1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
  26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
  27 
  28 #include "asm/assembler.inline.hpp"
  29 #include "asm/codeBuffer.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 
  33 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
  34   jint& stub_inst = *(jint*) branch;
  35   stub_inst = patched_branch(target - branch, stub_inst, 0);
  36 }
  37 
  38 #ifndef PRODUCT
  39 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
  40   jint stub_inst = *(jint*) branch;
  41   print_instruction(stub_inst);
  42   ::tty->print("%s", " (unresolved)");
  43 }
  44 #endif // PRODUCT
  45 
  46 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
  47 
  48 
  49 inline int AddressLiteral::low10() const {
  50   return Assembler::low10(value());
  51 }
  52 
  53 
  54 // inlines for SPARC assembler -- dmu 5/97
  55 
  56 inline void Assembler::check_delay() {
  57 # ifdef CHECK_DELAY
  58   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
  59   delay_state = no_delay;
  60 # endif
  61 }
  62 
  63 inline void Assembler::emit_long(int x) {
  64   check_delay();
  65   AbstractAssembler::emit_long(x);
  66 }
  67 
  68 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
  69   relocate(rtype);
  70   emit_long(x);
  71 }
  72 
  73 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
  74   relocate(rspec);
  75   emit_long(x);
  76 }
  77 
  78 
  79 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
  80 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
  81 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
  82 
  83 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
  84 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
  85 
  86 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  87 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
  88 
  89 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  90 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
  91 
  92 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  93 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
  94 
  95 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  cti();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  96 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
  97 
  98 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  99 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
 100 
 101 // compare and branch
 102 inline void Assembler::cbcond(Condition c, CC cc, Register s1, Register s2, Label& L) { cti();  no_cbcond_before();  emit_data(op(branch_op) | cond_cbcond(c) | op2(bpr_op2) | branchcc(cc) | wdisp10(intptr_t(target(L)), intptr_t(pc())) | rs1(s1) | rs2(s2)); }
 103 inline void Assembler::cbcond(Condition c, CC cc, Register s1, int simm5, Label& L)   { cti();  no_cbcond_before();  emit_data(op(branch_op) | cond_cbcond(c) | op2(bpr_op2) | branchcc(cc) | wdisp10(intptr_t(target(L)), intptr_t(pc())) | rs1(s1) | immed(true) | simm(simm5, 5)); }
 104 
 105 inline void Assembler::call( address d,  relocInfo::relocType rt ) { cti();  emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
 106 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
 107 
 108 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
 109 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 110 
 111 inline void Assembler::jmpl( Register s1, Register s2, Register d ) { cti();  emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 112 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { cti();  emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
 113 
 114 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
 115   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
 116   else                  ldf(w, s1, s2.as_constant(), d);
 117 }
 118 
 119 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
 120 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
 121 
 122 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
 123 
 124 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 125 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 126 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 127 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 128 
 129 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
 130 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 131 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
 132 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 133 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
 134 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 135 
 136 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
 137 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 138 
 139 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
 140 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 141 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
 142 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 143 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
 144 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 145 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
 146 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 147 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
 148 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 149 
 150 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
 151 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 152 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
 153 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 154 
 155 #ifdef _LP64
 156 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
 157 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
 158 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
 159 #else
 160 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
 161 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
 162 #endif
 163 
 164 #ifdef ASSERT
 165   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 166 # ifdef _LP64
 167 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
 168 # else
 169 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
