1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_sparc.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolderOop.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_sparc.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 #ifdef SHARK
  44 #include "compiler/compileBroker.hpp"
  45 #include "shark/sharkCompiler.hpp"
  46 #endif
  47 
  48 #define __ masm->
  49 
  50 
  51 class RegisterSaver {
  52 
  53   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
  54   // The Oregs are problematic. In the 32bit build the compiler can
  55   // have O registers live with 64 bit quantities. A window save will
  56   // cut the heads off of the registers. We have to do a very extensive
  57   // stack dance to save and restore these properly.
  58 
  59   // Note that the Oregs problem only exists if we block at either a polling
  60   // page exception a compiled code safepoint that was not originally a call
  61   // or deoptimize following one of these kinds of safepoints.
  62 
  63   // Lots of registers to save.  For all builds, a window save will preserve
  64   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
  65   // builds a window-save will preserve the %o registers.  In the LION build
  66   // we need to save the 64-bit %o registers which requires we save them
  67   // before the window-save (as then they become %i registers and get their
  68   // heads chopped off on interrupt).  We have to save some %g registers here
  69   // as well.
  70   enum {
  71     // This frame's save area.  Includes extra space for the native call:
  72     // vararg's layout space and the like.  Briefly holds the caller's
  73     // register save area.
  74     call_args_area = frame::register_save_words_sp_offset +
  75                      frame::memory_parameter_word_sp_offset*wordSize,
  76     // Make sure save locations are always 8 byte aligned.
  77     // can't use round_to because it doesn't produce compile time constant
  78     start_of_extra_save_area = ((call_args_area + 7) & ~7),
  79     g1_offset = start_of_extra_save_area, // g-regs needing saving
  80     g3_offset = g1_offset+8,
  81     g4_offset = g3_offset+8,
  82     g5_offset = g4_offset+8,
  83     o0_offset = g5_offset+8,
  84     o1_offset = o0_offset+8,
  85     o2_offset = o1_offset+8,
  86     o3_offset = o2_offset+8,
  87     o4_offset = o3_offset+8,
  88     o5_offset = o4_offset+8,
  89     start_of_flags_save_area = o5_offset+8,
  90     ccr_offset = start_of_flags_save_area,
  91     fsr_offset = ccr_offset + 8,
  92     d00_offset = fsr_offset+8,  // Start of float save area
  93     register_save_size = d00_offset+8*32
  94   };
  95 
  96 
  97   public:
  98 
  99   static int Oexception_offset() { return o0_offset; };
 100   static int G3_offset() { return g3_offset; };
 101   static int G5_offset() { return g5_offset; };
 102   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 103   static void restore_live_registers(MacroAssembler* masm);
 104 
 105   // During deoptimization only the result register need to be restored
 106   // all the other values have already been extracted.
 107 
 108   static void restore_result_registers(MacroAssembler* masm);
 109 };
 110 
 111 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 112   // Record volatile registers as callee-save values in an OopMap so their save locations will be
 113   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
 114   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
 115   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
 116   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
 117   int i;
 118   // Always make the frame size 16 byte aligned.
 119   int frame_size = round_to(additional_frame_words + register_save_size, 16);
 120   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
 121   int frame_size_in_slots = frame_size / sizeof(jint);
 122   // CodeBlob frame size is in words.
 123   *total_frame_words = frame_size / wordSize;
 124   // OopMap* map = new OopMap(*total_frame_words, 0);
 125   OopMap* map = new OopMap(frame_size_in_slots, 0);
 126 
 127 #if !defined(_LP64)
 128 
 129   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
 130   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 131   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 132   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 133   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 134   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 135   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 136 #endif /* _LP64 */
 137 
 138   __ save(SP, -frame_size, SP);
 139 
 140 #ifndef _LP64
 141   // Reload the 64 bit Oregs. Although they are now Iregs we load them
 142   // to Oregs here to avoid interrupts cutting off their heads
 143 
 144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 149   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 150 
 151   __ stx(O0, SP, o0_offset+STACK_BIAS);
 152   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
 153 
 154   __ stx(O1, SP, o1_offset+STACK_BIAS);
 155 
 156   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
 157 
 158   __ stx(O2, SP, o2_offset+STACK_BIAS);
 159   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
 160 
 161   __ stx(O3, SP, o3_offset+STACK_BIAS);
 162   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
 163 
 164   __ stx(O4, SP, o4_offset+STACK_BIAS);
 165   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
 166 
 167   __ stx(O5, SP, o5_offset+STACK_BIAS);
 168   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
 169 #endif /* _LP64 */
 170 
 171 
 172 #ifdef _LP64
 173   int debug_offset = 0;
 174 #else
 175   int debug_offset = 4;
 176 #endif
 177   // Save the G's
 178   __ stx(G1, SP, g1_offset+STACK_BIAS);
 179   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
 180 
 181   __ stx(G3, SP, g3_offset+STACK_BIAS);
 182   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
 183 
 184   __ stx(G4, SP, g4_offset+STACK_BIAS);
 185   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
 186 
 187   __ stx(G5, SP, g5_offset+STACK_BIAS);
 188   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
 189 
 190   // This is really a waste but we'll keep things as they were for now
 191   if (true) {
 192 #ifndef _LP64
 193     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
 194     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
 195     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
 196     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
 197     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
 198     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
 199     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
 200     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
 201     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
 202     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
 203 #endif /* _LP64 */
 204   }
 205 
 206 
 207   // Save the flags
 208   __ rdccr( G5 );
 209   __ stx(G5, SP, ccr_offset+STACK_BIAS);
 210   __ stxfsr(SP, fsr_offset+STACK_BIAS);
 211 
 212   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
 213   int offset = d00_offset;
 214   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 215     FloatRegister f = as_FloatRegister(i);
 216     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
 217     // Record as callee saved both halves of double registers (2 float registers).
 218     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
 219     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
 220     offset += sizeof(double);
 221   }
 222 
 223   // And we're done.
 224 
 225   return map;
 226 }
 227 
 228 
 229 // Pop the current frame and restore all the registers that we
 230 // saved.
 231 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 232 
 233   // Restore all the FP registers
 234   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 235     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
 236   }
 237 
 238   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
 239   __ wrccr (G1) ;
 240 
 241   // Restore the G's
 242   // Note that G2 (AKA GThread) must be saved and restored separately.
 243   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
 244 
 245   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 246   __ ldx(SP, g3_offset+STACK_BIAS, G3);
 247   __ ldx(SP, g4_offset+STACK_BIAS, G4);
 248   __ ldx(SP, g5_offset+STACK_BIAS, G5);
 249 
 250 
 251 #if !defined(_LP64)
 252   // Restore the 64-bit O's.
 253   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 254   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 255   __ ldx(SP, o2_offset+STACK_BIAS, O2);
 256   __ ldx(SP, o3_offset+STACK_BIAS, O3);
 257   __ ldx(SP, o4_offset+STACK_BIAS, O4);
 258   __ ldx(SP, o5_offset+STACK_BIAS, O5);
 259 
 260   // And temporarily place them in TLS
 261 
 262   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 263   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 264   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 265   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 266   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 267   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 268 #endif /* _LP64 */
 269 
 270   // Restore flags
 271 
 272   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
 273 
 274   __ restore();
 275 
 276 #if !defined(_LP64)
 277   // Now reload the 64bit Oregs after we've restore the window.
 278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 283   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 284 #endif /* _LP64 */
 285 
 286 }
 287 
 288 // Pop the current frame and restore the registers that might be holding
 289 // a result.
 290 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 291 
 292 #if !defined(_LP64)
 293   // 32bit build returns longs in G1
 294   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 295 
 296   // Retrieve the 64-bit O's.
 297   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 298   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 299   // and save to TLS
 300   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 301   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 302 #endif /* _LP64 */
 303 
 304   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
 305 
 306   __ restore();
 307 
 308 #if !defined(_LP64)
 309   // Now reload the 64bit Oregs after we've restore the window.
 310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 311   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 312 #endif /* _LP64 */
 313 
 314 }
 315 
 316 // The java_calling_convention describes stack locations as ideal slots on
 317 // a frame with no abi restrictions. Since we must observe abi restrictions
 318 // (like the placement of the register window) the slots must be biased by
 319 // the following value.
 320 static int reg2offset(VMReg r) {
 321   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 322 }
 323 
 324 // ---------------------------------------------------------------------------
 325 // Read the array of BasicTypes from a signature, and compute where the
 326 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
 327 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 328 // refer to 4-byte stack slots.  All stack slots are based off of the window
 329 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
 330 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 331 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
 332 // integer registers.  Values 64-95 are the (32-bit only) float registers.
 333 // Each 32-bit quantity is given its own number, so the integer registers
 334 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
 335 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
 336 
 337 // Register results are passed in O0-O5, for outgoing call arguments.  To
 338 // convert to incoming arguments, convert all O's to I's.  The regs array
 339 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
 340 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
 341 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
 342 // passed (used as a placeholder for the other half of longs and doubles in
 343 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
 344 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
 345 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
 346 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
 347 // same VMRegPair.
 348 
 349 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 350 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 351 // units regardless of build.
 352 
 353 
 354 // ---------------------------------------------------------------------------
 355 // The compiled Java calling convention.  The Java convention always passes
 356 // 64-bit values in adjacent aligned locations (either registers or stack),
 357 // floats in float registers and doubles in aligned float pairs.  Values are
 358 // packed in the registers.  There is no backing varargs store for values in
 359 // registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
 360 // passed in I's, because longs in I's get their heads chopped off at
 361 // interrupt).
 362 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 363                                            VMRegPair *regs,
 364                                            int total_args_passed,
 365                                            int is_outgoing) {
 366   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
 367 
 368   // Convention is to pack the first 6 int/oop args into the first 6 registers
 369   // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
 370   // into F0-F7, extras spill to the stack.  Then pad all register sets to
 371   // align.  Then put longs and doubles into the same registers as they fit,
 372   // else spill to the stack.
 373   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
 374   const int flt_reg_max = 8;
 375   //
 376   // Where 32-bit 1-reg longs start being passed
 377   // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
 378   // So make it look like we've filled all the G regs that c2 wants to use.
 379   Register g_reg = TieredCompilation ? noreg : G1;
 380 
 381   // Count int/oop and float args.  See how many stack slots we'll need and
 382   // where the longs & doubles will go.
 383   int int_reg_cnt   = 0;
 384   int flt_reg_cnt   = 0;
 385   // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
 386   // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
 387   int stk_reg_pairs = 0;
 388   for (int i = 0; i < total_args_passed; i++) {
 389     switch (sig_bt[i]) {
 390     case T_LONG:                // LP64, longs compete with int args
 391       assert(sig_bt[i+1] == T_VOID, "");
 392 #ifdef _LP64
 393       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
 394 #endif
 395       break;
 396     case T_OBJECT:
 397     case T_ARRAY:
 398     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 399       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
 400 #ifndef _LP64
 401       else                            stk_reg_pairs++;
 402 #endif
 403       break;
 404     case T_INT:
 405     case T_SHORT:
 406     case T_CHAR:
 407     case T_BYTE:
 408     case T_BOOLEAN:
 409       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
 410       else                            stk_reg_pairs++;
 411       break;
 412     case T_FLOAT:
 413       if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
 414       else                            stk_reg_pairs++;
 415       break;
 416     case T_DOUBLE:
 417       assert(sig_bt[i+1] == T_VOID, "");
 418       break;
 419     case T_VOID:
 420       break;
 421     default:
 422       ShouldNotReachHere();
 423     }
 424   }
 425 
 426   // This is where the longs/doubles start on the stack.
