1 //
   2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // Block initializing store
 475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
 476 
 477 // tertiary op of a LoadP or StoreP encoding
 478 #define REGP_OP true
 479 
 480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 482 static Register reg_to_register_object(int register_encoding);
 483 
 484 // Used by the DFA in dfa_sparc.cpp.
 485 // Check for being able to use a V9 branch-on-register.  Requires a
 486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 487 // extended.  Doesn't work following an integer ADD, for example, because of
 488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 490 // replace them with zero, which could become sign-extension in a different OS
 491 // release.  There's no obvious reason why an interrupt will ever fill these
 492 // bits with non-zero junk (the registers are reloaded with standard LD
 493 // instructions which either zero-fill or sign-fill).
 494 bool can_branch_register( Node *bol, Node *cmp ) {
 495   if( !BranchOnRegister ) return false;
 496 #ifdef _LP64
 497   if( cmp->Opcode() == Op_CmpP )
 498     return true;  // No problems with pointer compares
 499 #endif
 500   if( cmp->Opcode() == Op_CmpL )
 501     return true;  // No problems with long compares
 502 
 503   if( !SparcV9RegsHiBitsZero ) return false;
 504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 505       bol->as_Bool()->_test._test != BoolTest::eq )
 506      return false;
 507 
 508   // Check for comparing against a 'safe' value.  Any operation which
 509   // clears out the high word is safe.  Thus, loads and certain shifts
 510   // are safe, as are non-negative constants.  Any operation which
 511   // preserves zero bits in the high word is safe as long as each of its
 512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 513   // inputs are safe.  At present, the only important case to recognize
 514   // seems to be loads.  Constants should fold away, and shifts &
 515   // logicals can use the 'cc' forms.
 516   Node *x = cmp->in(1);
 517   if( x->is_Load() ) return true;
 518   if( x->is_Phi() ) {
 519     for( uint i = 1; i < x->req(); i++ )
 520       if( !x->in(i)->is_Load() )
 521         return false;
 522     return true;
 523   }
 524   return false;
 525 }
 526 
 527 // ****************************************************************************
 528 
 529 // REQUIRED FUNCTIONALITY
 530 
 531 // !!!!! Special hack to get all type of calls to specify the byte offset
 532 //       from the start of the call to the point where the return address
 533 //       will point.
 534 //       The "return address" is the address of the call instruction, plus 8.
 535 
 536 int MachCallStaticJavaNode::ret_addr_offset() {
 537   int offset = NativeCall::instruction_size;  // call; delay slot
 538   if (_method_handle_invoke)
 539     offset += 4;  // restore SP
 540   return offset;
 541 }
 542 
 543 int MachCallDynamicJavaNode::ret_addr_offset() {
 544   int vtable_index = this->_vtable_index;
 545   if (vtable_index < 0) {
 546     // must be invalid_vtable_index, not nonvirtual_vtable_index
 547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 548     return (NativeMovConstReg::instruction_size +
 549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 550   } else {
 551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 554     int klass_load_size;
 555     if (UseCompressedOops) {
 556       assert(Universe::heap() != NULL, "java heap should be initialized");
 557       if (Universe::narrow_oop_base() == NULL)
 558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 559       else
 560         klass_load_size = 3*BytesPerInstWord;
 561     } else {
 562       klass_load_size = 1*BytesPerInstWord;
 563     }
 564     if( Assembler::is_simm13(v_off) ) {
 565       return klass_load_size +
 566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 567              NativeCall::instruction_size);  // call; delay slot
 568     } else {
 569       return klass_load_size +
 570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 571              NativeCall::instruction_size);  // call; delay slot
 572     }
 573   }
 574 }
 575 
 576 int MachCallRuntimeNode::ret_addr_offset() {
 577 #ifdef _LP64
 578   if (MacroAssembler::is_far_target(entry_point())) {
 579     return NativeFarCall::instruction_size;
 580   } else {
 581     return NativeCall::instruction_size;
 582   }
 583 #else
 584   return NativeCall::instruction_size;  // call; delay slot
 585 #endif
 586 }
 587 
 588 // Indicate if the safepoint node needs the polling page as an input.
 589 // Since Sparc does not have absolute addressing, it does.
 590 bool SafePointNode::needs_polling_address_input() {
 591   return true;
 592 }
 593 
 594 // emit an interrupt that is caught by the debugger (for debugging compiler)
 595 void emit_break(CodeBuffer &cbuf) {
 596   MacroAssembler _masm(&cbuf);
 597   __ breakpoint_trap();
 598 }
 599 
 600 #ifndef PRODUCT
 601 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 602   st->print("TA");
 603 }
 604 #endif
 605 
 606 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 607   emit_break(cbuf);
 608 }
 609 
 610 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 611   return MachNode::size(ra_);
 612 }
 613 
 614 // Traceable jump
 615 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 616   MacroAssembler _masm(&cbuf);
 617   Register rdest = reg_to_register_object(jump_target);
 618   __ JMP(rdest, 0);
 619   __ delayed()->nop();
 620 }
 621 
 622 // Traceable jump and set exception pc
 623 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 624   MacroAssembler _masm(&cbuf);
 625   Register rdest = reg_to_register_object(jump_target);
 626   __ JMP(rdest, 0);
 627   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 628 }
 629 
 630 void emit_nop(CodeBuffer &cbuf) {
 631   MacroAssembler _masm(&cbuf);
 632   __ nop();
 633 }
 634 
 635 void emit_illtrap(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ illtrap(0);
 638 }
 639 
 640 
 641 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 642   assert(n->rule() != loadUB_rule, "");
 643 
 644   intptr_t offset = 0;
 645   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 646   const Node* addr = n->get_base_and_disp(offset, adr_type);
 647   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 648   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 649   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 650   atype = atype->add_offset(offset);
 651   assert(disp32 == offset, "wrong disp32");
 652   return atype->_offset;
 653 }
 654 
 655 
 656 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 657   assert(n->rule() != loadUB_rule, "");
 658 
 659   intptr_t offset = 0;
 660   Node* addr = n->in(2);
 661   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 662   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 663     Node* a = addr->in(2/*AddPNode::Address*/);
 664     Node* o = addr->in(3/*AddPNode::Offset*/);
 665     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 666     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 667     assert(atype->isa_oop_ptr(), "still an oop");
 668   }
 669   offset = atype->is_ptr()->_offset;
 670   if (offset != Type::OffsetBot)  offset += disp32;
 671   return offset;
 672 }
 673 
 674 static inline jdouble replicate_immI(int con, int count, int width) {
 675   // Load a constant replicated "count" times with width "width"
 676   int bit_width = width * 8;
 677   jlong elt_val = con;
 678   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 679   jlong val = elt_val;
 680   for (int i = 0; i < count - 1; i++) {
 681     val <<= bit_width;
 682     val |= elt_val;
 683   }
 684   jdouble dval = *((jdouble*) &val);  // coerce to double type
 685   return dval;
 686 }
 687 
 688 // Standard Sparc opcode form2 field breakdown
 689 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 690   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 691   int op = (f30 << 30) |
 692            (f29 << 29) |
 693            (f25 << 25) |
 694            (f22 << 22) |
 695            (f20 << 20) |
 696            (f19 << 19) |
 697            (f0  <<  0);
 698   cbuf.insts()->emit_int32(op);
 699 }
 700 
 701 // Standard Sparc opcode form2 field breakdown
 702 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 703   f0 >>= 10;           // Drop 10 bits
 704   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f22 << 22) |
 708            (f0  <<  0);
 709   cbuf.insts()->emit_int32(op);
 710 }
 711 
 712 // Standard Sparc opcode form3 field breakdown
 713 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 714   int op = (f30 << 30) |
 715            (f25 << 25) |
 716            (f19 << 19) |
 717            (f14 << 14) |
 718            (f5  <<  5) |
 719            (f0  <<  0);
 720   cbuf.insts()->emit_int32(op);
 721 }
 722 
 723 // Standard Sparc opcode form3 field breakdown
 724 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 725   simm13 &= (1<<13)-1; // Mask to 13 bits
 726   int op = (f30 << 30) |
 727            (f25 << 25) |
 728            (f19 << 19) |
 729            (f14 << 14) |
 730            (1   << 13) | // bit to indicate immediate-mode
 731            (simm13<<0);
 732   cbuf.insts()->emit_int32(op);
 733 }
 734 
 735 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 736   simm10 &= (1<<10)-1; // Mask to 10 bits
 737   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 738 }
 739 
 740 #ifdef ASSERT
 741 // Helper function for VerifyOops in emit_form3_mem_reg
 742 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 743   warning("VerifyOops encountered unexpected instruction:");
 744   n->dump(2);
 745   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 746 }
 747 #endif
 748 
 749 
 750 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 751                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 752 
 753 #ifdef ASSERT
 754   // The following code implements the +VerifyOops feature.
 755   // It verifies oop values which are loaded into or stored out of
 756   // the current method activation.  +VerifyOops complements techniques
 757   // like ScavengeALot, because it eagerly inspects oops in transit,
 758   // as they enter or leave the stack, as opposed to ScavengeALot,
 759   // which inspects oops "at rest", in the stack or heap, at safepoints.
 760   // For this reason, +VerifyOops can sometimes detect bugs very close
 761   // to their point of creation.  It can also serve as a cross-check
 762   // on the validity of oop maps, when used toegether with ScavengeALot.
 763 
 764   // It would be good to verify oops at other points, especially
 765   // when an oop is used as a base pointer for a load or store.
 766   // This is presently difficult, because it is hard to know when
 767   // a base address is biased or not.  (If we had such information,
 768   // it would be easy and useful to make a two-argument version of
 769   // verify_oop which unbiases the base, and performs verification.)
 770 
 771   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 772   bool is_verified_oop_base  = false;
 773   bool is_verified_oop_load  = false;
 774   bool is_verified_oop_store = false;
 775   int tmp_enc = -1;
 776   if (VerifyOops && src1_enc != R_SP_enc) {
 777     // classify the op, mainly for an assert check
 778     int st_op = 0, ld_op = 0;
 779     switch (primary) {
 780     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 781     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 782     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 783     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 784     case Assembler::std_op3:  st_op = Op_StoreL; break;
 785     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 786     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 787 
 788     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 789     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 790     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 791     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 792     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 793     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 794     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 795     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 796     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 797     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 798     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 799 
 800     default: ShouldNotReachHere();
 801     }
 802     if (tertiary == REGP_OP) {
 803       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 804       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 805       else                          ShouldNotReachHere();
 806       if (st_op) {
 807         // a store
 808         // inputs are (0:control, 1:memory, 2:address, 3:value)
 809         Node* n2 = n->in(3);
 810         if (n2 != NULL) {
 811           const Type* t = n2->bottom_type();
 812           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 813         }
 814       } else {
 815         // a load
 816         const Type* t = n->bottom_type();
 817         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 818       }
 819     }
 820 
 821     if (ld_op) {
 822       // a Load
 823       // inputs are (0:control, 1:memory, 2:address)
 824       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 825           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 826           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 827           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 828           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 829           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 830           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 831           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 832           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 833           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 834           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 835           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 836           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 837           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
 839           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
 840           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
 841           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
 842           !(n->rule() == loadUB_rule)) {
 843         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 844       }
 845     } else if (st_op) {
 846       // a Store
 847       // inputs are (0:control, 1:memory, 2:address, 3:value)
 848       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 849           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 850           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 851           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 852           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 853           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
 854           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
 855           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
 856           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 857         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 858       }
 859     }
 860 
 861     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 862       Node* addr = n->in(2);
 863       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 864         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 865         if (atype != NULL) {
 866           intptr_t offset = get_offset_from_base(n, atype, disp32);
 867           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 868           if (offset != offset_2) {
 869             get_offset_from_base(n, atype, disp32);
 870             get_offset_from_base_2(n, atype, disp32);
 871           }
 872           assert(offset == offset_2, "different offsets");
 873           if (offset == disp32) {
 874             // we now know that src1 is a true oop pointer
 875             is_verified_oop_base = true;
 876             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 877               if( primary == Assembler::ldd_op3 ) {
 878                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 879               } else {
 880                 tmp_enc = dst_enc;
 881                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 882                 assert(src1_enc != dst_enc, "");
 883               }
 884             }
 885           }
 886           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 887                        || offset == oopDesc::mark_offset_in_bytes())) {
 888                       // loading the mark should not be allowed either, but
 889                       // we don't check this since it conflicts with InlineObjectHash
 890                       // usage of LoadINode to get the mark. We could keep the
 891                       // check if we create a new LoadMarkNode
 892             // but do not verify the object before its header is initialized
 893             ShouldNotReachHere();
 894           }
 895         }
 896       }
 897     }
 898   }
 899 #endif
 900 
 901   uint instr;
 902   instr = (Assembler::ldst_op << 30)
 903         | (dst_enc        << 25)
 904         | (primary        << 19)
 905         | (src1_enc       << 14);
 906 
 907   uint index = src2_enc;
 908   int disp = disp32;
 909 
 910   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 911     disp += STACK_BIAS;
 912 
 913   // We should have a compiler bailout here rather than a guarantee.
 914   // Better yet would be some mechanism to handle variable-size matches correctly.
 915   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 916 
 917   if( disp == 0 ) {
 918     // use reg-reg form
 919     // bit 13 is already zero
 920     instr |= index;
 921   } else {
 922     // use reg-imm form
 923     instr |= 0x00002000;          // set bit 13 to one
 924     instr |= disp & 0x1FFF;
 925   }
 926 
 927   cbuf.insts()->emit_int32(instr);
 928 
 929 #ifdef ASSERT
 930   {
 931     MacroAssembler _masm(&cbuf);
 932     if (is_verified_oop_base) {
 933       __ verify_oop(reg_to_register_object(src1_enc));
 934     }
 935     if (is_verified_oop_store) {
 936       __ verify_oop(reg_to_register_object(dst_enc));
 937     }
 938     if (tmp_enc != -1) {
 939       __ mov(O7, reg_to_register_object(tmp_enc));
 940     }
 941     if (is_verified_oop_load) {
 942       __ verify_oop(reg_to_register_object(dst_enc));
 943     }
 944   }
 945 #endif
 946 }
 947 
 948 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 949   // The method which records debug information at every safepoint
 950   // expects the call to be the first instruction in the snippet as
 951   // it creates a PcDesc structure which tracks the offset of a call
 952   // from the start of the codeBlob. This offset is computed as
 953   // code_end() - code_begin() of the code which has been emitted
 954   // so far.
 955   // In this particular case we have skirted around the problem by
 956   // putting the "mov" instruction in the delay slot but the problem
 957   // may bite us again at some other point and a cleaner/generic
 958   // solution using relocations would be needed.
 959   MacroAssembler _masm(&cbuf);
 960   __ set_inst_mark();
 961 
 962   // We flush the current window just so that there is a valid stack copy
 963   // the fact that the current window becomes active again instantly is
 964   // not a problem there is nothing live in it.
 965 
 966 #ifdef ASSERT
 967   int startpos = __ offset();
 968 #endif /* ASSERT */
 969 
 970   __ call((address)entry_point, rtype);
 971 
 972   if (preserve_g2)   __ delayed()->mov(G2, L7);
 973   else __ delayed()->nop();
 974 
 975   if (preserve_g2)   __ mov(L7, G2);
 976 
 977 #ifdef ASSERT
 978   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 979 #ifdef _LP64
 980     // Trash argument dump slots.
 981     __ set(0xb0b8ac0db0b8ac0d, G1);
 982     __ mov(G1, G5);
 983     __ stx(G1, SP, STACK_BIAS + 0x80);
 984     __ stx(G1, SP, STACK_BIAS + 0x88);
 985     __ stx(G1, SP, STACK_BIAS + 0x90);
 986     __ stx(G1, SP, STACK_BIAS + 0x98);
 987     __ stx(G1, SP, STACK_BIAS + 0xA0);
 988     __ stx(G1, SP, STACK_BIAS + 0xA8);
 989 #else // _LP64
 990     // this is also a native call, so smash the first 7 stack locations,
 991     // and the various registers
 992 
 993     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
 994     // while [SP+0x44..0x58] are the argument dump slots.
 995     __ set((intptr_t)0xbaadf00d, G1);
 996     __ mov(G1, G5);
 997     __ sllx(G1, 32, G1);
 998     __ or3(G1, G5, G1);
 999     __ mov(G1, G5);
1000     __ stx(G1, SP, 0x40);
1001     __ stx(G1, SP, 0x48);
1002     __ stx(G1, SP, 0x50);
1003     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1004 #endif // _LP64
1005   }
1006 #endif /*ASSERT*/
1007 }
1008 
1009 //=============================================================================
1010 // REQUIRED FUNCTIONALITY for encoding
1011 void emit_lo(CodeBuffer &cbuf, int val) {  }
1012 void emit_hi(CodeBuffer &cbuf, int val) {  }
1013 
1014 
1015 //=============================================================================
1016 const bool Matcher::constant_table_absolute_addressing = false;
1017 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
1018 
1019 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1020   Compile* C = ra_->C;
1021   Compile::ConstantTable& constant_table = C->constant_table();
1022   MacroAssembler _masm(&cbuf);
1023 
1024   Register r = as_Register(ra_->get_encode(this));
1025   CodeSection* cs = __ code()->consts();
1026   int consts_size = cs->align_at_start(cs->size());
1027 
1028   if (UseRDPCForConstantTableBase) {
1029     // For the following RDPC logic to work correctly the consts
1030     // section must be allocated right before the insts section.  This
1031     // assert checks for that.  The layout and the SECT_* constants
1032     // are defined in src/share/vm/asm/codeBuffer.hpp.
1033     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1034     int offset = __ offset();
1035     int disp;
1036 
1037     // If the displacement from the current PC to the constant table
1038     // base fits into simm13 we set the constant table base to the
1039     // current PC.
1040     if (__ is_simm13(-(consts_size + offset))) {
1041       constant_table.set_table_base_offset(-(consts_size + offset));
1042       disp = 0;
1043     } else {
1044       // If the offset of the top constant (last entry in the table)
1045       // fits into simm13 we set the constant table base to the actual
1046       // table base.
1047       if (__ is_simm13(constant_table.top_offset())) {
1048         constant_table.set_table_base_offset(0);
1049         disp = consts_size + offset;
1050       } else {
1051         // Otherwise we set the constant table base in the middle of the
1052         // constant table.
1053         int half_consts_size = consts_size / 2;
1054         assert(half_consts_size * 2 == consts_size, "sanity");
1055         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
1056         disp = half_consts_size + offset;
1057       }
1058     }
1059 
1060     __ rdpc(r);
1061 
1062     if (disp != 0) {
1063       assert(r != O7, "need temporary");
1064       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1065     }
1066   }
1067   else {
1068     // Materialize the constant table base.
1069     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1070     address baseaddr = cs->start() + -(constant_table.table_base_offset());
1071     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1072     AddressLiteral base(baseaddr, rspec);
1073     __ set(base, r);
1074   }
1075 }
1076 
1077 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1078   if (UseRDPCForConstantTableBase) {
1079     // This is really the worst case but generally it's only 1 instruction.
1080     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1081   } else {
1082     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1083   }
1084 }
1085 
1086 #ifndef PRODUCT
1087 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1088   char reg[128];
1089   ra_->dump_register(this, reg);
1090   if (UseRDPCForConstantTableBase) {
1091     st->print("RDPC   %s\t! constant table base", reg);
1092   } else {
1093     st->print("SET    &constanttable,%s\t! constant table base", reg);
1094   }
1095 }
1096 #endif
1097 
1098 
1099 //=============================================================================
1100 
1101 #ifndef PRODUCT
1102 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1103   Compile* C = ra_->C;
1104 
1105   for (int i = 0; i < OptoPrologueNops; i++) {
1106     st->print_cr("NOP"); st->print("\t");
1107   }
1108 
1109   if( VerifyThread ) {
1110     st->print_cr("Verify_Thread"); st->print("\t");
1111   }
1112 
1113   size_t framesize = C->frame_slots() << LogBytesPerInt;
1114 
1115   // Calls to C2R adapters often do not accept exceptional returns.
1116   // We require that their callers must bang for them.  But be careful, because
1117   // some VM calls (such as call site linkage) can use several kilobytes of
1118   // stack.  But the stack safety zone should account for that.
1119   // See bugs 4446381, 4468289, 4497237.
1120   if (C->need_stack_bang(framesize)) {
1121     st->print_cr("! stack bang"); st->print("\t");
1122   }
1123 
1124   if (Assembler::is_simm13(-framesize)) {
1125     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1126   } else {
1127     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1128     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1129     st->print   ("SAVE   R_SP,R_G3,R_SP");
1130   }
1131 
1132 }
1133 #endif
1134 
1135 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1136   Compile* C = ra_->C;
1137   MacroAssembler _masm(&cbuf);
1138 
1139   for (int i = 0; i < OptoPrologueNops; i++) {
1140     __ nop();
1141   }
1142 
1143   __ verify_thread();
1144 
1145   size_t framesize = C->frame_slots() << LogBytesPerInt;
1146   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1147   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1148 
1149   // Calls to C2R adapters often do not accept exceptional returns.
1150   // We require that their callers must bang for them.  But be careful, because
1151   // some VM calls (such as call site linkage) can use several kilobytes of
1152   // stack.  But the stack safety zone should account for that.
1153   // See bugs 4446381, 4468289, 4497237.
1154   if (C->need_stack_bang(framesize)) {
1155     __ generate_stack_overflow_check(framesize);
1156   }
1157 
1158   if (Assembler::is_simm13(-framesize)) {
1159     __ save(SP, -framesize, SP);
1160   } else {
1161     __ sethi(-framesize & ~0x3ff, G3);
1162     __ add(G3, -framesize & 0x3ff, G3);
1163     __ save(SP, G3, SP);
1164   }
1165   C->set_frame_complete( __ offset() );
1166 }
1167 
1168 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1169   return MachNode::size(ra_);
1170 }
1171 
1172 int MachPrologNode::reloc() const {
1173   return 10; // a large enough number
1174 }
1175 
1176 //=============================================================================
1177 #ifndef PRODUCT
1178 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1179   Compile* C = ra_->C;
1180 
1181   if( do_polling() && ra_->C->is_method_compilation() ) {
1182     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1183 #ifdef _LP64
1184     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1185 #else
1186     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1187 #endif
1188   }
1189 
1190   if( do_polling() )
1191     st->print("RET\n\t");
1192 
1193   st->print("RESTORE");
1194 }
1195 #endif
1196 
1197 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1198   MacroAssembler _masm(&cbuf);
1199   Compile* C = ra_->C;
1200 
1201   __ verify_thread();
1202 
1203   // If this does safepoint polling, then do it here
1204   if( do_polling() && ra_->C->is_method_compilation() ) {
1205     AddressLiteral polling_page(os::get_polling_page());
1206     __ sethi(polling_page, L0);
1207     __ relocate(relocInfo::poll_return_type);
1208     __ ld_ptr( L0, 0, G0 );
1209   }
1210 
1211   // If this is a return, then stuff the restore in the delay slot
1212   if( do_polling() ) {
1213     __ ret();
1214     __ delayed()->restore();
1215   } else {
1216     __ restore();
1217   }
1218 }
1219 
1220 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1221   return MachNode::size(ra_);
1222 }
1223 
1224 int MachEpilogNode::reloc() const {
1225   return 16; // a large enough number
1226 }
1227 
1228 const Pipeline * MachEpilogNode::pipeline() const {
1229   return MachNode::pipeline_class();
1230 }
1231 
1232 int MachEpilogNode::safepoint_offset() const {
1233   assert( do_polling(), "no return for this epilog node");
1234   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1235 }
1236 
1237 //=============================================================================
1238 
1239 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1240 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1241 static enum RC rc_class( OptoReg::Name reg ) {
1242   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1243   if (OptoReg::is_stack(reg)) return rc_stack;
1244   VMReg r = OptoReg::as_VMReg(reg);
1245   if (r->is_Register()) return rc_int;
1246   assert(r->is_FloatRegister(), "must be");
1247   return rc_float;
1248 }
1249 
1250 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1251   if( cbuf ) {
1252     // Better yet would be some mechanism to handle variable-size matches correctly
1253     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1254       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1255     } else {
1256       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1257     }
1258   }
1259 #ifndef PRODUCT
1260   else if( !do_size ) {
1261     if( size != 0 ) st->print("\n\t");
1262     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1263     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1264   }
1265 #endif
1266   return size+4;
1267 }
1268 
1269 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1270   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1271 #ifndef PRODUCT
1272   else if( !do_size ) {
1273     if( size != 0 ) st->print("\n\t");
1274     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1275   }
1276 #endif
1277   return size+4;
1278 }
1279 
1280 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1281                                         PhaseRegAlloc *ra_,
1282                                         bool do_size,
1283                                         outputStream* st ) const {
1284   // Get registers to move
1285   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1286   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1287   OptoReg::Name dst_second = ra_->get_reg_second(this );
1288   OptoReg::Name dst_first = ra_->get_reg_first(this );
1289 
1290   enum RC src_second_rc = rc_class(src_second);
1291   enum RC src_first_rc = rc_class(src_first);
1292   enum RC dst_second_rc = rc_class(dst_second);
1293   enum RC dst_first_rc = rc_class(dst_first);
1294 
1295   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1296 
1297   // Generate spill code!
1298   int size = 0;
1299 
1300   if( src_first == dst_first && src_second == dst_second )
1301     return size;            // Self copy, no move
1302 
1303   // --------------------------------------
1304   // Check for mem-mem move.  Load into unused float registers and fall into
1305   // the float-store case.
1306   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1307     int offset = ra_->reg2offset(src_first);
1308     // Further check for aligned-adjacent pair, so we can use a double load
1309     if( (src_first&1)==0 && src_first+1 == src_second ) {
1310       src_second    = OptoReg::Name(R_F31_num);
1311       src_second_rc = rc_float;
1312       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1313     } else {
1314       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1315     }
1316     src_first    = OptoReg::Name(R_F30_num);
1317     src_first_rc = rc_float;
1318   }
1319 
1320   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1321     int offset = ra_->reg2offset(src_second);
1322     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1323     src_second    = OptoReg::Name(R_F31_num);
1324     src_second_rc = rc_float;
1325   }
1326 
1327   // --------------------------------------
1328   // Check for float->int copy; requires a trip through memory
1329   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1330     int offset = frame::register_save_words*wordSize;
1331     if (cbuf) {
1332       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1333       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1334       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1335       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1336     }
1337 #ifndef PRODUCT
1338     else if (!do_size) {
1339       if (size != 0) st->print("\n\t");
1340       st->print(  "SUB    R_SP,16,R_SP\n");
1341       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1342       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1343       st->print("\tADD    R_SP,16,R_SP\n");
1344     }
1345 #endif
1346     size += 16;
1347   }
1348 
1349   // Check for float->int copy on T4
1350   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1351     // Further check for aligned-adjacent pair, so we can use a double move
1352     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1353       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1354     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1355   }
1356   // Check for int->float copy on T4
1357   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1358     // Further check for aligned-adjacent pair, so we can use a double move
1359     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1360       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1361     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1362   }
1363 
1364   // --------------------------------------
1365   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1366   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1367   // hardware does the flop for me.  Doubles are always aligned, so no problem
1368   // there.  Misaligned sources only come from native-long-returns (handled
1369   // special below).
1370 #ifndef _LP64
1371   if( src_first_rc == rc_int &&     // source is already big-endian
1372       src_second_rc != rc_bad &&    // 64-bit move
1373       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1374     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1375     // Do the big-endian flop.
1376     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1377     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1378   }
1379 #endif
1380 
1381   // --------------------------------------
1382   // Check for integer reg-reg copy
1383   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1384 #ifndef _LP64
1385     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1386       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1387       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1388       //       operand contains the least significant word of the 64-bit value and vice versa.
1389       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1390       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1391       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1392       if( cbuf ) {
1393         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1394         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1395         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1396 #ifndef PRODUCT
1397       } else if( !do_size ) {
1398         if( size != 0 ) st->print("\n\t");
1399         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1400         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1401         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1402 #endif
1403       }
1404       return size+12;
1405     }
1406     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1407       // returning a long value in I0/I1
1408       // a SpillCopy must be able to target a return instruction's reg_class
1409       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1410       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1411       //       operand contains the least significant word of the 64-bit value and vice versa.
1412       OptoReg::Name tdest = dst_first;
1413 
1414       if (src_first == dst_first) {
1415         tdest = OptoReg::Name(R_O7_num);
1416         size += 4;
1417       }
1418 
1419       if( cbuf ) {
1420         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1421         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1422         // ShrL_reg_imm6
1423         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1424         // ShrR_reg_imm6  src, 0, dst
1425         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1426         if (tdest != dst_first) {
1427           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1428         }
1429       }
1430 #ifndef PRODUCT
1431       else if( !do_size ) {
1432         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1433         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1434         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1435         if (tdest != dst_first) {
1436           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1437         }
1438       }
1439 #endif // PRODUCT
1440       return size+8;
1441     }
1442 #endif // !_LP64
1443     // Else normal reg-reg copy
1444     assert( src_second != dst_first, "smashed second before evacuating it" );
1445     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1446     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1447     // This moves an aligned adjacent pair.
1448     // See if we are done.
1449     if( src_first+1 == src_second && dst_first+1 == dst_second )
1450       return size;
1451   }
1452 
1453   // Check for integer store
1454   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1455     int offset = ra_->reg2offset(dst_first);
1456     // Further check for aligned-adjacent pair, so we can use a double store
1457     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1458       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1459     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1460   }
1461 
1462   // Check for integer load
1463   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1464     int offset = ra_->reg2offset(src_first);
1465     // Further check for aligned-adjacent pair, so we can use a double load
1466     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1467       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1468     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1469   }
1470 
1471   // Check for float reg-reg copy
1472   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1473     // Further check for aligned-adjacent pair, so we can use a double move
1474     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1475       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1476     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1477   }
1478 
1479   // Check for float store
1480   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1481     int offset = ra_->reg2offset(dst_first);
1482     // Further check for aligned-adjacent pair, so we can use a double store
1483     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1484       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1485     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1486   }
1487 
1488   // Check for float load
1489   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1490     int offset = ra_->reg2offset(src_first);
1491     // Further check for aligned-adjacent pair, so we can use a double load
1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1493       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1494     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1495   }
1496 
1497   // --------------------------------------------------------------------
1498   // Check for hi bits still needing moving.  Only happens for misaligned
1499   // arguments to native calls.
1500   if( src_second == dst_second )
1501     return size;               // Self copy; no move
1502   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1503 
1504 #ifndef _LP64
1505   // In the LP64 build, all registers can be moved as aligned/adjacent
1506   // pairs, so there's never any need to move the high bits separately.
1507   // The 32-bit builds have to deal with the 32-bit ABI which can force
1508   // all sorts of silly alignment problems.
1509 
1510   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1511   // 32-bits of a 64-bit register, but are needed in low bits of another
1512   // register (else it's a hi-bits-to-hi-bits copy which should have
1513   // happened already as part of a 64-bit move)
1514   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1515     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1516     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1517     // Shift src_second down to dst_second's low bits.
1518     if( cbuf ) {
1519       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1520 #ifndef PRODUCT
1521     } else if( !do_size ) {
1522       if( size != 0 ) st->print("\n\t");
1523       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1524 #endif
1525     }
1526     return size+4;
1527   }
1528 
1529   // Check for high word integer store.  Must down-shift the hi bits
1530   // into a temp register, then fall into the case of storing int bits.
1531   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1532     // Shift src_second down to dst_second's low bits.
1533     if( cbuf ) {
1534       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1535 #ifndef PRODUCT
1536     } else if( !do_size ) {
1537       if( size != 0 ) st->print("\n\t");
1538       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1539 #endif
1540     }
1541     size+=4;
1542     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1543   }
1544 
1545   // Check for high word integer load
1546   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1547     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1548 
1549   // Check for high word integer store
1550   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1551     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1552 
1553   // Check for high word float store
1554   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1555     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1556 
1557 #endif // !_LP64
1558 
1559   Unimplemented();
1560 }
1561 
1562 #ifndef PRODUCT
1563 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1564   implementation( NULL, ra_, false, st );
1565 }
1566 #endif
1567 
1568 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1569   implementation( &cbuf, ra_, false, NULL );
1570 }
1571 
1572 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1573   return implementation( NULL, ra_, true, NULL );
1574 }
1575 
1576 //=============================================================================
1577 #ifndef PRODUCT
1578 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1579   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1580 }
1581 #endif
1582 
1583 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1584   MacroAssembler _masm(&cbuf);
1585   for(int i = 0; i < _count; i += 1) {
1586     __ nop();
1587   }
1588 }
1589 
1590 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1591   return 4 * _count;
1592 }
1593 
1594 
1595 //=============================================================================
1596 #ifndef PRODUCT
1597 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1598   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1599   int reg = ra_->get_reg_first(this);
1600   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1601 }
1602 #endif
1603 
1604 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1605   MacroAssembler _masm(&cbuf);
1606   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1607   int reg = ra_->get_encode(this);
1608 
1609   if (Assembler::is_simm13(offset)) {
1610      __ add(SP, offset, reg_to_register_object(reg));
1611   } else {
1612      __ set(offset, O7);
1613      __ add(SP, O7, reg_to_register_object(reg));
1614   }
1615 }
1616 
1617 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1618   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1619   assert(ra_ == ra_->C->regalloc(), "sanity");
1620   return ra_->C->scratch_emit_size(this);
1621 }
1622 
1623 //=============================================================================
1624 
1625 // emit call stub, compiled java to interpretor
1626 void emit_java_to_interp(CodeBuffer &cbuf ) {
1627 
1628   // Stub is fixed up when the corresponding call is converted from calling
1629   // compiled code to calling interpreted code.
1630   // set (empty), G5
1631   // jmp -1
1632 
1633   address mark = cbuf.insts_mark();  // get mark within main instrs section
1634 
1635   MacroAssembler _masm(&cbuf);
1636 
1637   address base =
1638   __ start_a_stub(Compile::MAX_stubs_size);
1639   if (base == NULL)  return;  // CodeBuffer::expand failed
1640 
1641   // static stub relocation stores the instruction address of the call
1642   __ relocate(static_stub_Relocation::spec(mark));
1643 
1644   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1645 
1646   __ set_inst_mark();
1647   AddressLiteral addrlit(-1);
1648   __ JUMP(addrlit, G3, 0);
1649 
1650   __ delayed()->nop();
1651 
1652   // Update current stubs pointer and restore code_end.
1653   __ end_a_stub();
1654 }
1655 
1656 // size of call stub, compiled java to interpretor
1657 uint size_java_to_interp() {
1658   // This doesn't need to be accurate but it must be larger or equal to
1659   // the real size of the stub.
1660   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1661           NativeJump::instruction_size + // sethi; jmp; nop
1662           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1663 }
1664 // relocation entries for call stub, compiled java to interpretor
1665 uint reloc_java_to_interp() {
1666   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1667 }
1668 
1669 
1670 //=============================================================================
1671 #ifndef PRODUCT
1672 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1673   st->print_cr("\nUEP:");
1674 #ifdef    _LP64
1675   if (UseCompressedOops) {
1676     assert(Universe::heap() != NULL, "java heap should be initialized");
1677     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1678     st->print_cr("\tSLL    R_G5,3,R_G5");
1679     if (Universe::narrow_oop_base() != NULL)
1680       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1681   } else {
1682     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1683   }
1684   st->print_cr("\tCMP    R_G5,R_G3" );
1685   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1686 #else  // _LP64
1687   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1688   st->print_cr("\tCMP    R_G5,R_G3" );
1689   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1690 #endif // _LP64
1691 }
1692 #endif
1693 
1694 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1695   MacroAssembler _masm(&cbuf);
1696   Label L;
1697   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1698   Register temp_reg   = G3;
1699   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1700 
1701   // Load klass from receiver
1702   __ load_klass(O0, temp_reg);
1703   // Compare against expected klass
1704   __ cmp(temp_reg, G5_ic_reg);
1705   // Branch to miss code, checks xcc or icc depending
1706   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1707 }
1708 
1709 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1710   return MachNode::size(ra_);
1711 }
1712 
1713 
1714 //=============================================================================
1715 
1716 uint size_exception_handler() {
1717   if (TraceJumps) {
1718     return (400); // just a guess
1719   }
1720   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1721 }
1722 
1723 uint size_deopt_handler() {
1724   if (TraceJumps) {
1725     return (400); // just a guess
1726   }
1727   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1728 }
1729 
1730 // Emit exception handler code.
