 241      * resulting vector at lane index {@code N}.
 242      *
 243      * @param species species of desired vector
 244      * @param a the array
 245      * @param i the offset into the array, may be negative if relative
 246      * indexes in the index map compensate to produce a value within the
 247      * array bounds
 248      * @param indexMap the index map
 249      * @param j the offset into the index map
 250      * @return the vector loaded from an array
 251      * @throws IndexOutOfBoundsException if {@code j < 0}, or
 252      * {@code j > indexMap.length - this.length()},
 253      * or for any vector lane index {@code N} the result of
 254      * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length}
 255      */
 256     public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i, int[] indexMap, int j) {
 257         return ((ByteSpecies)species).op(n -> a[i + indexMap[j + n]]);
 258     }
 259     /**
 260      * Loads a vector from an array using indexes obtained from an index
 261      * map and using a mask.
 262      * <p>
 263      * For each vector lane, where {@code N} is the vector lane index,
 264      * if the mask lane at index {@code N} is set then the array element at
 265      * index {@code i + indexMap[j + N]} is placed into the resulting vector
 266      * at lane index {@code N}.
 267      *
 268      * @param species species of desired vector
 269      * @param a the array
 270      * @param i the offset into the array, may be negative if relative
 271      * indexes in the index map compensate to produce a value within the
 272      * array bounds
 273      * @param m the mask
 274      * @param indexMap the index map
 275      * @param j the offset into the index map
 276      * @return the vector loaded from an array
 277      * @throws IndexOutOfBoundsException if {@code j < 0}, or
 278      * {@code j > indexMap.length - this.length()},
 279      * or for any vector lane index {@code N} where the mask at lane
 280      * {@code N} is set the result of {@code i + indexMap[j + N]} is
 281      * {@code < 0} or {@code >= a.length}
 282      */
 283     public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i, VectorMask<Byte> m, int[] indexMap, int j) {
 284         return ((ByteSpecies)species).op(m, n -> a[i + indexMap[j + n]]);
 285     }
 286 
 287     /**
 288      * Loads a vector from a {@link ByteBuffer byte buffer} starting at an
 289      * offset into the byte buffer.
 290      * <p>
 291      * Bytes are composed into primitive lane elements according to the
 292      * native byte order of the underlying platform.
 293      * <p>
 294      * This method behaves as if it returns the result of calling the
 295      * byte buffer, offset, and mask accepting
 296      * {@link #fromByteBuffer(VectorSpecies<Byte>, ByteBuffer, int, VectorMask)} method} as follows:
 297      * <pre>{@code
 298      *   return this.fromByteBuffer(b, i, this.maskAllTrue())
 299      * }</pre>
 300      *
 301      * @param species species of desired vector
 302      * @param bb the byte buffer
 303      * @param ix the offset into the byte buffer
 304      * @return a vector loaded from a byte buffer
 305      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
 306      * or {@code > b.limit()},
 307      * or if there are fewer than
 308      * {@code this.length() * this.elementSize() / Byte.SIZE} bytes
 309      * remaining in the byte buffer from the given offset
 310      */
 311     @ForceInline
 312     @SuppressWarnings("unchecked")
 313     public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int ix) {
 314         if (bb.order() != ByteOrder.nativeOrder()) {
 315             throw new IllegalArgumentException();
 316         }
 317         ix = VectorIntrinsics.checkIndex(ix, bb.limit(), species.bitSize() / Byte.SIZE);
 318         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
 319                                      U.getReference(bb, BYTE_BUFFER_HB), U.getLong(bb, BUFFER_ADDRESS) + ix,
 320                                      bb, ix, species,
 321                                      (c, idx, s) -> {
 322                                          ByteBuffer bbc = c.duplicate().position(idx).order(ByteOrder.nativeOrder());
 323                                          ByteBuffer tb = bbc;
 324                                          return ((ByteSpecies)s).op(i -> tb.get());
 325                                      });
 326     }
 327 
 328     /**
 329      * Loads a vector from a {@link ByteBuffer byte buffer} starting at an
 330      * offset into the byte buffer and using a mask.
 331      * <p>
 332      * This method behaves as if the byte buffer is viewed as a primitive
 333      * {@link java.nio.Buffer buffer} for the primitive element type,
 334      * according to the native byte order of the underlying platform, and
 335      * the returned vector is loaded with a mask from a primitive array
 336      * obtained from the primitive buffer.
 337      * The following pseudocode expresses the behaviour, where
 338      * {@coce EBuffer} is the primitive buffer type, {@code e} is the
 339      * primitive element type, and {@code ESpecies<S>} is the primitive
 340      * species for {@code e}:
 341      * <pre>{@code
 342      * EBuffer eb = b.duplicate().
 343      *     order(ByteOrder.nativeOrder()).position(i).
 344      *     asEBuffer();
 345      * e[] es = new e[this.length()];
 346      * for (int n = 0; n < t.length; n++) {
 347      *     if (m.isSet(n))
 348      *         es[n] = eb.get(n);
 349      * }
 350      * Vector<E> r = ((ESpecies<S>)this).fromArray(es, 0, m);
 351      * }</pre>
 352      *
 353      * @param species species of desired vector
 354      * @param bb the byte buffer
 355      * @param ix the offset into the byte buffer
 356      * @param m the mask
 357      * @return a vector loaded from a byte buffer
 358      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
 359      * or {@code > b.limit()},
 360      * for any vector lane index {@code N} where the mask at lane {@code N}
 361      * is set
 362      * {@code i >= b.limit() - (N * this.elementSize() / Byte.SIZE)}
 363      */
 364     @ForceInline
 365     public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int ix, VectorMask<Byte> m) {
 366         return zero(species).blend(fromByteBuffer(species, bb, ix), m);
 367     }
 368 
 369     /**
 370      * Returns a vector where all lane elements are set to the primitive
 371      * value {@code e}.
 372      *
 373      * @param s species of the desired vector
 374      * @param e the value
 375      * @return a vector of vector where all lane elements are set to
 376      * the primitive value {@code e}
 377      */
 378     @ForceInline
 379     @SuppressWarnings("unchecked")
 380     public static ByteVector broadcast(VectorSpecies<Byte> s, byte e) {
 381         return VectorIntrinsics.broadcastCoerced(
 382             (Class<ByteVector>) s.boxType(), byte.class, s.length(),
 383             e, s,
 384             ((bits, sp) -> ((ByteSpecies)sp).op(i -> (byte)bits)));
 385     }
 386 
 387     /**
 388      * Returns a vector where each lane element is set to a given
 389      * primitive value.
 390      * <p>
 391      * For each vector lane, where {@code N} is the vector lane index, the
 392      * the primitive value at index {@code N} is placed into the resulting
 393      * vector at lane index {@code N}.
 394      *
 395      * @param s species of the desired vector
 396      * @param es the given primitive values
 397      * @return a vector where each lane element is set to a given primitive
 398      * value
 399      * @throws IndexOutOfBoundsException if {@code es.length < this.length()}
 400      */
 401     @ForceInline
 402     @SuppressWarnings("unchecked")
 403     public static ByteVector scalars(VectorSpecies<Byte> s, byte... es) {
 404         Objects.requireNonNull(es);
 405         int ix = VectorIntrinsics.checkIndex(0, es.length, s.length());
 406         return VectorIntrinsics.load((Class<ByteVector>) s.boxType(), byte.class, s.length(),
 407                                      es, Unsafe.ARRAY_BYTE_BASE_OFFSET,
 408                                      es, ix, s,
 409                                      (c, idx, sp) -> ((ByteSpecies)sp).op(n -> c[idx + n]));
 410     }
 411 
 412     /**
 413      * Returns a vector where the first lane element is set to the primtive
 414      * value {@code e}, all other lane elements are set to the default
 415      * value.
 416      *
 417      * @param s species of the desired vector
 418      * @param e the value
 419      * @return a vector where the first lane element is set to the primitive
 420      * value {@code e}
 421      */
 422     @ForceInline
 423     public static final ByteVector single(VectorSpecies<Byte> s, byte e) {
 424         return zero(s).with(0, e);
 425     }
 426 
 427     /**
 428      * Returns a vector where each lane element is set to a randomly
 429      * generated primitive value.
 430      *
 431      * The semantics are equivalent to calling
 432      * (byte){@link ThreadLocalRandom#nextInt()}
 433      *
 434      * @param s species of the desired vector
 435      * @return a vector where each lane elements is set to a randomly
 436      * generated primitive value
 437      */
 438     public static ByteVector random(VectorSpecies<Byte> s) {
 439         ThreadLocalRandom r = ThreadLocalRandom.current();
 440         return ((ByteSpecies)s).op(i -> (byte) r.nextInt());
 441     }
 442 
 443     // Ops
 444 
 445     @Override
 446     public abstract ByteVector add(Vector<Byte> v);
 447 
 448     /**
 449      * Adds this vector to the broadcast of an input scalar.
 450      * <p>
 451      * This is a vector binary operation where the primitive addition operation
 452      * ({@code +}) is applied to lane elements.
 453      *
 454      * @param s the input scalar
 455      * @return the result of adding this vector to the broadcast of an input
 456      * scalar
 457      */
 458     public abstract ByteVector add(byte s);
 459 
 460     @Override
 461     public abstract ByteVector add(Vector<Byte> v, VectorMask<Byte> m);
 462 
 463     /**
 464      * Adds this vector to broadcast of an input scalar,
 465      * selecting lane elements controlled by a mask.
 466      * <p>
 467      * This is a vector binary operation where the primitive addition operation
 468      * ({@code +}) is applied to lane elements.
 469      *
 470      * @param s the input scalar
 471      * @param m the mask controlling lane selection
 472      * @return the result of adding this vector to the broadcast of an input
 473      * scalar
 474      */
 475     public abstract ByteVector add(byte s, VectorMask<Byte> m);
 476 
 477     @Override
 478     public abstract ByteVector sub(Vector<Byte> v);
 479 
 480     /**
 481      * Subtracts the broadcast of an input scalar from this vector.
 482      * <p>
 483      * This is a vector binary operation where the primitive subtraction
 484      * operation ({@code -}) is applied to lane elements.
 485      *
 486      * @param s the input scalar
 487      * @return the result of subtracting the broadcast of an input
 488      * scalar from this vector
 489      */
 490     public abstract ByteVector sub(byte s);
 491 
 492     @Override
 493     public abstract ByteVector sub(Vector<Byte> v, VectorMask<Byte> m);
 494 
 495     /**
 496      * Subtracts the broadcast of an input scalar from this vector, selecting
 497      * lane elements controlled by a mask.
 498      * <p>
 499      * This is a vector binary operation where the primitive subtraction
 500      * operation ({@code -}) is applied to lane elements.
 501      *
 502      * @param s the input scalar
 503      * @param m the mask controlling lane selection
 504      * @return the result of subtracting the broadcast of an input
 505      * scalar from this vector
 506      */
 507     public abstract ByteVector sub(byte s, VectorMask<Byte> m);
 508 
 509     @Override
 510     public abstract ByteVector mul(Vector<Byte> v);
 511 
 512     /**
 513      * Multiplies this vector with the broadcast of an input scalar.
 514      * <p>
 515      * This is a vector binary operation where the primitive multiplication
 516      * operation ({@code *}) is applied to lane elements.
 517      *
 518      * @param s the input scalar
 519      * @return the result of multiplying this vector with the broadcast of an
 520      * input scalar
 521      */
 522     public abstract ByteVector mul(byte s);
 523 
 524     @Override
 525     public abstract ByteVector mul(Vector<Byte> v, VectorMask<Byte> m);
 526 
 527     /**
 528      * Multiplies this vector with the broadcast of an input scalar, selecting
 529      * lane elements controlled by a mask.
 530      * <p>
 531      * This is a vector binary operation where the primitive multiplication
 532      * operation ({@code *}) is applied to lane elements.
 533      *
 534      * @param s the input scalar
 535      * @param m the mask controlling lane selection
 536      * @return the result of multiplying this vector with the broadcast of an
 537      * input scalar
 538      */
 539     public abstract ByteVector mul(byte s, VectorMask<Byte> m);
 540 
 541     @Override
 542     public abstract ByteVector neg();
 543 
 544     @Override
 545     public abstract ByteVector neg(VectorMask<Byte> m);
 546 
 547     @Override
 548     public abstract ByteVector abs();
 549 
 550     @Override
 551     public abstract ByteVector abs(VectorMask<Byte> m);
 552 
 553     @Override
 554     public abstract ByteVector min(Vector<Byte> v);
 555 
 556     @Override
 557     public abstract ByteVector min(Vector<Byte> v, VectorMask<Byte> m);
 558 
 559     /**
 560      * Returns the minimum of this vector and the broadcast of an input scalar.
 561      * <p>
 562      * This is a vector binary operation where the operation
 563      * {@code (a, b) -> Math.min(a, b)} is applied to lane elements.
 564      *
 565      * @param s the input scalar
 566      * @return the minimum of this vector and the broadcast of an input scalar
 567      */
 568     public abstract ByteVector min(byte s);
 569 
 570     @Override
 571     public abstract ByteVector max(Vector<Byte> v);
 572 
 573     @Override
 574     public abstract ByteVector max(Vector<Byte> v, VectorMask<Byte> m);
 575 
 576     /**
 577      * Returns the maximum of this vector and the broadcast of an input scalar.
 578      * <p>
 579      * This is a vector binary operation where the operation
 580      * {@code (a, b) -> Math.max(a, b)} is applied to lane elements.
 581      *
 582      * @param s the input scalar
 583      * @return the maximum of this vector and the broadcast of an input scalar
 584      */
 585     public abstract ByteVector max(byte s);
 586 
 587     @Override
 588     public abstract VectorMask<Byte> equal(Vector<Byte> v);
 589 
 590     /**
 591      * Tests if this vector is equal to the broadcast of an input scalar.
 592      * <p>
 593      * This is a vector binary test operation where the primitive equals
 594      * operation ({@code ==}) is applied to lane elements.
 595      *
 596      * @param s the input scalar
 597      * @return the result mask of testing if this vector is equal to the
 598      * broadcast of an input scalar
 599      */
 600     public abstract VectorMask<Byte> equal(byte s);
 601 
 602     @Override
 603     public abstract VectorMask<Byte> notEqual(Vector<Byte> v);
 604 
 605     /**
 606      * Tests if this vector is not equal to the broadcast of an input scalar.
 607      * <p>
 608      * This is a vector binary test operation where the primitive not equals
 609      * operation ({@code !=}) is applied to lane elements.
 610      *
 611      * @param s the input scalar
 612      * @return the result mask of testing if this vector is not equal to the
 613      * broadcast of an input scalar
 614      */
 615     public abstract VectorMask<Byte> notEqual(byte s);
 616 
 617     @Override
 618     public abstract VectorMask<Byte> lessThan(Vector<Byte> v);
 619 
 620     /**
 621      * Tests if this vector is less than the broadcast of an input scalar.
 622      * <p>
 623      * This is a vector binary test operation where the primitive less than
 624      * operation ({@code <}) is applied to lane elements.
 625      *
 626      * @param s the input scalar
 627      * @return the mask result of testing if this vector is less than the
 628      * broadcast of an input scalar
 629      */
 630     public abstract VectorMask<Byte> lessThan(byte s);
 631 
 632     @Override
 633     public abstract VectorMask<Byte> lessThanEq(Vector<Byte> v);
 634 
 635     /**
 636      * Tests if this vector is less or equal to the broadcast of an input scalar.
 637      * <p>
 638      * This is a vector binary test operation where the primitive less than
 639      * or equal to operation ({@code <=}) is applied to lane elements.
 640      *
 641      * @param s the input scalar
 642      * @return the mask result of testing if this vector is less than or equal
 643      * to the broadcast of an input scalar
 644      */
 645     public abstract VectorMask<Byte> lessThanEq(byte s);
 646 
 647     @Override
 648     public abstract VectorMask<Byte> greaterThan(Vector<Byte> v);
 649 
 650     /**
 651      * Tests if this vector is greater than the broadcast of an input scalar.
 652      * <p>
 653      * This is a vector binary test operation where the primitive greater than
 654      * operation ({@code >}) is applied to lane elements.
 655      *
 656      * @param s the input scalar
 657      * @return the mask result of testing if this vector is greater than the
 658      * broadcast of an input scalar
 659      */
 660     public abstract VectorMask<Byte> greaterThan(byte s);
 661 
 662     @Override
 663     public abstract VectorMask<Byte> greaterThanEq(Vector<Byte> v);
 664 
 665     /**
 666      * Tests if this vector is greater than or equal to the broadcast of an
 667      * input scalar.
 668      * <p>
 669      * This is a vector binary test operation where the primitive greater than
 670      * or equal to operation ({@code >=}) is applied to lane elements.
 671      *
 672      * @param s the input scalar
 673      * @return the mask result of testing if this vector is greater than or
 674      * equal to the broadcast of an input scalar
 675      */
 676     public abstract VectorMask<Byte> greaterThanEq(byte s);
 677 
 678     @Override
 679     public abstract ByteVector blend(Vector<Byte> v, VectorMask<Byte> m);
 680 
 681     /**
 682      * Blends the lane elements of this vector with those of the broadcast of an
 683      * input scalar, selecting lanes controlled by a mask.
 684      * <p>
 685      * For each lane of the mask, at lane index {@code N}, if the mask lane
 686      * is set then the lane element at {@code N} from the input vector is
 687      * selected and placed into the resulting vector at {@code N},
 688      * otherwise the the lane element at {@code N} from this input vector is
 689      * selected and placed into the resulting vector at {@code N}.
 690      *


 705     @Override
 706     public abstract ByteVector reshape(VectorSpecies<Byte> s);
 707 
 708     @Override
 709     public abstract ByteVector rotateEL(int i);
 710 
 711     @Override
 712     public abstract ByteVector rotateER(int i);
 713 
 714     @Override
 715     public abstract ByteVector shiftEL(int i);
 716 
 717     @Override
 718     public abstract ByteVector shiftER(int i);
 719 
 720 
 721 
 722     /**
 723      * Bitwise ANDs this vector with an input vector.
 724      * <p>
 725      * This is a vector binary operation where the primitive bitwise AND
 726      * operation ({@code &}) is applied to lane elements.
 727      *
 728      * @param v the input vector
 729      * @return the bitwise AND of this vector with the input vector
 730      */
 731     public abstract ByteVector and(Vector<Byte> v);
 732 
 733     /**
 734      * Bitwise ANDs this vector with the broadcast of an input scalar.
 735      * <p>
 736      * This is a vector binary operation where the primitive bitwise AND
 737      * operation ({@code &}) is applied to lane elements.
 738      *
 739      * @param s the input scalar
 740      * @return the bitwise AND of this vector with the broadcast of an input
 741      * scalar
 742      */
 743     public abstract ByteVector and(byte s);
 744 
 745     /**
 746      * Bitwise ANDs this vector with an input vector, selecting lane elements
 747      * controlled by a mask.
 748      * <p>
 749      * This is a vector binary operation where the primitive bitwise AND
 750      * operation ({@code &}) is applied to lane elements.
 751      *
 752      * @param v the input vector
 753      * @param m the mask controlling lane selection
 754      * @return the bitwise AND of this vector with the input vector
 755      */
 756     public abstract ByteVector and(Vector<Byte> v, VectorMask<Byte> m);
 757 
 758     /**
 759      * Bitwise ANDs this vector with the broadcast of an input scalar, selecting
 760      * lane elements controlled by a mask.
 761      * <p>
 762      * This is a vector binary operation where the primitive bitwise AND
 763      * operation ({@code &}) is applied to lane elements.
 764      *
 765      * @param s the input scalar
 766      * @param m the mask controlling lane selection
 767      * @return the bitwise AND of this vector with the broadcast of an input
 768      * scalar
 769      */
 770     public abstract ByteVector and(byte s, VectorMask<Byte> m);
 771 
 772     /**
 773      * Bitwise ORs this vector with an input vector.
 774      * <p>
 775      * This is a vector binary operation where the primitive bitwise OR
 776      * operation ({@code |}) is applied to lane elements.
 777      *
 778      * @param v the input vector
 779      * @return the bitwise OR of this vector with the input vector
 780      */
 781     public abstract ByteVector or(Vector<Byte> v);
 782 
 783     /**
 784      * Bitwise ORs this vector with the broadcast of an input scalar.
 785      * <p>
 786      * This is a vector binary operation where the primitive bitwise OR
 787      * operation ({@code |}) is applied to lane elements.
 788      *
 789      * @param s the input scalar
 790      * @return the bitwise OR of this vector with the broadcast of an input
 791      * scalar
 792      */
 793     public abstract ByteVector or(byte s);
 794 
 795     /**
 796      * Bitwise ORs this vector with an input vector, selecting lane elements
 797      * controlled by a mask.
 798      * <p>
 799      * This is a vector binary operation where the primitive bitwise OR
 800      * operation ({@code |}) is applied to lane elements.
 801      *
 802      * @param v the input vector
 803      * @param m the mask controlling lane selection
 804      * @return the bitwise OR of this vector with the input vector
 805      */
 806     public abstract ByteVector or(Vector<Byte> v, VectorMask<Byte> m);
 807 
 808     /**
 809      * Bitwise ORs this vector with the broadcast of an input scalar, selecting
 810      * lane elements controlled by a mask.
 811      * <p>
 812      * This is a vector binary operation where the primitive bitwise OR
 813      * operation ({@code |}) is applied to lane elements.
 814      *
 815      * @param s the input scalar
 816      * @param m the mask controlling lane selection
 817      * @return the bitwise OR of this vector with the broadcast of an input
 818      * scalar
 819      */
 820     public abstract ByteVector or(byte s, VectorMask<Byte> m);
 821 
 822     /**
 823      * Bitwise XORs this vector with an input vector.
 824      * <p>
 825      * This is a vector binary operation where the primitive bitwise XOR
 826      * operation ({@code ^}) is applied to lane elements.
 827      *
 828      * @param v the input vector
 829      * @return the bitwise XOR of this vector with the input vector
 830      */
 831     public abstract ByteVector xor(Vector<Byte> v);
 832 
 833     /**
 834      * Bitwise XORs this vector with the broadcast of an input scalar.
 835      * <p>
 836      * This is a vector binary operation where the primitive bitwise XOR
 837      * operation ({@code ^}) is applied to lane elements.
 838      *
 839      * @param s the input scalar
 840      * @return the bitwise XOR of this vector with the broadcast of an input
 841      * scalar
 842      */
 843     public abstract ByteVector xor(byte s);
 844 
 845     /**
 846      * Bitwise XORs this vector with an input vector, selecting lane elements
 847      * controlled by a mask.
 848      * <p>
 849      * This is a vector binary operation where the primitive bitwise XOR
 850      * operation ({@code ^}) is applied to lane elements.
 851      *
 852      * @param v the input vector
 853      * @param m the mask controlling lane selection
 854      * @return the bitwise XOR of this vector with the input vector
 855      */
 856     public abstract ByteVector xor(Vector<Byte> v, VectorMask<Byte> m);
 857 
 858     /**
 859      * Bitwise XORs this vector with the broadcast of an input scalar, selecting
 860      * lane elements controlled by a mask.
 861      * <p>
 862      * This is a vector binary operation where the primitive bitwise XOR
 863      * operation ({@code ^}) is applied to lane elements.
 864      *
 865      * @param s the input scalar
 866      * @param m the mask controlling lane selection
 867      * @return the bitwise XOR of this vector with the broadcast of an input
 868      * scalar
 869      */
 870     public abstract ByteVector xor(byte s, VectorMask<Byte> m);
 871 
 872     /**
 873      * Bitwise NOTs this vector.
 874      * <p>
 875      * This is a vector unary operation where the primitive bitwise NOT
 876      * operation ({@code ~}) is applied to lane elements.
 877      *
 878      * @return the bitwise NOT of this vector
 879      */
 880     public abstract ByteVector not();
 881 
 882     /**
 883      * Bitwise NOTs this vector, selecting lane elements controlled by a mask.
 884      * <p>
 885      * This is a vector unary operation where the primitive bitwise NOT
 886      * operation ({@code ~}) is applied to lane elements.
 887      *
 888      * @param m the mask controlling lane selection
 889      * @return the bitwise NOT of this vector
 890      */
 891     public abstract ByteVector not(VectorMask<Byte> m);
 892 
 893     /**
 894      * Logically left shifts this vector by the broadcast of an input scalar.
 895      * <p>
 896      * This is a vector binary operation where the primitive logical left shift
 897      * operation ({@code <<}) is applied to lane elements to left shift the
 898      * element by shift value as specified by the input scalar. Only the 3
 899      * lowest-order bits of shift value are used. It is as if the shift value
 900      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 901      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 902      *
 903      * @param s the input scalar; the number of the bits to left shift
 904      * @return the result of logically left shifting left this vector by the
 905      * broadcast of an input scalar
 906      */
 907     public abstract ByteVector shiftL(int s);
 908 
 909     /**
 910      * Logically left shifts this vector by the broadcast of an input scalar,
 911      * selecting lane elements controlled by a mask.
 912      * <p>
 913      * This is a vector binary operation where the primitive logical left shift
 914      * operation ({@code <<}) is applied to lane elements to left shift the
 915      * element by shift value as specified by the input scalar. Only the 3
 916      * lowest-order bits of shift value are used. It is as if the shift value
 917      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 918      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 919      *
 920      * @param s the input scalar; the number of the bits to left shift
 921      * @param m the mask controlling lane selection
 922      * @return the result of logically left shifting left this vector by the
 923      * broadcast of an input scalar
 924      */
 925     public abstract ByteVector shiftL(int s, VectorMask<Byte> m);
 926 
 927 
 928     // logical, or unsigned, shift right
 929 
 930      /**
 931      * Logically right shifts (or unsigned right shifts) this vector by the
 932      * broadcast of an input scalar.
 933      * <p>
 934      * This is a vector binary operation where the primitive logical right shift
 935      * operation ({@code >>>}) is applied to lane elements to logically right shift the
 936      * element by shift value as specified by the input scalar. Only the 3
 937      * lowest-order bits of shift value are used. It is as if the shift value
 938      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 939      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 940      *
 941      * @param s the input scalar; the number of the bits to right shift
 942      * @return the result of logically right shifting this vector by the
 943      * broadcast of an input scalar
 944      */
 945     public abstract ByteVector shiftR(int s);
 946 
 947      /**
 948      * Logically right shifts (or unsigned right shifts) this vector by the
 949      * broadcast of an input scalar, selecting lane elements controlled by a
 950      * mask.
 951      * <p>
 952      * This is a vector binary operation where the primitive logical right shift
 953      * operation ({@code >>>}) is applied to lane elements to logically right shift the
 954      * element by shift value as specified by the input scalar. Only the 3
 955      * lowest-order bits of shift value are used. It is as if the shift value
 956      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 957      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 958      *
 959      * @param s the input scalar; the number of the bits to right shift
 960      * @param m the mask controlling lane selection
 961      * @return the result of logically right shifting this vector by the
 962      * broadcast of an input scalar
 963      */
 964     public abstract ByteVector shiftR(int s, VectorMask<Byte> m);
 965 
 966 
 967     /**
 968      * Arithmetically right shifts (or signed right shifts) this vector by the
 969      * broadcast of an input scalar.
 970      * <p>
 971      * This is a vector binary operation where the primitive arithmetic right
 972      * shift operation ({@code >>}) is applied to lane elements  to arithmetically
 973      * right shift the element by shift value as specified by the input scalar.
 974      * Only the 3 lowest-order bits of shift value are used. It is as if the shift
 975      * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 976      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 977      *
 978      * @param s the input scalar; the number of the bits to right shift
 979      * @return the result of arithmetically right shifting this vector by the
 980      * broadcast of an input scalar
 981      */
 982     public abstract ByteVector aShiftR(int s);
 983 
 984     /**
 985      * Arithmetically right shifts (or signed right shifts) this vector by the
 986      * broadcast of an input scalar, selecting lane elements controlled by a
 987      * mask.
 988      * <p>
 989      * This is a vector binary operation where the primitive arithmetic right
 990      * shift operation ({@code >>}) is applied to lane elements  to arithmetically
 991      * right shift the element by shift value as specified by the input scalar.
 992      * Only the 3 lowest-order bits of shift value are used. It is as if the shift
 993      * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 994      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 995      *
 996      * @param s the input scalar; the number of the bits to right shift
 997      * @param m the mask controlling lane selection
 998      * @return the result of arithmetically right shifting this vector by the
 999      * broadcast of an input scalar
1000      */
1001     public abstract ByteVector aShiftR(int s, VectorMask<Byte> m);
1002 
1003 
1004     @Override
1005     public abstract void intoByteArray(byte[] a, int ix);
1006 
1007     @Override
1008     public abstract void intoByteArray(byte[] a, int ix, VectorMask<Byte> m);
1009 
1010     @Override
1011     public abstract void intoByteBuffer(ByteBuffer bb, int ix);
1012 
1013     @Override
1014     public abstract void intoByteBuffer(ByteBuffer bb, int ix, VectorMask<Byte> m);
1015 
1016 
1017     // Type specific horizontal reductions
1018     /**
1019      * Adds all lane elements of this vector.
1020      * <p>
1021      * This is an associative vector reduction operation where the addition
1022      * operation ({@code +}) is applied to lane elements,
1023      * and the identity value is {@code 0}.
1024      *
1025      * @return the addition of all the lane elements of this vector
1026      */
1027     public abstract byte addAll();
1028 
1029     /**
1030      * Adds all lane elements of this vector, selecting lane elements
1031      * controlled by a mask.
1032      * <p>
1033      * This is an associative vector reduction operation where the addition
1034      * operation ({@code +}) is applied to lane elements,
1035      * and the identity value is {@code 0}.
1036      *
1037      * @param m the mask controlling lane selection
1038      * @return the addition of the selected lane elements of this vector
1039      */
1040     public abstract byte addAll(VectorMask<Byte> m);
1041 
1042     /**
1043      * Multiplies all lane elements of this vector.
1044      * <p>
1045      * This is an associative vector reduction operation where the
1046      * multiplication operation ({@code *}) is applied to lane elements,
1047      * and the identity value is {@code 1}.
1048      *
1049      * @return the multiplication of all the lane elements of this vector
1050      */
1051     public abstract byte mulAll();
1052 
1053     /**
1054      * Multiplies all lane elements of this vector, selecting lane elements
1055      * controlled by a mask.
1056      * <p>
1057      * This is an associative vector reduction operation where the
1058      * multiplication operation ({@code *}) is applied to lane elements,
1059      * and the identity value is {@code 1}.
1060      *
1061      * @param m the mask controlling lane selection
1062      * @return the multiplication of all the lane elements of this vector
1063      */
1064     public abstract byte mulAll(VectorMask<Byte> m);
1065 
1066     /**
1067      * Returns the minimum lane element of this vector.
1068      * <p>
1069      * This is an associative vector reduction operation where the operation
1070      * {@code (a, b) -> Math.min(a, b)} is applied to lane elements,
1071      * and the identity value is
1072      * {@link Byte#MAX_VALUE}.
1073      *
1074      * @return the minimum lane element of this vector
1075      */
1076     public abstract byte minAll();
1077 
1078     /**
1079      * Returns the minimum lane element of this vector, selecting lane elements
1080      * controlled by a mask.
1081      * <p>
1082      * This is an associative vector reduction operation where the operation
1083      * {@code (a, b) -> Math.min(a, b)} is applied to lane elements,
1084      * and the identity value is
1085      * {@link Byte#MAX_VALUE}.
1086      *
1087      * @param m the mask controlling lane selection
1088      * @return the minimum lane element of this vector
1089      */
1090     public abstract byte minAll(VectorMask<Byte> m);
1091 
1092     /**
1093      * Returns the maximum lane element of this vector.
1094      * <p>
1095      * This is an associative vector reduction operation where the operation
1096      * {@code (a, b) -> Math.max(a, b)} is applied to lane elements,
1097      * and the identity value is
1098      * {@link Byte#MIN_VALUE}.
1099      *
1100      * @return the maximum lane element of this vector
1101      */
1102     public abstract byte maxAll();
1103 
1104     /**
1105      * Returns the maximum lane element of this vector, selecting lane elements
1106      * controlled by a mask.
1107      * <p>
1108      * This is an associative vector reduction operation where the operation
1109      * {@code (a, b) -> Math.max(a, b)} is applied to lane elements,
1110      * and the identity value is
1111      * {@link Byte#MIN_VALUE}.
1112      *
1113      * @param m the mask controlling lane selection
1114      * @return the maximum lane element of this vector
1115      */
1116     public abstract byte maxAll(VectorMask<Byte> m);
1117 
1118     /**
1119      * Logically ORs all lane elements of this vector.
1120      * <p>
1121      * This is an associative vector reduction operation where the logical OR
1122      * operation ({@code |}) is applied to lane elements,
1123      * and the identity value is {@code 0}.
1124      *
1125      * @return the logical OR all the lane elements of this vector
1126      */
1127     public abstract byte orAll();
1128 
1129     /**
1130      * Logically ORs all lane elements of this vector, selecting lane elements
1131      * controlled by a mask.
1132      * <p>
1133      * This is an associative vector reduction operation where the logical OR
1134      * operation ({@code |}) is applied to lane elements,
1135      * and the identity value is {@code 0}.
1136      *
1137      * @param m the mask controlling lane selection
1138      * @return the logical OR all the lane elements of this vector
1139      */
1140     public abstract byte orAll(VectorMask<Byte> m);
1141 
1142     /**
1143      * Logically ANDs all lane elements of this vector.
1144      * <p>
1145      * This is an associative vector reduction operation where the logical AND
1146      * operation ({@code |}) is applied to lane elements,
1147      * and the identity value is {@code -1}.
1148      *
1149      * @return the logical AND all the lane elements of this vector
1150      */
1151     public abstract byte andAll();
1152 
1153     /**
1154      * Logically ANDs all lane elements of this vector, selecting lane elements
1155      * controlled by a mask.
1156      * <p>
1157      * This is an associative vector reduction operation where the logical AND
1158      * operation ({@code |}) is applied to lane elements,
1159      * and the identity value is {@code -1}.
1160      *
1161      * @param m the mask controlling lane selection
1162      * @return the logical AND all the lane elements of this vector
1163      */
1164     public abstract byte andAll(VectorMask<Byte> m);
1165 
1166     /**
1167      * Logically XORs all lane elements of this vector.
1168      * <p>
1169      * This is an associative vector reduction operation where the logical XOR
1170      * operation ({@code ^}) is applied to lane elements,
1171      * and the identity value is {@code 0}.
1172      *
1173      * @return the logical XOR all the lane elements of this vector
1174      */
1175     public abstract byte xorAll();
1176 
1177     /**
1178      * Logically XORs all lane elements of this vector, selecting lane elements
1179      * controlled by a mask.
1180      * <p>
1181      * This is an associative vector reduction operation where the logical XOR
1182      * operation ({@code ^}) is applied to lane elements,
1183      * and the identity value is {@code 0}.
1184      *
1185      * @param m the mask controlling lane selection
1186      * @return the logical XOR all the lane elements of this vector
1187      */
1188     public abstract byte xorAll(VectorMask<Byte> m);
1189 
1190     // Type specific accessors
1191 
1192     /**
1193      * Gets the lane element at lane index {@code i}
1194      *
1195      * @param i the lane index
1196      * @return the lane element at lane index {@code i}
1197      * @throws IllegalArgumentException if the index is is out of range
1198      * ({@code < 0 || >= length()})
1199      */
1200     public abstract byte get(int i);
1201 
1202     /**
1203      * Replaces the lane element of this vector at lane index {@code i} with
1204      * value {@code e}.
1205      * <p>
1206      * This is a cross-lane operation and behaves as if it returns the result
1207      * of blending this vector with an input vector that is the result of
1208      * broadcasting {@code e} and a mask that has only one lane set at lane
1209      * index {@code i}.
1210      *
1211      * @param i the lane index of the lane element to be replaced
1212      * @param e the value to be placed
1213      * @return the result of replacing the lane element of this vector at lane
1214      * index {@code i} with value {@code e}.
1215      * @throws IllegalArgumentException if the index is is out of range
1216      * ({@code < 0 || >= length()})
1217      */
1218     public abstract ByteVector with(int i, byte e);
1219 
1220     // Type specific extractors


1227      * <pre>{@code
1228      *   byte[] a = new byte[this.length()];
1229      *   this.intoArray(a, 0);
1230      *   return a;
1231      * }</pre>
1232      *
1233      * @return an array containing the the lane elements of this vector
1234      */
1235     @ForceInline
1236     public final byte[] toArray() {
1237         byte[] a = new byte[species().length()];
1238         intoArray(a, 0);
1239         return a;
1240     }
1241 
1242     /**
1243      * Stores this vector into an array starting at offset.
1244      * <p>
1245      * For each vector lane, where {@code N} is the vector lane index,
1246      * the lane element at index {@code N} is stored into the array at index
1247      * {@code i + N}.
1248      *
1249      * @param a the array
1250      * @param i the offset into the array
1251      * @throws IndexOutOfBoundsException if {@code i < 0}, or
1252      * {@code i > a.length - this.length()}
1253      */
1254     public abstract void intoArray(byte[] a, int i);
1255 
1256     /**
1257      * Stores this vector into an array starting at offset and using a mask.
1258      * <p>
1259      * For each vector lane, where {@code N} is the vector lane index,
1260      * if the mask lane at index {@code N} is set then the lane element at
1261      * index {@code N} is stored into the array index {@code i + N}.
1262      *
1263      * @param a the array
1264      * @param i the offset into the array
1265      * @param m the mask
1266      * @throws IndexOutOfBoundsException if {@code i < 0}, or
1267      * for any vector lane index {@code N} where the mask at lane {@code N}
1268      * is set {@code i >= a.length - N}
1269      */
1270     public abstract void intoArray(byte[] a, int i, VectorMask<Byte> m);
1271 
1272     /**
1273      * Stores this vector into an array using indexes obtained from an index
1274      * map.
1275      * <p>
1276      * For each vector lane, where {@code N} is the vector lane index, the
1277      * lane element at index {@code N} is stored into the array at index
1278      * {@code i + indexMap[j + N]}.
1279      *
1280      * @param a the array
1281      * @param i the offset into the array, may be negative if relative
1282      * indexes in the index map compensate to produce a value within the
1283      * array bounds
1284      * @param indexMap the index map
1285      * @param j the offset into the index map
1286      * @throws IndexOutOfBoundsException if {@code j < 0}, or
1287      * {@code j > indexMap.length - this.length()},
1288      * or for any vector lane index {@code N} the result of
1289      * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length}
1290      */
1291     public void intoArray(byte[] a, int i, int[] indexMap, int j) {
1292         forEach((n, e) -> a[i + indexMap[j + n]] = e);
1293     }
1294 
1295     /**
1296      * Stores this vector into an array using indexes obtained from an index
1297      * map and using a mask.
1298      * <p>
1299      * For each vector lane, where {@code N} is the vector lane index,
1300      * if the mask lane at index {@code N} is set then the lane element at
1301      * index {@code N} is stored into the array at index
1302      * {@code i + indexMap[j + N]}.
1303      *
1304      * @param a the array
1305      * @param i the offset into the array, may be negative if relative
1306      * indexes in the index map compensate to produce a value within the
1307      * array bounds
1308      * @param m the mask
1309      * @param indexMap the index map
1310      * @param j the offset into the index map
1311      * @throws IndexOutOfBoundsException if {@code j < 0}, or
1312      * {@code j > indexMap.length - this.length()},
1313      * or for any vector lane index {@code N} where the mask at lane
1314      * {@code N} is set the result of {@code i + indexMap[j + N]} is
1315      * {@code < 0} or {@code >= a.length}
1316      */
1317     public void intoArray(byte[] a, int i, VectorMask<Byte> m, int[] indexMap, int j) {
1318         forEach(m, (n, e) -> a[i + indexMap[j + n]] = e);
1319     }
1320     // Species
1321 
1322     @Override
1323     public abstract VectorSpecies<Byte> species();
1324 
1325     /**
1326      * Class representing {@link ByteVector}'s of the same {@link VectorShape VectorShape}.
1327      */
1328     static final class ByteSpecies extends AbstractSpecies<Byte> {
1329         final Function<byte[], ByteVector> vectorFactory;
1330 
1331         private ByteSpecies(VectorShape shape,
1332                           Class<?> boxType,
1333                           Class<?> maskType,
1334                           Function<byte[], ByteVector> vectorFactory,
1335                           Function<boolean[], VectorMask<Byte>> maskFactory,
1336                           Function<IntUnaryOperator, VectorShuffle<Byte>> shuffleFromArrayFactory,
1337                           fShuffleFromArray<Byte> shuffleFromOpFactory) {
1338             super(shape, byte.class, Byte.SIZE, boxType, maskType, maskFactory,




 107      *
 108      * @param species species of desired vector
 109      * @return a zero vector of given species
 110      */
 111     @ForceInline
 112     @SuppressWarnings("unchecked")
 113     public static ByteVector zero(VectorSpecies<Byte> species) {
 114         return VectorIntrinsics.broadcastCoerced((Class<ByteVector>) species.boxType(), byte.class, species.length(),
 115                                                  0, species,
 116                                                  ((bits, s) -> ((ByteSpecies)s).op(i -> (byte)bits)));
 117     }
 118 
 119     /**
 120      * Loads a vector from a byte array starting at an offset.
 121      * <p>
 122      * Bytes are composed into primitive lane elements according to the
 123      * native byte order of the underlying platform
 124      * <p>
 125      * This method behaves as if it returns the result of calling the
 126      * byte buffer, offset, and mask accepting
 127      * {@link #fromByteBuffer(VectorSpecies, ByteBuffer, int, VectorMask) method} as follows:
 128      * <pre>{@code
 129      * return fromByteBuffer(species, ByteBuffer.wrap(a), offset, VectorMask.allTrue());
 130      * }</pre>
 131      *
 132      * @param species species of desired vector
 133      * @param a the byte array
 134      * @param offset the offset into the array
 135      * @return a vector loaded from a byte array
 136      * @throws IndexOutOfBoundsException if {@code i < 0} or
 137      * {@code offset > a.length - (species.length() * species.elementSize() / Byte.SIZE)}
 138      */
 139     @ForceInline
 140     @SuppressWarnings("unchecked")
 141     public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int offset) {
 142         Objects.requireNonNull(a);
 143         offset = VectorIntrinsics.checkIndex(offset, a.length, species.bitSize() / Byte.SIZE);
 144         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
 145                                      a, ((long) offset) + Unsafe.ARRAY_BYTE_BASE_OFFSET,
 146                                      a, offset, species,
 147                                      (c, idx, s) -> {
 148                                          ByteBuffer bbc = ByteBuffer.wrap(c, idx, a.length - idx).order(ByteOrder.nativeOrder());
 149                                          ByteBuffer tb = bbc;
 150                                          return ((ByteSpecies)s).op(i -> tb.get());
 151                                      });
 152     }
 153 
 154     /**
 155      * Loads a vector from a byte array starting at an offset and using a
 156      * mask.
 157      * <p>
 158      * Bytes are composed into primitive lane elements according to the
 159      * native byte order of the underlying platform.
 160      * <p>
 161      * This method behaves as if it returns the result of calling the
 162      * byte buffer, offset, and mask accepting
 163      * {@link #fromByteBuffer(VectorSpecies, ByteBuffer, int, VectorMask) method} as follows:
 164      * <pre>{@code
 165      * return fromByteBuffer(species, ByteBuffer.wrap(a), offset, m);
 166      * }</pre>
 167      *
 168      * @param species species of desired vector
 169      * @param a the byte array
 170      * @param offset the offset into the array
 171      * @param m the mask
 172      * @return a vector loaded from a byte array
 173      * @throws IndexOutOfBoundsException if {@code offset < 0} or



 174      * for any vector lane index {@code N} where the mask at lane {@code N}
 175      * is set
 176      * {@code offset >= a.length - (N * species.elementSize() / Byte.SIZE)}
 177      */
 178     @ForceInline
 179     public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int offset, VectorMask<Byte> m) {
 180         return zero(species).blend(fromByteArray(species, a, offset), m);
 181     }
 182 
 183     /**
 184      * Loads a vector from an array starting at offset.
 185      * <p>
 186      * For each vector lane, where {@code N} is the vector lane index, the
 187      * array element at index {@code offset + N} is placed into the
 188      * resulting vector at lane index {@code N}.
 189      *
 190      * @param species species of desired vector
 191      * @param a the array
 192      * @param offset the offset into the array
 193      * @return the vector loaded from an array
 194      * @throws IndexOutOfBoundsException if {@code offset < 0}, or
 195      * {@code offset > a.length - species.length()}
 196      */
 197     @ForceInline
 198     @SuppressWarnings("unchecked")
 199     public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int offset){
 200         Objects.requireNonNull(a);
 201         offset = VectorIntrinsics.checkIndex(offset, a.length, species.length());
 202         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
 203                                      a, (((long) offset) << ARRAY_SHIFT) + Unsafe.ARRAY_BYTE_BASE_OFFSET,
 204                                      a, offset, species,
 205                                      (c, idx, s) -> ((ByteSpecies)s).op(n -> c[idx + n]));
 206     }
 207 
 208 
 209     /**
 210      * Loads a vector from an array starting at offset and using a mask.
 211      * <p>
 212      * For each vector lane, where {@code N} is the vector lane index,
 213      * if the mask lane at index {@code N} is set then the array element at
 214      * index {@code offset + N} is placed into the resulting vector at lane index
 215      * {@code N}, otherwise the default element value is placed into the
 216      * resulting vector at lane index {@code N}.
 217      *
 218      * @param species species of desired vector
 219      * @param a the array
 220      * @param offset the offset into the array
 221      * @param m the mask
 222      * @return the vector loaded from an array
 223      * @throws IndexOutOfBoundsException if {@code offset < 0}, or
 224      * for any vector lane index {@code N} where the mask at lane {@code N}
 225      * is set {@code offset > a.length - N}
 226      */
 227     @ForceInline
 228     public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int offset, VectorMask<Byte> m) {
 229         return zero(species).blend(fromArray(species, a, offset), m);
 230     }
 231 
 232     /**
 233      * Loads a vector from an array using indexes obtained from an index
 234      * map.
 235      * <p>
 236      * For each vector lane, where {@code N} is the vector lane index, the
 237      * array element at index {@code a_offset + indexMap[i_offset + N]} is placed into the
 238      * resulting vector at lane index {@code N}.
 239      *
 240      * @param species species of desired vector
 241      * @param a the array
 242      * @param a_offset the offset into the array, may be negative if relative
 243      * indexes in the index map compensate to produce a value within the
 244      * array bounds
 245      * @param indexMap the index map
 246      * @param i_offset the offset into the index map
 247      * @return the vector loaded from an array
 248      * @throws IndexOutOfBoundsException if {@code i_offset < 0}, or
 249      * {@code i_offset > indexMap.length - species.length()},
 250      * or for any vector lane index {@code N} the result of
 251      * {@code a_offset + indexMap[i_offset + N]} is {@code < 0} or {@code >= a.length}
 252      */
 253     public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int a_offset, int[] indexMap, int i_offset) {
 254         return ((ByteSpecies)species).op(n -> a[a_offset + indexMap[i_offset + n]]);
 255     }
 256     /**
 257      * Loads a vector from an array using indexes obtained from an index
 258      * map and using a mask.
 259      * <p>
 260      * For each vector lane, where {@code N} is the vector lane index,
 261      * if the mask lane at index {@code N} is set then the array element at
 262      * index {@code a_offset + indexMap[i_offset + N]} is placed into the resulting vector
 263      * at lane index {@code N}.
 264      *
 265      * @param species species of desired vector
 266      * @param a the array
 267      * @param a_offset the offset into the array, may be negative if relative
 268      * indexes in the index map compensate to produce a value within the
 269      * array bounds
 270      * @param m the mask
 271      * @param indexMap the index map
 272      * @param i_offset the offset into the index map
 273      * @return the vector loaded from an array
 274      * @throws IndexOutOfBoundsException if {@code i_offset < 0}, or
 275      * {@code i_offset > indexMap.length - species.length()},
 276      * or for any vector lane index {@code N} where the mask at lane
 277      * {@code N} is set the result of {@code a_offset + indexMap[i_offset + N]} is
 278      * {@code < 0} or {@code >= a.length}
 279      */
 280     public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int a_offset, VectorMask<Byte> m, int[] indexMap, int i_offset) {
 281         return ((ByteSpecies)species).op(m, n -> a[a_offset + indexMap[i_offset + n]]);
 282     }
 283 
 284     /**
 285      * Loads a vector from a {@link ByteBuffer byte buffer} starting at an
 286      * offset into the byte buffer.
 287      * <p>
 288      * Bytes are composed into primitive lane elements according to the
 289      * native byte order of the underlying platform.
 290      * <p>
 291      * This method behaves as if it returns the result of calling the
 292      * byte buffer, offset, and mask accepting
 293      * {@link #fromByteBuffer(VectorSpecies, ByteBuffer, int, VectorMask)} method} as follows:
 294      * <pre>{@code
 295      *   return fromByteBuffer(b, offset, VectorMask.allTrue())
 296      * }</pre>
 297      *
 298      * @param species species of desired vector
 299      * @param bb the byte buffer
 300      * @param offset the offset into the byte buffer
 301      * @return a vector loaded from a byte buffer
 302      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
 303      * or {@code > b.limit()},
 304      * or if there are fewer than
 305      * {@code species.length() * species.elementSize() / Byte.SIZE} bytes
 306      * remaining in the byte buffer from the given offset
 307      */
 308     @ForceInline
 309     @SuppressWarnings("unchecked")
 310     public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int offset) {
 311         if (bb.order() != ByteOrder.nativeOrder()) {
 312             throw new IllegalArgumentException();
 313         }
 314         offset = VectorIntrinsics.checkIndex(offset, bb.limit(), species.bitSize() / Byte.SIZE);
 315         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
 316                                      U.getReference(bb, BYTE_BUFFER_HB), U.getLong(bb, BUFFER_ADDRESS) + offset,
 317                                      bb, offset, species,
 318                                      (c, idx, s) -> {
 319                                          ByteBuffer bbc = c.duplicate().position(idx).order(ByteOrder.nativeOrder());
 320                                          ByteBuffer tb = bbc;
 321                                          return ((ByteSpecies)s).op(i -> tb.get());
 322                                      });
 323     }
 324 
 325     /**
 326      * Loads a vector from a {@link ByteBuffer byte buffer} starting at an
 327      * offset into the byte buffer and using a mask.
 328      * <p>
 329      * This method behaves as if the byte buffer is viewed as a primitive
 330      * {@link java.nio.Buffer buffer} for the primitive element type,
 331      * according to the native byte order of the underlying platform, and
 332      * the returned vector is loaded with a mask from a primitive array
 333      * obtained from the primitive buffer.
 334      * The following pseudocode expresses the behaviour, where
 335      * {@code EBuffer} is the primitive buffer type, {@code e} is the
 336      * primitive element type, and {@code ESpecies} is the primitive
 337      * species for {@code e}:
 338      * <pre>{@code
 339      * EBuffer eb = b.duplicate().
 340      *     order(ByteOrder.nativeOrder()).position(offset).
 341      *     asEBuffer();
 342      * e[] es = new e[species.length()];
 343      * for (int n = 0; n < t.length; n++) {
 344      *     if (m.isSet(n))
 345      *         es[n] = eb.get(n);
 346      * }
 347      * EVector r = EVector.fromArray(es, 0, m);
 348      * }</pre>
 349      *
 350      * @param species species of desired vector
 351      * @param bb the byte buffer
 352      * @param offset the offset into the byte buffer
 353      * @param m the mask
 354      * @return a vector loaded from a byte buffer
 355      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
 356      * or {@code > b.limit()},
 357      * for any vector lane index {@code N} where the mask at lane {@code N}
 358      * is set
 359      * {@code offset >= b.limit() - (N * species.elementSize() / Byte.SIZE)}
 360      */
 361     @ForceInline
 362     public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int offset, VectorMask<Byte> m) {
 363         return zero(species).blend(fromByteBuffer(species, bb, offset), m);
 364     }
 365 
 366     /**
 367      * Returns a vector where all lane elements are set to the primitive
 368      * value {@code e}.
 369      *
 370      * @param species species of the desired vector
 371      * @param e the value
 372      * @return a vector of vector where all lane elements are set to
 373      * the primitive value {@code e}
 374      */
 375     @ForceInline
 376     @SuppressWarnings("unchecked")
 377     public static ByteVector broadcast(VectorSpecies<Byte> species, byte e) {
 378         return VectorIntrinsics.broadcastCoerced(
 379             (Class<ByteVector>) species.boxType(), byte.class, species.length(),
 380             e, species,
 381             ((bits, sp) -> ((ByteSpecies)sp).op(i -> (byte)bits)));
 382     }
 383 
 384     /**
 385      * Returns a vector where each lane element is set to given
 386      * primitive values.
 387      * <p>
 388      * For each vector lane, where {@code N} is the vector lane index, the
 389      * the primitive value at index {@code N} is placed into the resulting
 390      * vector at lane index {@code N}.
 391      *
 392      * @param species species of the desired vector
 393      * @param es the given primitive values
 394      * @return a vector where each lane element is set to given primitive
 395      * values
 396      * @throws IndexOutOfBoundsException if {@code es.length < species.length()}
 397      */
 398     @ForceInline
 399     @SuppressWarnings("unchecked")
 400     public static ByteVector scalars(VectorSpecies<Byte> species, byte... es) {
 401         Objects.requireNonNull(es);
 402         int ix = VectorIntrinsics.checkIndex(0, es.length, species.length());
 403         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
 404                                      es, Unsafe.ARRAY_BYTE_BASE_OFFSET,
 405                                      es, ix, species,
 406                                      (c, idx, sp) -> ((ByteSpecies)sp).op(n -> c[idx + n]));
 407     }
 408 
 409     /**
 410      * Returns a vector where the first lane element is set to the primtive
 411      * value {@code e}, all other lane elements are set to the default
 412      * value.
 413      *
 414      * @param species species of the desired vector
 415      * @param e the value
 416      * @return a vector where the first lane element is set to the primitive
 417      * value {@code e}
 418      */
 419     @ForceInline
 420     public static final ByteVector single(VectorSpecies<Byte> species, byte e) {
 421         return zero(species).with(0, e);
 422     }
 423 
 424     /**
 425      * Returns a vector where each lane element is set to a randomly
 426      * generated primitive value.
 427      *
 428      * The semantics are equivalent to calling
 429      * (byte){@link ThreadLocalRandom#nextInt()}
 430      *
 431      * @param species species of the desired vector
 432      * @return a vector where each lane elements is set to a randomly
 433      * generated primitive value
 434      */
 435     public static ByteVector random(VectorSpecies<Byte> species) {
 436         ThreadLocalRandom r = ThreadLocalRandom.current();
 437         return ((ByteSpecies)species).op(i -> (byte) r.nextInt());
 438     }
 439 
 440     // Ops
 441 
 442     @Override
 443     public abstract ByteVector add(Vector<Byte> v);
 444 
 445     /**
 446      * Adds this vector to the broadcast of an input scalar.
 447      * <p>
 448      * This is a lane-wise binary operation which applies the primitive addition operation
 449      * ({@code +}) to each lane.
 450      *
 451      * @param s the input scalar
 452      * @return the result of adding this vector to the broadcast of an input
 453      * scalar
 454      */
 455     public abstract ByteVector add(byte s);
 456 
 457     @Override
 458     public abstract ByteVector add(Vector<Byte> v, VectorMask<Byte> m);
 459 
 460     /**
 461      * Adds this vector to broadcast of an input scalar,
 462      * selecting lane elements controlled by a mask.
 463      * <p>
 464      * This is a lane-wise binary operation which applies the primitive addition operation
 465      * ({@code +}) to each lane.
 466      *
 467      * @param s the input scalar
 468      * @param m the mask controlling lane selection
 469      * @return the result of adding this vector to the broadcast of an input
 470      * scalar
 471      */
 472     public abstract ByteVector add(byte s, VectorMask<Byte> m);
 473 
 474     @Override
 475     public abstract ByteVector sub(Vector<Byte> v);
 476 
 477     /**
 478      * Subtracts the broadcast of an input scalar from this vector.
 479      * <p>
 480      * This is a lane-wise binary operation which applies the primitive subtraction
 481      * operation ({@code -}) to each lane.
 482      *
 483      * @param s the input scalar
 484      * @return the result of subtracting the broadcast of an input
 485      * scalar from this vector
 486      */
 487     public abstract ByteVector sub(byte s);
 488 
 489     @Override
 490     public abstract ByteVector sub(Vector<Byte> v, VectorMask<Byte> m);
 491 
 492     /**
 493      * Subtracts the broadcast of an input scalar from this vector, selecting
 494      * lane elements controlled by a mask.
 495      * <p>
 496      * This is a lane-wise binary operation which applies the primitive subtraction
 497      * operation ({@code -}) to each lane.
 498      *
 499      * @param s the input scalar
 500      * @param m the mask controlling lane selection
 501      * @return the result of subtracting the broadcast of an input
 502      * scalar from this vector
 503      */
 504     public abstract ByteVector sub(byte s, VectorMask<Byte> m);
 505 
 506     @Override
 507     public abstract ByteVector mul(Vector<Byte> v);
 508 
 509     /**
 510      * Multiplies this vector with the broadcast of an input scalar.
 511      * <p>
 512      * This is a lane-wise binary operation which applies the primitive multiplication
 513      * operation ({@code *}) to each lane.
 514      *
 515      * @param s the input scalar
 516      * @return the result of multiplying this vector with the broadcast of an
 517      * input scalar
 518      */
 519     public abstract ByteVector mul(byte s);
 520 
 521     @Override
 522     public abstract ByteVector mul(Vector<Byte> v, VectorMask<Byte> m);
 523 
 524     /**
 525      * Multiplies this vector with the broadcast of an input scalar, selecting
 526      * lane elements controlled by a mask.
 527      * <p>
 528      * This is a lane-wise binary operation which applies the primitive multiplication
 529      * operation ({@code *}) to each lane.
 530      *
 531      * @param s the input scalar
 532      * @param m the mask controlling lane selection
 533      * @return the result of multiplying this vector with the broadcast of an
 534      * input scalar
 535      */
 536     public abstract ByteVector mul(byte s, VectorMask<Byte> m);
 537 
 538     @Override
 539     public abstract ByteVector neg();
 540 
 541     @Override
 542     public abstract ByteVector neg(VectorMask<Byte> m);
 543 
 544     @Override
 545     public abstract ByteVector abs();
 546 
 547     @Override
 548     public abstract ByteVector abs(VectorMask<Byte> m);
 549 
 550     @Override
 551     public abstract ByteVector min(Vector<Byte> v);
 552 
 553     @Override
 554     public abstract ByteVector min(Vector<Byte> v, VectorMask<Byte> m);
 555 
 556     /**
 557      * Returns the minimum of this vector and the broadcast of an input scalar.
 558      * <p>
 559      * This is a lane-wise binary operation which applies the operation
 560      * {@code (a, b) -> Math.min(a, b)} to each lane.
 561      *
 562      * @param s the input scalar
 563      * @return the minimum of this vector and the broadcast of an input scalar
 564      */
 565     public abstract ByteVector min(byte s);
 566 
 567     @Override
 568     public abstract ByteVector max(Vector<Byte> v);
 569 
 570     @Override
 571     public abstract ByteVector max(Vector<Byte> v, VectorMask<Byte> m);
 572 
 573     /**
 574      * Returns the maximum of this vector and the broadcast of an input scalar.
 575      * <p>
 576      * This is a lane-wise binary operation which applies the operation
 577      * {@code (a, b) -> Math.max(a, b)} to each lane.
 578      *
 579      * @param s the input scalar
 580      * @return the maximum of this vector and the broadcast of an input scalar
 581      */
 582     public abstract ByteVector max(byte s);
 583 
 584     @Override
 585     public abstract VectorMask<Byte> equal(Vector<Byte> v);
 586 
 587     /**
 588      * Tests if this vector is equal to the broadcast of an input scalar.
 589      * <p>
 590      * This is a lane-wise binary test operation which applies the primitive equals
 591      * operation ({@code ==}) each lane.
 592      *
 593      * @param s the input scalar
 594      * @return the result mask of testing if this vector is equal to the
 595      * broadcast of an input scalar
 596      */
 597     public abstract VectorMask<Byte> equal(byte s);
 598 
 599     @Override
 600     public abstract VectorMask<Byte> notEqual(Vector<Byte> v);
 601 
 602     /**
 603      * Tests if this vector is not equal to the broadcast of an input scalar.
 604      * <p>
 605      * This is a lane-wise binary test operation which applies the primitive not equals
 606      * operation ({@code !=}) to each lane.
 607      *
 608      * @param s the input scalar
 609      * @return the result mask of testing if this vector is not equal to the
 610      * broadcast of an input scalar
 611      */
 612     public abstract VectorMask<Byte> notEqual(byte s);
 613 
 614     @Override
 615     public abstract VectorMask<Byte> lessThan(Vector<Byte> v);
 616 
 617     /**
 618      * Tests if this vector is less than the broadcast of an input scalar.
 619      * <p>
 620      * This is a lane-wise binary test operation which applies the primitive less than
 621      * operation ({@code <}) to each lane.
 622      *
 623      * @param s the input scalar
 624      * @return the mask result of testing if this vector is less than the
 625      * broadcast of an input scalar
 626      */
 627     public abstract VectorMask<Byte> lessThan(byte s);
 628 
 629     @Override
 630     public abstract VectorMask<Byte> lessThanEq(Vector<Byte> v);
 631 
 632     /**
 633      * Tests if this vector is less or equal to the broadcast of an input scalar.
 634      * <p>
 635      * This is a lane-wise binary test operation which applies the primitive less than
 636      * or equal to operation ({@code <=}) to each lane.
 637      *
 638      * @param s the input scalar
 639      * @return the mask result of testing if this vector is less than or equal
 640      * to the broadcast of an input scalar
 641      */
 642     public abstract VectorMask<Byte> lessThanEq(byte s);
 643 
 644     @Override
 645     public abstract VectorMask<Byte> greaterThan(Vector<Byte> v);
 646 
 647     /**
 648      * Tests if this vector is greater than the broadcast of an input scalar.
 649      * <p>
 650      * This is a lane-wise binary test operation which applies the primitive greater than
 651      * operation ({@code >}) to each lane.
 652      *
 653      * @param s the input scalar
 654      * @return the mask result of testing if this vector is greater than the
 655      * broadcast of an input scalar
 656      */
 657     public abstract VectorMask<Byte> greaterThan(byte s);
 658 
 659     @Override
 660     public abstract VectorMask<Byte> greaterThanEq(Vector<Byte> v);
 661 
 662     /**
 663      * Tests if this vector is greater than or equal to the broadcast of an
 664      * input scalar.
 665      * <p>
 666      * This is a lane-wise binary test operation which applies the primitive greater than
 667      * or equal to operation ({@code >=}) to each lane.
 668      *
 669      * @param s the input scalar
 670      * @return the mask result of testing if this vector is greater than or
 671      * equal to the broadcast of an input scalar
 672      */
 673     public abstract VectorMask<Byte> greaterThanEq(byte s);
 674 
 675     @Override
 676     public abstract ByteVector blend(Vector<Byte> v, VectorMask<Byte> m);
 677 
 678     /**
 679      * Blends the lane elements of this vector with those of the broadcast of an
 680      * input scalar, selecting lanes controlled by a mask.
 681      * <p>
 682      * For each lane of the mask, at lane index {@code N}, if the mask lane
 683      * is set then the lane element at {@code N} from the input vector is
 684      * selected and placed into the resulting vector at {@code N},
 685      * otherwise the the lane element at {@code N} from this input vector is
 686      * selected and placed into the resulting vector at {@code N}.
 687      *


 702     @Override
 703     public abstract ByteVector reshape(VectorSpecies<Byte> s);
 704 
 705     @Override
 706     public abstract ByteVector rotateEL(int i);
 707 
 708     @Override
 709     public abstract ByteVector rotateER(int i);
 710 
 711     @Override
 712     public abstract ByteVector shiftEL(int i);
 713 
 714     @Override
 715     public abstract ByteVector shiftER(int i);
 716 
 717 
 718 
 719     /**
 720      * Bitwise ANDs this vector with an input vector.
 721      * <p>
 722      * This is a lane-wise binary operation which applies the primitive bitwise AND
 723      * operation ({@code &}) to each lane.
 724      *
 725      * @param v the input vector
 726      * @return the bitwise AND of this vector with the input vector
 727      */
 728     public abstract ByteVector and(Vector<Byte> v);
 729 
 730     /**
 731      * Bitwise ANDs this vector with the broadcast of an input scalar.
 732      * <p>
 733      * This is a lane-wise binary operation which applies the primitive bitwise AND
 734      * operation ({@code &}) to each lane.
 735      *
 736      * @param s the input scalar
 737      * @return the bitwise AND of this vector with the broadcast of an input
 738      * scalar
 739      */
 740     public abstract ByteVector and(byte s);
 741 
 742     /**
 743      * Bitwise ANDs this vector with an input vector, selecting lane elements
 744      * controlled by a mask.
 745      * <p>
 746      * This is a lane-wise binary operation which applies the primitive bitwise AND
 747      * operation ({@code &}) to each lane.
 748      *
 749      * @param v the input vector
 750      * @param m the mask controlling lane selection
 751      * @return the bitwise AND of this vector with the input vector
 752      */
 753     public abstract ByteVector and(Vector<Byte> v, VectorMask<Byte> m);
 754 
 755     /**
 756      * Bitwise ANDs this vector with the broadcast of an input scalar, selecting
 757      * lane elements controlled by a mask.
 758      * <p>
 759      * This is a lane-wise binary operation which applies the primitive bitwise AND
 760      * operation ({@code &}) to each lane.
 761      *
 762      * @param s the input scalar
 763      * @param m the mask controlling lane selection
 764      * @return the bitwise AND of this vector with the broadcast of an input
 765      * scalar
 766      */
 767     public abstract ByteVector and(byte s, VectorMask<Byte> m);
 768 
 769     /**
 770      * Bitwise ORs this vector with an input vector.
 771      * <p>
 772      * This is a lane-wise binary operation which applies the primitive bitwise OR
 773      * operation ({@code |}) to each lane.
 774      *
 775      * @param v the input vector
 776      * @return the bitwise OR of this vector with the input vector
 777      */
 778     public abstract ByteVector or(Vector<Byte> v);
 779 
 780     /**
 781      * Bitwise ORs this vector with the broadcast of an input scalar.
 782      * <p>
 783      * This is a lane-wise binary operation which applies the primitive bitwise OR
 784      * operation ({@code |}) to each lane.
 785      *
 786      * @param s the input scalar
 787      * @return the bitwise OR of this vector with the broadcast of an input
 788      * scalar
 789      */
 790     public abstract ByteVector or(byte s);
 791 
 792     /**
 793      * Bitwise ORs this vector with an input vector, selecting lane elements
 794      * controlled by a mask.
 795      * <p>
 796      * This is a lane-wise binary operation which applies the primitive bitwise OR
 797      * operation ({@code |}) to each lane.
 798      *
 799      * @param v the input vector
 800      * @param m the mask controlling lane selection
 801      * @return the bitwise OR of this vector with the input vector
 802      */
 803     public abstract ByteVector or(Vector<Byte> v, VectorMask<Byte> m);
 804 
 805     /**
 806      * Bitwise ORs this vector with the broadcast of an input scalar, selecting
 807      * lane elements controlled by a mask.
 808      * <p>
 809      * This is a lane-wise binary operation which applies the primitive bitwise OR
 810      * operation ({@code |}) to each lane.
 811      *
 812      * @param s the input scalar
 813      * @param m the mask controlling lane selection
 814      * @return the bitwise OR of this vector with the broadcast of an input
 815      * scalar
 816      */
 817     public abstract ByteVector or(byte s, VectorMask<Byte> m);
 818 
 819     /**
 820      * Bitwise XORs this vector with an input vector.
 821      * <p>
 822      * This is a lane-wise binary operation which applies the primitive bitwise XOR
 823      * operation ({@code ^}) to each lane.
 824      *
 825      * @param v the input vector
 826      * @return the bitwise XOR of this vector with the input vector
 827      */
 828     public abstract ByteVector xor(Vector<Byte> v);
 829 
 830     /**
 831      * Bitwise XORs this vector with the broadcast of an input scalar.
 832      * <p>
 833      * This is a lane-wise binary operation which applies the primitive bitwise XOR
 834      * operation ({@code ^}) to each lane.
 835      *
 836      * @param s the input scalar
 837      * @return the bitwise XOR of this vector with the broadcast of an input
 838      * scalar
 839      */
 840     public abstract ByteVector xor(byte s);
 841 
 842     /**
 843      * Bitwise XORs this vector with an input vector, selecting lane elements
 844      * controlled by a mask.
 845      * <p>
 846      * This is a lane-wise binary operation which applies the primitive bitwise XOR
 847      * operation ({@code ^}) to each lane.
 848      *
 849      * @param v the input vector
 850      * @param m the mask controlling lane selection
 851      * @return the bitwise XOR of this vector with the input vector
 852      */
 853     public abstract ByteVector xor(Vector<Byte> v, VectorMask<Byte> m);
 854 
 855     /**
 856      * Bitwise XORs this vector with the broadcast of an input scalar, selecting
 857      * lane elements controlled by a mask.
 858      * <p>
 859      * This is a lane-wise binary operation which applies the primitive bitwise XOR
 860      * operation ({@code ^}) to each lane.
 861      *
 862      * @param s the input scalar
 863      * @param m the mask controlling lane selection
 864      * @return the bitwise XOR of this vector with the broadcast of an input
 865      * scalar
 866      */
 867     public abstract ByteVector xor(byte s, VectorMask<Byte> m);
 868 
 869     /**
 870      * Bitwise NOTs this vector.
 871      * <p>
 872      * This is a lane-wise unary operation which applies the primitive bitwise NOT
 873      * operation ({@code ~}) to each lane.
 874      *
 875      * @return the bitwise NOT of this vector
 876      */
 877     public abstract ByteVector not();
 878 
 879     /**
 880      * Bitwise NOTs this vector, selecting lane elements controlled by a mask.
 881      * <p>
 882      * This is a lane-wise unary operation which applies the primitive bitwise NOT
 883      * operation ({@code ~}) to each lane.
 884      *
 885      * @param m the mask controlling lane selection
 886      * @return the bitwise NOT of this vector
 887      */
 888     public abstract ByteVector not(VectorMask<Byte> m);
 889 
 890     /**
 891      * Logically left shifts this vector by the broadcast of an input scalar.
 892      * <p>
 893      * This is a lane-wise binary operation which applies the primitive logical left shift
 894      * operation ({@code <<}) to each lane to left shift the
 895      * element by shift value as specified by the input scalar. Only the 3
 896      * lowest-order bits of shift value are used. It is as if the shift value
 897      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 898      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 899      *
 900      * @param s the input scalar; the number of the bits to left shift
 901      * @return the result of logically left shifting left this vector by the
 902      * broadcast of an input scalar
 903      */
 904     public abstract ByteVector shiftL(int s);
 905 
 906     /**
 907      * Logically left shifts this vector by the broadcast of an input scalar,
 908      * selecting lane elements controlled by a mask.
 909      * <p>
 910      * This is a lane-wise binary operation which applies the primitive logical left shift
 911      * operation ({@code <<}) to each lane to left shift the
 912      * element by shift value as specified by the input scalar. Only the 3
 913      * lowest-order bits of shift value are used. It is as if the shift value
 914      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 915      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 916      *
 917      * @param s the input scalar; the number of the bits to left shift
 918      * @param m the mask controlling lane selection
 919      * @return the result of logically left shifting left this vector by the
 920      * broadcast of an input scalar
 921      */
 922     public abstract ByteVector shiftL(int s, VectorMask<Byte> m);
 923 
 924 
 925     // logical, or unsigned, shift right
 926 
 927      /**
 928      * Logically right shifts (or unsigned right shifts) this vector by the
 929      * broadcast of an input scalar.
 930      * <p>
 931      * This is a lane-wise binary operation which applies the primitive logical right shift
 932      * operation ({@code >>>}) to each lane to logically right shift the
 933      * element by shift value as specified by the input scalar. Only the 3
 934      * lowest-order bits of shift value are used. It is as if the shift value
 935      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 936      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 937      *
 938      * @param s the input scalar; the number of the bits to right shift
 939      * @return the result of logically right shifting this vector by the
 940      * broadcast of an input scalar
 941      */
 942     public abstract ByteVector shiftR(int s);
 943 
 944      /**
 945      * Logically right shifts (or unsigned right shifts) this vector by the
 946      * broadcast of an input scalar, selecting lane elements controlled by a
 947      * mask.
 948      * <p>
 949      * This is a lane-wise binary operation which applies the primitive logical right shift
 950      * operation ({@code >>}) to each lane to logically right shift the
 951      * element by shift value as specified by the input scalar. Only the 3
 952      * lowest-order bits of shift value are used. It is as if the shift value
 953      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 954      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 955      *
 956      * @param s the input scalar; the number of the bits to right shift
 957      * @param m the mask controlling lane selection
 958      * @return the result of logically right shifting this vector by the
 959      * broadcast of an input scalar
 960      */
 961     public abstract ByteVector shiftR(int s, VectorMask<Byte> m);
 962 
 963 
 964     /**
 965      * Arithmetically right shifts (or signed right shifts) this vector by the
 966      * broadcast of an input scalar.
 967      * <p>
 968      * This is a lane-wise binary operation which applies the primitive arithmetic right
 969      * shift operation ({@code >>}) to each lane to arithmetically
 970      * right shift the element by shift value as specified by the input scalar.
 971      * Only the 3 lowest-order bits of shift value are used. It is as if the shift
 972      * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 973      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 974      *
 975      * @param s the input scalar; the number of the bits to right shift
 976      * @return the result of arithmetically right shifting this vector by the
 977      * broadcast of an input scalar
 978      */
 979     public abstract ByteVector aShiftR(int s);
 980 
 981     /**
 982      * Arithmetically right shifts (or signed right shifts) this vector by the
 983      * broadcast of an input scalar, selecting lane elements controlled by a
 984      * mask.
 985      * <p>
 986      * This is a lane-wise binary operation which applies the primitive arithmetic right
 987      * shift operation ({@code >>}) to each lane to arithmetically
 988      * right shift the element by shift value as specified by the input scalar.
 989      * Only the 3 lowest-order bits of shift value are used. It is as if the shift
 990      * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
 991      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
 992      *
 993      * @param s the input scalar; the number of the bits to right shift
 994      * @param m the mask controlling lane selection
 995      * @return the result of arithmetically right shifting this vector by the
 996      * broadcast of an input scalar
 997      */
 998     public abstract ByteVector aShiftR(int s, VectorMask<Byte> m);
 999 
1000 
1001     @Override
1002     public abstract void intoByteArray(byte[] a, int ix);
1003 
1004     @Override
1005     public abstract void intoByteArray(byte[] a, int ix, VectorMask<Byte> m);
1006 
1007     @Override
1008     public abstract void intoByteBuffer(ByteBuffer bb, int ix);
1009 
1010     @Override
1011     public abstract void intoByteBuffer(ByteBuffer bb, int ix, VectorMask<Byte> m);
1012 
1013 
1014     // Type specific horizontal reductions
1015     /**
1016      * Adds all lane elements of this vector.
1017      * <p>
1018      * This is an associative cross-lane reduction operation which applies the addition
1019      * operation ({@code +}) to lane elements,
1020      * and the identity value is {@code 0}.
1021      *
1022      * @return the addition of all the lane elements of this vector
1023      */
1024     public abstract byte addAll();
1025 
1026     /**
1027      * Adds all lane elements of this vector, selecting lane elements
1028      * controlled by a mask.
1029      * <p>
1030      * This is an associative cross-lane reduction operation which applies the addition
1031      * operation ({@code +}) to lane elements,
1032      * and the identity value is {@code 0}.
1033      *
1034      * @param m the mask controlling lane selection
1035      * @return the addition of the selected lane elements of this vector
1036      */
1037     public abstract byte addAll(VectorMask<Byte> m);
1038 
1039     /**
1040      * Multiplies all lane elements of this vector.
1041      * <p>
1042      * This is an associative cross-lane reduction operation which applies the
1043      * multiplication operation ({@code *}) to lane elements,
1044      * and the identity value is {@code 1}.
1045      *
1046      * @return the multiplication of all the lane elements of this vector
1047      */
1048     public abstract byte mulAll();
1049 
1050     /**
1051      * Multiplies all lane elements of this vector, selecting lane elements
1052      * controlled by a mask.
1053      * <p>
1054      * This is an associative cross-lane reduction operation which applies the
1055      * multiplication operation ({@code *}) to lane elements,
1056      * and the identity value is {@code 1}.
1057      *
1058      * @param m the mask controlling lane selection
1059      * @return the multiplication of all the lane elements of this vector
1060      */
1061     public abstract byte mulAll(VectorMask<Byte> m);
1062 
1063     /**
1064      * Returns the minimum lane element of this vector.
1065      * <p>
1066      * This is an associative cross-lane reduction operation which applies the operation
1067      * {@code (a, b) -> Math.min(a, b)} to lane elements,
1068      * and the identity value is
1069      * {@link Byte#MAX_VALUE}.
1070      *
1071      * @return the minimum lane element of this vector
1072      */
1073     public abstract byte minAll();
1074 
1075     /**
1076      * Returns the minimum lane element of this vector, selecting lane elements
1077      * controlled by a mask.
1078      * <p>
1079      * This is an associative cross-lane reduction operation which applies the operation
1080      * {@code (a, b) -> Math.min(a, b)} to lane elements,
1081      * and the identity value is
1082      * {@link Byte#MAX_VALUE}.
1083      *
1084      * @param m the mask controlling lane selection
1085      * @return the minimum lane element of this vector
1086      */
1087     public abstract byte minAll(VectorMask<Byte> m);
1088 
1089     /**
1090      * Returns the maximum lane element of this vector.
1091      * <p>
1092      * This is an associative cross-lane reduction operation which applies the operation
1093      * {@code (a, b) -> Math.max(a, b)} to lane elements,
1094      * and the identity value is
1095      * {@link Byte#MIN_VALUE}.
1096      *
1097      * @return the maximum lane element of this vector
1098      */
1099     public abstract byte maxAll();
1100 
1101     /**
1102      * Returns the maximum lane element of this vector, selecting lane elements
1103      * controlled by a mask.
1104      * <p>
1105      * This is an associative cross-lane reduction operation which applies the operation
1106      * {@code (a, b) -> Math.max(a, b)} to lane elements,
1107      * and the identity value is
1108      * {@link Byte#MIN_VALUE}.
1109      *
1110      * @param m the mask controlling lane selection
1111      * @return the maximum lane element of this vector
1112      */
1113     public abstract byte maxAll(VectorMask<Byte> m);
1114 
1115     /**
1116      * Logically ORs all lane elements of this vector.
1117      * <p>
1118      * This is an associative cross-lane reduction operation which applies the logical OR
1119      * operation ({@code |}) to lane elements,
1120      * and the identity value is {@code 0}.
1121      *
1122      * @return the logical OR all the lane elements of this vector
1123      */
1124     public abstract byte orAll();
1125 
1126     /**
1127      * Logically ORs all lane elements of this vector, selecting lane elements
1128      * controlled by a mask.
1129      * <p>
1130      * This is an associative cross-lane reduction operation which applies the logical OR
1131      * operation ({@code |}) to lane elements,
1132      * and the identity value is {@code 0}.
1133      *
1134      * @param m the mask controlling lane selection
1135      * @return the logical OR all the lane elements of this vector
1136      */
1137     public abstract byte orAll(VectorMask<Byte> m);
1138 
1139     /**
1140      * Logically ANDs all lane elements of this vector.
1141      * <p>
1142      * This is an associative cross-lane reduction operation which applies the logical AND
1143      * operation ({@code |}) to lane elements,
1144      * and the identity value is {@code -1}.
1145      *
1146      * @return the logical AND all the lane elements of this vector
1147      */
1148     public abstract byte andAll();
1149 
1150     /**
1151      * Logically ANDs all lane elements of this vector, selecting lane elements
1152      * controlled by a mask.
1153      * <p>
1154      * This is an associative cross-lane reduction operation which applies the logical AND
1155      * operation ({@code |}) to lane elements,
1156      * and the identity value is {@code -1}.
1157      *
1158      * @param m the mask controlling lane selection
1159      * @return the logical AND all the lane elements of this vector
1160      */
1161     public abstract byte andAll(VectorMask<Byte> m);
1162 
1163     /**
1164      * Logically XORs all lane elements of this vector.
1165      * <p>
1166      * This is an associative cross-lane reduction operation which applies the logical XOR
1167      * operation ({@code ^}) to lane elements,
1168      * and the identity value is {@code 0}.
1169      *
1170      * @return the logical XOR all the lane elements of this vector
1171      */
1172     public abstract byte xorAll();
1173 
1174     /**
1175      * Logically XORs all lane elements of this vector, selecting lane elements
1176      * controlled by a mask.
1177      * <p>
1178      * This is an associative cross-lane reduction operation which applies the logical XOR
1179      * operation ({@code ^}) to lane elements,
1180      * and the identity value is {@code 0}.
1181      *
1182      * @param m the mask controlling lane selection
1183      * @return the logical XOR all the lane elements of this vector
1184      */
1185     public abstract byte xorAll(VectorMask<Byte> m);
1186 
1187     // Type specific accessors
1188 
1189     /**
1190      * Gets the lane element at lane index {@code i}
1191      *
1192      * @param i the lane index
1193      * @return the lane element at lane index {@code i}
1194      * @throws IllegalArgumentException if the index is is out of range
1195      * ({@code < 0 || >= length()})
1196      */
1197     public abstract byte lane(int i);
1198 
1199     /**
1200      * Replaces the lane element of this vector at lane index {@code i} with
1201      * value {@code e}.
1202      * <p>
1203      * This is a cross-lane operation and behaves as if it returns the result
1204      * of blending this vector with an input vector that is the result of
1205      * broadcasting {@code e} and a mask that has only one lane set at lane
1206      * index {@code i}.
1207      *
1208      * @param i the lane index of the lane element to be replaced
1209      * @param e the value to be placed
1210      * @return the result of replacing the lane element of this vector at lane
1211      * index {@code i} with value {@code e}.
1212      * @throws IllegalArgumentException if the index is is out of range
1213      * ({@code < 0 || >= length()})
1214      */
1215     public abstract ByteVector with(int i, byte e);
1216 
1217     // Type specific extractors


1224      * <pre>{@code
1225      *   byte[] a = new byte[this.length()];
1226      *   this.intoArray(a, 0);
1227      *   return a;
1228      * }</pre>
1229      *
1230      * @return an array containing the the lane elements of this vector
1231      */
1232     @ForceInline
1233     public final byte[] toArray() {
1234         byte[] a = new byte[species().length()];
1235         intoArray(a, 0);
1236         return a;
1237     }
1238 
1239     /**
1240      * Stores this vector into an array starting at offset.
1241      * <p>
1242      * For each vector lane, where {@code N} is the vector lane index,
1243      * the lane element at index {@code N} is stored into the array at index
1244      * {@code offset + N}.
1245      *
1246      * @param a the array
1247      * @param offset the offset into the array
1248      * @throws IndexOutOfBoundsException if {@code offset < 0}, or
1249      * {@code offset > a.length - this.length()}
1250      */
1251     public abstract void intoArray(byte[] a, int offset);
1252 
1253     /**
1254      * Stores this vector into an array starting at offset and using a mask.
1255      * <p>
1256      * For each vector lane, where {@code N} is the vector lane index,
1257      * if the mask lane at index {@code N} is set then the lane element at
1258      * index {@code N} is stored into the array index {@code offset + N}.
1259      *
1260      * @param a the array
1261      * @param offset the offset into the array
1262      * @param m the mask
1263      * @throws IndexOutOfBoundsException if {@code offset < 0}, or
1264      * for any vector lane index {@code N} where the mask at lane {@code N}
1265      * is set {@code offset >= a.length - N}
1266      */
1267     public abstract void intoArray(byte[] a, int offset, VectorMask<Byte> m);
1268 
1269     /**
1270      * Stores this vector into an array using indexes obtained from an index
1271      * map.
1272      * <p>
1273      * For each vector lane, where {@code N} is the vector lane index, the
1274      * lane element at index {@code N} is stored into the array at index
1275      * {@code a_offset + indexMap[i_offset + N]}.
1276      *
1277      * @param a the array
1278      * @param a_offset the offset into the array, may be negative if relative
1279      * indexes in the index map compensate to produce a value within the
1280      * array bounds
1281      * @param indexMap the index map
1282      * @param i_offset the offset into the index map
1283      * @throws IndexOutOfBoundsException if {@code i_offset < 0}, or
1284      * {@code i_offset > indexMap.length - this.length()},
1285      * or for any vector lane index {@code N} the result of
1286      * {@code a_offset + indexMap[i_offset + N]} is {@code < 0} or {@code >= a.length}
1287      */
1288     public void intoArray(byte[] a, int a_offset, int[] indexMap, int i_offset) {
1289         forEach((n, e) -> a[a_offset + indexMap[i_offset + n]] = e);
1290     }
1291 
1292     /**
1293      * Stores this vector into an array using indexes obtained from an index
1294      * map and using a mask.
1295      * <p>
1296      * For each vector lane, where {@code N} is the vector lane index,
1297      * if the mask lane at index {@code N} is set then the lane element at
1298      * index {@code N} is stored into the array at index
1299      * {@code a_offset + indexMap[i_offset + N]}.
1300      *
1301      * @param a the array
1302      * @param a_offset the offset into the array, may be negative if relative
1303      * indexes in the index map compensate to produce a value within the
1304      * array bounds
1305      * @param m the mask
1306      * @param indexMap the index map
1307      * @param i_offset the offset into the index map
1308      * @throws IndexOutOfBoundsException if {@code j < 0}, or
1309      * {@code i_offset > indexMap.length - this.length()},
1310      * or for any vector lane index {@code N} where the mask at lane
1311      * {@code N} is set the result of {@code a_offset + indexMap[i_offset + N]} is
1312      * {@code < 0} or {@code >= a.length}
1313      */
1314     public void intoArray(byte[] a, int a_offset, VectorMask<Byte> m, int[] indexMap, int i_offset) {
1315         forEach(m, (n, e) -> a[a_offset + indexMap[i_offset + n]] = e);
1316     }
1317     // Species
1318 
1319     @Override
1320     public abstract VectorSpecies<Byte> species();
1321 
1322     /**
1323      * Class representing {@link ByteVector}'s of the same {@link VectorShape VectorShape}.
1324      */
1325     static final class ByteSpecies extends AbstractSpecies<Byte> {
1326         final Function<byte[], ByteVector> vectorFactory;
1327 
1328         private ByteSpecies(VectorShape shape,
1329                           Class<?> boxType,
1330                           Class<?> maskType,
1331                           Function<byte[], ByteVector> vectorFactory,
1332                           Function<boolean[], VectorMask<Byte>> maskFactory,
1333                           Function<IntUnaryOperator, VectorShuffle<Byte>> shuffleFromArrayFactory,
1334                           fShuffleFromArray<Byte> shuffleFromOpFactory) {
1335             super(shape, byte.class, Byte.SIZE, boxType, maskType, maskFactory,


< prev index next >