 427   stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
 428 
 429   int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
 430   int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
 431 
 432   // int stk_reg = frame::register_save_words*(wordSize>>2);
 433   // int stk_reg = SharedRuntime::out_preserve_stack_slots();
 434   int stk_reg = 0;
 435   int int_reg = 0;
 436   int flt_reg = 0;
 437 
 438   // Now do the signature layout
 439   for (int i = 0; i < total_args_passed; i++) {
 440     switch (sig_bt[i]) {
 441     case T_INT:
 442     case T_SHORT:
 443     case T_CHAR:
 444     case T_BYTE:
 445     case T_BOOLEAN:
 446 #ifndef _LP64
 447     case T_OBJECT:
 448     case T_ARRAY:
 449     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 450 #endif // _LP64
 451       if (int_reg < int_reg_max) {
 452         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 453         regs[i].set1(r->as_VMReg());
 454       } else {
 455         regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
 456       }
 457       break;
 458 
 459 #ifdef _LP64
 460     case T_OBJECT:
 461     case T_ARRAY:
 462     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 463       if (int_reg < int_reg_max) {
 464         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 465         regs[i].set2(r->as_VMReg());
 466       } else {
 467         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 468         stk_reg_pairs += 2;
 469       }
 470       break;
 471 #endif // _LP64
 472 
 473     case T_LONG:
 474       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
 475 #ifdef _LP64
 476         if (int_reg < int_reg_max) {
 477           Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 478           regs[i].set2(r->as_VMReg());
 479         } else {
 480           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 481           stk_reg_pairs += 2;
 482         }
 483 #else
 484 #ifdef COMPILER2
 485         // For 32-bit build, can't pass longs in O-regs because they become
 486         // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
 487         // spare and available.  This convention isn't used by the Sparc ABI or
 488         // anywhere else. If we're tiered then we don't use G-regs because c1
 489         // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
 490         // G0: zero
 491         // G1: 1st Long arg
 492         // G2: global allocated to TLS
 493         // G3: used in inline cache check
 494         // G4: 2nd Long arg
 495         // G5: used in inline cache check
 496         // G6: used by OS
 497         // G7: used by OS
 498 
 499         if (g_reg == G1) {
 500           regs[i].set2(G1->as_VMReg()); // This long arg in G1
 501           g_reg = G4;                  // Where the next arg goes
 502         } else if (g_reg == G4) {
 503           regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
 504           g_reg = noreg;               // No more longs in registers
 505         } else {
 506           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 507           stk_reg_pairs += 2;
 508         }
 509 #else // COMPILER2
 510         if (int_reg_pairs + 1 < int_reg_max) {
 511           if (is_outgoing) {
 512             regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
 513           } else {
 514             regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
 515           }
 516           int_reg_pairs += 2;
 517         } else {
 518           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 519           stk_reg_pairs += 2;
 520         }
 521 #endif // COMPILER2
 522 #endif // _LP64
 523       break;
 524 
 525     case T_FLOAT:
 526       if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
 527       else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
 528       break;
 529     case T_DOUBLE:
 530       assert(sig_bt[i+1] == T_VOID, "expecting half");
 531       if (flt_reg_pairs + 1 < flt_reg_max) {
 532         regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
 533         flt_reg_pairs += 2;
 534       } else {
 535         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 536         stk_reg_pairs += 2;
 537       }
 538       break;
 539     case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
 540     default:
 541       ShouldNotReachHere();
 542     }
 543   }
 544 
 545   // retun the amount of stack space these arguments will need.
 546   return stk_reg_pairs;
 547 
 548 }
 549 
 550 // Helper class mostly to avoid passing masm everywhere, and handle
 551 // store displacement overflow logic.
 552 class AdapterGenerator {
 553   MacroAssembler *masm;
 554   Register Rdisp;
 555   void set_Rdisp(Register r)  { Rdisp = r; }
 556 
 557   void patch_callers_callsite();
 558 
 559   // base+st_off points to top of argument
 560   int arg_offset(const int st_off) { return st_off; }
 561   int next_arg_offset(const int st_off) {
 562     return st_off - Interpreter::stackElementSize;
 563   }
 564 
 565   // Argument slot values may be loaded first into a register because
 566   // they might not fit into displacement.
 567   RegisterOrConstant arg_slot(const int st_off);
 568   RegisterOrConstant next_arg_slot(const int st_off);
 569 
 570   // Stores long into offset pointed to by base
 571   void store_c2i_long(Register r, Register base,
 572                       const int st_off, bool is_stack);
 573   void store_c2i_object(Register r, Register base,
 574                         const int st_off);
 575   void store_c2i_int(Register r, Register base,
 576                      const int st_off);
 577   void store_c2i_double(VMReg r_2,
 578                         VMReg r_1, Register base, const int st_off);
 579   void store_c2i_float(FloatRegister f, Register base,
 580                        const int st_off);
 581 
 582  public:
 583   void gen_c2i_adapter(int total_args_passed,
 584                               // VMReg max_arg,
 585                               int comp_args_on_stack, // VMRegStackSlots
 586                               const BasicType *sig_bt,
 587                               const VMRegPair *regs,
 588                               Label& skip_fixup);
 589   void gen_i2c_adapter(int total_args_passed,
 590                               // VMReg max_arg,
 591                               int comp_args_on_stack, // VMRegStackSlots
 592                               const BasicType *sig_bt,
 593                               const VMRegPair *regs);
 594 
 595   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
 596 };
 597 
 598 
 599 // Patch the callers callsite with entry to compiled code if it exists.
 600 void AdapterGenerator::patch_callers_callsite() {
 601   Label L;
 602   __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
 603   __ br_null(G3_scratch, false, Assembler::pt, L);
 604   // Schedule the branch target address early.
 605   __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
 606   // Call into the VM to patch the caller, then jump to compiled callee
 607   __ save_frame(4);     // Args in compiled layout; do not blow them
 608 
 609   // Must save all the live Gregs the list is:
 610   // G1: 1st Long arg (32bit build)
 611   // G2: global allocated to TLS
 612   // G3: used in inline cache check (scratch)
 613   // G4: 2nd Long arg (32bit build);
 614   // G5: used in inline cache check (methodOop)
 615 
 616   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
 617 
 618 #ifdef _LP64
 619   // mov(s,d)
 620   __ mov(G1, L1);
 621   __ mov(G4, L4);
 622   __ mov(G5_method, L5);
 623   __ mov(G5_method, O0);         // VM needs target method
 624   __ mov(I7, O1);                // VM needs caller's callsite
 625   // Must be a leaf call...
 626   // can be very far once the blob has been relocated
 627   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
 628   __ relocate(relocInfo::runtime_call_type);
 629   __ jumpl_to(dest, O7, O7);
 630   __ delayed()->mov(G2_thread, L7_thread_cache);
 631   __ mov(L7_thread_cache, G2_thread);
 632   __ mov(L1, G1);
 633   __ mov(L4, G4);
 634   __ mov(L5, G5_method);
 635 #else
 636   __ stx(G1, FP, -8 + STACK_BIAS);
 637   __ stx(G4, FP, -16 + STACK_BIAS);
 638   __ mov(G5_method, L5);
 639   __ mov(G5_method, O0);         // VM needs target method
 640   __ mov(I7, O1);                // VM needs caller's callsite
 641   // Must be a leaf call...
 642   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
 643   __ delayed()->mov(G2_thread, L7_thread_cache);
 644   __ mov(L7_thread_cache, G2_thread);
 645   __ ldx(FP, -8 + STACK_BIAS, G1);
 646   __ ldx(FP, -16 + STACK_BIAS, G4);
 647   __ mov(L5, G5_method);
 648   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
 649 #endif /* _LP64 */
 650 
 651   __ restore();      // Restore args
 652   __ bind(L);
 653 }
 654 
 655 
 656 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
 657   RegisterOrConstant roc(arg_offset(st_off));
 658   return __ ensure_simm13_or_reg(roc, Rdisp);
 659 }
 660 
 661 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
 662   RegisterOrConstant roc(next_arg_offset(st_off));
 663   return __ ensure_simm13_or_reg(roc, Rdisp);
 664 }
 665 
 666 
 667 // Stores long into offset pointed to by base
 668 void AdapterGenerator::store_c2i_long(Register r, Register base,
 669                                       const int st_off, bool is_stack) {
 670 #ifdef _LP64
 671   // In V9, longs are given 2 64-bit slots in the interpreter, but the
 672   // data is passed in only 1 slot.
 673   __ stx(r, base, next_arg_slot(st_off));
 674 #else
 675 #ifdef COMPILER2
 676   // Misaligned store of 64-bit data
 677   __ stw(r, base, arg_slot(st_off));    // lo bits
 678   __ srlx(r, 32, r);
 679   __ stw(r, base, next_arg_slot(st_off));  // hi bits
 680 #else
 681   if (is_stack) {
 682     // Misaligned store of 64-bit data
 683     __ stw(r, base, arg_slot(st_off));    // lo bits
 684     __ srlx(r, 32, r);
 685     __ stw(r, base, next_arg_slot(st_off));  // hi bits
 686   } else {
 687     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
 688     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
 689   }
 690 #endif // COMPILER2
 691 #endif // _LP64
 692 }
 693 
 694 void AdapterGenerator::store_c2i_object(Register r, Register base,
 695                       const int st_off) {
 696   __ st_ptr (r, base, arg_slot(st_off));
 697 }
 698 
 699 void AdapterGenerator::store_c2i_int(Register r, Register base,
 700                    const int st_off) {
 701   __ st (r, base, arg_slot(st_off));
 702 }
 703 
 704 // Stores into offset pointed to by base
 705 void AdapterGenerator::store_c2i_double(VMReg r_2,
 706                       VMReg r_1, Register base, const int st_off) {
 707 #ifdef _LP64
 708   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
 709   // data is passed in only 1 slot.
 710   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 711 #else
 712   // Need to marshal 64-bit value from misaligned Lesp loads
 713   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 714   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
 715 #endif
 716 }
 717 
 718 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
 719                                        const int st_off) {
 720   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
 721 }
 722 
 723 void AdapterGenerator::gen_c2i_adapter(
 724                             int total_args_passed,
 725                             // VMReg max_arg,
 726                             int comp_args_on_stack, // VMRegStackSlots
 727                             const BasicType *sig_bt,
 728                             const VMRegPair *regs,
 729                             Label& skip_fixup) {
 730 
 731   // Before we get into the guts of the C2I adapter, see if we should be here
 732   // at all.  We've come from compiled code and are attempting to jump to the
 733   // interpreter, which means the caller made a static call to get here
 734   // (vcalls always get a compiled target if there is one).  Check for a
 735   // compiled target.  If there is one, we need to patch the caller's call.
 736   // However we will run interpreted if we come thru here. The next pass
 737   // thru the call site will run compiled. If we ran compiled here then
 738   // we can (theorectically) do endless i2c->c2i->i2c transitions during
 739   // deopt/uncommon trap cycles. If we always go interpreted here then
 740   // we can have at most one and don't need to play any tricks to keep
 741   // from endlessly growing the stack.
 742   //
 743   // Actually if we detected that we had an i2c->c2i transition here we
 744   // ought to be able to reset the world back to the state of the interpreted
 745   // call and not bother building another interpreter arg area. We don't
 746   // do that at this point.
 747 
 748   patch_callers_callsite();
 749 
 750   __ bind(skip_fixup);
 751 
 752   // Since all args are passed on the stack, total_args_passed*wordSize is the
 753   // space we need.  Add in varargs area needed by the interpreter. Round up
 754   // to stack alignment.
 755   const int arg_size = total_args_passed * Interpreter::stackElementSize;
 756   const int varargs_area =
 757                  (frame::varargs_offset - frame::register_save_words)*wordSize;
 758   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
 759 
 760   int bias = STACK_BIAS;
 761   const int interp_arg_offset = frame::varargs_offset*wordSize +
 762                         (total_args_passed-1)*Interpreter::stackElementSize;
 763 
 764   Register base = SP;
 765 
 766 #ifdef _LP64
 767   // In the 64bit build because of wider slots and STACKBIAS we can run
 768   // out of bits in the displacement to do loads and stores.  Use g3 as
 769   // temporary displacement.
 770   if (! __ is_simm13(extraspace)) {
 771     __ set(extraspace, G3_scratch);
 772     __ sub(SP, G3_scratch, SP);
 773   } else {
 774     __ sub(SP, extraspace, SP);
 775   }
 776   set_Rdisp(G3_scratch);
 777 #else
 778   __ sub(SP, extraspace, SP);
 779 #endif // _LP64
 780 
 781   // First write G1 (if used) to where ever it must go
 782   for (int i=0; i<total_args_passed; i++) {
 783     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
 784     VMReg r_1 = regs[i].first();
 785     VMReg r_2 = regs[i].second();
 786     if (r_1 == G1_scratch->as_VMReg()) {
 787       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
 788         store_c2i_object(G1_scratch, base, st_off);
 789       } else if (sig_bt[i] == T_LONG) {
 790         assert(!TieredCompilation, "should not use register args for longs");
 791         store_c2i_long(G1_scratch, base, st_off, false);
 792       } else {
 793         store_c2i_int(G1_scratch, base, st_off);
 794       }
 795     }
 796   }
 797 
 798   // Now write the args into the outgoing interpreter space
 799   for (int i=0; i<total_args_passed; i++) {
 800     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
 801     VMReg r_1 = regs[i].first();
 802     VMReg r_2 = regs[i].second();
 803     if (!r_1->is_valid()) {
 804       assert(!r_2->is_valid(), "");
 805       continue;
 806     }
 807     // Skip G1 if found as we did it first in order to free it up
 808     if (r_1 == G1_scratch->as_VMReg()) {
 809       continue;
 810     }
 811 #ifdef ASSERT
 812     bool G1_forced = false;
 813 #endif // ASSERT
 814     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
 815 #ifdef _LP64
 816       Register ld_off = Rdisp;
 817       __ set(reg2offset(r_1) + extraspace + bias, ld_off);
 818 #else
 819       int ld_off = reg2offset(r_1) + extraspace + bias;
 820 #endif // _LP64
 821 #ifdef ASSERT
 822       G1_forced = true;
 823 #endif // ASSERT
 824       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
 825       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
 826       else                  __ ldx(base, ld_off, G1_scratch);
 827     }
 828 
 829     if (r_1->is_Register()) {
 830       Register r = r_1->as_Register()->after_restore();
 831       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
 832         store_c2i_object(r, base, st_off);
 833       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 834 #ifndef _LP64
 835         if (TieredCompilation) {
 836           assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
 837         }
 838 #endif // _LP64
 839         store_c2i_long(r, base, st_off, r_2->is_stack());
 840       } else {
 841         store_c2i_int(r, base, st_off);
 842       }
 843     } else {
 844       assert(r_1->is_FloatRegister(), "");
 845       if (sig_bt[i] == T_FLOAT) {
 846         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
 847       } else {
 848         assert(sig_bt[i] == T_DOUBLE, "wrong type");
 849         store_c2i_double(r_2, r_1, base, st_off);
 850       }
 851     }
 852   }
 853 
 854 #ifdef _LP64
 855   // Need to reload G3_scratch, used for temporary displacements.