 170 # endif
 171 #endif
 172 
 173 inline void Assembler::ld(  const Address& a, Register d, int offset) {
 174   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
 175   else               {                          ld(  a.base(), a.disp() + offset, d); }
 176 }
 177 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
 178   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
 179   else               {                          ldsb(a.base(), a.disp() + offset, d); }
 180 }
 181 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
 182   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
 183   else               {                          ldsh(a.base(), a.disp() + offset, d); }
 184 }
 185 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
 186   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
 187   else               {                          ldsw(a.base(), a.disp() + offset, d); }
 188 }
 189 inline void Assembler::ldub(const Address& a, Register d, int offset) {
 190   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
 191   else               {                          ldub(a.base(), a.disp() + offset, d); }
 192 }
 193 inline void Assembler::lduh(const Address& a, Register d, int offset) {
 194   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
 195   else               {                          lduh(a.base(), a.disp() + offset, d); }
 196 }
 197 inline void Assembler::lduw(const Address& a, Register d, int offset) {
 198   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
 199   else               {                          lduw(a.base(), a.disp() + offset, d); }
 200 }
 201 inline void Assembler::ldd( const Address& a, Register d, int offset) {
 202   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
 203   else               {                          ldd( a.base(), a.disp() + offset, d); }
 204 }
 205 inline void Assembler::ldx( const Address& a, Register d, int offset) {
 206   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
 207   else               {                          ldx( a.base(), a.disp() + offset, d); }
 208 }
 209 
 210 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
 211 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
 212 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
 213 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
 214 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
 215 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
 216 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
 217 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
 218 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
 219 
 220 // form effective addresses this way:
 221 inline void Assembler::add(const Address& a, Register d, int offset) {
 222   if (a.has_index())   add(a.base(), a.index(),         d);
 223   else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
 224   if (offset != 0)     add(d,        offset,            d);
 225 }
 226 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
 227   if (s2.is_register())  add(s1, s2.as_register(),          d);
 228   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
 229   if (offset != 0)       add(d,  offset,                    d);
 230 }
 231 
 232 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
 233   if (s2.is_register())  andn(s1, s2.as_register(), d);
 234   else                   andn(s1, s2.as_constant(), d);
 235 }
 236 
 237 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
 238 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 239 
 240 
 241 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
 242 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 243 
 244 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
 245 
 246 
 247 inline void Assembler::rett( Register s1, Register s2                         ) { cti();  emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 248 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { cti();  emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
 249 
 250 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
 251 
 252   // pp 222
 253 
 254 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
 255   if (s2.is_register()) stf(w, d, s1, s2.as_register());
 256   else                  stf(w, d, s1, s2.as_constant());
 257 }
 258 
 259 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
 260 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 261 
 262 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
 263   relocate(a.rspec(offset));
 264   if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index()        ); }
 265   else               {                          stf(w, d, a.base(), a.disp() + offset); }
 266 }
 267 
 268 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 269 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 270 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 271 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 272 
 273   // p 226
 274 
 275 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
 276 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 277 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
 278 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 279 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
 280 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 281 
 282 
 283 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
 284 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 285 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
 286 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 287 
 288 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
 289 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
 290 
 291 #ifdef ASSERT
 292 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 293 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
 294 #endif
 295 
 296 inline void Assembler::stb(Register d, const Address& a, int offset) {
 297   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
 298   else               {                          stb(d, a.base(), a.disp() + offset); }