1731 int emit_exception_handler(CodeBuffer& cbuf) {
1732   Register temp_reg = G3;
1733   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1734   MacroAssembler _masm(&cbuf);
1735 
1736   address base =
1737   __ start_a_stub(size_exception_handler());
1738   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1739 
1740   int offset = __ offset();
1741 
1742   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1743   __ delayed()->nop();
1744 
1745   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1746 
1747   __ end_a_stub();
1748 
1749   return offset;
1750 }
1751 
1752 int emit_deopt_handler(CodeBuffer& cbuf) {
1753   // Can't use any of the current frame's registers as we may have deopted
1754   // at a poll and everything (including G3) can be live.
1755   Register temp_reg = L0;
1756   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1757   MacroAssembler _masm(&cbuf);
1758 
1759   address base =
1760   __ start_a_stub(size_deopt_handler());
1761   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1762 
1763   int offset = __ offset();
1764   __ save_frame(0);
1765   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1766   __ delayed()->restore();
1767 
1768   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1769 
1770   __ end_a_stub();
1771   return offset;
1772 
1773 }
1774 
1775 // Given a register encoding, produce a Integer Register object
1776 static Register reg_to_register_object(int register_encoding) {
1777   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1778   return as_Register(register_encoding);
1779 }
1780 
1781 // Given a register encoding, produce a single-precision Float Register object
1782 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1783   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1784   return as_SingleFloatRegister(register_encoding);
1785 }
1786 
1787 // Given a register encoding, produce a double-precision Float Register object
1788 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1789   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1790   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1791   return as_DoubleFloatRegister(register_encoding);
1792 }
1793 
1794 const bool Matcher::match_rule_supported(int opcode) {
1795   if (!has_match_rule(opcode))
1796     return false;
1797 
1798   switch (opcode) {
1799   case Op_CountLeadingZerosI:
1800   case Op_CountLeadingZerosL:
1801   case Op_CountTrailingZerosI:
1802   case Op_CountTrailingZerosL:
1803     if (!UsePopCountInstruction)
1804       return false;
1805     break;
1806   }
1807 
1808   return true;  // Per default match rules are supported.
1809 }
1810 
1811 int Matcher::regnum_to_fpu_offset(int regnum) {
1812   return regnum - 32; // The FP registers are in the second chunk
1813 }
1814 
1815 #ifdef ASSERT
1816 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1817 #endif
1818 
1819 // Vector width in bytes
1820 const uint Matcher::vector_width_in_bytes(void) {
1821   return 8;
1822 }
1823 
1824 // Vector ideal reg
1825 const uint Matcher::vector_ideal_reg(void) {
1826   return Op_RegD;
1827 }
1828 
1829 // USII supports fxtof through the whole range of number, USIII doesn't
1830 const bool Matcher::convL2FSupported(void) {
1831   return VM_Version::has_fast_fxtof();
1832 }
1833 
1834 // Is this branch offset short enough that a short branch can be used?
1835 //
1836 // NOTE: If the platform does not provide any short branch variants, then
1837 //       this method should return false for offset 0.
1838 bool Matcher::is_short_branch_offset(int rule, int offset) {
1839   return false;
1840 }
1841 
1842 const bool Matcher::isSimpleConstant64(jlong value) {
1843   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1844   // Depends on optimizations in MacroAssembler::setx.
1845   int hi = (int)(value >> 32);
1846   int lo = (int)(value & ~0);
1847   return (hi == 0) || (hi == -1) || (lo == 0);
1848 }
1849 
1850 // No scaling for the parameter the ClearArray node.
1851 const bool Matcher::init_array_count_is_in_bytes = true;
1852 
1853 // Threshold size for cleararray.
1854 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1855 
1856 // Should the Matcher clone shifts on addressing modes, expecting them to
1857 // be subsumed into complex addressing expressions or compute them into
1858 // registers?  True for Intel but false for most RISCs
1859 const bool Matcher::clone_shift_expressions = false;
1860 
1861 // Do we need to mask the count passed to shift instructions or does
1862 // the cpu only look at the lower 5/6 bits anyway?
1863 const bool Matcher::need_masked_shift_count = false;
1864 
1865 bool Matcher::narrow_oop_use_complex_address() {
1866   NOT_LP64(ShouldNotCallThis());
1867   assert(UseCompressedOops, "only for compressed oops code");
1868   return false;
1869 }
1870 
1871 // Is it better to copy float constants, or load them directly from memory?
1872 // Intel can load a float constant from a direct address, requiring no
1873 // extra registers.  Most RISCs will have to materialize an address into a
1874 // register first, so they would do better to copy the constant from stack.
1875 const bool Matcher::rematerialize_float_constants = false;
1876 
1877 // If CPU can load and store mis-aligned doubles directly then no fixup is
1878 // needed.  Else we split the double into 2 integer pieces and move it
1879 // piece-by-piece.  Only happens when passing doubles into C code as the
1880 // Java calling convention forces doubles to be aligned.
1881 #ifdef _LP64
1882 const bool Matcher::misaligned_doubles_ok = true;
1883 #else
1884 const bool Matcher::misaligned_doubles_ok = false;
1885 #endif
1886 
1887 // No-op on SPARC.
1888 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1889 }
1890 
1891 // Advertise here if the CPU requires explicit rounding operations
1892 // to implement the UseStrictFP mode.
1893 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1894 
1895 // Are floats conerted to double when stored to stack during deoptimization?
1896 // Sparc does not handle callee-save floats.
1897 bool Matcher::float_in_double() { return false; }
1898 
1899 // Do ints take an entire long register or just half?
1900 // Note that we if-def off of _LP64.
1901 // The relevant question is how the int is callee-saved.  In _LP64
1902 // the whole long is written but de-opt'ing will have to extract
1903 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1904 #ifdef _LP64
1905 const bool Matcher::int_in_long = true;
1906 #else
1907 const bool Matcher::int_in_long = false;
1908 #endif
1909 
1910 // Return whether or not this register is ever used as an argument.  This
1911 // function is used on startup to build the trampoline stubs in generateOptoStub.
1912 // Registers not mentioned will be killed by the VM call in the trampoline, and
1913 // arguments in those registers not be available to the callee.
1914 bool Matcher::can_be_java_arg( int reg ) {
1915   // Standard sparc 6 args in registers
1916   if( reg == R_I0_num ||
1917       reg == R_I1_num ||
1918       reg == R_I2_num ||
1919       reg == R_I3_num ||
1920       reg == R_I4_num ||
1921       reg == R_I5_num ) return true;
1922 #ifdef _LP64
1923   // 64-bit builds can pass 64-bit pointers and longs in
1924   // the high I registers
1925   if( reg == R_I0H_num ||
1926       reg == R_I1H_num ||
1927       reg == R_I2H_num ||
1928       reg == R_I3H_num ||
1929       reg == R_I4H_num ||
1930       reg == R_I5H_num ) return true;
1931 
1932   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1933     return true;
1934   }
1935 
1936 #else
1937   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1938   // Longs cannot be passed in O regs, because O regs become I regs
1939   // after a 'save' and I regs get their high bits chopped off on
1940   // interrupt.
1941   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1942   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1943 #endif
1944   // A few float args in registers
1945   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1946 
1947   return false;
1948 }
1949 
1950 bool Matcher::is_spillable_arg( int reg ) {
1951   return can_be_java_arg(reg);
1952 }
1953 
1954 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1955   // Use hardware SDIVX instruction when it is
1956   // faster than a code which use multiply.
1957   return VM_Version::has_fast_idiv();
1958 }
1959 
1960 // Register for DIVI projection of divmodI
1961 RegMask Matcher::divI_proj_mask() {
1962   ShouldNotReachHere();
1963   return RegMask();
1964 }
1965 
1966 // Register for MODI projection of divmodI
1967 RegMask Matcher::modI_proj_mask() {
1968   ShouldNotReachHere();
1969   return RegMask();
1970 }
1971 
1972 // Register for DIVL projection of divmodL
1973 RegMask Matcher::divL_proj_mask() {
1974   ShouldNotReachHere();
1975   return RegMask();
1976 }
1977 
1978 // Register for MODL projection of divmodL
1979 RegMask Matcher::modL_proj_mask() {
1980   ShouldNotReachHere();
1981   return RegMask();
1982 }
1983 
1984 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1985   return L7_REGP_mask;
1986 }
1987 
1988 %}
1989 
1990 
1991 // The intptr_t operand types, defined by textual substitution.
1992 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1993 #ifdef _LP64
1994 #define immX      immL
1995 #define immX13    immL13
1996 #define immX13m7  immL13m7
1997 #define iRegX     iRegL
1998 #define g1RegX    g1RegL
1999 #else
2000 #define immX      immI
2001 #define immX13    immI13
2002 #define immX13m7  immI13m7
2003 #define iRegX     iRegI
2004 #define g1RegX    g1RegI
2005 #endif
2006 
2007 //----------ENCODING BLOCK-----------------------------------------------------
2008 // This block specifies the encoding classes used by the compiler to output
2009 // byte streams.  Encoding classes are parameterized macros used by
2010 // Machine Instruction Nodes in order to generate the bit encoding of the
2011 // instruction.  Operands specify their base encoding interface with the
2012 // interface keyword.  There are currently supported four interfaces,
2013 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2014 // operand to generate a function which returns its register number when
2015 // queried.   CONST_INTER causes an operand to generate a function which
2016 // returns the value of the constant when queried.  MEMORY_INTER causes an
2017 // operand to generate four functions which return the Base Register, the
2018 // Index Register, the Scale Value, and the Offset Value of the operand when
2019 // queried.  COND_INTER causes an operand to generate six functions which
2020 // return the encoding code (ie - encoding bits for the instruction)
2021 // associated with each basic boolean condition for a conditional instruction.
2022 //
2023 // Instructions specify two basic values for encoding.  Again, a function
2024 // is available to check if the constant displacement is an oop. They use the
2025 // ins_encode keyword to specify their encoding classes (which must be
2026 // a sequence of enc_class names, and their parameters, specified in
2027 // the encoding block), and they use the
2028 // opcode keyword to specify, in order, their primary, secondary, and
2029 // tertiary opcode.  Only the opcode sections which a particular instruction
2030 // needs for encoding need to be specified.
2031 encode %{
2032   enc_class enc_untested %{
2033 #ifdef ASSERT
2034     MacroAssembler _masm(&cbuf);
2035     __ untested("encoding");
2036 #endif
2037   %}
2038 
2039   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2040     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2041                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2042   %}
2043 
2044   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2045     emit_form3_mem_reg(cbuf, this, $primary, -1,
2046                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2047   %}
2048 
2049   enc_class form3_mem_prefetch_read( memory mem ) %{
2050     emit_form3_mem_reg(cbuf, this, $primary, -1,
2051                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2052   %}
2053 
2054   enc_class form3_mem_prefetch_write( memory mem ) %{
2055     emit_form3_mem_reg(cbuf, this, $primary, -1,
2056                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2057   %}
2058 
2059   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2060     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2061     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2062     guarantee($mem$$index == R_G0_enc, "double index?");
2063     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2064     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2065     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2066     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2067   %}
2068 
2069   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2070     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2071     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2072     guarantee($mem$$index == R_G0_enc, "double index?");
2073     // Load long with 2 instructions
2074     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2075     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2076   %}
2077 
2078   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2079   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2080     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2081     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2082   %}
2083 
2084   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2085     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2086     if( $rs2$$reg != $rd$$reg )
2087       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2088   %}
2089 
2090   // Target lo half of long
2091   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2092     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2093     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2094       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2095   %}
2096 
2097   // Source lo half of long
2098   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2099     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2100     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2101       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2102   %}
2103 
2104   // Target hi half of long
2105   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2106     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2107   %}
2108 
2109   // Source lo half of long, and leave it sign extended.
2110   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2111     // Sign extend low half
2112     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2113   %}
2114 
2115   // Source hi half of long, and leave it sign extended.
2116   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2117     // Shift high half to low half
2118     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2119   %}
2120 
2121   // Source hi half of long
2122   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2123     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2124     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2125       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2126   %}
2127 
2128   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2129     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2130   %}
2131 
2132   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2133     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2134     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2135   %}
2136 
2137   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2138     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2139     // clear if nothing else is happening
2140     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2141     // blt,a,pn done
2142     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2143     // mov dst,-1 in delay slot
2144     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2145   %}
2146 
2147   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2148     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2149   %}
2150 
2151   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2152     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2153   %}
2154 
2155   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2156     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2157   %}
2158 
2159   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2160     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2161   %}
2162 
2163   enc_class move_return_pc_to_o1() %{
2164     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2165   %}
2166 
2167 #ifdef _LP64
2168   /* %%% merge with enc_to_bool */
2169   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2170     MacroAssembler _masm(&cbuf);
2171 
2172     Register   src_reg = reg_to_register_object($src$$reg);
2173     Register   dst_reg = reg_to_register_object($dst$$reg);
2174     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2175   %}
2176 #endif
2177 
2178   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2179     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2180     MacroAssembler _masm(&cbuf);
2181 
2182     Register   p_reg = reg_to_register_object($p$$reg);
2183     Register   q_reg = reg_to_register_object($q$$reg);
2184     Register   y_reg = reg_to_register_object($y$$reg);
2185     Register tmp_reg = reg_to_register_object($tmp$$reg);
2186 
2187     __ subcc( p_reg, q_reg,   p_reg );
2188     __ add  ( p_reg, y_reg, tmp_reg );
2189     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2190   %}
2191 
2192   enc_class form_d2i_helper(regD src, regF dst) %{
2193     // fcmp %fcc0,$src,$src
2194     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2195     // branch %fcc0 not-nan, predict taken
2196     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2197     // fdtoi $src,$dst
2198     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2199     // fitos $dst,$dst (if nan)
2200     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2201     // clear $dst (if nan)
2202     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2203     // carry on here...
2204   %}
2205 
2206   enc_class form_d2l_helper(regD src, regD dst) %{
2207     // fcmp %fcc0,$src,$src  check for NAN
2208     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2209     // branch %fcc0 not-nan, predict taken
2210     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2211     // fdtox $src,$dst   convert in delay slot
2212     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2213     // fxtod $dst,$dst  (if nan)
2214     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2215     // clear $dst (if nan)
2216     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2217     // carry on here...
2218   %}
2219 
2220   enc_class form_f2i_helper(regF src, regF dst) %{
2221     // fcmps %fcc0,$src,$src
2222     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2223     // branch %fcc0 not-nan, predict taken
2224     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2225     // fstoi $src,$dst
2226     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2227     // fitos $dst,$dst (if nan)
2228     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2229     // clear $dst (if nan)
2230     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2231     // carry on here...
2232   %}
2233 
2234   enc_class form_f2l_helper(regF src, regD dst) %{
2235     // fcmps %fcc0,$src,$src
2236     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2237     // branch %fcc0 not-nan, predict taken
2238     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2239     // fstox $src,$dst
2240     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2241     // fxtod $dst,$dst (if nan)
2242     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2243     // clear $dst (if nan)
2244     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2245     // carry on here...
2246   %}
2247 
2248   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2249   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2250   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2251   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2252 
2253   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2254 
2255   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2256   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2257 
2258   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2259     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2260   %}
2261 
2262   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2263     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2264   %}
2265 
2266   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2267     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2268   %}
2269 
2270   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2271     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2272   %}
2273 
2274   enc_class form3_convI2F(regF rs2, regF rd) %{
2275     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2276   %}
2277 
2278   // Encloding class for traceable jumps
2279   enc_class form_jmpl(g3RegP dest) %{
2280     emit_jmpl(cbuf, $dest$$reg);
2281   %}
2282 
2283   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2284     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2285   %}
2286 
2287   enc_class form2_nop() %{
2288     emit_nop(cbuf);
2289   %}
2290 
2291   enc_class form2_illtrap() %{
2292     emit_illtrap(cbuf);
2293   %}
2294 
2295 
2296   // Compare longs and convert into -1, 0, 1.
2297   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2298     // CMP $src1,$src2
2299     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2300     // blt,a,pn done
2301     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2302     // mov dst,-1 in delay slot
2303     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2304     // bgt,a,pn done
2305     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2306     // mov dst,1 in delay slot
2307     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2308     // CLR    $dst
2309     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2310   %}
2311 
2312   enc_class enc_PartialSubtypeCheck() %{
2313     MacroAssembler _masm(&cbuf);
2314     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2315     __ delayed()->nop();
2316   %}
2317 
2318   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2319     MacroAssembler _masm(&cbuf);
2320     Label &L = *($labl$$label);
2321     Assembler::Predict predict_taken =
2322       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2323 
2324     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2325     __ delayed()->nop();
2326   %}
2327 
2328   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2329     MacroAssembler _masm(&cbuf);
2330     Label &L = *($labl$$label);
2331     Assembler::Predict predict_taken =
2332       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2333 
2334     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2335     __ delayed()->nop();
2336   %}
2337 
2338   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2339     MacroAssembler _masm(&cbuf);
2340     Label &L = *($labl$$label);
2341     Assembler::Predict predict_taken =
2342       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2343 
2344     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2345     __ delayed()->nop();
2346   %}
2347 
2348   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2349     MacroAssembler _masm(&cbuf);
2350     Label &L = *($labl$$label);
2351     Assembler::Predict predict_taken =
2352       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2353 
2354     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2355     __ delayed()->nop();
2356   %}
2357 
2358   enc_class enc_ba( Label labl ) %{
2359     MacroAssembler _masm(&cbuf);
2360     Label &L = *($labl$$label);
2361     __ ba(false, L);
2362     __ delayed()->nop();
2363   %}
2364 
2365   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2366     MacroAssembler _masm(&cbuf);
2367     Label &L = *$labl$$label;
2368     Assembler::Predict predict_taken =
2369       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2370 
2371     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2372     __ delayed()->nop();
2373   %}
2374 
2375   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2376     int op = (Assembler::arith_op << 30) |
2377              ($dst$$reg << 25) |
2378              (Assembler::movcc_op3 << 19) |
2379              (1 << 18) |                    // cc2 bit for 'icc'
2380              ($cmp$$cmpcode << 14) |
2381              (0 << 13) |                    // select register move
2382              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2383              ($src$$reg << 0);
2384     cbuf.insts()->emit_int32(op);
2385   %}
2386 
2387   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2388     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2389     int op = (Assembler::arith_op << 30) |
2390              ($dst$$reg << 25) |
2391              (Assembler::movcc_op3 << 19) |
2392              (1 << 18) |                    // cc2 bit for 'icc'
2393              ($cmp$$cmpcode << 14) |
2394              (1 << 13) |                    // select immediate move
2395              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2396              (simm11 << 0);
2397     cbuf.insts()->emit_int32(op);
2398   %}
2399 
2400   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2401     int op = (Assembler::arith_op << 30) |
2402              ($dst$$reg << 25) |
2403              (Assembler::movcc_op3 << 19) |
2404              (0 << 18) |                    // cc2 bit for 'fccX'
2405              ($cmp$$cmpcode << 14) |
2406              (0 << 13) |                    // select register move
2407              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2408              ($src$$reg << 0);
2409     cbuf.insts()->emit_int32(op);
2410   %}
2411 
2412   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2413     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2414     int op = (Assembler::arith_op << 30) |
2415              ($dst$$reg << 25) |
2416              (Assembler::movcc_op3 << 19) |
2417              (0 << 18) |                    // cc2 bit for 'fccX'
2418              ($cmp$$cmpcode << 14) |
2419              (1 << 13) |                    // select immediate move
2420              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2421              (simm11 << 0);
2422     cbuf.insts()->emit_int32(op);
2423   %}
2424 
2425   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2426     int op = (Assembler::arith_op << 30) |
2427              ($dst$$reg << 25) |
2428              (Assembler::fpop2_op3 << 19) |
2429              (0 << 18) |
2430              ($cmp$$cmpcode << 14) |
2431              (1 << 13) |                    // select register move
2432              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2433              ($primary << 5) |              // select single, double or quad
2434              ($src$$reg << 0);
2435     cbuf.insts()->emit_int32(op);
2436   %}
2437 
2438   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2439     int op = (Assembler::arith_op << 30) |
2440              ($dst$$reg << 25) |
2441              (Assembler::fpop2_op3 << 19) |
2442              (0 << 18) |
2443              ($cmp$$cmpcode << 14) |
2444              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2445              ($primary << 5) |              // select single, double or quad
2446              ($src$$reg << 0);
2447     cbuf.insts()->emit_int32(op);
2448   %}
2449 
2450   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2451   // the condition comes from opcode-field instead of an argument.
2452   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2453     int op = (Assembler::arith_op << 30) |
2454              ($dst$$reg << 25) |
2455              (Assembler::movcc_op3 << 19) |
2456              (1 << 18) |                    // cc2 bit for 'icc'
2457              ($primary << 14) |
2458              (0 << 13) |                    // select register move
2459              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2460              ($src$$reg << 0);
2461     cbuf.insts()->emit_int32(op);
2462   %}
2463 
2464   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2465     int op = (Assembler::arith_op << 30) |
2466              ($dst$$reg << 25) |
2467              (Assembler::movcc_op3 << 19) |
2468              (6 << 16) |                    // cc2 bit for 'xcc'
2469              ($primary << 14) |
2470              (0 << 13) |                    // select register move
2471              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2472              ($src$$reg << 0);
2473     cbuf.insts()->emit_int32(op);
2474   %}
2475 
2476   enc_class Set13( immI13 src, iRegI rd ) %{
2477     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2478   %}
2479 
2480   enc_class SetHi22( immI src, iRegI rd ) %{
2481     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2482   %}
2483 
2484   enc_class Set32( immI src, iRegI rd ) %{
2485     MacroAssembler _masm(&cbuf);
2486     __ set($src$$constant, reg_to_register_object($rd$$reg));
2487   %}
2488 
2489   enc_class call_epilog %{
2490     if( VerifyStackAtCalls ) {
2491       MacroAssembler _masm(&cbuf);
2492       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2493       Register temp_reg = G3;
2494       __ add(SP, framesize, temp_reg);
2495       __ cmp(temp_reg, FP);
2496       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2497     }
2498   %}
2499 
2500   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2501   // to G1 so the register allocator will not have to deal with the misaligned register
2502   // pair.
2503   enc_class adjust_long_from_native_call %{
2504 #ifndef _LP64
2505     if (returns_long()) {
2506       //    sllx  O0,32,O0
2507       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2508       //    srl   O1,0,O1
2509       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2510       //    or    O0,O1,G1
2511       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2512     }
2513 #endif
2514   %}
2515 
2516   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2517     // CALL directly to the runtime
2518     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2519     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2520                     /*preserve_g2=*/true);
2521   %}
2522 
2523   enc_class preserve_SP %{
2524     MacroAssembler _masm(&cbuf);
2525     __ mov(SP, L7_mh_SP_save);
2526   %}
2527 
2528   enc_class restore_SP %{
2529     MacroAssembler _masm(&cbuf);
2530     __ mov(L7_mh_SP_save, SP);
2531   %}
2532 
2533   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2534     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2535     // who we intended to call.
2536     if ( !_method ) {
2537       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2538     } else if (_optimized_virtual) {
2539       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2540     } else {
2541       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2542     }
2543     if( _method ) {  // Emit stub for static call
2544       emit_java_to_interp(cbuf);
2545     }
2546   %}
2547 
2548   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2549     MacroAssembler _masm(&cbuf);
2550     __ set_inst_mark();
2551     int vtable_index = this->_vtable_index;
2552     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2553     if (vtable_index < 0) {
2554       // must be invalid_vtable_index, not nonvirtual_vtable_index
2555       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2556       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2557       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2558       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2559       // !!!!!
2560       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2561       // emit_call_dynamic_prologue( cbuf );
2562       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2563 
2564       address  virtual_call_oop_addr = __ inst_mark();
2565       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2566       // who we intended to call.
2567       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2568       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2569     } else {
2570       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2571       // Just go thru the vtable
2572       // get receiver klass (receiver already checked for non-null)
2573       // If we end up going thru a c2i adapter interpreter expects method in G5
2574       int off = __ offset();
2575       __ load_klass(O0, G3_scratch);
2576       int klass_load_size;
2577       if (UseCompressedOops) {
2578         assert(Universe::heap() != NULL, "java heap should be initialized");
2579         if (Universe::narrow_oop_base() == NULL)
2580           klass_load_size = 2*BytesPerInstWord;
2581         else
2582           klass_load_size = 3*BytesPerInstWord;
2583       } else {
2584         klass_load_size = 1*BytesPerInstWord;
2585       }
2586       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2587       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2588       if( __ is_simm13(v_off) ) {
2589         __ ld_ptr(G3, v_off, G5_method);
2590       } else {
2591         // Generate 2 instructions
2592         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2593         __ or3(G5_method, v_off & 0x3ff, G5_method);
2594         // ld_ptr, set_hi, set
2595         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2596                "Unexpected instruction size(s)");
2597         __ ld_ptr(G3, G5_method, G5_method);
2598       }
2599       // NOTE: for vtable dispatches, the vtable entry will never be null.
2600       // However it may very well end up in handle_wrong_method if the
2601       // method is abstract for the particular class.
2602       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2603       // jump to target (either compiled code or c2iadapter)
2604       __ jmpl(G3_scratch, G0, O7);
2605       __ delayed()->nop();
2606     }
2607   %}
2608 
2609   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2610     MacroAssembler _masm(&cbuf);
2611 
2612     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2613     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2614                               // we might be calling a C2I adapter which needs it.
2615 
2616     assert(temp_reg != G5_ic_reg, "conflicting registers");
2617     // Load nmethod
2618     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2619 
2620     // CALL to compiled java, indirect the contents of G3
2621     __ set_inst_mark();
2622     __ callr(temp_reg, G0);
2623     __ delayed()->nop();
2624   %}
2625 
2626 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2627     MacroAssembler _masm(&cbuf);
2628     Register Rdividend = reg_to_register_object($src1$$reg);
2629     Register Rdivisor = reg_to_register_object($src2$$reg);
2630     Register Rresult = reg_to_register_object($dst$$reg);
2631 
2632     __ sra(Rdivisor, 0, Rdivisor);
2633     __ sra(Rdividend, 0, Rdividend);
2634     __ sdivx(Rdividend, Rdivisor, Rresult);
2635 %}
2636 
2637 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2638     MacroAssembler _masm(&cbuf);
2639 
2640     Register Rdividend = reg_to_register_object($src1$$reg);
2641     int divisor = $imm$$constant;
2642     Register Rresult = reg_to_register_object($dst$$reg);
2643 
2644     __ sra(Rdividend, 0, Rdividend);
2645     __ sdivx(Rdividend, divisor, Rresult);
2646 %}
2647 
2648 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2649     MacroAssembler _masm(&cbuf);
2650     Register Rsrc1 = reg_to_register_object($src1$$reg);
2651     Register Rsrc2 = reg_to_register_object($src2$$reg);
2652     Register Rdst  = reg_to_register_object($dst$$reg);
2653 
2654     __ sra( Rsrc1, 0, Rsrc1 );
2655     __ sra( Rsrc2, 0, Rsrc2 );
2656     __ mulx( Rsrc1, Rsrc2, Rdst );
2657     __ srlx( Rdst, 32, Rdst );
2658 %}
2659 
2660 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2661     MacroAssembler _masm(&cbuf);
2662     Register Rdividend = reg_to_register_object($src1$$reg);
2663     Register Rdivisor = reg_to_register_object($src2$$reg);
2664     Register Rresult = reg_to_register_object($dst$$reg);
2665     Register Rscratch = reg_to_register_object($scratch$$reg);
2666 
2667     assert(Rdividend != Rscratch, "");
2668     assert(Rdivisor  != Rscratch, "");
2669 
2670     __ sra(Rdividend, 0, Rdividend);
2671     __ sra(Rdivisor, 0, Rdivisor);
2672     __ sdivx(Rdividend, Rdivisor, Rscratch);
2673     __ mulx(Rscratch, Rdivisor, Rscratch);
2674     __ sub(Rdividend, Rscratch, Rresult);
2675 %}
2676 
2677 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2678     MacroAssembler _masm(&cbuf);
2679 
2680     Register Rdividend = reg_to_register_object($src1$$reg);
2681     int divisor = $imm$$constant;
2682     Register Rresult = reg_to_register_object($dst$$reg);
2683     Register Rscratch = reg_to_register_object($scratch$$reg);
2684 
2685     assert(Rdividend != Rscratch, "");
2686 
2687     __ sra(Rdividend, 0, Rdividend);
2688     __ sdivx(Rdividend, divisor, Rscratch);
2689     __ mulx(Rscratch, divisor, Rscratch);
2690     __ sub(Rdividend, Rscratch, Rresult);
2691 %}
2692 
2693 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2694     MacroAssembler _masm(&cbuf);
2695 
2696     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2697     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2698 
2699     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2700 %}
2701 
2702 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2703     MacroAssembler _masm(&cbuf);
2704 
2705     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2706     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2707 
2708     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2709 %}
2710 
2711 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2712     MacroAssembler _masm(&cbuf);
2713 
2714     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2715     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2716 
2717     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2718 %}
2719 
2720 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2721     MacroAssembler _masm(&cbuf);
2722 
2723     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2724     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2725 
2726     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2727 %}
2728 
2729 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2730     MacroAssembler _masm(&cbuf);
2731 
2732     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2733     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2734 
2735     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2736 %}
2737 
2738 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2739     MacroAssembler _masm(&cbuf);
2740 
2741     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2742     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2743 
2744     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2745 %}
2746 
2747 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2748     MacroAssembler _masm(&cbuf);
2749 
2750     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2751     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2752 
2753     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2754 %}
2755 
2756 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2757     MacroAssembler _masm(&cbuf);
2758 
2759     Register Roop  = reg_to_register_object($oop$$reg);
2760     Register Rbox  = reg_to_register_object($box$$reg);
2761     Register Rscratch = reg_to_register_object($scratch$$reg);
2762     Register Rmark =    reg_to_register_object($scratch2$$reg);
2763 
2764     assert(Roop  != Rscratch, "");
2765     assert(Roop  != Rmark, "");
2766     assert(Rbox  != Rscratch, "");
2767     assert(Rbox  != Rmark, "");
2768 
2769     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2770 %}
2771 
2772 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2773     MacroAssembler _masm(&cbuf);
2774 
2775     Register Roop  = reg_to_register_object($oop$$reg);
2776     Register Rbox  = reg_to_register_object($box$$reg);
2777     Register Rscratch = reg_to_register_object($scratch$$reg);
2778     Register Rmark =    reg_to_register_object($scratch2$$reg);
2779 
2780     assert(Roop  != Rscratch, "");
2781     assert(Roop  != Rmark, "");
2782     assert(Rbox  != Rscratch, "");
2783     assert(Rbox  != Rmark, "");
2784 
2785     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2786   %}
2787 
2788   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2789     MacroAssembler _masm(&cbuf);
2790     Register Rmem = reg_to_register_object($mem$$reg);
2791     Register Rold = reg_to_register_object($old$$reg);
2792     Register Rnew = reg_to_register_object($new$$reg);
2793 
2794     // casx_under_lock picks 1 of 3 encodings:
2795     // For 32-bit pointers you get a 32-bit CAS
2796     // For 64-bit pointers you get a 64-bit CASX
2797     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2798     __ cmp( Rold, Rnew );
2799   %}
2800 
2801   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2802     Register Rmem = reg_to_register_object($mem$$reg);
2803     Register Rold = reg_to_register_object($old$$reg);
2804     Register Rnew = reg_to_register_object($new$$reg);
2805 
2806     MacroAssembler _masm(&cbuf);
2807     __ mov(Rnew, O7);
2808     __ casx(Rmem, Rold, O7);
2809     __ cmp( Rold, O7 );
2810   %}
2811 
2812   // raw int cas, used for compareAndSwap
2813   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2814     Register Rmem = reg_to_register_object($mem$$reg);
2815     Register Rold = reg_to_register_object($old$$reg);
2816     Register Rnew = reg_to_register_object($new$$reg);
2817 
2818     MacroAssembler _masm(&cbuf);
2819     __ mov(Rnew, O7);
2820     __ cas(Rmem, Rold, O7);
2821     __ cmp( Rold, O7 );
2822   %}
2823 
2824   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2825     Register Rres = reg_to_register_object($res$$reg);
2826 
2827     MacroAssembler _masm(&cbuf);
2828     __ mov(1, Rres);
2829     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2830   %}
2831 
2832   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2833     Register Rres = reg_to_register_object($res$$reg);
2834 
2835     MacroAssembler _masm(&cbuf);
2836     __ mov(1, Rres);
2837     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2838   %}
2839 
2840   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2841     MacroAssembler _masm(&cbuf);
2842     Register Rdst = reg_to_register_object($dst$$reg);
2843     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2844                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2845     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2846                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2847 
2848     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2849     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2850   %}
2851 
2852   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2853   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2854     MacroAssembler _masm(&cbuf);
2855     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2856     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2857     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2858 
2859     Label loop;
2860     __ mov(nof_bytes_arg, nof_bytes_tmp);
2861 
2862     // Loop and clear, walking backwards through the array.
2863     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2864     __ bind(loop);
2865     __ deccc(nof_bytes_tmp, 8);
2866     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2867     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2868     // %%%% this mini-loop must not cross a cache boundary!
2869   %}
2870 
2871 
2872   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2873     Label Ldone, Lloop;
2874     MacroAssembler _masm(&cbuf);
2875 
2876     Register   str1_reg = reg_to_register_object($str1$$reg);
2877     Register   str2_reg = reg_to_register_object($str2$$reg);
2878     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2879     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2880     Register result_reg = reg_to_register_object($result$$reg);
2881 
2882     assert(result_reg != str1_reg &&
2883            result_reg != str2_reg &&
2884            result_reg != cnt1_reg &&
2885            result_reg != cnt2_reg ,
2886            "need different registers");
2887 
2888     // Compute the minimum of the string lengths(str1_reg) and the
2889     // difference of the string lengths (stack)
2890 
2891     // See if the lengths are different, and calculate min in str1_reg.
2892     // Stash diff in O7 in case we need it for a tie-breaker.
2893     Label Lskip;
2894     __ subcc(cnt1_reg, cnt2_reg, O7);
2895     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2896     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2897     // cnt2 is shorter, so use its count:
2898     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2899     __ bind(Lskip);
2900 
2901     // reallocate cnt1_reg, cnt2_reg, result_reg
2902     // Note:  limit_reg holds the string length pre-scaled by 2
2903     Register limit_reg =   cnt1_reg;
2904     Register  chr2_reg =   cnt2_reg;
2905     Register  chr1_reg = result_reg;
2906     // str{12} are the base pointers
2907 
2908     // Is the minimum length zero?
2909     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2910     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2911     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2912 
2913     // Load first characters
2914     __ lduh(str1_reg, 0, chr1_reg);
2915     __ lduh(str2_reg, 0, chr2_reg);
2916 
2917     // Compare first characters
2918     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2919     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2920     assert(chr1_reg == result_reg, "result must be pre-placed");
2921     __ delayed()->nop();
2922 
2923     {
2924       // Check after comparing first character to see if strings are equivalent
2925       Label LSkip2;
2926       // Check if the strings start at same location
2927       __ cmp(str1_reg, str2_reg);
2928       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2929       __ delayed()->nop();
2930 
2931       // Check if the length difference is zero (in O7)
2932       __ cmp(G0, O7);
2933       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2934       __ delayed()->mov(G0, result_reg);  // result is zero
2935 
2936       // Strings might not be equal
2937       __ bind(LSkip2);
2938     }
2939 
2940     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2941     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2942     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2943 
2944     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2945     __ add(str1_reg, limit_reg, str1_reg);
2946     __ add(str2_reg, limit_reg, str2_reg);
2947     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2948 
2949     // Compare the rest of the characters
2950     __ lduh(str1_reg, limit_reg, chr1_reg);
2951     __ bind(Lloop);
2952     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2953     __ lduh(str2_reg, limit_reg, chr2_reg);
2954     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2955     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2956     assert(chr1_reg == result_reg, "result must be pre-placed");
2957     __ delayed()->inccc(limit_reg, sizeof(jchar));
2958     // annul LDUH if branch is not taken to prevent access past end of string
2959     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2960     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2961 
2962     // If strings are equal up to min length, return the length difference.
2963     __ mov(O7, result_reg);
2964 
2965     // Otherwise, return the difference between the first mismatched chars.
2966     __ bind(Ldone);
2967   %}
2968 
2969 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2970     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2971     MacroAssembler _masm(&cbuf);
2972 
2973     Register   str1_reg = reg_to_register_object($str1$$reg);
2974     Register   str2_reg = reg_to_register_object($str2$$reg);
2975     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2976     Register   tmp1_reg = O7;
2977     Register result_reg = reg_to_register_object($result$$reg);
2978 
2979     assert(result_reg != str1_reg &&
2980            result_reg != str2_reg &&
2981            result_reg !=  cnt_reg &&
2982            result_reg != tmp1_reg ,
2983            "need different registers");
2984 
2985     __ cmp(str1_reg, str2_reg); //same char[] ?
2986     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2987     __ delayed()->add(G0, 1, result_reg);
2988 
2989     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
2990     __ delayed()->add(G0, 1, result_reg); // count == 0
2991 
2992     //rename registers
2993     Register limit_reg =    cnt_reg;
2994     Register  chr1_reg = result_reg;
2995     Register  chr2_reg =   tmp1_reg;
2996 
2997     //check for alignment and position the pointers to the ends
2998     __ or3(str1_reg, str2_reg, chr1_reg);
2999     __ andcc(chr1_reg, 0x3, chr1_reg);
3000     // notZero means at least one not 4-byte aligned.
3001     // We could optimize the case when both arrays are not aligned
3002     // but it is not frequent case and it requires additional checks.
3003     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
3004     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
3005 
3006     // Compare char[] arrays aligned to 4 bytes.
3007     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3008                           chr1_reg, chr2_reg, Ldone);
3009     __ ba(false,Ldone);
3010     __ delayed()->add(G0, 1, result_reg);
3011 
3012     // char by char compare
3013     __ bind(Lchar);
3014     __ add(str1_reg, limit_reg, str1_reg);
3015     __ add(str2_reg, limit_reg, str2_reg);
3016     __ neg(limit_reg); //negate count
3017 
3018     __ lduh(str1_reg, limit_reg, chr1_reg);
3019     // Lchar_loop
3020     __ bind(Lchar_loop);
3021     __ lduh(str2_reg, limit_reg, chr2_reg);
3022     __ cmp(chr1_reg, chr2_reg);
3023     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3024     __ delayed()->mov(G0, result_reg); //not equal
3025     __ inccc(limit_reg, sizeof(jchar));
3026     // annul LDUH if branch is not taken to prevent access past end of string
3027     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3028     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3029 
3030     __ add(G0, 1, result_reg);  //equal
3031 
3032     __ bind(Ldone);
3033   %}
3034 
3035 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3036     Label Lvector, Ldone, Lloop;
3037     MacroAssembler _masm(&cbuf);
3038 
3039     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3040     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3041     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3042     Register   tmp2_reg = O7;
3043     Register result_reg = reg_to_register_object($result$$reg);
3044 
3045     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3046     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3047 
3048     // return true if the same array
3049     __ cmp(ary1_reg, ary2_reg);
3050     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3051     __ delayed()->add(G0, 1, result_reg); // equal
3052 
3053     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3054     __ delayed()->mov(G0, result_reg);    // not equal
3055 
3056     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3057     __ delayed()->mov(G0, result_reg);    // not equal
3058 
3059     //load the lengths of arrays
3060     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3061     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3062 
3063     // return false if the two arrays are not equal length
3064     __ cmp(tmp1_reg, tmp2_reg);
3065     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3066     __ delayed()->mov(G0, result_reg);     // not equal
3067 
3068     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
3069     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3070 
3071     // load array addresses
3072     __ add(ary1_reg, base_offset, ary1_reg);
3073     __ add(ary2_reg, base_offset, ary2_reg);
3074 
3075     // renaming registers
3076     Register chr1_reg  =  result_reg; // for characters in ary1
3077     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3078     Register limit_reg =  tmp1_reg;   // length
3079 
3080     // set byte count
3081     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3082 
3083     // Compare char[] arrays aligned to 4 bytes.
3084     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3085                           chr1_reg, chr2_reg, Ldone);
3086     __ add(G0, 1, result_reg); // equals
3087 
3088     __ bind(Ldone);
3089   %}
3090 
3091   enc_class enc_rethrow() %{
3092     cbuf.set_insts_mark();
3093     Register temp_reg = G3;
3094     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3095     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3096     MacroAssembler _masm(&cbuf);
3097 #ifdef ASSERT
3098     __ save_frame(0);
3099     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3100     __ sethi(last_rethrow_addrlit, L1);
3101     Address addr(L1, last_rethrow_addrlit.low10());
3102     __ get_pc(L2);
3103     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3104     __ st_ptr(L2, addr);
3105     __ restore();
3106 #endif
3107     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3108     __ delayed()->nop();
3109   %}
3110 
3111   enc_class emit_mem_nop() %{
3112     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3113     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3114   %}
3115 
3116   enc_class emit_fadd_nop() %{
3117     // Generates the instruction FMOVS f31,f31
3118     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3119   %}
3120 
3121   enc_class emit_br_nop() %{
3122     // Generates the instruction BPN,PN .
3123     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3124   %}
3125 
3126   enc_class enc_membar_acquire %{
3127     MacroAssembler _masm(&cbuf);
3128     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3129   %}
3130 
3131   enc_class enc_membar_release %{
3132     MacroAssembler _masm(&cbuf);
3133     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3134   %}
3135 
3136   enc_class enc_membar_volatile %{
3137     MacroAssembler _masm(&cbuf);
3138     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3139   %}
3140 
3141   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3142     MacroAssembler _masm(&cbuf);
3143     Register src_reg = reg_to_register_object($src$$reg);
3144     Register dst_reg = reg_to_register_object($dst$$reg);
3145     __ sllx(src_reg, 56, dst_reg);
3146     __ srlx(dst_reg,  8, O7);
3147     __ or3 (dst_reg, O7, dst_reg);
3148     __ srlx(dst_reg, 16, O7);
3149     __ or3 (dst_reg, O7, dst_reg);
3150     __ srlx(dst_reg, 32, O7);
3151     __ or3 (dst_reg, O7, dst_reg);
3152   %}
3153 
3154   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3155     MacroAssembler _masm(&cbuf);
3156     Register src_reg = reg_to_register_object($src$$reg);
3157     Register dst_reg = reg_to_register_object($dst$$reg);
3158     __ sll(src_reg, 24, dst_reg);
3159     __ srl(dst_reg,  8, O7);
3160     __ or3(dst_reg, O7, dst_reg);
3161     __ srl(dst_reg, 16, O7);
3162     __ or3(dst_reg, O7, dst_reg);
3163   %}
3164 
3165   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3166     MacroAssembler _masm(&cbuf);
3167     Register src_reg = reg_to_register_object($src$$reg);
3168     Register dst_reg = reg_to_register_object($dst$$reg);
3169     __ sllx(src_reg, 48, dst_reg);
3170     __ srlx(dst_reg, 16, O7);
3171     __ or3 (dst_reg, O7, dst_reg);
3172     __ srlx(dst_reg, 32, O7);
3173     __ or3 (dst_reg, O7, dst_reg);
3174   %}
3175 
3176   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3177     MacroAssembler _masm(&cbuf);
3178     Register src_reg = reg_to_register_object($src$$reg);
3179     Register dst_reg = reg_to_register_object($dst$$reg);
3180     __ sllx(src_reg, 32, dst_reg);
3181     __ srlx(dst_reg, 32, O7);
3182     __ or3 (dst_reg, O7, dst_reg);
3183   %}
3184 
3185 %}
3186 
3187 //----------FRAME--------------------------------------------------------------
3188 // Definition of frame structure and management information.
3189 //
3190 //  S T A C K   L A Y O U T    Allocators stack-slot number
3191 //                             |   (to get allocators register number
3192 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3193 //  r   CALLER     |        |
3194 //  o     |        +--------+      pad to even-align allocators stack-slot
3195 //  w     V        |  pad0  |        numbers; owned by CALLER
3196 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3197 //  h     ^        |   in   |  5
3198 //        |        |  args  |  4   Holes in incoming args owned by SELF
3199 //  |     |        |        |  3
3200 //  |     |        +--------+
3201 //  V     |        | old out|      Empty on Intel, window on Sparc
3202 //        |    old |preserve|      Must be even aligned.
3203 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3204 //        |        |   in   |  3   area for Intel ret address
3205 //     Owned by    |preserve|      Empty on Sparc.
3206 //       SELF      +--------+
3207 //        |        |  pad2  |  2   pad to align old SP
3208 //        |        +--------+  1
3209 //        |        | locks  |  0
3210 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3211 //        |        |  pad1  | 11   pad to align new SP
3212 //        |        +--------+
3213 //        |        |        | 10
3214 //        |        | spills |  9   spills
3215 //        V        |        |  8   (pad0 slot for callee)
3216 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3217 //        ^        |  out   |  7
3218 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3219 //     Owned by    +--------+
3220 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3221 //        |    new |preserve|      Must be even-aligned.
3222 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3223 //        |        |        |
3224 //
3225 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3226 //         known from SELF's arguments and the Java calling convention.
3227 //         Region 6-7 is determined per call site.
3228 // Note 2: If the calling convention leaves holes in the incoming argument
3229 //         area, those holes are owned by SELF.  Holes in the outgoing area
3230 //         are owned by the CALLEE.  Holes should not be nessecary in the
3231 //         incoming area, as the Java calling convention is completely under
3232 //         the control of the AD file.  Doubles can be sorted and packed to
3233 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3234 //         varargs C calling conventions.
3235 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3236 //         even aligned with pad0 as needed.
3237 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3238 //         region 6-11 is even aligned; it may be padded out more so that
3239 //         the region from SP to FP meets the minimum stack alignment.
3240 
3241 frame %{
3242   // What direction does stack grow in (assumed to be same for native & Java)
3243   stack_direction(TOWARDS_LOW);
3244 
3245   // These two registers define part of the calling convention
3246   // between compiled code and the interpreter.
3247   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3248   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3249 
3250   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3251   cisc_spilling_operand_name(indOffset);
3252 
3253   // Number of stack slots consumed by a Monitor enter
3254 #ifdef _LP64
3255   sync_stack_slots(2);
3256 #else
3257   sync_stack_slots(1);
3258 #endif
3259 
3260   // Compiled code's Frame Pointer
3261   frame_pointer(R_SP);
3262 
3263   // Stack alignment requirement
3264   stack_alignment(StackAlignmentInBytes);
3265   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3266   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3267 
3268   // Number of stack slots between incoming argument block and the start of
3269   // a new frame.  The PROLOG must add this many slots to the stack.  The
3270   // EPILOG must remove this many slots.
3271   in_preserve_stack_slots(0);
3272 
3273   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3274   // for calls to C.  Supports the var-args backing area for register parms.
3275   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3276 #ifdef _LP64
3277   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3278   varargs_C_out_slots_killed(12);
3279 #else
3280   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3281   varargs_C_out_slots_killed( 7);
3282 #endif
3283 
3284   // The after-PROLOG location of the return address.  Location of
3285   // return address specifies a type (REG or STACK) and a number
3286   // representing the register number (i.e. - use a register name) or
3287   // stack slot.
3288   return_addr(REG R_I7);          // Ret Addr is in register I7
3289 
3290   // Body of function which returns an OptoRegs array locating
3291   // arguments either in registers or in stack slots for calling
3292   // java
3293   calling_convention %{
3294     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3295 
3296   %}
3297 
3298   // Body of function which returns an OptoRegs array locating
3299   // arguments either in registers or in stack slots for callin
3300   // C.
3301   c_calling_convention %{
3302     // This is obviously always outgoing
3303     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3304   %}
3305 
3306   // Location of native (C/C++) and interpreter return values.  This is specified to
3307   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3308   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3309   // to and from the register pairs is done by the appropriate call and epilog
3310   // opcodes.  This simplifies the register allocator.
3311   c_return_value %{
3312     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3313 #ifdef     _LP64
3314     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3315     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3316     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3317     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3318 #else  // !_LP64
3319     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3320     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3321     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3322     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3323 #endif
3324     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3325                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3326   %}
3327 
3328   // Location of compiled Java return values.  Same as C
3329   return_value %{
3330     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3331 #ifdef     _LP64
3332     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3333     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3334     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3335     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3336 #else  // !_LP64
3337     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3338     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3339     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3340     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3341 #endif
3342     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3343                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3344   %}
3345 
3346 %}
3347 
3348 
3349 //----------ATTRIBUTES---------------------------------------------------------
3350 //----------Operand Attributes-------------------------------------------------
3351 op_attrib op_cost(1);          // Required cost attribute
3352 
3353 //----------Instruction Attributes---------------------------------------------
3354 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3355 ins_attrib ins_size(32);       // Required size attribute (in bits)
3356 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3357 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3358                                 // non-matching short branch variant of some
3359                                                             // long branch?
3360 
3361 //----------OPERANDS-----------------------------------------------------------
3362 // Operand definitions must precede instruction definitions for correct parsing
3363 // in the ADLC because operands constitute user defined types which are used in
3364 // instruction definitions.
3365 
3366 //----------Simple Operands----------------------------------------------------
3367 // Immediate Operands
3368 // Integer Immediate: 32-bit
3369 operand immI() %{
3370   match(ConI);
3371 
3372   op_cost(0);
3373   // formats are generated automatically for constants and base registers
3374   format %{ %}
3375   interface(CONST_INTER);
3376 %}
3377 
3378 // Integer Immediate: 8-bit
3379 operand immI8() %{
3380   predicate(Assembler::is_simm(n->get_int(), 8));
3381   match(ConI);
3382   op_cost(0);
3383   format %{ %}
3384   interface(CONST_INTER);
3385 %}
3386 
3387 // Integer Immediate: 13-bit
3388 operand immI13() %{
3389   predicate(Assembler::is_simm13(n->get_int()));
3390   match(ConI);
3391   op_cost(0);
3392 
3393   format %{ %}
3394   interface(CONST_INTER);
3395 %}
3396 
3397 // Integer Immediate: 13-bit minus 7
3398 operand immI13m7() %{
3399   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3400   match(ConI);
3401   op_cost(0);
3402 
3403   format %{ %}
3404   interface(CONST_INTER);
3405 %}
3406 
3407 // Integer Immediate: 16-bit
3408 operand immI16() %{
3409   predicate(Assembler::is_simm(n->get_int(), 16));
3410   match(ConI);
3411   op_cost(0);
3412   format %{ %}
3413   interface(CONST_INTER);
3414 %}
3415 
3416 // Unsigned (positive) Integer Immediate: 13-bit
3417 operand immU13() %{
3418   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3419   match(ConI);
3420   op_cost(0);
3421 
3422   format %{ %}
3423   interface(CONST_INTER);
3424 %}
3425 
3426 // Integer Immediate: 6-bit
3427 operand immU6() %{
3428   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3429   match(ConI);
3430   op_cost(0);
3431   format %{ %}
3432   interface(CONST_INTER);
3433 %}
3434 
3435 // Integer Immediate: 11-bit
3436 operand immI11() %{
3437   predicate(Assembler::is_simm(n->get_int(),11));
3438   match(ConI);
3439   op_cost(0);
3440   format %{ %}
3441   interface(CONST_INTER);
3442 %}
3443 
3444 // Integer Immediate: 0-bit
3445 operand immI0() %{
3446   predicate(n->get_int() == 0);
3447   match(ConI);
3448   op_cost(0);
3449 
3450   format %{ %}
3451   interface(CONST_INTER);
3452 %}
3453 
3454 // Integer Immediate: the value 10
3455 operand immI10() %{
3456   predicate(n->get_int() == 10);
3457   match(ConI);
3458   op_cost(0);
3459 
3460   format %{ %}
3461   interface(CONST_INTER);
3462 %}
3463 
3464 // Integer Immediate: the values 0-31
3465 operand immU5() %{
3466   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3467   match(ConI);
3468   op_cost(0);
3469 
3470   format %{ %}
3471   interface(CONST_INTER);
3472 %}
3473 
3474 // Integer Immediate: the values 1-31
3475 operand immI_1_31() %{
3476   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3477   match(ConI);
3478   op_cost(0);
3479 
3480   format %{ %}
3481   interface(CONST_INTER);
3482 %}
3483 
3484 // Integer Immediate: the values 32-63
3485 operand immI_32_63() %{
3486   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3487   match(ConI);
3488   op_cost(0);
3489 
3490   format %{ %}
3491   interface(CONST_INTER);
3492 %}
3493 
3494 // Immediates for special shifts (sign extend)
3495 
3496 // Integer Immediate: the value 16
3497 operand immI_16() %{
3498   predicate(n->get_int() == 16);
3499   match(ConI);
3500   op_cost(0);
3501 
3502   format %{ %}
3503   interface(CONST_INTER);
3504 %}
3505 
3506 // Integer Immediate: the value 24
3507 operand immI_24() %{
3508   predicate(n->get_int() == 24);
3509   match(ConI);
3510   op_cost(0);
3511 
3512   format %{ %}
3513   interface(CONST_INTER);
3514 %}
3515 
3516 // Integer Immediate: the value 255
3517 operand immI_255() %{
3518   predicate( n->get_int() == 255 );
3519   match(ConI);
3520   op_cost(0);
3521 
3522   format %{ %}
3523   interface(CONST_INTER);
3524 %}
3525 
3526 // Integer Immediate: the value 65535
3527 operand immI_65535() %{
3528   predicate(n->get_int() == 65535);
3529   match(ConI);
3530   op_cost(0);
3531 
3532   format %{ %}
3533   interface(CONST_INTER);
3534 %}
3535 
3536 // Long Immediate: the value FF
3537 operand immL_FF() %{
3538   predicate( n->get_long() == 0xFFL );
3539   match(ConL);
3540   op_cost(0);
3541 
3542   format %{ %}
3543   interface(CONST_INTER);
3544 %}
3545 
3546 // Long Immediate: the value FFFF
3547 operand immL_FFFF() %{
3548   predicate( n->get_long() == 0xFFFFL );
3549   match(ConL);
3550   op_cost(0);
3551 
3552   format %{ %}
3553   interface(CONST_INTER);
3554 %}
3555 
3556 // Pointer Immediate: 32 or 64-bit
3557 operand immP() %{
3558   match(ConP);
3559 
3560   op_cost(5);
3561   // formats are generated automatically for constants and base registers
3562   format %{ %}
3563   interface(CONST_INTER);
3564 %}
3565 
3566 #ifdef _LP64
3567 // Pointer Immediate: 64-bit
3568 operand immP_set() %{
3569   predicate(!VM_Version::is_niagara_plus());
3570   match(ConP);
3571 
3572   op_cost(5);
3573   // formats are generated automatically for constants and base registers
3574   format %{ %}
3575   interface(CONST_INTER);
3576 %}
3577 
3578 // Pointer Immediate: 64-bit
3579 // From Niagara2 processors on a load should be better than materializing.
3580 operand immP_load() %{
3581   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3582   match(ConP);
3583 
3584   op_cost(5);
3585   // formats are generated automatically for constants and base registers
3586   format %{ %}
3587   interface(CONST_INTER);
3588 %}
3589 
3590 // Pointer Immediate: 64-bit
3591 operand immP_no_oop_cheap() %{
3592   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3593   match(ConP);
3594 
3595   op_cost(5);
3596   // formats are generated automatically for constants and base registers
3597   format %{ %}
3598   interface(CONST_INTER);
3599 %}
3600 #endif
3601 
3602 operand immP13() %{
3603   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3604   match(ConP);
3605   op_cost(0);
3606 
3607   format %{ %}
3608   interface(CONST_INTER);
3609 %}
3610 
3611 operand immP0() %{
3612   predicate(n->get_ptr() == 0);
3613   match(ConP);
3614   op_cost(0);
3615 
3616   format %{ %}
3617   interface(CONST_INTER);
3618 %}
3619 
3620 operand immP_poll() %{
3621   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3622   match(ConP);
3623 
3624   // formats are generated automatically for constants and base registers
3625   format %{ %}
3626   interface(CONST_INTER);
3627 %}
3628 
3629 // Pointer Immediate
3630 operand immN()
3631 %{
3632   match(ConN);
3633 
3634   op_cost(10);
3635   format %{ %}
3636   interface(CONST_INTER);
3637 %}
3638 
3639 // NULL Pointer Immediate
3640 operand immN0()
3641 %{
3642   predicate(n->get_narrowcon() == 0);
3643   match(ConN);
3644 
3645   op_cost(0);
3646   format %{ %}
3647   interface(CONST_INTER);
3648 %}
3649 
3650 operand immL() %{
3651   match(ConL);
3652   op_cost(40);
3653   // formats are generated automatically for constants and base registers
3654   format %{ %}
3655   interface(CONST_INTER);
3656 %}
3657 
3658 operand immL0() %{
3659   predicate(n->get_long() == 0L);
3660   match(ConL);
3661   op_cost(0);
3662   // formats are generated automatically for constants and base registers
3663   format %{ %}
3664   interface(CONST_INTER);
3665 %}
3666 
3667 // Long Immediate: 13-bit
3668 operand immL13() %{
3669   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3670   match(ConL);
3671   op_cost(0);
3672 
3673   format %{ %}
3674   interface(CONST_INTER);
3675 %}
3676 
3677 // Long Immediate: 13-bit minus 7
3678 operand immL13m7() %{
3679   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3680   match(ConL);
3681   op_cost(0);
3682 
3683   format %{ %}
3684   interface(CONST_INTER);
3685 %}
3686 
3687 // Long Immediate: low 32-bit mask
3688 operand immL_32bits() %{
3689   predicate(n->get_long() == 0xFFFFFFFFL);
3690   match(ConL);
3691   op_cost(0);
3692 
3693   format %{ %}
3694   interface(CONST_INTER);
3695 %}
3696 
3697 // Long Immediate: cheap (materialize in <= 3 instructions)
3698 operand immL_cheap() %{
3699   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3700   match(ConL);
3701   op_cost(0);
3702 
3703   format %{ %}
3704   interface(CONST_INTER);
3705 %}
3706 
3707 // Long Immediate: expensive (materialize in > 3 instructions)
3708 operand immL_expensive() %{
3709   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3710   match(ConL);
3711   op_cost(0);
3712 
3713   format %{ %}
3714   interface(CONST_INTER);
3715 %}
3716 
3717 // Double Immediate
3718 operand immD() %{
3719   match(ConD);
3720 
3721   op_cost(40);
3722   format %{ %}
3723   interface(CONST_INTER);
3724 %}
3725 
3726 operand immD0() %{
3727 #ifdef _LP64
3728   // on 64-bit architectures this comparision is faster
3729   predicate(jlong_cast(n->getd()) == 0);
3730 #else
3731   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3732 #endif
3733   match(ConD);
3734 
3735   op_cost(0);
3736   format %{ %}
3737   interface(CONST_INTER);
3738 %}
3739 
3740 // Float Immediate
3741 operand immF() %{
3742   match(ConF);
3743 
3744   op_cost(20);
3745   format %{ %}
3746   interface(CONST_INTER);
3747 %}
3748 
3749 // Float Immediate: 0
3750 operand immF0() %{
3751   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3752   match(ConF);
3753 
3754   op_cost(0);
3755   format %{ %}
3756   interface(CONST_INTER);
3757 %}
3758 
3759 // Integer Register Operands
3760 // Integer Register
3761 operand iRegI() %{
3762   constraint(ALLOC_IN_RC(int_reg));
3763   match(RegI);
3764 
3765   match(notemp_iRegI);
3766   match(g1RegI);
3767   match(o0RegI);
3768   match(iRegIsafe);
3769 
3770   format %{ %}
3771   interface(REG_INTER);
3772 %}
3773 
3774 operand notemp_iRegI() %{
3775   constraint(ALLOC_IN_RC(notemp_int_reg));
3776   match(RegI);
3777 
3778   match(o0RegI);
3779 
3780   format %{ %}
3781   interface(REG_INTER);
3782 %}
3783 
3784 operand o0RegI() %{
3785   constraint(ALLOC_IN_RC(o0_regI));
3786   match(iRegI);
3787 
3788   format %{ %}
3789   interface(REG_INTER);
3790 %}
3791 
3792 // Pointer Register
3793 operand iRegP() %{
3794   constraint(ALLOC_IN_RC(ptr_reg));
3795   match(RegP);
3796 
3797   match(lock_ptr_RegP);
3798   match(g1RegP);
3799   match(g2RegP);
3800   match(g3RegP);
3801   match(g4RegP);
3802   match(i0RegP);
3803   match(o0RegP);
3804   match(o1RegP);
3805   match(l7RegP);
3806 
3807   format %{ %}
3808   interface(REG_INTER);
3809 %}
3810 
3811 operand sp_ptr_RegP() %{
3812   constraint(ALLOC_IN_RC(sp_ptr_reg));
3813   match(RegP);
3814   match(iRegP);
3815 
3816   format %{ %}
3817   interface(REG_INTER);
3818 %}
3819 
3820 operand lock_ptr_RegP() %{
3821   constraint(ALLOC_IN_RC(lock_ptr_reg));
3822   match(RegP);
3823   match(i0RegP);
3824   match(o0RegP);
3825   match(o1RegP);
3826   match(l7RegP);
3827 
3828   format %{ %}
3829   interface(REG_INTER);
3830 %}
3831 
3832 operand g1RegP() %{
3833   constraint(ALLOC_IN_RC(g1_regP));
3834   match(iRegP);
3835 
3836   format %{ %}
3837   interface(REG_INTER);
3838 %}
3839 
3840 operand g2RegP() %{
3841   constraint(ALLOC_IN_RC(g2_regP));
3842   match(iRegP);
3843 
3844   format %{ %}
3845   interface(REG_INTER);
3846 %}
3847 
3848 operand g3RegP() %{
3849   constraint(ALLOC_IN_RC(g3_regP));
3850   match(iRegP);
3851 
3852   format %{ %}
3853   interface(REG_INTER);
3854 %}
3855 
3856 operand g1RegI() %{
3857   constraint(ALLOC_IN_RC(g1_regI));
3858   match(iRegI);
3859 
3860   format %{ %}
3861   interface(REG_INTER);
3862 %}
3863 
3864 operand g3RegI() %{
3865   constraint(ALLOC_IN_RC(g3_regI));
3866   match(iRegI);
3867 
3868   format %{ %}
3869   interface(REG_INTER);
3870 %}
3871 
3872 operand g4RegI() %{
3873   constraint(ALLOC_IN_RC(g4_regI));
3874   match(iRegI);
3875 
3876   format %{ %}
3877   interface(REG_INTER);
3878 %}
3879 
3880 operand g4RegP() %{
3881   constraint(ALLOC_IN_RC(g4_regP));
3882   match(iRegP);
3883 
3884   format %{ %}
3885   interface(REG_INTER);
3886 %}
3887 
3888 operand i0RegP() %{
3889   constraint(ALLOC_IN_RC(i0_regP));
3890   match(iRegP);
3891 
3892   format %{ %}
3893   interface(REG_INTER);
3894 %}
3895 
3896 operand o0RegP() %{
3897   constraint(ALLOC_IN_RC(o0_regP));
3898   match(iRegP);
3899 
3900   format %{ %}
3901   interface(REG_INTER);
3902 %}
3903 
3904 operand o1RegP() %{
3905   constraint(ALLOC_IN_RC(o1_regP));
3906   match(iRegP);
3907 
3908   format %{ %}
3909   interface(REG_INTER);
3910 %}
3911 
3912 operand o2RegP() %{
3913   constraint(ALLOC_IN_RC(o2_regP));
3914   match(iRegP);
3915 
3916   format %{ %}
3917   interface(REG_INTER);
3918 %}
3919 
3920 operand o7RegP() %{
3921   constraint(ALLOC_IN_RC(o7_regP));
3922   match(iRegP);
3923 
3924   format %{ %}
3925   interface(REG_INTER);
3926 %}
3927 
3928 operand l7RegP() %{
3929   constraint(ALLOC_IN_RC(l7_regP));
3930   match(iRegP);
3931 
3932   format %{ %}
3933   interface(REG_INTER);
3934 %}
3935 
3936 operand o7RegI() %{
3937   constraint(ALLOC_IN_RC(o7_regI));
3938   match(iRegI);
3939 
3940   format %{ %}
3941   interface(REG_INTER);
3942 %}
3943 
3944 operand iRegN() %{
3945   constraint(ALLOC_IN_RC(int_reg));
3946   match(RegN);
3947 
3948   format %{ %}
3949   interface(REG_INTER);
3950 %}
3951 
3952 // Long Register
3953 operand iRegL() %{
3954   constraint(ALLOC_IN_RC(long_reg));
3955   match(RegL);
3956 
3957   format %{ %}
3958   interface(REG_INTER);
3959 %}
3960 
3961 operand o2RegL() %{
3962   constraint(ALLOC_IN_RC(o2_regL));
3963   match(iRegL);
3964 
3965   format %{ %}
3966   interface(REG_INTER);
3967 %}
3968 
3969 operand o7RegL() %{
3970   constraint(ALLOC_IN_RC(o7_regL));
3971   match(iRegL);
3972 
3973   format %{ %}
3974   interface(REG_INTER);
3975 %}
3976 
3977 operand g1RegL() %{
3978   constraint(ALLOC_IN_RC(g1_regL));
3979   match(iRegL);
3980 
3981   format %{ %}
3982   interface(REG_INTER);
3983 %}
3984 
3985 operand g3RegL() %{
3986   constraint(ALLOC_IN_RC(g3_regL));
3987   match(iRegL);
3988 
3989   format %{ %}
3990   interface(REG_INTER);
3991 %}
3992 
3993 // Int Register safe
3994 // This is 64bit safe
3995 operand iRegIsafe() %{
3996   constraint(ALLOC_IN_RC(long_reg));
3997 
3998   match(iRegI);
3999 
4000   format %{ %}
4001   interface(REG_INTER);
4002 %}
4003 
4004 // Condition Code Flag Register
4005 operand flagsReg() %{
4006   constraint(ALLOC_IN_RC(int_flags));
4007   match(RegFlags);
4008 
4009   format %{ "ccr" %} // both ICC and XCC
4010   interface(REG_INTER);
4011 %}
4012 
4013 // Condition Code Register, unsigned comparisons.
4014 operand flagsRegU() %{
4015   constraint(ALLOC_IN_RC(int_flags));
4016   match(RegFlags);
4017 
4018   format %{ "icc_U" %}
4019   interface(REG_INTER);
4020 %}
4021 
4022 // Condition Code Register, pointer comparisons.
4023 operand flagsRegP() %{
4024   constraint(ALLOC_IN_RC(int_flags));
4025   match(RegFlags);
4026 
4027 #ifdef _LP64
4028   format %{ "xcc_P" %}
4029 #else
4030   format %{ "icc_P" %}
4031 #endif
4032   interface(REG_INTER);
4033 %}
4034 
4035 // Condition Code Register, long comparisons.
4036 operand flagsRegL() %{
4037   constraint(ALLOC_IN_RC(int_flags));
4038   match(RegFlags);
4039 
4040   format %{ "xcc_L" %}
4041   interface(REG_INTER);
4042 %}
4043 
4044 // Condition Code Register, floating comparisons, unordered same as "less".
4045 operand flagsRegF() %{
4046   constraint(ALLOC_IN_RC(float_flags));
4047   match(RegFlags);
4048   match(flagsRegF0);
4049 
4050   format %{ %}
4051   interface(REG_INTER);
4052 %}
4053 
4054 operand flagsRegF0() %{
4055   constraint(ALLOC_IN_RC(float_flag0));
4056   match(RegFlags);
4057 
4058   format %{ %}
4059   interface(REG_INTER);
4060 %}
4061 
4062 
4063 // Condition Code Flag Register used by long compare
4064 operand flagsReg_long_LTGE() %{
4065   constraint(ALLOC_IN_RC(int_flags));
4066   match(RegFlags);
4067   format %{ "icc_LTGE" %}
4068   interface(REG_INTER);
4069 %}
4070 operand flagsReg_long_EQNE() %{
4071   constraint(ALLOC_IN_RC(int_flags));
4072   match(RegFlags);
4073   format %{ "icc_EQNE" %}
4074   interface(REG_INTER);
4075 %}
4076 operand flagsReg_long_LEGT() %{
4077   constraint(ALLOC_IN_RC(int_flags));
4078   match(RegFlags);
4079   format %{ "icc_LEGT" %}
4080   interface(REG_INTER);
4081 %}
4082 
4083 
4084 operand regD() %{
4085   constraint(ALLOC_IN_RC(dflt_reg));
4086   match(RegD);
4087 
4088   match(regD_low);
4089 
4090   format %{ %}
4091   interface(REG_INTER);
4092 %}
4093 
4094 operand regF() %{
4095   constraint(ALLOC_IN_RC(sflt_reg));
4096   match(RegF);
4097 
4098   format %{ %}
4099   interface(REG_INTER);
4100 %}
4101 
4102 operand regD_low() %{
4103   constraint(ALLOC_IN_RC(dflt_low_reg));
4104   match(regD);
4105 
4106   format %{ %}
4107   interface(REG_INTER);
4108 %}
4109 
4110 // Special Registers
4111 
4112 // Method Register
4113 operand inline_cache_regP(iRegP reg) %{
4114   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4115   match(reg);
4116   format %{ %}
4117   interface(REG_INTER);
4118 %}
4119 
4120 operand interpreter_method_oop_regP(iRegP reg) %{
4121   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4122   match(reg);
4123   format %{ %}
4124   interface(REG_INTER);
4125 %}
4126 
4127 
4128 //----------Complex Operands---------------------------------------------------
4129 // Indirect Memory Reference
4130 operand indirect(sp_ptr_RegP reg) %{
4131   constraint(ALLOC_IN_RC(sp_ptr_reg));
4132   match(reg);
4133 
4134   op_cost(100);
4135   format %{ "[$reg]" %}
4136   interface(MEMORY_INTER) %{
4137     base($reg);
4138     index(0x0);
4139     scale(0x0);
4140     disp(0x0);
4141   %}
4142 %}
4143 
4144 // Indirect with simm13 Offset
4145 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4146   constraint(ALLOC_IN_RC(sp_ptr_reg));
4147   match(AddP reg offset);
4148 
4149   op_cost(100);
4150   format %{ "[$reg + $offset]" %}
4151   interface(MEMORY_INTER) %{
4152     base($reg);
4153     index(0x0);
4154     scale(0x0);
4155     disp($offset);
4156   %}
4157 %}
4158 
4159 // Indirect with simm13 Offset minus 7
4160 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4161   constraint(ALLOC_IN_RC(sp_ptr_reg));
4162   match(AddP reg offset);
4163 
4164   op_cost(100);
4165   format %{ "[$reg + $offset]" %}
4166   interface(MEMORY_INTER) %{
4167     base($reg);
4168     index(0x0);
4169     scale(0x0);
4170     disp($offset);
4171   %}
4172 %}
4173 
4174 // Note:  Intel has a swapped version also, like this:
4175 //operand indOffsetX(iRegI reg, immP offset) %{
4176 //  constraint(ALLOC_IN_RC(int_reg));
4177 //  match(AddP offset reg);
4178 //
4179 //  op_cost(100);
4180 //  format %{ "[$reg + $offset]" %}
4181 //  interface(MEMORY_INTER) %{
4182 //    base($reg);
4183 //    index(0x0);
4184 //    scale(0x0);
4185 //    disp($offset);
4186 //  %}
4187 //%}
4188 //// However, it doesn't make sense for SPARC, since
4189 // we have no particularly good way to embed oops in
4190 // single instructions.
4191 
4192 // Indirect with Register Index
4193 operand indIndex(iRegP addr, iRegX index) %{
4194   constraint(ALLOC_IN_RC(ptr_reg));
4195   match(AddP addr index);
4196 
4197   op_cost(100);
4198   format %{ "[$addr + $index]" %}
4199   interface(MEMORY_INTER) %{
4200     base($addr);
4201     index($index);
4202     scale(0x0);
4203     disp(0x0);
4204   %}
4205 %}
4206 
4207 //----------Special Memory Operands--------------------------------------------
4208 // Stack Slot Operand - This operand is used for loading and storing temporary
4209 //                      values on the stack where a match requires a value to
4210 //                      flow through memory.
4211 operand stackSlotI(sRegI reg) %{
4212   constraint(ALLOC_IN_RC(stack_slots));
4213   op_cost(100);
4214   //match(RegI);
4215   format %{ "[$reg]" %}
4216   interface(MEMORY_INTER) %{
4217     base(0xE);   // R_SP
4218     index(0x0);
4219     scale(0x0);
4220     disp($reg);  // Stack Offset
4221   %}
4222 %}
4223 
4224 operand stackSlotP(sRegP reg) %{
4225   constraint(ALLOC_IN_RC(stack_slots));
4226   op_cost(100);
4227   //match(RegP);
4228   format %{ "[$reg]" %}
4229   interface(MEMORY_INTER) %{
4230     base(0xE);   // R_SP
4231     index(0x0);
4232     scale(0x0);
4233     disp($reg);  // Stack Offset
4234   %}
4235 %}
4236 
4237 operand stackSlotF(sRegF reg) %{
4238   constraint(ALLOC_IN_RC(stack_slots));
4239   op_cost(100);
4240   //match(RegF);
4241   format %{ "[$reg]" %}
4242   interface(MEMORY_INTER) %{
4243     base(0xE);   // R_SP
4244     index(0x0);
4245     scale(0x0);
4246     disp($reg);  // Stack Offset
4247   %}
4248 %}
4249 operand stackSlotD(sRegD reg) %{
4250   constraint(ALLOC_IN_RC(stack_slots));
4251   op_cost(100);
4252   //match(RegD);
4253   format %{ "[$reg]" %}
4254   interface(MEMORY_INTER) %{
4255     base(0xE);   // R_SP
4256     index(0x0);
4257     scale(0x0);
4258     disp($reg);  // Stack Offset
4259   %}
4260 %}
4261 operand stackSlotL(sRegL reg) %{
4262   constraint(ALLOC_IN_RC(stack_slots));
4263   op_cost(100);
4264   //match(RegL);
4265   format %{ "[$reg]" %}
4266   interface(MEMORY_INTER) %{
4267     base(0xE);   // R_SP
4268     index(0x0);
4269     scale(0x0);
4270     disp($reg);  // Stack Offset
4271   %}
4272 %}
4273 
4274 // Operands for expressing Control Flow
4275 // NOTE:  Label is a predefined operand which should not be redefined in
4276 //        the AD file.  It is generically handled within the ADLC.
4277 
4278 //----------Conditional Branch Operands----------------------------------------
4279 // Comparison Op  - This is the operation of the comparison, and is limited to
4280 //                  the following set of codes:
4281 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4282 //
4283 // Other attributes of the comparison, such as unsignedness, are specified
4284 // by the comparison instruction that sets a condition code flags register.
4285 // That result is represented by a flags operand whose subtype is appropriate
4286 // to the unsignedness (etc.) of the comparison.
4287 //
4288 // Later, the instruction which matches both the Comparison Op (a Bool) and
4289 // the flags (produced by the Cmp) specifies the coding of the comparison op
4290 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4291 
4292 operand cmpOp() %{
4293   match(Bool);
4294 
4295   format %{ "" %}
4296   interface(COND_INTER) %{
4297     equal(0x1);
4298     not_equal(0x9);
4299     less(0x3);
4300     greater_equal(0xB);
4301     less_equal(0x2);
4302     greater(0xA);
4303   %}
4304 %}
4305 
4306 // Comparison Op, unsigned
4307 operand cmpOpU() %{
4308   match(Bool);
4309 
4310   format %{ "u" %}
4311   interface(COND_INTER) %{
4312     equal(0x1);
4313     not_equal(0x9);
4314     less(0x5);
4315     greater_equal(0xD);
4316     less_equal(0x4);
4317     greater(0xC);
4318   %}
4319 %}
4320 
4321 // Comparison Op, pointer (same as unsigned)
4322 operand cmpOpP() %{
4323   match(Bool);
4324 
4325   format %{ "p" %}
4326   interface(COND_INTER) %{
4327     equal(0x1);
4328     not_equal(0x9);
4329     less(0x5);
4330     greater_equal(0xD);
4331     less_equal(0x4);
4332     greater(0xC);
4333   %}
4334 %}
4335 
4336 // Comparison Op, branch-register encoding
4337 operand cmpOp_reg() %{
4338   match(Bool);
4339 
4340   format %{ "" %}
4341   interface(COND_INTER) %{
4342     equal        (0x1);
4343     not_equal    (0x5);
4344     less         (0x3);
4345     greater_equal(0x7);
4346     less_equal   (0x2);
4347     greater      (0x6);
4348   %}
4349 %}
4350 
4351 // Comparison Code, floating, unordered same as less
4352 operand cmpOpF() %{
4353   match(Bool);
4354 
4355   format %{ "fl" %}
4356   interface(COND_INTER) %{
4357     equal(0x9);
4358     not_equal(0x1);
4359     less(0x3);
4360     greater_equal(0xB);
4361     less_equal(0xE);
4362     greater(0x6);
4363   %}
4364 %}
4365 
4366 // Used by long compare
4367 operand cmpOp_commute() %{
4368   match(Bool);
4369 
4370   format %{ "" %}
4371   interface(COND_INTER) %{
4372     equal(0x1);
4373     not_equal(0x9);
4374     less(0xA);
4375     greater_equal(0x2);
4376     less_equal(0xB);
4377     greater(0x3);
4378   %}
4379 %}
4380 
4381 //----------OPERAND CLASSES----------------------------------------------------
4382 // Operand Classes are groups of operands that are used to simplify
4383 // instruction definitions by not requiring the AD writer to specify separate
4384 // instructions for every form of operand when the instruction accepts
4385 // multiple operand types with the same basic encoding and format.  The classic
4386 // case of this is memory operands.
4387 opclass memory( indirect, indOffset13, indIndex );
4388 opclass indIndexMemory( indIndex );
4389 
4390 //----------PIPELINE-----------------------------------------------------------
4391 pipeline %{
4392 
4393 //----------ATTRIBUTES---------------------------------------------------------
4394 attributes %{
4395   fixed_size_instructions;           // Fixed size instructions
4396   branch_has_delay_slot;             // Branch has delay slot following
4397   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4398   instruction_unit_size = 4;         // An instruction is 4 bytes long
4399   instruction_fetch_unit_size = 16;  // The processor fetches one line
4400   instruction_fetch_units = 1;       // of 16 bytes
4401 
4402   // List of nop instructions
4403   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4404 %}
4405 
4406 //----------RESOURCES----------------------------------------------------------
4407 // Resources are the functional units available to the machine
4408 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4409 
4410 //----------PIPELINE DESCRIPTION-----------------------------------------------
4411 // Pipeline Description specifies the stages in the machine's pipeline
4412 
4413 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4414 
4415 //----------PIPELINE CLASSES---------------------------------------------------
4416 // Pipeline Classes describe the stages in which input and output are
4417 // referenced by the hardware pipeline.
4418 
4419 // Integer ALU reg-reg operation
4420 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4421     single_instruction;
4422     dst   : E(write);
4423     src1  : R(read);
4424     src2  : R(read);
4425     IALU  : R;
4426 %}
4427 
4428 // Integer ALU reg-reg long operation
4429 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4430     instruction_count(2);
4431     dst   : E(write);
4432     src1  : R(read);
4433     src2  : R(read);
4434     IALU  : R;
4435     IALU  : R;
4436 %}
4437 
4438 // Integer ALU reg-reg long dependent operation
4439 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4440     instruction_count(1); multiple_bundles;
4441     dst   : E(write);
4442     src1  : R(read);
4443     src2  : R(read);
4444     cr    : E(write);
4445     IALU  : R(2);
4446 %}
4447 
4448 // Integer ALU reg-imm operaion
4449 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4450     single_instruction;
4451     dst   : E(write);
4452     src1  : R(read);
4453     IALU  : R;
4454 %}
4455 
4456 // Integer ALU reg-reg operation with condition code
4457 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4458     single_instruction;
4459     dst   : E(write);
4460     cr    : E(write);
4461     src1  : R(read);
4462     src2  : R(read);
4463     IALU  : R;
4464 %}
4465 
4466 // Integer ALU reg-imm operation with condition code
4467 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4468     single_instruction;
4469     dst   : E(write);
4470     cr    : E(write);
4471     src1  : R(read);
4472     IALU  : R;
4473 %}
4474 
4475 // Integer ALU zero-reg operation
4476 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4477     single_instruction;
4478     dst   : E(write);
4479     src2  : R(read);
4480     IALU  : R;
4481 %}
4482 
4483 // Integer ALU zero-reg operation with condition code only
4484 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4485     single_instruction;
4486     cr    : E(write);
4487     src   : R(read);
4488     IALU  : R;
4489 %}
4490 
4491 // Integer ALU reg-reg operation with condition code only
4492 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4493     single_instruction;
4494     cr    : E(write);
4495     src1  : R(read);
4496     src2  : R(read);
4497     IALU  : R;
4498 %}
4499 
4500 // Integer ALU reg-imm operation with condition code only
4501 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4502     single_instruction;
4503     cr    : E(write);
4504     src1  : R(read);
4505     IALU  : R;
4506 %}
4507 
4508 // Integer ALU reg-reg-zero operation with condition code only
4509 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4510     single_instruction;
4511     cr    : E(write);
4512     src1  : R(read);
4513     src2  : R(read);
4514     IALU  : R;
4515 %}
4516 
4517 // Integer ALU reg-imm-zero operation with condition code only
4518 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4519     single_instruction;
4520     cr    : E(write);
4521     src1  : R(read);
4522     IALU  : R;
4523 %}
4524 
4525 // Integer ALU reg-reg operation with condition code, src1 modified
4526 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4527     single_instruction;
4528     cr    : E(write);
4529     src1  : E(write);
4530     src1  : R(read);
4531     src2  : R(read);
4532     IALU  : R;
4533 %}
4534 
4535 // Integer ALU reg-imm operation with condition code, src1 modified
4536 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4537     single_instruction;
4538     cr    : E(write);
4539     src1  : E(write);
4540     src1  : R(read);
4541     IALU  : R;
4542 %}
4543 
4544 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4545     multiple_bundles;
4546     dst   : E(write)+4;
4547     cr    : E(write);
4548     src1  : R(read);
4549     src2  : R(read);
4550     IALU  : R(3);
4551     BR    : R(2);
4552 %}
4553 
4554 // Integer ALU operation
4555 pipe_class ialu_none(iRegI dst) %{
4556     single_instruction;
4557     dst   : E(write);
4558     IALU  : R;
4559 %}
4560 
4561 // Integer ALU reg operation
4562 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4563     single_instruction; may_have_no_code;
4564     dst   : E(write);
4565     src   : R(read);
4566     IALU  : R;
4567 %}
4568 
4569 // Integer ALU reg conditional operation
4570 // This instruction has a 1 cycle stall, and cannot execute
4571 // in the same cycle as the instruction setting the condition
4572 // code. We kludge this by pretending to read the condition code
4573 // 1 cycle earlier, and by marking the functional units as busy
4574 // for 2 cycles with the result available 1 cycle later than
4575 // is really the case.
4576 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4577     single_instruction;
4578     op2_out : C(write);
4579     op1     : R(read);
4580     cr      : R(read);       // This is really E, with a 1 cycle stall
4581     BR      : R(2);
4582     MS      : R(2);
4583 %}
4584 
4585 #ifdef _LP64
4586 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4587     instruction_count(1); multiple_bundles;
4588     dst     : C(write)+1;
4589     src     : R(read)+1;
4590     IALU    : R(1);
4591     BR      : E(2);
4592     MS      : E(2);
4593 %}
4594 #endif
4595 
4596 // Integer ALU reg operation
4597 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4598     single_instruction; may_have_no_code;
4599     dst   : E(write);
4600     src   : R(read);
4601     IALU  : R;
4602 %}
4603 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4604     single_instruction; may_have_no_code;
4605     dst   : E(write);
4606     src   : R(read);
4607     IALU  : R;
4608 %}
4609 
4610 // Two integer ALU reg operations
4611 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4612     instruction_count(2);
4613     dst   : E(write);
4614     src   : R(read);
4615     A0    : R;
4616     A1    : R;
4617 %}
4618 
4619 // Two integer ALU reg operations
4620 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4621     instruction_count(2); may_have_no_code;
4622     dst   : E(write);
4623     src   : R(read);
4624     A0    : R;
4625     A1    : R;
4626 %}
4627 
4628 // Integer ALU imm operation
4629 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4630     single_instruction;
4631     dst   : E(write);
4632     IALU  : R;
4633 %}
4634 
4635 // Integer ALU reg-reg with carry operation
4636 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4637     single_instruction;
4638     dst   : E(write);
4639     src1  : R(read);
4640     src2  : R(read);
4641     IALU  : R;
4642 %}
4643 
4644 // Integer ALU cc operation
4645 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4646     single_instruction;
4647     dst   : E(write);
4648     cc    : R(read);
4649     IALU  : R;
4650 %}
4651 
4652 // Integer ALU cc / second IALU operation
4653 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4654     instruction_count(1); multiple_bundles;
4655     dst   : E(write)+1;
4656     src   : R(read);
4657     IALU  : R;
4658 %}
4659 
4660 // Integer ALU cc / second IALU operation
4661 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4662     instruction_count(1); multiple_bundles;
4663     dst   : E(write)+1;
4664     p     : R(read);
4665     q     : R(read);
4666     IALU  : R;
4667 %}
4668 
4669 // Integer ALU hi-lo-reg operation
4670 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4671     instruction_count(1); multiple_bundles;
4672     dst   : E(write)+1;
4673     IALU  : R(2);
4674 %}
4675 
4676 // Float ALU hi-lo-reg operation (with temp)
4677 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4678     instruction_count(1); multiple_bundles;
4679     dst   : E(write)+1;
4680     IALU  : R(2);
4681 %}
4682 
4683 // Long Constant
4684 pipe_class loadConL( iRegL dst, immL src ) %{
4685     instruction_count(2); multiple_bundles;
4686     dst   : E(write)+1;
4687     IALU  : R(2);
4688     IALU  : R(2);
4689 %}
4690 
4691 // Pointer Constant
4692 pipe_class loadConP( iRegP dst, immP src ) %{
4693     instruction_count(0); multiple_bundles;
4694     fixed_latency(6);
4695 %}
4696 
4697 // Polling Address
4698 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4699 #ifdef _LP64
4700     instruction_count(0); multiple_bundles;
4701     fixed_latency(6);
4702 #else
4703     dst   : E(write);
4704     IALU  : R;
4705 #endif
4706 %}
4707 
4708 // Long Constant small
4709 pipe_class loadConLlo( iRegL dst, immL src ) %{
4710     instruction_count(2);
4711     dst   : E(write);
4712     IALU  : R;
4713     IALU  : R;
4714 %}
4715 
4716 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4717 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4718     instruction_count(1); multiple_bundles;
4719     src   : R(read);
4720     dst   : M(write)+1;
4721     IALU  : R;
4722     MS    : E;
4723 %}
4724 
4725 // Integer ALU nop operation
4726 pipe_class ialu_nop() %{
4727     single_instruction;
4728     IALU  : R;
4729 %}
4730 
4731 // Integer ALU nop operation
4732 pipe_class ialu_nop_A0() %{
4733     single_instruction;
4734     A0    : R;
4735 %}
4736 
4737 // Integer ALU nop operation
4738 pipe_class ialu_nop_A1() %{
4739     single_instruction;
4740     A1    : R;
4741 %}
4742 
4743 // Integer Multiply reg-reg operation
4744 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4745     single_instruction;
4746     dst   : E(write);
4747     src1  : R(read);
4748     src2  : R(read);
4749     MS    : R(5);
4750 %}
4751 
4752 // Integer Multiply reg-imm operation
4753 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4754     single_instruction;
4755     dst   : E(write);
4756     src1  : R(read);
4757     MS    : R(5);
4758 %}
4759 
4760 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4761     single_instruction;
4762     dst   : E(write)+4;
4763     src1  : R(read);
4764     src2  : R(read);
4765     MS    : R(6);
4766 %}
4767 
4768 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4769     single_instruction;
4770     dst   : E(write)+4;
4771     src1  : R(read);
4772     MS    : R(6);
4773 %}
4774 
4775 // Integer Divide reg-reg
4776 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4777     instruction_count(1); multiple_bundles;
4778     dst   : E(write);
4779     temp  : E(write);
4780     src1  : R(read);
4781     src2  : R(read);
4782     temp  : R(read);
4783     MS    : R(38);
4784 %}
4785 
4786 // Integer Divide reg-imm
4787 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4788     instruction_count(1); multiple_bundles;
4789     dst   : E(write);
4790     temp  : E(write);
4791     src1  : R(read);
4792     temp  : R(read);
4793     MS    : R(38);
4794 %}
4795 
4796 // Long Divide
4797 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4798     dst  : E(write)+71;
4799     src1 : R(read);
4800     src2 : R(read)+1;
4801     MS   : R(70);
4802 %}
4803 
4804 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4805     dst  : E(write)+71;
4806     src1 : R(read);
4807     MS   : R(70);
4808 %}
4809 
4810 // Floating Point Add Float
4811 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4812     single_instruction;
4813     dst   : X(write);
4814     src1  : E(read);
4815     src2  : E(read);
4816     FA    : R;
4817 %}
4818 
4819 // Floating Point Add Double
4820 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4821     single_instruction;
4822     dst   : X(write);
4823     src1  : E(read);
4824     src2  : E(read);
4825     FA    : R;
4826 %}
4827 
4828 // Floating Point Conditional Move based on integer flags
4829 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4830     single_instruction;
4831     dst   : X(write);
4832     src   : E(read);
4833     cr    : R(read);
4834     FA    : R(2);
4835     BR    : R(2);
4836 %}
4837 
4838 // Floating Point Conditional Move based on integer flags
4839 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4840     single_instruction;
4841     dst   : X(write);
4842     src   : E(read);
4843     cr    : R(read);
4844     FA    : R(2);
4845     BR    : R(2);
4846 %}
4847 
4848 // Floating Point Multiply Float
4849 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4850     single_instruction;
4851     dst   : X(write);
4852     src1  : E(read);
4853     src2  : E(read);
4854     FM    : R;
4855 %}
4856 
4857 // Floating Point Multiply Double
4858 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4859     single_instruction;
4860     dst   : X(write);
4861     src1  : E(read);
4862     src2  : E(read);
4863     FM    : R;
4864 %}
4865 
4866 // Floating Point Divide Float
4867 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4868     single_instruction;
4869     dst   : X(write);
4870     src1  : E(read);
4871     src2  : E(read);
4872     FM    : R;
4873     FDIV  : C(14);
4874 %}
4875 
4876 // Floating Point Divide Double
4877 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4878     single_instruction;
4879     dst   : X(write);
4880     src1  : E(read);
4881     src2  : E(read);
4882     FM    : R;
4883     FDIV  : C(17);
4884 %}
4885 
4886 // Floating Point Move/Negate/Abs Float
4887 pipe_class faddF_reg(regF dst, regF src) %{
4888     single_instruction;
4889     dst   : W(write);
4890     src   : E(read);
4891     FA    : R(1);
4892 %}
4893 
4894 // Floating Point Move/Negate/Abs Double
4895 pipe_class faddD_reg(regD dst, regD src) %{
4896     single_instruction;
4897     dst   : W(write);
4898     src   : E(read);
4899     FA    : R;
4900 %}
4901 
4902 // Floating Point Convert F->D
4903 pipe_class fcvtF2D(regD dst, regF src) %{
4904     single_instruction;
4905     dst   : X(write);
4906     src   : E(read);
4907     FA    : R;
4908 %}
4909 
4910 // Floating Point Convert I->D
4911 pipe_class fcvtI2D(regD dst, regF src) %{
4912     single_instruction;
4913     dst   : X(write);
4914     src   : E(read);
4915     FA    : R;
4916 %}
4917 
4918 // Floating Point Convert LHi->D
4919 pipe_class fcvtLHi2D(regD dst, regD src) %{
4920     single_instruction;
4921     dst   : X(write);
4922     src   : E(read);
4923     FA    : R;
4924 %}
4925 
4926 // Floating Point Convert L->D
4927 pipe_class fcvtL2D(regD dst, regF src) %{
4928     single_instruction;
4929     dst   : X(write);
4930     src   : E(read);
4931     FA    : R;
4932 %}
4933 
4934 // Floating Point Convert L->F
4935 pipe_class fcvtL2F(regD dst, regF src) %{
4936     single_instruction;
4937     dst   : X(write);
4938     src   : E(read);
4939     FA    : R;
4940 %}
4941 
4942 // Floating Point Convert D->F
4943 pipe_class fcvtD2F(regD dst, regF src) %{
4944     single_instruction;
4945     dst   : X(write);
4946     src   : E(read);
4947     FA    : R;
4948 %}
4949 
4950 // Floating Point Convert I->L
4951 pipe_class fcvtI2L(regD dst, regF src) %{
4952     single_instruction;
4953     dst   : X(write);
4954     src   : E(read);
4955     FA    : R;
4956 %}
4957 
4958 // Floating Point Convert D->F
4959 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4960     instruction_count(1); multiple_bundles;
4961     dst   : X(write)+6;
4962     src   : E(read);
4963     FA    : R;
4964 %}
4965 
4966 // Floating Point Convert D->L
4967 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4968     instruction_count(1); multiple_bundles;
4969     dst   : X(write)+6;
4970     src   : E(read);
4971     FA    : R;
4972 %}
4973 
4974 // Floating Point Convert F->I
4975 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4976     instruction_count(1); multiple_bundles;
4977     dst   : X(write)+6;
4978     src   : E(read);
4979     FA    : R;
4980 %}
4981 
4982 // Floating Point Convert F->L
4983 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4984     instruction_count(1); multiple_bundles;
4985     dst   : X(write)+6;
4986     src   : E(read);
4987     FA    : R;
4988 %}
4989 
4990 // Floating Point Convert I->F
4991 pipe_class fcvtI2F(regF dst, regF src) %{
4992     single_instruction;
4993     dst   : X(write);
4994     src   : E(read);
4995     FA    : R;
4996 %}
4997 
4998 // Floating Point Compare
4999 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5000     single_instruction;
5001     cr    : X(write);
5002     src1  : E(read);
5003     src2  : E(read);
5004     FA    : R;
5005 %}
5006 
5007 // Floating Point Compare
5008 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5009     single_instruction;
5010     cr    : X(write);
5011     src1  : E(read);
5012     src2  : E(read);
5013     FA    : R;
5014 %}
5015 
5016 // Floating Add Nop
5017 pipe_class fadd_nop() %{
5018     single_instruction;
5019     FA  : R;
5020 %}
5021 
5022 // Integer Store to Memory
5023 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5024     single_instruction;
5025     mem   : R(read);
5026     src   : C(read);
5027     MS    : R;
5028 %}
5029 
5030 // Integer Store to Memory
5031 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5032     single_instruction;
5033     mem   : R(read);
5034     src   : C(read);
5035     MS    : R;
5036 %}
5037 
5038 // Integer Store Zero to Memory
5039 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5040     single_instruction;
5041     mem   : R(read);
5042     MS    : R;
5043 %}
5044 
5045 // Special Stack Slot Store
5046 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5047     single_instruction;
5048     stkSlot : R(read);
5049     src     : C(read);
5050     MS      : R;
5051 %}
5052 
5053 // Special Stack Slot Store
5054 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5055     instruction_count(2); multiple_bundles;
5056     stkSlot : R(read);
5057     src     : C(read);
5058     MS      : R(2);
5059 %}
5060 
5061 // Float Store
5062 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5063     single_instruction;
5064     mem : R(read);
5065     src : C(read);
5066     MS  : R;
5067 %}
5068 
5069 // Float Store
5070 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5071     single_instruction;
5072     mem : R(read);
5073     MS  : R;
5074 %}
5075 
5076 // Double Store
5077 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5078     instruction_count(1);
5079     mem : R(read);
5080     src : C(read);
5081     MS  : R;
5082 %}
5083 
5084 // Double Store
5085 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5086     single_instruction;
5087     mem : R(read);
5088     MS  : R;
5089 %}
5090 
5091 // Special Stack Slot Float Store
5092 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5093     single_instruction;
5094     stkSlot : R(read);
5095     src     : C(read);
5096     MS      : R;
5097 %}
5098 
5099 // Special Stack Slot Double Store
5100 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5101     single_instruction;
5102     stkSlot : R(read);
5103     src     : C(read);
5104     MS      : R;
5105 %}
5106 
5107 // Integer Load (when sign bit propagation not needed)
5108 pipe_class iload_mem(iRegI dst, memory mem) %{
5109     single_instruction;
5110     mem : R(read);
5111     dst : C(write);
5112     MS  : R;
5113 %}
5114 
5115 // Integer Load from stack operand
5116 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5117     single_instruction;
5118     mem : R(read);
5119     dst : C(write);
5120     MS  : R;
5121 %}
5122 
5123 // Integer Load (when sign bit propagation or masking is needed)
5124 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5125     single_instruction;
5126     mem : R(read);
5127     dst : M(write);
5128     MS  : R;
5129 %}
5130 
5131 // Float Load
5132 pipe_class floadF_mem(regF dst, memory mem) %{
5133     single_instruction;
5134     mem : R(read);
5135     dst : M(write);
5136     MS  : R;
5137 %}
5138 
5139 // Float Load
5140 pipe_class floadD_mem(regD dst, memory mem) %{
5141     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5142     mem : R(read);
5143     dst : M(write);
5144     MS  : R;
5145 %}
5146 
5147 // Float Load
5148 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5149     single_instruction;
5150     stkSlot : R(read);
5151     dst : M(write);
5152     MS  : R;
5153 %}
5154 
5155 // Float Load
5156 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5157     single_instruction;
5158     stkSlot : R(read);
5159     dst : M(write);
5160     MS  : R;
5161 %}
5162 
5163 // Memory Nop
5164 pipe_class mem_nop() %{
5165     single_instruction;
5166     MS  : R;
5167 %}
5168 
5169 pipe_class sethi(iRegP dst, immI src) %{
5170     single_instruction;
5171     dst  : E(write);
5172     IALU : R;
5173 %}
5174 
5175 pipe_class loadPollP(iRegP poll) %{
5176     single_instruction;
5177     poll : R(read);
5178     MS   : R;
5179 %}
5180 
5181 pipe_class br(Universe br, label labl) %{
5182     single_instruction_with_delay_slot;
5183     BR  : R;
5184 %}
5185 
5186 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5187     single_instruction_with_delay_slot;
5188     cr    : E(read);
5189     BR    : R;
5190 %}
5191 
5192 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5193     single_instruction_with_delay_slot;
5194     op1 : E(read);
5195     BR  : R;
5196     MS  : R;
5197 %}
5198 
5199 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5200     single_instruction_with_delay_slot;
5201     cr    : E(read);
5202     BR    : R;
5203 %}
5204 
5205 pipe_class br_nop() %{
5206     single_instruction;
5207     BR  : R;
5208 %}
5209 
5210 pipe_class simple_call(method meth) %{
5211     instruction_count(2); multiple_bundles; force_serialization;
5212     fixed_latency(100);
5213     BR  : R(1);
5214     MS  : R(1);
5215     A0  : R(1);
5216 %}
5217 
5218 pipe_class compiled_call(method meth) %{
5219     instruction_count(1); multiple_bundles; force_serialization;
5220     fixed_latency(100);
5221     MS  : R(1);
5222 %}
5223 
5224 pipe_class call(method meth) %{
5225     instruction_count(0); multiple_bundles; force_serialization;
5226     fixed_latency(100);
5227 %}
5228 
5229 pipe_class tail_call(Universe ignore, label labl) %{
5230     single_instruction; has_delay_slot;
5231     fixed_latency(100);
5232     BR  : R(1);
5233     MS  : R(1);
5234 %}
5235 
5236 pipe_class ret(Universe ignore) %{
5237     single_instruction; has_delay_slot;
5238     BR  : R(1);
5239     MS  : R(1);
5240 %}
5241 
5242 pipe_class ret_poll(g3RegP poll) %{
5243     instruction_count(3); has_delay_slot;
5244     poll : E(read);
5245     MS   : R;
5246 %}
5247 
5248 // The real do-nothing guy
5249 pipe_class empty( ) %{
5250     instruction_count(0);
5251 %}
5252 
5253 pipe_class long_memory_op() %{
5254     instruction_count(0); multiple_bundles; force_serialization;
5255     fixed_latency(25);
5256     MS  : R(1);
5257 %}
5258 
5259 // Check-cast
5260 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5261     array : R(read);
5262     match  : R(read);
5263     IALU   : R(2);
5264     BR     : R(2);
5265     MS     : R;
5266 %}
5267 
5268 // Convert FPU flags into +1,0,-1
5269 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5270     src1  : E(read);
5271     src2  : E(read);
5272     dst   : E(write);
5273     FA    : R;
5274     MS    : R(2);
5275     BR    : R(2);
5276 %}
5277 
5278 // Compare for p < q, and conditionally add y
5279 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5280     p     : E(read);
5281     q     : E(read);
5282     y     : E(read);
5283     IALU  : R(3)
5284 %}
5285 
5286 // Perform a compare, then move conditionally in a branch delay slot.
5287 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5288     src2   : E(read);
5289     srcdst : E(read);
5290     IALU   : R;
5291     BR     : R;
5292 %}
5293 
5294 // Define the class for the Nop node
5295 define %{
5296    MachNop = ialu_nop;
5297 %}
5298 
5299 %}
5300 
5301 //----------INSTRUCTIONS-------------------------------------------------------
5302 
5303 //------------Special Stack Slot instructions - no match rules-----------------
5304 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5305   // No match rule to avoid chain rule match.
5306   effect(DEF dst, USE src);
5307   ins_cost(MEMORY_REF_COST);
5308   size(4);
5309   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5310   opcode(Assembler::ldf_op3);
5311   ins_encode(simple_form3_mem_reg(src, dst));
5312   ins_pipe(floadF_stk);
5313 %}
5314 
5315 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5316   // No match rule to avoid chain rule match.
5317   effect(DEF dst, USE src);
5318   ins_cost(MEMORY_REF_COST);
5319   size(4);
5320   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5321   opcode(Assembler::lddf_op3);
5322   ins_encode(simple_form3_mem_reg(src, dst));
5323   ins_pipe(floadD_stk);
5324 %}
5325 
5326 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5327   // No match rule to avoid chain rule match.
5328   effect(DEF dst, USE src);
5329   ins_cost(MEMORY_REF_COST);
5330   size(4);
5331   format %{ "STF    $src,$dst\t! regF to stkI" %}
5332   opcode(Assembler::stf_op3);
5333   ins_encode(simple_form3_mem_reg(dst, src));
5334   ins_pipe(fstoreF_stk_reg);
5335 %}
5336 
5337 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5338   // No match rule to avoid chain rule match.
5339   effect(DEF dst, USE src);
5340   ins_cost(MEMORY_REF_COST);
5341   size(4);
5342   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5343   opcode(Assembler::stdf_op3);
5344   ins_encode(simple_form3_mem_reg(dst, src));
5345   ins_pipe(fstoreD_stk_reg);
5346 %}
5347 
5348 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5349   effect(DEF dst, USE src);
5350   ins_cost(MEMORY_REF_COST*2);
5351   size(8);
5352   format %{ "STW    $src,$dst.hi\t! long\n\t"
5353             "STW    R_G0,$dst.lo" %}
5354   opcode(Assembler::stw_op3);
5355   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5356   ins_pipe(lstoreI_stk_reg);
5357 %}
5358 
5359 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5360   // No match rule to avoid chain rule match.