 856   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
 857 
 858   // Pass O5_savedSP as an argument to the interpreter.
 859   // The interpreter will restore SP to this value before returning.
 860   __ set(extraspace, G1);
 861   __ add(SP, G1, O5_savedSP);
 862 #else
 863   // Pass O5_savedSP as an argument to the interpreter.
 864   // The interpreter will restore SP to this value before returning.
 865   __ add(SP, extraspace, O5_savedSP);
 866 #endif // _LP64
 867 
 868   __ mov((frame::varargs_offset)*wordSize -
 869          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
 870   // Jump to the interpreter just as if interpreter was doing it.
 871   __ jmpl(G3_scratch, 0, G0);
 872   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
 873   // (really L0) is in use by the compiled frame as a generic temp.  However,
 874   // the interpreter does not know where its args are without some kind of
 875   // arg pointer being passed in.  Pass it in Gargs.
 876   __ delayed()->add(SP, G1, Gargs);
 877 }
 878 
 879 void AdapterGenerator::gen_i2c_adapter(
 880                             int total_args_passed,
 881                             // VMReg max_arg,
 882                             int comp_args_on_stack, // VMRegStackSlots
 883                             const BasicType *sig_bt,
 884                             const VMRegPair *regs) {
 885 
 886   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
 887   // layout.  Lesp was saved by the calling I-frame and will be restored on
 888   // return.  Meanwhile, outgoing arg space is all owned by the callee
 889   // C-frame, so we can mangle it at will.  After adjusting the frame size,
 890   // hoist register arguments and repack other args according to the compiled
 891   // code convention.  Finally, end in a jump to the compiled code.  The entry
 892   // point address is the start of the buffer.
 893 
 894   // We will only enter here from an interpreted frame and never from after
 895   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 896   // race and use a c2i we will remain interpreted for the race loser(s).
 897   // This removes all sorts of headaches on the x86 side and also eliminates
 898   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 899 
 900   // As you can see from the list of inputs & outputs there are not a lot
 901   // of temp registers to work with: mostly G1, G3 & G4.
 902 
 903   // Inputs:
 904   // G2_thread      - TLS
 905   // G5_method      - Method oop
 906   // G4 (Gargs)     - Pointer to interpreter's args
 907   // O0..O4         - free for scratch
 908   // O5_savedSP     - Caller's saved SP, to be restored if needed
 909   // O6             - Current SP!
 910   // O7             - Valid return address
 911   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 912 
 913   // Outputs:
 914   // G2_thread      - TLS
 915   // G1, G4         - Outgoing long args in 32-bit build
 916   // O0-O5          - Outgoing args in compiled layout
 917   // O6             - Adjusted or restored SP
 918   // O7             - Valid return address
 919   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 920   // F0-F7          - more outgoing args
 921 
 922 
 923   // Gargs is the incoming argument base, and also an outgoing argument.
 924   __ sub(Gargs, BytesPerWord, Gargs);
 925 
 926   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
 927   // WITH O7 HOLDING A VALID RETURN PC
 928   //
 929   // |              |
 930   // :  java stack  :
 931   // |              |
 932   // +--------------+ <--- start of outgoing args
 933   // |   receiver   |   |
 934   // : rest of args :   |---size is java-arg-words
 935   // |              |   |
 936   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
 937   // |              |   |
 938   // :    unused    :   |---Space for max Java stack, plus stack alignment
 939   // |              |   |
 940   // +--------------+ <--- SP + 16*wordsize
 941   // |              |
 942   // :    window    :
 943   // |              |
 944   // +--------------+ <--- SP
 945 
 946   // WE REPACK THE STACK.  We use the common calling convention layout as
 947   // discovered by calling SharedRuntime::calling_convention.  We assume it
 948   // causes an arbitrary shuffle of memory, which may require some register
 949   // temps to do the shuffle.  We hope for (and optimize for) the case where
 950   // temps are not needed.  We may have to resize the stack slightly, in case
 951   // we need alignment padding (32-bit interpreter can pass longs & doubles
 952   // misaligned, but the compilers expect them aligned).
 953   //
 954   // |              |
 955   // :  java stack  :
 956   // |              |
 957   // +--------------+ <--- start of outgoing args
 958   // |  pad, align  |   |
 959   // +--------------+   |
 960   // | ints, floats |   |---Outgoing stack args, packed low.
 961   // +--------------+   |   First few args in registers.
 962   // :   doubles    :   |
 963   // |   longs      |   |
 964   // +--------------+ <--- SP' + 16*wordsize
 965   // |              |
 966   // :    window    :
 967   // |              |
 968   // +--------------+ <--- SP'
 969 
 970   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
 971   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
 972   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
 973 
 974   // Cut-out for having no stack args.  Since up to 6 args are passed
 975   // in registers, we will commonly have no stack args.
 976   if (comp_args_on_stack > 0) {
 977 
 978     // Convert VMReg stack slots to words.
 979     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 980     // Round up to miminum stack alignment, in wordSize
 981     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 982     // Now compute the distance from Lesp to SP.  This calculation does not
 983     // include the space for total_args_passed because Lesp has not yet popped
 984     // the arguments.
 985     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
 986   }
 987 
 988   // Will jump to the compiled code just as if compiled code was doing it.
 989   // Pre-load the register-jump target early, to schedule it better.
 990   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
 991 
 992   // Now generate the shuffle code.  Pick up all register args and move the
 993   // rest through G1_scratch.
 994   for (int i=0; i<total_args_passed; i++) {
 995     if (sig_bt[i] == T_VOID) {
 996       // Longs and doubles are passed in native word order, but misaligned
 997       // in the 32-bit build.
 998       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 999       continue;
1000     }
1001 
1002     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
1003     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
1004     // ldx/lddf optimizations.
1005 
1006     // Load in argument order going down.
1007     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1008     set_Rdisp(G1_scratch);
1009 
1010     VMReg r_1 = regs[i].first();
1011     VMReg r_2 = regs[i].second();
1012     if (!r_1->is_valid()) {
1013       assert(!r_2->is_valid(), "");
1014       continue;
1015     }
1016     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
1017       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
1018       if (r_2->is_valid()) r_2 = r_1->next();
1019     }
1020     if (r_1->is_Register()) {  // Register argument
1021       Register r = r_1->as_Register()->after_restore();
1022       if (!r_2->is_valid()) {
1023         __ ld(Gargs, arg_slot(ld_off), r);
1024       } else {
1025 #ifdef _LP64
1026         // In V9, longs are given 2 64-bit slots in the interpreter, but the
1027         // data is passed in only 1 slot.
1028         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
1029               next_arg_slot(ld_off) : arg_slot(ld_off);
1030         __ ldx(Gargs, slot, r);
1031 #else
1032         // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
1033         // stack shuffle.  Load the first 2 longs into G1/G4 later.
1034 #endif
1035       }
1036     } else {
1037       assert(r_1->is_FloatRegister(), "");
1038       if (!r_2->is_valid()) {
1039         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
1040       } else {
1041 #ifdef _LP64
1042         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
1043         // data is passed in only 1 slot.  This code also handles longs that
1044         // are passed on the stack, but need a stack-to-stack move through a
1045         // spare float register.
1046         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
1047               next_arg_slot(ld_off) : arg_slot(ld_off);
1048         __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
1049 #else
1050         // Need to marshal 64-bit value from misaligned Lesp loads
1051         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
1052         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
1053 #endif
1054       }
1055     }
1056     // Was the argument really intended to be on the stack, but was loaded
1057     // into F8/F9?
1058     if (regs[i].first()->is_stack()) {
1059       assert(r_1->as_FloatRegister() == F8, "fix this code");
1060       // Convert stack slot to an SP offset
1061       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
1062       // Store down the shuffled stack word.  Target address _is_ aligned.
1063       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
1064       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
1065       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
1066     }
1067   }
1068   bool made_space = false;
1069 #ifndef _LP64
1070   // May need to pick up a few long args in G1/G4
1071   bool g4_crushed = false;
1072   bool g3_crushed = false;
1073   for (int i=0; i<total_args_passed; i++) {
1074     if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
1075       // Load in argument order going down
1076       int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1077       // Need to marshal 64-bit value from misaligned Lesp loads
1078       Register r = regs[i].first()->as_Register()->after_restore();
1079       if (r == G1 || r == G4) {
1080         assert(!g4_crushed, "ordering problem");
1081         if (r == G4){
1082           g4_crushed = true;
1083           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1084           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1085         } else {
1086           // better schedule this way
1087           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1088           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1089         }
1090         g3_crushed = true;
1091         __ sllx(r, 32, r);
1092         __ or3(G3_scratch, r, r);
1093       } else {
1094         assert(r->is_out(), "longs passed in two O registers");
1095         __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
1096         __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
1097       }
1098     }
1099   }
1100 #endif
1101 
1102   // Jump to the compiled code just as if compiled code was doing it.
1103   //
1104 #ifndef _LP64
1105     if (g3_crushed) {
1106       // Rats load was wasted, at least it is in cache...
1107       __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
1108     }
1109 #endif /* _LP64 */
1110 
1111     // 6243940 We might end up in handle_wrong_method if
1112     // the callee is deoptimized as we race thru here. If that
1113     // happens we don't want to take a safepoint because the
1114     // caller frame will look interpreted and arguments are now
1115     // "compiled" so it is much better to make this transition
1116     // invisible to the stack walking code. Unfortunately if
1117     // we try and find the callee by normal means a safepoint
1118     // is possible. So we stash the desired callee in the thread
1119     // and the vm will find there should this case occur.
1120     Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1121     __ st_ptr(G5_method, callee_target_addr);
1122 
1123     if (StressNonEntrant) {
1124       // Open a big window for deopt failure
1125       __ save_frame(0);
1126       __ mov(G0, L0);
1127       Label loop;
1128       __ bind(loop);
1129       __ sub(L0, 1, L0);
1130       __ br_null_short(L0, Assembler::pt, loop);
1131 
1132       __ restore();
1133     }
1134 
1135 
1136     __ jmpl(G3, 0, G0);
1137     __ delayed()->nop();
1138 }
1139 
1140 // ---------------------------------------------------------------
1141 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1142                                                             int total_args_passed,
1143                                                             // VMReg max_arg,
1144                                                             int comp_args_on_stack, // VMRegStackSlots
1145                                                             const BasicType *sig_bt,
1146                                                             const VMRegPair *regs,
1147                                                             AdapterFingerPrint* fingerprint) {
1148   address i2c_entry = __ pc();
1149 
1150   AdapterGenerator agen(masm);
1151 
1152   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1153 
1154 
1155   // -------------------------------------------------------------------------
1156   // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
1157   // args start out packed in the compiled layout.  They need to be unpacked
1158   // into the interpreter layout.  This will almost always require some stack
1159   // space.  We grow the current (compiled) stack, then repack the args.  We
1160   // finally end in a jump to the generic interpreter entry point.  On exit
1161   // from the interpreter, the interpreter will restore our SP (lest the
1162   // compiled code, which relys solely on SP and not FP, get sick).
1163 
1164   address c2i_unverified_entry = __ pc();
1165   Label skip_fixup;
1166   {
1167 #if !defined(_LP64) && defined(COMPILER2)
1168     Register R_temp   = L0;   // another scratch register
1169 #else
1170     Register R_temp   = G1;   // another scratch register
1171 #endif
1172 
1173     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1174 
1175     __ verify_oop(O0);
1176     __ verify_oop(G5_method);
1177     __ load_klass(O0, G3_scratch);
1178     __ verify_oop(G3_scratch);
1179 
1180 #if !defined(_LP64) && defined(COMPILER2)
1181     __ save(SP, -frame::register_save_words*wordSize, SP);
1182     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1183     __ verify_oop(R_temp);
1184     __ cmp(G3_scratch, R_temp);
1185     __ restore();
1186 #else
1187     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1188     __ verify_oop(R_temp);
1189     __ cmp(G3_scratch, R_temp);
1190 #endif
1191 
1192     Label ok, ok2;
1193     __ brx(Assembler::equal, false, Assembler::pt, ok);
1194     __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
1195     __ jump_to(ic_miss, G3_scratch);
1196     __ delayed()->nop();
1197 
1198     __ bind(ok);
1199     // Method might have been compiled since the call site was patched to
1200     // interpreted if that is the case treat it as a miss so we can get
1201     // the call site corrected.
1202     __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
1203     __ bind(ok2);
1204     __ br_null(G3_scratch, false, Assembler::pt, skip_fixup);
1205     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
1206     __ jump_to(ic_miss, G3_scratch);
1207     __ delayed()->nop();
1208 
1209   }
1210 
1211   address c2i_entry = __ pc();
1212 
1213   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1214 
1215   __ flush();
1216   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1217 
1218 }
1219 
1220 // Helper function for native calling conventions
1221 static VMReg int_stk_helper( int i ) {
1222   // Bias any stack based VMReg we get by ignoring the window area
1223   // but not the register parameter save area.
1224   //
1225   // This is strange for the following reasons. We'd normally expect
1226   // the calling convention to return an VMReg for a stack slot
1227   // completely ignoring any abi reserved area. C2 thinks of that
1228   // abi area as only out_preserve_stack_slots. This does not include
1229   // the area allocated by the C abi to store down integer arguments
1230   // because the java calling convention does not use it. So
1231   // since c2 assumes that there are only out_preserve_stack_slots
1232   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1233   // location the c calling convention must add in this bias amount
1234   // to make up for the fact that the out_preserve_stack_slots is
1235   // insufficient for C calls. What a mess. I sure hope those 6
1236   // stack words were worth it on every java call!
1237 
1238   // Another way of cleaning this up would be for out_preserve_stack_slots
1239   // to take a parameter to say whether it was C or java calling conventions.
1240   // Then things might look a little better (but not much).
1241 
1242   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1243   if( mem_parm_offset < 0 ) {
1244     return as_oRegister(i)->as_VMReg();
1245   } else {
1246     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1247     // Now return a biased offset that will be correct when out_preserve_slots is added back in
1248     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1249   }
1250 }
1251 
1252 
1253 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1254                                          VMRegPair *regs,
1255                                          int total_args_passed) {
1256 
1257     // Return the number of VMReg stack_slots needed for the args.
1258     // This value does not include an abi space (like register window
1259     // save area).
1260 
1261     // The native convention is V8 if !LP64
1262     // The LP64 convention is the V9 convention which is slightly more sane.
1263 
1264     // We return the amount of VMReg stack slots we need to reserve for all
1265     // the arguments NOT counting out_preserve_stack_slots. Since we always
1266     // have space for storing at least 6 registers to memory we start with that.
1267     // See int_stk_helper for a further discussion.
1268     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1269 
1270 #ifdef _LP64
1271     // V9 convention: All things "as-if" on double-wide stack slots.
1272     // Hoist any int/ptr/long's in the first 6 to int regs.
1273     // Hoist any flt/dbl's in the first 16 dbl regs.
1274     int j = 0;                  // Count of actual args, not HALVES
1275     for( int i=0; i<total_args_passed; i++, j++ ) {
1276       switch( sig_bt[i] ) {
1277       case T_BOOLEAN:
1278       case T_BYTE:
1279       case T_CHAR:
1280       case T_INT:
1281       case T_SHORT:
1282         regs[i].set1( int_stk_helper( j ) ); break;
1283       case T_LONG:
1284         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1285       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1286       case T_ARRAY:
1287       case T_OBJECT:
1288         regs[i].set2( int_stk_helper( j ) );
1289         break;
1290       case T_FLOAT:
1291         if ( j < 16 ) {
1292           // V9ism: floats go in ODD registers
1293           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1294         } else {
1295           // V9ism: floats go in ODD stack slot
1296           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1297         }
1298         break;
1299       case T_DOUBLE:
1300         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1301         if ( j < 16 ) {
1302           // V9ism: doubles go in EVEN/ODD regs
1303           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1304         } else {
1305           // V9ism: doubles go in EVEN/ODD stack slots
1306           regs[i].set2(VMRegImpl::stack2reg(j<<1));
1307         }
1308         break;
1309       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
1310       default:
1311         ShouldNotReachHere();
1312       }
1313       if (regs[i].first()->is_stack()) {
1314         int off =  regs[i].first()->reg2stack();
1315         if (off > max_stack_slots) max_stack_slots = off;
1316       }
1317       if (regs[i].second()->is_stack()) {
1318         int off =  regs[i].second()->reg2stack();
1319         if (off > max_stack_slots) max_stack_slots = off;
1320       }
1321     }
1322 
1323 #else // _LP64
1324     // V8 convention: first 6 things in O-regs, rest on stack.
1325     // Alignment is willy-nilly.
1326     for( int i=0; i<total_args_passed; i++ ) {
1327       switch( sig_bt[i] ) {
1328       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1329       case T_ARRAY:
1330       case T_BOOLEAN:
1331       case T_BYTE:
1332       case T_CHAR:
1333       case T_FLOAT:
1334       case T_INT:
1335       case T_OBJECT:
1336       case T_SHORT:
1337         regs[i].set1( int_stk_helper( i ) );
1338         break;
1339       case T_DOUBLE:
1340       case T_LONG:
1341         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1342         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1343         break;
1344       case T_VOID: regs[i].set_bad(); break;
1345       default:
1346         ShouldNotReachHere();
1347       }
1348       if (regs[i].first()->is_stack()) {
1349         int off =  regs[i].first()->reg2stack();
1350         if (off > max_stack_slots) max_stack_slots = off;
1351       }
1352       if (regs[i].second()->is_stack()) {
1353         int off =  regs[i].second()->reg2stack();
1354         if (off > max_stack_slots) max_stack_slots = off;
1355       }
1356     }
1357 #endif // _LP64
1358 
1359   return round_to(max_stack_slots + 1, 2);
1360 
1361 }
1362 
1363 
1364 // ---------------------------------------------------------------------------
1365 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1366   switch (ret_type) {
1367   case T_FLOAT:
1368     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1369     break;
1370   case T_DOUBLE:
1371     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1372     break;
1373   }
1374 }
1375 
1376 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1377   switch (ret_type) {
1378   case T_FLOAT:
1379     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1380     break;
1381   case T_DOUBLE:
1382     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1383     break;
1384   }
1385 }
1386 
1387 // Check and forward and pending exception.  Thread is stored in
1388 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1389 // is no exception handler.  We merely pop this frame off and throw the
1390 // exception in the caller's frame.
1391 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1392   Label L;
1393   __ br_null(Rex_oop, false, Assembler::pt, L, false);
1394   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1395   // Since this is a native call, we *know* the proper exception handler
1396   // without calling into the VM: it's the empty function.  Just pop this
1397   // frame and then jump to forward_exception_entry; O7 will contain the
1398   // native caller's return PC.
1399  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1400   __ jump_to(exception_entry, G3_scratch);
1401   __ delayed()->restore();      // Pop this frame off.
1402   __ bind(L);
1403 }
1404 
1405 // A simple move of integer like type
1406 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1407   if (src.first()->is_stack()) {
1408     if (dst.first()->is_stack()) {
1409       // stack to stack
1410       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1411       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1412     } else {
1413       // stack to reg
1414       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1415     }
1416   } else if (dst.first()->is_stack()) {
1417     // reg to stack
1418     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1419   } else {
1420     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1421   }
1422 }
1423 
1424 // On 64 bit we will store integer like items to the stack as
1425 // 64 bits items (sparc abi) even though java would only store
1426 // 32bits for a parameter. On 32bit it will simply be 32 bits
1427 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1428 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1429   if (src.first()->is_stack()) {
1430     if (dst.first()->is_stack()) {
1431       // stack to stack
1432       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1433       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1434     } else {
1435       // stack to reg
1436       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1437     }
1438   } else if (dst.first()->is_stack()) {
1439     // reg to stack
1440     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1441   } else {
1442     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1443   }
1444 }
1445 
1446 
1447 // An oop arg. Must pass a handle not the oop itself
1448 static void object_move(MacroAssembler* masm,
1449                         OopMap* map,
1450                         int oop_handle_offset,
1451                         int framesize_in_slots,
1452                         VMRegPair src,
1453                         VMRegPair dst,
1454                         bool is_receiver,
1455                         int* receiver_offset) {
1456 
1457   // must pass a handle. First figure out the location we use as a handle
1458 
1459   if (src.first()->is_stack()) {
1460     // Oop is already on the stack
1461     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1462     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1463     __ ld_ptr(rHandle, 0, L4);
1464 #ifdef _LP64
1465     __ movr( Assembler::rc_z, L4, G0, rHandle );
1466 #else
1467     __ tst( L4 );
1468     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1469 #endif
1470     if (dst.first()->is_stack()) {
1471       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1472     }
1473     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1474     if (is_receiver) {
1475       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1476     }
1477     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1478   } else {
1479     // Oop is in an input register pass we must flush it to the stack
1480     const Register rOop = src.first()->as_Register();
1481     const Register rHandle = L5;
1482     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1483     int offset = oop_slot*VMRegImpl::stack_slot_size;
1484     Label skip;
1485     __ st_ptr(rOop, SP, offset + STACK_BIAS);
1486     if (is_receiver) {
1487       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1488     }
1489     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1490     __ add(SP, offset + STACK_BIAS, rHandle);
1491 #ifdef _LP64
1492     __ movr( Assembler::rc_z, rOop, G0, rHandle );
1493 #else
1494     __ tst( rOop );
1495     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1496 #endif
1497 
1498     if (dst.first()->is_stack()) {
1499       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1500     } else {
1501       __ mov(rHandle, dst.first()->as_Register());
1502     }
1503   }
1504 }
1505 
1506 // A float arg may have to do float reg int reg conversion
1507 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1508   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1509 
1510   if (src.first()->is_stack()) {
1511     if (dst.first()->is_stack()) {
1512       // stack to stack the easiest of the bunch
1513       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1514       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1515     } else {
1516       // stack to reg
1517       if (dst.first()->is_Register()) {
1518         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1519       } else {
1520         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1521       }
1522     }
1523   } else if (dst.first()->is_stack()) {
1524     // reg to stack
1525     if (src.first()->is_Register()) {
1526       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1527     } else {
1528       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1529     }
1530   } else {
1531     // reg to reg
1532     if (src.first()->is_Register()) {
1533       if (dst.first()->is_Register()) {
1534         // gpr -> gpr
1535         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1536       } else {
1537         // gpr -> fpr
1538         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1539         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1540       }
1541     } else if (dst.first()->is_Register()) {
1542       // fpr -> gpr
1543       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1544       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1545     } else {
1546       // fpr -> fpr
1547       // In theory these overlap but the ordering is such that this is likely a nop
1548       if ( src.first() != dst.first()) {
1549         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1550       }
1551     }
1552   }
1553 }
1554 
1555 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1556   VMRegPair src_lo(src.first());
1557   VMRegPair src_hi(src.second());
1558   VMRegPair dst_lo(dst.first());
1559   VMRegPair dst_hi(dst.second());
1560   simple_move32(masm, src_lo, dst_lo);
1561   simple_move32(masm, src_hi, dst_hi);
1562 }
1563 
1564 // A long move
1565 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1566 
1567   // Do the simple ones here else do two int moves
1568   if (src.is_single_phys_reg() ) {
1569     if (dst.is_single_phys_reg()) {
1570       __ mov(src.first()->as_Register(), dst.first()->as_Register());
1571     } else {
1572       // split src into two separate registers
1573       // Remember hi means hi address or lsw on sparc
1574       // Move msw to lsw
1575       if (dst.second()->is_reg()) {
1576         // MSW -> MSW
1577         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1578         // Now LSW -> LSW
1579         // this will only move lo -> lo and ignore hi
1580         VMRegPair split(dst.second());
1581         simple_move32(masm, src, split);
1582       } else {
1583         VMRegPair split(src.first(), L4->as_VMReg());
1584         // MSW -> MSW (lo ie. first word)
1585         __ srax(src.first()->as_Register(), 32, L4);
1586         split_long_move(masm, split, dst);
1587       }
1588     }
1589   } else if (dst.is_single_phys_reg()) {
1590     if (src.is_adjacent_aligned_on_stack(2)) {
1591       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1592     } else {
1593       // dst is a single reg.
1594       // Remember lo is low address not msb for stack slots
1595       // and lo is the "real" register for registers
1596       // src is
1597 
1598       VMRegPair split;
1599 
1600       if (src.first()->is_reg()) {
1601         // src.lo (msw) is a reg, src.hi is stk/reg
1602         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1603         split.set_pair(dst.first(), src.first());
1604       } else {
1605         // msw is stack move to L5
1606         // lsw is stack move to dst.lo (real reg)
1607         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1608         split.set_pair(dst.first(), L5->as_VMReg());
1609       }
1610 
1611       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1612       // msw   -> src.lo/L5,  lsw -> dst.lo
1613       split_long_move(masm, src, split);
1614 
1615       // So dst now has the low order correct position the
1616       // msw half
1617       __ sllx(split.first()->as_Register(), 32, L5);
1618 
1619       const Register d = dst.first()->as_Register();
1620       __ or3(L5, d, d);
1621     }
1622   } else {
1623     // For LP64 we can probably do better.