 299 }
 300 inline void Assembler::sth(Register d, const Address& a, int offset) {
 301   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
 302   else               {                          sth(d, a.base(), a.disp() + offset); }
 303 }
 304 inline void Assembler::stw(Register d, const Address& a, int offset) {
 305   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
 306   else               {                          stw(d, a.base(), a.disp() + offset); }
 307 }
 308 inline void Assembler::st( Register d, const Address& a, int offset) {
 309   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
 310   else               {                          st( d, a.base(), a.disp() + offset); }
 311 }
 312 inline void Assembler::std(Register d, const Address& a, int offset) {
 313   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
 314   else               {                          std(d, a.base(), a.disp() + offset); }
 315 }
 316 inline void Assembler::stx(Register d, const Address& a, int offset) {
 317   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
 318   else               {                          stx(d, a.base(), a.disp() + offset); }
 319 }
 320 
 321 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
 322 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
 323 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
 324 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
 325 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
 326 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
 327 
 328 // v8 p 99
 329 
 330 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
 331 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 332 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
 333 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 334 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
 335 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 336 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
 337 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 338 
 339 inline void Assembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
 340   if (s2.is_register())  sub(s1, s2.as_register(),          d);
 341   else                 { sub(s1, s2.as_constant() + offset, d); offset = 0; }
 342   if (offset != 0)       sub(d,  offset,                    d);
 343 }
 344 
 345 // pp 231
 346 
 347 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
 348 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 349 
 350 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
 351 
 352 
 353 // Use the right loads/stores for the platform
 354 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
 355 #ifdef _LP64
 356   Assembler::ldx(s1, s2, d);
 357 #else
 358   Assembler::ld( s1, s2, d);
 359 #endif
 360 }
 361 
 362 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
 363 #ifdef _LP64
 364   Assembler::ldx(s1, simm13a, d);
 365 #else
 366   Assembler::ld( s1, simm13a, d);
 367 #endif
 368 }
 369 
 370 #ifdef ASSERT
 371 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 372 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
 373   ld_ptr(s1, in_bytes(simm13a), d);
 374 }
 375 #endif
 376 
 377 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 378 #ifdef _LP64
 379   Assembler::ldx(s1, s2, d);
 380 #else
 381   Assembler::ld( s1, s2, d);
 382 #endif
 383 }
 384 
 385 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
 386 #ifdef _LP64
 387   Assembler::ldx(a, d, offset);
 388 #else
 389   Assembler::ld( a, d, offset);
 390 #endif
 391 }
 392 
 393 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
 394 #ifdef _LP64
 395   Assembler::stx(d, s1, s2);
 396 #else
 397   Assembler::st( d, s1, s2);
 398 #endif
 399 }
 400 
 401 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
 402 #ifdef _LP64
 403   Assembler::stx(d, s1, simm13a);
 404 #else
 405   Assembler::st( d, s1, simm13a);
 406 #endif
 407 }
 408 
 409 #ifdef ASSERT
 410 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 411 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
 412   st_ptr(d, s1, in_bytes(simm13a));
 413 }
 414 #endif
 415 
 416 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
 417 #ifdef _LP64
 418   Assembler::stx(d, s1, s2);
 419 #else
 420   Assembler::st( d, s1, s2);
 421 #endif
 422 }
 423 
 424 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
 425 #ifdef _LP64
 426   Assembler::stx(d, a, offset);
 427 #else
 428   Assembler::st( d, a, offset);
 429 #endif
 430 }
 431 
 432 // Use the right loads/stores for the platform
 433 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
 434 #ifdef _LP64
 435   Assembler::ldx(s1, s2, d);
 436 #else
 437   Assembler::ldd(s1, s2, d);
 438 #endif
 439 }
 440 
 441 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
 442 #ifdef _LP64
 443   Assembler::ldx(s1, simm13a, d);
 444 #else
 445   Assembler::ldd(s1, simm13a, d);
 446 #endif
 447 }
 448 
 449 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
 450 #ifdef _LP64
 451   Assembler::ldx(s1, s2, d);
 452 #else
 453   Assembler::ldd(s1, s2, d);
 454 #endif
 455 }
 456 
 457 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
 458 #ifdef _LP64
 459   Assembler::ldx(a, d, offset);
 460 #else
 461   Assembler::ldd(a, d, offset);
 462 #endif
 463 }
 464 
 465 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
 466 #ifdef _LP64
 467   Assembler::stx(d, s1, s2);
 468 #else
 469   Assembler::std(d, s1, s2);
 470 #endif
 471 }
 472 
 473 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
 474 #ifdef _LP64
 475   Assembler::stx(d, s1, simm13a);
 476 #else
 477   Assembler::std(d, s1, simm13a);
 478 #endif
 479 }
 480 
 481 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
 482 #ifdef _LP64
 483   Assembler::stx(d, s1, s2);
 484 #else
 485   Assembler::std(d, s1, s2);
 486 #endif
 487 }
 488 
 489 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
 490 #ifdef _LP64
 491   Assembler::stx(d, a, offset);
 492 #else
 493   Assembler::std(d, a, offset);
 494 #endif
 495 }
 496 
 497 // Functions for isolating 64 bit shifts for LP64
