/* * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have * questions. */ package jdk.incubator.vector; import java.nio.ByteBuffer; import java.nio.LongBuffer; import java.nio.ByteOrder; import java.util.Objects; import java.util.function.IntUnaryOperator; import java.util.function.Function; import java.util.concurrent.ThreadLocalRandom; import jdk.internal.misc.Unsafe; import jdk.internal.vm.annotation.ForceInline; import static jdk.incubator.vector.VectorIntrinsics.*; /** * A specialized {@link Vector} representing an ordered immutable sequence of * {@code long} values. */ @SuppressWarnings("cast") public abstract class LongVector extends Vector { LongVector() {} private static final int ARRAY_SHIFT = 31 - Integer.numberOfLeadingZeros(Unsafe.ARRAY_LONG_INDEX_SCALE); // Unary operator interface FUnOp { long apply(int i, long a); } abstract LongVector uOp(FUnOp f); abstract LongVector uOp(Mask m, FUnOp f); // Binary operator interface FBinOp { long apply(int i, long a, long b); } abstract LongVector bOp(Vector v, FBinOp f); abstract LongVector bOp(Vector v, Mask m, FBinOp f); // Trinary operator interface FTriOp { long apply(int i, long a, long b, long c); } abstract LongVector tOp(Vector v1, Vector v2, FTriOp f); abstract LongVector tOp(Vector v1, Vector v2, Mask m, FTriOp f); // Reduction operator abstract long rOp(long v, FBinOp f); // Binary test interface FBinTest { boolean apply(int i, long a, long b); } abstract Mask bTest(Vector v, FBinTest f); // Foreach interface FUnCon { void apply(int i, long a); } abstract void forEach(FUnCon f); abstract void forEach(Mask m, FUnCon f); // Static factories /** * Returns a vector where all lane elements are set to the default * primitive value. * * @param species species of desired vector * @return a zero vector of given species */ @ForceInline @SuppressWarnings("unchecked") public static LongVector zero(Species species) { return VectorIntrinsics.broadcastCoerced((Class) species.boxType(), long.class, species.length(), 0, species, ((bits, s) -> ((LongSpecies)s).op(i -> (long)bits))); } /** * Loads a vector from a byte array starting at an offset. *

* Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform *

* This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting * {@link #fromByteBuffer(Species, ByteBuffer, int, Mask) method} as follows: *

{@code
     * return this.fromByteBuffer(ByteBuffer.wrap(a), i, this.maskAllTrue());
     * }
* * @param species species of desired vector * @param a the byte array * @param ix the offset into the array * @return a vector loaded from a byte array * @throws IndexOutOfBoundsException if {@code i < 0} or * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)} */ @ForceInline @SuppressWarnings("unchecked") public static LongVector fromByteArray(Species species, byte[] a, int ix) { Objects.requireNonNull(a); ix = VectorIntrinsics.checkIndex(ix, a.length, species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class) species.boxType(), long.class, species.length(), a, ((long) ix) + Unsafe.ARRAY_BYTE_BASE_OFFSET, a, ix, species, (c, idx, s) -> { ByteBuffer bbc = ByteBuffer.wrap(c, idx, a.length - idx).order(ByteOrder.nativeOrder()); LongBuffer tb = bbc.asLongBuffer(); return ((LongSpecies)s).op(i -> tb.get()); }); } /** * Loads a vector from a byte array starting at an offset and using a * mask. *

* Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. *

* This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting * {@link #fromByteBuffer(Species, ByteBuffer, int, Mask) method} as follows: *

{@code
     * return this.fromByteBuffer(ByteBuffer.wrap(a), i, m);
     * }
* * @param species species of desired vector * @param a the byte array * @param ix the offset into the array * @param m the mask * @return a vector loaded from a byte array * @throws IndexOutOfBoundsException if {@code i < 0} or * {@code i > a.length - (this.length() * this.elementSize() / Byte.SIZE)} * @throws IndexOutOfBoundsException if the offset is {@code < 0}, * or {@code > a.length}, * for any vector lane index {@code N} where the mask at lane {@code N} * is set * {@code i >= a.length - (N * this.elementSize() / Byte.SIZE)} */ @ForceInline public static LongVector fromByteArray(Species species, byte[] a, int ix, Mask m) { return zero(species).blend(fromByteArray(species, a, ix), m); } /** * Loads a vector from an array starting at offset. *

* For each vector lane, where {@code N} is the vector lane index, the * array element at index {@code i + N} is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array * @param i the offset into the array * @return the vector loaded from an array * @throws IndexOutOfBoundsException if {@code i < 0}, or * {@code i > a.length - this.length()} */ @ForceInline @SuppressWarnings("unchecked") public static LongVector fromArray(Species species, long[] a, int i){ Objects.requireNonNull(a); i = VectorIntrinsics.checkIndex(i, a.length, species.length()); return VectorIntrinsics.load((Class) species.boxType(), long.class, species.length(), a, (((long) i) << ARRAY_SHIFT) + Unsafe.ARRAY_LONG_BASE_OFFSET, a, i, species, (c, idx, s) -> ((LongSpecies)s).op(n -> c[idx + n])); } /** * Loads a vector from an array starting at offset and using a mask. *