1624     split_long_move(masm, src, dst);
1625   }
1626 }
1627 
1628 // A double move
1629 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1630 
1631   // The painful thing here is that like long_move a VMRegPair might be
1632   // 1: a single physical register
1633   // 2: two physical registers (v8)
1634   // 3: a physical reg [lo] and a stack slot [hi] (v8)
1635   // 4: two stack slots
1636 
1637   // Since src is always a java calling convention we know that the src pair
1638   // is always either all registers or all stack (and aligned?)
1639 
1640   // in a register [lo] and a stack slot [hi]
1641   if (src.first()->is_stack()) {
1642     if (dst.first()->is_stack()) {
1643       // stack to stack the easiest of the bunch
1644       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1645       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1646       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1647       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1648       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1649     } else {
1650       // stack to reg
1651       if (dst.second()->is_stack()) {
1652         // stack -> reg, stack -> stack
1653         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1654         if (dst.first()->is_Register()) {
1655           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1656         } else {
1657           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1658         }
1659         // This was missing. (very rare case)
1660         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1661       } else {
1662         // stack -> reg
1663         // Eventually optimize for alignment QQQ
1664         if (dst.first()->is_Register()) {
1665           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1666           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1667         } else {
1668           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1669           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1670         }
1671       }
1672     }
1673   } else if (dst.first()->is_stack()) {
1674     // reg to stack
1675     if (src.first()->is_Register()) {
1676       // Eventually optimize for alignment QQQ
1677       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1678       if (src.second()->is_stack()) {
1679         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1680         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1681       } else {
1682         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1683       }
1684     } else {
1685       // fpr to stack
1686       if (src.second()->is_stack()) {
1687         ShouldNotReachHere();
1688       } else {
1689         // Is the stack aligned?
1690         if (reg2offset(dst.first()) & 0x7) {
1691           // No do as pairs
1692           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1693           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1694         } else {
1695           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1696         }
1697       }
1698     }
1699   } else {
1700     // reg to reg
1701     if (src.first()->is_Register()) {
1702       if (dst.first()->is_Register()) {
1703         // gpr -> gpr
1704         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1705         __ mov(src.second()->as_Register(), dst.second()->as_Register());
1706       } else {
1707         // gpr -> fpr
1708         // ought to be able to do a single store
1709         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1710         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1711         // ought to be able to do a single load
1712         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1713         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1714       }
1715     } else if (dst.first()->is_Register()) {
1716       // fpr -> gpr
1717       // ought to be able to do a single store
1718       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1719       // ought to be able to do a single load
1720       // REMEMBER first() is low address not LSB
1721       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1722       if (dst.second()->is_Register()) {
1723         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1724       } else {
1725         __ ld(FP, -4 + STACK_BIAS, L4);
1726         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1727       }
1728     } else {
1729       // fpr -> fpr
1730       // In theory these overlap but the ordering is such that this is likely a nop
1731       if ( src.first() != dst.first()) {
1732         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1733       }
1734     }
1735   }
1736 }
1737 
1738 // Creates an inner frame if one hasn't already been created, and
1739 // saves a copy of the thread in L7_thread_cache
1740 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1741   if (!*already_created) {
1742     __ save_frame(0);
1743     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1744     // Don't use save_thread because it smashes G2 and we merely want to save a
1745     // copy
1746     __ mov(G2_thread, L7_thread_cache);
1747     *already_created = true;
1748   }
1749 }
1750 
1751 // ---------------------------------------------------------------------------
1752 // Generate a native wrapper for a given method.  The method takes arguments
1753 // in the Java compiled code convention, marshals them to the native
1754 // convention (handlizes oops, etc), transitions to native, makes the call,
1755 // returns to java state (possibly blocking), unhandlizes any result and
1756 // returns.
1757 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1758                                                 methodHandle method,
1759                                                 int compile_id,
1760                                                 int total_in_args,
1761                                                 int comp_args_on_stack, // in VMRegStackSlots
1762                                                 BasicType *in_sig_bt,
1763                                                 VMRegPair *in_regs,
1764                                                 BasicType ret_type) {
1765 
1766   // Native nmethod wrappers never take possesion of the oop arguments.
1767   // So the caller will gc the arguments. The only thing we need an
1768   // oopMap for is if the call is static
1769   //
1770   // An OopMap for lock (and class if static), and one for the VM call itself
1771   OopMapSet *oop_maps = new OopMapSet();
1772   intptr_t start = (intptr_t)__ pc();
1773 
1774   // First thing make an ic check to see if we should even be here
1775   {
1776     Label L;
1777     const Register temp_reg = G3_scratch;
1778     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1779     __ verify_oop(O0);
1780     __ load_klass(O0, temp_reg);
1781     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
1782 
1783     __ jump_to(ic_miss, temp_reg);
1784     __ delayed()->nop();
1785     __ align(CodeEntryAlignment);
1786     __ bind(L);
1787   }
1788 
1789   int vep_offset = ((intptr_t)__ pc()) - start;
1790 
1791 #ifdef COMPILER1
1792   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1793     // Object.hashCode can pull the hashCode from the header word
1794     // instead of doing a full VM transition once it's been computed.
1795     // Since hashCode is usually polymorphic at call sites we can't do
1796     // this optimization at the call site without a lot of work.
1797     Label slowCase;
1798     Register receiver             = O0;
1799     Register result               = O0;
1800     Register header               = G3_scratch;
1801     Register hash                 = G3_scratch; // overwrite header value with hash value
1802     Register mask                 = G1;         // to get hash field from header
1803 
1804     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
1805     // We depend on hash_mask being at most 32 bits and avoid the use of
1806     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
1807     // vm: see markOop.hpp.
1808     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
1809     __ sethi(markOopDesc::hash_mask, mask);
1810     __ btst(markOopDesc::unlocked_value, header);
1811     __ br(Assembler::zero, false, Assembler::pn, slowCase);
1812     if (UseBiasedLocking) {
1813       // Check if biased and fall through to runtime if so
1814       __ delayed()->nop();
1815       __ btst(markOopDesc::biased_lock_bit_in_place, header);
1816       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
1817     }
1818     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
1819 
1820     // Check for a valid (non-zero) hash code and get its value.
1821 #ifdef _LP64
1822     __ srlx(header, markOopDesc::hash_shift, hash);
1823 #else
1824     __ srl(header, markOopDesc::hash_shift, hash);
1825 #endif
1826     __ andcc(hash, mask, hash);
1827     __ br(Assembler::equal, false, Assembler::pn, slowCase);
1828     __ delayed()->nop();
1829 
1830     // leaf return.
1831     __ retl();
1832     __ delayed()->mov(hash, result);
1833     __ bind(slowCase);
1834   }
1835 #endif // COMPILER1
1836 
1837 
1838   // We have received a description of where all the java arg are located
1839   // on entry to the wrapper. We need to convert these args to where
1840   // the jni function will expect them. To figure out where they go
1841   // we convert the java signature to a C signature by inserting
1842   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1843 
1844   int total_c_args = total_in_args + 1;
1845   if (method->is_static()) {
1846     total_c_args++;
1847   }
1848 
1849   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1850   VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1851 
1852   int argc = 0;
1853   out_sig_bt[argc++] = T_ADDRESS;
1854   if (method->is_static()) {
1855     out_sig_bt[argc++] = T_OBJECT;
1856   }
1857 
1858   for (int i = 0; i < total_in_args ; i++ ) {
1859     out_sig_bt[argc++] = in_sig_bt[i];
1860   }
1861 
1862   // Now figure out where the args must be stored and how much stack space
1863   // they require (neglecting out_preserve_stack_slots but space for storing
1864   // the 1st six register arguments). It's weird see int_stk_helper.
1865   //
1866   int out_arg_slots;
1867   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1868 
1869   // Compute framesize for the wrapper.  We need to handlize all oops in
1870   // registers. We must create space for them here that is disjoint from
1871   // the windowed save area because we have no control over when we might
1872   // flush the window again and overwrite values that gc has since modified.
1873   // (The live window race)
1874   //
1875   // We always just allocate 6 word for storing down these object. This allow
1876   // us to simply record the base and use the Ireg number to decide which
1877   // slot to use. (Note that the reg number is the inbound number not the
1878   // outbound number).
1879   // We must shuffle args to match the native convention, and include var-args space.
1880 
1881   // Calculate the total number of stack slots we will need.
1882 
1883   // First count the abi requirement plus all of the outgoing args
1884   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1885 
1886   // Now the space for the inbound oop handle area
1887 
1888   int oop_handle_offset = stack_slots;
1889   stack_slots += 6*VMRegImpl::slots_per_word;
1890 
1891   // Now any space we need for handlizing a klass if static method
1892 
1893   int oop_temp_slot_offset = 0;
1894   int klass_slot_offset = 0;
1895   int klass_offset = -1;
1896   int lock_slot_offset = 0;
1897   bool is_static = false;
1898 
1899   if (method->is_static()) {
1900     klass_slot_offset = stack_slots;
1901     stack_slots += VMRegImpl::slots_per_word;
1902     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1903     is_static = true;
1904   }
1905 
1906   // Plus a lock if needed
1907 
1908   if (method->is_synchronized()) {
1909     lock_slot_offset = stack_slots;
1910     stack_slots += VMRegImpl::slots_per_word;
1911   }
1912 
1913   // Now a place to save return value or as a temporary for any gpr -> fpr moves
1914   stack_slots += 2;
1915 
1916   // Ok The space we have allocated will look like:
1917   //
1918   //
1919   // FP-> |                     |
1920   //      |---------------------|
1921   //      | 2 slots for moves   |
1922   //      |---------------------|
1923   //      | lock box (if sync)  |
1924   //      |---------------------| <- lock_slot_offset
1925   //      | klass (if static)   |
1926   //      |---------------------| <- klass_slot_offset
1927   //      | oopHandle area      |
1928   //      |---------------------| <- oop_handle_offset
1929   //      | outbound memory     |
1930   //      | based arguments     |
1931   //      |                     |
1932   //      |---------------------|
1933   //      | vararg area         |
1934   //      |---------------------|
1935   //      |                     |
1936   // SP-> | out_preserved_slots |
1937   //
1938   //
1939 
1940 
1941   // Now compute actual number of stack words we need rounding to make
1942   // stack properly aligned.
1943   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
1944 
1945   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1946 
1947   // Generate stack overflow check before creating frame
1948   __ generate_stack_overflow_check(stack_size);
1949 
1950   // Generate a new frame for the wrapper.
1951   __ save(SP, -stack_size, SP);
1952 
1953   int frame_complete = ((intptr_t)__ pc()) - start;
1954 
1955   __ verify_thread();
1956 
1957 
1958   //
1959   // We immediately shuffle the arguments so that any vm call we have to
1960   // make from here on out (sync slow path, jvmti, etc.) we will have
1961   // captured the oops from our caller and have a valid oopMap for
1962   // them.
1963 
1964   // -----------------
1965   // The Grand Shuffle
1966   //
1967   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1968   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
1969   // the class mirror instead of a receiver.  This pretty much guarantees that
1970   // register layout will not match.  We ignore these extra arguments during
1971   // the shuffle. The shuffle is described by the two calling convention
1972   // vectors we have in our possession. We simply walk the java vector to
1973   // get the source locations and the c vector to get the destinations.
1974   // Because we have a new window and the argument registers are completely
1975   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
1976   // here.
1977 
1978   // This is a trick. We double the stack slots so we can claim
1979   // the oops in the caller's frame. Since we are sure to have
1980   // more args than the caller doubling is enough to make
1981   // sure we can capture all the incoming oop args from the
1982   // caller.
1983   //
1984   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1985   int c_arg = total_c_args - 1;
1986   // Record sp-based slot for receiver on stack for non-static methods
1987   int receiver_offset = -1;
1988 
1989   // We move the arguments backward because the floating point registers
1990   // destination will always be to a register with a greater or equal register
1991   // number or the stack.
1992 
1993 #ifdef ASSERT
1994   bool reg_destroyed[RegisterImpl::number_of_registers];
1995   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
1996   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1997     reg_destroyed[r] = false;
1998   }
1999   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2000     freg_destroyed[f] = false;
2001   }
2002 
2003 #endif /* ASSERT */
2004 
2005   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
2006 
2007 #ifdef ASSERT
2008     if (in_regs[i].first()->is_Register()) {
2009       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2010     } else if (in_regs[i].first()->is_FloatRegister()) {
2011       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2012     }
2013     if (out_regs[c_arg].first()->is_Register()) {
2014       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2015     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2016       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2017     }
2018 #endif /* ASSERT */
2019 
2020     switch (in_sig_bt[i]) {
2021       case T_ARRAY:
2022       case T_OBJECT:
2023         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2024                     ((i == 0) && (!is_static)),
2025                     &receiver_offset);
2026         break;
2027       case T_VOID:
2028         break;
2029 
2030       case T_FLOAT:
2031         float_move(masm, in_regs[i], out_regs[c_arg]);
2032           break;
2033 
2034       case T_DOUBLE:
2035         assert( i + 1 < total_in_args &&
2036                 in_sig_bt[i + 1] == T_VOID &&
2037                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2038         double_move(masm, in_regs[i], out_regs[c_arg]);
2039         break;
2040 
2041       case T_LONG :
2042         long_move(masm, in_regs[i], out_regs[c_arg]);
2043         break;
2044 
2045       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2046 
2047       default:
2048         move32_64(masm, in_regs[i], out_regs[c_arg]);
2049     }
2050   }
2051 
2052   // Pre-load a static method's oop into O1.  Used both by locking code and
2053   // the normal JNI call code.
2054   if (method->is_static()) {
2055     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
2056 
2057     // Now handlize the static class mirror in O1.  It's known not-null.
2058     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2059     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2060     __ add(SP, klass_offset + STACK_BIAS, O1);
2061   }
2062 
2063 
2064   const Register L6_handle = L6;
2065 
2066   if (method->is_synchronized()) {
2067     __ mov(O1, L6_handle);
2068   }
2069 
2070   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2071   // except O6/O7. So if we must call out we must push a new frame. We immediately
2072   // push a new frame and flush the windows.
2073 
2074 #ifdef _LP64
2075   intptr_t thepc = (intptr_t) __ pc();
2076   {
2077     address here = __ pc();
2078     // Call the next instruction
2079     __ call(here + 8, relocInfo::none);
2080     __ delayed()->nop();
2081   }
2082 #else
2083   intptr_t thepc = __ load_pc_address(O7, 0);
2084 #endif /* _LP64 */
2085 
2086   // We use the same pc/oopMap repeatedly when we call out
2087   oop_maps->add_gc_map(thepc - start, map);
2088 
2089   // O7 now has the pc loaded that we will use when we finally call to native.
2090 
2091   // Save thread in L7; it crosses a bunch of VM calls below
2092   // Don't use save_thread because it smashes G2 and we merely
2093   // want to save a copy
2094   __ mov(G2_thread, L7_thread_cache);
2095 
2096 
2097   // If we create an inner frame once is plenty
2098   // when we create it we must also save G2_thread
2099   bool inner_frame_created = false;
2100 
2101   // dtrace method entry support
2102   {
2103     SkipIfEqual skip_if(
2104       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2105     // create inner frame
2106     __ save_frame(0);
2107     __ mov(G2_thread, L7_thread_cache);
2108     __ set_oop_constant(JNIHandles::make_local(method()), O1);
2109     __ call_VM_leaf(L7_thread_cache,
2110          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2111          G2_thread, O1);
2112     __ restore();
2113   }
2114 
2115   // RedefineClasses() tracing support for obsolete method entry
2116   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2117     // create inner frame
2118     __ save_frame(0);
2119     __ mov(G2_thread, L7_thread_cache);
2120     __ set_oop_constant(JNIHandles::make_local(method()), O1);
2121     __ call_VM_leaf(L7_thread_cache,
2122          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2123          G2_thread, O1);
2124     __ restore();
2125   }
2126 
2127   // We are in the jni frame unless saved_frame is true in which case
2128   // we are in one frame deeper (the "inner" frame). If we are in the
2129   // "inner" frames the args are in the Iregs and if the jni frame then
2130   // they are in the Oregs.
2131   // If we ever need to go to the VM (for locking, jvmti) then
2132   // we will always be in the "inner" frame.
2133 
2134   // Lock a synchronized method
2135   int lock_offset = -1;         // Set if locked
2136   if (method->is_synchronized()) {
2137     Register Roop = O1;
2138     const Register L3_box = L3;
2139 
2140     create_inner_frame(masm, &inner_frame_created);
2141 
2142     __ ld_ptr(I1, 0, O1);
2143     Label done;
2144 
2145     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2146     __ add(FP, lock_offset+STACK_BIAS, L3_box);
2147 #ifdef ASSERT
2148     if (UseBiasedLocking) {
2149       // making the box point to itself will make it clear it went unused
2150       // but also be obviously invalid
2151       __ st_ptr(L3_box, L3_box, 0);
2152     }
2153 #endif // ASSERT
2154     //
2155     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2156     //
2157     __ compiler_lock_object(Roop, L1,    L3_box, L2);
2158     __ br(Assembler::equal, false, Assembler::pt, done);
2159     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2160 
2161 
2162     // None of the above fast optimizations worked so we have to get into the
2163     // slow case of monitor enter.  Inline a special case of call_VM that
2164     // disallows any pending_exception.
2165     __ mov(Roop, O0);            // Need oop in O0
2166     __ mov(L3_box, O1);
2167 
2168     // Record last_Java_sp, in case the VM code releases the JVM lock.
2169 
2170     __ set_last_Java_frame(FP, I7);
2171 
2172     // do the call
2173     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2174     __ delayed()->mov(L7_thread_cache, O2);
2175 
2176     __ restore_thread(L7_thread_cache); // restore G2_thread
2177     __ reset_last_Java_frame();
2178 
2179 #ifdef ASSERT
2180     { Label L;
2181     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2182     __ br_null_short(O0, Assembler::pt, L);
2183     __ stop("no pending exception allowed on exit from IR::monitorenter");
2184     __ bind(L);
2185     }
2186 #endif
2187     __ bind(done);
2188   }
2189 
2190 
2191   // Finally just about ready to make the JNI call
2192 
2193   __ flush_windows();
2194   if (inner_frame_created) {
2195     __ restore();
2196   } else {
2197     // Store only what we need from this frame
2198     // QQQ I think that non-v9 (like we care) we don't need these saves
2199     // either as the flush traps and the current window goes too.
2200     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2201     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2202   }
2203 
2204   // get JNIEnv* which is first argument to native
2205 
2206   __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2207 
2208   // Use that pc we placed in O7 a while back as the current frame anchor
2209 
2210   __ set_last_Java_frame(SP, O7);
2211 
2212   // Transition from _thread_in_Java to _thread_in_native.
2213   __ set(_thread_in_native, G3_scratch);
2214   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2215 
2216   // We flushed the windows ages ago now mark them as flushed
2217 
2218   // mark windows as flushed
2219   __ set(JavaFrameAnchor::flushed, G3_scratch);
2220 
2221   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2222 
2223 #ifdef _LP64
2224   AddressLiteral dest(method->native_function());
2225   __ relocate(relocInfo::runtime_call_type);
2226   __ jumpl_to(dest, O7, O7);
2227 #else
2228   __ call(method->native_function(), relocInfo::runtime_call_type);
2229 #endif
2230   __ delayed()->st(G3_scratch, flags);
2231 
2232   __ restore_thread(L7_thread_cache); // restore G2_thread
2233 
2234   // Unpack native results.  For int-types, we do any needed sign-extension
2235   // and move things into I0.  The return value there will survive any VM
2236   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2237   // specially in the slow-path code.
2238   switch (ret_type) {
2239   case T_VOID:    break;        // Nothing to do!
2240   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2241   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2242   // In 64 bits build result is in O0, in O0, O1 in 32bit build
2243   case T_LONG:
2244 #ifndef _LP64
2245                   __ mov(O1, I1);
2246 #endif
2247                   // Fall thru
2248   case T_OBJECT:                // Really a handle
2249   case T_ARRAY:
2250   case T_INT:
2251                   __ mov(O0, I0);
2252                   break;
2253   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2254   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2255   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2256   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2257     break;                      // Cannot de-handlize until after reclaiming jvm_lock
2258   default:
2259     ShouldNotReachHere();
2260   }
2261 
2262   // must we block?
2263 
2264   // Block, if necessary, before resuming in _thread_in_Java state.
2265   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2266   { Label no_block;
2267     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2268 
2269     // Switch thread to "native transition" state before reading the synchronization state.
2270     // This additional state is necessary because reading and testing the synchronization
2271     // state is not atomic w.r.t. GC, as this scenario demonstrates:
2272     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2273     //     VM thread changes sync state to synchronizing and suspends threads for GC.
2274     //     Thread A is resumed to finish this native method, but doesn't block here since it
2275     //     didn't see any synchronization is progress, and escapes.
2276     __ set(_thread_in_native_trans, G3_scratch);
2277     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2278     if(os::is_MP()) {
2279       if (UseMembar) {
2280         // Force this write out before the read below
2281         __ membar(Assembler::StoreLoad);
2282       } else {
2283         // Write serialization page so VM thread can do a pseudo remote membar.
2284         // We use the current thread pointer to calculate a thread specific
2285         // offset to write to within the page. This minimizes bus traffic
2286         // due to cache line collision.
2287         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2288       }
2289     }
2290     __ load_contents(sync_state, G3_scratch);
2291     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2292 
2293     Label L;
2294     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2295     __ br(Assembler::notEqual, false, Assembler::pn, L);
2296     __ delayed()->ld(suspend_state, G3_scratch);
2297     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
2298     __ bind(L);
2299 
2300     // Block.  Save any potential method result value before the operation and
2301     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2302     // lets us share the oopMap we used when we went native rather the create
2303     // a distinct one for this pc
2304     //
2305     save_native_result(masm, ret_type, stack_slots);
2306     __ call_VM_leaf(L7_thread_cache,
2307                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2308                     G2_thread);
2309 
2310     // Restore any method result value
2311     restore_native_result(masm, ret_type, stack_slots);
2312     __ bind(no_block);
2313   }
2314 
2315   // thread state is thread_in_native_trans. Any safepoint blocking has already
2316   // happened so we can now change state to _thread_in_Java.
2317 
2318 
2319   __ set(_thread_in_Java, G3_scratch);
2320   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2321 
2322 
2323   Label no_reguard;
2324   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2325   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
2326 
2327     save_native_result(masm, ret_type, stack_slots);
2328   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2329   __ delayed()->nop();
2330 
2331   __ restore_thread(L7_thread_cache); // restore G2_thread
2332     restore_native_result(masm, ret_type, stack_slots);
2333 
2334   __ bind(no_reguard);
2335 
2336   // Handle possible exception (will unlock if necessary)
2337 
2338   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2339 
2340   // Unlock
2341   if (method->is_synchronized()) {
2342     Label done;
2343     Register I2_ex_oop = I2;
2344     const Register L3_box = L3;
2345     // Get locked oop from the handle we passed to jni
2346     __ ld_ptr(L6_handle, 0, L4);
2347     __ add(SP, lock_offset+STACK_BIAS, L3_box);
2348     // Must save pending exception around the slow-path VM call.  Since it's a
2349     // leaf call, the pending exception (if any) can be kept in a register.
2350     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2351     // Now unlock
2352     //                       (Roop, Rmark, Rbox,   Rscratch)
2353     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2354     __ br(Assembler::equal, false, Assembler::pt, done);
2355     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2356 
2357     // save and restore any potential method result value around the unlocking
2358     // operation.  Will save in I0 (or stack for FP returns).
2359     save_native_result(masm, ret_type, stack_slots);
2360 
2361     // Must clear pending-exception before re-entering the VM.  Since this is
2362     // a leaf call, pending-exception-oop can be safely kept in a register.
2363     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2364 
2365     // slow case of monitor enter.  Inline a special case of call_VM that
2366     // disallows any pending_exception.
2367     __ mov(L3_box, O1);
2368 
2369     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2370     __ delayed()->mov(L4, O0);              // Need oop in O0
2371 
2372     __ restore_thread(L7_thread_cache); // restore G2_thread
2373 
2374 #ifdef ASSERT
2375     { Label L;
2376     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2377     __ br_null_short(O0, Assembler::pt, L);
2378     __ stop("no pending exception allowed on exit from IR::monitorexit");
2379     __ bind(L);
2380     }
2381 #endif
2382     restore_native_result(masm, ret_type, stack_slots);
2383     // check_forward_pending_exception jump to forward_exception if any pending
2384     // exception is set.  The forward_exception routine expects to see the
2385     // exception in pending_exception and not in a register.  Kind of clumsy,
2386     // since all folks who branch to forward_exception must have tested
2387     // pending_exception first and hence have it in a register already.
2388     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2389     __ bind(done);
2390   }
2391 
2392   // Tell dtrace about this method exit
2393   {
2394     SkipIfEqual skip_if(
2395       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2396     save_native_result(masm, ret_type, stack_slots);
2397     __ set_oop_constant(JNIHandles::make_local(method()), O1);
2398     __ call_VM_leaf(L7_thread_cache,
2399        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2400        G2_thread, O1);
2401     restore_native_result(masm, ret_type, stack_slots);
2402   }
2403 
2404   // Clear "last Java frame" SP and PC.
2405   __ verify_thread(); // G2_thread must be correct
2406   __ reset_last_Java_frame();
2407 
2408   // Unpack oop result
2409   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2410       Label L;
2411       __ addcc(G0, I0, G0);
2412       __ brx(Assembler::notZero, true, Assembler::pt, L);
2413       __ delayed()->ld_ptr(I0, 0, I0);
2414       __ mov(G0, I0);
2415       __ bind(L);
2416       __ verify_oop(I0);
2417   }
2418 
2419   // reset handle block
2420   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2421   __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2422 
2423   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2424   check_forward_pending_exception(masm, G3_scratch);
2425 
2426 
2427   // Return
2428 
2429 #ifndef _LP64
2430   if (ret_type == T_LONG) {
2431 
2432     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2433     __ sllx(I0, 32, G1);          // Shift bits into high G1
2434     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2435     __ or3 (I1, G1, G1);          // OR 64 bits into G1
2436   }
2437 #endif
2438 
2439   __ ret();
2440   __ delayed()->restore();
2441 
2442   __ flush();
2443 
2444   nmethod *nm = nmethod::new_native_nmethod(method,
2445                                             compile_id,
2446                                             masm->code(),
2447                                             vep_offset,
2448                                             frame_complete,
2449                                             stack_slots / VMRegImpl::slots_per_word,
2450                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2451                                             in_ByteSize(lock_offset),
2452                                             oop_maps);
2453   return nm;
2454 
2455 }
2456 
2457 #ifdef HAVE_DTRACE_H
2458 // ---------------------------------------------------------------------------
2459 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2460 // in the Java compiled code convention, marshals them to the native
2461 // abi and then leaves nops at the position you would expect to call a native
2462 // function. When the probe is enabled the nops are replaced with a trap
2463 // instruction that dtrace inserts and the trace will cause a notification
2464 // to dtrace.
2465 //
2466 // The probes are only able to take primitive types and java/lang/String as
2467 // arguments.  No other java types are allowed. Strings are converted to utf8
2468 // strings so that from dtrace point of view java strings are converted to C
2469 // strings. There is an arbitrary fixed limit on the total space that a method
2470 // can use for converting the strings. (256 chars per string in the signature).
2471 // So any java string larger then this is truncated.
2472 
2473 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2474 static bool offsets_initialized = false;
2475 
2476 static VMRegPair reg64_to_VMRegPair(Register r) {
2477   VMRegPair ret;
2478   if (wordSize == 8) {
2479     ret.set2(r->as_VMReg());
2480   } else {
2481     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
2482   }
2483   return ret;
2484 }
2485 
2486 
2487 nmethod *SharedRuntime::generate_dtrace_nmethod(
2488     MacroAssembler *masm, methodHandle method) {
2489 
2490 
2491   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2492   // be single threaded in this method.
2493   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2494 
2495   // Fill in the signature array, for the calling-convention call.
2496   int total_args_passed = method->size_of_parameters();
2497 
2498   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2499   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2500 
2501   // The signature we are going to use for the trap that dtrace will see
2502   // java/lang/String is converted. We drop "this" and any other object
2503   // is converted to NULL.  (A one-slot java/lang/Long object reference
2504   // is converted to a two-slot long, which is why we double the allocation).
2505   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2506   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2507 
2508   int i=0;
2509   int total_strings = 0;
2510   int first_arg_to_pass = 0;
2511   int total_c_args = 0;
2512 
2513   // Skip the receiver as dtrace doesn't want to see it
2514   if( !method->is_static() ) {
2515     in_sig_bt[i++] = T_OBJECT;
2516     first_arg_to_pass = 1;
2517   }
2518 
2519   SignatureStream ss(method->signature());
2520   for ( ; !ss.at_return_type(); ss.next()) {
2521     BasicType bt = ss.type();
2522     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2523     out_sig_bt[total_c_args++] = bt;
2524     if( bt == T_OBJECT) {
2525       Symbol* s = ss.as_symbol_or_null();
2526       if (s == vmSymbols::java_lang_String()) {
2527         total_strings++;
2528         out_sig_bt[total_c_args-1] = T_ADDRESS;
2529       } else if (s == vmSymbols::java_lang_Boolean() ||
2530                  s == vmSymbols::java_lang_Byte()) {
2531         out_sig_bt[total_c_args-1] = T_BYTE;
2532       } else if (s == vmSymbols::java_lang_Character() ||
2533                  s == vmSymbols::java_lang_Short()) {
2534         out_sig_bt[total_c_args-1] = T_SHORT;
2535       } else if (s == vmSymbols::java_lang_Integer() ||
2536                  s == vmSymbols::java_lang_Float()) {
2537         out_sig_bt[total_c_args-1] = T_INT;
2538       } else if (s == vmSymbols::java_lang_Long() ||
2539                  s == vmSymbols::java_lang_Double()) {
2540         out_sig_bt[total_c_args-1] = T_LONG;
2541         out_sig_bt[total_c_args++] = T_VOID;
2542       }
2543     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2544       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2545       // We convert double to long
2546       out_sig_bt[total_c_args-1] = T_LONG;
2547       out_sig_bt[total_c_args++] = T_VOID;
2548     } else if ( bt == T_FLOAT) {
2549       // We convert float to int
2550       out_sig_bt[total_c_args-1] = T_INT;
2551     }
2552   }
2553 
2554   assert(i==total_args_passed, "validly parsed signature");
2555 
2556   // Now get the compiled-Java layout as input arguments
2557   int comp_args_on_stack;
2558   comp_args_on_stack = SharedRuntime::java_calling_convention(
2559       in_sig_bt, in_regs, total_args_passed, false);
2560 
2561   // We have received a description of where all the java arg are located
2562   // on entry to the wrapper. We need to convert these args to where
2563   // the a  native (non-jni) function would expect them. To figure out
2564   // where they go we convert the java signature to a C signature and remove
2565   // T_VOID for any long/double we might have received.
2566 
2567 
2568   // Now figure out where the args must be stored and how much stack space
2569   // they require (neglecting out_preserve_stack_slots but space for storing
2570   // the 1st six register arguments). It's weird see int_stk_helper.
2571   //
2572   int out_arg_slots;
2573   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2574 
2575   // Calculate the total number of stack slots we will need.
2576 
2577   // First count the abi requirement plus all of the outgoing args
2578   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2579 
2580   // Plus a temp for possible converion of float/double/long register args
2581 
2582   int conversion_temp = stack_slots;
2583   stack_slots += 2;
2584 
2585 
2586   // Now space for the string(s) we must convert
2587 
2588   int string_locs = stack_slots;
2589   stack_slots += total_strings *
2590                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
2591 
2592   // Ok The space we have allocated will look like:
2593   //
2594   //
2595   // FP-> |                     |
2596   //      |---------------------|
2597   //      | string[n]           |
2598   //      |---------------------| <- string_locs[n]
2599   //      | string[n-1]         |
2600   //      |---------------------| <- string_locs[n-1]
2601   //      | ...                 |
2602   //      | ...                 |
2603   //      |---------------------| <- string_locs[1]
2604   //      | string[0]           |
2605   //      |---------------------| <- string_locs[0]
2606   //      | temp                |
2607   //      |---------------------| <- conversion_temp
2608   //      | outbound memory     |
2609   //      | based arguments     |
2610   //      |                     |
2611   //      |---------------------|
2612   //      |                     |
2613   // SP-> | out_preserved_slots |
2614   //
2615   //
2616 
2617   // Now compute actual number of stack words we need rounding to make
2618   // stack properly aligned.
2619   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2620 
2621   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2622 
2623   intptr_t start = (intptr_t)__ pc();
2624 
2625   // First thing make an ic check to see if we should even be here
2626 
2627   {
2628     Label L;
2629     const Register temp_reg = G3_scratch;
2630     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2631     __ verify_oop(O0);
2632     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
2633     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
2634 
2635     __ jump_to(ic_miss, temp_reg);
2636     __ delayed()->nop();
2637     __ align(CodeEntryAlignment);
2638     __ bind(L);
2639   }
2640 
2641   int vep_offset = ((intptr_t)__ pc()) - start;
2642 
2643 
2644   // The instruction at the verified entry point must be 5 bytes or longer
2645   // because it can be patched on the fly by make_non_entrant. The stack bang
2646   // instruction fits that requirement.
2647 
2648   // Generate stack overflow check before creating frame
2649   __ generate_stack_overflow_check(stack_size);
2650 
2651   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
2652          "valid size for make_non_entrant");
2653 
2654   // Generate a new frame for the wrapper.
2655   __ save(SP, -stack_size, SP);
2656 
2657   // Frame is now completed as far a size and linkage.
2658 
2659   int frame_complete = ((intptr_t)__ pc()) - start;
2660 
2661 #ifdef ASSERT
2662   bool reg_destroyed[RegisterImpl::number_of_registers];
2663   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2664   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2665     reg_destroyed[r] = false;
2666   }
2667   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2668     freg_destroyed[f] = false;
2669   }
2670 
2671 #endif /* ASSERT */
2672 
2673   VMRegPair zero;
2674   const Register g0 = G0; // without this we get a compiler warning (why??)
2675   zero.set2(g0->as_VMReg());
2676 
2677   int c_arg, j_arg;
2678 
2679   Register conversion_off = noreg;
2680 
2681   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2682        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2683 
2684     VMRegPair src = in_regs[j_arg];
2685     VMRegPair dst = out_regs[c_arg];
2686 
2687 #ifdef ASSERT
2688     if (src.first()->is_Register()) {
2689       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
2690     } else if (src.first()->is_FloatRegister()) {
2691       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
2692                                                FloatRegisterImpl::S)], "ack!");
2693     }
2694     if (dst.first()->is_Register()) {
2695       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
2696     } else if (dst.first()->is_FloatRegister()) {
2697       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
2698                                                  FloatRegisterImpl::S)] = true;
2699     }
2700 #endif /* ASSERT */
2701 
2702     switch (in_sig_bt[j_arg]) {
2703       case T_ARRAY:
2704       case T_OBJECT:
2705         {
2706           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
2707               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2708             // need to unbox a one-slot value
2709             Register in_reg = L0;
2710             Register tmp = L2;
2711             if ( src.first()->is_reg() ) {
2712               in_reg = src.first()->as_Register();
2713             } else {
2714               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
2715                      "must be");
2716               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
2717             }
2718             // If the final destination is an acceptable register
2719             if ( dst.first()->is_reg() ) {
2720               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
2721                 tmp = dst.first()->as_Register();
2722               }
2723             }
2724 
2725             Label skipUnbox;
2726             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
2727               __ mov(G0, tmp->successor());
2728             }
2729             __ br_null(in_reg, true, Assembler::pn, skipUnbox, false);
2730             __ delayed()->mov(G0, tmp);
2731 
2732             BasicType bt = out_sig_bt[c_arg];
2733             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2734             switch (bt) {
2735                 case T_BYTE:
2736                   __ ldub(in_reg, box_offset, tmp); break;
2737                 case T_SHORT:
2738                   __ lduh(in_reg, box_offset, tmp); break;
2739                 case T_INT:
2740                   __ ld(in_reg, box_offset, tmp); break;
2741                 case T_LONG:
2742                   __ ld_long(in_reg, box_offset, tmp); break;
2743                 default: ShouldNotReachHere();
2744             }
2745 
2746             __ bind(skipUnbox);
2747             // If tmp wasn't final destination copy to final destination
2748             if (tmp == L2) {
2749               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
2750               if (out_sig_bt[c_arg] == T_LONG) {
2751                 long_move(masm, tmp_as_VM, dst);
2752               } else {
2753                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
2754               }
2755             }
2756             if (out_sig_bt[c_arg] == T_LONG) {
2757               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2758               ++c_arg; // move over the T_VOID to keep the loop indices in sync
2759             }
2760           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
2761             Register s =
2762                 src.first()->is_reg() ? src.first()->as_Register() : L2;
2763             Register d =
2764                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2765 
2766             // We store the oop now so that the conversion pass can reach
2767             // while in the inner frame. This will be the only store if
2768             // the oop is NULL.
2769             if (s != L2) {
2770               // src is register
2771               if (d != L2) {
2772                 // dst is register
2773                 __ mov(s, d);
2774               } else {
2775                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
2776                           STACK_BIAS), "must be");
2777                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
2778               }
2779             } else {
2780                 // src not a register
2781                 assert(Assembler::is_simm13(reg2offset(src.first()) +
2782                            STACK_BIAS), "must be");
2783                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
2784                 if (d == L2) {
2785                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
2786                              STACK_BIAS), "must be");
2787                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
2788                 }
2789             }
2790           } else if (out_sig_bt[c_arg] != T_VOID) {
2791             // Convert the arg to NULL
2792             if (dst.first()->is_reg()) {
2793               __ mov(G0, dst.first()->as_Register());
2794             } else {
2795               assert(Assembler::is_simm13(reg2offset(dst.first()) +
2796                          STACK_BIAS), "must be");
2797               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
2798             }
2799           }
2800         }
2801         break;
2802       case T_VOID:
2803         break;
2804 
2805       case T_FLOAT:
2806         if (src.first()->is_stack()) {
2807           // Stack to stack/reg is simple
2808           move32_64(masm, src, dst);
2809         } else {
2810           if (dst.first()->is_reg()) {
2811             // freg -> reg
2812             int off =
2813               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2814             Register d = dst.first()->as_Register();
2815             if (Assembler::is_simm13(off)) {
2816               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2817                      SP, off);
2818               __ ld(SP, off, d);
2819             } else {
2820               if (conversion_off == noreg) {
2821                 __ set(off, L6);
2822                 conversion_off = L6;
2823               }
2824               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2825                      SP, conversion_off);
2826               __ ld(SP, conversion_off , d);
2827             }
2828           } else {
2829             // freg -> mem
2830             int off = STACK_BIAS + reg2offset(dst.first());
2831             if (Assembler::is_simm13(off)) {
2832               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2833                      SP, off);
2834             } else {
2835               if (conversion_off == noreg) {
2836                 __ set(off, L6);
2837                 conversion_off = L6;
2838               }
2839               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2840                      SP, conversion_off);
2841             }
2842           }
2843         }
2844         break;
2845 
2846       case T_DOUBLE:
2847         assert( j_arg + 1 < total_args_passed &&
2848                 in_sig_bt[j_arg + 1] == T_VOID &&
2849                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2850         if (src.first()->is_stack()) {
2851           // Stack to stack/reg is simple
2852           long_move(masm, src, dst);
2853         } else {
2854           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2855 
2856           // Destination could be an odd reg on 32bit in which case
2857           // we can't load direct to the destination.