 498 
 499 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
 500 #ifdef _LP64
 501   Assembler::sllx(s1, s2, d);
 502 #else
 503   Assembler::sll( s1, s2, d);
 504 #endif
 505 }
 506 
 507 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
 508 #ifdef _LP64
 509   Assembler::sllx(s1, imm6a, d);
 510 #else
 511   Assembler::sll( s1, imm6a, d);
 512 #endif
 513 }
 514 
 515 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
 516 #ifdef _LP64
 517   Assembler::srlx(s1, s2, d);
 518 #else
 519   Assembler::srl( s1, s2, d);
 520 #endif
 521 }
 522 
 523 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
 524 #ifdef _LP64
 525   Assembler::srlx(s1, imm6a, d);
 526 #else
 527   Assembler::srl( s1, imm6a, d);
 528 #endif
 529 }
 530 
 531 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 532   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
 533   else                   sll_ptr(s1, s2.as_constant(), d);
 534 }
 535 
 536 // Use the right branch for the platform
 537 
 538 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 539   if (VM_Version::v9_instructions_work())
 540     Assembler::bp(c, a, icc, p, d, rt);
 541   else
 542     Assembler::br(c, a, d, rt);
 543 }
 544 
 545 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
 546   br(c, a, p, target(L));
 547 }
 548 
 549 
 550 // Branch that tests either xcc or icc depending on the
 551 // architecture compiled (LP64 or not)
 552 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 553 #ifdef _LP64
 554     Assembler::bp(c, a, xcc, p, d, rt);
 555 #else
 556     MacroAssembler::br(c, a, p, d, rt);
 557 #endif
 558 }
 559 
 560 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
 561   brx(c, a, p, target(L));
 562 }
 563 
 564 inline void MacroAssembler::ba( Label& L ) {
 565   br(always, false, pt, L);
 566 }
 567 
 568 // Warning: V9 only functions
 569 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 570   Assembler::bp(c, a, cc, p, d, rt);
 571 }
 572 
 573 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 574   Assembler::bp(c, a, cc, p, L);
 575 }
 576 
 577 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 578   if (VM_Version::v9_instructions_work())
 579     fbp(c, a, fcc0, p, d, rt);
 580   else
 581     Assembler::fb(c, a, d, rt);
 582 }
 583 
 584 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
 585   fb(c, a, p, target(L));
 586 }
 587 
 588 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 589   Assembler::fbp(c, a, cc, p, d, rt);
 590 }
 591 
 592 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 593   Assembler::fbp(c, a, cc, p, L);
 594 }
 595 
 596 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
 597 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
 598 
 599 inline bool MacroAssembler::is_far_target(address d) {
 600   return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
 601 }
 602 
 603 // Call with a check to see if we need to deal with the added
 604 // expense of relocation and if we overflow the displacement
 605 // of the quick call instruction.
 606 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
 607 #ifdef _LP64
 608   intptr_t disp;
 609   // NULL is ok because it will be relocated later.
 610   // Must change NULL to a reachable address in order to
 611   // pass asserts here and in wdisp.
 612   if ( d == NULL )
 613     d = pc();
 614 
 615   // Is this address within range of the call instruction?
 616   // If not, use the expensive instruction sequence
 617   if (is_far_target(d)) {
 618     relocate(rt);
 619     AddressLiteral dest(d);
 620     jumpl_to(dest, O7, O7);
 621   } else {
 622     Assembler::call(d, rt);
 623   }
 624 #else
 625   Assembler::call( d, rt );
 626 #endif
 627 }
 628 
 629 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
 630   MacroAssembler::call( target(L), rt);
 631 }
 632 
 633 
 634 
 635 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
 636 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
 637 
 638 // prefetch instruction
 639 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
 640   if (VM_Version::v9_instructions_work())
 641     Assembler::bp( never, true, xcc, pt, d, rt );
 642 }
 643 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
 644 
 645 
 646 // clobbers o7 on V8!!
 647 // returns delta from gotten pc to addr after
 648 inline int MacroAssembler::get_pc( Register d ) {
 649   int x = offset();
 650   if (VM_Version::v9_instructions_work())
 651     rdpc(d);
 652   else {
 653     Label lbl;
 654     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
 655     if (d == O7)  delayed()->nop();
 656     else          delayed()->mov(O7, d);
 657     bind(lbl);
 658   }
 659   return offset() - x;
 660 }
 661 
 662 
 663 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
 664 
 665 
 666 // Loads the current PC of the following instruction as an immediate value in
 667 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
 668 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
 669   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
 670 #ifdef _LP64
 671   Unimplemented();
 672 #else
 673   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 674   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 675 #endif
 676   return thepc;
 677 }
 678 
 679 
 680 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
 681   assert_not_delayed();
 682   sethi(addrlit, d);
 683   ld(d, addrlit.low10() + offset, d);
 684 }
 685 
 686 
 687 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
 688   assert_not_delayed();
 689   sethi(addrlit, d);
 690   ld_ptr(d, addrlit.low10() + offset, d);
 691 }
 692 
 693 
 694 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
 695   assert_not_delayed();
 696   sethi(addrlit, temp);
 697   st(s, temp, addrlit.low10() + offset);
 698 }
 699 
 700 
 701 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
 702   assert_not_delayed();
 703   sethi(addrlit, temp);
 704   st_ptr(s, temp, addrlit.low10() + offset);
 705 }
 706 
 707 
 708 // This code sequence is relocatable to any address, even on LP64.