5361   effect(DEF dst, USE src);
5362   ins_cost(MEMORY_REF_COST);
5363   size(4);
5364   format %{ "STX    $src,$dst\t! regL to stkD" %}
5365   opcode(Assembler::stx_op3);
5366   ins_encode(simple_form3_mem_reg( dst, src ) );
5367   ins_pipe(istore_stk_reg);
5368 %}
5369 
5370 //---------- Chain stack slots between similar types --------
5371 
5372 // Load integer from stack slot
5373 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5374   match(Set dst src);
5375   ins_cost(MEMORY_REF_COST);
5376 
5377   size(4);
5378   format %{ "LDUW   $src,$dst\t!stk" %}
5379   opcode(Assembler::lduw_op3);
5380   ins_encode(simple_form3_mem_reg( src, dst ) );
5381   ins_pipe(iload_mem);
5382 %}
5383 
5384 // Store integer to stack slot
5385 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5386   match(Set dst src);
5387   ins_cost(MEMORY_REF_COST);
5388 
5389   size(4);
5390   format %{ "STW    $src,$dst\t!stk" %}
5391   opcode(Assembler::stw_op3);
5392   ins_encode(simple_form3_mem_reg( dst, src ) );
5393   ins_pipe(istore_mem_reg);
5394 %}
5395 
5396 // Load long from stack slot
5397 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5398   match(Set dst src);
5399 
5400   ins_cost(MEMORY_REF_COST);
5401   size(4);
5402   format %{ "LDX    $src,$dst\t! long" %}
5403   opcode(Assembler::ldx_op3);
5404   ins_encode(simple_form3_mem_reg( src, dst ) );
5405   ins_pipe(iload_mem);
5406 %}
5407 
5408 // Store long to stack slot
5409 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5410   match(Set dst src);
5411 
5412   ins_cost(MEMORY_REF_COST);
5413   size(4);
5414   format %{ "STX    $src,$dst\t! long" %}
5415   opcode(Assembler::stx_op3);
5416   ins_encode(simple_form3_mem_reg( dst, src ) );
5417   ins_pipe(istore_mem_reg);
5418 %}
5419 
5420 #ifdef _LP64
5421 // Load pointer from stack slot, 64-bit encoding
5422 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5423   match(Set dst src);
5424   ins_cost(MEMORY_REF_COST);
5425   size(4);
5426   format %{ "LDX    $src,$dst\t!ptr" %}
5427   opcode(Assembler::ldx_op3);
5428   ins_encode(simple_form3_mem_reg( src, dst ) );
5429   ins_pipe(iload_mem);
5430 %}
5431 
5432 // Store pointer to stack slot
5433 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5434   match(Set dst src);
5435   ins_cost(MEMORY_REF_COST);
5436   size(4);
5437   format %{ "STX    $src,$dst\t!ptr" %}
5438   opcode(Assembler::stx_op3);
5439   ins_encode(simple_form3_mem_reg( dst, src ) );
5440   ins_pipe(istore_mem_reg);
5441 %}
5442 #else // _LP64
5443 // Load pointer from stack slot, 32-bit encoding
5444 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5445   match(Set dst src);
5446   ins_cost(MEMORY_REF_COST);
5447   format %{ "LDUW   $src,$dst\t!ptr" %}
5448   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5449   ins_encode(simple_form3_mem_reg( src, dst ) );
5450   ins_pipe(iload_mem);
5451 %}
5452 
5453 // Store pointer to stack slot
5454 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5455   match(Set dst src);
5456   ins_cost(MEMORY_REF_COST);
5457   format %{ "STW    $src,$dst\t!ptr" %}
5458   opcode(Assembler::stw_op3, Assembler::ldst_op);
5459   ins_encode(simple_form3_mem_reg( dst, src ) );
5460   ins_pipe(istore_mem_reg);
5461 %}
5462 #endif // _LP64
5463 
5464 //------------Special Nop instructions for bundling - no match rules-----------
5465 // Nop using the A0 functional unit
5466 instruct Nop_A0() %{
5467   ins_cost(0);
5468 
5469   format %{ "NOP    ! Alu Pipeline" %}
5470   opcode(Assembler::or_op3, Assembler::arith_op);
5471   ins_encode( form2_nop() );
5472   ins_pipe(ialu_nop_A0);
5473 %}
5474 
5475 // Nop using the A1 functional unit
5476 instruct Nop_A1( ) %{
5477   ins_cost(0);
5478 
5479   format %{ "NOP    ! Alu Pipeline" %}
5480   opcode(Assembler::or_op3, Assembler::arith_op);
5481   ins_encode( form2_nop() );
5482   ins_pipe(ialu_nop_A1);
5483 %}
5484 
5485 // Nop using the memory functional unit
5486 instruct Nop_MS( ) %{
5487   ins_cost(0);
5488 
5489   format %{ "NOP    ! Memory Pipeline" %}
5490   ins_encode( emit_mem_nop );
5491   ins_pipe(mem_nop);
5492 %}
5493 
5494 // Nop using the floating add functional unit
5495 instruct Nop_FA( ) %{
5496   ins_cost(0);
5497 
5498   format %{ "NOP    ! Floating Add Pipeline" %}
5499   ins_encode( emit_fadd_nop );
5500   ins_pipe(fadd_nop);
5501 %}
5502 
5503 // Nop using the branch functional unit
5504 instruct Nop_BR( ) %{
5505   ins_cost(0);
5506 
5507   format %{ "NOP    ! Branch Pipeline" %}
5508   ins_encode( emit_br_nop );
5509   ins_pipe(br_nop);
5510 %}
5511 
5512 //----------Load/Store/Move Instructions---------------------------------------
5513 //----------Load Instructions--------------------------------------------------
5514 // Load Byte (8bit signed)
5515 instruct loadB(iRegI dst, memory mem) %{
5516   match(Set dst (LoadB mem));
5517   ins_cost(MEMORY_REF_COST);
5518 
5519   size(4);
5520   format %{ "LDSB   $mem,$dst\t! byte" %}
5521   ins_encode %{
5522     __ ldsb($mem$$Address, $dst$$Register);
5523   %}
5524   ins_pipe(iload_mask_mem);
5525 %}
5526 
5527 // Load Byte (8bit signed) into a Long Register
5528 instruct loadB2L(iRegL dst, memory mem) %{
5529   match(Set dst (ConvI2L (LoadB mem)));
5530   ins_cost(MEMORY_REF_COST);
5531 
5532   size(4);
5533   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5534   ins_encode %{
5535     __ ldsb($mem$$Address, $dst$$Register);
5536   %}
5537   ins_pipe(iload_mask_mem);
5538 %}
5539 
5540 // Load Unsigned Byte (8bit UNsigned) into an int reg
5541 instruct loadUB(iRegI dst, memory mem) %{
5542   match(Set dst (LoadUB mem));
5543   ins_cost(MEMORY_REF_COST);
5544 
5545   size(4);
5546   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5547   ins_encode %{
5548     __ ldub($mem$$Address, $dst$$Register);
5549   %}
5550   ins_pipe(iload_mem);
5551 %}
5552 
5553 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5554 instruct loadUB2L(iRegL dst, memory mem) %{
5555   match(Set dst (ConvI2L (LoadUB mem)));
5556   ins_cost(MEMORY_REF_COST);
5557 
5558   size(4);
5559   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5560   ins_encode %{
5561     __ ldub($mem$$Address, $dst$$Register);
5562   %}
5563   ins_pipe(iload_mem);
5564 %}
5565 
5566 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5567 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5568   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5569   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5570 
5571   size(2*4);
5572   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5573             "AND    $dst,$mask,$dst" %}
5574   ins_encode %{
5575     __ ldub($mem$$Address, $dst$$Register);
5576     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5577   %}
5578   ins_pipe(iload_mem);
5579 %}
5580 
5581 // Load Short (16bit signed)
5582 instruct loadS(iRegI dst, memory mem) %{
5583   match(Set dst (LoadS mem));
5584   ins_cost(MEMORY_REF_COST);
5585 
5586   size(4);
5587   format %{ "LDSH   $mem,$dst\t! short" %}
5588   ins_encode %{
5589     __ ldsh($mem$$Address, $dst$$Register);
5590   %}
5591   ins_pipe(iload_mask_mem);
5592 %}
5593 
5594 // Load Short (16 bit signed) to Byte (8 bit signed)
5595 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5596   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5597   ins_cost(MEMORY_REF_COST);
5598 
5599   size(4);
5600 
5601   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5602   ins_encode %{
5603     __ ldsb($mem$$Address, $dst$$Register, 1);
5604   %}
5605   ins_pipe(iload_mask_mem);
5606 %}
5607 
5608 // Load Short (16bit signed) into a Long Register
5609 instruct loadS2L(iRegL dst, memory mem) %{
5610   match(Set dst (ConvI2L (LoadS mem)));
5611   ins_cost(MEMORY_REF_COST);
5612 
5613   size(4);
5614   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5615   ins_encode %{
5616     __ ldsh($mem$$Address, $dst$$Register);
5617   %}
5618   ins_pipe(iload_mask_mem);
5619 %}
5620 
5621 // Load Unsigned Short/Char (16bit UNsigned)
5622 instruct loadUS(iRegI dst, memory mem) %{
5623   match(Set dst (LoadUS mem));
5624   ins_cost(MEMORY_REF_COST);
5625 
5626   size(4);
5627   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5628   ins_encode %{
5629     __ lduh($mem$$Address, $dst$$Register);
5630   %}
5631   ins_pipe(iload_mem);
5632 %}
5633 
5634 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5635 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5636   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5637   ins_cost(MEMORY_REF_COST);
5638 
5639   size(4);
5640   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5641   ins_encode %{
5642     __ ldsb($mem$$Address, $dst$$Register, 1);
5643   %}
5644   ins_pipe(iload_mask_mem);
5645 %}
5646 
5647 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5648 instruct loadUS2L(iRegL dst, memory mem) %{
5649   match(Set dst (ConvI2L (LoadUS mem)));
5650   ins_cost(MEMORY_REF_COST);
5651 
5652   size(4);
5653   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5654   ins_encode %{
5655     __ lduh($mem$$Address, $dst$$Register);
5656   %}
5657   ins_pipe(iload_mem);
5658 %}
5659 
5660 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5661 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5662   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5663   ins_cost(MEMORY_REF_COST);
5664 
5665   size(4);
5666   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5667   ins_encode %{
5668     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5669   %}
5670   ins_pipe(iload_mem);
5671 %}
5672 
5673 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5674 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5675   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5676   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5677 
5678   size(2*4);
5679   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5680             "AND    $dst,$mask,$dst" %}
5681   ins_encode %{
5682     Register Rdst = $dst$$Register;
5683     __ lduh($mem$$Address, Rdst);
5684     __ and3(Rdst, $mask$$constant, Rdst);
5685   %}
5686   ins_pipe(iload_mem);
5687 %}
5688 
5689 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5690 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5691   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5692   effect(TEMP dst, TEMP tmp);
5693   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5694 
5695   size((3+1)*4);  // set may use two instructions.
5696   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5697             "SET    $mask,$tmp\n\t"
5698             "AND    $dst,$tmp,$dst" %}
5699   ins_encode %{
5700     Register Rdst = $dst$$Register;
5701     Register Rtmp = $tmp$$Register;
5702     __ lduh($mem$$Address, Rdst);
5703     __ set($mask$$constant, Rtmp);
5704     __ and3(Rdst, Rtmp, Rdst);
5705   %}
5706   ins_pipe(iload_mem);
5707 %}
5708 
5709 // Load Integer
5710 instruct loadI(iRegI dst, memory mem) %{
5711   match(Set dst (LoadI mem));
5712   ins_cost(MEMORY_REF_COST);
5713 
5714   size(4);
5715   format %{ "LDUW   $mem,$dst\t! int" %}
5716   ins_encode %{
5717     __ lduw($mem$$Address, $dst$$Register);
5718   %}
5719   ins_pipe(iload_mem);
5720 %}
5721 
5722 // Load Integer to Byte (8 bit signed)
5723 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5724   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5725   ins_cost(MEMORY_REF_COST);
5726 
5727   size(4);
5728 
5729   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5730   ins_encode %{
5731     __ ldsb($mem$$Address, $dst$$Register, 3);
5732   %}
5733   ins_pipe(iload_mask_mem);
5734 %}
5735 
5736 // Load Integer to Unsigned Byte (8 bit UNsigned)
5737 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5738   match(Set dst (AndI (LoadI mem) mask));
5739   ins_cost(MEMORY_REF_COST);
5740 
5741   size(4);
5742 
5743   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5744   ins_encode %{
5745     __ ldub($mem$$Address, $dst$$Register, 3);
5746   %}
5747   ins_pipe(iload_mask_mem);
5748 %}
5749 
5750 // Load Integer to Short (16 bit signed)
5751 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5752   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5753   ins_cost(MEMORY_REF_COST);
5754 
5755   size(4);
5756 
5757   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5758   ins_encode %{
5759     __ ldsh($mem$$Address, $dst$$Register, 2);
5760   %}
5761   ins_pipe(iload_mask_mem);
5762 %}
5763 
5764 // Load Integer to Unsigned Short (16 bit UNsigned)
5765 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5766   match(Set dst (AndI (LoadI mem) mask));
5767   ins_cost(MEMORY_REF_COST);
5768 
5769   size(4);
5770 
5771   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5772   ins_encode %{
5773     __ lduh($mem$$Address, $dst$$Register, 2);
5774   %}
5775   ins_pipe(iload_mask_mem);
5776 %}
5777 
5778 // Load Integer into a Long Register
5779 instruct loadI2L(iRegL dst, memory mem) %{
5780   match(Set dst (ConvI2L (LoadI mem)));
5781   ins_cost(MEMORY_REF_COST);
5782 
5783   size(4);
5784   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5785   ins_encode %{
5786     __ ldsw($mem$$Address, $dst$$Register);
5787   %}
5788   ins_pipe(iload_mask_mem);
5789 %}
5790 
5791 // Load Integer with mask 0xFF into a Long Register
5792 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5793   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5794   ins_cost(MEMORY_REF_COST);
5795 
5796   size(4);
5797   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5798   ins_encode %{
5799     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5800   %}
5801   ins_pipe(iload_mem);
5802 %}
5803 
5804 // Load Integer with mask 0xFFFF into a Long Register
5805 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5806   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5807   ins_cost(MEMORY_REF_COST);
5808 
5809   size(4);
5810   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5811   ins_encode %{
5812     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5813   %}
5814   ins_pipe(iload_mem);
5815 %}
5816 
5817 // Load Integer with a 13-bit mask into a Long Register
5818 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5819   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5820   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5821 
5822   size(2*4);
5823   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5824             "AND    $dst,$mask,$dst" %}
5825   ins_encode %{
5826     Register Rdst = $dst$$Register;
5827     __ lduw($mem$$Address, Rdst);
5828     __ and3(Rdst, $mask$$constant, Rdst);
5829   %}
5830   ins_pipe(iload_mem);
5831 %}
5832 
5833 // Load Integer with a 32-bit mask into a Long Register
5834 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5835   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5836   effect(TEMP dst, TEMP tmp);
5837   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5838 
5839   size((3+1)*4);  // set may use two instructions.
5840   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5841             "SET    $mask,$tmp\n\t"
5842             "AND    $dst,$tmp,$dst" %}
5843   ins_encode %{
5844     Register Rdst = $dst$$Register;
5845     Register Rtmp = $tmp$$Register;
5846     __ lduw($mem$$Address, Rdst);
5847     __ set($mask$$constant, Rtmp);
5848     __ and3(Rdst, Rtmp, Rdst);
5849   %}
5850   ins_pipe(iload_mem);
5851 %}
5852 
5853 // Load Unsigned Integer into a Long Register
5854 instruct loadUI2L(iRegL dst, memory mem) %{
5855   match(Set dst (LoadUI2L mem));
5856   ins_cost(MEMORY_REF_COST);
5857 
5858   size(4);
5859   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5860   ins_encode %{
5861     __ lduw($mem$$Address, $dst$$Register);
5862   %}
5863   ins_pipe(iload_mem);
5864 %}
5865 
5866 // Load Long - aligned
5867 instruct loadL(iRegL dst, memory mem ) %{
5868   match(Set dst (LoadL mem));
5869   ins_cost(MEMORY_REF_COST);
5870 
5871   size(4);
5872   format %{ "LDX    $mem,$dst\t! long" %}
5873   ins_encode %{
5874     __ ldx($mem$$Address, $dst$$Register);
5875   %}
5876   ins_pipe(iload_mem);
5877 %}
5878 
5879 // Load Long - UNaligned
5880 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5881   match(Set dst (LoadL_unaligned mem));
5882   effect(KILL tmp);
5883   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5884   size(16);
5885   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5886           "\tLDUW   $mem  ,$dst\n"
5887           "\tSLLX   #32, $dst, $dst\n"
5888           "\tOR     $dst, R_O7, $dst" %}
5889   opcode(Assembler::lduw_op3);
5890   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5891   ins_pipe(iload_mem);
5892 %}
5893 
5894 // Load Aligned Packed Byte into a Double Register
5895 instruct loadA8B(regD dst, memory mem) %{
5896   match(Set dst (Load8B mem));
5897   ins_cost(MEMORY_REF_COST);
5898   size(4);
5899   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5900   opcode(Assembler::lddf_op3);
5901   ins_encode(simple_form3_mem_reg( mem, dst ) );
5902   ins_pipe(floadD_mem);
5903 %}
5904 
5905 // Load Aligned Packed Char into a Double Register
5906 instruct loadA4C(regD dst, memory mem) %{
5907   match(Set dst (Load4C mem));
5908   ins_cost(MEMORY_REF_COST);
5909   size(4);
5910   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5911   opcode(Assembler::lddf_op3);
5912   ins_encode(simple_form3_mem_reg( mem, dst ) );
5913   ins_pipe(floadD_mem);
5914 %}
5915 
5916 // Load Aligned Packed Short into a Double Register
5917 instruct loadA4S(regD dst, memory mem) %{
5918   match(Set dst (Load4S mem));
5919   ins_cost(MEMORY_REF_COST);
5920   size(4);
5921   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5922   opcode(Assembler::lddf_op3);
5923   ins_encode(simple_form3_mem_reg( mem, dst ) );
5924   ins_pipe(floadD_mem);
5925 %}
5926 
5927 // Load Aligned Packed Int into a Double Register
5928 instruct loadA2I(regD dst, memory mem) %{
5929   match(Set dst (Load2I mem));
5930   ins_cost(MEMORY_REF_COST);
5931   size(4);
5932   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5933   opcode(Assembler::lddf_op3);
5934   ins_encode(simple_form3_mem_reg( mem, dst ) );
5935   ins_pipe(floadD_mem);
5936 %}
5937 
5938 // Load Range
5939 instruct loadRange(iRegI dst, memory mem) %{
5940   match(Set dst (LoadRange mem));
5941   ins_cost(MEMORY_REF_COST);
5942 
5943   size(4);
5944   format %{ "LDUW   $mem,$dst\t! range" %}
5945   opcode(Assembler::lduw_op3);
5946   ins_encode(simple_form3_mem_reg( mem, dst ) );
5947   ins_pipe(iload_mem);
5948 %}
5949 
5950 // Load Integer into %f register (for fitos/fitod)
5951 instruct loadI_freg(regF dst, memory mem) %{
5952   match(Set dst (LoadI mem));
5953   ins_cost(MEMORY_REF_COST);
5954   size(4);
5955 
5956   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5957   opcode(Assembler::ldf_op3);
5958   ins_encode(simple_form3_mem_reg( mem, dst ) );
5959   ins_pipe(floadF_mem);
5960 %}
5961 
5962 // Load Pointer
5963 instruct loadP(iRegP dst, memory mem) %{
5964   match(Set dst (LoadP mem));
5965   ins_cost(MEMORY_REF_COST);
5966   size(4);
5967 
5968 #ifndef _LP64
5969   format %{ "LDUW   $mem,$dst\t! ptr" %}
5970   ins_encode %{
5971     __ lduw($mem$$Address, $dst$$Register);
5972   %}
5973 #else
5974   format %{ "LDX    $mem,$dst\t! ptr" %}
5975   ins_encode %{
5976     __ ldx($mem$$Address, $dst$$Register);
5977   %}
5978 #endif
5979   ins_pipe(iload_mem);
5980 %}
5981 
5982 // Load Compressed Pointer
5983 instruct loadN(iRegN dst, memory mem) %{
5984   match(Set dst (LoadN mem));
5985   ins_cost(MEMORY_REF_COST);
5986   size(4);
5987 
5988   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5989   ins_encode %{
5990     __ lduw($mem$$Address, $dst$$Register);
5991   %}
5992   ins_pipe(iload_mem);
5993 %}
5994 
5995 // Load Klass Pointer
5996 instruct loadKlass(iRegP dst, memory mem) %{
5997   match(Set dst (LoadKlass mem));
5998   ins_cost(MEMORY_REF_COST);
5999   size(4);
6000 
6001 #ifndef _LP64
6002   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6003   ins_encode %{
6004     __ lduw($mem$$Address, $dst$$Register);
6005   %}
6006 #else
6007   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6008   ins_encode %{
6009     __ ldx($mem$$Address, $dst$$Register);
6010   %}
6011 #endif
6012   ins_pipe(iload_mem);
6013 %}
6014 
6015 // Load narrow Klass Pointer
6016 instruct loadNKlass(iRegN dst, memory mem) %{
6017   match(Set dst (LoadNKlass mem));
6018   ins_cost(MEMORY_REF_COST);
6019   size(4);
6020 
6021   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6022   ins_encode %{
6023     __ lduw($mem$$Address, $dst$$Register);
6024   %}
6025   ins_pipe(iload_mem);
6026 %}
6027 
6028 // Load Double
6029 instruct loadD(regD dst, memory mem) %{
6030   match(Set dst (LoadD mem));
6031   ins_cost(MEMORY_REF_COST);
6032 
6033   size(4);
6034   format %{ "LDDF   $mem,$dst" %}
6035   opcode(Assembler::lddf_op3);
6036   ins_encode(simple_form3_mem_reg( mem, dst ) );
6037   ins_pipe(floadD_mem);
6038 %}
6039 
6040 // Load Double - UNaligned
6041 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6042   match(Set dst (LoadD_unaligned mem));
6043   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6044   size(8);
6045   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6046           "\tLDF    $mem+4,$dst.lo\t!" %}
6047   opcode(Assembler::ldf_op3);
6048   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6049   ins_pipe(iload_mem);
6050 %}
6051 
6052 // Load Float
6053 instruct loadF(regF dst, memory mem) %{
6054   match(Set dst (LoadF mem));
6055   ins_cost(MEMORY_REF_COST);
6056 
6057   size(4);
6058   format %{ "LDF    $mem,$dst" %}
6059   opcode(Assembler::ldf_op3);
6060   ins_encode(simple_form3_mem_reg( mem, dst ) );
6061   ins_pipe(floadF_mem);
6062 %}
6063 
6064 // Load Constant
6065 instruct loadConI( iRegI dst, immI src ) %{
6066   match(Set dst src);
6067   ins_cost(DEFAULT_COST * 3/2);
6068   format %{ "SET    $src,$dst" %}
6069   ins_encode( Set32(src, dst) );
6070   ins_pipe(ialu_hi_lo_reg);
6071 %}
6072 
6073 instruct loadConI13( iRegI dst, immI13 src ) %{
6074   match(Set dst src);
6075 
6076   size(4);
6077   format %{ "MOV    $src,$dst" %}
6078   ins_encode( Set13( src, dst ) );
6079   ins_pipe(ialu_imm);
6080 %}
6081 
6082 #ifndef _LP64
6083 instruct loadConP(iRegP dst, immP con) %{
6084   match(Set dst con);
6085   ins_cost(DEFAULT_COST * 3/2);
6086   format %{ "SET    $con,$dst\t!ptr" %}
6087   ins_encode %{
6088     // [RGV] This next line should be generated from ADLC
6089     if (_opnds[1]->constant_is_oop()) {
6090       intptr_t val = $con$$constant;
6091       __ set_oop_constant((jobject) val, $dst$$Register);
6092     } else {          // non-oop pointers, e.g. card mark base, heap top
6093       __ set($con$$constant, $dst$$Register);
6094     }
6095   %}
6096   ins_pipe(loadConP);
6097 %}
6098 #else
6099 instruct loadConP_set(iRegP dst, immP_set con) %{
6100   match(Set dst con);
6101   ins_cost(DEFAULT_COST * 3/2);
6102   format %{ "SET    $con,$dst\t! ptr" %}
6103   ins_encode %{
6104     // [RGV] This next line should be generated from ADLC
6105     if (_opnds[1]->constant_is_oop()) {
6106       intptr_t val = $con$$constant;
6107       __ set_oop_constant((jobject) val, $dst$$Register);
6108     } else {          // non-oop pointers, e.g. card mark base, heap top
6109       __ set($con$$constant, $dst$$Register);
6110     }
6111   %}
6112   ins_pipe(loadConP);
6113 %}
6114 
6115 instruct loadConP_load(iRegP dst, immP_load con) %{
6116   match(Set dst con);
6117   ins_cost(MEMORY_REF_COST);
6118   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6119   ins_encode %{
6120     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6121     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6122   %}
6123   ins_pipe(loadConP);
6124 %}
6125 
6126 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6127   match(Set dst con);
6128   ins_cost(DEFAULT_COST * 3/2);
6129   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6130   ins_encode %{
6131     __ set($con$$constant, $dst$$Register);
6132   %}
6133   ins_pipe(loadConP);
6134 %}
6135 #endif // _LP64
6136 
6137 instruct loadConP0(iRegP dst, immP0 src) %{
6138   match(Set dst src);
6139 
6140   size(4);
6141   format %{ "CLR    $dst\t!ptr" %}
6142   ins_encode %{
6143     __ clr($dst$$Register);
6144   %}
6145   ins_pipe(ialu_imm);
6146 %}
6147 
6148 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6149   match(Set dst src);
6150   ins_cost(DEFAULT_COST);
6151   format %{ "SET    $src,$dst\t!ptr" %}
6152   ins_encode %{
6153     AddressLiteral polling_page(os::get_polling_page());
6154     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6155   %}
6156   ins_pipe(loadConP_poll);
6157 %}
6158 
6159 instruct loadConN0(iRegN dst, immN0 src) %{
6160   match(Set dst src);
6161 
6162   size(4);
6163   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6164   ins_encode %{
6165     __ clr($dst$$Register);
6166   %}
6167   ins_pipe(ialu_imm);
6168 %}
6169 
6170 instruct loadConN(iRegN dst, immN src) %{
6171   match(Set dst src);
6172   ins_cost(DEFAULT_COST * 3/2);
6173   format %{ "SET    $src,$dst\t! compressed ptr" %}
6174   ins_encode %{
6175     Register dst = $dst$$Register;
6176     __ set_narrow_oop((jobject)$src$$constant, dst);
6177   %}
6178   ins_pipe(ialu_hi_lo_reg);
6179 %}
6180 
6181 // Materialize long value (predicated by immL_cheap).
6182 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6183   match(Set dst con);
6184   effect(KILL tmp);
6185   ins_cost(DEFAULT_COST * 3);
6186   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6187   ins_encode %{
6188     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6189   %}
6190   ins_pipe(loadConL);
6191 %}
6192 
6193 // Load long value from constant table (predicated by immL_expensive).
6194 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6195   match(Set dst con);
6196   ins_cost(MEMORY_REF_COST);
6197   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6198   ins_encode %{
6199       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6200     __ ldx($constanttablebase, con_offset, $dst$$Register);
6201   %}
6202   ins_pipe(loadConL);
6203 %}
6204 
6205 instruct loadConL0( iRegL dst, immL0 src ) %{
6206   match(Set dst src);
6207   ins_cost(DEFAULT_COST);
6208   size(4);
6209   format %{ "CLR    $dst\t! long" %}
6210   ins_encode( Set13( src, dst ) );
6211   ins_pipe(ialu_imm);
6212 %}
6213 
6214 instruct loadConL13( iRegL dst, immL13 src ) %{
6215   match(Set dst src);
6216   ins_cost(DEFAULT_COST * 2);
6217 
6218   size(4);
6219   format %{ "MOV    $src,$dst\t! long" %}
6220   ins_encode( Set13( src, dst ) );
6221   ins_pipe(ialu_imm);
6222 %}
6223 
6224 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6225   match(Set dst con);
6226   effect(KILL tmp);
6227   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6228   ins_encode %{
6229       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6230     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6231   %}
6232   ins_pipe(loadConFD);
6233 %}
6234 
6235 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6236   match(Set dst con);
6237   effect(KILL tmp);
6238   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6239   ins_encode %{
6240     // XXX This is a quick fix for 6833573.
6241     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6242     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6243     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6244   %}
6245   ins_pipe(loadConFD);
6246 %}
6247 
6248 // Prefetch instructions.
6249 // Must be safe to execute with invalid address (cannot fault).
6250 
6251 instruct prefetchr( memory mem ) %{
6252   match( PrefetchRead mem );
6253   ins_cost(MEMORY_REF_COST);
6254 
6255   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6256   opcode(Assembler::prefetch_op3);
6257   ins_encode( form3_mem_prefetch_read( mem ) );
6258   ins_pipe(iload_mem);
6259 %}
6260 
6261 instruct prefetchw( memory mem ) %{
6262   predicate(AllocatePrefetchStyle != 3 );
6263   match( PrefetchWrite mem );
6264   ins_cost(MEMORY_REF_COST);
6265 
6266   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6267   opcode(Assembler::prefetch_op3);
6268   ins_encode( form3_mem_prefetch_write( mem ) );
6269   ins_pipe(iload_mem);
6270 %}
6271 
6272 // Use BIS instruction to prefetch.
6273 instruct prefetchw_bis( memory mem ) %{
6274   predicate(AllocatePrefetchStyle == 3);
6275   match( PrefetchWrite mem );
6276   ins_cost(MEMORY_REF_COST);
6277 
6278   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
6279   ins_encode %{
6280      Register base = as_Register($mem$$base);
6281      int disp = $mem$$disp;
6282      if (disp != 0) {
6283        __ add(base, AllocatePrefetchStepSize, base);
6284      }
6285      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
6286   %}
6287   ins_pipe(istore_mem_reg);
6288 %}
6289 
6290 //----------Store Instructions-------------------------------------------------
6291 // Store Byte
6292 instruct storeB(memory mem, iRegI src) %{
6293   match(Set mem (StoreB mem src));
6294   ins_cost(MEMORY_REF_COST);
6295 
6296   size(4);
6297   format %{ "STB    $src,$mem\t! byte" %}
6298   opcode(Assembler::stb_op3);
6299   ins_encode(simple_form3_mem_reg( mem, src ) );
6300   ins_pipe(istore_mem_reg);
6301 %}
6302 
6303 instruct storeB0(memory mem, immI0 src) %{
6304   match(Set mem (StoreB mem src));
6305   ins_cost(MEMORY_REF_COST);
6306 
6307   size(4);
6308   format %{ "STB    $src,$mem\t! byte" %}
6309   opcode(Assembler::stb_op3);
6310   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6311   ins_pipe(istore_mem_zero);
6312 %}
6313 
6314 instruct storeCM0(memory mem, immI0 src) %{
6315   match(Set mem (StoreCM mem src));
6316   ins_cost(MEMORY_REF_COST);
6317 
6318   size(4);
6319   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6320   opcode(Assembler::stb_op3);
6321   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6322   ins_pipe(istore_mem_zero);
6323 %}
6324 
6325 // Store Char/Short
6326 instruct storeC(memory mem, iRegI src) %{
6327   match(Set mem (StoreC mem src));
6328   ins_cost(MEMORY_REF_COST);
6329 
6330   size(4);
6331   format %{ "STH    $src,$mem\t! short" %}
6332   opcode(Assembler::sth_op3);
6333   ins_encode(simple_form3_mem_reg( mem, src ) );
6334   ins_pipe(istore_mem_reg);
6335 %}
6336 
6337 instruct storeC0(memory mem, immI0 src) %{
6338   match(Set mem (StoreC mem src));
6339   ins_cost(MEMORY_REF_COST);
6340 
6341   size(4);
6342   format %{ "STH    $src,$mem\t! short" %}
6343   opcode(Assembler::sth_op3);
6344   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6345   ins_pipe(istore_mem_zero);
6346 %}
6347 
6348 // Store Integer
6349 instruct storeI(memory mem, iRegI src) %{
6350   match(Set mem (StoreI mem src));
6351   ins_cost(MEMORY_REF_COST);
6352 
6353   size(4);
6354   format %{ "STW    $src,$mem" %}
6355   opcode(Assembler::stw_op3);
6356   ins_encode(simple_form3_mem_reg( mem, src ) );
6357   ins_pipe(istore_mem_reg);
6358 %}
6359 
6360 // Store Long
6361 instruct storeL(memory mem, iRegL src) %{
6362   match(Set mem (StoreL mem src));
6363   ins_cost(MEMORY_REF_COST);
6364   size(4);
6365   format %{ "STX    $src,$mem\t! long" %}
6366   opcode(Assembler::stx_op3);
6367   ins_encode(simple_form3_mem_reg( mem, src ) );
6368   ins_pipe(istore_mem_reg);
6369 %}
6370 
6371 instruct storeI0(memory mem, immI0 src) %{
6372   match(Set mem (StoreI mem src));
6373   ins_cost(MEMORY_REF_COST);
6374 
6375   size(4);
6376   format %{ "STW    $src,$mem" %}
6377   opcode(Assembler::stw_op3);
6378   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6379   ins_pipe(istore_mem_zero);
6380 %}
6381 
6382 instruct storeL0(memory mem, immL0 src) %{
6383   match(Set mem (StoreL mem src));
6384   ins_cost(MEMORY_REF_COST);
6385 
6386   size(4);
6387   format %{ "STX    $src,$mem" %}
6388   opcode(Assembler::stx_op3);
6389   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6390   ins_pipe(istore_mem_zero);
6391 %}
6392 
6393 // Store Integer from float register (used after fstoi)
6394 instruct storeI_Freg(memory mem, regF src) %{
6395   match(Set mem (StoreI mem src));
6396   ins_cost(MEMORY_REF_COST);
6397 
6398   size(4);
6399   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6400   opcode(Assembler::stf_op3);
6401   ins_encode(simple_form3_mem_reg( mem, src ) );
6402   ins_pipe(fstoreF_mem_reg);
6403 %}
6404 
6405 // Store Pointer
6406 instruct storeP(memory dst, sp_ptr_RegP src) %{
6407   match(Set dst (StoreP dst src));
6408   ins_cost(MEMORY_REF_COST);
6409   size(4);
6410 
6411 #ifndef _LP64
6412   format %{ "STW    $src,$dst\t! ptr" %}
6413   opcode(Assembler::stw_op3, 0, REGP_OP);
6414 #else
6415   format %{ "STX    $src,$dst\t! ptr" %}
6416   opcode(Assembler::stx_op3, 0, REGP_OP);
6417 #endif
6418   ins_encode( form3_mem_reg( dst, src ) );
6419   ins_pipe(istore_mem_spORreg);
6420 %}
6421 
6422 instruct storeP0(memory dst, immP0 src) %{
6423   match(Set dst (StoreP dst src));
6424   ins_cost(MEMORY_REF_COST);
6425   size(4);
6426 
6427 #ifndef _LP64
6428   format %{ "STW    $src,$dst\t! ptr" %}
6429   opcode(Assembler::stw_op3, 0, REGP_OP);
6430 #else
6431   format %{ "STX    $src,$dst\t! ptr" %}
6432   opcode(Assembler::stx_op3, 0, REGP_OP);
6433 #endif
6434   ins_encode( form3_mem_reg( dst, R_G0 ) );
6435   ins_pipe(istore_mem_zero);
6436 %}
6437 
6438 // Store Compressed Pointer
6439 instruct storeN(memory dst, iRegN src) %{
6440    match(Set dst (StoreN dst src));
6441    ins_cost(MEMORY_REF_COST);
6442    size(4);
6443 
6444    format %{ "STW    $src,$dst\t! compressed ptr" %}
6445    ins_encode %{
6446      Register base = as_Register($dst$$base);
6447      Register index = as_Register($dst$$index);
6448      Register src = $src$$Register;
6449      if (index != G0) {
6450        __ stw(src, base, index);
6451      } else {
6452        __ stw(src, base, $dst$$disp);
6453      }
6454    %}
6455    ins_pipe(istore_mem_spORreg);
6456 %}
6457 
6458 instruct storeN0(memory dst, immN0 src) %{
6459    match(Set dst (StoreN dst src));
6460    ins_cost(MEMORY_REF_COST);
6461    size(4);
6462 
6463    format %{ "STW    $src,$dst\t! compressed ptr" %}
6464    ins_encode %{
6465      Register base = as_Register($dst$$base);
6466      Register index = as_Register($dst$$index);
6467      if (index != G0) {
6468        __ stw(0, base, index);
6469      } else {
6470        __ stw(0, base, $dst$$disp);
6471      }
6472    %}
6473    ins_pipe(istore_mem_zero);
6474 %}
6475 
6476 // Store Double
6477 instruct storeD( memory mem, regD src) %{
6478   match(Set mem (StoreD mem src));
6479   ins_cost(MEMORY_REF_COST);
6480 
6481   size(4);
6482   format %{ "STDF   $src,$mem" %}
6483   opcode(Assembler::stdf_op3);
6484   ins_encode(simple_form3_mem_reg( mem, src ) );
6485   ins_pipe(fstoreD_mem_reg);
6486 %}
6487 
6488 instruct storeD0( memory mem, immD0 src) %{
6489   match(Set mem (StoreD mem src));
6490   ins_cost(MEMORY_REF_COST);
6491 
6492   size(4);
6493   format %{ "STX    $src,$mem" %}
6494   opcode(Assembler::stx_op3);
6495   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6496   ins_pipe(fstoreD_mem_zero);
6497 %}
6498 
6499 // Store Float
6500 instruct storeF( memory mem, regF src) %{
6501   match(Set mem (StoreF mem src));
6502   ins_cost(MEMORY_REF_COST);
6503 
6504   size(4);
6505   format %{ "STF    $src,$mem" %}
6506   opcode(Assembler::stf_op3);
6507   ins_encode(simple_form3_mem_reg( mem, src ) );
6508   ins_pipe(fstoreF_mem_reg);
6509 %}
6510 
6511 instruct storeF0( memory mem, immF0 src) %{
6512   match(Set mem (StoreF mem src));
6513   ins_cost(MEMORY_REF_COST);
6514 
6515   size(4);
6516   format %{ "STW    $src,$mem\t! storeF0" %}
6517   opcode(Assembler::stw_op3);
6518   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6519   ins_pipe(fstoreF_mem_zero);
6520 %}
6521 
6522 // Store Aligned Packed Bytes in Double register to memory
6523 instruct storeA8B(memory mem, regD src) %{
6524   match(Set mem (Store8B mem src));
6525   ins_cost(MEMORY_REF_COST);
6526   size(4);
6527   format %{ "STDF   $src,$mem\t! packed8B" %}
6528   opcode(Assembler::stdf_op3);
6529   ins_encode(simple_form3_mem_reg( mem, src ) );
6530   ins_pipe(fstoreD_mem_reg);
6531 %}
6532 
6533 // Convert oop pointer into compressed form
6534 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6535   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6536   match(Set dst (EncodeP src));
6537   format %{ "encode_heap_oop $src, $dst" %}
6538   ins_encode %{
6539     __ encode_heap_oop($src$$Register, $dst$$Register);
6540   %}
6541   ins_pipe(ialu_reg);
6542 %}
6543 
6544 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6545   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6546   match(Set dst (EncodeP src));
6547   format %{ "encode_heap_oop_not_null $src, $dst" %}
6548   ins_encode %{
6549     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6550   %}
6551   ins_pipe(ialu_reg);
6552 %}
6553 
6554 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6555   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6556             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6557   match(Set dst (DecodeN src));
6558   format %{ "decode_heap_oop $src, $dst" %}
6559   ins_encode %{
6560     __ decode_heap_oop($src$$Register, $dst$$Register);
6561   %}
6562   ins_pipe(ialu_reg);
6563 %}
6564 
6565 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6566   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6567             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6568   match(Set dst (DecodeN src));
6569   format %{ "decode_heap_oop_not_null $src, $dst" %}
6570   ins_encode %{
6571     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6572   %}
6573   ins_pipe(ialu_reg);
6574 %}
6575 
6576 
6577 // Store Zero into Aligned Packed Bytes
6578 instruct storeA8B0(memory mem, immI0 zero) %{
6579   match(Set mem (Store8B mem zero));
6580   ins_cost(MEMORY_REF_COST);
6581   size(4);
6582   format %{ "STX    $zero,$mem\t! packed8B" %}
6583   opcode(Assembler::stx_op3);
6584   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6585   ins_pipe(fstoreD_mem_zero);
6586 %}
6587 
6588 // Store Aligned Packed Chars/Shorts in Double register to memory
6589 instruct storeA4C(memory mem, regD src) %{
6590   match(Set mem (Store4C mem src));
6591   ins_cost(MEMORY_REF_COST);
6592   size(4);
6593   format %{ "STDF   $src,$mem\t! packed4C" %}
6594   opcode(Assembler::stdf_op3);
6595   ins_encode(simple_form3_mem_reg( mem, src ) );
6596   ins_pipe(fstoreD_mem_reg);
6597 %}
6598 
6599 // Store Zero into Aligned Packed Chars/Shorts
6600 instruct storeA4C0(memory mem, immI0 zero) %{
6601   match(Set mem (Store4C mem (Replicate4C zero)));
6602   ins_cost(MEMORY_REF_COST);
6603   size(4);
6604   format %{ "STX    $zero,$mem\t! packed4C" %}
6605   opcode(Assembler::stx_op3);
6606   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6607   ins_pipe(fstoreD_mem_zero);
6608 %}
6609 
6610 // Store Aligned Packed Ints in Double register to memory
6611 instruct storeA2I(memory mem, regD src) %{
6612   match(Set mem (Store2I mem src));
6613   ins_cost(MEMORY_REF_COST);
6614   size(4);
6615   format %{ "STDF   $src,$mem\t! packed2I" %}
6616   opcode(Assembler::stdf_op3);
6617   ins_encode(simple_form3_mem_reg( mem, src ) );
6618   ins_pipe(fstoreD_mem_reg);
6619 %}
6620 
6621 // Store Zero into Aligned Packed Ints
6622 instruct storeA2I0(memory mem, immI0 zero) %{
6623   match(Set mem (Store2I mem zero));
6624   ins_cost(MEMORY_REF_COST);
6625   size(4);
6626   format %{ "STX    $zero,$mem\t! packed2I" %}
6627   opcode(Assembler::stx_op3);
6628   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6629   ins_pipe(fstoreD_mem_zero);
6630 %}
6631 
6632 
6633 //----------MemBar Instructions-----------------------------------------------
6634 // Memory barrier flavors
6635 
6636 instruct membar_acquire() %{
6637   match(MemBarAcquire);
6638   ins_cost(4*MEMORY_REF_COST);
6639 
6640   size(0);
6641   format %{ "MEMBAR-acquire" %}
6642   ins_encode( enc_membar_acquire );
6643   ins_pipe(long_memory_op);
6644 %}
6645 
6646 instruct membar_acquire_lock() %{
6647   match(MemBarAcquire);
6648   predicate(Matcher::prior_fast_lock(n));
6649   ins_cost(0);
6650 
6651   size(0);
6652   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6653   ins_encode( );
6654   ins_pipe(empty);
6655 %}
6656 
6657 instruct membar_release() %{
6658   match(MemBarRelease);
6659   ins_cost(4*MEMORY_REF_COST);
6660 
6661   size(0);
6662   format %{ "MEMBAR-release" %}
6663   ins_encode( enc_membar_release );
6664   ins_pipe(long_memory_op);
6665 %}
6666 
6667 instruct membar_release_lock() %{
6668   match(MemBarRelease);
6669   predicate(Matcher::post_fast_unlock(n));
6670   ins_cost(0);
6671 
6672   size(0);
6673   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6674   ins_encode( );
6675   ins_pipe(empty);
6676 %}
6677 
6678 instruct membar_volatile() %{
6679   match(MemBarVolatile);
6680   ins_cost(4*MEMORY_REF_COST);
6681 
6682   size(4);
6683   format %{ "MEMBAR-volatile" %}
6684   ins_encode( enc_membar_volatile );
6685   ins_pipe(long_memory_op);
6686 %}
6687 
6688 instruct unnecessary_membar_volatile() %{
6689   match(MemBarVolatile);
6690   predicate(Matcher::post_store_load_barrier(n));
6691   ins_cost(0);
6692 
6693   size(0);
6694   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6695   ins_encode( );
6696   ins_pipe(empty);
6697 %}
6698 
6699 //----------Register Move Instructions-----------------------------------------
6700 instruct roundDouble_nop(regD dst) %{
6701   match(Set dst (RoundDouble dst));
6702   ins_cost(0);
6703   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6704   ins_encode( );
6705   ins_pipe(empty);
6706 %}
6707 
6708 
6709 instruct roundFloat_nop(regF dst) %{
6710   match(Set dst (RoundFloat dst));
6711   ins_cost(0);
6712   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6713   ins_encode( );
6714   ins_pipe(empty);
6715 %}
6716 
6717 
6718 // Cast Index to Pointer for unsafe natives
6719 instruct castX2P(iRegX src, iRegP dst) %{
6720   match(Set dst (CastX2P src));
6721 
6722   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6723   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6724   ins_pipe(ialu_reg);
6725 %}
6726 
6727 // Cast Pointer to Index for unsafe natives
6728 instruct castP2X(iRegP src, iRegX dst) %{
6729   match(Set dst (CastP2X src));
6730 
6731   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6732   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6733   ins_pipe(ialu_reg);
6734 %}
6735 
6736 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6737   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6738   match(Set stkSlot src);   // chain rule
6739   ins_cost(MEMORY_REF_COST);
6740   format %{ "STDF   $src,$stkSlot\t!stk" %}
6741   opcode(Assembler::stdf_op3);
6742   ins_encode(simple_form3_mem_reg(stkSlot, src));
6743   ins_pipe(fstoreD_stk_reg);
6744 %}
6745 
6746 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6747   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6748   match(Set dst stkSlot);   // chain rule
6749   ins_cost(MEMORY_REF_COST);
6750   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6751   opcode(Assembler::lddf_op3);
6752   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6753   ins_pipe(floadD_stk);
6754 %}
6755 
6756 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6757   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6758   match(Set stkSlot src);   // chain rule
6759   ins_cost(MEMORY_REF_COST);
6760   format %{ "STF   $src,$stkSlot\t!stk" %}
6761   opcode(Assembler::stf_op3);
6762   ins_encode(simple_form3_mem_reg(stkSlot, src));
6763   ins_pipe(fstoreF_stk_reg);
6764 %}
6765 
6766 //----------Conditional Move---------------------------------------------------
6767 // Conditional move
6768 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6769   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6770   ins_cost(150);
6771   format %{ "MOV$cmp $pcc,$src,$dst" %}
6772   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6773   ins_pipe(ialu_reg);
6774 %}
6775 
6776 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6777   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6778   ins_cost(140);
6779   format %{ "MOV$cmp $pcc,$src,$dst" %}
6780   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6781   ins_pipe(ialu_imm);
6782 %}
6783 
6784 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6785   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6786   ins_cost(150);
6787   size(4);
6788   format %{ "MOV$cmp  $icc,$src,$dst" %}
6789   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6790   ins_pipe(ialu_reg);
6791 %}
6792 
6793 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6794   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6795   ins_cost(140);
6796   size(4);
6797   format %{ "MOV$cmp  $icc,$src,$dst" %}
6798   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6799   ins_pipe(ialu_imm);
6800 %}
6801 
6802 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6803   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6804   ins_cost(150);
6805   size(4);
6806   format %{ "MOV$cmp  $icc,$src,$dst" %}
6807   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6808   ins_pipe(ialu_reg);
6809 %}
6810 
6811 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6812   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6813   ins_cost(140);
6814   size(4);
6815   format %{ "MOV$cmp  $icc,$src,$dst" %}
6816   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6817   ins_pipe(ialu_imm);
6818 %}
6819 
6820 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6821   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6822   ins_cost(150);
6823   size(4);
6824   format %{ "MOV$cmp $fcc,$src,$dst" %}
6825   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6826   ins_pipe(ialu_reg);
6827 %}
6828 
6829 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6830   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6831   ins_cost(140);
6832   size(4);
6833   format %{ "MOV$cmp $fcc,$src,$dst" %}
6834   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6835   ins_pipe(ialu_imm);
6836 %}
6837 
6838 // Conditional move for RegN. Only cmov(reg,reg).