* For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the array element at * index {@code i + N} is placed into the resulting vector at lane index * {@code N}, otherwise the default element value is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array * @param i the offset into the array * @param m the mask * @return the vector loaded from an array * @throws IndexOutOfBoundsException if {@code i < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} * is set {@code i > a.length - N} */ @ForceInline public static LongVector fromArray(Species species, long[] a, int i, Mask m) { return zero(species).blend(fromArray(species, a, i), m); } /** * Loads a vector from an array using indexes obtained from an index * map. *

* For each vector lane, where {@code N} is the vector lane index, the * array element at index {@code i + indexMap[j + N]} is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array * @param i the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param indexMap the index map * @param j the offset into the index map * @return the vector loaded from an array * @throws IndexOutOfBoundsException if {@code j < 0}, or * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} the result of * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length} */ @ForceInline @SuppressWarnings("unchecked") public static LongVector fromArray(Species species, long[] a, int i, int[] indexMap, int j) { Objects.requireNonNull(a); Objects.requireNonNull(indexMap); if (species.length() == 1) { return LongVector.fromArray(species, a, i + indexMap[j]); } // Index vector: vix[0:n] = k -> i + indexMap[j + k] IntVector vix = IntVector.fromArray(IntVector.species(species.indexShape()), indexMap, j).add(i); vix = VectorIntrinsics.checkIndex(vix, a.length); return VectorIntrinsics.loadWithMap((Class) species.boxType(), long.class, species.length(), IntVector.species(species.indexShape()).boxType(), a, Unsafe.ARRAY_LONG_BASE_OFFSET, vix, a, i, indexMap, j, species, (long[] c, int idx, int[] iMap, int idy, Species s) -> ((LongSpecies)s).op(n -> c[idx + iMap[idy+n]])); } /** * Loads a vector from an array using indexes obtained from an index * map and using a mask. *

* For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the array element at * index {@code i + indexMap[j + N]} is placed into the resulting vector * at lane index {@code N}. * * @param species species of desired vector * @param a the array * @param i the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param m the mask * @param indexMap the index map * @param j the offset into the index map * @return the vector loaded from an array * @throws IndexOutOfBoundsException if {@code j < 0}, or * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} where the mask at lane * {@code N} is set the result of {@code i + indexMap[j + N]} is * {@code < 0} or {@code >= a.length} */ @ForceInline @SuppressWarnings("unchecked") public static LongVector fromArray(Species species, long[] a, int i, Mask m, int[] indexMap, int j) { // @@@ This can result in out of bounds errors for unset mask lanes return zero(species).blend(fromArray(species, a, i, indexMap, j), m); } /** * Loads a vector from a {@link ByteBuffer byte buffer} starting at an * offset into the byte buffer. *

* Bytes are composed into primitive lane elements according to the * native byte order of the underlying platform. *

* This method behaves as if it returns the result of calling the * byte buffer, offset, and mask accepting * {@link #fromByteBuffer(Species, ByteBuffer, int, Mask)} method} as follows: *

{@code
     *   return this.fromByteBuffer(b, i, this.maskAllTrue())
     * }
* * @param species species of desired vector * @param bb the byte buffer * @param ix the offset into the byte buffer * @return a vector loaded from a byte buffer * @throws IndexOutOfBoundsException if the offset is {@code < 0}, * or {@code > b.limit()}, * or if there are fewer than * {@code this.length() * this.elementSize() / Byte.SIZE} bytes * remaining in the byte buffer from the given offset */ @ForceInline @SuppressWarnings("unchecked") public static LongVector fromByteBuffer(Species species, ByteBuffer bb, int ix) { if (bb.order() != ByteOrder.nativeOrder()) { throw new IllegalArgumentException(); } ix = VectorIntrinsics.checkIndex(ix, bb.limit(), species.bitSize() / Byte.SIZE); return VectorIntrinsics.load((Class) species.boxType(), long.class, species.length(), U.getReference(bb, BYTE_BUFFER_HB), U.getLong(bb, BUFFER_ADDRESS) + ix, bb, ix, species, (c, idx, s) -> { ByteBuffer bbc = c.duplicate().position(idx).order(ByteOrder.nativeOrder()); LongBuffer tb = bbc.asLongBuffer(); return ((LongSpecies)s).op(i -> tb.get()); }); } /** * Loads a vector from a {@link ByteBuffer byte buffer} starting at an * offset into the byte buffer and using a mask. *

* This method behaves as if the byte buffer is viewed as a primitive * {@link java.nio.Buffer buffer} for the primitive element type, * according to the native byte order of the underlying platform, and * the returned vector is loaded with a mask from a primitive array * obtained from the primitive buffer. * The following pseudocode expresses the behaviour, where * {@coce EBuffer} is the primitive buffer type, {@code e} is the * primitive element type, and {@code ESpecies} is the primitive * species for {@code e}: *

{@code
     * EBuffer eb = b.duplicate().
     *     order(ByteOrder.nativeOrder()).position(i).
     *     asEBuffer();
     * e[] es = new e[this.length()];
     * for (int n = 0; n < t.length; n++) {
     *     if (m.isSet(n))
     *         es[n] = eb.get(n);
     * }
     * Vector r = ((ESpecies)this).fromArray(es, 0, m);
     * }
* * @param species species of desired vector * @param bb the byte buffer * @param ix the offset into the byte buffer * @param m the mask * @return a vector loaded from a byte buffer * @throws IndexOutOfBoundsException if the offset is {@code < 0}, * or {@code > b.limit()}, * for any vector lane index {@code N} where the mask at lane {@code N} * is set * {@code i >= b.limit() - (N * this.elementSize() / Byte.SIZE)} */ @ForceInline public static LongVector fromByteBuffer(Species species, ByteBuffer bb, int ix, Mask m) { return zero(species).blend(fromByteBuffer(species, bb, ix), m); } /** * Returns a vector where all lane elements are set to the primitive * value {@code e}. * * @param s species of the desired vector * @param e the value * @return a vector of vector where all lane elements are set to * the primitive value {@code e} */ @ForceInline @SuppressWarnings("unchecked") public static LongVector broadcast(Species s, long e) { return VectorIntrinsics.broadcastCoerced( (Class) s.boxType(), long.class, s.length(), e, s, ((bits, sp) -> ((LongSpecies)sp).op(i -> (long)bits))); } /** * Returns a vector where each lane element is set to a given * primitive value. *

* For each vector lane, where {@code N} is the vector lane index, the * the primitive value at index {@code N} is placed into the resulting * vector at lane index {@code N}. * * @param s species of the desired vector * @param es the given primitive values * @return a vector where each lane element is set to a given primitive * value * @throws IndexOutOfBoundsException if {@code es.length < this.length()} */ @ForceInline @SuppressWarnings("unchecked") public static LongVector scalars(Species s, long... es) { Objects.requireNonNull(es); int ix = VectorIntrinsics.checkIndex(0, es.length, s.length()); return VectorIntrinsics.load((Class) s.boxType(), long.class, s.length(), es, Unsafe.ARRAY_LONG_BASE_OFFSET, es, ix, s, (c, idx, sp) -> ((LongSpecies)sp).op(n -> c[idx + n])); } /** * Returns a vector where the first lane element is set to the primtive * value {@code e}, all other lane elements are set to the default * value. * * @param s species of the desired vector * @param e the value * @return a vector where the first lane element is set to the primitive * value {@code e} */ @ForceInline public static final LongVector single(Species s, long e) { return zero(s).with(0, e); } /** * Returns a vector where each lane element is set to a randomly * generated primitive value. * * The semantics are equivalent to calling * {@link ThreadLocalRandom#nextLong()} * * @param s species of the desired vector * @return a vector where each lane elements is set to a randomly * generated primitive value */ public static LongVector random(Species s) { ThreadLocalRandom r = ThreadLocalRandom.current(); return ((LongSpecies)s).op(i -> r.nextLong()); } // Ops @Override public abstract LongVector add(Vector v); /** * Adds this vector to the broadcast of an input scalar. *

* This is a vector binary operation where the primitive addition operation * ({@code +}) is applied to lane elements. * * @param s the input scalar * @return the result of adding this vector to the broadcast of an input * scalar */ public abstract LongVector add(long s); @Override public abstract LongVector add(Vector v, Mask m); /** * Adds this vector to broadcast of an input scalar, * selecting lane elements controlled by a mask. *

* This is a vector binary operation where the primitive addition operation * ({@code +}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of adding this vector to the broadcast of an input * scalar */ public abstract LongVector add(long s, Mask m); @Override public abstract LongVector sub(Vector v); /** * Subtracts the broadcast of an input scalar from this vector. *

* This is a vector binary operation where the primitive subtraction * operation ({@code -}) is applied to lane elements. * * @param s the input scalar * @return the result of subtracting the broadcast of an input * scalar from this vector */ public abstract LongVector sub(long s); @Override public abstract LongVector sub(Vector v, Mask m); /** * Subtracts the broadcast of an input scalar from this vector, selecting * lane elements controlled by a mask. *

* This is a vector binary operation where the primitive subtraction * operation ({@code -}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of subtracting the broadcast of an input * scalar from this vector */ public abstract LongVector sub(long s, Mask m); @Override public abstract LongVector mul(Vector v); /** * Multiplies this vector with the broadcast of an input scalar. *

* This is a vector binary operation where the primitive multiplication * operation ({@code *}) is applied to lane elements. * * @param s the input scalar * @return the result of multiplying this vector with the broadcast of an * input scalar */ public abstract LongVector mul(long s); @Override public abstract LongVector mul(Vector v, Mask m); /** * Multiplies this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. *

* This is a vector binary operation where the primitive multiplication * operation ({@code *}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of multiplying this vector with the broadcast of an * input scalar */ public abstract LongVector mul(long s, Mask m); @Override public abstract LongVector neg(); @Override public abstract LongVector neg(Mask m); @Override public abstract LongVector abs(); @Override public abstract LongVector abs(Mask m); @Override public abstract LongVector min(Vector v); @Override public abstract LongVector min(Vector v, Mask m); /** * Returns the minimum of this vector and the broadcast of an input scalar. *

* This is a vector binary operation where the operation * {@code (a, b) -> Math.min(a, b)} is applied to lane elements. * * @param s the input scalar * @return the minimum of this vector and the broadcast of an input scalar */ public abstract LongVector min(long s); @Override public abstract LongVector max(Vector v); @Override public abstract LongVector max(Vector v, Mask m); /** * Returns the maximum of this vector and the broadcast of an input scalar. *