 709 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
 710   assert_not_delayed();
 711   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 712   // variable length instruction streams.
 713   patchable_sethi(addrlit, temp);
 714   jmpl(temp, addrlit.low10() + offset, d);
 715 }
 716 
 717 
 718 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
 719   jumpl_to(addrlit, temp, G0, offset);
 720 }
 721 
 722 
 723 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
 724                                              int ld_offset, int jmp_offset) {
 725   assert_not_delayed();
 726   //sethi(al);                   // sethi is caller responsibility for this one
 727   ld_ptr(a, temp, ld_offset);
 728   jmp(temp, jmp_offset);
 729 }
 730 
 731 
 732 inline void MacroAssembler::set_oop(jobject obj, Register d) {
 733   set_oop(allocate_oop_address(obj), d);
 734 }
 735 
 736 
 737 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
 738   set_oop(constant_oop_address(obj), d);
 739 }
 740 
 741 
 742 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
 743   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 744   set(obj_addr, d);
 745 }
 746 
 747 
 748 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
 749   if (a.is_register())
 750     mov(a.as_register(), d);
 751   else
 752     ld (a.as_address(),  d);
 753 }
 754 
 755 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
 756   if (a.is_register())
 757     mov(s, a.as_register());
 758   else
 759     st_ptr (s, a.as_address());         // ABI says everything is right justified.
 760 }
 761 
 762 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
 763   if (a.is_register())
 764     mov(s, a.as_register());
 765   else
 766     st_ptr (s, a.as_address());
 767 }
 768 
 769 
 770 #ifdef _LP64
 771 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
 772   if (a.is_float_register())
 773 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
 774     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
 775   else
 776     // Floats are stored in the high half of the stack entry
 777     // The low half is undefined per the ABI.
 778     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
 779 }
 780 
 781 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
 782   if (a.is_float_register())
 783 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
 784     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
 785   else
 786     stf(FloatRegisterImpl::D, s, a.as_address());
 787 }
 788 
 789 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
 790   if (a.is_register())
 791     mov(s, a.as_register());
 792   else
 793     stx(s, a.as_address());
 794 }
 795 #endif
 796 
 797 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
 798 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
 799 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
 800 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
 801 
 802 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
 803 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
 804 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
 805 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
 806 
 807 // returns if membar generates anything, obviously this code should mirror
 808 // membar below.
 809 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
 810   if( !os::is_MP() ) return false;  // Not needed on single CPU
 811   if( VM_Version::v9_instructions_work() ) {
 812     const Membar_mask_bits effective_mask =
 813         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 814     return (effective_mask != 0);
 815   } else {
 816     return true;
 817   }
 818 }
 819 
 820 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
 821   // Uniprocessors do not need memory barriers
 822   if (!os::is_MP()) return;
 823   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
 824   // 8.4.4.3, a.31 and a.50.
 825   if( VM_Version::v9_instructions_work() ) {
 826     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
 827     // of the mmask subfield of const7a that does anything that isn't done
 828     // implicitly is StoreLoad.
 829     const Membar_mask_bits effective_mask =
 830         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 831     if ( effective_mask != 0 ) {
 832       Assembler::membar( effective_mask );
 833     }
 834   } else {
 835     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
 836     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
 837     // which guarantees that all stores behave as if an stbar were issued just after
 838     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
 839     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
 840     // it can't be specified by stbar, nor have I come up with a way to simulate it.
 841     //
 842     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
 843     // space.  Put one here to be on the safe side.
 844     Assembler::ldstub(SP, 0, G0);
 845   }
 846 }
 847 
 848 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP