1 /*
   2  * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have
  23  * questions.
  24  */
  25 package jdk.incubator.vector;
  26 
  27 import java.nio.ByteBuffer;
  28 import java.nio.FloatBuffer;
  29 import java.nio.ByteOrder;
  30 import java.util.Objects;
  31 import java.util.function.IntUnaryOperator;
  32 import java.util.function.Function;
  33 import java.util.concurrent.ThreadLocalRandom;
  34 
  35 import jdk.internal.misc.Unsafe;
  36 import jdk.internal.vm.annotation.ForceInline;
  37 import static jdk.incubator.vector.VectorIntrinsics.*;
  38 
  39 
  40 /**
  41  * A specialized {@link Vector} representing an ordered immutable sequence of
  42  * {@code float} values.
  43  */
  44 @SuppressWarnings("cast")
  45 public abstract class FloatVector extends Vector<Float> {
  46 
  47     FloatVector() {}
  48 
  49     private static final int ARRAY_SHIFT = 31 - Integer.numberOfLeadingZeros(Unsafe.ARRAY_FLOAT_INDEX_SCALE);
  50 
  51     // Unary operator
  52 
  53     interface FUnOp {
  54         float apply(int i, float a);
  55     }
  56 
  57     abstract FloatVector uOp(FUnOp f);
  58 
  59     abstract FloatVector uOp(VectorMask<Float> m, FUnOp f);
  60 
  61     // Binary operator
  62 
  63     interface FBinOp {
  64         float apply(int i, float a, float b);
  65     }
  66 
  67     abstract FloatVector bOp(Vector<Float> v, FBinOp f);
  68 
  69     abstract FloatVector bOp(Vector<Float> v, VectorMask<Float> m, FBinOp f);
  70 
  71     // Trinary operator
  72 
  73     interface FTriOp {
  74         float apply(int i, float a, float b, float c);
  75     }
  76 
  77     abstract FloatVector tOp(Vector<Float> v1, Vector<Float> v2, FTriOp f);
  78 
  79     abstract FloatVector tOp(Vector<Float> v1, Vector<Float> v2, VectorMask<Float> m, FTriOp f);
  80 
  81     // Reduction operator
  82 
  83     abstract float rOp(float v, FBinOp f);
  84 
  85     // Binary test
  86 
  87     interface FBinTest {
  88         boolean apply(int i, float a, float b);
  89     }
  90 
  91     abstract VectorMask<Float> bTest(Vector<Float> v, FBinTest f);
  92 
  93     // Foreach
  94 
  95     interface FUnCon {
  96         void apply(int i, float a);
  97     }
  98 
  99     abstract void forEach(FUnCon f);
 100 
 101     abstract void forEach(VectorMask<Float> m, FUnCon f);
 102 
 103     // Static factories
 104 
 105     /**
 106      * Returns a vector where all lane elements are set to the default
 107      * primitive value.
 108      *
 109      * @param species species of desired vector
 110      * @return a zero vector of given species
 111      */
 112     @ForceInline
 113     @SuppressWarnings("unchecked")
 114     public static FloatVector zero(VectorSpecies<Float> species) {
 115         return VectorIntrinsics.broadcastCoerced((Class<FloatVector>) species.boxType(), float.class, species.length(),
 116                                                  Float.floatToIntBits(0.0f), species,
 117                                                  ((bits, s) -> ((FloatSpecies)s).op(i -> Float.intBitsToFloat((int)bits))));
 118     }
 119 
 120     /**
 121      * Loads a vector from a byte array starting at an offset.
 122      * <p>
 123      * Bytes are composed into primitive lane elements according to the
 124      * native byte order of the underlying platform
 125      * <p>
 126      * This method behaves as if it returns the result of calling the
 127      * byte buffer, offset, and mask accepting
 128      * {@link #fromByteBuffer(VectorSpecies<Float>, ByteBuffer, int, VectorMask) method} as follows:
 129      * <pre>{@code
 130      * return this.fromByteBuffer(ByteBuffer.wrap(a), i, this.maskAllTrue());
 131      * }</pre>
 132      *
 133      * @param species species of desired vector
 134      * @param a the byte array
 135      * @param ix the offset into the array
 136      * @return a vector loaded from a byte array
 137      * @throws IndexOutOfBoundsException if {@code i < 0} or
 138      * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)}
 139      */
 140     @ForceInline
 141     @SuppressWarnings("unchecked")
 142     public static FloatVector fromByteArray(VectorSpecies<Float> species, byte[] a, int ix) {
 143         Objects.requireNonNull(a);
 144         ix = VectorIntrinsics.checkIndex(ix, a.length, species.bitSize() / Byte.SIZE);
 145         return VectorIntrinsics.load((Class<FloatVector>) species.boxType(), float.class, species.length(),
 146                                      a, ((long) ix) + Unsafe.ARRAY_BYTE_BASE_OFFSET,
 147                                      a, ix, species,
 148                                      (c, idx, s) -> {
 149                                          ByteBuffer bbc = ByteBuffer.wrap(c, idx, a.length - idx).order(ByteOrder.nativeOrder());
 150                                          FloatBuffer tb = bbc.asFloatBuffer();
 151                                          return ((FloatSpecies)s).op(i -> tb.get());
 152                                      });
 153     }
 154 
 155     /**
 156      * Loads a vector from a byte array starting at an offset and using a
 157      * mask.
 158      * <p>
 159      * Bytes are composed into primitive lane elements according to the
 160      * native byte order of the underlying platform.
 161      * <p>
 162      * This method behaves as if it returns the result of calling the
 163      * byte buffer, offset, and mask accepting
 164      * {@link #fromByteBuffer(VectorSpecies<Float>, ByteBuffer, int, VectorMask) method} as follows:
 165      * <pre>{@code
 166      * return this.fromByteBuffer(ByteBuffer.wrap(a), i, m);
 167      * }</pre>
 168      *
 169      * @param species species of desired vector
 170      * @param a the byte array
 171      * @param ix the offset into the array
 172      * @param m the mask
 173      * @return a vector loaded from a byte array
 174      * @throws IndexOutOfBoundsException if {@code i < 0} or
 175      * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)}
 176      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
 177      * or {@code > a.length},
 178      * for any vector lane index {@code N} where the mask at lane {@code N}
 179      * is set
 180      * {@code i >= a.length - (N * this.elementSize() / Byte.SIZE)}
 181      */
 182     @ForceInline
 183     public static FloatVector fromByteArray(VectorSpecies<Float> species, byte[] a, int ix, VectorMask<Float> m) {
 184         return zero(species).blend(fromByteArray(species, a, ix), m);
 185     }
 186 
 187     /**
 188      * Loads a vector from an array starting at offset.
 189      * <p>
 190      * For each vector lane, where {@code N} is the vector lane index, the
 191      * array element at index {@code i + N} is placed into the
 192      * resulting vector at lane index {@code N}.
 193      *
 194      * @param species species of desired vector
 195      * @param a the array
 196      * @param i the offset into the array
 197      * @return the vector loaded from an array
 198      * @throws IndexOutOfBoundsException if {@code i < 0}, or
 199      * {@code i > a.length - this.length()}
 200      */
 201     @ForceInline
 202     @SuppressWarnings("unchecked")
 203     public static FloatVector fromArray(VectorSpecies<Float> species, float[] a, int i){
 204         Objects.requireNonNull(a);
 205         i = VectorIntrinsics.checkIndex(i, a.length, species.length());
 206         return VectorIntrinsics.load((Class<FloatVector>) species.boxType(), float.class, species.length(),
 207                                      a, (((long) i) << ARRAY_SHIFT) + Unsafe.ARRAY_FLOAT_BASE_OFFSET,
 208                                      a, i, species,
 209                                      (c, idx, s) -> ((FloatSpecies)s).op(n -> c[idx + n]));
 210     }
 211 
 212 
 213     /**
 214      * Loads a vector from an array starting at offset and using a mask.
 215      * <p>
 216      * For each vector lane, where {@code N} is the vector lane index,
 217      * if the mask lane at index {@code N} is set then the array element at
 218      * index {@code i + N} is placed into the resulting vector at lane index
 219      * {@code N}, otherwise the default element value is placed into the
 220      * resulting vector at lane index {@code N}.
 221      *
 222      * @param species species of desired vector
 223      * @param a the array
 224      * @param i the offset into the array
 225      * @param m the mask
 226      * @return the vector loaded from an array
 227      * @throws IndexOutOfBoundsException if {@code i < 0}, or
 228      * for any vector lane index {@code N} where the mask at lane {@code N}
 229      * is set {@code i > a.length - N}
 230      */
 231     @ForceInline
 232     public static FloatVector fromArray(VectorSpecies<Float> species, float[] a, int i, VectorMask<Float> m) {
 233         return zero(species).blend(fromArray(species, a, i), m);
 234     }
 235 
 236     /**
 237      * Loads a vector from an array using indexes obtained from an index
 238      * map.
 239      * <p>
 240      * For each vector lane, where {@code N} is the vector lane index, the
 241      * array element at index {@code i + indexMap[j + N]} is placed into the
 242      * resulting vector at lane index {@code N}.
 243      *
 244      * @param species species of desired vector
 245      * @param a the array
 246      * @param i the offset into the array, may be negative if relative
 247      * indexes in the index map compensate to produce a value within the
 248      * array bounds
 249      * @param indexMap the index map
 250      * @param j the offset into the index map
 251      * @return the vector loaded from an array
 252      * @throws IndexOutOfBoundsException if {@code j < 0}, or
 253      * {@code j > indexMap.length - this.length()},
 254      * or for any vector lane index {@code N} the result of
 255      * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length}
 256      */
 257     @ForceInline
 258     @SuppressWarnings("unchecked")
 259     public static FloatVector fromArray(VectorSpecies<Float> species, float[] a, int i, int[] indexMap, int j) {
 260         Objects.requireNonNull(a);
 261         Objects.requireNonNull(indexMap);
 262 
 263 
 264         // Index vector: vix[0:n] = k -> i + indexMap[j + k]
 265         IntVector vix = IntVector.fromArray(IntVector.species(species.indexShape()), indexMap, j).add(i);
 266 
 267         vix = VectorIntrinsics.checkIndex(vix, a.length);
 268 
 269         return VectorIntrinsics.loadWithMap((Class<FloatVector>) species.boxType(), float.class, species.length(),
 270                                             IntVector.species(species.indexShape()).boxType(), a, Unsafe.ARRAY_FLOAT_BASE_OFFSET, vix,
 271                                             a, i, indexMap, j, species,
 272                                             (float[] c, int idx, int[] iMap, int idy, VectorSpecies<Float> s) ->
 273                                                 ((FloatSpecies)s).op(n -> c[idx + iMap[idy+n]]));
 274         }
 275 
 276     /**
 277      * Loads a vector from an array using indexes obtained from an index
 278      * map and using a mask.
 279      * <p>
 280      * For each vector lane, where {@code N} is the vector lane index,
 281      * if the mask lane at index {@code N} is set then the array element at
 282      * index {@code i + indexMap[j + N]} is placed into the resulting vector
 283      * at lane index {@code N}.
 284      *
 285      * @param species species of desired vector
 286      * @param a the array
 287      * @param i the offset into the array, may be negative if relative
 288      * indexes in the index map compensate to produce a value within the
 289      * array bounds
 290      * @param m the mask
 291      * @param indexMap the index map
 292      * @param j the offset into the index map
 293      * @return the vector loaded from an array
 294      * @throws IndexOutOfBoundsException if {@code j < 0}, or
 295      * {@code j > indexMap.length - this.length()},
 296      * or for any vector lane index {@code N} where the mask at lane
 297      * {@code N} is set the result of {@code i + indexMap[j + N]} is
 298      * {@code < 0} or {@code >= a.length}
 299      */
 300     @ForceInline
 301     @SuppressWarnings("unchecked")
 302     public static FloatVector fromArray(VectorSpecies<Float> species, float[] a, int i, VectorMask<Float> m, int[] indexMap, int j) {
 303         // @@@ This can result in out of bounds errors for unset mask lanes
 304         return zero(species).blend(fromArray(species, a, i, indexMap, j), m);
 305     }
 306 
 307 
 308     /**
 309      * Loads a vector from a {@link ByteBuffer byte buffer} starting at an
 310      * offset into the byte buffer.
 311      * <p>
 312      * Bytes are composed into primitive lane elements according to the
 313      * native byte order of the underlying platform.
 314      * <p>
 315      * This method behaves as if it returns the result of calling the
 316      * byte buffer, offset, and mask accepting
 317      * {@link #fromByteBuffer(VectorSpecies<Float>, ByteBuffer, int, VectorMask)} method} as follows:
 318      * <pre>{@code
 319      *   return this.fromByteBuffer(b, i, this.maskAllTrue())
 320      * }</pre>
 321      *
 322      * @param species species of desired vector
 323      * @param bb the byte buffer
 324      * @param ix the offset into the byte buffer
 325      * @return a vector loaded from a byte buffer
 326      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
 327      * or {@code > b.limit()},
 328      * or if there are fewer than
 329      * {@code this.length() * this.elementSize() / Byte.SIZE} bytes
 330      * remaining in the byte buffer from the given offset
 331      */
 332     @ForceInline
 333     @SuppressWarnings("unchecked")
 334     public static FloatVector fromByteBuffer(VectorSpecies<Float> species, ByteBuffer bb, int ix) {
 335         if (bb.order() != ByteOrder.nativeOrder()) {
 336             throw new IllegalArgumentException();
 337         }
 338         ix = VectorIntrinsics.checkIndex(ix, bb.limit(), species.bitSize() / Byte.SIZE);
 339         return VectorIntrinsics.load((Class<FloatVector>) species.boxType(), float.class, species.length(),
 340                                      U.getReference(bb, BYTE_BUFFER_HB), U.getLong(bb, BUFFER_ADDRESS) + ix,
 341                                      bb, ix, species,
 342                                      (c, idx, s) -> {
 343                                          ByteBuffer bbc = c.duplicate().position(idx).order(ByteOrder.nativeOrder());
 344                                          FloatBuffer tb = bbc.asFloatBuffer();
 345                                          return ((FloatSpecies)s).op(i -> tb.get());
 346                                      });
 347     }
 348 
 349     /**
 350      * Loads a vector from a {@link ByteBuffer byte buffer} starting at an
 351      * offset into the byte buffer and using a mask.
 352      * <p>
 353      * This method behaves as if the byte buffer is viewed as a primitive
 354      * {@link java.nio.Buffer buffer} for the primitive element type,
 355      * according to the native byte order of the underlying platform, and
 356      * the returned vector is loaded with a mask from a primitive array
 357      * obtained from the primitive buffer.
 358      * The following pseudocode expresses the behaviour, where
 359      * {@coce EBuffer} is the primitive buffer type, {@code e} is the
 360      * primitive element type, and {@code ESpecies<S>} is the primitive
 361      * species for {@code e}:
 362      * <pre>{@code
 363      * EBuffer eb = b.duplicate().
 364      *     order(ByteOrder.nativeOrder()).position(i).
 365      *     asEBuffer();
 366      * e[] es = new e[this.length()];
 367      * for (int n = 0; n < t.length; n++) {
 368      *     if (m.isSet(n))
 369      *         es[n] = eb.get(n);
 370      * }
 371      * Vector<E> r = ((ESpecies<S>)this).fromArray(es, 0, m);
 372      * }</pre>
 373      *
 374      * @param species species of desired vector
 375      * @param bb the byte buffer
 376      * @param ix the offset into the byte buffer
 377      * @param m the mask
 378      * @return a vector loaded from a byte buffer
 379      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
 380      * or {@code > b.limit()},
 381      * for any vector lane index {@code N} where the mask at lane {@code N}
 382      * is set
 383      * {@code i >= b.limit() - (N * this.elementSize() / Byte.SIZE)}
 384      */
 385     @ForceInline
 386     public static FloatVector fromByteBuffer(VectorSpecies<Float> species, ByteBuffer bb, int ix, VectorMask<Float> m) {
 387         return zero(species).blend(fromByteBuffer(species, bb, ix), m);
 388     }
 389 
 390     /**
 391      * Returns a vector where all lane elements are set to the primitive
 392      * value {@code e}.
 393      *
 394      * @param s species of the desired vector
 395      * @param e the value
 396      * @return a vector of vector where all lane elements are set to
 397      * the primitive value {@code e}
 398      */
 399     @ForceInline
 400     @SuppressWarnings("unchecked")
 401     public static FloatVector broadcast(VectorSpecies<Float> s, float e) {
 402         return VectorIntrinsics.broadcastCoerced(
 403             (Class<FloatVector>) s.boxType(), float.class, s.length(),
 404             Float.floatToIntBits(e), s,
 405             ((bits, sp) -> ((FloatSpecies)sp).op(i -> Float.intBitsToFloat((int)bits))));
 406     }
 407 
 408     /**
 409      * Returns a vector where each lane element is set to a given
 410      * primitive value.
 411      * <p>
 412      * For each vector lane, where {@code N} is the vector lane index, the
 413      * the primitive value at index {@code N} is placed into the resulting
 414      * vector at lane index {@code N}.
 415      *
 416      * @param s species of the desired vector
 417      * @param es the given primitive values
 418      * @return a vector where each lane element is set to a given primitive
 419      * value
 420      * @throws IndexOutOfBoundsException if {@code es.length < this.length()}
 421      */
 422     @ForceInline
 423     @SuppressWarnings("unchecked")
 424     public static FloatVector scalars(VectorSpecies<Float> s, float... es) {
 425         Objects.requireNonNull(es);
 426         int ix = VectorIntrinsics.checkIndex(0, es.length, s.length());
 427         return VectorIntrinsics.load((Class<FloatVector>) s.boxType(), float.class, s.length(),
 428                                      es, Unsafe.ARRAY_FLOAT_BASE_OFFSET,
 429                                      es, ix, s,
 430                                      (c, idx, sp) -> ((FloatSpecies)sp).op(n -> c[idx + n]));
 431     }
 432 
 433     /**
 434      * Returns a vector where the first lane element is set to the primtive
 435      * value {@code e}, all other lane elements are set to the default
 436      * value.
 437      *
 438      * @param s species of the desired vector
 439      * @param e the value
 440      * @return a vector where the first lane element is set to the primitive
 441      * value {@code e}
 442      */
 443     @ForceInline
 444     public static final FloatVector single(VectorSpecies<Float> s, float e) {
 445         return zero(s).with(0, e);
 446     }
 447 
 448     /**
 449      * Returns a vector where each lane element is set to a randomly
 450      * generated primitive value.
 451      *
 452      * The semantics are equivalent to calling
 453      * {@link ThreadLocalRandom#nextFloat()}
 454      *
 455      * @param s species of the desired vector
 456      * @return a vector where each lane elements is set to a randomly
 457      * generated primitive value
 458      */
 459     public static FloatVector random(VectorSpecies<Float> s) {
 460         ThreadLocalRandom r = ThreadLocalRandom.current();
 461         return ((FloatSpecies)s).op(i -> r.nextFloat());
 462     }
 463 
 464     // Ops
 465 
 466     @Override
 467     public abstract FloatVector add(Vector<Float> v);
 468 
 469     /**
 470      * Adds this vector to the broadcast of an input scalar.
 471      * <p>
 472      * This is a vector binary operation where the primitive addition operation
 473      * ({@code +}) is applied to lane elements.
 474      *
 475      * @param s the input scalar
 476      * @return the result of adding this vector to the broadcast of an input
 477      * scalar
 478      */
 479     public abstract FloatVector add(float s);
 480 
 481     @Override
 482     public abstract FloatVector add(Vector<Float> v, VectorMask<Float> m);
 483 
 484     /**
 485      * Adds this vector to broadcast of an input scalar,
 486      * selecting lane elements controlled by a mask.
 487      * <p>
 488      * This is a vector binary operation where the primitive addition operation
 489      * ({@code +}) is applied to lane elements.
 490      *
 491      * @param s the input scalar
 492      * @param m the mask controlling lane selection
 493      * @return the result of adding this vector to the broadcast of an input
 494      * scalar
 495      */
 496     public abstract FloatVector add(float s, VectorMask<Float> m);
 497 
 498     @Override
 499     public abstract FloatVector sub(Vector<Float> v);
 500 
 501     /**
 502      * Subtracts the broadcast of an input scalar from this vector.
 503      * <p>
 504      * This is a vector binary operation where the primitive subtraction
 505      * operation ({@code -}) is applied to lane elements.
 506      *
 507      * @param s the input scalar
 508      * @return the result of subtracting the broadcast of an input
 509      * scalar from this vector
 510      */
 511     public abstract FloatVector sub(float s);
 512 
 513     @Override
 514     public abstract FloatVector sub(Vector<Float> v, VectorMask<Float> m);
 515 
 516     /**
 517      * Subtracts the broadcast of an input scalar from this vector, selecting
 518      * lane elements controlled by a mask.
 519      * <p>
 520      * This is a vector binary operation where the primitive subtraction
 521      * operation ({@code -}) is applied to lane elements.
 522      *
 523      * @param s the input scalar
 524      * @param m the mask controlling lane selection
 525      * @return the result of subtracting the broadcast of an input
 526      * scalar from this vector
 527      */
 528     public abstract FloatVector sub(float s, VectorMask<Float> m);
 529 
 530     @Override
 531     public abstract FloatVector mul(Vector<Float> v);
 532 
 533     /**
 534      * Multiplies this vector with the broadcast of an input scalar.
 535      * <p>
 536      * This is a vector binary operation where the primitive multiplication
 537      * operation ({@code *}) is applied to lane elements.
 538      *
 539      * @param s the input scalar
 540      * @return the result of multiplying this vector with the broadcast of an
 541      * input scalar
 542      */
 543     public abstract FloatVector mul(float s);
 544 
 545     @Override
 546     public abstract FloatVector mul(Vector<Float> v, VectorMask<Float> m);
 547 
 548     /**
 549      * Multiplies this vector with the broadcast of an input scalar, selecting
 550      * lane elements controlled by a mask.
 551      * <p>
 552      * This is a vector binary operation where the primitive multiplication
 553      * operation ({@code *}) is applied to lane elements.
 554      *
 555      * @param s the input scalar
 556      * @param m the mask controlling lane selection
 557      * @return the result of multiplying this vector with the broadcast of an
 558      * input scalar
 559      */
 560     public abstract FloatVector mul(float s, VectorMask<Float> m);
 561 
 562     @Override
 563     public abstract FloatVector neg();
 564 
 565     @Override
 566     public abstract FloatVector neg(VectorMask<Float> m);
 567 
 568     @Override
 569     public abstract FloatVector abs();
 570 
 571     @Override
 572     public abstract FloatVector abs(VectorMask<Float> m);
 573 
 574     @Override
 575     public abstract FloatVector min(Vector<Float> v);
 576 
 577     @Override
 578     public abstract FloatVector min(Vector<Float> v, VectorMask<Float> m);
 579 
 580     /**
 581      * Returns the minimum of this vector and the broadcast of an input scalar.
 582      * <p>
 583      * This is a vector binary operation where the operation
 584      * {@code (a, b) -> Math.min(a, b)} is applied to lane elements.
 585      *
 586      * @param s the input scalar
 587      * @return the minimum of this vector and the broadcast of an input scalar
 588      */
 589     public abstract FloatVector min(float s);
 590 
 591     @Override
 592     public abstract FloatVector max(Vector<Float> v);
 593 
 594     @Override
 595     public abstract FloatVector max(Vector<Float> v, VectorMask<Float> m);
 596 
 597     /**
 598      * Returns the maximum of this vector and the broadcast of an input scalar.
 599      * <p>
 600      * This is a vector binary operation where the operation
 601      * {@code (a, b) -> Math.max(a, b)} is applied to lane elements.
 602      *
 603      * @param s the input scalar
 604      * @return the maximum of this vector and the broadcast of an input scalar
 605      */
 606     public abstract FloatVector max(float s);
 607 
 608     @Override
 609     public abstract VectorMask<Float> equal(Vector<Float> v);
 610 
 611     /**
 612      * Tests if this vector is equal to the broadcast of an input scalar.
 613      * <p>
 614      * This is a vector binary test operation where the primitive equals
 615      * operation ({@code ==}) is applied to lane elements.
 616      *
 617      * @param s the input scalar
 618      * @return the result mask of testing if this vector is equal to the
 619      * broadcast of an input scalar
 620      */
 621     public abstract VectorMask<Float> equal(float s);
 622 
 623     @Override
 624     public abstract VectorMask<Float> notEqual(Vector<Float> v);
 625 
 626     /**
 627      * Tests if this vector is not equal to the broadcast of an input scalar.
 628      * <p>
 629      * This is a vector binary test operation where the primitive not equals
 630      * operation ({@code !=}) is applied to lane elements.
 631      *
 632      * @param s the input scalar
 633      * @return the result mask of testing if this vector is not equal to the
 634      * broadcast of an input scalar
 635      */
 636     public abstract VectorMask<Float> notEqual(float s);
 637 
 638     @Override
 639     public abstract VectorMask<Float> lessThan(Vector<Float> v);
 640 
 641     /**
 642      * Tests if this vector is less than the broadcast of an input scalar.
 643      * <p>
 644      * This is a vector binary test operation where the primitive less than
 645      * operation ({@code <}) is applied to lane elements.
 646      *
 647      * @param s the input scalar
 648      * @return the mask result of testing if this vector is less than the
 649      * broadcast of an input scalar
 650      */
 651     public abstract VectorMask<Float> lessThan(float s);
 652 
 653     @Override
 654     public abstract VectorMask<Float> lessThanEq(Vector<Float> v);
 655 
 656     /**
 657      * Tests if this vector is less or equal to the broadcast of an input scalar.
 658      * <p>
 659      * This is a vector binary test operation where the primitive less than
 660      * or equal to operation ({@code <=}) is applied to lane elements.
 661      *
 662      * @param s the input scalar
 663      * @return the mask result of testing if this vector is less than or equal
 664      * to the broadcast of an input scalar
 665      */
 666     public abstract VectorMask<Float> lessThanEq(float s);
 667 
 668     @Override
 669     public abstract VectorMask<Float> greaterThan(Vector<Float> v);
 670 
 671     /**
 672      * Tests if this vector is greater than the broadcast of an input scalar.
 673      * <p>
 674      * This is a vector binary test operation where the primitive greater than
 675      * operation ({@code >}) is applied to lane elements.
 676      *
 677      * @param s the input scalar
 678      * @return the mask result of testing if this vector is greater than the
 679      * broadcast of an input scalar
 680      */
 681     public abstract VectorMask<Float> greaterThan(float s);
 682 
 683     @Override
 684     public abstract VectorMask<Float> greaterThanEq(Vector<Float> v);
 685 
 686     /**
 687      * Tests if this vector is greater than or equal to the broadcast of an
 688      * input scalar.
 689      * <p>
 690      * This is a vector binary test operation where the primitive greater than
 691      * or equal to operation ({@code >=}) is applied to lane elements.
 692      *
 693      * @param s the input scalar
 694      * @return the mask result of testing if this vector is greater than or
 695      * equal to the broadcast of an input scalar
 696      */
 697     public abstract VectorMask<Float> greaterThanEq(float s);
 698 
 699     @Override
 700     public abstract FloatVector blend(Vector<Float> v, VectorMask<Float> m);
 701 
 702     /**
 703      * Blends the lane elements of this vector with those of the broadcast of an
 704      * input scalar, selecting lanes controlled by a mask.
 705      * <p>
 706      * For each lane of the mask, at lane index {@code N}, if the mask lane
 707      * is set then the lane element at {@code N} from the input vector is
 708      * selected and placed into the resulting vector at {@code N},
 709      * otherwise the the lane element at {@code N} from this input vector is
 710      * selected and placed into the resulting vector at {@code N}.
 711      *
 712      * @param s the input scalar
 713      * @param m the mask controlling lane selection
 714      * @return the result of blending the lane elements of this vector with
 715      * those of the broadcast of an input scalar
 716      */
 717     public abstract FloatVector blend(float s, VectorMask<Float> m);
 718 
 719     @Override
 720     public abstract FloatVector rearrange(Vector<Float> v,
 721                                                       VectorShuffle<Float> s, VectorMask<Float> m);
 722 
 723     @Override
 724     public abstract FloatVector rearrange(VectorShuffle<Float> m);
 725 
 726     @Override
 727     public abstract FloatVector reshape(VectorSpecies<Float> s);
 728 
 729     @Override
 730     public abstract FloatVector rotateEL(int i);
 731 
 732     @Override
 733     public abstract FloatVector rotateER(int i);
 734 
 735     @Override
 736     public abstract FloatVector shiftEL(int i);
 737 
 738     @Override
 739     public abstract FloatVector shiftER(int i);
 740 
 741     /**
 742      * Divides this vector by an input vector.
 743      * <p>
 744      * This is a vector binary operation where the primitive division
 745      * operation ({@code /}) is applied to lane elements.
 746      *
 747      * @param v the input vector
 748      * @return the result of dividing this vector by the input vector
 749      */
 750     public abstract FloatVector div(Vector<Float> v);
 751 
 752     /**
 753      * Divides this vector by the broadcast of an input scalar.
 754      * <p>
 755      * This is a vector binary operation where the primitive division
 756      * operation ({@code /}) is applied to lane elements.
 757      *
 758      * @param s the input scalar
 759      * @return the result of dividing this vector by the broadcast of an input
 760      * scalar
 761      */
 762     public abstract FloatVector div(float s);
 763 
 764     /**
 765      * Divides this vector by an input vector, selecting lane elements
 766      * controlled by a mask.
 767      * <p>
 768      * This is a vector binary operation where the primitive division
 769      * operation ({@code /}) is applied to lane elements.
 770      *
 771      * @param v the input vector
 772      * @param m the mask controlling lane selection
 773      * @return the result of dividing this vector by the input vector
 774      */
 775     public abstract FloatVector div(Vector<Float> v, VectorMask<Float> m);
 776 
 777     /**
 778      * Divides this vector by the broadcast of an input scalar, selecting lane
 779      * elements controlled by a mask.
 780      * <p>
 781      * This is a vector binary operation where the primitive division
 782      * operation ({@code /}) is applied to lane elements.
 783      *
 784      * @param s the input scalar
 785      * @param m the mask controlling lane selection
 786      * @return the result of dividing this vector by the broadcast of an input
 787      * scalar
 788      */
 789     public abstract FloatVector div(float s, VectorMask<Float> m);
 790 
 791     /**
 792      * Calculates the square root of this vector.
 793      * <p>
 794      * This is a vector unary operation where the {@link Math#sqrt} operation
 795      * is applied to lane elements.
 796      *
 797      * @return the square root of this vector
 798      */
 799     public abstract FloatVector sqrt();
 800 
 801     /**
 802      * Calculates the square root of this vector, selecting lane elements
 803      * controlled by a mask.
 804      * <p>
 805      * This is a vector unary operation where the {@link Math#sqrt} operation
 806      * is applied to lane elements.
 807      *
 808      * @param m the mask controlling lane selection
 809      * @return the square root of this vector
 810      */
 811     public FloatVector sqrt(VectorMask<Float> m) {
 812         return uOp(m, (i, a) -> (float) Math.sqrt((double) a));
 813     }
 814 
 815     /**
 816      * Calculates the trigonometric tangent of this vector.
 817      * <p>
 818      * This is a vector unary operation with same semantic definition as
 819      * {@link Math#tan} operation applied to lane elements.
 820      * The implementation is not required to return same
 821      * results as {@link Math#tan}, but adheres to rounding, monotonicity,
 822      * and special case semantics as defined in the {@link Math#tan}
 823      * specifications. The computed result will be within 1 ulp of the
 824      * exact result.
 825      *
 826      * @return the tangent of this vector
 827      */
 828     public FloatVector tan() {
 829         return uOp((i, a) -> (float) Math.tan((double) a));
 830     }
 831 
 832     /**
 833      * Calculates the trigonometric tangent of this vector, selecting lane
 834      * elements controlled by a mask.
 835      * <p>
 836      * Semantics for rounding, monotonicity, and special cases are
 837      * described in {@link FloatVector#tan}
 838      *
 839      * @param m the mask controlling lane selection
 840      * @return the tangent of this vector
 841      */
 842     public FloatVector tan(VectorMask<Float> m) {
 843         return uOp(m, (i, a) -> (float) Math.tan((double) a));
 844     }
 845 
 846     /**
 847      * Calculates the hyperbolic tangent of this vector.
 848      * <p>
 849      * This is a vector unary operation with same semantic definition as
 850      * {@link Math#tanh} operation applied to lane elements.
 851      * The implementation is not required to return same
 852      * results as {@link Math#tanh}, but adheres to rounding, monotonicity,
 853      * and special case semantics as defined in the {@link Math#tanh}
 854      * specifications. The computed result will be within 2.5 ulps of the
 855      * exact result.
 856      *
 857      * @return the hyperbolic tangent of this vector
 858      */
 859     public FloatVector tanh() {
 860         return uOp((i, a) -> (float) Math.tanh((double) a));
 861     }
 862 
 863     /**
 864      * Calculates the hyperbolic tangent of this vector, selecting lane elements
 865      * controlled by a mask.
 866      * <p>
 867      * Semantics for rounding, monotonicity, and special cases are
 868      * described in {@link FloatVector#tanh}
 869      *
 870      * @param m the mask controlling lane selection
 871      * @return the hyperbolic tangent of this vector
 872      */
 873     public FloatVector tanh(VectorMask<Float> m) {
 874         return uOp(m, (i, a) -> (float) Math.tanh((double) a));
 875     }
 876 
 877     /**
 878      * Calculates the trigonometric sine of this vector.
 879      * <p>
 880      * This is a vector unary operation with same semantic definition as
 881      * {@link Math#sin} operation applied to lane elements.
 882      * The implementation is not required to return same
 883      * results as {@link Math#sin}, but adheres to rounding, monotonicity,
 884      * and special case semantics as defined in the {@link Math#sin}
 885      * specifications. The computed result will be within 1 ulp of the
 886      * exact result.
 887      *
 888      * @return the sine of this vector
 889      */
 890     public FloatVector sin() {
 891         return uOp((i, a) -> (float) Math.sin((double) a));
 892     }
 893 
 894     /**
 895      * Calculates the trigonometric sine of this vector, selecting lane elements
 896      * controlled by a mask.
 897      * <p>
 898      * Semantics for rounding, monotonicity, and special cases are
 899      * described in {@link FloatVector#sin}
 900      *
 901      * @param m the mask controlling lane selection
 902      * @return the sine of this vector
 903      */
 904     public FloatVector sin(VectorMask<Float> m) {
 905         return uOp(m, (i, a) -> (float) Math.sin((double) a));
 906     }
 907 
 908     /**
 909      * Calculates the hyperbolic sine of this vector.
 910      * <p>
 911      * This is a vector unary operation with same semantic definition as
 912      * {@link Math#sinh} operation applied to lane elements.
 913      * The implementation is not required to return same
 914      * results as  {@link Math#sinh}, but adheres to rounding, monotonicity,
 915      * and special case semantics as defined in the {@link Math#sinh}
 916      * specifications. The computed result will be within 2.5 ulps of the
 917      * exact result.
 918      *
 919      * @return the hyperbolic sine of this vector
 920      */
 921     public FloatVector sinh() {
 922         return uOp((i, a) -> (float) Math.sinh((double) a));
 923     }
 924 
 925     /**
 926      * Calculates the hyperbolic sine of this vector, selecting lane elements
 927      * controlled by a mask.
 928      * <p>
 929      * Semantics for rounding, monotonicity, and special cases are
 930      * described in {@link FloatVector#sinh}
 931      *
 932      * @param m the mask controlling lane selection
 933      * @return the hyperbolic sine of this vector
 934      */
 935     public FloatVector sinh(VectorMask<Float> m) {
 936         return uOp(m, (i, a) -> (float) Math.sinh((double) a));
 937     }
 938 
 939     /**
 940      * Calculates the trigonometric cosine of this vector.
 941      * <p>
 942      * This is a vector unary operation with same semantic definition as
 943      * {@link Math#cos} operation applied to lane elements.
 944      * The implementation is not required to return same
 945      * results as {@link Math#cos}, but adheres to rounding, monotonicity,
 946      * and special case semantics as defined in the {@link Math#cos}
 947      * specifications. The computed result will be within 1 ulp of the
 948      * exact result.
 949      *
 950      * @return the cosine of this vector
 951      */
 952     public FloatVector cos() {
 953         return uOp((i, a) -> (float) Math.cos((double) a));
 954     }
 955 
 956     /**
 957      * Calculates the trigonometric cosine of this vector, selecting lane
 958      * elements controlled by a mask.
 959      * <p>
 960      * Semantics for rounding, monotonicity, and special cases are
 961      * described in {@link FloatVector#cos}
 962      *
 963      * @param m the mask controlling lane selection
 964      * @return the cosine of this vector
 965      */
 966     public FloatVector cos(VectorMask<Float> m) {
 967         return uOp(m, (i, a) -> (float) Math.cos((double) a));
 968     }
 969 
 970     /**
 971      * Calculates the hyperbolic cosine of this vector.
 972      * <p>
 973      * This is a vector unary operation with same semantic definition as
 974      * {@link Math#cosh} operation applied to lane elements.
 975      * The implementation is not required to return same
 976      * results as {@link Math#cosh}, but adheres to rounding, monotonicity,
 977      * and special case semantics as defined in the {@link Math#cosh}
 978      * specifications. The computed result will be within 2.5 ulps of the
 979      * exact result.
 980      *
 981      * @return the hyperbolic cosine of this vector
 982      */
 983     public FloatVector cosh() {
 984         return uOp((i, a) -> (float) Math.cosh((double) a));
 985     }
 986 
 987     /**
 988      * Calculates the hyperbolic cosine of this vector, selecting lane elements
 989      * controlled by a mask.
 990      * <p>
 991      * Semantics for rounding, monotonicity, and special cases are
 992      * described in {@link FloatVector#cosh}
 993      *
 994      * @param m the mask controlling lane selection
 995      * @return the hyperbolic cosine of this vector
 996      */
 997     public FloatVector cosh(VectorMask<Float> m) {
 998         return uOp(m, (i, a) -> (float) Math.cosh((double) a));
 999     }
1000 
1001     /**
1002      * Calculates the arc sine of this vector.
1003      * <p>
1004      * This is a vector unary operation with same semantic definition as
1005      * {@link Math#asin} operation applied to lane elements.
1006      * The implementation is not required to return same
1007      * results as {@link Math#asin}, but adheres to rounding, monotonicity,
1008      * and special case semantics as defined in the {@link Math#asin}
1009      * specifications. The computed result will be within 1 ulp of the
1010      * exact result.
1011      *
1012      * @return the arc sine of this vector
1013      */
1014     public FloatVector asin() {
1015         return uOp((i, a) -> (float) Math.asin((double) a));
1016     }
1017 
1018     /**
1019      * Calculates the arc sine of this vector, selecting lane elements
1020      * controlled by a mask.
1021      * <p>
1022      * Semantics for rounding, monotonicity, and special cases are
1023      * described in {@link FloatVector#asin}
1024      *
1025      * @param m the mask controlling lane selection
1026      * @return the arc sine of this vector
1027      */
1028     public FloatVector asin(VectorMask<Float> m) {
1029         return uOp(m, (i, a) -> (float) Math.asin((double) a));
1030     }
1031 
1032     /**
1033      * Calculates the arc cosine of this vector.
1034      * <p>
1035      * This is a vector unary operation with same semantic definition as
1036      * {@link Math#acos} operation applied to lane elements.
1037      * The implementation is not required to return same
1038      * results as {@link Math#acos}, but adheres to rounding, monotonicity,
1039      * and special case semantics as defined in the {@link Math#acos}
1040      * specifications. The computed result will be within 1 ulp of the
1041      * exact result.
1042      *
1043      * @return the arc cosine of this vector
1044      */
1045     public FloatVector acos() {
1046         return uOp((i, a) -> (float) Math.acos((double) a));
1047     }
1048 
1049     /**
1050      * Calculates the arc cosine of this vector, selecting lane elements
1051      * controlled by a mask.
1052      * <p>
1053      * Semantics for rounding, monotonicity, and special cases are
1054      * described in {@link FloatVector#acos}
1055      *
1056      * @param m the mask controlling lane selection
1057      * @return the arc cosine of this vector
1058      */
1059     public FloatVector acos(VectorMask<Float> m) {
1060         return uOp(m, (i, a) -> (float) Math.acos((double) a));
1061     }
1062 
1063     /**
1064      * Calculates the arc tangent of this vector.
1065      * <p>
1066      * This is a vector unary operation with same semantic definition as
1067      * {@link Math#atan} operation applied to lane elements.
1068      * The implementation is not required to return same
1069      * results as {@link Math#atan}, but adheres to rounding, monotonicity,
1070      * and special case semantics as defined in the {@link Math#atan}
1071      * specifications. The computed result will be within 1 ulp of the
1072      * exact result.
1073      *
1074      * @return the arc tangent of this vector
1075      */
1076     public FloatVector atan() {
1077         return uOp((i, a) -> (float) Math.atan((double) a));
1078     }
1079 
1080     /**
1081      * Calculates the arc tangent of this vector, selecting lane elements
1082      * controlled by a mask.
1083      * <p>
1084      * Semantics for rounding, monotonicity, and special cases are
1085      * described in {@link FloatVector#atan}
1086      *
1087      * @param m the mask controlling lane selection
1088      * @return the arc tangent of this vector
1089      */
1090     public FloatVector atan(VectorMask<Float> m) {
1091         return uOp(m, (i, a) -> (float) Math.atan((double) a));
1092     }
1093 
1094     /**
1095      * Calculates the arc tangent of this vector divided by an input vector.
1096      * <p>
1097      * This is a vector binary operation with same semantic definition as
1098      * {@link Math#atan2} operation applied to lane elements.
1099      * The implementation is not required to return same
1100      * results as {@link Math#atan2}, but adheres to rounding, monotonicity,
1101      * and special case semantics as defined in the {@link Math#atan2}
1102      * specifications. The computed result will be within 2 ulps of the
1103      * exact result.
1104      *
1105      * @param v the input vector
1106      * @return the arc tangent of this vector divided by the input vector
1107      */
1108     public FloatVector atan2(Vector<Float> v) {
1109         return bOp(v, (i, a, b) -> (float) Math.atan2((double) a, (double) b));
1110     }
1111 
1112     /**
1113      * Calculates the arc tangent of this vector divided by the broadcast of an
1114      * an input scalar.
1115      * <p>
1116      * This is a vector binary operation with same semantic definition as
1117      * {@link Math#atan2} operation applied to lane elements.
1118      * The implementation is not required to return same
1119      * results as {@link Math#atan2}, but adheres to rounding, monotonicity,
1120      * and special case semantics as defined in the {@link Math#atan2}
1121      * specifications. The computed result will be within 1 ulp of the
1122      * exact result.
1123      *
1124      * @param s the input scalar
1125      * @return the arc tangent of this vector over the input vector
1126      */
1127     public abstract FloatVector atan2(float s);
1128 
1129     /**
1130      * Calculates the arc tangent of this vector divided by an input vector,
1131      * selecting lane elements controlled by a mask.
1132      * <p>
1133      * Semantics for rounding, monotonicity, and special cases are
1134      * described in {@link FloatVector#atan2}
1135      *
1136      * @param v the input vector
1137      * @param m the mask controlling lane selection
1138      * @return the arc tangent of this vector divided by the input vector
1139      */
1140     public FloatVector atan2(Vector<Float> v, VectorMask<Float> m) {
1141         return bOp(v, m, (i, a, b) -> (float) Math.atan2((double) a, (double) b));
1142     }
1143 
1144     /**
1145      * Calculates the arc tangent of this vector divided by the broadcast of an
1146      * an input scalar, selecting lane elements controlled by a mask.
1147      * <p>
1148      * Semantics for rounding, monotonicity, and special cases are
1149      * described in {@link FloatVector#atan2}
1150      *
1151      * @param s the input scalar
1152      * @param m the mask controlling lane selection
1153      * @return the arc tangent of this vector over the input vector
1154      */
1155     public abstract FloatVector atan2(float s, VectorMask<Float> m);
1156 
1157     /**
1158      * Calculates the cube root of this vector.
1159      * <p>
1160      * This is a vector unary operation with same semantic definition as
1161      * {@link Math#cbrt} operation applied to lane elements.
1162      * The implementation is not required to return same
1163      * results as {@link Math#cbrt}, but adheres to rounding, monotonicity,
1164      * and special case semantics as defined in the {@link Math#cbrt}
1165      * specifications. The computed result will be within 1 ulp of the
1166      * exact result.
1167      *
1168      * @return the cube root of this vector
1169      */
1170     public FloatVector cbrt() {
1171         return uOp((i, a) -> (float) Math.cbrt((double) a));
1172     }
1173 
1174     /**
1175      * Calculates the cube root of this vector, selecting lane elements
1176      * controlled by a mask.
1177      * <p>
1178      * Semantics for rounding, monotonicity, and special cases are
1179      * described in {@link FloatVector#cbrt}
1180      *
1181      * @param m the mask controlling lane selection
1182      * @return the cube root of this vector
1183      */
1184     public FloatVector cbrt(VectorMask<Float> m) {
1185         return uOp(m, (i, a) -> (float) Math.cbrt((double) a));
1186     }
1187 
1188     /**
1189      * Calculates the natural logarithm of this vector.
1190      * <p>
1191      * This is a vector unary operation with same semantic definition as
1192      * {@link Math#log} operation applied to lane elements.
1193      * The implementation is not required to return same
1194      * results as {@link Math#log}, but adheres to rounding, monotonicity,
1195      * and special case semantics as defined in the {@link Math#log}
1196      * specifications. The computed result will be within 1 ulp of the
1197      * exact result.
1198      *
1199      * @return the natural logarithm of this vector
1200      */
1201     public FloatVector log() {
1202         return uOp((i, a) -> (float) Math.log((double) a));
1203     }
1204 
1205     /**
1206      * Calculates the natural logarithm of this vector, selecting lane elements
1207      * controlled by a mask.
1208      * <p>
1209      * Semantics for rounding, monotonicity, and special cases are
1210      * described in {@link FloatVector#log}
1211      *
1212      * @param m the mask controlling lane selection
1213      * @return the natural logarithm of this vector
1214      */
1215     public FloatVector log(VectorMask<Float> m) {
1216         return uOp(m, (i, a) -> (float) Math.log((double) a));
1217     }
1218 
1219     /**
1220      * Calculates the base 10 logarithm of this vector.
1221      * <p>
1222      * This is a vector unary operation with same semantic definition as
1223      * {@link Math#log10} operation applied to lane elements.
1224      * The implementation is not required to return same
1225      * results as {@link Math#log10}, but adheres to rounding, monotonicity,
1226      * and special case semantics as defined in the {@link Math#log10}
1227      * specifications. The computed result will be within 1 ulp of the
1228      * exact result.
1229      *
1230      * @return the base 10 logarithm of this vector
1231      */
1232     public FloatVector log10() {
1233         return uOp((i, a) -> (float) Math.log10((double) a));
1234     }
1235 
1236     /**
1237      * Calculates the base 10 logarithm of this vector, selecting lane elements
1238      * controlled by a mask.
1239      * <p>
1240      * Semantics for rounding, monotonicity, and special cases are
1241      * described in {@link FloatVector#log10}
1242      *
1243      * @param m the mask controlling lane selection
1244      * @return the base 10 logarithm of this vector
1245      */
1246     public FloatVector log10(VectorMask<Float> m) {
1247         return uOp(m, (i, a) -> (float) Math.log10((double) a));
1248     }
1249 
1250     /**
1251      * Calculates the natural logarithm of the sum of this vector and the
1252      * broadcast of {@code 1}.
1253      * <p>
1254      * This is a vector unary operation with same semantic definition as
1255      * {@link Math#log1p} operation applied to lane elements.
1256      * The implementation is not required to return same
1257      * results as  {@link Math#log1p}, but adheres to rounding, monotonicity,
1258      * and special case semantics as defined in the {@link Math#log1p}
1259      * specifications. The computed result will be within 1 ulp of the
1260      * exact result.
1261      *
1262      * @return the natural logarithm of the sum of this vector and the broadcast
1263      * of {@code 1}
1264      */
1265     public FloatVector log1p() {
1266         return uOp((i, a) -> (float) Math.log1p((double) a));
1267     }
1268 
1269     /**
1270      * Calculates the natural logarithm of the sum of this vector and the
1271      * broadcast of {@code 1}, selecting lane elements controlled by a mask.
1272      * <p>
1273      * Semantics for rounding, monotonicity, and special cases are
1274      * described in {@link FloatVector#log1p}
1275      *
1276      * @param m the mask controlling lane selection
1277      * @return the natural logarithm of the sum of this vector and the broadcast
1278      * of {@code 1}
1279      */
1280     public FloatVector log1p(VectorMask<Float> m) {
1281         return uOp(m, (i, a) -> (float) Math.log1p((double) a));
1282     }
1283 
1284     /**
1285      * Calculates this vector raised to the power of an input vector.
1286      * <p>
1287      * This is a vector binary operation with same semantic definition as
1288      * {@link Math#pow} operation applied to lane elements.
1289      * The implementation is not required to return same
1290      * results as {@link Math#pow}, but adheres to rounding, monotonicity,
1291      * and special case semantics as defined in the {@link Math#pow}
1292      * specifications. The computed result will be within 1 ulp of the
1293      * exact result.
1294      *
1295      * @param v the input vector
1296      * @return this vector raised to the power of an input vector
1297      */
1298     public FloatVector pow(Vector<Float> v) {
1299         return bOp(v, (i, a, b) -> (float) Math.pow((double) a, (double) b));
1300     }
1301 
1302     /**
1303      * Calculates this vector raised to the power of the broadcast of an input
1304      * scalar.
1305      * <p>
1306      * This is a vector binary operation with same semantic definition as
1307      * {@link Math#pow} operation applied to lane elements.
1308      * The implementation is not required to return same
1309      * results as {@link Math#pow}, but adheres to rounding, monotonicity,
1310      * and special case semantics as defined in the {@link Math#pow}
1311      * specifications. The computed result will be within 1 ulp of the
1312      * exact result.
1313      *
1314      * @param s the input scalar
1315      * @return this vector raised to the power of the broadcast of an input
1316      * scalar.
1317      */
1318     public abstract FloatVector pow(float s);
1319 
1320     /**
1321      * Calculates this vector raised to the power of an input vector, selecting
1322      * lane elements controlled by a mask.
1323      * <p>
1324      * Semantics for rounding, monotonicity, and special cases are
1325      * described in {@link FloatVector#pow}
1326      *
1327      * @param v the input vector
1328      * @param m the mask controlling lane selection
1329      * @return this vector raised to the power of an input vector
1330      */
1331     public FloatVector pow(Vector<Float> v, VectorMask<Float> m) {
1332         return bOp(v, m, (i, a, b) -> (float) Math.pow((double) a, (double) b));
1333     }
1334 
1335     /**
1336      * Calculates this vector raised to the power of the broadcast of an input
1337      * scalar, selecting lane elements controlled by a mask.
1338      * <p>
1339      * Semantics for rounding, monotonicity, and special cases are
1340      * described in {@link FloatVector#pow}
1341      *
1342      * @param s the input scalar
1343      * @param m the mask controlling lane selection
1344      * @return this vector raised to the power of the broadcast of an input
1345      * scalar.
1346      */
1347     public abstract FloatVector pow(float s, VectorMask<Float> m);
1348 
1349     /**
1350      * Calculates the broadcast of Euler's number {@code e} raised to the power
1351      * of this vector.
1352      * <p>
1353      * This is a vector unary operation with same semantic definition as
1354      * {@link Math#exp} operation applied to lane elements.
1355      * The implementation is not required to return same
1356      * results as {@link Math#exp}, but adheres to rounding, monotonicity,
1357      * and special case semantics as defined in the {@link Math#exp}
1358      * specifications. The computed result will be within 1 ulp of the
1359      * exact result.
1360      *
1361      * @return the broadcast of Euler's number {@code e} raised to the power of
1362      * this vector
1363      */
1364     public FloatVector exp() {
1365         return uOp((i, a) -> (float) Math.exp((double) a));
1366     }
1367 
1368     /**
1369      * Calculates the broadcast of Euler's number {@code e} raised to the power
1370      * of this vector, selecting lane elements controlled by a mask.
1371      * <p>
1372      * Semantics for rounding, monotonicity, and special cases are
1373      * described in {@link FloatVector#exp}
1374      *
1375      * @param m the mask controlling lane selection
1376      * @return the broadcast of Euler's number {@code e} raised to the power of
1377      * this vector
1378      */
1379     public FloatVector exp(VectorMask<Float> m) {
1380         return uOp(m, (i, a) -> (float) Math.exp((double) a));
1381     }
1382 
1383     /**
1384      * Calculates the broadcast of Euler's number {@code e} raised to the power
1385      * of this vector minus the broadcast of {@code -1}.
1386      * More specifically as if the following (ignoring any differences in
1387      * numerical accuracy):
1388      * <pre>{@code
1389      *   this.exp().sub(this.species().broadcast(1))
1390      * }</pre>
1391      * <p>
1392      * This is a vector unary operation with same semantic definition as
1393      * {@link Math#expm1} operation applied to lane elements.
1394      * The implementation is not required to return same
1395      * results as {@link Math#expm1}, but adheres to rounding, monotonicity,
1396      * and special case semantics as defined in the {@link Math#expm1}
1397      * specifications. The computed result will be within 1 ulp of the
1398      * exact result.
1399      *
1400      * @return the broadcast of Euler's number {@code e} raised to the power of
1401      * this vector minus the broadcast of {@code -1}
1402      */
1403     public FloatVector expm1() {
1404         return uOp((i, a) -> (float) Math.expm1((double) a));
1405     }
1406 
1407     /**
1408      * Calculates the broadcast of Euler's number {@code e} raised to the power
1409      * of this vector minus the broadcast of {@code -1}, selecting lane elements
1410      * controlled by a mask
1411      * More specifically as if the following (ignoring any differences in
1412      * numerical accuracy):
1413      * <pre>{@code
1414      *   this.exp(m).sub(this.species().broadcast(1), m)
1415      * }</pre>
1416      * <p>
1417      * Semantics for rounding, monotonicity, and special cases are
1418      * described in {@link FloatVector#expm1}
1419      *
1420      * @param m the mask controlling lane selection
1421      * @return the broadcast of Euler's number {@code e} raised to the power of
1422      * this vector minus the broadcast of {@code -1}
1423      */
1424     public FloatVector expm1(VectorMask<Float> m) {
1425         return uOp(m, (i, a) -> (float) Math.expm1((double) a));
1426     }
1427 
1428     /**
1429      * Calculates the product of this vector and a first input vector summed
1430      * with a second input vector.
1431      * More specifically as if the following (ignoring any differences in
1432      * numerical accuracy):
1433      * <pre>{@code
1434      *   this.mul(v1).add(v2)
1435      * }</pre>
1436      * <p>
1437      * This is a vector ternary operation where the {@link Math#fma} operation
1438      * is applied to lane elements.
1439      *
1440      * @param v1 the first input vector
1441      * @param v2 the second input vector
1442      * @return the product of this vector and the first input vector summed with
1443      * the second input vector
1444      */
1445     public abstract FloatVector fma(Vector<Float> v1, Vector<Float> v2);
1446 
1447     /**
1448      * Calculates the product of this vector and the broadcast of a first input
1449      * scalar summed with the broadcast of a second input scalar.
1450      * More specifically as if the following:
1451      * <pre>{@code
1452      *   this.fma(this.species().broadcast(s1), this.species().broadcast(s2))
1453      * }</pre>
1454      * <p>
1455      * This is a vector ternary operation where the {@link Math#fma} operation
1456      * is applied to lane elements.
1457      *
1458      * @param s1 the first input scalar
1459      * @param s2 the second input scalar
1460      * @return the product of this vector and the broadcast of a first input
1461      * scalar summed with the broadcast of a second input scalar
1462      */
1463     public abstract FloatVector fma(float s1, float s2);
1464 
1465     /**
1466      * Calculates the product of this vector and a first input vector summed
1467      * with a second input vector, selecting lane elements controlled by a mask.
1468      * More specifically as if the following (ignoring any differences in
1469      * numerical accuracy):
1470      * <pre>{@code
1471      *   this.mul(v1, m).add(v2, m)
1472      * }</pre>
1473      * <p>
1474      * This is a vector ternary operation where the {@link Math#fma} operation
1475      * is applied to lane elements.
1476      *
1477      * @param v1 the first input vector
1478      * @param v2 the second input vector
1479      * @param m the mask controlling lane selection
1480      * @return the product of this vector and the first input vector summed with
1481      * the second input vector
1482      */
1483     public FloatVector fma(Vector<Float> v1, Vector<Float> v2, VectorMask<Float> m) {
1484         return tOp(v1, v2, m, (i, a, b, c) -> Math.fma(a, b, c));
1485     }
1486 
1487     /**
1488      * Calculates the product of this vector and the broadcast of a first input
1489      * scalar summed with the broadcast of a second input scalar, selecting lane
1490      * elements controlled by a mask
1491      * More specifically as if the following:
1492      * <pre>{@code
1493      *   this.fma(this.species().broadcast(s1), this.species().broadcast(s2), m)
1494      * }</pre>
1495      * <p>
1496      * This is a vector ternary operation where the {@link Math#fma} operation
1497      * is applied to lane elements.
1498      *
1499      * @param s1 the first input scalar
1500      * @param s2 the second input scalar
1501      * @param m the mask controlling lane selection
1502      * @return the product of this vector and the broadcast of a first input
1503      * scalar summed with the broadcast of a second input scalar
1504      */
1505     public abstract FloatVector fma(float s1, float s2, VectorMask<Float> m);
1506 
1507     /**
1508      * Calculates square root of the sum of the squares of this vector and an
1509      * input vector.
1510      * More specifically as if the following (ignoring any differences in
1511      * numerical accuracy):
1512      * <pre>{@code
1513      *   this.mul(this).add(v.mul(v)).sqrt()
1514      * }</pre>
1515      * <p>
1516      * This is a vector binary operation with same semantic definition as
1517      * {@link Math#hypot} operation applied to lane elements.
1518      * The implementation is not required to return same
1519      * results as {@link Math#hypot}, but adheres to rounding, monotonicity,
1520      * and special case semantics as defined in the {@link Math#hypot}
1521      * specifications. The computed result will be within 1 ulp of the
1522      * exact result.
1523      *
1524      * @param v the input vector
1525      * @return square root of the sum of the squares of this vector and an input
1526      * vector
1527      */
1528     public FloatVector hypot(Vector<Float> v) {
1529         return bOp(v, (i, a, b) -> (float) Math.hypot((double) a, (double) b));
1530     }
1531 
1532     /**
1533      * Calculates square root of the sum of the squares of this vector and the
1534      * broadcast of an input scalar.
1535      * More specifically as if the following (ignoring any differences in
1536      * numerical accuracy):
1537      * <pre>{@code
1538      *   this.mul(this).add(this.species().broadcast(v * v)).sqrt()
1539      * }</pre>
1540      * <p>
1541      * This is a vector binary operation with same semantic definition as
1542      * {@link Math#hypot} operation applied to lane elements.
1543      * The implementation is not required to return same
1544      * results as {@link Math#hypot}, but adheres to rounding, monotonicity,
1545      * and special case semantics as defined in the {@link Math#hypot}
1546      * specifications. The computed result will be within 1 ulp of the
1547      * exact result.
1548      *
1549      * @param s the input scalar
1550      * @return square root of the sum of the squares of this vector and the
1551      * broadcast of an input scalar
1552      */
1553     public abstract FloatVector hypot(float s);
1554 
1555     /**
1556      * Calculates square root of the sum of the squares of this vector and an
1557      * input vector, selecting lane elements controlled by a mask.
1558      * More specifically as if the following (ignoring any differences in
1559      * numerical accuracy):
1560      * <pre>{@code
1561      *   this.mul(this, m).add(v.mul(v), m).sqrt(m)
1562      * }</pre>
1563      * <p>
1564      * Semantics for rounding, monotonicity, and special cases are
1565      * described in {@link FloatVector#hypot}
1566      *
1567      * @param v the input vector
1568      * @param m the mask controlling lane selection
1569      * @return square root of the sum of the squares of this vector and an input
1570      * vector
1571      */
1572     public FloatVector hypot(Vector<Float> v, VectorMask<Float> m) {
1573         return bOp(v, m, (i, a, b) -> (float) Math.hypot((double) a, (double) b));
1574     }
1575 
1576     /**
1577      * Calculates square root of the sum of the squares of this vector and the
1578      * broadcast of an input scalar, selecting lane elements controlled by a
1579      * mask.
1580      * More specifically as if the following (ignoring any differences in
1581      * numerical accuracy):
1582      * <pre>{@code
1583      *   this.mul(this, m).add(this.species().broadcast(v * v), m).sqrt(m)
1584      * }</pre>
1585      * <p>
1586      * Semantics for rounding, monotonicity, and special cases are
1587      * described in {@link FloatVector#hypot}
1588      *
1589      * @param s the input scalar
1590      * @param m the mask controlling lane selection
1591      * @return square root of the sum of the squares of this vector and the
1592      * broadcast of an input scalar
1593      */
1594     public abstract FloatVector hypot(float s, VectorMask<Float> m);
1595 
1596 
1597     @Override
1598     public abstract void intoByteArray(byte[] a, int ix);
1599 
1600     @Override
1601     public abstract void intoByteArray(byte[] a, int ix, VectorMask<Float> m);
1602 
1603     @Override
1604     public abstract void intoByteBuffer(ByteBuffer bb, int ix);
1605 
1606     @Override
1607     public abstract void intoByteBuffer(ByteBuffer bb, int ix, VectorMask<Float> m);
1608 
1609 
1610     // Type specific horizontal reductions
1611     /**
1612      * Adds all lane elements of this vector.
1613      * <p>
1614      * This is a vector reduction operation where the addition
1615      * operation ({@code +}) is applied to lane elements,
1616      * and the identity value is {@code 0.0}.
1617      *
1618      * <p>The value of a floating-point sum is a function both of the input values as well
1619      * as the order of addition operations. The order of addition operations of this method
1620      * is intentionally not defined to allow for JVM to generate optimal machine
1621      * code for the underlying platform at runtime. If the platform supports a vector
1622      * instruction to add all values in the vector, or if there is some other efficient machine
1623      * code sequence, then the JVM has the option of generating this machine code. Otherwise,
1624      * the default implementation of adding vectors sequentially from left to right is used.
1625      * For this reason, the output of this method may vary for the same input values.
1626      *
1627      * @return the addition of all the lane elements of this vector
1628      */
1629     public abstract float addAll();
1630 
1631     /**
1632      * Adds all lane elements of this vector, selecting lane elements
1633      * controlled by a mask.
1634      * <p>
1635      * This is a vector reduction operation where the addition
1636      * operation ({@code +}) is applied to lane elements,
1637      * and the identity value is {@code 0.0}.
1638      *
1639      * <p>The value of a floating-point sum is a function both of the input values as well
1640      * as the order of addition operations. The order of addition operations of this method
1641      * is intentionally not defined to allow for JVM to generate optimal machine
1642      * code for the underlying platform at runtime. If the platform supports a vector
1643      * instruction to add all values in the vector, or if there is some other efficient machine
1644      * code sequence, then the JVM has the option of generating this machine code. Otherwise,
1645      * the default implementation of adding vectors sequentially from left to right is used.
1646      * For this reason, the output of this method may vary on the same input values.
1647      *
1648      * @param m the mask controlling lane selection
1649      * @return the addition of the selected lane elements of this vector
1650      */
1651     public abstract float addAll(VectorMask<Float> m);
1652 
1653     /**
1654      * Multiplies all lane elements of this vector.
1655      * <p>
1656      * This is a vector reduction operation where the
1657      * multiplication operation ({@code *}) is applied to lane elements,
1658      * and the identity value is {@code 1.0}.
1659      *
1660      * <p>The order of multiplication operations of this method
1661      * is intentionally not defined to allow for JVM to generate optimal machine
1662      * code for the underlying platform at runtime. If the platform supports a vector
1663      * instruction to multiply all values in the vector, or if there is some other efficient machine
1664      * code sequence, then the JVM has the option of generating this machine code. Otherwise,
1665      * the default implementation of multiplying vectors sequentially from left to right is used.
1666      * For this reason, the output of this method may vary on the same input values.
1667      *
1668      * @return the multiplication of all the lane elements of this vector
1669      */
1670     public abstract float mulAll();
1671 
1672     /**
1673      * Multiplies all lane elements of this vector, selecting lane elements
1674      * controlled by a mask.
1675      * <p>
1676      * This is a vector reduction operation where the
1677      * multiplication operation ({@code *}) is applied to lane elements,
1678      * and the identity value is {@code 1.0}.
1679      *
1680      * <p>The order of multiplication operations of this method
1681      * is intentionally not defined to allow for JVM to generate optimal machine
1682      * code for the underlying platform at runtime. If the platform supports a vector
1683      * instruction to multiply all values in the vector, or if there is some other efficient machine
1684      * code sequence, then the JVM has the option of generating this machine code. Otherwise,
1685      * the default implementation of multiplying vectors sequentially from left to right is used.
1686      * For this reason, the output of this method may vary on the same input values.
1687      *
1688      * @param m the mask controlling lane selection
1689      * @return the multiplication of all the lane elements of this vector
1690      */
1691     public abstract float mulAll(VectorMask<Float> m);
1692 
1693     /**
1694      * Returns the minimum lane element of this vector.
1695      * <p>
1696      * This is an associative vector reduction operation where the operation
1697      * {@code (a, b) -> Math.min(a, b)} is applied to lane elements,
1698      * and the identity value is
1699      * {@link Float#POSITIVE_INFINITY}.
1700      *
1701      * @return the minimum lane element of this vector
1702      */
1703     public abstract float minAll();
1704 
1705     /**
1706      * Returns the minimum lane element of this vector, selecting lane elements
1707      * controlled by a mask.
1708      * <p>
1709      * This is an associative vector reduction operation where the operation
1710      * {@code (a, b) -> Math.min(a, b)} is applied to lane elements,
1711      * and the identity value is
1712      * {@link Float#POSITIVE_INFINITY}.
1713      *
1714      * @param m the mask controlling lane selection
1715      * @return the minimum lane element of this vector
1716      */
1717     public abstract float minAll(VectorMask<Float> m);
1718 
1719     /**
1720      * Returns the maximum lane element of this vector.
1721      * <p>
1722      * This is an associative vector reduction operation where the operation
1723      * {@code (a, b) -> Math.max(a, b)} is applied to lane elements,
1724      * and the identity value is
1725      * {@link Float#NEGATIVE_INFINITY}.
1726      *
1727      * @return the maximum lane element of this vector
1728      */
1729     public abstract float maxAll();
1730 
1731     /**
1732      * Returns the maximum lane element of this vector, selecting lane elements
1733      * controlled by a mask.
1734      * <p>
1735      * This is an associative vector reduction operation where the operation
1736      * {@code (a, b) -> Math.max(a, b)} is applied to lane elements,
1737      * and the identity value is
1738      * {@link Float#NEGATIVE_INFINITY}.
1739      *
1740      * @param m the mask controlling lane selection
1741      * @return the maximum lane element of this vector
1742      */
1743     public abstract float maxAll(VectorMask<Float> m);
1744 
1745 
1746     // Type specific accessors
1747 
1748     /**
1749      * Gets the lane element at lane index {@code i}
1750      *
1751      * @param i the lane index
1752      * @return the lane element at lane index {@code i}
1753      * @throws IllegalArgumentException if the index is is out of range
1754      * ({@code < 0 || >= length()})
1755      */
1756     public abstract float get(int i);
1757 
1758     /**
1759      * Replaces the lane element of this vector at lane index {@code i} with
1760      * value {@code e}.
1761      * <p>
1762      * This is a cross-lane operation and behaves as if it returns the result
1763      * of blending this vector with an input vector that is the result of
1764      * broadcasting {@code e} and a mask that has only one lane set at lane
1765      * index {@code i}.
1766      *
1767      * @param i the lane index of the lane element to be replaced
1768      * @param e the value to be placed
1769      * @return the result of replacing the lane element of this vector at lane
1770      * index {@code i} with value {@code e}.
1771      * @throws IllegalArgumentException if the index is is out of range
1772      * ({@code < 0 || >= length()})
1773      */
1774     public abstract FloatVector with(int i, float e);
1775 
1776     // Type specific extractors
1777 
1778     /**
1779      * Returns an array containing the lane elements of this vector.
1780      * <p>
1781      * This method behaves as if it {@link #intoArray(float[], int)} stores}
1782      * this vector into an allocated array and returns the array as follows:
1783      * <pre>{@code
1784      *   float[] a = new float[this.length()];
1785      *   this.intoArray(a, 0);
1786      *   return a;
1787      * }</pre>
1788      *
1789      * @return an array containing the the lane elements of this vector
1790      */
1791     @ForceInline
1792     public final float[] toArray() {
1793         float[] a = new float[species().length()];
1794         intoArray(a, 0);
1795         return a;
1796     }
1797 
1798     /**
1799      * Stores this vector into an array starting at offset.
1800      * <p>
1801      * For each vector lane, where {@code N} is the vector lane index,
1802      * the lane element at index {@code N} is stored into the array at index
1803      * {@code i + N}.
1804      *
1805      * @param a the array
1806      * @param i the offset into the array
1807      * @throws IndexOutOfBoundsException if {@code i < 0}, or
1808      * {@code i > a.length - this.length()}
1809      */
1810     public abstract void intoArray(float[] a, int i);
1811 
1812     /**
1813      * Stores this vector into an array starting at offset and using a mask.
1814      * <p>
1815      * For each vector lane, where {@code N} is the vector lane index,
1816      * if the mask lane at index {@code N} is set then the lane element at
1817      * index {@code N} is stored into the array index {@code i + N}.
1818      *
1819      * @param a the array
1820      * @param i the offset into the array
1821      * @param m the mask
1822      * @throws IndexOutOfBoundsException if {@code i < 0}, or
1823      * for any vector lane index {@code N} where the mask at lane {@code N}
1824      * is set {@code i >= a.length - N}
1825      */
1826     public abstract void intoArray(float[] a, int i, VectorMask<Float> m);
1827 
1828     /**
1829      * Stores this vector into an array using indexes obtained from an index
1830      * map.
1831      * <p>
1832      * For each vector lane, where {@code N} is the vector lane index, the
1833      * lane element at index {@code N} is stored into the array at index
1834      * {@code i + indexMap[j + N]}.
1835      *
1836      * @param a the array
1837      * @param i the offset into the array, may be negative if relative
1838      * indexes in the index map compensate to produce a value within the
1839      * array bounds
1840      * @param indexMap the index map
1841      * @param j the offset into the index map
1842      * @throws IndexOutOfBoundsException if {@code j < 0}, or
1843      * {@code j > indexMap.length - this.length()},
1844      * or for any vector lane index {@code N} the result of
1845      * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length}
1846      */
1847     public abstract void intoArray(float[] a, int i, int[] indexMap, int j);
1848 
1849     /**
1850      * Stores this vector into an array using indexes obtained from an index
1851      * map and using a mask.
1852      * <p>
1853      * For each vector lane, where {@code N} is the vector lane index,
1854      * if the mask lane at index {@code N} is set then the lane element at
1855      * index {@code N} is stored into the array at index
1856      * {@code i + indexMap[j + N]}.
1857      *
1858      * @param a the array
1859      * @param i the offset into the array, may be negative if relative
1860      * indexes in the index map compensate to produce a value within the
1861      * array bounds
1862      * @param m the mask
1863      * @param indexMap the index map
1864      * @param j the offset into the index map
1865      * @throws IndexOutOfBoundsException if {@code j < 0}, or
1866      * {@code j > indexMap.length - this.length()},
1867      * or for any vector lane index {@code N} where the mask at lane
1868      * {@code N} is set the result of {@code i + indexMap[j + N]} is
1869      * {@code < 0} or {@code >= a.length}
1870      */
1871     public abstract void intoArray(float[] a, int i, VectorMask<Float> m, int[] indexMap, int j);
1872     // Species
1873 
1874     @Override
1875     public abstract VectorSpecies<Float> species();
1876 
1877     /**
1878      * Class representing {@link FloatVector}'s of the same {@link VectorShape VectorShape}.
1879      */
1880     static final class FloatSpecies extends AbstractSpecies<Float> {
1881         final Function<float[], FloatVector> vectorFactory;
1882 
1883         private FloatSpecies(VectorShape shape,
1884                           Class<?> boxType,
1885                           Class<?> maskType,
1886                           Function<float[], FloatVector> vectorFactory,
1887                           Function<boolean[], VectorMask<Float>> maskFactory,
1888                           Function<IntUnaryOperator, VectorShuffle<Float>> shuffleFromArrayFactory,
1889                           fShuffleFromArray<Float> shuffleFromOpFactory) {
1890             super(shape, float.class, Float.SIZE, boxType, maskType, maskFactory,
1891                   shuffleFromArrayFactory, shuffleFromOpFactory);
1892             this.vectorFactory = vectorFactory;
1893         }
1894 
1895         interface FOp {
1896             float apply(int i);
1897         }
1898 
1899         FloatVector op(FOp f) {
1900             float[] res = new float[length()];
1901             for (int i = 0; i < length(); i++) {
1902                 res[i] = f.apply(i);
1903             }
1904             return vectorFactory.apply(res);
1905         }
1906 
1907         FloatVector op(VectorMask<Float> o, FOp f) {
1908             float[] res = new float[length()];
1909             boolean[] mbits = ((AbstractMask<Float>)o).getBits();
1910             for (int i = 0; i < length(); i++) {
1911                 if (mbits[i]) {
1912                     res[i] = f.apply(i);
1913                 }
1914             }
1915             return vectorFactory.apply(res);
1916         }
1917     }
1918 
1919     /**
1920      * Finds the preferred species for an element type of {@code float}.
1921      * <p>
1922      * A preferred species is a species chosen by the platform that has a
1923      * shape of maximal bit size.  A preferred species for different element
1924      * types will have the same shape, and therefore vectors, masks, and
1925      * shuffles created from such species will be shape compatible.
1926      *
1927      * @return the preferred species for an element type of {@code float}
1928      */
1929     private static FloatSpecies preferredSpecies() {
1930         return (FloatSpecies) VectorSpecies.ofPreferred(float.class);
1931     }
1932 
1933     /**
1934      * Finds a species for an element type of {@code float} and shape.
1935      *
1936      * @param s the shape
1937      * @return a species for an element type of {@code float} and shape
1938      * @throws IllegalArgumentException if no such species exists for the shape
1939      */
1940     static FloatSpecies species(VectorShape s) {
1941         Objects.requireNonNull(s);
1942         switch (s) {
1943             case S_64_BIT: return (FloatSpecies) SPECIES_64;
1944             case S_128_BIT: return (FloatSpecies) SPECIES_128;
1945             case S_256_BIT: return (FloatSpecies) SPECIES_256;
1946             case S_512_BIT: return (FloatSpecies) SPECIES_512;
1947             case S_Max_BIT: return (FloatSpecies) SPECIES_MAX;
1948             default: throw new IllegalArgumentException("Bad shape: " + s);
1949         }
1950     }
1951 
1952     /** Species representing {@link FloatVector}s of {@link VectorShape#S_64_BIT VectorShape.S_64_BIT}. */
1953     public static final VectorSpecies<Float> SPECIES_64 = new FloatSpecies(VectorShape.S_64_BIT, Float64Vector.class, Float64Vector.Float64Mask.class,
1954                                                                      Float64Vector::new, Float64Vector.Float64Mask::new,
1955                                                                      Float64Vector.Float64Shuffle::new, Float64Vector.Float64Shuffle::new);
1956 
1957     /** Species representing {@link FloatVector}s of {@link VectorShape#S_128_BIT VectorShape.S_128_BIT}. */
1958     public static final VectorSpecies<Float> SPECIES_128 = new FloatSpecies(VectorShape.S_128_BIT, Float128Vector.class, Float128Vector.Float128Mask.class,
1959                                                                       Float128Vector::new, Float128Vector.Float128Mask::new,
1960                                                                       Float128Vector.Float128Shuffle::new, Float128Vector.Float128Shuffle::new);
1961 
1962     /** Species representing {@link FloatVector}s of {@link VectorShape#S_256_BIT VectorShape.S_256_BIT}. */
1963     public static final VectorSpecies<Float> SPECIES_256 = new FloatSpecies(VectorShape.S_256_BIT, Float256Vector.class, Float256Vector.Float256Mask.class,
1964                                                                       Float256Vector::new, Float256Vector.Float256Mask::new,
1965                                                                       Float256Vector.Float256Shuffle::new, Float256Vector.Float256Shuffle::new);
1966 
1967     /** Species representing {@link FloatVector}s of {@link VectorShape#S_512_BIT VectorShape.S_512_BIT}. */
1968     public static final VectorSpecies<Float> SPECIES_512 = new FloatSpecies(VectorShape.S_512_BIT, Float512Vector.class, Float512Vector.Float512Mask.class,
1969                                                                       Float512Vector::new, Float512Vector.Float512Mask::new,
1970                                                                       Float512Vector.Float512Shuffle::new, Float512Vector.Float512Shuffle::new);
1971 
1972     /** Species representing {@link FloatVector}s of {@link VectorShape#S_Max_BIT VectorShape.S_Max_BIT}. */
1973     public static final VectorSpecies<Float> SPECIES_MAX = new FloatSpecies(VectorShape.S_Max_BIT, FloatMaxVector.class, FloatMaxVector.FloatMaxMask.class,
1974                                                                       FloatMaxVector::new, FloatMaxVector.FloatMaxMask::new,
1975                                                                       FloatMaxVector.FloatMaxShuffle::new, FloatMaxVector.FloatMaxShuffle::new);
1976 
1977     /**
1978      * Preferred species for {@link FloatVector}s.
1979      * A preferred species is a species of maximal bit size for the platform.
1980      */
1981     public static final VectorSpecies<Float> SPECIES_PREFERRED = (VectorSpecies<Float>) preferredSpecies();
1982 }