6839 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6840   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6841   ins_cost(150);
6842   format %{ "MOV$cmp $pcc,$src,$dst" %}
6843   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6844   ins_pipe(ialu_reg);
6845 %}
6846 
6847 // This instruction also works with CmpN so we don't need cmovNN_reg.
6848 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6849   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6850   ins_cost(150);
6851   size(4);
6852   format %{ "MOV$cmp  $icc,$src,$dst" %}
6853   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6854   ins_pipe(ialu_reg);
6855 %}
6856 
6857 // This instruction also works with CmpN so we don't need cmovNN_reg.
6858 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6859   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6860   ins_cost(150);
6861   size(4);
6862   format %{ "MOV$cmp  $icc,$src,$dst" %}
6863   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6864   ins_pipe(ialu_reg);
6865 %}
6866 
6867 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6868   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6869   ins_cost(150);
6870   size(4);
6871   format %{ "MOV$cmp $fcc,$src,$dst" %}
6872   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6873   ins_pipe(ialu_reg);
6874 %}
6875 
6876 // Conditional move
6877 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6878   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6879   ins_cost(150);
6880   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6881   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6882   ins_pipe(ialu_reg);
6883 %}
6884 
6885 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6886   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6887   ins_cost(140);
6888   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6889   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6890   ins_pipe(ialu_imm);
6891 %}
6892 
6893 // This instruction also works with CmpN so we don't need cmovPN_reg.
6894 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6895   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6896   ins_cost(150);
6897 
6898   size(4);
6899   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6900   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6901   ins_pipe(ialu_reg);
6902 %}
6903 
6904 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6905   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6906   ins_cost(150);
6907 
6908   size(4);
6909   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6910   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6911   ins_pipe(ialu_reg);
6912 %}
6913 
6914 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6915   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6916   ins_cost(140);
6917 
6918   size(4);
6919   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6920   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6921   ins_pipe(ialu_imm);
6922 %}
6923 
6924 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6925   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6926   ins_cost(140);
6927 
6928   size(4);
6929   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6930   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6931   ins_pipe(ialu_imm);
6932 %}
6933 
6934 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6935   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6936   ins_cost(150);
6937   size(4);
6938   format %{ "MOV$cmp $fcc,$src,$dst" %}
6939   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6940   ins_pipe(ialu_imm);
6941 %}
6942 
6943 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6944   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6945   ins_cost(140);
6946   size(4);
6947   format %{ "MOV$cmp $fcc,$src,$dst" %}
6948   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6949   ins_pipe(ialu_imm);
6950 %}
6951 
6952 // Conditional move
6953 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6954   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6955   ins_cost(150);
6956   opcode(0x101);
6957   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6958   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6959   ins_pipe(int_conditional_float_move);
6960 %}
6961 
6962 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6963   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6964   ins_cost(150);
6965 
6966   size(4);
6967   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6968   opcode(0x101);
6969   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6970   ins_pipe(int_conditional_float_move);
6971 %}
6972 
6973 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6974   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6975   ins_cost(150);
6976 
6977   size(4);
6978   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6979   opcode(0x101);
6980   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6981   ins_pipe(int_conditional_float_move);
6982 %}
6983 
6984 // Conditional move,
6985 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6986   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6987   ins_cost(150);
6988   size(4);
6989   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6990   opcode(0x1);
6991   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6992   ins_pipe(int_conditional_double_move);
6993 %}
6994 
6995 // Conditional move
6996 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6997   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6998   ins_cost(150);
6999   size(4);
7000   opcode(0x102);
7001   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7002   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7003   ins_pipe(int_conditional_double_move);
7004 %}
7005 
7006 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7007   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7008   ins_cost(150);
7009 
7010   size(4);
7011   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7012   opcode(0x102);
7013   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7014   ins_pipe(int_conditional_double_move);
7015 %}
7016 
7017 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7018   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7019   ins_cost(150);
7020 
7021   size(4);
7022   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7023   opcode(0x102);
7024   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7025   ins_pipe(int_conditional_double_move);
7026 %}
7027 
7028 // Conditional move,
7029 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7030   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7031   ins_cost(150);
7032   size(4);
7033   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7034   opcode(0x2);
7035   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7036   ins_pipe(int_conditional_double_move);
7037 %}
7038 
7039 // Conditional move
7040 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7041   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7042   ins_cost(150);
7043   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7044   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7045   ins_pipe(ialu_reg);
7046 %}
7047 
7048 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7049   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7050   ins_cost(140);
7051   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7052   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7053   ins_pipe(ialu_imm);
7054 %}
7055 
7056 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7057   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7058   ins_cost(150);
7059 
7060   size(4);
7061   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7062   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7063   ins_pipe(ialu_reg);
7064 %}
7065 
7066 
7067 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7068   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7069   ins_cost(150);
7070 
7071   size(4);
7072   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7073   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7074   ins_pipe(ialu_reg);
7075 %}
7076 
7077 
7078 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7079   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7080   ins_cost(150);
7081 
7082   size(4);
7083   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7084   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7085   ins_pipe(ialu_reg);
7086 %}
7087 
7088 
7089 
7090 //----------OS and Locking Instructions----------------------------------------
7091 
7092 // This name is KNOWN by the ADLC and cannot be changed.
7093 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7094 // for this guy.
7095 instruct tlsLoadP(g2RegP dst) %{
7096   match(Set dst (ThreadLocal));
7097 
7098   size(0);
7099   ins_cost(0);
7100   format %{ "# TLS is in G2" %}
7101   ins_encode( /*empty encoding*/ );
7102   ins_pipe(ialu_none);
7103 %}
7104 
7105 instruct checkCastPP( iRegP dst ) %{
7106   match(Set dst (CheckCastPP dst));
7107 
7108   size(0);
7109   format %{ "# checkcastPP of $dst" %}
7110   ins_encode( /*empty encoding*/ );
7111   ins_pipe(empty);
7112 %}
7113 
7114 
7115 instruct castPP( iRegP dst ) %{
7116   match(Set dst (CastPP dst));
7117   format %{ "# castPP of $dst" %}
7118   ins_encode( /*empty encoding*/ );
7119   ins_pipe(empty);
7120 %}
7121 
7122 instruct castII( iRegI dst ) %{
7123   match(Set dst (CastII dst));
7124   format %{ "# castII of $dst" %}
7125   ins_encode( /*empty encoding*/ );
7126   ins_cost(0);
7127   ins_pipe(empty);
7128 %}
7129 
7130 //----------Arithmetic Instructions--------------------------------------------
7131 // Addition Instructions
7132 // Register Addition
7133 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7134   match(Set dst (AddI src1 src2));
7135 
7136   size(4);
7137   format %{ "ADD    $src1,$src2,$dst" %}
7138   ins_encode %{
7139     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7140   %}
7141   ins_pipe(ialu_reg_reg);
7142 %}
7143 
7144 // Immediate Addition
7145 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7146   match(Set dst (AddI src1 src2));
7147 
7148   size(4);
7149   format %{ "ADD    $src1,$src2,$dst" %}
7150   opcode(Assembler::add_op3, Assembler::arith_op);
7151   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7152   ins_pipe(ialu_reg_imm);
7153 %}
7154 
7155 // Pointer Register Addition
7156 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7157   match(Set dst (AddP src1 src2));
7158 
7159   size(4);
7160   format %{ "ADD    $src1,$src2,$dst" %}
7161   opcode(Assembler::add_op3, Assembler::arith_op);
7162   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7163   ins_pipe(ialu_reg_reg);
7164 %}
7165 
7166 // Pointer Immediate Addition
7167 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7168   match(Set dst (AddP src1 src2));
7169 
7170   size(4);
7171   format %{ "ADD    $src1,$src2,$dst" %}
7172   opcode(Assembler::add_op3, Assembler::arith_op);
7173   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7174   ins_pipe(ialu_reg_imm);
7175 %}
7176 
7177 // Long Addition
7178 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7179   match(Set dst (AddL src1 src2));
7180 
7181   size(4);
7182   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7183   opcode(Assembler::add_op3, Assembler::arith_op);
7184   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7185   ins_pipe(ialu_reg_reg);
7186 %}
7187 
7188 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7189   match(Set dst (AddL src1 con));
7190 
7191   size(4);
7192   format %{ "ADD    $src1,$con,$dst" %}
7193   opcode(Assembler::add_op3, Assembler::arith_op);
7194   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7195   ins_pipe(ialu_reg_imm);
7196 %}
7197 
7198 //----------Conditional_store--------------------------------------------------
7199 // Conditional-store of the updated heap-top.
7200 // Used during allocation of the shared heap.
7201 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7202 
7203 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7204 instruct loadPLocked(iRegP dst, memory mem) %{
7205   match(Set dst (LoadPLocked mem));
7206   ins_cost(MEMORY_REF_COST);
7207 
7208 #ifndef _LP64
7209   size(4);
7210   format %{ "LDUW   $mem,$dst\t! ptr" %}
7211   opcode(Assembler::lduw_op3, 0, REGP_OP);
7212 #else
7213   format %{ "LDX    $mem,$dst\t! ptr" %}
7214   opcode(Assembler::ldx_op3, 0, REGP_OP);
7215 #endif
7216   ins_encode( form3_mem_reg( mem, dst ) );
7217   ins_pipe(iload_mem);
7218 %}
7219 
7220 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7221 instruct loadLLocked(iRegL dst, memory mem) %{
7222   match(Set dst (LoadLLocked mem));
7223   ins_cost(MEMORY_REF_COST);
7224   size(4);
7225   format %{ "LDX    $mem,$dst\t! long" %}
7226   opcode(Assembler::ldx_op3);
7227   ins_encode(simple_form3_mem_reg( mem, dst ) );
7228   ins_pipe(iload_mem);
7229 %}
7230 
7231 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7232   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7233   effect( KILL newval );
7234   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7235             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7236   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7237   ins_pipe( long_memory_op );
7238 %}
7239 
7240 // Conditional-store of an int value.
7241 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7242   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7243   effect( KILL newval );
7244   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7245             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7246   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7247   ins_pipe( long_memory_op );
7248 %}
7249 
7250 // Conditional-store of a long value.
7251 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7252   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7253   effect( KILL newval );
7254   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7255             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7256   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7257   ins_pipe( long_memory_op );
7258 %}
7259 
7260 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7261 
7262 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7263   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7264   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7265   format %{
7266             "MOV    $newval,O7\n\t"
7267             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7268             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7269             "MOV    1,$res\n\t"
7270             "MOVne  xcc,R_G0,$res"
7271   %}
7272   ins_encode( enc_casx(mem_ptr, oldval, newval),
7273               enc_lflags_ne_to_boolean(res) );
7274   ins_pipe( long_memory_op );
7275 %}
7276 
7277 
7278 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7279   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7280   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7281   format %{
7282             "MOV    $newval,O7\n\t"
7283             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7284             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7285             "MOV    1,$res\n\t"
7286             "MOVne  icc,R_G0,$res"
7287   %}
7288   ins_encode( enc_casi(mem_ptr, oldval, newval),
7289               enc_iflags_ne_to_boolean(res) );
7290   ins_pipe( long_memory_op );
7291 %}
7292 
7293 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7294   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7295   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7296   format %{
7297             "MOV    $newval,O7\n\t"
7298             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7299             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7300             "MOV    1,$res\n\t"
7301             "MOVne  xcc,R_G0,$res"
7302   %}
7303 #ifdef _LP64
7304   ins_encode( enc_casx(mem_ptr, oldval, newval),
7305               enc_lflags_ne_to_boolean(res) );
7306 #else
7307   ins_encode( enc_casi(mem_ptr, oldval, newval),
7308               enc_iflags_ne_to_boolean(res) );
7309 #endif
7310   ins_pipe( long_memory_op );
7311 %}
7312 
7313 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7314   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7315   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7316   format %{
7317             "MOV    $newval,O7\n\t"
7318             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7319             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7320             "MOV    1,$res\n\t"
7321             "MOVne  icc,R_G0,$res"
7322   %}
7323   ins_encode( enc_casi(mem_ptr, oldval, newval),
7324               enc_iflags_ne_to_boolean(res) );
7325   ins_pipe( long_memory_op );
7326 %}
7327 
7328 //---------------------
7329 // Subtraction Instructions
7330 // Register Subtraction
7331 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7332   match(Set dst (SubI src1 src2));
7333 
7334   size(4);
7335   format %{ "SUB    $src1,$src2,$dst" %}
7336   opcode(Assembler::sub_op3, Assembler::arith_op);
7337   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7338   ins_pipe(ialu_reg_reg);
7339 %}
7340 
7341 // Immediate Subtraction
7342 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7343   match(Set dst (SubI src1 src2));
7344 
7345   size(4);
7346   format %{ "SUB    $src1,$src2,$dst" %}
7347   opcode(Assembler::sub_op3, Assembler::arith_op);
7348   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7349   ins_pipe(ialu_reg_imm);
7350 %}
7351 
7352 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7353   match(Set dst (SubI zero src2));
7354 
7355   size(4);
7356   format %{ "NEG    $src2,$dst" %}
7357   opcode(Assembler::sub_op3, Assembler::arith_op);
7358   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7359   ins_pipe(ialu_zero_reg);
7360 %}
7361 
7362 // Long subtraction
7363 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7364   match(Set dst (SubL src1 src2));
7365 
7366   size(4);
7367   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7368   opcode(Assembler::sub_op3, Assembler::arith_op);
7369   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7370   ins_pipe(ialu_reg_reg);
7371 %}
7372 
7373 // Immediate Subtraction
7374 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7375   match(Set dst (SubL src1 con));
7376 
7377   size(4);
7378   format %{ "SUB    $src1,$con,$dst\t! long" %}
7379   opcode(Assembler::sub_op3, Assembler::arith_op);
7380   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7381   ins_pipe(ialu_reg_imm);
7382 %}
7383 
7384 // Long negation
7385 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7386   match(Set dst (SubL zero src2));
7387 
7388   size(4);
7389   format %{ "NEG    $src2,$dst\t! long" %}
7390   opcode(Assembler::sub_op3, Assembler::arith_op);
7391   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7392   ins_pipe(ialu_zero_reg);
7393 %}
7394 
7395 // Multiplication Instructions
7396 // Integer Multiplication
7397 // Register Multiplication
7398 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7399   match(Set dst (MulI src1 src2));
7400 
7401   size(4);
7402   format %{ "MULX   $src1,$src2,$dst" %}
7403   opcode(Assembler::mulx_op3, Assembler::arith_op);
7404   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7405   ins_pipe(imul_reg_reg);
7406 %}
7407 
7408 // Immediate Multiplication
7409 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7410   match(Set dst (MulI src1 src2));
7411 
7412   size(4);
7413   format %{ "MULX   $src1,$src2,$dst" %}
7414   opcode(Assembler::mulx_op3, Assembler::arith_op);
7415   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7416   ins_pipe(imul_reg_imm);
7417 %}
7418 
7419 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7420   match(Set dst (MulL src1 src2));
7421   ins_cost(DEFAULT_COST * 5);
7422   size(4);
7423   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7424   opcode(Assembler::mulx_op3, Assembler::arith_op);
7425   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7426   ins_pipe(mulL_reg_reg);
7427 %}
7428 
7429 // Immediate Multiplication
7430 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7431   match(Set dst (MulL src1 src2));
7432   ins_cost(DEFAULT_COST * 5);
7433   size(4);
7434   format %{ "MULX   $src1,$src2,$dst" %}
7435   opcode(Assembler::mulx_op3, Assembler::arith_op);
7436   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7437   ins_pipe(mulL_reg_imm);
7438 %}
7439 
7440 // Integer Division
7441 // Register Division
7442 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7443   match(Set dst (DivI src1 src2));
7444   ins_cost((2+71)*DEFAULT_COST);
7445 
7446   format %{ "SRA     $src2,0,$src2\n\t"
7447             "SRA     $src1,0,$src1\n\t"
7448             "SDIVX   $src1,$src2,$dst" %}
7449   ins_encode( idiv_reg( src1, src2, dst ) );
7450   ins_pipe(sdiv_reg_reg);
7451 %}
7452 
7453 // Immediate Division
7454 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7455   match(Set dst (DivI src1 src2));
7456   ins_cost((2+71)*DEFAULT_COST);
7457 
7458   format %{ "SRA     $src1,0,$src1\n\t"
7459             "SDIVX   $src1,$src2,$dst" %}
7460   ins_encode( idiv_imm( src1, src2, dst ) );
7461   ins_pipe(sdiv_reg_imm);
7462 %}
7463 
7464 //----------Div-By-10-Expansion------------------------------------------------
7465 // Extract hi bits of a 32x32->64 bit multiply.
7466 // Expand rule only, not matched
7467 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7468   effect( DEF dst, USE src1, USE src2 );
7469   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7470             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7471   ins_encode( enc_mul_hi(dst,src1,src2));
7472   ins_pipe(sdiv_reg_reg);
7473 %}
7474 
7475 // Magic constant, reciprocal of 10
7476 instruct loadConI_x66666667(iRegIsafe dst) %{
7477   effect( DEF dst );
7478 
7479   size(8);
7480   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7481   ins_encode( Set32(0x66666667, dst) );
7482   ins_pipe(ialu_hi_lo_reg);
7483 %}
7484 
7485 // Register Shift Right Arithmetic Long by 32-63
7486 instruct sra_31( iRegI dst, iRegI src ) %{
7487   effect( DEF dst, USE src );
7488   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7489   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7490   ins_pipe(ialu_reg_reg);
7491 %}
7492 
7493 // Arithmetic Shift Right by 8-bit immediate
7494 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7495   effect( DEF dst, USE src );
7496   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7497   opcode(Assembler::sra_op3, Assembler::arith_op);
7498   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7499   ins_pipe(ialu_reg_imm);
7500 %}
7501 
7502 // Integer DIV with 10
7503 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7504   match(Set dst (DivI src div));
7505   ins_cost((6+6)*DEFAULT_COST);
7506   expand %{
7507     iRegIsafe tmp1;               // Killed temps;
7508     iRegIsafe tmp2;               // Killed temps;
7509     iRegI tmp3;                   // Killed temps;
7510     iRegI tmp4;                   // Killed temps;
7511     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7512     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7513     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7514     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7515     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7516   %}
7517 %}
7518 
7519 // Register Long Division
7520 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7521   match(Set dst (DivL src1 src2));
7522   ins_cost(DEFAULT_COST*71);
7523   size(4);
7524   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7525   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7526   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7527   ins_pipe(divL_reg_reg);
7528 %}
7529 
7530 // Register Long Division
7531 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7532   match(Set dst (DivL src1 src2));
7533   ins_cost(DEFAULT_COST*71);
7534   size(4);
7535   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7536   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7537   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7538   ins_pipe(divL_reg_imm);
7539 %}
7540 
7541 // Integer Remainder
7542 // Register Remainder
7543 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7544   match(Set dst (ModI src1 src2));
7545   effect( KILL ccr, KILL temp);
7546 
7547   format %{ "SREM   $src1,$src2,$dst" %}
7548   ins_encode( irem_reg(src1, src2, dst, temp) );
7549   ins_pipe(sdiv_reg_reg);
7550 %}
7551 
7552 // Immediate Remainder
7553 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7554   match(Set dst (ModI src1 src2));
7555   effect( KILL ccr, KILL temp);
7556 
7557   format %{ "SREM   $src1,$src2,$dst" %}
7558   ins_encode( irem_imm(src1, src2, dst, temp) );
7559   ins_pipe(sdiv_reg_imm);
7560 %}
7561 
7562 // Register Long Remainder
7563 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7564   effect(DEF dst, USE src1, USE src2);
7565   size(4);
7566   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7567   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7568   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7569   ins_pipe(divL_reg_reg);
7570 %}
7571 
7572 // Register Long Division
7573 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7574   effect(DEF dst, USE src1, USE src2);
7575   size(4);
7576   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7577   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7578   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7579   ins_pipe(divL_reg_imm);
7580 %}
7581 
7582 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7583   effect(DEF dst, USE src1, USE src2);
7584   size(4);
7585   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7586   opcode(Assembler::mulx_op3, Assembler::arith_op);
7587   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7588   ins_pipe(mulL_reg_reg);
7589 %}
7590 
7591 // Immediate Multiplication
7592 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7593   effect(DEF dst, USE src1, USE src2);
7594   size(4);
7595   format %{ "MULX   $src1,$src2,$dst" %}
7596   opcode(Assembler::mulx_op3, Assembler::arith_op);
7597   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7598   ins_pipe(mulL_reg_imm);
7599 %}
7600 
7601 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7602   effect(DEF dst, USE src1, USE src2);
7603   size(4);
7604   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7605   opcode(Assembler::sub_op3, Assembler::arith_op);
7606   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7607   ins_pipe(ialu_reg_reg);
7608 %}
7609 
7610 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7611   effect(DEF dst, USE src1, USE src2);
7612   size(4);
7613   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7614   opcode(Assembler::sub_op3, Assembler::arith_op);
7615   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7616   ins_pipe(ialu_reg_reg);
7617 %}
7618 
7619 // Register Long Remainder
7620 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7621   match(Set dst (ModL src1 src2));
7622   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7623   expand %{
7624     iRegL tmp1;
7625     iRegL tmp2;
7626     divL_reg_reg_1(tmp1, src1, src2);
7627     mulL_reg_reg_1(tmp2, tmp1, src2);
7628     subL_reg_reg_1(dst,  src1, tmp2);
7629   %}
7630 %}
7631 
7632 // Register Long Remainder
7633 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7634   match(Set dst (ModL src1 src2));
7635   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7636   expand %{
7637     iRegL tmp1;
7638     iRegL tmp2;
7639     divL_reg_imm13_1(tmp1, src1, src2);
7640     mulL_reg_imm13_1(tmp2, tmp1, src2);
7641     subL_reg_reg_2  (dst,  src1, tmp2);
7642   %}
7643 %}
7644 
7645 // Integer Shift Instructions
7646 // Register Shift Left
7647 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7648   match(Set dst (LShiftI src1 src2));
7649 
7650   size(4);
7651   format %{ "SLL    $src1,$src2,$dst" %}
7652   opcode(Assembler::sll_op3, Assembler::arith_op);
7653   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7654   ins_pipe(ialu_reg_reg);
7655 %}
7656 
7657 // Register Shift Left Immediate
7658 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7659   match(Set dst (LShiftI src1 src2));
7660 
7661   size(4);
7662   format %{ "SLL    $src1,$src2,$dst" %}
7663   opcode(Assembler::sll_op3, Assembler::arith_op);
7664   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7665   ins_pipe(ialu_reg_imm);
7666 %}
7667 
7668 // Register Shift Left
7669 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7670   match(Set dst (LShiftL src1 src2));
7671 
7672   size(4);
7673   format %{ "SLLX   $src1,$src2,$dst" %}
7674   opcode(Assembler::sllx_op3, Assembler::arith_op);
7675   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7676   ins_pipe(ialu_reg_reg);
7677 %}
7678 
7679 // Register Shift Left Immediate
7680 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7681   match(Set dst (LShiftL src1 src2));
7682 
7683   size(4);
7684   format %{ "SLLX   $src1,$src2,$dst" %}
7685   opcode(Assembler::sllx_op3, Assembler::arith_op);
7686   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7687   ins_pipe(ialu_reg_imm);
7688 %}
7689 
7690 // Register Arithmetic Shift Right
7691 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7692   match(Set dst (RShiftI src1 src2));
7693   size(4);
7694   format %{ "SRA    $src1,$src2,$dst" %}
7695   opcode(Assembler::sra_op3, Assembler::arith_op);
7696   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7697   ins_pipe(ialu_reg_reg);
7698 %}
7699 
7700 // Register Arithmetic Shift Right Immediate
7701 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7702   match(Set dst (RShiftI src1 src2));
7703 
7704   size(4);
7705   format %{ "SRA    $src1,$src2,$dst" %}
7706   opcode(Assembler::sra_op3, Assembler::arith_op);
7707   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7708   ins_pipe(ialu_reg_imm);
7709 %}
7710 
7711 // Register Shift Right Arithmatic Long
7712 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7713   match(Set dst (RShiftL src1 src2));
7714 
7715   size(4);
7716   format %{ "SRAX   $src1,$src2,$dst" %}
7717   opcode(Assembler::srax_op3, Assembler::arith_op);
7718   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7719   ins_pipe(ialu_reg_reg);
7720 %}
7721 
7722 // Register Shift Left Immediate
7723 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7724   match(Set dst (RShiftL src1 src2));
7725 
7726   size(4);
7727   format %{ "SRAX   $src1,$src2,$dst" %}
7728   opcode(Assembler::srax_op3, Assembler::arith_op);
7729   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7730   ins_pipe(ialu_reg_imm);
7731 %}
7732 
7733 // Register Shift Right
7734 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7735   match(Set dst (URShiftI src1 src2));
7736 
7737   size(4);
7738   format %{ "SRL    $src1,$src2,$dst" %}
7739   opcode(Assembler::srl_op3, Assembler::arith_op);
7740   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7741   ins_pipe(ialu_reg_reg);
7742 %}
7743 
7744 // Register Shift Right Immediate
7745 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7746   match(Set dst (URShiftI src1 src2));
7747 
7748   size(4);
7749   format %{ "SRL    $src1,$src2,$dst" %}
7750   opcode(Assembler::srl_op3, Assembler::arith_op);
7751   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7752   ins_pipe(ialu_reg_imm);
7753 %}
7754 
7755 // Register Shift Right
7756 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7757   match(Set dst (URShiftL src1 src2));
7758 
7759   size(4);
7760   format %{ "SRLX   $src1,$src2,$dst" %}
7761   opcode(Assembler::srlx_op3, Assembler::arith_op);
7762   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7763   ins_pipe(ialu_reg_reg);
7764 %}
7765 
7766 // Register Shift Right Immediate
7767 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7768   match(Set dst (URShiftL src1 src2));
7769 
7770   size(4);
7771   format %{ "SRLX   $src1,$src2,$dst" %}
7772   opcode(Assembler::srlx_op3, Assembler::arith_op);
7773   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7774   ins_pipe(ialu_reg_imm);
7775 %}
7776 
7777 // Register Shift Right Immediate with a CastP2X
7778 #ifdef _LP64
7779 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7780   match(Set dst (URShiftL (CastP2X src1) src2));
7781   size(4);
7782   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7783   opcode(Assembler::srlx_op3, Assembler::arith_op);
7784   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7785   ins_pipe(ialu_reg_imm);
7786 %}
7787 #else
7788 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7789   match(Set dst (URShiftI (CastP2X src1) src2));
7790   size(4);
7791   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7792   opcode(Assembler::srl_op3, Assembler::arith_op);
7793   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7794   ins_pipe(ialu_reg_imm);
7795 %}
7796 #endif
7797 
7798 
7799 //----------Floating Point Arithmetic Instructions-----------------------------
7800 
7801 //  Add float single precision
7802 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7803   match(Set dst (AddF src1 src2));
7804 
7805   size(4);
7806   format %{ "FADDS  $src1,$src2,$dst" %}
7807   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7808   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7809   ins_pipe(faddF_reg_reg);
7810 %}
7811 
7812 //  Add float double precision
7813 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7814   match(Set dst (AddD src1 src2));
7815 
7816   size(4);
7817   format %{ "FADDD  $src1,$src2,$dst" %}
7818   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7819   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7820   ins_pipe(faddD_reg_reg);
7821 %}
7822 
7823 //  Sub float single precision
7824 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7825   match(Set dst (SubF src1 src2));
7826 
7827   size(4);
7828   format %{ "FSUBS  $src1,$src2,$dst" %}
7829   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7830   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7831   ins_pipe(faddF_reg_reg);
7832 %}
7833 
7834 //  Sub float double precision
7835 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7836   match(Set dst (SubD src1 src2));
7837 
7838   size(4);
7839   format %{ "FSUBD  $src1,$src2,$dst" %}
7840   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7841   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7842   ins_pipe(faddD_reg_reg);
7843 %}
7844 
7845 //  Mul float single precision
7846 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7847   match(Set dst (MulF src1 src2));
7848 
7849   size(4);
7850   format %{ "FMULS  $src1,$src2,$dst" %}
7851   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7852   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7853   ins_pipe(fmulF_reg_reg);
7854 %}
7855 
7856 //  Mul float double precision
7857 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7858   match(Set dst (MulD src1 src2));
7859 
7860   size(4);
7861   format %{ "FMULD  $src1,$src2,$dst" %}
7862   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7863   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7864   ins_pipe(fmulD_reg_reg);
7865 %}
7866 
7867 //  Div float single precision
7868 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7869   match(Set dst (DivF src1 src2));
7870 
7871   size(4);
7872   format %{ "FDIVS  $src1,$src2,$dst" %}
7873   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7874   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7875   ins_pipe(fdivF_reg_reg);
7876 %}
7877 
7878 //  Div float double precision
7879 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7880   match(Set dst (DivD src1 src2));
7881 
7882   size(4);
7883   format %{ "FDIVD  $src1,$src2,$dst" %}
7884   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7885   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7886   ins_pipe(fdivD_reg_reg);
7887 %}
7888 
7889 //  Absolute float double precision
7890 instruct absD_reg(regD dst, regD src) %{
7891   match(Set dst (AbsD src));
7892 
7893   format %{ "FABSd  $src,$dst" %}
7894   ins_encode(fabsd(dst, src));
7895   ins_pipe(faddD_reg);
7896 %}
7897 
7898 //  Absolute float single precision
7899 instruct absF_reg(regF dst, regF src) %{
7900   match(Set dst (AbsF src));
7901 
7902   format %{ "FABSs  $src,$dst" %}
7903   ins_encode(fabss(dst, src));
7904   ins_pipe(faddF_reg);
7905 %}
7906 
7907 instruct negF_reg(regF dst, regF src) %{
7908   match(Set dst (NegF src));
7909 
7910   size(4);
7911   format %{ "FNEGs  $src,$dst" %}
7912   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7913   ins_encode(form3_opf_rs2F_rdF(src, dst));
7914   ins_pipe(faddF_reg);
7915 %}
7916 
7917 instruct negD_reg(regD dst, regD src) %{
7918   match(Set dst (NegD src));
7919 
7920   format %{ "FNEGd  $src,$dst" %}
7921   ins_encode(fnegd(dst, src));
7922   ins_pipe(faddD_reg);
7923 %}
7924 
7925 //  Sqrt float double precision
7926 instruct sqrtF_reg_reg(regF dst, regF src) %{
7927   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7928 
7929   size(4);
7930   format %{ "FSQRTS $src,$dst" %}
7931   ins_encode(fsqrts(dst, src));
7932   ins_pipe(fdivF_reg_reg);
7933 %}
7934 
7935 //  Sqrt float double precision
7936 instruct sqrtD_reg_reg(regD dst, regD src) %{
7937   match(Set dst (SqrtD src));
7938 
7939   size(4);
7940   format %{ "FSQRTD $src,$dst" %}
7941   ins_encode(fsqrtd(dst, src));
7942   ins_pipe(fdivD_reg_reg);
7943 %}
7944 
7945 //----------Logical Instructions-----------------------------------------------
7946 // And Instructions
7947 // Register And
7948 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7949   match(Set dst (AndI src1 src2));
7950 
7951   size(4);
7952   format %{ "AND    $src1,$src2,$dst" %}
7953   opcode(Assembler::and_op3, Assembler::arith_op);
7954   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7955   ins_pipe(ialu_reg_reg);
7956 %}
7957 
7958 // Immediate And
7959 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7960   match(Set dst (AndI src1 src2));
7961 
7962   size(4);
7963   format %{ "AND    $src1,$src2,$dst" %}
7964   opcode(Assembler::and_op3, Assembler::arith_op);
7965   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7966   ins_pipe(ialu_reg_imm);
7967 %}
7968 
7969 // Register And Long
7970 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7971   match(Set dst (AndL src1 src2));
7972 
7973   ins_cost(DEFAULT_COST);
7974   size(4);
7975   format %{ "AND    $src1,$src2,$dst\t! long" %}
7976   opcode(Assembler::and_op3, Assembler::arith_op);
7977   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7978   ins_pipe(ialu_reg_reg);
7979 %}
7980 
7981 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7982   match(Set dst (AndL src1 con));
7983 
7984   ins_cost(DEFAULT_COST);
7985   size(4);
7986   format %{ "AND    $src1,$con,$dst\t! long" %}
7987   opcode(Assembler::and_op3, Assembler::arith_op);
7988   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7989   ins_pipe(ialu_reg_imm);
7990 %}
7991 
7992 // Or Instructions
7993 // Register Or
7994 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7995   match(Set dst (OrI src1 src2));
7996 
7997   size(4);
7998   format %{ "OR     $src1,$src2,$dst" %}
7999   opcode(Assembler::or_op3, Assembler::arith_op);
8000   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8001   ins_pipe(ialu_reg_reg);
8002 %}
8003 
8004 // Immediate Or
8005 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8006   match(Set dst (OrI src1 src2));
8007 
8008   size(4);
8009   format %{ "OR     $src1,$src2,$dst" %}
8010   opcode(Assembler::or_op3, Assembler::arith_op);
8011   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8012   ins_pipe(ialu_reg_imm);
8013 %}
8014 
8015 // Register Or Long
8016 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8017   match(Set dst (OrL src1 src2));
8018 
8019   ins_cost(DEFAULT_COST);
8020   size(4);
8021   format %{ "OR     $src1,$src2,$dst\t! long" %}
8022   opcode(Assembler::or_op3, Assembler::arith_op);
8023   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8024   ins_pipe(ialu_reg_reg);
8025 %}
8026 
8027 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8028   match(Set dst (OrL src1 con));
8029   ins_cost(DEFAULT_COST*2);
8030 
8031   ins_cost(DEFAULT_COST);
8032   size(4);
8033   format %{ "OR     $src1,$con,$dst\t! long" %}
8034   opcode(Assembler::or_op3, Assembler::arith_op);
8035   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8036   ins_pipe(ialu_reg_imm);
8037 %}
8038 
8039 #ifndef _LP64
8040 
8041 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8042 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8043   match(Set dst (OrI src1 (CastP2X src2)));
8044 
8045   size(4);
8046   format %{ "OR     $src1,$src2,$dst" %}
8047   opcode(Assembler::or_op3, Assembler::arith_op);
8048   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8049   ins_pipe(ialu_reg_reg);
8050 %}
8051 
8052 #else
8053 
8054 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8055   match(Set dst (OrL src1 (CastP2X src2)));
8056 
8057   ins_cost(DEFAULT_COST);
8058   size(4);
8059   format %{ "OR     $src1,$src2,$dst\t! long" %}
8060   opcode(Assembler::or_op3, Assembler::arith_op);
8061   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8062   ins_pipe(ialu_reg_reg);
8063 %}
8064 
8065 #endif
8066 
8067 // Xor Instructions
8068 // Register Xor
8069 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8070   match(Set dst (XorI src1 src2));
8071 
8072   size(4);
8073   format %{ "XOR    $src1,$src2,$dst" %}
8074   opcode(Assembler::xor_op3, Assembler::arith_op);
8075   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8076   ins_pipe(ialu_reg_reg);
8077 %}
8078 
8079 // Immediate Xor
8080 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8081   match(Set dst (XorI src1 src2));
8082 
8083   size(4);
8084   format %{ "XOR    $src1,$src2,$dst" %}
8085   opcode(Assembler::xor_op3, Assembler::arith_op);
8086   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8087   ins_pipe(ialu_reg_imm);
8088 %}
8089 
8090 // Register Xor Long
8091 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8092   match(Set dst (XorL src1 src2));
8093 
8094   ins_cost(DEFAULT_COST);
8095   size(4);
8096   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8097   opcode(Assembler::xor_op3, Assembler::arith_op);
8098   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8099   ins_pipe(ialu_reg_reg);
8100 %}
8101 
8102 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8103   match(Set dst (XorL src1 con));
8104 
8105   ins_cost(DEFAULT_COST);
8106   size(4);
8107   format %{ "XOR    $src1,$con,$dst\t! long" %}
8108   opcode(Assembler::xor_op3, Assembler::arith_op);
8109   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8110   ins_pipe(ialu_reg_imm);
8111 %}
8112 
8113 //----------Convert to Boolean-------------------------------------------------
8114 // Nice hack for 32-bit tests but doesn't work for
8115 // 64-bit pointers.
8116 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8117   match(Set dst (Conv2B src));
8118   effect( KILL ccr );
8119   ins_cost(DEFAULT_COST*2);
8120   format %{ "CMP    R_G0,$src\n\t"
8121             "ADDX   R_G0,0,$dst" %}
8122   ins_encode( enc_to_bool( src, dst ) );
8123   ins_pipe(ialu_reg_ialu);
8124 %}
8125 
8126 #ifndef _LP64
8127 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8128   match(Set dst (Conv2B src));
8129   effect( KILL ccr );
8130   ins_cost(DEFAULT_COST*2);
8131   format %{ "CMP    R_G0,$src\n\t"
8132             "ADDX   R_G0,0,$dst" %}
8133   ins_encode( enc_to_bool( src, dst ) );
8134   ins_pipe(ialu_reg_ialu);
8135 %}
8136 #else
8137 instruct convP2B( iRegI dst, iRegP src ) %{
8138   match(Set dst (Conv2B src));
8139   ins_cost(DEFAULT_COST*2);
8140   format %{ "MOV    $src,$dst\n\t"
8141             "MOVRNZ $src,1,$dst" %}
8142   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8143   ins_pipe(ialu_clr_and_mover);
8144 %}
8145 #endif
8146 
8147 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8148   match(Set dst (CmpLTMask src zero));
8149   effect(KILL ccr);
8150   size(4);
8151   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8152   ins_encode %{
8153     __ sra($src$$Register, 31, $dst$$Register);
8154   %}
8155   ins_pipe(ialu_reg_imm);
8156 %}
8157 
8158 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8159   match(Set dst (CmpLTMask p q));
8160   effect( KILL ccr );
8161   ins_cost(DEFAULT_COST*4);
8162   format %{ "CMP    $p,$q\n\t"
8163             "MOV    #0,$dst\n\t"
8164             "BLT,a  .+8\n\t"
8165             "MOV    #-1,$dst" %}
8166   ins_encode( enc_ltmask(p,q,dst) );
8167   ins_pipe(ialu_reg_reg_ialu);
8168 %}
8169 
8170 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8171   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8172   effect(KILL ccr, TEMP tmp);
8173   ins_cost(DEFAULT_COST*3);
8174 
8175   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8176             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8177             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8178   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8179   ins_pipe( cadd_cmpltmask );
8180 %}
8181 
8182 
8183 //-----------------------------------------------------------------
8184 // Direct raw moves between float and general registers using VIS3.
8185 
8186 //  ins_pipe(faddF_reg);
8187 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8188   predicate(UseVIS >= 3);
8189   match(Set dst (MoveF2I src));
8190 
8191   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8192   ins_encode %{
8193     __ movstouw($src$$FloatRegister, $dst$$Register);
8194   %}
8195   ins_pipe(ialu_reg_reg);
8196 %}
8197 
8198 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8199   predicate(UseVIS >= 3);
8200   match(Set dst (MoveI2F src));
8201 
8202   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8203   ins_encode %{
8204     __ movwtos($src$$Register, $dst$$FloatRegister);
8205   %}
8206   ins_pipe(ialu_reg_reg);
8207 %}
8208 
8209 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8210   predicate(UseVIS >= 3);
8211   match(Set dst (MoveD2L src));
8212 
8213   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8214   ins_encode %{
8215     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8216   %}
8217   ins_pipe(ialu_reg_reg);
8218 %}
8219 
8220 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8221   predicate(UseVIS >= 3);
8222   match(Set dst (MoveL2D src));
8223 
8224   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8225   ins_encode %{
8226     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8227   %}
8228   ins_pipe(ialu_reg_reg);
8229 %}
8230 
8231 
8232 // Raw moves between float and general registers using stack.
8233 
8234 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8235   match(Set dst (MoveF2I src));
8236   effect(DEF dst, USE src);
8237   ins_cost(MEMORY_REF_COST);
8238 
8239   size(4);
8240   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8241   opcode(Assembler::lduw_op3);
8242   ins_encode(simple_form3_mem_reg( src, dst ) );
8243   ins_pipe(iload_mem);
8244 %}
8245 
8246 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8247   match(Set dst (MoveI2F src));
8248   effect(DEF dst, USE src);
8249   ins_cost(MEMORY_REF_COST);
8250 
8251   size(4);
8252   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8253   opcode(Assembler::ldf_op3);
8254   ins_encode(simple_form3_mem_reg(src, dst));
8255   ins_pipe(floadF_stk);
8256 %}
8257 
8258 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8259   match(Set dst (MoveD2L src));
8260   effect(DEF dst, USE src);
8261   ins_cost(MEMORY_REF_COST);
8262 
8263   size(4);
8264   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8265   opcode(Assembler::ldx_op3);
8266   ins_encode(simple_form3_mem_reg( src, dst ) );
8267   ins_pipe(iload_mem);
8268 %}
8269 
8270 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8271   match(Set dst (MoveL2D src));
8272   effect(DEF dst, USE src);
8273   ins_cost(MEMORY_REF_COST);
8274 
8275   size(4);
8276   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8277   opcode(Assembler::lddf_op3);
8278   ins_encode(simple_form3_mem_reg(src, dst));
8279   ins_pipe(floadD_stk);
8280 %}
8281 
8282 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8283   match(Set dst (MoveF2I src));
8284   effect(DEF dst, USE src);
8285   ins_cost(MEMORY_REF_COST);
8286 
8287   size(4);
8288   format %{ "STF   $src,$dst\t! MoveF2I" %}
8289   opcode(Assembler::stf_op3);
8290   ins_encode(simple_form3_mem_reg(dst, src));
8291   ins_pipe(fstoreF_stk_reg);
8292 %}
8293 
8294 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8295   match(Set dst (MoveI2F src));
8296   effect(DEF dst, USE src);
8297   ins_cost(MEMORY_REF_COST);
8298 
8299   size(4);
8300   format %{ "STW    $src,$dst\t! MoveI2F" %}
8301   opcode(Assembler::stw_op3);
8302   ins_encode(simple_form3_mem_reg( dst, src ) );
8303   ins_pipe(istore_mem_reg);
8304 %}
8305 
8306 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8307   match(Set dst (MoveD2L src));
8308   effect(DEF dst, USE src);
8309   ins_cost(MEMORY_REF_COST);
8310 
8311   size(4);
8312   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8313   opcode(Assembler::stdf_op3);
8314   ins_encode(simple_form3_mem_reg(dst, src));
8315   ins_pipe(fstoreD_stk_reg);
8316 %}
8317 
8318 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8319   match(Set dst (MoveL2D src));
8320   effect(DEF dst, USE src);
8321   ins_cost(MEMORY_REF_COST);
8322 
8323   size(4);
8324   format %{ "STX    $src,$dst\t! MoveL2D" %}
8325   opcode(Assembler::stx_op3);
8326   ins_encode(simple_form3_mem_reg( dst, src ) );
8327   ins_pipe(istore_mem_reg);
8328 %}
8329 
8330 
8331 //----------Arithmetic Conversion Instructions---------------------------------
8332 // The conversions operations are all Alpha sorted.  Please keep it that way!
8333 
8334 instruct convD2F_reg(regF dst, regD src) %{
8335   match(Set dst (ConvD2F src));
8336   size(4);
8337   format %{ "FDTOS  $src,$dst" %}
8338   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8339   ins_encode(form3_opf_rs2D_rdF(src, dst));
8340   ins_pipe(fcvtD2F);
8341 %}
8342 
8343 
8344 // Convert a double to an int in a float register.
8345 // If the double is a NAN, stuff a zero in instead.
8346 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8347   effect(DEF dst, USE src, KILL fcc0);
8348   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8349             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8350             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8351             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8352             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8353       "skip:" %}
8354   ins_encode(form_d2i_helper(src,dst));
8355   ins_pipe(fcvtD2I);
8356 %}
8357 
8358 instruct convD2I_stk(stackSlotI dst, regD src) %{
8359   match(Set dst (ConvD2I src));
8360   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8361   expand %{
8362     regF tmp;
8363     convD2I_helper(tmp, src);
8364     regF_to_stkI(dst, tmp);
8365   %}
8366 %}
8367 
8368 instruct convD2I_reg(iRegI dst, regD src) %{
8369   predicate(UseVIS >= 3);
8370   match(Set dst (ConvD2I src));
8371   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8372   expand %{
8373     regF tmp;
8374     convD2I_helper(tmp, src);
8375     MoveF2I_reg_reg(dst, tmp);
8376   %}
8377 %}
8378 
8379 
8380 // Convert a double to a long in a double register.
8381 // If the double is a NAN, stuff a zero in instead.
8382 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8383   effect(DEF dst, USE src, KILL fcc0);
8384   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8385             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8386             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8387             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8388             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8389       "skip:" %}
8390   ins_encode(form_d2l_helper(src,dst));
8391   ins_pipe(fcvtD2L);
8392 %}
8393 
8394 instruct convD2L_stk(stackSlotL dst, regD src) %{
8395   match(Set dst (ConvD2L src));
8396   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8397   expand %{
8398     regD tmp;
8399     convD2L_helper(tmp, src);
8400     regD_to_stkL(dst, tmp);
8401   %}
8402 %}
8403 
8404 instruct convD2L_reg(iRegL dst, regD src) %{
8405   predicate(UseVIS >= 3);
8406   match(Set dst (ConvD2L src));
8407   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8408   expand %{
8409     regD tmp;
8410     convD2L_helper(tmp, src);
8411     MoveD2L_reg_reg(dst, tmp);
8412   %}
8413 %}
8414 
8415 
8416 instruct convF2D_reg(regD dst, regF src) %{
8417   match(Set dst (ConvF2D src));
8418   format %{ "FSTOD  $src,$dst" %}
8419   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8420   ins_encode(form3_opf_rs2F_rdD(src, dst));
8421   ins_pipe(fcvtF2D);
8422 %}
8423 
8424 
8425 // Convert a float to an int in a float register.
8426 // If the float is a NAN, stuff a zero in instead.
8427 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8428   effect(DEF dst, USE src, KILL fcc0);
8429   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8430             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8431             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8432             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8433             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8434       "skip:" %}
8435   ins_encode(form_f2i_helper(src,dst));
8436   ins_pipe(fcvtF2I);
8437 %}
8438 
8439 instruct convF2I_stk(stackSlotI dst, regF src) %{
8440   match(Set dst (ConvF2I src));
8441   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8442   expand %{
8443     regF tmp;
8444     convF2I_helper(tmp, src);
8445     regF_to_stkI(dst, tmp);
8446   %}
8447 %}
8448 
8449 instruct convF2I_reg(iRegI dst, regF src) %{
8450   predicate(UseVIS >= 3);
8451   match(Set dst (ConvF2I src));
8452   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8453   expand %{
8454     regF tmp;
8455     convF2I_helper(tmp, src);
8456     MoveF2I_reg_reg(dst, tmp);
8457   %}
8458 %}
8459 
8460 
8461 // Convert a float to a long in a float register.
8462 // If the float is a NAN, stuff a zero in instead.
8463 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8464   effect(DEF dst, USE src, KILL fcc0);
8465   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8466             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8467             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8468             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8469             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8470       "skip:" %}
8471   ins_encode(form_f2l_helper(src,dst));
8472   ins_pipe(fcvtF2L);
8473 %}
8474 
8475 instruct convF2L_stk(stackSlotL dst, regF src) %{
8476   match(Set dst (ConvF2L src));
8477   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8478   expand %{
8479     regD tmp;
8480     convF2L_helper(tmp, src);
8481     regD_to_stkL(dst, tmp);
8482   %}
8483 %}
8484 
8485 instruct convF2L_reg(iRegL dst, regF src) %{
8486   predicate(UseVIS >= 3);
8487   match(Set dst (ConvF2L src));
8488   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8489   expand %{
8490     regD tmp;
8491     convF2L_helper(tmp, src);
8492     MoveD2L_reg_reg(dst, tmp);
8493   %}
8494 %}
8495 
8496 
8497 instruct convI2D_helper(regD dst, regF tmp) %{
8498   effect(USE tmp, DEF dst);
8499   format %{ "FITOD  $tmp,$dst" %}
8500   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8501   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8502   ins_pipe(fcvtI2D);
8503 %}
8504 
8505 instruct convI2D_stk(stackSlotI src, regD dst) %{
8506   match(Set dst (ConvI2D src));
8507   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8508   expand %{
8509     regF tmp;
8510     stkI_to_regF(tmp, src);
8511     convI2D_helper(dst, tmp);
8512   %}
8513 %}
8514 
8515 instruct convI2D_reg(regD_low dst, iRegI src) %{
8516   predicate(UseVIS >= 3);
8517   match(Set dst (ConvI2D src));
8518   expand %{
8519     regF tmp;
8520     MoveI2F_reg_reg(tmp, src);
8521     convI2D_helper(dst, tmp);
8522   %}
8523 %}
8524 
8525 instruct convI2D_mem(regD_low dst, memory mem) %{
8526   match(Set dst (ConvI2D (LoadI mem)));
8527   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8528   size(8);
8529   format %{ "LDF    $mem,$dst\n\t"
8530             "FITOD  $dst,$dst" %}
8531   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8532   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8533   ins_pipe(floadF_mem);
8534 %}
8535 
8536 
8537 instruct convI2F_helper(regF dst, regF tmp) %{
8538   effect(DEF dst, USE tmp);
8539   format %{ "FITOS  $tmp,$dst" %}
8540   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8541   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8542   ins_pipe(fcvtI2F);
8543 %}
8544 
8545 instruct convI2F_stk(regF dst, stackSlotI src) %{
8546   match(Set dst (ConvI2F src));
8547   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8548   expand %{
8549     regF tmp;
8550     stkI_to_regF(tmp,src);
8551     convI2F_helper(dst, tmp);
8552   %}
8553 %}
8554 
8555 instruct convI2F_reg(regF dst, iRegI src) %{
8556   predicate(UseVIS >= 3);
8557   match(Set dst (ConvI2F src));
8558   ins_cost(DEFAULT_COST);
8559   expand %{
8560     regF tmp;
8561     MoveI2F_reg_reg(tmp, src);
8562     convI2F_helper(dst, tmp);
8563   %}
8564 %}
8565 
8566 instruct convI2F_mem( regF dst, memory mem ) %{
8567   match(Set dst (ConvI2F (LoadI mem)));
8568   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8569   size(8);
8570   format %{ "LDF    $mem,$dst\n\t"
8571             "FITOS  $dst,$dst" %}
8572   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8573   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8574   ins_pipe(floadF_mem);
8575 %}
8576 
8577 
8578 instruct convI2L_reg(iRegL dst, iRegI src) %{
8579   match(Set dst (ConvI2L src));
8580   size(4);
8581   format %{ "SRA    $src,0,$dst\t! int->long" %}
8582   opcode(Assembler::sra_op3, Assembler::arith_op);
8583   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8584   ins_pipe(ialu_reg_reg);
8585 %}
8586 
8587 // Zero-extend convert int to long
8588 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8589   match(Set dst (AndL (ConvI2L src) mask) );
8590   size(4);
8591   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8592   opcode(Assembler::srl_op3, Assembler::arith_op);
8593   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8594   ins_pipe(ialu_reg_reg);
8595 %}
8596 
8597 // Zero-extend long
8598 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8599   match(Set dst (AndL src mask) );
8600   size(4);
8601   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8602   opcode(Assembler::srl_op3, Assembler::arith_op);
8603   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8604   ins_pipe(ialu_reg_reg);
8605 %}
8606 
8607 
8608 //-----------
8609 // Long to Double conversion using V8 opcodes.
8610 // Still useful because cheetah traps and becomes
8611 // amazingly slow for some common numbers.
8612 
8613 // Magic constant, 0x43300000
8614 instruct loadConI_x43300000(iRegI dst) %{
8615   effect(DEF dst);
8616   size(4);
8617   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8618   ins_encode(SetHi22(0x43300000, dst));
8619   ins_pipe(ialu_none);
8620 %}
8621 
8622 // Magic constant, 0x41f00000
8623 instruct loadConI_x41f00000(iRegI dst) %{
8624   effect(DEF dst);
8625   size(4);
8626   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8627   ins_encode(SetHi22(0x41f00000, dst));
8628   ins_pipe(ialu_none);
8629 %}
8630 
8631 // Construct a double from two float halves
8632 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8633   effect(DEF dst, USE src1, USE src2);
8634   size(8);
8635   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8636             "FMOVS  $src2.lo,$dst.lo" %}
8637   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8638   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8639   ins_pipe(faddD_reg_reg);
8640 %}
8641 
8642 // Convert integer in high half of a double register (in the lower half of
8643 // the double register file) to double
8644 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8645   effect(DEF dst, USE src);
8646   size(4);
8647   format %{ "FITOD  $src,$dst" %}
8648   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8649   ins_encode(form3_opf_rs2D_rdD(src, dst));
8650   ins_pipe(fcvtLHi2D);
8651 %}
8652 
8653 // Add float double precision
8654 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8655   effect(DEF dst, USE src1, USE src2);
8656   size(4);
8657   format %{ "FADDD  $src1,$src2,$dst" %}
8658   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8659   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8660   ins_pipe(faddD_reg_reg);
8661 %}
8662 
8663 // Sub float double precision
8664 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8665   effect(DEF dst, USE src1, USE src2);
8666   size(4);
8667   format %{ "FSUBD  $src1,$src2,$dst" %}
8668   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8669   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8670   ins_pipe(faddD_reg_reg);
8671 %}
8672 
8673 // Mul float double precision
8674 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8675   effect(DEF dst, USE src1, USE src2);
8676   size(4);
8677   format %{ "FMULD  $src1,$src2,$dst" %}
8678   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8679   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8680   ins_pipe(fmulD_reg_reg);
8681 %}
8682 
8683 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8684   match(Set dst (ConvL2D src));
8685   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8686 
8687   expand %{
8688     regD_low   tmpsrc;
8689     iRegI      ix43300000;
8690     iRegI      ix41f00000;
8691     stackSlotL lx43300000;
8692     stackSlotL lx41f00000;
8693     regD_low   dx43300000;
8694     regD       dx41f00000;
8695     regD       tmp1;
8696     regD_low   tmp2;
8697     regD       tmp3;
8698     regD       tmp4;
8699 
8700     stkL_to_regD(tmpsrc, src);
8701 
8702     loadConI_x43300000(ix43300000);
8703     loadConI_x41f00000(ix41f00000);
8704     regI_to_stkLHi(lx43300000, ix43300000);
8705     regI_to_stkLHi(lx41f00000, ix41f00000);
8706     stkL_to_regD(dx43300000, lx43300000);
8707     stkL_to_regD(dx41f00000, lx41f00000);
8708 
8709     convI2D_regDHi_regD(tmp1, tmpsrc);
8710     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8711     subD_regD_regD(tmp3, tmp2, dx43300000);
8712     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8713     addD_regD_regD(dst, tmp3, tmp4);
8714   %}
8715 %}
8716 
8717 // Long to Double conversion using fast fxtof
8718 instruct convL2D_helper(regD dst, regD tmp) %{
8719   effect(DEF dst, USE tmp);
8720   size(4);
8721   format %{ "FXTOD  $tmp,$dst" %}
8722   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8723   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8724   ins_pipe(fcvtL2D);
8725 %}
8726 
8727 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8728   predicate(VM_Version::has_fast_fxtof());
8729   match(Set dst (ConvL2D src));
8730   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8731   expand %{
8732     regD tmp;
8733     stkL_to_regD(tmp, src);
8734     convL2D_helper(dst, tmp);
8735   %}
8736 %}
8737 
8738 instruct convL2D_reg(regD dst, iRegL src) %{
8739   predicate(UseVIS >= 3);
8740   match(Set dst (ConvL2D src));
8741   expand %{
8742     regD tmp;
8743     MoveL2D_reg_reg(tmp, src);
8744     convL2D_helper(dst, tmp);
8745   %}
8746 %}
8747 
8748 // Long to Float conversion using fast fxtof
8749 instruct convL2F_helper(regF dst, regD tmp) %{
8750   effect(DEF dst, USE tmp);
8751   size(4);
8752   format %{ "FXTOS  $tmp,$dst" %}
8753   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8754   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8755   ins_pipe(fcvtL2F);
8756 %}
8757 
8758 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8759   match(Set dst (ConvL2F src));
8760   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8761   expand %{
8762     regD tmp;
8763     stkL_to_regD(tmp, src);
8764     convL2F_helper(dst, tmp);
8765   %}
8766 %}
8767 
8768 instruct convL2F_reg(regF dst, iRegL src) %{
8769   predicate(UseVIS >= 3);
8770   match(Set dst (ConvL2F src));
8771   ins_cost(DEFAULT_COST);
8772   expand %{
8773     regD tmp;
8774     MoveL2D_reg_reg(tmp, src);
8775     convL2F_helper(dst, tmp);
8776   %}
8777 %}
8778 
8779 //-----------
8780 
8781 instruct convL2I_reg(iRegI dst, iRegL src) %{
8782   match(Set dst (ConvL2I src));
8783 #ifndef _LP64
8784   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8785   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8786   ins_pipe(ialu_move_reg_I_to_L);
8787 #else
8788   size(4);
8789   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8790   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8791   ins_pipe(ialu_reg);
8792 #endif
8793 %}
8794 
8795 // Register Shift Right Immediate
8796 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8797   match(Set dst (ConvL2I (RShiftL src cnt)));
8798 
8799   size(4);
8800   format %{ "SRAX   $src,$cnt,$dst" %}
8801   opcode(Assembler::srax_op3, Assembler::arith_op);
8802   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8803   ins_pipe(ialu_reg_imm);
8804 %}
8805 
8806 // Replicate scalar to packed byte values in Double register
8807 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8808   effect(DEF dst, USE src);
8809   format %{ "SLLX  $src,56,$dst\n\t"
8810             "SRLX  $dst, 8,O7\n\t"
8811             "OR    $dst,O7,$dst\n\t"
8812             "SRLX  $dst,16,O7\n\t"
8813             "OR    $dst,O7,$dst\n\t"
8814             "SRLX  $dst,32,O7\n\t"
8815             "OR    $dst,O7,$dst\t! replicate8B" %}
8816   ins_encode( enc_repl8b(src, dst));
8817   ins_pipe(ialu_reg);
8818 %}
8819 
8820 // Replicate scalar to packed byte values in Double register
8821 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8822   match(Set dst (Replicate8B src));
8823   expand %{
8824     iRegL tmp;
8825     Repl8B_reg_helper(tmp, src);
8826     regL_to_stkD(dst, tmp);
8827   %}
8828 %}
8829 
8830 // Replicate scalar constant to packed byte values in Double register
8831 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
8832   match(Set dst (Replicate8B con));
8833   effect(KILL tmp);
8834   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
8835   ins_encode %{
8836     // XXX This is a quick fix for 6833573.
8837     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
8838     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
8839     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8840   %}
8841   ins_pipe(loadConFD);
8842 %}
8843 
8844 // Replicate scalar to packed char values into stack slot
8845 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8846   effect(DEF dst, USE src);
8847   format %{ "SLLX  $src,48,$dst\n\t"
8848             "SRLX  $dst,16,O7\n\t"
8849             "OR    $dst,O7,$dst\n\t"
8850             "SRLX  $dst,32,O7\n\t"
8851             "OR    $dst,O7,$dst\t! replicate4C" %}
8852   ins_encode( enc_repl4s(src, dst) );
8853   ins_pipe(ialu_reg);
8854 %}
8855 
8856 // Replicate scalar to packed char values into stack slot
8857 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8858   match(Set dst (Replicate4C src));
8859   expand %{
8860     iRegL tmp;
8861     Repl4C_reg_helper(tmp, src);
8862     regL_to_stkD(dst, tmp);
8863   %}
8864 %}
8865 
8866 // Replicate scalar constant to packed char values in Double register
8867 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
8868   match(Set dst (Replicate4C con));
8869   effect(KILL tmp);
8870   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
8871   ins_encode %{
8872     // XXX This is a quick fix for 6833573.
8873     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8874     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8875     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8876   %}
8877   ins_pipe(loadConFD);
8878 %}
8879 
8880 // Replicate scalar to packed short values into stack slot
8881 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8882   effect(DEF dst, USE src);
8883   format %{ "SLLX  $src,48,$dst\n\t"
8884             "SRLX  $dst,16,O7\n\t"
8885             "OR    $dst,O7,$dst\n\t"
8886             "SRLX  $dst,32,O7\n\t"
8887             "OR    $dst,O7,$dst\t! replicate4S" %}
8888   ins_encode( enc_repl4s(src, dst) );
8889   ins_pipe(ialu_reg);
8890 %}
8891 
8892 // Replicate scalar to packed short values into stack slot
8893 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8894   match(Set dst (Replicate4S src));
8895   expand %{
8896     iRegL tmp;
8897     Repl4S_reg_helper(tmp, src);
8898     regL_to_stkD(dst, tmp);
8899   %}
8900 %}
8901 
8902 // Replicate scalar constant to packed short values in Double register
8903 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
8904   match(Set dst (Replicate4S con));
8905   effect(KILL tmp);
8906   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
8907   ins_encode %{
8908     // XXX This is a quick fix for 6833573.
8909     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8910     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8911     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8912   %}
8913   ins_pipe(loadConFD);
8914 %}
8915 
8916 // Replicate scalar to packed int values in Double register
8917 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8918   effect(DEF dst, USE src);
8919   format %{ "SLLX  $src,32,$dst\n\t"
8920             "SRLX  $dst,32,O7\n\t"
8921             "OR    $dst,O7,$dst\t! replicate2I" %}
8922   ins_encode( enc_repl2i(src, dst));
8923   ins_pipe(ialu_reg);
8924 %}
8925 
8926 // Replicate scalar to packed int values in Double register
8927 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8928   match(Set dst (Replicate2I src));
8929   expand %{
8930     iRegL tmp;
8931     Repl2I_reg_helper(tmp, src);
8932     regL_to_stkD(dst, tmp);
8933   %}
8934 %}
8935 
8936 // Replicate scalar zero constant to packed int values in Double register
8937 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
8938   match(Set dst (Replicate2I con));
8939   effect(KILL tmp);
8940   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
8941   ins_encode %{
8942     // XXX This is a quick fix for 6833573.
8943     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
8944     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
8945     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8946   %}
8947   ins_pipe(loadConFD);
8948 %}
8949 
8950 //----------Control Flow Instructions------------------------------------------
8951 // Compare Instructions
8952 // Compare Integers
8953 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8954   match(Set icc (CmpI op1 op2));
8955   effect( DEF icc, USE op1, USE op2 );
8956 
8957   size(4);
8958   format %{ "CMP    $op1,$op2" %}
8959   opcode(Assembler::subcc_op3, Assembler::arith_op);
8960   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8961   ins_pipe(ialu_cconly_reg_reg);
8962 %}
8963 
8964 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8965   match(Set icc (CmpU op1 op2));
8966 
8967   size(4);
8968   format %{ "CMP    $op1,$op2\t! unsigned" %}
8969   opcode(Assembler::subcc_op3, Assembler::arith_op);
8970   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8971   ins_pipe(ialu_cconly_reg_reg);
8972 %}
8973 
8974 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8975   match(Set icc (CmpI op1 op2));
8976   effect( DEF icc, USE op1 );
8977 
8978   size(4);
8979   format %{ "CMP    $op1,$op2" %}
8980   opcode(Assembler::subcc_op3, Assembler::arith_op);
8981   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8982   ins_pipe(ialu_cconly_reg_imm);
8983 %}
8984 
8985 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8986   match(Set icc (CmpI (AndI op1 op2) zero));
8987 
8988   size(4);
8989   format %{ "BTST   $op2,$op1" %}
8990   opcode(Assembler::andcc_op3, Assembler::arith_op);
8991   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8992   ins_pipe(ialu_cconly_reg_reg_zero);
8993 %}
8994 
8995 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8996   match(Set icc (CmpI (AndI op1 op2) zero));
8997 
8998   size(4);
8999   format %{ "BTST   $op2,$op1" %}
9000   opcode(Assembler::andcc_op3, Assembler::arith_op);
9001   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9002   ins_pipe(ialu_cconly_reg_imm_zero);
9003 %}
9004 
9005 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
9006   match(Set xcc (CmpL op1 op2));
9007   effect( DEF xcc, USE op1, USE op2 );
9008 
9009   size(4);
9010   format %{ "CMP    $op1,$op2\t\t! long" %}
9011   opcode(Assembler::subcc_op3, Assembler::arith_op);
9012   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9013   ins_pipe(ialu_cconly_reg_reg);
9014 %}
9015 
9016 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
9017   match(Set xcc (CmpL op1 con));
9018   effect( DEF xcc, USE op1, USE con );
9019 
9020   size(4);
9021   format %{ "CMP    $op1,$con\t\t! long" %}
9022   opcode(Assembler::subcc_op3, Assembler::arith_op);
9023   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9024   ins_pipe(ialu_cconly_reg_reg);
9025 %}
9026 
9027 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
9028   match(Set xcc (CmpL (AndL op1 op2) zero));
9029   effect( DEF xcc, USE op1, USE op2 );
9030 
9031   size(4);
9032   format %{ "BTST   $op1,$op2\t\t! long" %}
9033   opcode(Assembler::andcc_op3, Assembler::arith_op);
9034   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9035   ins_pipe(ialu_cconly_reg_reg);
9036 %}
9037 
9038 // useful for checking the alignment of a pointer:
9039 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9040   match(Set xcc (CmpL (AndL op1 con) zero));
9041   effect( DEF xcc, USE op1, USE con );
9042 
9043   size(4);
9044   format %{ "BTST   $op1,$con\t\t! long" %}
9045   opcode(Assembler::andcc_op3, Assembler::arith_op);
9046   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9047   ins_pipe(ialu_cconly_reg_reg);
9048 %}
9049 
9050 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
9051   match(Set icc (CmpU op1 op2));
9052 
9053   size(4);
9054   format %{ "CMP    $op1,$op2\t! unsigned" %}
9055   opcode(Assembler::subcc_op3, Assembler::arith_op);
9056   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9057   ins_pipe(ialu_cconly_reg_imm);
9058 %}
9059 
9060 // Compare Pointers
9061 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9062   match(Set pcc (CmpP op1 op2));
9063 
9064   size(4);
9065   format %{ "CMP    $op1,$op2\t! ptr" %}
9066   opcode(Assembler::subcc_op3, Assembler::arith_op);
9067   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9068   ins_pipe(ialu_cconly_reg_reg);
9069 %}
9070 
9071 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9072   match(Set pcc (CmpP op1 op2));
9073 
9074   size(4);
9075   format %{ "CMP    $op1,$op2\t! ptr" %}
9076   opcode(Assembler::subcc_op3, Assembler::arith_op);
9077   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9078   ins_pipe(ialu_cconly_reg_imm);
9079 %}
9080 
9081 // Compare Narrow oops
9082 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9083   match(Set icc (CmpN op1 op2));
9084 
9085   size(4);
9086   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9087   opcode(Assembler::subcc_op3, Assembler::arith_op);
9088   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9089   ins_pipe(ialu_cconly_reg_reg);
9090 %}
9091 
9092 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9093   match(Set icc (CmpN op1 op2));
9094 
9095   size(4);
9096   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9097   opcode(Assembler::subcc_op3, Assembler::arith_op);
9098   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9099   ins_pipe(ialu_cconly_reg_imm);
9100 %}
9101 
9102 //----------Max and Min--------------------------------------------------------
9103 // Min Instructions
9104 // Conditional move for min
9105 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9106   effect( USE_DEF op2, USE op1, USE icc );
9107 
9108   size(4);
9109   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9110   opcode(Assembler::less);
9111   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9112   ins_pipe(ialu_reg_flags);
9113 %}
9114 
9115 // Min Register with Register.