* This is a vector binary operation where the operation * {@code (a, b) -> Math.max(a, b)} is applied to lane elements. * * @param s the input scalar * @return the maximum of this vector and the broadcast of an input scalar */ public abstract LongVector max(long s); @Override public abstract Mask equal(Vector v); /** * Tests if this vector is equal to the broadcast of an input scalar. *

* This is a vector binary test operation where the primitive equals * operation ({@code ==}) is applied to lane elements. * * @param s the input scalar * @return the result mask of testing if this vector is equal to the * broadcast of an input scalar */ public abstract Mask equal(long s); @Override public abstract Mask notEqual(Vector v); /** * Tests if this vector is not equal to the broadcast of an input scalar. *

* This is a vector binary test operation where the primitive not equals * operation ({@code !=}) is applied to lane elements. * * @param s the input scalar * @return the result mask of testing if this vector is not equal to the * broadcast of an input scalar */ public abstract Mask notEqual(long s); @Override public abstract Mask lessThan(Vector v); /** * Tests if this vector is less than the broadcast of an input scalar. *

* This is a vector binary test operation where the primitive less than * operation ({@code <}) is applied to lane elements. * * @param s the input scalar * @return the mask result of testing if this vector is less than the * broadcast of an input scalar */ public abstract Mask lessThan(long s); @Override public abstract Mask lessThanEq(Vector v); /** * Tests if this vector is less or equal to the broadcast of an input scalar. *

* This is a vector binary test operation where the primitive less than * or equal to operation ({@code <=}) is applied to lane elements. * * @param s the input scalar * @return the mask result of testing if this vector is less than or equal * to the broadcast of an input scalar */ public abstract Mask lessThanEq(long s); @Override public abstract Mask greaterThan(Vector v); /** * Tests if this vector is greater than the broadcast of an input scalar. *

* This is a vector binary test operation where the primitive greater than * operation ({@code >}) is applied to lane elements. * * @param s the input scalar * @return the mask result of testing if this vector is greater than the * broadcast of an input scalar */ public abstract Mask greaterThan(long s); @Override public abstract Mask greaterThanEq(Vector v); /** * Tests if this vector is greater than or equal to the broadcast of an * input scalar. *

* This is a vector binary test operation where the primitive greater than * or equal to operation ({@code >=}) is applied to lane elements. * * @param s the input scalar * @return the mask result of testing if this vector is greater than or * equal to the broadcast of an input scalar */ public abstract Mask greaterThanEq(long s); @Override public abstract LongVector blend(Vector v, Mask m); /** * Blends the lane elements of this vector with those of the broadcast of an * input scalar, selecting lanes controlled by a mask. *

* For each lane of the mask, at lane index {@code N}, if the mask lane * is set then the lane element at {@code N} from the input vector is * selected and placed into the resulting vector at {@code N}, * otherwise the the lane element at {@code N} from this input vector is * selected and placed into the resulting vector at {@code N}. * * @param s the input scalar * @param m the mask controlling lane selection * @return the result of blending the lane elements of this vector with * those of the broadcast of an input scalar */ public abstract LongVector blend(long s, Mask m); @Override public abstract LongVector rearrange(Vector v, Shuffle s, Mask m); @Override public abstract LongVector rearrange(Shuffle m); @Override public abstract LongVector reshape(Species s); @Override public abstract LongVector rotateEL(int i); @Override public abstract LongVector rotateER(int i); @Override public abstract LongVector shiftEL(int i); @Override public abstract LongVector shiftER(int i); /** * Bitwise ANDs this vector with an input vector. *

* This is a vector binary operation where the primitive bitwise AND * operation ({@code &}) is applied to lane elements. * * @param v the input vector * @return the bitwise AND of this vector with the input vector */ public abstract LongVector and(Vector v); /** * Bitwise ANDs this vector with the broadcast of an input scalar. *

* This is a vector binary operation where the primitive bitwise AND * operation ({@code &}) is applied to lane elements. * * @param s the input scalar * @return the bitwise AND of this vector with the broadcast of an input * scalar */ public abstract LongVector and(long s); /** * Bitwise ANDs this vector with an input vector, selecting lane elements * controlled by a mask. *

* This is a vector binary operation where the primitive bitwise AND * operation ({@code &}) is applied to lane elements. * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the input vector */ public abstract LongVector and(Vector v, Mask m); /** * Bitwise ANDs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. *

* This is a vector binary operation where the primitive bitwise AND * operation ({@code &}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise AND of this vector with the broadcast of an input * scalar */ public abstract LongVector and(long s, Mask m); /** * Bitwise ORs this vector with an input vector. *

* This is a vector binary operation where the primitive bitwise OR * operation ({@code |}) is applied to lane elements. * * @param v the input vector * @return the bitwise OR of this vector with the input vector */ public abstract LongVector or(Vector v); /** * Bitwise ORs this vector with the broadcast of an input scalar. *

* This is a vector binary operation where the primitive bitwise OR * operation ({@code |}) is applied to lane elements. * * @param s the input scalar * @return the bitwise OR of this vector with the broadcast of an input * scalar */ public abstract LongVector or(long s); /** * Bitwise ORs this vector with an input vector, selecting lane elements * controlled by a mask. *

* This is a vector binary operation where the primitive bitwise OR * operation ({@code |}) is applied to lane elements. * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the input vector */ public abstract LongVector or(Vector v, Mask m); /** * Bitwise ORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. *

* This is a vector binary operation where the primitive bitwise OR * operation ({@code |}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise OR of this vector with the broadcast of an input * scalar */ public abstract LongVector or(long s, Mask m); /** * Bitwise XORs this vector with an input vector. *

* This is a vector binary operation where the primitive bitwise XOR * operation ({@code ^}) is applied to lane elements. * * @param v the input vector * @return the bitwise XOR of this vector with the input vector */ public abstract LongVector xor(Vector v); /** * Bitwise XORs this vector with the broadcast of an input scalar. *

* This is a vector binary operation where the primitive bitwise XOR * operation ({@code ^}) is applied to lane elements. * * @param s the input scalar * @return the bitwise XOR of this vector with the broadcast of an input * scalar */ public abstract LongVector xor(long s); /** * Bitwise XORs this vector with an input vector, selecting lane elements * controlled by a mask. *

* This is a vector binary operation where the primitive bitwise XOR * operation ({@code ^}) is applied to lane elements. * * @param v the input vector * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the input vector */ public abstract LongVector xor(Vector v, Mask m); /** * Bitwise XORs this vector with the broadcast of an input scalar, selecting * lane elements controlled by a mask. *

* This is a vector binary operation where the primitive bitwise XOR * operation ({@code ^}) is applied to lane elements. * * @param s the input scalar * @param m the mask controlling lane selection * @return the bitwise XOR of this vector with the broadcast of an input * scalar */ public abstract LongVector xor(long s, Mask m); /** * Bitwise NOTs this vector. *

* This is a vector unary operation where the primitive bitwise NOT * operation ({@code ~}) is applied to lane elements. * * @return the bitwise NOT of this vector */ public abstract LongVector not(); /** * Bitwise NOTs this vector, selecting lane elements controlled by a mask. *

* This is a vector unary operation where the primitive bitwise NOT * operation ({@code ~}) is applied to lane elements. * * @param m the mask controlling lane selection * @return the bitwise NOT of this vector */ public abstract LongVector not(Mask m); /** * Logically left shifts this vector by the broadcast of an input scalar. *

* This is a vector binary operation where the primitive logical left shift * operation ({@code <<}) is applied to lane elements. * * @param s the input scalar; the number of the bits to left shift * @return the result of logically left shifting left this vector by the * broadcast of an input scalar */ public abstract LongVector shiftL(int s); /** * Logically left shifts this vector by the broadcast of an input scalar, * selecting lane elements controlled by a mask. *

* This is a vector binary operation where the primitive logical left shift * operation ({@code <<}) is applied to lane elements. * * @param s the input scalar; the number of the bits to left shift * @param m the mask controlling lane selection * @return the result of logically left shifting this vector by the * broadcast of an input scalar */ public abstract LongVector shiftL(int s, Mask m); /** * Logically left shifts this vector by an input vector. *

* This is a vector binary operation where the primitive logical left shift * operation ({@code <<}) is applied to lane elements. * * @param v the input vector * @return the result of logically left shifting this vector by the input * vector */ public abstract LongVector shiftL(Vector v); /** * Logically left shifts this vector by an input vector, selecting lane * elements controlled by a mask. *

* This is a vector binary operation where the primitive logical left shift * operation ({@code <<}) is applied to lane elements. * * @param v the input vector * @param m the mask controlling lane selection * @return the result of logically left shifting this vector by the input * vector */ public LongVector shiftL(Vector v, Mask m) { return bOp(v, m, (i, a, b) -> (long) (a << b)); } // logical, or unsigned, shift right /** * Logically right shifts (or unsigned right shifts) this vector by the * broadcast of an input scalar. *

* This is a vector binary operation where the primitive logical right shift * operation ({@code >>>}) is applied to lane elements. * * @param s the input scalar; the number of the bits to right shift * @return the result of logically right shifting this vector by the * broadcast of an input scalar */ public abstract LongVector shiftR(int s); /** * Logically right shifts (or unsigned right shifts) this vector by the * broadcast of an input scalar, selecting lane elements controlled by a * mask. *

* This is a vector binary operation where the primitive logical right shift * operation ({@code >>>}) is applied to lane elements. * * @param s the input scalar; the number of the bits to right shift * @param m the mask controlling lane selection * @return the result of logically right shifting this vector by the * broadcast of an input scalar */ public abstract LongVector shiftR(int s, Mask m); /** * Logically right shifts (or unsigned right shifts) this vector by an * input vector. *

* This is a vector binary operation where the primitive logical right shift * operation ({@code >>>}) is applied to lane elements. * * @param v the input vector * @return the result of logically right shifting this vector by the * input vector */ public abstract LongVector shiftR(Vector v); /** * Logically right shifts (or unsigned right shifts) this vector by an * input vector, selecting lane elements controlled by a mask. *

* This is a vector binary operation where the primitive logical right shift * operation ({@code >>>}) is applied to lane elements. * * @param v the input vector * @param m the mask controlling lane selection * @return the result of logically right shifting this vector by the * input vector */ public LongVector shiftR(Vector v, Mask m) { return bOp(v, m, (i, a, b) -> (long) (a >>> b)); } /** * Arithmetically right shifts (or signed right shifts) this vector by the * broadcast of an input scalar. *

* This is a vector binary operation where the primitive arithmetic right * shift operation ({@code >>}) is applied to lane elements. * * @param s the input scalar; the number of the bits to right shift * @return the result of arithmetically right shifting this vector by the * broadcast of an input scalar */ public abstract LongVector aShiftR(int s); /** * Arithmetically right shifts (or signed right shifts) this vector by the * broadcast of an input scalar, selecting lane elements controlled by a * mask. *

* This is a vector binary operation where the primitive arithmetic right * shift operation ({@code >>}) is applied to lane elements. * * @param s the input scalar; the number of the bits to right shift * @param m the mask controlling lane selection * @return the result of arithmetically right shifting this vector by the * broadcast of an input scalar */ public abstract LongVector aShiftR(int s, Mask m); /** * Arithmetically right shifts (or signed right shifts) this vector by an * input vector. *

* This is a vector binary operation where the primitive arithmetic right * shift operation ({@code >>}) is applied to lane elements. * * @param v the input vector * @return the result of arithmetically right shifting this vector by the * input vector */ public abstract LongVector aShiftR(Vector v); /** * Arithmetically right shifts (or signed right shifts) this vector by an * input vector, selecting lane elements controlled by a mask. *

* This is a vector binary operation where the primitive arithmetic right * shift operation ({@code >>}) is applied to lane elements. * * @param v the input vector * @param m the mask controlling lane selection * @return the result of arithmetically right shifting this vector by the * input vector */ public LongVector aShiftR(Vector v, Mask m) { return bOp(v, m, (i, a, b) -> (long) (a >> b)); } /** * Rotates left this vector by the broadcast of an input scalar. *

* This is a vector binary operation where the operation * {@link Long#rotateLeft} is applied to lane elements and where * lane elements of this vector apply to the first argument, and lane * elements of the broadcast vector apply to the second argument (the * rotation distance). * * @param s the input scalar; the number of the bits to rotate left * @return the result of rotating left this vector by the broadcast of an * input scalar */ @ForceInline public final LongVector rotateL(int s) { return shiftL(s).or(shiftR(-s)); } /** * Rotates left this vector by the broadcast of an input scalar, selecting * lane elements controlled by a mask. *

* This is a vector binary operation where the operation * {@link Long#rotateLeft} is applied to lane elements and where * lane elements of this vector apply to the first argument, and lane * elements of the broadcast vector apply to the second argument (the * rotation distance). * * @param s the input scalar; the number of the bits to rotate left * @param m the mask controlling lane selection * @return the result of rotating left this vector by the broadcast of an * input scalar */ @ForceInline public final LongVector rotateL(int s, Mask m) { return shiftL(s, m).or(shiftR(-s, m), m); } /** * Rotates right this vector by the broadcast of an input scalar. *

* This is a vector binary operation where the operation * {@link Long#rotateRight} is applied to lane elements and where * lane elements of this vector apply to the first argument, and lane * elements of the broadcast vector apply to the second argument (the * rotation distance). * * @param s the input scalar; the number of the bits to rotate right * @return the result of rotating right this vector by the broadcast of an * input scalar */ @ForceInline public final LongVector rotateR(int s) { return shiftR(s).or(shiftL(-s)); } /** * Rotates right this vector by the broadcast of an input scalar, selecting * lane elements controlled by a mask. *

* This is a vector binary operation where the operation * {@link Long#rotateRight} is applied to lane elements and where * lane elements of this vector apply to the first argument, and lane * elements of the broadcast vector apply to the second argument (the * rotation distance). * * @param s the input scalar; the number of the bits to rotate right * @param m the mask controlling lane selection * @return the result of rotating right this vector by the broadcast of an * input scalar */ @ForceInline public final LongVector rotateR(int s, Mask m) { return shiftR(s, m).or(shiftL(-s, m), m); } @Override public abstract void intoByteArray(byte[] a, int ix); @Override public abstract void intoByteArray(byte[] a, int ix, Mask m); @Override public abstract void intoByteBuffer(ByteBuffer bb, int ix); @Override public abstract void intoByteBuffer(ByteBuffer bb, int ix, Mask m); // Type specific horizontal reductions /** * Adds all lane elements of this vector. *

* This is an associative vector reduction operation where the addition * operation ({@code +}) is applied to lane elements, * and the identity value is {@code 0}. * * @return the addition of all the lane elements of this vector */ public abstract long addAll(); /** * Adds all lane elements of this vector, selecting lane elements * controlled by a mask. *

* This is an associative vector reduction operation where the addition * operation ({@code +}) is applied to lane elements, * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the addition of the selected lane elements of this vector */ public abstract long addAll(Mask m); /** * Multiplies all lane elements of this vector. *

* This is an associative vector reduction operation where the * multiplication operation ({@code *}) is applied to lane elements, * and the identity value is {@code 1}. * * @return the multiplication of all the lane elements of this vector */ public abstract long mulAll(); /** * Multiplies all lane elements of this vector, selecting lane elements * controlled by a mask. *

* This is an associative vector reduction operation where the * multiplication operation ({@code *}) is applied to lane elements, * and the identity value is {@code 1}. * * @param m the mask controlling lane selection * @return the multiplication of all the lane elements of this vector */ public abstract long mulAll(Mask m); /** * Returns the minimum lane element of this vector. *

