< prev index next >

src/jdk.incubator.vector/share/classes/jdk/incubator/vector/ByteVector.java

Print this page
rev 55885 : 8222752: [vector] Javadoc changes for Vector api
Summary: Javadoc changes for Vector api
Reviewed-by: jrose, briangoetz, vlivanov, sviswanathan

@@ -122,30 +122,30 @@
      * Bytes are composed into primitive lane elements according to the
      * native byte order of the underlying platform
      * <p>
      * This method behaves as if it returns the result of calling the
      * byte buffer, offset, and mask accepting
-     * {@link #fromByteBuffer(VectorSpecies<Byte>, ByteBuffer, int, VectorMask) method} as follows:
+     * {@link #fromByteBuffer(VectorSpecies, ByteBuffer, int, VectorMask) method} as follows:
      * <pre>{@code
-     * return this.fromByteBuffer(ByteBuffer.wrap(a), i, this.maskAllTrue());
+     * return fromByteBuffer(species, ByteBuffer.wrap(a), offset, VectorMask.allTrue());
      * }</pre>
      *
      * @param species species of desired vector
      * @param a the byte array
-     * @param ix the offset into the array
+     * @param offset the offset into the array
      * @return a vector loaded from a byte array
      * @throws IndexOutOfBoundsException if {@code i < 0} or
-     * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)}
+     * {@code offset > a.length - (species.length() * species.elementSize() / Byte.SIZE)}
      */
     @ForceInline
     @SuppressWarnings("unchecked")
-    public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int ix) {
+    public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int offset) {
         Objects.requireNonNull(a);
-        ix = VectorIntrinsics.checkIndex(ix, a.length, species.bitSize() / Byte.SIZE);
+        offset = VectorIntrinsics.checkIndex(offset, a.length, species.bitSize() / Byte.SIZE);
         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
-                                     a, ((long) ix) + Unsafe.ARRAY_BYTE_BASE_OFFSET,
-                                     a, ix, species,
+                                     a, ((long) offset) + Unsafe.ARRAY_BYTE_BASE_OFFSET,
+                                     a, offset, species,
                                      (c, idx, s) -> {
                                          ByteBuffer bbc = ByteBuffer.wrap(c, idx, a.length - idx).order(ByteOrder.nativeOrder());
                                          ByteBuffer tb = bbc;
                                          return ((ByteSpecies)s).op(i -> tb.get());
                                      });

@@ -158,132 +158,129 @@
      * Bytes are composed into primitive lane elements according to the
      * native byte order of the underlying platform.
      * <p>
      * This method behaves as if it returns the result of calling the
      * byte buffer, offset, and mask accepting
-     * {@link #fromByteBuffer(VectorSpecies<Byte>, ByteBuffer, int, VectorMask) method} as follows:
+     * {@link #fromByteBuffer(VectorSpecies, ByteBuffer, int, VectorMask) method} as follows:
      * <pre>{@code
-     * return this.fromByteBuffer(ByteBuffer.wrap(a), i, m);
+     * return fromByteBuffer(species, ByteBuffer.wrap(a), offset, m);
      * }</pre>
      *
      * @param species species of desired vector
      * @param a the byte array
-     * @param ix the offset into the array
+     * @param offset the offset into the array
      * @param m the mask
      * @return a vector loaded from a byte array
-     * @throws IndexOutOfBoundsException if {@code i < 0} or
-     * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)}
-     * @throws IndexOutOfBoundsException if the offset is {@code < 0},
-     * or {@code > a.length},
+     * @throws IndexOutOfBoundsException if {@code offset < 0} or
      * for any vector lane index {@code N} where the mask at lane {@code N}
      * is set
-     * {@code i >= a.length - (N * this.elementSize() / Byte.SIZE)}
+     * {@code offset >= a.length - (N * species.elementSize() / Byte.SIZE)}
      */
     @ForceInline
-    public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int ix, VectorMask<Byte> m) {
-        return zero(species).blend(fromByteArray(species, a, ix), m);
+    public static ByteVector fromByteArray(VectorSpecies<Byte> species, byte[] a, int offset, VectorMask<Byte> m) {
+        return zero(species).blend(fromByteArray(species, a, offset), m);
     }
 
     /**
      * Loads a vector from an array starting at offset.
      * <p>
      * For each vector lane, where {@code N} is the vector lane index, the
-     * array element at index {@code i + N} is placed into the
+     * array element at index {@code offset + N} is placed into the
      * resulting vector at lane index {@code N}.
      *
      * @param species species of desired vector
      * @param a the array
-     * @param i the offset into the array
+     * @param offset the offset into the array
      * @return the vector loaded from an array
-     * @throws IndexOutOfBoundsException if {@code i < 0}, or
-     * {@code i > a.length - this.length()}
+     * @throws IndexOutOfBoundsException if {@code offset < 0}, or
+     * {@code offset > a.length - species.length()}
      */
     @ForceInline
     @SuppressWarnings("unchecked")
-    public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i){
+    public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int offset){
         Objects.requireNonNull(a);
-        i = VectorIntrinsics.checkIndex(i, a.length, species.length());
+        offset = VectorIntrinsics.checkIndex(offset, a.length, species.length());
         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
-                                     a, (((long) i) << ARRAY_SHIFT) + Unsafe.ARRAY_BYTE_BASE_OFFSET,
-                                     a, i, species,
+                                     a, (((long) offset) << ARRAY_SHIFT) + Unsafe.ARRAY_BYTE_BASE_OFFSET,
+                                     a, offset, species,
                                      (c, idx, s) -> ((ByteSpecies)s).op(n -> c[idx + n]));
     }
 
 
     /**
      * Loads a vector from an array starting at offset and using a mask.
      * <p>
      * For each vector lane, where {@code N} is the vector lane index,
      * if the mask lane at index {@code N} is set then the array element at
-     * index {@code i + N} is placed into the resulting vector at lane index
+     * index {@code offset + N} is placed into the resulting vector at lane index
      * {@code N}, otherwise the default element value is placed into the
      * resulting vector at lane index {@code N}.
      *
      * @param species species of desired vector
      * @param a the array
-     * @param i the offset into the array
+     * @param offset the offset into the array
      * @param m the mask
      * @return the vector loaded from an array
-     * @throws IndexOutOfBoundsException if {@code i < 0}, or
+     * @throws IndexOutOfBoundsException if {@code offset < 0}, or
      * for any vector lane index {@code N} where the mask at lane {@code N}
-     * is set {@code i > a.length - N}
+     * is set {@code offset > a.length - N}
      */
     @ForceInline
-    public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i, VectorMask<Byte> m) {
-        return zero(species).blend(fromArray(species, a, i), m);
+    public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int offset, VectorMask<Byte> m) {
+        return zero(species).blend(fromArray(species, a, offset), m);
     }
 
     /**
      * Loads a vector from an array using indexes obtained from an index
      * map.
      * <p>
      * For each vector lane, where {@code N} is the vector lane index, the
-     * array element at index {@code i + indexMap[j + N]} is placed into the
+     * array element at index {@code a_offset + indexMap[i_offset + N]} is placed into the
      * resulting vector at lane index {@code N}.
      *
      * @param species species of desired vector
      * @param a the array
-     * @param i the offset into the array, may be negative if relative
+     * @param a_offset the offset into the array, may be negative if relative
      * indexes in the index map compensate to produce a value within the
      * array bounds
      * @param indexMap the index map
-     * @param j the offset into the index map
+     * @param i_offset the offset into the index map
      * @return the vector loaded from an array
-     * @throws IndexOutOfBoundsException if {@code j < 0}, or
-     * {@code j > indexMap.length - this.length()},
+     * @throws IndexOutOfBoundsException if {@code i_offset < 0}, or
+     * {@code i_offset > indexMap.length - species.length()},
      * or for any vector lane index {@code N} the result of
-     * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length}
+     * {@code a_offset + indexMap[i_offset + N]} is {@code < 0} or {@code >= a.length}
      */
-    public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i, int[] indexMap, int j) {
-        return ((ByteSpecies)species).op(n -> a[i + indexMap[j + n]]);
+    public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int a_offset, int[] indexMap, int i_offset) {
+        return ((ByteSpecies)species).op(n -> a[a_offset + indexMap[i_offset + n]]);
     }
     /**
      * Loads a vector from an array using indexes obtained from an index
      * map and using a mask.
      * <p>
      * For each vector lane, where {@code N} is the vector lane index,
      * if the mask lane at index {@code N} is set then the array element at
-     * index {@code i + indexMap[j + N]} is placed into the resulting vector
+     * index {@code a_offset + indexMap[i_offset + N]} is placed into the resulting vector
      * at lane index {@code N}.
      *
      * @param species species of desired vector
      * @param a the array
-     * @param i the offset into the array, may be negative if relative
+     * @param a_offset the offset into the array, may be negative if relative
      * indexes in the index map compensate to produce a value within the
      * array bounds
      * @param m the mask
      * @param indexMap the index map
-     * @param j the offset into the index map
+     * @param i_offset the offset into the index map
      * @return the vector loaded from an array
-     * @throws IndexOutOfBoundsException if {@code j < 0}, or
-     * {@code j > indexMap.length - this.length()},
+     * @throws IndexOutOfBoundsException if {@code i_offset < 0}, or
+     * {@code i_offset > indexMap.length - species.length()},
      * or for any vector lane index {@code N} where the mask at lane
-     * {@code N} is set the result of {@code i + indexMap[j + N]} is
+     * {@code N} is set the result of {@code a_offset + indexMap[i_offset + N]} is
      * {@code < 0} or {@code >= a.length}
      */
-    public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int i, VectorMask<Byte> m, int[] indexMap, int j) {
-        return ((ByteSpecies)species).op(m, n -> a[i + indexMap[j + n]]);
+    public static ByteVector fromArray(VectorSpecies<Byte> species, byte[] a, int a_offset, VectorMask<Byte> m, int[] indexMap, int i_offset) {
+        return ((ByteSpecies)species).op(m, n -> a[a_offset + indexMap[i_offset + n]]);
     }
 
     /**
      * Loads a vector from a {@link ByteBuffer byte buffer} starting at an
      * offset into the byte buffer.

@@ -291,35 +288,35 @@
      * Bytes are composed into primitive lane elements according to the
      * native byte order of the underlying platform.
      * <p>
      * This method behaves as if it returns the result of calling the
      * byte buffer, offset, and mask accepting
-     * {@link #fromByteBuffer(VectorSpecies<Byte>, ByteBuffer, int, VectorMask)} method} as follows:
+     * {@link #fromByteBuffer(VectorSpecies, ByteBuffer, int, VectorMask)} method} as follows:
      * <pre>{@code
-     *   return this.fromByteBuffer(b, i, this.maskAllTrue())
+     *   return fromByteBuffer(b, offset, VectorMask.allTrue())
      * }</pre>
      *
      * @param species species of desired vector
      * @param bb the byte buffer
-     * @param ix the offset into the byte buffer
+     * @param offset the offset into the byte buffer
      * @return a vector loaded from a byte buffer
      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
      * or {@code > b.limit()},
      * or if there are fewer than
-     * {@code this.length() * this.elementSize() / Byte.SIZE} bytes
+     * {@code species.length() * species.elementSize() / Byte.SIZE} bytes
      * remaining in the byte buffer from the given offset
      */
     @ForceInline
     @SuppressWarnings("unchecked")
-    public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int ix) {
+    public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int offset) {
         if (bb.order() != ByteOrder.nativeOrder()) {
             throw new IllegalArgumentException();
         }
-        ix = VectorIntrinsics.checkIndex(ix, bb.limit(), species.bitSize() / Byte.SIZE);
+        offset = VectorIntrinsics.checkIndex(offset, bb.limit(), species.bitSize() / Byte.SIZE);
         return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
-                                     U.getReference(bb, BYTE_BUFFER_HB), U.getLong(bb, BUFFER_ADDRESS) + ix,
-                                     bb, ix, species,
+                                     U.getReference(bb, BYTE_BUFFER_HB), U.getLong(bb, BUFFER_ADDRESS) + offset,
+                                     bb, offset, species,
                                      (c, idx, s) -> {
                                          ByteBuffer bbc = c.duplicate().position(idx).order(ByteOrder.nativeOrder());
                                          ByteBuffer tb = bbc;
                                          return ((ByteSpecies)s).op(i -> tb.get());
                                      });

@@ -333,350 +330,413 @@
      * {@link java.nio.Buffer buffer} for the primitive element type,
      * according to the native byte order of the underlying platform, and
      * the returned vector is loaded with a mask from a primitive array
      * obtained from the primitive buffer.
      * The following pseudocode expresses the behaviour, where
-     * {@coce EBuffer} is the primitive buffer type, {@code e} is the
-     * primitive element type, and {@code ESpecies<S>} is the primitive
+     * {@code EBuffer} is the primitive buffer type, {@code e} is the
+     * primitive element type, and {@code ESpecies} is the primitive
      * species for {@code e}:
      * <pre>{@code
      * EBuffer eb = b.duplicate().
-     *     order(ByteOrder.nativeOrder()).position(i).
+     *     order(ByteOrder.nativeOrder()).position(offset).
      *     asEBuffer();
-     * e[] es = new e[this.length()];
+     * e[] es = new e[species.length()];
      * for (int n = 0; n < t.length; n++) {
      *     if (m.isSet(n))
      *         es[n] = eb.get(n);
      * }
-     * Vector<E> r = ((ESpecies<S>)this).fromArray(es, 0, m);
+     * EVector r = EVector.fromArray(es, 0, m);
      * }</pre>
      *
      * @param species species of desired vector
      * @param bb the byte buffer
-     * @param ix the offset into the byte buffer
+     * @param offset the offset into the byte buffer
      * @param m the mask
      * @return a vector loaded from a byte buffer
      * @throws IndexOutOfBoundsException if the offset is {@code < 0},
      * or {@code > b.limit()},
      * for any vector lane index {@code N} where the mask at lane {@code N}
      * is set
-     * {@code i >= b.limit() - (N * this.elementSize() / Byte.SIZE)}
+     * {@code offset >= b.limit() - (N * species.elementSize() / Byte.SIZE)}
      */
     @ForceInline
-    public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int ix, VectorMask<Byte> m) {
-        return zero(species).blend(fromByteBuffer(species, bb, ix), m);
+    public static ByteVector fromByteBuffer(VectorSpecies<Byte> species, ByteBuffer bb, int offset, VectorMask<Byte> m) {
+        return zero(species).blend(fromByteBuffer(species, bb, offset), m);
     }
 
     /**
      * Returns a vector where all lane elements are set to the primitive
      * value {@code e}.
      *
-     * @param s species of the desired vector
+     * @param species species of the desired vector
      * @param e the value
      * @return a vector of vector where all lane elements are set to
      * the primitive value {@code e}
      */
     @ForceInline
     @SuppressWarnings("unchecked")
-    public static ByteVector broadcast(VectorSpecies<Byte> s, byte e) {
+    public static ByteVector broadcast(VectorSpecies<Byte> species, byte e) {
         return VectorIntrinsics.broadcastCoerced(
-            (Class<ByteVector>) s.boxType(), byte.class, s.length(),
-            e, s,
+            (Class<ByteVector>) species.boxType(), byte.class, species.length(),
+            e, species,
             ((bits, sp) -> ((ByteSpecies)sp).op(i -> (byte)bits)));
     }
 
     /**
-     * Returns a vector where each lane element is set to a given
-     * primitive value.
+     * Returns a vector where each lane element is set to given
+     * primitive values.
      * <p>
      * For each vector lane, where {@code N} is the vector lane index, the
      * the primitive value at index {@code N} is placed into the resulting
      * vector at lane index {@code N}.
      *
-     * @param s species of the desired vector
+     * @param species species of the desired vector
      * @param es the given primitive values
-     * @return a vector where each lane element is set to a given primitive
-     * value
-     * @throws IndexOutOfBoundsException if {@code es.length < this.length()}
+     * @return a vector where each lane element is set to given primitive
+     * values
+     * @throws IndexOutOfBoundsException if {@code es.length < species.length()}
      */
     @ForceInline
     @SuppressWarnings("unchecked")
-    public static ByteVector scalars(VectorSpecies<Byte> s, byte... es) {
+    public static ByteVector scalars(VectorSpecies<Byte> species, byte... es) {
         Objects.requireNonNull(es);
-        int ix = VectorIntrinsics.checkIndex(0, es.length, s.length());
-        return VectorIntrinsics.load((Class<ByteVector>) s.boxType(), byte.class, s.length(),
+        int ix = VectorIntrinsics.checkIndex(0, es.length, species.length());
+        return VectorIntrinsics.load((Class<ByteVector>) species.boxType(), byte.class, species.length(),
                                      es, Unsafe.ARRAY_BYTE_BASE_OFFSET,
-                                     es, ix, s,
+                                     es, ix, species,
                                      (c, idx, sp) -> ((ByteSpecies)sp).op(n -> c[idx + n]));
     }
 
     /**
      * Returns a vector where the first lane element is set to the primtive
      * value {@code e}, all other lane elements are set to the default
      * value.
      *
-     * @param s species of the desired vector
+     * @param species species of the desired vector
      * @param e the value
      * @return a vector where the first lane element is set to the primitive
      * value {@code e}
      */
     @ForceInline
-    public static final ByteVector single(VectorSpecies<Byte> s, byte e) {
-        return zero(s).with(0, e);
+    public static final ByteVector single(VectorSpecies<Byte> species, byte e) {
+        return zero(species).with(0, e);
     }
 
     /**
      * Returns a vector where each lane element is set to a randomly
      * generated primitive value.
      *
      * The semantics are equivalent to calling
      * (byte){@link ThreadLocalRandom#nextInt()}
      *
-     * @param s species of the desired vector
+     * @param species species of the desired vector
      * @return a vector where each lane elements is set to a randomly
      * generated primitive value
      */
-    public static ByteVector random(VectorSpecies<Byte> s) {
+    public static ByteVector random(VectorSpecies<Byte> species) {
         ThreadLocalRandom r = ThreadLocalRandom.current();
-        return ((ByteSpecies)s).op(i -> (byte) r.nextInt());
+        return ((ByteSpecies)species).op(i -> (byte) r.nextInt());
     }
 
     // Ops
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector add(Vector<Byte> v);
 
     /**
      * Adds this vector to the broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the primitive addition operation
-     * ({@code +}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive addition operation
+     * ({@code +}) to each lane.
      *
      * @param s the input scalar
      * @return the result of adding this vector to the broadcast of an input
      * scalar
      */
     public abstract ByteVector add(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector add(Vector<Byte> v, VectorMask<Byte> m);
 
     /**
      * Adds this vector to broadcast of an input scalar,
      * selecting lane elements controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive addition operation
-     * ({@code +}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive addition operation
+     * ({@code +}) to each lane.
      *
      * @param s the input scalar
      * @param m the mask controlling lane selection
      * @return the result of adding this vector to the broadcast of an input
      * scalar
      */
     public abstract ByteVector add(byte s, VectorMask<Byte> m);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector sub(Vector<Byte> v);
 
     /**
      * Subtracts the broadcast of an input scalar from this vector.
      * <p>
-     * This is a vector binary operation where the primitive subtraction
-     * operation ({@code -}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive subtraction
+     * operation ({@code -}) to each lane.
      *
      * @param s the input scalar
      * @return the result of subtracting the broadcast of an input
      * scalar from this vector
      */
     public abstract ByteVector sub(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector sub(Vector<Byte> v, VectorMask<Byte> m);
 
     /**
      * Subtracts the broadcast of an input scalar from this vector, selecting
      * lane elements controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive subtraction
-     * operation ({@code -}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive subtraction
+     * operation ({@code -}) to each lane.
      *
      * @param s the input scalar
      * @param m the mask controlling lane selection
      * @return the result of subtracting the broadcast of an input
      * scalar from this vector
      */
     public abstract ByteVector sub(byte s, VectorMask<Byte> m);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector mul(Vector<Byte> v);
 
     /**
      * Multiplies this vector with the broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the primitive multiplication
-     * operation ({@code *}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive multiplication
+     * operation ({@code *}) to each lane.
      *
      * @param s the input scalar
      * @return the result of multiplying this vector with the broadcast of an
      * input scalar
      */
     public abstract ByteVector mul(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector mul(Vector<Byte> v, VectorMask<Byte> m);
 
     /**
      * Multiplies this vector with the broadcast of an input scalar, selecting
      * lane elements controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive multiplication
-     * operation ({@code *}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive multiplication
+     * operation ({@code *}) to each lane.
      *
      * @param s the input scalar
      * @param m the mask controlling lane selection
      * @return the result of multiplying this vector with the broadcast of an
      * input scalar
      */
     public abstract ByteVector mul(byte s, VectorMask<Byte> m);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector neg();
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector neg(VectorMask<Byte> m);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector abs();
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector abs(VectorMask<Byte> m);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector min(Vector<Byte> v);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector min(Vector<Byte> v, VectorMask<Byte> m);
 
     /**
      * Returns the minimum of this vector and the broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the operation
-     * {@code (a, b) -> Math.min(a, b)} is applied to lane elements.
+     * This is a lane-wise binary operation which applies the operation
+     * {@code (a, b) -> Math.min(a, b)} to each lane.
      *
      * @param s the input scalar
      * @return the minimum of this vector and the broadcast of an input scalar
      */
     public abstract ByteVector min(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector max(Vector<Byte> v);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector max(Vector<Byte> v, VectorMask<Byte> m);
 
     /**
      * Returns the maximum of this vector and the broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the operation
-     * {@code (a, b) -> Math.max(a, b)} is applied to lane elements.
+     * This is a lane-wise binary operation which applies the operation
+     * {@code (a, b) -> Math.max(a, b)} to each lane.
      *
      * @param s the input scalar
      * @return the maximum of this vector and the broadcast of an input scalar
      */
     public abstract ByteVector max(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract VectorMask<Byte> equal(Vector<Byte> v);
 
     /**
      * Tests if this vector is equal to the broadcast of an input scalar.
      * <p>
-     * This is a vector binary test operation where the primitive equals
-     * operation ({@code ==}) is applied to lane elements.
+     * This is a lane-wise binary test operation which applies the primitive equals
+     * operation ({@code ==}) each lane.
      *
      * @param s the input scalar
      * @return the result mask of testing if this vector is equal to the
      * broadcast of an input scalar
      */
     public abstract VectorMask<Byte> equal(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract VectorMask<Byte> notEqual(Vector<Byte> v);
 
     /**
      * Tests if this vector is not equal to the broadcast of an input scalar.
      * <p>
-     * This is a vector binary test operation where the primitive not equals
-     * operation ({@code !=}) is applied to lane elements.
+     * This is a lane-wise binary test operation which applies the primitive not equals
+     * operation ({@code !=}) to each lane.
      *
      * @param s the input scalar
      * @return the result mask of testing if this vector is not equal to the
      * broadcast of an input scalar
      */
     public abstract VectorMask<Byte> notEqual(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract VectorMask<Byte> lessThan(Vector<Byte> v);
 
     /**
      * Tests if this vector is less than the broadcast of an input scalar.
      * <p>
-     * This is a vector binary test operation where the primitive less than
-     * operation ({@code <}) is applied to lane elements.
+     * This is a lane-wise binary test operation which applies the primitive less than
+     * operation ({@code <}) to each lane.
      *
      * @param s the input scalar
      * @return the mask result of testing if this vector is less than the
      * broadcast of an input scalar
      */
     public abstract VectorMask<Byte> lessThan(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract VectorMask<Byte> lessThanEq(Vector<Byte> v);
 
     /**
      * Tests if this vector is less or equal to the broadcast of an input scalar.
      * <p>
-     * This is a vector binary test operation where the primitive less than
-     * or equal to operation ({@code <=}) is applied to lane elements.
+     * This is a lane-wise binary test operation which applies the primitive less than
+     * or equal to operation ({@code <=}) to each lane.
      *
      * @param s the input scalar
      * @return the mask result of testing if this vector is less than or equal
      * to the broadcast of an input scalar
      */
     public abstract VectorMask<Byte> lessThanEq(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract VectorMask<Byte> greaterThan(Vector<Byte> v);
 
     /**
      * Tests if this vector is greater than the broadcast of an input scalar.
      * <p>
-     * This is a vector binary test operation where the primitive greater than
-     * operation ({@code >}) is applied to lane elements.
+     * This is a lane-wise binary test operation which applies the primitive greater than
+     * operation ({@code >}) to each lane.
      *
      * @param s the input scalar
      * @return the mask result of testing if this vector is greater than the
      * broadcast of an input scalar
      */
     public abstract VectorMask<Byte> greaterThan(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract VectorMask<Byte> greaterThanEq(Vector<Byte> v);
 
     /**
      * Tests if this vector is greater than or equal to the broadcast of an
      * input scalar.
      * <p>
-     * This is a vector binary test operation where the primitive greater than
-     * or equal to operation ({@code >=}) is applied to lane elements.
+     * This is a lane-wise binary test operation which applies the primitive greater than
+     * or equal to operation ({@code >=}) to each lane.
      *
      * @param s the input scalar
      * @return the mask result of testing if this vector is greater than or
      * equal to the broadcast of an input scalar
      */
     public abstract VectorMask<Byte> greaterThanEq(byte s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector blend(Vector<Byte> v, VectorMask<Byte> m);
 
     /**
      * Blends the lane elements of this vector with those of the broadcast of an

@@ -693,50 +753,71 @@
      * @return the result of blending the lane elements of this vector with
      * those of the broadcast of an input scalar
      */
     public abstract ByteVector blend(byte s, VectorMask<Byte> m);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector rearrange(Vector<Byte> v,
                                                       VectorShuffle<Byte> s, VectorMask<Byte> m);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector rearrange(VectorShuffle<Byte> m);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector reshape(VectorSpecies<Byte> s);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector rotateEL(int i);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector rotateER(int i);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector shiftEL(int i);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract ByteVector shiftER(int i);
 
 
 
     /**
      * Bitwise ANDs this vector with an input vector.
      * <p>
-     * This is a vector binary operation where the primitive bitwise AND
-     * operation ({@code &}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise AND
+     * operation ({@code &}) to each lane.
      *
      * @param v the input vector
      * @return the bitwise AND of this vector with the input vector
      */
     public abstract ByteVector and(Vector<Byte> v);
 
     /**
      * Bitwise ANDs this vector with the broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the primitive bitwise AND
-     * operation ({@code &}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise AND
+     * operation ({@code &}) to each lane.
      *
      * @param s the input scalar
      * @return the bitwise AND of this vector with the broadcast of an input
      * scalar
      */

@@ -744,12 +825,12 @@
 
     /**
      * Bitwise ANDs this vector with an input vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive bitwise AND
-     * operation ({@code &}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise AND
+     * operation ({@code &}) to each lane.
      *
      * @param v the input vector
      * @param m the mask controlling lane selection
      * @return the bitwise AND of this vector with the input vector
      */

@@ -757,12 +838,12 @@
 
     /**
      * Bitwise ANDs this vector with the broadcast of an input scalar, selecting
      * lane elements controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive bitwise AND
-     * operation ({@code &}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise AND
+     * operation ({@code &}) to each lane.
      *
      * @param s the input scalar
      * @param m the mask controlling lane selection
      * @return the bitwise AND of this vector with the broadcast of an input
      * scalar

@@ -770,23 +851,23 @@
     public abstract ByteVector and(byte s, VectorMask<Byte> m);
 
     /**
      * Bitwise ORs this vector with an input vector.
      * <p>
-     * This is a vector binary operation where the primitive bitwise OR
-     * operation ({@code |}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise OR
+     * operation ({@code |}) to each lane.
      *
      * @param v the input vector
      * @return the bitwise OR of this vector with the input vector
      */
     public abstract ByteVector or(Vector<Byte> v);
 
     /**
      * Bitwise ORs this vector with the broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the primitive bitwise OR
-     * operation ({@code |}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise OR
+     * operation ({@code |}) to each lane.
      *
      * @param s the input scalar
      * @return the bitwise OR of this vector with the broadcast of an input
      * scalar
      */

@@ -794,12 +875,12 @@
 
     /**
      * Bitwise ORs this vector with an input vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive bitwise OR
-     * operation ({@code |}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise OR
+     * operation ({@code |}) to each lane.
      *
      * @param v the input vector
      * @param m the mask controlling lane selection
      * @return the bitwise OR of this vector with the input vector
      */

@@ -807,12 +888,12 @@
 
     /**
      * Bitwise ORs this vector with the broadcast of an input scalar, selecting
      * lane elements controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive bitwise OR
-     * operation ({@code |}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise OR
+     * operation ({@code |}) to each lane.
      *
      * @param s the input scalar
      * @param m the mask controlling lane selection
      * @return the bitwise OR of this vector with the broadcast of an input
      * scalar

@@ -820,23 +901,23 @@
     public abstract ByteVector or(byte s, VectorMask<Byte> m);
 
     /**
      * Bitwise XORs this vector with an input vector.
      * <p>
-     * This is a vector binary operation where the primitive bitwise XOR
-     * operation ({@code ^}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise XOR
+     * operation ({@code ^}) to each lane.
      *
      * @param v the input vector
      * @return the bitwise XOR of this vector with the input vector
      */
     public abstract ByteVector xor(Vector<Byte> v);
 
     /**
      * Bitwise XORs this vector with the broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the primitive bitwise XOR
-     * operation ({@code ^}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise XOR
+     * operation ({@code ^}) to each lane.
      *
      * @param s the input scalar
      * @return the bitwise XOR of this vector with the broadcast of an input
      * scalar
      */

@@ -844,12 +925,12 @@
 
     /**
      * Bitwise XORs this vector with an input vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive bitwise XOR
-     * operation ({@code ^}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise XOR
+     * operation ({@code ^}) to each lane.
      *
      * @param v the input vector
      * @param m the mask controlling lane selection
      * @return the bitwise XOR of this vector with the input vector
      */

@@ -857,12 +938,12 @@
 
     /**
      * Bitwise XORs this vector with the broadcast of an input scalar, selecting
      * lane elements controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive bitwise XOR
-     * operation ({@code ^}) is applied to lane elements.
+     * This is a lane-wise binary operation which applies the primitive bitwise XOR
+     * operation ({@code ^}) to each lane.
      *
      * @param s the input scalar
      * @param m the mask controlling lane selection
      * @return the bitwise XOR of this vector with the broadcast of an input
      * scalar

@@ -870,33 +951,33 @@
     public abstract ByteVector xor(byte s, VectorMask<Byte> m);
 
     /**
      * Bitwise NOTs this vector.
      * <p>
-     * This is a vector unary operation where the primitive bitwise NOT
-     * operation ({@code ~}) is applied to lane elements.
+     * This is a lane-wise unary operation which applies the primitive bitwise NOT
+     * operation ({@code ~}) to each lane.
      *
      * @return the bitwise NOT of this vector
      */
     public abstract ByteVector not();
 
     /**
      * Bitwise NOTs this vector, selecting lane elements controlled by a mask.
      * <p>
-     * This is a vector unary operation where the primitive bitwise NOT
-     * operation ({@code ~}) is applied to lane elements.
+     * This is a lane-wise unary operation which applies the primitive bitwise NOT
+     * operation ({@code ~}) to each lane.
      *
      * @param m the mask controlling lane selection
      * @return the bitwise NOT of this vector
      */
     public abstract ByteVector not(VectorMask<Byte> m);
 
     /**
      * Logically left shifts this vector by the broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the primitive logical left shift
-     * operation ({@code <<}) is applied to lane elements to left shift the
+     * This is a lane-wise binary operation which applies the primitive logical left shift
+     * operation ({@code <<}) to each lane to left shift the
      * element by shift value as specified by the input scalar. Only the 3
      * lowest-order bits of shift value are used. It is as if the shift value
      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
      *

@@ -908,12 +989,12 @@
 
     /**
      * Logically left shifts this vector by the broadcast of an input scalar,
      * selecting lane elements controlled by a mask.
      * <p>
-     * This is a vector binary operation where the primitive logical left shift
-     * operation ({@code <<}) is applied to lane elements to left shift the
+     * This is a lane-wise binary operation which applies the primitive logical left shift
+     * operation ({@code <<}) to each lane to left shift the
      * element by shift value as specified by the input scalar. Only the 3
      * lowest-order bits of shift value are used. It is as if the shift value
      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
      *

@@ -929,12 +1010,12 @@
 
      /**
      * Logically right shifts (or unsigned right shifts) this vector by the
      * broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the primitive logical right shift
-     * operation ({@code >>>}) is applied to lane elements to logically right shift the
+     * This is a lane-wise binary operation which applies the primitive logical right shift
+     * operation ({@code >>>}) to each lane to logically right shift the
      * element by shift value as specified by the input scalar. Only the 3
      * lowest-order bits of shift value are used. It is as if the shift value
      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
      *

@@ -947,12 +1028,12 @@
      /**
      * Logically right shifts (or unsigned right shifts) this vector by the
      * broadcast of an input scalar, selecting lane elements controlled by a
      * mask.
      * <p>
-     * This is a vector binary operation where the primitive logical right shift
-     * operation ({@code >>>}) is applied to lane elements to logically right shift the
+     * This is a lane-wise binary operation which applies the primitive logical right shift
+     * operation ({@code >>}) to each lane to logically right shift the
      * element by shift value as specified by the input scalar. Only the 3
      * lowest-order bits of shift value are used. It is as if the shift value
      * were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
      *

@@ -966,12 +1047,12 @@
 
     /**
      * Arithmetically right shifts (or signed right shifts) this vector by the
      * broadcast of an input scalar.
      * <p>
-     * This is a vector binary operation where the primitive arithmetic right
-     * shift operation ({@code >>}) is applied to lane elements  to arithmetically
+     * This is a lane-wise binary operation which applies the primitive arithmetic right
+     * shift operation ({@code >>}) to each lane to arithmetically
      * right shift the element by shift value as specified by the input scalar.
      * Only the 3 lowest-order bits of shift value are used. It is as if the shift
      * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
      *

@@ -984,12 +1065,12 @@
     /**
      * Arithmetically right shifts (or signed right shifts) this vector by the
      * broadcast of an input scalar, selecting lane elements controlled by a
      * mask.
      * <p>
-     * This is a vector binary operation where the primitive arithmetic right
-     * shift operation ({@code >>}) is applied to lane elements  to arithmetically
+     * This is a lane-wise binary operation which applies the primitive arithmetic right
+     * shift operation ({@code >>}) to each lane to arithmetically
      * right shift the element by shift value as specified by the input scalar.
      * Only the 3 lowest-order bits of shift value are used. It is as if the shift
      * value were subjected to a bitwise logical AND operator ({@code &}) with the mask value 0x7.
      * The shift distance actually used is therefore always in the range 0 to 7, inclusive.
      *

@@ -999,77 +1080,89 @@
      * broadcast of an input scalar
      */
     public abstract ByteVector aShiftR(int s, VectorMask<Byte> m);
 
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract void intoByteArray(byte[] a, int ix);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract void intoByteArray(byte[] a, int ix, VectorMask<Byte> m);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract void intoByteBuffer(ByteBuffer bb, int ix);
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract void intoByteBuffer(ByteBuffer bb, int ix, VectorMask<Byte> m);
 
 
     // Type specific horizontal reductions
     /**
      * Adds all lane elements of this vector.
      * <p>
-     * This is an associative vector reduction operation where the addition
-     * operation ({@code +}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the addition
+     * operation ({@code +}) to lane elements,
      * and the identity value is {@code 0}.
      *
      * @return the addition of all the lane elements of this vector
      */
     public abstract byte addAll();
 
     /**
      * Adds all lane elements of this vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is an associative vector reduction operation where the addition
-     * operation ({@code +}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the addition
+     * operation ({@code +}) to lane elements,
      * and the identity value is {@code 0}.
      *
      * @param m the mask controlling lane selection
      * @return the addition of the selected lane elements of this vector
      */
     public abstract byte addAll(VectorMask<Byte> m);
 
     /**
      * Multiplies all lane elements of this vector.
      * <p>
-     * This is an associative vector reduction operation where the
-     * multiplication operation ({@code *}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the
+     * multiplication operation ({@code *}) to lane elements,
      * and the identity value is {@code 1}.
      *
      * @return the multiplication of all the lane elements of this vector
      */
     public abstract byte mulAll();
 
     /**
      * Multiplies all lane elements of this vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is an associative vector reduction operation where the
-     * multiplication operation ({@code *}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the
+     * multiplication operation ({@code *}) to lane elements,
      * and the identity value is {@code 1}.
      *
      * @param m the mask controlling lane selection
      * @return the multiplication of all the lane elements of this vector
      */
     public abstract byte mulAll(VectorMask<Byte> m);
 
     /**
      * Returns the minimum lane element of this vector.
      * <p>
-     * This is an associative vector reduction operation where the operation
-     * {@code (a, b) -> Math.min(a, b)} is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the operation
+     * {@code (a, b) -> Math.min(a, b)} to lane elements,
      * and the identity value is
      * {@link Byte#MAX_VALUE}.
      *
      * @return the minimum lane element of this vector
      */

@@ -1077,12 +1170,12 @@
 
     /**
      * Returns the minimum lane element of this vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is an associative vector reduction operation where the operation
-     * {@code (a, b) -> Math.min(a, b)} is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the operation
+     * {@code (a, b) -> Math.min(a, b)} to lane elements,
      * and the identity value is
      * {@link Byte#MAX_VALUE}.
      *
      * @param m the mask controlling lane selection
      * @return the minimum lane element of this vector

@@ -1090,12 +1183,12 @@
     public abstract byte minAll(VectorMask<Byte> m);
 
     /**
      * Returns the maximum lane element of this vector.
      * <p>
-     * This is an associative vector reduction operation where the operation
-     * {@code (a, b) -> Math.max(a, b)} is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the operation
+     * {@code (a, b) -> Math.max(a, b)} to lane elements,
      * and the identity value is
      * {@link Byte#MIN_VALUE}.
      *
      * @return the maximum lane element of this vector
      */

@@ -1103,12 +1196,12 @@
 
     /**
      * Returns the maximum lane element of this vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is an associative vector reduction operation where the operation
-     * {@code (a, b) -> Math.max(a, b)} is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the operation
+     * {@code (a, b) -> Math.max(a, b)} to lane elements,
      * and the identity value is
      * {@link Byte#MIN_VALUE}.
      *
      * @param m the mask controlling lane selection
      * @return the maximum lane element of this vector

@@ -1116,72 +1209,72 @@
     public abstract byte maxAll(VectorMask<Byte> m);
 
     /**
      * Logically ORs all lane elements of this vector.
      * <p>
-     * This is an associative vector reduction operation where the logical OR
-     * operation ({@code |}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the logical OR
+     * operation ({@code |}) to lane elements,
      * and the identity value is {@code 0}.
      *
      * @return the logical OR all the lane elements of this vector
      */
     public abstract byte orAll();
 
     /**
      * Logically ORs all lane elements of this vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is an associative vector reduction operation where the logical OR
-     * operation ({@code |}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the logical OR
+     * operation ({@code |}) to lane elements,
      * and the identity value is {@code 0}.
      *
      * @param m the mask controlling lane selection
      * @return the logical OR all the lane elements of this vector
      */
     public abstract byte orAll(VectorMask<Byte> m);
 
     /**
      * Logically ANDs all lane elements of this vector.
      * <p>
-     * This is an associative vector reduction operation where the logical AND
-     * operation ({@code |}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the logical AND
+     * operation ({@code |}) to lane elements,
      * and the identity value is {@code -1}.
      *
      * @return the logical AND all the lane elements of this vector
      */
     public abstract byte andAll();
 
     /**
      * Logically ANDs all lane elements of this vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is an associative vector reduction operation where the logical AND
-     * operation ({@code |}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the logical AND
+     * operation ({@code |}) to lane elements,
      * and the identity value is {@code -1}.
      *
      * @param m the mask controlling lane selection
      * @return the logical AND all the lane elements of this vector
      */
     public abstract byte andAll(VectorMask<Byte> m);
 
     /**
      * Logically XORs all lane elements of this vector.
      * <p>
-     * This is an associative vector reduction operation where the logical XOR
-     * operation ({@code ^}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the logical XOR
+     * operation ({@code ^}) to lane elements,
      * and the identity value is {@code 0}.
      *
      * @return the logical XOR all the lane elements of this vector
      */
     public abstract byte xorAll();
 
     /**
      * Logically XORs all lane elements of this vector, selecting lane elements
      * controlled by a mask.
      * <p>
-     * This is an associative vector reduction operation where the logical XOR
-     * operation ({@code ^}) is applied to lane elements,
+     * This is an associative cross-lane reduction operation which applies the logical XOR
+     * operation ({@code ^}) to lane elements,
      * and the identity value is {@code 0}.
      *
      * @param m the mask controlling lane selection
      * @return the logical XOR all the lane elements of this vector
      */

@@ -1195,11 +1288,11 @@
      * @param i the lane index
      * @return the lane element at lane index {@code i}
      * @throws IllegalArgumentException if the index is is out of range
      * ({@code < 0 || >= length()})
      */
-    public abstract byte get(int i);
+    public abstract byte lane(int i);
 
     /**
      * Replaces the lane element of this vector at lane index {@code i} with
      * value {@code e}.
      * <p>

@@ -1242,85 +1335,88 @@
     /**
      * Stores this vector into an array starting at offset.
      * <p>
      * For each vector lane, where {@code N} is the vector lane index,
      * the lane element at index {@code N} is stored into the array at index
-     * {@code i + N}.
+     * {@code offset + N}.
      *
      * @param a the array
-     * @param i the offset into the array
-     * @throws IndexOutOfBoundsException if {@code i < 0}, or
-     * {@code i > a.length - this.length()}
+     * @param offset the offset into the array
+     * @throws IndexOutOfBoundsException if {@code offset < 0}, or
+     * {@code offset > a.length - this.length()}
      */
-    public abstract void intoArray(byte[] a, int i);
+    public abstract void intoArray(byte[] a, int offset);
 
     /**
      * Stores this vector into an array starting at offset and using a mask.
      * <p>
      * For each vector lane, where {@code N} is the vector lane index,
      * if the mask lane at index {@code N} is set then the lane element at
-     * index {@code N} is stored into the array index {@code i + N}.
+     * index {@code N} is stored into the array index {@code offset + N}.
      *
      * @param a the array
-     * @param i the offset into the array
+     * @param offset the offset into the array
      * @param m the mask
-     * @throws IndexOutOfBoundsException if {@code i < 0}, or
+     * @throws IndexOutOfBoundsException if {@code offset < 0}, or
      * for any vector lane index {@code N} where the mask at lane {@code N}
-     * is set {@code i >= a.length - N}
+     * is set {@code offset >= a.length - N}
      */
-    public abstract void intoArray(byte[] a, int i, VectorMask<Byte> m);
+    public abstract void intoArray(byte[] a, int offset, VectorMask<Byte> m);
 
     /**
      * Stores this vector into an array using indexes obtained from an index
      * map.
      * <p>
      * For each vector lane, where {@code N} is the vector lane index, the
      * lane element at index {@code N} is stored into the array at index
-     * {@code i + indexMap[j + N]}.
+     * {@code a_offset + indexMap[i_offset + N]}.
      *
      * @param a the array
-     * @param i the offset into the array, may be negative if relative
+     * @param a_offset the offset into the array, may be negative if relative
      * indexes in the index map compensate to produce a value within the
      * array bounds
      * @param indexMap the index map
-     * @param j the offset into the index map
-     * @throws IndexOutOfBoundsException if {@code j < 0}, or
-     * {@code j > indexMap.length - this.length()},
+     * @param i_offset the offset into the index map
+     * @throws IndexOutOfBoundsException if {@code i_offset < 0}, or
+     * {@code i_offset > indexMap.length - this.length()},
      * or for any vector lane index {@code N} the result of
-     * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length}
+     * {@code a_offset + indexMap[i_offset + N]} is {@code < 0} or {@code >= a.length}
      */
-    public void intoArray(byte[] a, int i, int[] indexMap, int j) {
-        forEach((n, e) -> a[i + indexMap[j + n]] = e);
+    public void intoArray(byte[] a, int a_offset, int[] indexMap, int i_offset) {
+        forEach((n, e) -> a[a_offset + indexMap[i_offset + n]] = e);
     }
 
     /**
      * Stores this vector into an array using indexes obtained from an index
      * map and using a mask.
      * <p>
      * For each vector lane, where {@code N} is the vector lane index,
      * if the mask lane at index {@code N} is set then the lane element at
      * index {@code N} is stored into the array at index
-     * {@code i + indexMap[j + N]}.
+     * {@code a_offset + indexMap[i_offset + N]}.
      *
      * @param a the array
-     * @param i the offset into the array, may be negative if relative
+     * @param a_offset the offset into the array, may be negative if relative
      * indexes in the index map compensate to produce a value within the
      * array bounds
      * @param m the mask
      * @param indexMap the index map
-     * @param j the offset into the index map
+     * @param i_offset the offset into the index map
      * @throws IndexOutOfBoundsException if {@code j < 0}, or
-     * {@code j > indexMap.length - this.length()},
+     * {@code i_offset > indexMap.length - this.length()},
      * or for any vector lane index {@code N} where the mask at lane
-     * {@code N} is set the result of {@code i + indexMap[j + N]} is
+     * {@code N} is set the result of {@code a_offset + indexMap[i_offset + N]} is
      * {@code < 0} or {@code >= a.length}
      */
-    public void intoArray(byte[] a, int i, VectorMask<Byte> m, int[] indexMap, int j) {
-        forEach(m, (n, e) -> a[i + indexMap[j + n]] = e);
+    public void intoArray(byte[] a, int a_offset, VectorMask<Byte> m, int[] indexMap, int i_offset) {
+        forEach(m, (n, e) -> a[a_offset + indexMap[i_offset + n]] = e);
     }
     // Species
 
+    /**
+     * {@inheritDoc}
+     */
     @Override
     public abstract VectorSpecies<Byte> species();
 
     /**
      * Class representing {@link ByteVector}'s of the same {@link VectorShape VectorShape}.
< prev index next >