9116 instruct minI_eReg(iRegI op1, iRegI op2) %{
9117   match(Set op2 (MinI op1 op2));
9118   ins_cost(DEFAULT_COST*2);
9119   expand %{
9120     flagsReg icc;
9121     compI_iReg(icc,op1,op2);
9122     cmovI_reg_lt(op2,op1,icc);
9123   %}
9124 %}
9125 
9126 // Max Instructions
9127 // Conditional move for max
9128 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9129   effect( USE_DEF op2, USE op1, USE icc );
9130   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9131   opcode(Assembler::greater);
9132   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9133   ins_pipe(ialu_reg_flags);
9134 %}
9135 
9136 // Max Register with Register
9137 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9138   match(Set op2 (MaxI op1 op2));
9139   ins_cost(DEFAULT_COST*2);
9140   expand %{
9141     flagsReg icc;
9142     compI_iReg(icc,op1,op2);
9143     cmovI_reg_gt(op2,op1,icc);
9144   %}
9145 %}
9146 
9147 
9148 //----------Float Compares----------------------------------------------------
9149 // Compare floating, generate condition code
9150 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9151   match(Set fcc (CmpF src1 src2));
9152 
9153   size(4);
9154   format %{ "FCMPs  $fcc,$src1,$src2" %}
9155   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9156   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9157   ins_pipe(faddF_fcc_reg_reg_zero);
9158 %}
9159 
9160 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9161   match(Set fcc (CmpD src1 src2));
9162 
9163   size(4);
9164   format %{ "FCMPd  $fcc,$src1,$src2" %}
9165   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9166   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9167   ins_pipe(faddD_fcc_reg_reg_zero);
9168 %}
9169 
9170 
9171 // Compare floating, generate -1,0,1
9172 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9173   match(Set dst (CmpF3 src1 src2));
9174   effect(KILL fcc0);
9175   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9176   format %{ "fcmpl  $dst,$src1,$src2" %}
9177   // Primary = float
9178   opcode( true );
9179   ins_encode( floating_cmp( dst, src1, src2 ) );
9180   ins_pipe( floating_cmp );
9181 %}
9182 
9183 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9184   match(Set dst (CmpD3 src1 src2));
9185   effect(KILL fcc0);
9186   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9187   format %{ "dcmpl  $dst,$src1,$src2" %}
9188   // Primary = double (not float)
9189   opcode( false );
9190   ins_encode( floating_cmp( dst, src1, src2 ) );
9191   ins_pipe( floating_cmp );
9192 %}
9193 
9194 //----------Branches---------------------------------------------------------
9195 // Jump
9196 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9197 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9198   match(Jump switch_val);
9199 
9200   ins_cost(350);
9201 
9202   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9203              "LD     [O7 + $switch_val], O7\n\t"
9204              "JUMP   O7"
9205          %}
9206   ins_encode %{
9207     // Calculate table address into a register.
9208     Register table_reg;
9209     Register label_reg = O7;
9210     if (constant_offset() == 0) {
9211       table_reg = $constanttablebase;
9212     } else {
9213       table_reg = O7;
9214       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9215       __ add($constanttablebase, con_offset, table_reg);
9216     }
9217 
9218     // Jump to base address + switch value
9219     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9220     __ jmp(label_reg, G0);
9221     __ delayed()->nop();
9222   %}
9223   ins_pc_relative(1);
9224   ins_pipe(ialu_reg_reg);
9225 %}
9226 
9227 // Direct Branch.  Use V8 version with longer range.
9228 instruct branch(label labl) %{
9229   match(Goto);
9230   effect(USE labl);
9231 
9232   size(8);
9233   ins_cost(BRANCH_COST);
9234   format %{ "BA     $labl" %}
9235   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
9236   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
9237   ins_encode( enc_ba( labl ) );
9238   ins_pc_relative(1);
9239   ins_pipe(br);
9240 %}
9241 
9242 // Conditional Direct Branch
9243 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9244   match(If cmp icc);
9245   effect(USE labl);
9246 
9247   size(8);
9248   ins_cost(BRANCH_COST);
9249   format %{ "BP$cmp   $icc,$labl" %}
9250   // Prim = bits 24-22, Secnd = bits 31-30
9251   ins_encode( enc_bp( labl, cmp, icc ) );
9252   ins_pc_relative(1);
9253   ins_pipe(br_cc);
9254 %}
9255 
9256 // Branch-on-register tests all 64 bits.  We assume that values
9257 // in 64-bit registers always remains zero or sign extended
9258 // unless our code munges the high bits.  Interrupts can chop
9259 // the high order bits to zero or sign at any time.
9260 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9261   match(If cmp (CmpI op1 zero));
9262   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9263   effect(USE labl);
9264 
9265   size(8);
9266   ins_cost(BRANCH_COST);
9267   format %{ "BR$cmp   $op1,$labl" %}
9268   ins_encode( enc_bpr( labl, cmp, op1 ) );
9269   ins_pc_relative(1);
9270   ins_pipe(br_reg);
9271 %}
9272 
9273 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9274   match(If cmp (CmpP op1 null));
9275   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9276   effect(USE labl);
9277 
9278   size(8);
9279   ins_cost(BRANCH_COST);
9280   format %{ "BR$cmp   $op1,$labl" %}
9281   ins_encode( enc_bpr( labl, cmp, op1 ) );
9282   ins_pc_relative(1);
9283   ins_pipe(br_reg);
9284 %}
9285 
9286 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9287   match(If cmp (CmpL op1 zero));
9288   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9289   effect(USE labl);
9290 
9291   size(8);
9292   ins_cost(BRANCH_COST);
9293   format %{ "BR$cmp   $op1,$labl" %}
9294   ins_encode( enc_bpr( labl, cmp, op1 ) );
9295   ins_pc_relative(1);
9296   ins_pipe(br_reg);
9297 %}
9298 
9299 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9300   match(If cmp icc);
9301   effect(USE labl);
9302 
9303   format %{ "BP$cmp  $icc,$labl" %}
9304   // Prim = bits 24-22, Secnd = bits 31-30
9305   ins_encode( enc_bp( labl, cmp, icc ) );
9306   ins_pc_relative(1);
9307   ins_pipe(br_cc);
9308 %}
9309 
9310 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9311   match(If cmp pcc);
9312   effect(USE labl);
9313 
9314   size(8);
9315   ins_cost(BRANCH_COST);
9316   format %{ "BP$cmp  $pcc,$labl" %}
9317   // Prim = bits 24-22, Secnd = bits 31-30
9318   ins_encode( enc_bpx( labl, cmp, pcc ) );
9319   ins_pc_relative(1);
9320   ins_pipe(br_cc);
9321 %}
9322 
9323 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9324   match(If cmp fcc);
9325   effect(USE labl);
9326 
9327   size(8);
9328   ins_cost(BRANCH_COST);
9329   format %{ "FBP$cmp $fcc,$labl" %}
9330   // Prim = bits 24-22, Secnd = bits 31-30
9331   ins_encode( enc_fbp( labl, cmp, fcc ) );
9332   ins_pc_relative(1);
9333   ins_pipe(br_fcc);
9334 %}
9335 
9336 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9337   match(CountedLoopEnd cmp icc);
9338   effect(USE labl);
9339 
9340   size(8);
9341   ins_cost(BRANCH_COST);
9342   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9343   // Prim = bits 24-22, Secnd = bits 31-30
9344   ins_encode( enc_bp( labl, cmp, icc ) );
9345   ins_pc_relative(1);
9346   ins_pipe(br_cc);
9347 %}
9348 
9349 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9350   match(CountedLoopEnd cmp icc);
9351   effect(USE labl);
9352 
9353   size(8);
9354   ins_cost(BRANCH_COST);
9355   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9356   // Prim = bits 24-22, Secnd = bits 31-30
9357   ins_encode( enc_bp( labl, cmp, icc ) );
9358   ins_pc_relative(1);
9359   ins_pipe(br_cc);
9360 %}
9361 
9362 // ============================================================================
9363 // Long Compare
9364 //
9365 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9366 // is tricky.  The flavor of compare used depends on whether we are testing
9367 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9368 // The GE test is the negated LT test.  The LE test can be had by commuting
9369 // the operands (yielding a GE test) and then negating; negate again for the
9370 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9371 // NE test is negated from that.
9372 
9373 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9374 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9375 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9376 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9377 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9378 // foo match ends up with the wrong leaf.  One fix is to not match both
9379 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9380 // both forms beat the trinary form of long-compare and both are very useful
9381 // on Intel which has so few registers.
9382 
9383 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9384   match(If cmp xcc);
9385   effect(USE labl);
9386 
9387   size(8);
9388   ins_cost(BRANCH_COST);
9389   format %{ "BP$cmp   $xcc,$labl" %}
9390   // Prim = bits 24-22, Secnd = bits 31-30
9391   ins_encode( enc_bpl( labl, cmp, xcc ) );
9392   ins_pc_relative(1);
9393   ins_pipe(br_cc);
9394 %}
9395 
9396 // Manifest a CmpL3 result in an integer register.  Very painful.
9397 // This is the test to avoid.
9398 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9399   match(Set dst (CmpL3 src1 src2) );
9400   effect( KILL ccr );
9401   ins_cost(6*DEFAULT_COST);
9402   size(24);
9403   format %{ "CMP    $src1,$src2\t\t! long\n"
9404           "\tBLT,a,pn done\n"
9405           "\tMOV    -1,$dst\t! delay slot\n"
9406           "\tBGT,a,pn done\n"
9407           "\tMOV    1,$dst\t! delay slot\n"
9408           "\tCLR    $dst\n"
9409     "done:"     %}
9410   ins_encode( cmpl_flag(src1,src2,dst) );
9411   ins_pipe(cmpL_reg);
9412 %}
9413 
9414 // Conditional move
9415 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9416   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9417   ins_cost(150);
9418   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9419   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9420   ins_pipe(ialu_reg);
9421 %}
9422 
9423 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9424   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9425   ins_cost(140);
9426   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9427   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9428   ins_pipe(ialu_imm);
9429 %}
9430 
9431 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9432   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9433   ins_cost(150);
9434   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9435   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9436   ins_pipe(ialu_reg);
9437 %}
9438 
9439 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9440   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9441   ins_cost(140);
9442   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9443   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9444   ins_pipe(ialu_imm);
9445 %}
9446 
9447 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9448   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9449   ins_cost(150);
9450   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9451   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9452   ins_pipe(ialu_reg);
9453 %}
9454 
9455 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9456   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9457   ins_cost(150);
9458   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9459   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9460   ins_pipe(ialu_reg);
9461 %}
9462 
9463 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9464   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9465   ins_cost(140);
9466   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9467   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9468   ins_pipe(ialu_imm);
9469 %}
9470 
9471 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9472   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9473   ins_cost(150);
9474   opcode(0x101);
9475   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9476   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9477   ins_pipe(int_conditional_float_move);
9478 %}
9479 
9480 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9481   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9482   ins_cost(150);
9483   opcode(0x102);
9484   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9485   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9486   ins_pipe(int_conditional_float_move);
9487 %}
9488 
9489 // ============================================================================
9490 // Safepoint Instruction
9491 instruct safePoint_poll(iRegP poll) %{
9492   match(SafePoint poll);
9493   effect(USE poll);
9494 
9495   size(4);
9496 #ifdef _LP64
9497   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9498 #else
9499   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9500 #endif
9501   ins_encode %{
9502     __ relocate(relocInfo::poll_type);
9503     __ ld_ptr($poll$$Register, 0, G0);
9504   %}
9505   ins_pipe(loadPollP);
9506 %}
9507 
9508 // ============================================================================
9509 // Call Instructions
9510 // Call Java Static Instruction
9511 instruct CallStaticJavaDirect( method meth ) %{
9512   match(CallStaticJava);
9513   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9514   effect(USE meth);
9515 
9516   size(8);
9517   ins_cost(CALL_COST);
9518   format %{ "CALL,static  ; NOP ==> " %}
9519   ins_encode( Java_Static_Call( meth ), call_epilog );
9520   ins_pc_relative(1);
9521   ins_pipe(simple_call);
9522 %}
9523 
9524 // Call Java Static Instruction (method handle version)
9525 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9526   match(CallStaticJava);
9527   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9528   effect(USE meth, KILL l7_mh_SP_save);
9529 
9530   size(8);
9531   ins_cost(CALL_COST);
9532   format %{ "CALL,static/MethodHandle" %}
9533   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9534   ins_pc_relative(1);
9535   ins_pipe(simple_call);
9536 %}
9537 
9538 // Call Java Dynamic Instruction
9539 instruct CallDynamicJavaDirect( method meth ) %{
9540   match(CallDynamicJava);
9541   effect(USE meth);
9542 
9543   ins_cost(CALL_COST);
9544   format %{ "SET    (empty),R_G5\n\t"
9545             "CALL,dynamic  ; NOP ==> " %}
9546   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9547   ins_pc_relative(1);
9548   ins_pipe(call);
9549 %}
9550 
9551 // Call Runtime Instruction
9552 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9553   match(CallRuntime);
9554   effect(USE meth, KILL l7);
9555   ins_cost(CALL_COST);
9556   format %{ "CALL,runtime" %}
9557   ins_encode( Java_To_Runtime( meth ),
9558               call_epilog, adjust_long_from_native_call );
9559   ins_pc_relative(1);
9560   ins_pipe(simple_call);
9561 %}
9562 
9563 // Call runtime without safepoint - same as CallRuntime
9564 instruct CallLeafDirect(method meth, l7RegP l7) %{
9565   match(CallLeaf);
9566   effect(USE meth, KILL l7);
9567   ins_cost(CALL_COST);
9568   format %{ "CALL,runtime leaf" %}
9569   ins_encode( Java_To_Runtime( meth ),
9570               call_epilog,
9571               adjust_long_from_native_call );
9572   ins_pc_relative(1);
9573   ins_pipe(simple_call);
9574 %}
9575 
9576 // Call runtime without safepoint - same as CallLeaf
9577 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9578   match(CallLeafNoFP);
9579   effect(USE meth, KILL l7);
9580   ins_cost(CALL_COST);
9581   format %{ "CALL,runtime leaf nofp" %}
9582   ins_encode( Java_To_Runtime( meth ),
9583               call_epilog,
9584               adjust_long_from_native_call );
9585   ins_pc_relative(1);
9586   ins_pipe(simple_call);
9587 %}
9588 
9589 // Tail Call; Jump from runtime stub to Java code.
9590 // Also known as an 'interprocedural jump'.
9591 // Target of jump will eventually return to caller.
9592 // TailJump below removes the return address.
9593 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9594   match(TailCall jump_target method_oop );
9595 
9596   ins_cost(CALL_COST);
9597   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9598   ins_encode(form_jmpl(jump_target));
9599   ins_pipe(tail_call);
9600 %}
9601 
9602 
9603 // Return Instruction
9604 instruct Ret() %{
9605   match(Return);
9606 
9607   // The epilogue node did the ret already.
9608   size(0);
9609   format %{ "! return" %}
9610   ins_encode();
9611   ins_pipe(empty);
9612 %}
9613 
9614 
9615 // Tail Jump; remove the return address; jump to target.
9616 // TailCall above leaves the return address around.
9617 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9618 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9619 // "restore" before this instruction (in Epilogue), we need to materialize it
9620 // in %i0.
9621 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9622   match( TailJump jump_target ex_oop );
9623   ins_cost(CALL_COST);
9624   format %{ "! discard R_O7\n\t"
9625             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9626   ins_encode(form_jmpl_set_exception_pc(jump_target));
9627   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9628   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9629   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9630   ins_pipe(tail_call);
9631 %}
9632 
9633 // Create exception oop: created by stack-crawling runtime code.
9634 // Created exception is now available to this handler, and is setup
9635 // just prior to jumping to this handler.  No code emitted.
9636 instruct CreateException( o0RegP ex_oop )
9637 %{
9638   match(Set ex_oop (CreateEx));
9639   ins_cost(0);
9640 
9641   size(0);
9642   // use the following format syntax
9643   format %{ "! exception oop is in R_O0; no code emitted" %}
9644   ins_encode();
9645   ins_pipe(empty);
9646 %}
9647 
9648 
9649 // Rethrow exception:
9650 // The exception oop will come in the first argument position.
9651 // Then JUMP (not call) to the rethrow stub code.
9652 instruct RethrowException()
9653 %{
9654   match(Rethrow);
9655   ins_cost(CALL_COST);
9656 
9657   // use the following format syntax
9658   format %{ "Jmp    rethrow_stub" %}
9659   ins_encode(enc_rethrow);
9660   ins_pipe(tail_call);
9661 %}
9662 
9663 
9664 // Die now
9665 instruct ShouldNotReachHere( )
9666 %{
9667   match(Halt);
9668   ins_cost(CALL_COST);
9669 
9670   size(4);
9671   // Use the following format syntax
9672   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9673   ins_encode( form2_illtrap() );
9674   ins_pipe(tail_call);
9675 %}
9676 
9677 // ============================================================================
9678 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9679 // array for an instance of the superklass.  Set a hidden internal cache on a
9680 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9681 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9682 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9683   match(Set index (PartialSubtypeCheck sub super));
9684   effect( KILL pcc, KILL o7 );
9685   ins_cost(DEFAULT_COST*10);
9686   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9687   ins_encode( enc_PartialSubtypeCheck() );
9688   ins_pipe(partial_subtype_check_pipe);
9689 %}
9690 
9691 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9692   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9693   effect( KILL idx, KILL o7 );
9694   ins_cost(DEFAULT_COST*10);
9695   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9696   ins_encode( enc_PartialSubtypeCheck() );
9697   ins_pipe(partial_subtype_check_pipe);
9698 %}
9699 
9700 
9701 // ============================================================================
9702 // inlined locking and unlocking
9703 
9704 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9705   match(Set pcc (FastLock object box));
9706 
9707   effect(KILL scratch, TEMP scratch2);
9708   ins_cost(100);
9709 
9710   size(4*112);       // conservative overestimation ...
9711   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9712   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9713   ins_pipe(long_memory_op);
9714 %}
9715 
9716 
9717 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9718   match(Set pcc (FastUnlock object box));
9719   effect(KILL scratch, TEMP scratch2);
9720   ins_cost(100);
9721 
9722   size(4*120);       // conservative overestimation ...
9723   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9724   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9725   ins_pipe(long_memory_op);
9726 %}
9727 
9728 // Count and Base registers are fixed because the allocator cannot
9729 // kill unknown registers.  The encodings are generic.
9730 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9731   match(Set dummy (ClearArray cnt base));
9732   effect(TEMP temp, KILL ccr);
9733   ins_cost(300);
9734   format %{ "MOV    $cnt,$temp\n"
9735     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9736     "        BRge   loop\t\t! Clearing loop\n"
9737     "        STX    G0,[$base+$temp]\t! delay slot" %}
9738   ins_encode( enc_Clear_Array(cnt, base, temp) );
9739   ins_pipe(long_memory_op);
9740 %}
9741 
9742 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9743                         o7RegI tmp, flagsReg ccr) %{
9744   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9745   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9746   ins_cost(300);
9747   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9748   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
9749   ins_pipe(long_memory_op);
9750 %}
9751 
9752 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9753                        o7RegI tmp, flagsReg ccr) %{
9754   match(Set result (StrEquals (Binary str1 str2) cnt));
9755   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9756   ins_cost(300);
9757   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9758   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
9759   ins_pipe(long_memory_op);
9760 %}
9761 
9762 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9763                       o7RegI tmp2, flagsReg ccr) %{
9764   match(Set result (AryEq ary1 ary2));
9765   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9766   ins_cost(300);
9767   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9768   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
9769   ins_pipe(long_memory_op);
9770 %}
9771 
9772 
9773 //---------- Zeros Count Instructions ------------------------------------------
9774 
9775 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9776   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9777   match(Set dst (CountLeadingZerosI src));
9778   effect(TEMP dst, TEMP tmp, KILL cr);
9779 
9780   // x |= (x >> 1);
9781   // x |= (x >> 2);
9782   // x |= (x >> 4);
9783   // x |= (x >> 8);
9784   // x |= (x >> 16);
9785   // return (WORDBITS - popc(x));
9786   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
9787             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
9788             "OR      $dst,$tmp,$dst\n\t"
9789             "SRL     $dst,2,$tmp\n\t"
9790             "OR      $dst,$tmp,$dst\n\t"
9791             "SRL     $dst,4,$tmp\n\t"
9792             "OR      $dst,$tmp,$dst\n\t"
9793             "SRL     $dst,8,$tmp\n\t"
9794             "OR      $dst,$tmp,$dst\n\t"
9795             "SRL     $dst,16,$tmp\n\t"
9796             "OR      $dst,$tmp,$dst\n\t"
9797             "POPC    $dst,$dst\n\t"
9798             "MOV     32,$tmp\n\t"
9799             "SUB     $tmp,$dst,$dst" %}
9800   ins_encode %{
9801     Register Rdst = $dst$$Register;
9802     Register Rsrc = $src$$Register;
9803     Register Rtmp = $tmp$$Register;
9804     __ srl(Rsrc, 1,    Rtmp);
9805     __ srl(Rsrc, 0,    Rdst);
9806     __ or3(Rdst, Rtmp, Rdst);
9807     __ srl(Rdst, 2,    Rtmp);
9808     __ or3(Rdst, Rtmp, Rdst);
9809     __ srl(Rdst, 4,    Rtmp);
9810     __ or3(Rdst, Rtmp, Rdst);
9811     __ srl(Rdst, 8,    Rtmp);
9812     __ or3(Rdst, Rtmp, Rdst);
9813     __ srl(Rdst, 16,   Rtmp);
9814     __ or3(Rdst, Rtmp, Rdst);
9815     __ popc(Rdst, Rdst);
9816     __ mov(BitsPerInt, Rtmp);
9817     __ sub(Rtmp, Rdst, Rdst);
9818   %}
9819   ins_pipe(ialu_reg);
9820 %}
9821 
9822 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
9823   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9824   match(Set dst (CountLeadingZerosL src));
9825   effect(TEMP dst, TEMP tmp, KILL cr);
9826 
9827   // x |= (x >> 1);
9828   // x |= (x >> 2);
9829   // x |= (x >> 4);
9830   // x |= (x >> 8);
9831   // x |= (x >> 16);
9832   // x |= (x >> 32);
9833   // return (WORDBITS - popc(x));
9834   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
9835             "OR      $src,$tmp,$dst\n\t"
9836             "SRLX    $dst,2,$tmp\n\t"
9837             "OR      $dst,$tmp,$dst\n\t"
9838             "SRLX    $dst,4,$tmp\n\t"
9839             "OR      $dst,$tmp,$dst\n\t"
9840             "SRLX    $dst,8,$tmp\n\t"
9841             "OR      $dst,$tmp,$dst\n\t"
9842             "SRLX    $dst,16,$tmp\n\t"
9843             "OR      $dst,$tmp,$dst\n\t"
9844             "SRLX    $dst,32,$tmp\n\t"
9845             "OR      $dst,$tmp,$dst\n\t"
9846             "POPC    $dst,$dst\n\t"
9847             "MOV     64,$tmp\n\t"
9848             "SUB     $tmp,$dst,$dst" %}
9849   ins_encode %{
9850     Register Rdst = $dst$$Register;
9851     Register Rsrc = $src$$Register;
9852     Register Rtmp = $tmp$$Register;
9853     __ srlx(Rsrc, 1,    Rtmp);
9854     __ or3( Rsrc, Rtmp, Rdst);
9855     __ srlx(Rdst, 2,    Rtmp);
9856     __ or3( Rdst, Rtmp, Rdst);
9857     __ srlx(Rdst, 4,    Rtmp);
9858     __ or3( Rdst, Rtmp, Rdst);
9859     __ srlx(Rdst, 8,    Rtmp);
9860     __ or3( Rdst, Rtmp, Rdst);
9861     __ srlx(Rdst, 16,   Rtmp);
9862     __ or3( Rdst, Rtmp, Rdst);
9863     __ srlx(Rdst, 32,   Rtmp);
9864     __ or3( Rdst, Rtmp, Rdst);
9865     __ popc(Rdst, Rdst);
9866     __ mov(BitsPerLong, Rtmp);
9867     __ sub(Rtmp, Rdst, Rdst);
9868   %}
9869   ins_pipe(ialu_reg);
9870 %}
9871 
9872 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9873   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9874   match(Set dst (CountTrailingZerosI src));
9875   effect(TEMP dst, KILL cr);
9876 
9877   // return popc(~x & (x - 1));
9878   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9879             "ANDN    $dst,$src,$dst\n\t"
9880             "SRL     $dst,R_G0,$dst\n\t"
9881             "POPC    $dst,$dst" %}
9882   ins_encode %{
9883     Register Rdst = $dst$$Register;
9884     Register Rsrc = $src$$Register;
9885     __ sub(Rsrc, 1, Rdst);
9886     __ andn(Rdst, Rsrc, Rdst);
9887     __ srl(Rdst, G0, Rdst);
9888     __ popc(Rdst, Rdst);
9889   %}
9890   ins_pipe(ialu_reg);
9891 %}
9892 
9893 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9894   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9895   match(Set dst (CountTrailingZerosL src));
9896   effect(TEMP dst, KILL cr);
9897 
9898   // return popc(~x & (x - 1));
9899   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9900             "ANDN    $dst,$src,$dst\n\t"
9901             "POPC    $dst,$dst" %}
9902   ins_encode %{
9903     Register Rdst = $dst$$Register;
9904     Register Rsrc = $src$$Register;
9905     __ sub(Rsrc, 1, Rdst);
9906     __ andn(Rdst, Rsrc, Rdst);
9907     __ popc(Rdst, Rdst);
9908   %}
9909   ins_pipe(ialu_reg);
9910 %}
9911 
9912 
9913 //---------- Population Count Instructions -------------------------------------
9914 
9915 instruct popCountI(iRegI dst, iRegI src) %{
9916   predicate(UsePopCountInstruction);
9917   match(Set dst (PopCountI src));
9918 
9919   format %{ "POPC   $src, $dst" %}
9920   ins_encode %{
9921     __ popc($src$$Register, $dst$$Register);
9922   %}
9923   ins_pipe(ialu_reg);
9924 %}
9925 
9926 // Note: Long.bitCount(long) returns an int.
9927 instruct popCountL(iRegI dst, iRegL src) %{
9928   predicate(UsePopCountInstruction);
9929   match(Set dst (PopCountL src));
9930 
9931   format %{ "POPC   $src, $dst" %}
9932   ins_encode %{
9933     __ popc($src$$Register, $dst$$Register);
9934   %}
9935   ins_pipe(ialu_reg);
9936 %}
9937 
9938 
9939 // ============================================================================
9940 //------------Bytes reverse--------------------------------------------------
9941 
9942 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9943   match(Set dst (ReverseBytesI src));
9944 
9945   // Op cost is artificially doubled to make sure that load or store
9946   // instructions are preferred over this one which requires a spill
9947   // onto a stack slot.
9948   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9949   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9950 
9951   ins_encode %{
9952     __ set($src$$disp + STACK_BIAS, O7);
9953     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9954   %}
9955   ins_pipe( iload_mem );
9956 %}
9957 
9958 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9959   match(Set dst (ReverseBytesL src));
9960 
9961   // Op cost is artificially doubled to make sure that load or store
9962   // instructions are preferred over this one which requires a spill
9963   // onto a stack slot.
9964   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9965   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9966 
9967   ins_encode %{
9968     __ set($src$$disp + STACK_BIAS, O7);
9969     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9970   %}
9971   ins_pipe( iload_mem );
9972 %}
9973 
9974 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
9975   match(Set dst (ReverseBytesUS src));
9976 
9977   // Op cost is artificially doubled to make sure that load or store
9978   // instructions are preferred over this one which requires a spill
9979   // onto a stack slot.
9980   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9981   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
9982 
9983   ins_encode %{
9984     // the value was spilled as an int so bias the load
9985     __ set($src$$disp + STACK_BIAS + 2, O7);
9986     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9987   %}
9988   ins_pipe( iload_mem );
9989 %}
9990 
9991 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
9992   match(Set dst (ReverseBytesS src));
9993 
9994   // Op cost is artificially doubled to make sure that load or store
9995   // instructions are preferred over this one which requires a spill
9996   // onto a stack slot.
9997   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9998   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
9999 
10000   ins_encode %{
10001     // the value was spilled as an int so bias the load
10002     __ set($src$$disp + STACK_BIAS + 2, O7);
10003     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10004   %}
10005   ins_pipe( iload_mem );
10006 %}
10007 
10008 // Load Integer reversed byte order
10009 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10010   match(Set dst (ReverseBytesI (LoadI src)));
10011 
10012   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10013   size(4);
10014   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10015 
10016   ins_encode %{
10017     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10018   %}
10019   ins_pipe(iload_mem);
10020 %}
10021 
10022 // Load Long - aligned and reversed
10023 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10024   match(Set dst (ReverseBytesL (LoadL src)));
10025 
10026   ins_cost(MEMORY_REF_COST);
10027   size(4);
10028   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10029 
10030   ins_encode %{
10031     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10032   %}
10033   ins_pipe(iload_mem);
10034 %}
10035 
10036 // Load unsigned short / char reversed byte order
10037 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10038   match(Set dst (ReverseBytesUS (LoadUS src)));
10039 
10040   ins_cost(MEMORY_REF_COST);
10041   size(4);
10042   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10043 
10044   ins_encode %{
10045     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10046   %}
10047   ins_pipe(iload_mem);
10048 %}
10049 
10050 // Load short reversed byte order
10051 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10052   match(Set dst (ReverseBytesS (LoadS src)));
10053 
10054   ins_cost(MEMORY_REF_COST);
10055   size(4);
10056   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10057 
10058   ins_encode %{
10059     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10060   %}
10061   ins_pipe(iload_mem);
10062 %}
10063 
10064 // Store Integer reversed byte order
10065 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10066   match(Set dst (StoreI dst (ReverseBytesI src)));
10067 
10068   ins_cost(MEMORY_REF_COST);
10069   size(4);
10070   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10071 
10072   ins_encode %{
10073     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10074   %}
10075   ins_pipe(istore_mem_reg);
10076 %}
10077 
10078 // Store Long reversed byte order
10079 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10080   match(Set dst (StoreL dst (ReverseBytesL src)));
10081 
10082   ins_cost(MEMORY_REF_COST);
10083   size(4);
10084   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10085 
10086   ins_encode %{
10087     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10088   %}
10089   ins_pipe(istore_mem_reg);
10090 %}
10091 
10092 // Store unsighed short/char reversed byte order
10093 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10094   match(Set dst (StoreC dst (ReverseBytesUS src)));
10095 
10096   ins_cost(MEMORY_REF_COST);
10097   size(4);
10098   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10099 
10100   ins_encode %{
10101     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10102   %}
10103   ins_pipe(istore_mem_reg);
10104 %}
10105 
10106 // Store short reversed byte order
10107 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10108   match(Set dst (StoreC dst (ReverseBytesS src)));
10109 
10110   ins_cost(MEMORY_REF_COST);
10111   size(4);
10112   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10113 
10114   ins_encode %{
10115     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10116   %}
10117   ins_pipe(istore_mem_reg);
10118 %}
10119 
10120 //----------PEEPHOLE RULES-----------------------------------------------------
10121 // These must follow all instruction definitions as they use the names
10122 // defined in the instructions definitions.
10123 //
10124 // peepmatch ( root_instr_name [preceding_instruction]* );
10125 //
10126 // peepconstraint %{
10127 // (instruction_number.operand_name relational_op instruction_number.operand_name
10128 //  [, ...] );
10129 // // instruction numbers are zero-based using left to right order in peepmatch
10130 //
10131 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10132 // // provide an instruction_number.operand_name for each operand that appears
10133 // // in the replacement instruction's match rule
10134 //
10135 // ---------VM FLAGS---------------------------------------------------------
10136 //
10137 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10138 //
10139 // Each peephole rule is given an identifying number starting with zero and
10140 // increasing by one in the order seen by the parser.  An individual peephole
10141 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10142 // on the command-line.
10143 //
10144 // ---------CURRENT LIMITATIONS----------------------------------------------
10145 //
10146 // Only match adjacent instructions in same basic block
10147 // Only equality constraints
10148 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10149 // Only one replacement instruction
10150 //
10151 // ---------EXAMPLE----------------------------------------------------------
10152 //
10153 // // pertinent parts of existing instructions in architecture description
10154 // instruct movI(eRegI dst, eRegI src) %{
10155 //   match(Set dst (CopyI src));
10156 // %}
10157 //
10158 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10159 //   match(Set dst (AddI dst src));
10160 //   effect(KILL cr);
10161 // %}
10162 //
10163 // // Change (inc mov) to lea
10164 // peephole %{
10165 //   // increment preceeded by register-register move
10166 //   peepmatch ( incI_eReg movI );
10167 //   // require that the destination register of the increment
10168 //   // match the destination register of the move
10169 //   peepconstraint ( 0.dst == 1.dst );
10170 //   // construct a replacement instruction that sets
10171 //   // the destination to ( move's source register + one )
10172 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10173 // %}
10174 //
10175 
10176 // // Change load of spilled value to only a spill
10177 // instruct storeI(memory mem, eRegI src) %{
10178 //   match(Set mem (StoreI mem src));
10179 // %}
10180 //
10181 // instruct loadI(eRegI dst, memory mem) %{
10182 //   match(Set dst (LoadI mem));
10183 // %}
10184 //
10185 // peephole %{
10186 //   peepmatch ( loadI storeI );
10187 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10188 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10189 // %}
10190 
10191 //----------SMARTSPILL RULES---------------------------------------------------
10192 // These must follow all instruction definitions as they use the names
10193 // defined in the instructions definitions.
10194 //
10195 // SPARC will probably not have any of these rules due to RISC instruction set.
10196 
10197 //----------PIPELINE-----------------------------------------------------------
10198 // Rules which define the behavior of the target architectures pipeline.