* This is an associative vector reduction operation where the operation * {@code (a, b) -> Math.min(a, b)} is applied to lane elements, * and the identity value is * {@link Long#MAX_VALUE}. * * @return the minimum lane element of this vector */ public abstract long minAll(); /** * Returns the minimum lane element of this vector, selecting lane elements * controlled by a mask. *

* This is an associative vector reduction operation where the operation * {@code (a, b) -> Math.min(a, b)} is applied to lane elements, * and the identity value is * {@link Long#MAX_VALUE}. * * @param m the mask controlling lane selection * @return the minimum lane element of this vector */ public abstract long minAll(Mask m); /** * Returns the maximum lane element of this vector. *

* This is an associative vector reduction operation where the operation * {@code (a, b) -> Math.max(a, b)} is applied to lane elements, * and the identity value is * {@link Long#MIN_VALUE}. * * @return the maximum lane element of this vector */ public abstract long maxAll(); /** * Returns the maximum lane element of this vector, selecting lane elements * controlled by a mask. *

* This is an associative vector reduction operation where the operation * {@code (a, b) -> Math.max(a, b)} is applied to lane elements, * and the identity value is * {@link Long#MIN_VALUE}. * * @param m the mask controlling lane selection * @return the maximum lane element of this vector */ public abstract long maxAll(Mask m); /** * Logically ORs all lane elements of this vector. *

* This is an associative vector reduction operation where the logical OR * operation ({@code |}) is applied to lane elements, * and the identity value is {@code 0}. * * @return the logical OR all the lane elements of this vector */ public abstract long orAll(); /** * Logically ORs all lane elements of this vector, selecting lane elements * controlled by a mask. *

* This is an associative vector reduction operation where the logical OR * operation ({@code |}) is applied to lane elements, * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical OR all the lane elements of this vector */ public abstract long orAll(Mask m); /** * Logically ANDs all lane elements of this vector. *

* This is an associative vector reduction operation where the logical AND * operation ({@code |}) is applied to lane elements, * and the identity value is {@code -1}. * * @return the logical AND all the lane elements of this vector */ public abstract long andAll(); /** * Logically ANDs all lane elements of this vector, selecting lane elements * controlled by a mask. *

* This is an associative vector reduction operation where the logical AND * operation ({@code |}) is applied to lane elements, * and the identity value is {@code -1}. * * @param m the mask controlling lane selection * @return the logical AND all the lane elements of this vector */ public abstract long andAll(Mask m); /** * Logically XORs all lane elements of this vector. *

* This is an associative vector reduction operation where the logical XOR * operation ({@code ^}) is applied to lane elements, * and the identity value is {@code 0}. * * @return the logical XOR all the lane elements of this vector */ public abstract long xorAll(); /** * Logically XORs all lane elements of this vector, selecting lane elements * controlled by a mask. *

* This is an associative vector reduction operation where the logical XOR * operation ({@code ^}) is applied to lane elements, * and the identity value is {@code 0}. * * @param m the mask controlling lane selection * @return the logical XOR all the lane elements of this vector */ public abstract long xorAll(Mask m); // Type specific accessors /** * Gets the lane element at lane index {@code i} * * @param i the lane index * @return the lane element at lane index {@code i} * @throws IllegalArgumentException if the index is is out of range * ({@code < 0 || >= length()}) */ public abstract long get(int i); /** * Replaces the lane element of this vector at lane index {@code i} with * value {@code e}. *

* This is a cross-lane operation and behaves as if it returns the result * of blending this vector with an input vector that is the result of * broadcasting {@code e} and a mask that has only one lane set at lane * index {@code i}. * * @param i the lane index of the lane element to be replaced * @param e the value to be placed * @return the result of replacing the lane element of this vector at lane * index {@code i} with value {@code e}. * @throws IllegalArgumentException if the index is is out of range * ({@code < 0 || >= length()}) */ public abstract LongVector with(int i, long e); // Type specific extractors /** * Returns an array containing the lane elements of this vector. *

* This method behaves as if it {@link #intoArray(long[], int)} stores} * this vector into an allocated array and returns the array as follows: *

{@code
     *   long[] a = new long[this.length()];
     *   this.intoArray(a, 0);
     *   return a;
     * }
* * @return an array containing the the lane elements of this vector */ @ForceInline public final long[] toArray() { long[] a = new long[species().length()]; intoArray(a, 0); return a; } /** * Stores this vector into an array starting at offset. *

* For each vector lane, where {@code N} is the vector lane index, * the lane element at index {@code N} is stored into the array at index * {@code i + N}. * * @param a the array * @param i the offset into the array * @throws IndexOutOfBoundsException if {@code i < 0}, or * {@code i > a.length - this.length()} */ public abstract void intoArray(long[] a, int i); /** * Stores this vector into an array starting at offset and using a mask. *

* For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the lane element at * index {@code N} is stored into the array index {@code i + N}. * * @param a the array * @param i the offset into the array * @param m the mask * @throws IndexOutOfBoundsException if {@code i < 0}, or * for any vector lane index {@code N} where the mask at lane {@code N} * is set {@code i >= a.length - N} */ public abstract void intoArray(long[] a, int i, Mask m); /** * Stores this vector into an array using indexes obtained from an index * map. *

* For each vector lane, where {@code N} is the vector lane index, the * lane element at index {@code N} is stored into the array at index * {@code i + indexMap[j + N]}. * * @param a the array * @param i the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param indexMap the index map * @param j the offset into the index map * @throws IndexOutOfBoundsException if {@code j < 0}, or * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} the result of * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length} */ public abstract void intoArray(long[] a, int i, int[] indexMap, int j); /** * Stores this vector into an array using indexes obtained from an index * map and using a mask. *

* For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the lane element at * index {@code N} is stored into the array at index * {@code i + indexMap[j + N]}. * * @param a the array * @param i the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param m the mask * @param indexMap the index map * @param j the offset into the index map * @throws IndexOutOfBoundsException if {@code j < 0}, or * {@code j > indexMap.length - this.length()}, * or for any vector lane index {@code N} where the mask at lane * {@code N} is set the result of {@code i + indexMap[j + N]} is * {@code < 0} or {@code >= a.length} */ public abstract void intoArray(long[] a, int i, Mask m, int[] indexMap, int j); // Species @Override public abstract Species species(); /** * Class representing {@link LongVector}'s of the same {@link Shape Shape}. */ static final class LongSpecies extends AbstractSpecies { final Function vectorFactory; private LongSpecies(Shape shape, Class boxType, Class maskType, Function vectorFactory, Function> maskFactory, Function> shuffleFromArrayFactory, fShuffleFromArray shuffleFromOpFactory) { super(shape, long.class, Long.SIZE, boxType, maskType, maskFactory, shuffleFromArrayFactory, shuffleFromOpFactory); this.vectorFactory = vectorFactory; } interface FOp { long apply(int i); } interface FOpm { boolean apply(int i); } LongVector op(FOp f) { long[] res = new long[length()]; for (int i = 0; i < length(); i++) { res[i] = f.apply(i); } return vectorFactory.apply(res); } LongVector op(Mask o, FOp f) { long[] res = new long[length()]; boolean[] mbits = ((AbstractMask)o).getBits(); for (int i = 0; i < length(); i++) { if (mbits[i]) { res[i] = f.apply(i); } } return vectorFactory.apply(res); } } /** * Finds the preferred species for an element type of {@code long}. *

* A preferred species is a species chosen by the platform that has a * shape of maximal bit size. A preferred species for different element * types will have the same shape, and therefore vectors, masks, and * shuffles created from such species will be shape compatible. * * @return the preferred species for an element type of {@code long} */ private static LongSpecies preferredSpecies() { return (LongSpecies) Species.ofPreferred(long.class); } /** * Finds a species for an element type of {@code long} and shape. * * @param s the shape * @return a species for an element type of {@code long} and shape * @throws IllegalArgumentException if no such species exists for the shape */ static LongSpecies species(Shape s) { Objects.requireNonNull(s); switch (s) { case S_64_BIT: return (LongSpecies) SPECIES_64; case S_128_BIT: return (LongSpecies) SPECIES_128; case S_256_BIT: return (LongSpecies) SPECIES_256; case S_512_BIT: return (LongSpecies) SPECIES_512; case S_Max_BIT: return (LongSpecies) SPECIES_MAX; default: throw new IllegalArgumentException("Bad shape: " + s); } } /** Species representing {@link LongVector}s of {@link Shape#S_64_BIT Shape.S_64_BIT}. */ public static final Species SPECIES_64 = new LongSpecies(Shape.S_64_BIT, Long64Vector.class, Long64Vector.Long64Mask.class, Long64Vector::new, Long64Vector.Long64Mask::new, Long64Vector.Long64Shuffle::new, Long64Vector.Long64Shuffle::new); /** Species representing {@link LongVector}s of {@link Shape#S_128_BIT Shape.S_128_BIT}. */ public static final Species SPECIES_128 = new LongSpecies(Shape.S_128_BIT, Long128Vector.class, Long128Vector.Long128Mask.class, Long128Vector::new, Long128Vector.Long128Mask::new, Long128Vector.Long128Shuffle::new, Long128Vector.Long128Shuffle::new); /** Species representing {@link LongVector}s of {@link Shape#S_256_BIT Shape.S_256_BIT}. */ public static final Species SPECIES_256 = new LongSpecies(Shape.S_256_BIT, Long256Vector.class, Long256Vector.Long256Mask.class, Long256Vector::new, Long256Vector.Long256Mask::new, Long256Vector.Long256Shuffle::new, Long256Vector.Long256Shuffle::new); /** Species representing {@link LongVector}s of {@link Shape#S_512_BIT Shape.S_512_BIT}. */ public static final Species SPECIES_512 = new LongSpecies(Shape.S_512_BIT, Long512Vector.class, Long512Vector.Long512Mask.class, Long512Vector::new, Long512Vector.Long512Mask::new, Long512Vector.Long512Shuffle::new, Long512Vector.Long512Shuffle::new); /** Species representing {@link LongVector}s of {@link Shape#S_Max_BIT Shape.S_Max_BIT}. */ public static final Species SPECIES_MAX = new LongSpecies(Shape.S_Max_BIT, LongMaxVector.class, LongMaxVector.LongMaxMask.class, LongMaxVector::new, LongMaxVector.LongMaxMask::new, LongMaxVector.LongMaxShuffle::new, LongMaxVector.LongMaxShuffle::new); /** * Preferred species for {@link LongVector}s. * A preferred species is a species of maximal bit size for the platform. */ public static final Species SPECIES_PREFERRED = (Species) preferredSpecies(); }