2858 
2859           if (!d->is_even() && wordSize == 4) {
2860             d = L2;
2861           }
2862           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2863           if (Assembler::is_simm13(off)) {
2864             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2865                    SP, off);
2866             __ ld_long(SP, off, d);
2867           } else {
2868             if (conversion_off == noreg) {
2869               __ set(off, L6);
2870               conversion_off = L6;
2871             }
2872             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2873                    SP, conversion_off);
2874             __ ld_long(SP, conversion_off, d);
2875           }
2876           if (d == L2) {
2877             long_move(masm, reg64_to_VMRegPair(L2), dst);
2878           }
2879         }
2880         break;
2881 
2882       case T_LONG :
2883         // 32bit can't do a split move of something like g1 -> O0, O1
2884         // so use a memory temp
2885         if (src.is_single_phys_reg() && wordSize == 4) {
2886           Register tmp = L2;
2887           if (dst.first()->is_reg() &&
2888               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
2889             tmp = dst.first()->as_Register();
2890           }
2891 
2892           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2893           if (Assembler::is_simm13(off)) {
2894             __ stx(src.first()->as_Register(), SP, off);
2895             __ ld_long(SP, off, tmp);
2896           } else {
2897             if (conversion_off == noreg) {
2898               __ set(off, L6);
2899               conversion_off = L6;
2900             }
2901             __ stx(src.first()->as_Register(), SP, conversion_off);
2902             __ ld_long(SP, conversion_off, tmp);
2903           }
2904 
2905           if (tmp == L2) {
2906             long_move(masm, reg64_to_VMRegPair(L2), dst);
2907           }
2908         } else {
2909           long_move(masm, src, dst);
2910         }
2911         break;
2912 
2913       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2914 
2915       default:
2916         move32_64(masm, src, dst);
2917     }
2918   }
2919 
2920 
2921   // If we have any strings we must store any register based arg to the stack
2922   // This includes any still live xmm registers too.
2923 
2924   if (total_strings > 0 ) {
2925 
2926     // protect all the arg registers
2927     __ save_frame(0);
2928     __ mov(G2_thread, L7_thread_cache);
2929     const Register L2_string_off = L2;
2930 
2931     // Get first string offset
2932     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
2933 
2934     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
2935       if (out_sig_bt[c_arg] == T_ADDRESS) {
2936 
2937         VMRegPair dst = out_regs[c_arg];
2938         const Register d = dst.first()->is_reg() ?
2939             dst.first()->as_Register()->after_save() : noreg;
2940 
2941         // It's a string the oop and it was already copied to the out arg
2942         // position
2943         if (d != noreg) {
2944           __ mov(d, O0);
2945         } else {
2946           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
2947                  "must be");
2948           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
2949         }
2950         Label skip;
2951 
2952         __ br_null(O0, false, Assembler::pn, skip, false);
2953         __ delayed()->add(FP, L2_string_off, O1);
2954 
2955         if (d != noreg) {
2956           __ mov(O1, d);
2957         } else {
2958           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
2959                  "must be");
2960           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
2961         }
2962 
2963         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
2964                 relocInfo::runtime_call_type);
2965         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
2966 
2967         __ bind(skip);
2968 
2969       }
2970 
2971     }
2972     __ mov(L7_thread_cache, G2_thread);
2973     __ restore();
2974 
2975   }
2976 
2977 
2978   // Ok now we are done. Need to place the nop that dtrace wants in order to
2979   // patch in the trap
2980 
2981   int patch_offset = ((intptr_t)__ pc()) - start;
2982 
2983   __ nop();
2984 
2985 
2986   // Return
2987 
2988   __ ret();
2989   __ delayed()->restore();
2990 
2991   __ flush();
2992 
2993   nmethod *nm = nmethod::new_dtrace_nmethod(
2994       method, masm->code(), vep_offset, patch_offset, frame_complete,
2995       stack_slots / VMRegImpl::slots_per_word);
2996   return nm;
2997 
2998 }
2999 
3000 #endif // HAVE_DTRACE_H
3001 
3002 // this function returns the adjust size (in number of words) to a c2i adapter
3003 // activation for use during deoptimization
3004 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3005   assert(callee_locals >= callee_parameters,
3006           "test and remove; got more parms than locals");
3007   if (callee_locals < callee_parameters)
3008     return 0;                   // No adjustment for negative locals
3009   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3010   return round_to(diff, WordsPerLong);
3011 }
3012 
3013 // "Top of Stack" slots that may be unused by the calling convention but must
3014 // otherwise be preserved.
3015 // On Intel these are not necessary and the value can be zero.
3016 // On Sparc this describes the words reserved for storing a register window
3017 // when an interrupt occurs.
3018 uint SharedRuntime::out_preserve_stack_slots() {
3019   return frame::register_save_words * VMRegImpl::slots_per_word;
3020 }
3021 
3022 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3023 //
3024 // Common out the new frame generation for deopt and uncommon trap
3025 //
3026   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3027   Register        Oreturn0           = O0;
3028   Register        Oreturn1           = O1;
3029   Register        O2UnrollBlock      = O2;
3030   Register        O3array            = O3;         // Array of frame sizes (input)
3031   Register        O4array_size       = O4;         // number of frames (input)
3032   Register        O7frame_size       = O7;         // number of frames (input)
3033 
3034   __ ld_ptr(O3array, 0, O7frame_size);
3035   __ sub(G0, O7frame_size, O7frame_size);
3036   __ save(SP, O7frame_size, SP);
3037   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3038 
3039   #ifdef ASSERT
3040   // make sure that the frames are aligned properly
3041 #ifndef _LP64
3042   __ btst(wordSize*2-1, SP);
3043   __ breakpoint_trap(Assembler::notZero);
3044 #endif
3045   #endif
3046 
3047   // Deopt needs to pass some extra live values from frame to frame
3048 
3049   if (deopt) {
3050     __ mov(Oreturn0->after_save(), Oreturn0);
3051     __ mov(Oreturn1->after_save(), Oreturn1);
3052   }
3053 
3054   __ mov(O4array_size->after_save(), O4array_size);
3055   __ sub(O4array_size, 1, O4array_size);
3056   __ mov(O3array->after_save(), O3array);
3057   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3058   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3059 
3060   #ifdef ASSERT
3061   // trash registers to show a clear pattern in backtraces
3062   __ set(0xDEAD0000, I0);
3063   __ add(I0,  2, I1);
3064   __ add(I0,  4, I2);
3065   __ add(I0,  6, I3);
3066   __ add(I0,  8, I4);
3067   // Don't touch I5 could have valuable savedSP
3068   __ set(0xDEADBEEF, L0);
3069   __ mov(L0, L1);
3070   __ mov(L0, L2);
3071   __ mov(L0, L3);
3072   __ mov(L0, L4);
3073   __ mov(L0, L5);
3074 
3075   // trash the return value as there is nothing to return yet
3076   __ set(0xDEAD0001, O7);
3077   #endif
3078 
3079   __ mov(SP, O5_savedSP);
3080 }
3081 
3082 
3083 static void make_new_frames(MacroAssembler* masm, bool deopt) {
3084   //
3085   // loop through the UnrollBlock info and create new frames
3086   //
3087   Register        G3pcs              = G3_scratch;
3088   Register        Oreturn0           = O0;
3089   Register        Oreturn1           = O1;
3090   Register        O2UnrollBlock      = O2;
3091   Register        O3array            = O3;
3092   Register        O4array_size       = O4;
3093   Label           loop;
3094 
3095   // Before we make new frames, check to see if stack is available.
3096   // Do this after the caller's return address is on top of stack
3097   if (UseStackBanging) {
3098     // Get total frame size for interpreted frames
3099     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
3100     __ bang_stack_size(O4, O3, G3_scratch);
3101   }
3102 
3103   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
3104   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
3105   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
3106 
3107   // Adjust old interpreter frame to make space for new frame's extra java locals
3108   //
3109   // We capture the original sp for the transition frame only because it is needed in
3110   // order to properly calculate interpreter_sp_adjustment. Even though in real life
3111   // every interpreter frame captures a savedSP it is only needed at the transition
3112   // (fortunately). If we had to have it correct everywhere then we would need to
3113   // be told the sp_adjustment for each frame we create. If the frame size array
3114   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3115   // for each frame we create and keep up the illusion every where.
3116   //
3117 
3118   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
3119   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3120   __ sub(SP, O7, SP);
3121 
3122 #ifdef ASSERT
3123   // make sure that there is at least one entry in the array
3124   __ tst(O4array_size);
3125   __ breakpoint_trap(Assembler::zero);
3126 #endif
3127 
3128   // Now push the new interpreter frames
3129   __ bind(loop);
3130 
3131   // allocate a new frame, filling the registers
3132 
3133   gen_new_frame(masm, deopt);        // allocate an interpreter frame
3134 
3135   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
3136   __ delayed()->add(O3array, wordSize, O3array);
3137   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3138 
3139 }
3140 
3141 //------------------------------generate_deopt_blob----------------------------
3142 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3143 // instead.
3144 void SharedRuntime::generate_deopt_blob() {
3145   // allocate space for the code
3146   ResourceMark rm;
3147   // setup code generation tools
3148   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3149 #ifdef _LP64
3150   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3151 #else
3152   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3153   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3154   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3155 #endif /* _LP64 */
3156   MacroAssembler* masm               = new MacroAssembler(&buffer);
3157   FloatRegister   Freturn0           = F0;
3158   Register        Greturn1           = G1;
3159   Register        Oreturn0           = O0;
3160   Register        Oreturn1           = O1;
3161   Register        O2UnrollBlock      = O2;
3162   Register        L0deopt_mode       = L0;
3163   Register        G4deopt_mode       = G4_scratch;
3164   int             frame_size_words;
3165   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
3166 #if !defined(_LP64) && defined(COMPILER2)
3167   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3168 #endif
3169   Label           cont;
3170 
3171   OopMapSet *oop_maps = new OopMapSet();
3172 
3173   //
3174   // This is the entry point for code which is returning to a de-optimized
3175   // frame.
3176   // The steps taken by this frame are as follows:
3177   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3178   //     and all potentially live registers (at a pollpoint many registers can be live).
3179   //
3180   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3181   //     returns information about the number and size of interpreter frames
3182   //     which are equivalent to the frame which is being deoptimized)
3183   //   - deallocate the unpack frame, restoring only results values. Other
3184   //     volatile registers will now be captured in the vframeArray as needed.
3185   //   - deallocate the deoptimization frame
3186   //   - in a loop using the information returned in the previous step
3187   //     push new interpreter frames (take care to propagate the return
3188   //     values through each new frame pushed)
3189   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3190   //   - call the C routine: Deoptimization::unpack_frames (this function
3191   //     lays out values on the interpreter frame which was just created)
3192   //   - deallocate the dummy unpack_frame
3193   //   - ensure that all the return values are correctly set and then do
3194   //     a return to the interpreter entry point
3195   //
3196   // Refer to the following methods for more information:
3197   //   - Deoptimization::fetch_unroll_info
3198   //   - Deoptimization::unpack_frames
3199 
3200   OopMap* map = NULL;
3201 
3202   int start = __ offset();
3203 
3204   // restore G2, the trampoline destroyed it
3205   __ get_thread();
3206 
3207   // On entry we have been called by the deoptimized nmethod with a call that
3208   // replaced the original call (or safepoint polling location) so the deoptimizing
3209   // pc is now in O7. Return values are still in the expected places
3210 
3211   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3212   __ ba(cont);
3213   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
3214 
3215   int exception_offset = __ offset() - start;
3216 
3217   // restore G2, the trampoline destroyed it
3218   __ get_thread();
3219 
3220   // On entry we have been jumped to by the exception handler (or exception_blob
3221   // for server).  O0 contains the exception oop and O7 contains the original
3222   // exception pc.  So if we push a frame here it will look to the
3223   // stack walking code (fetch_unroll_info) just like a normal call so
3224   // state will be extracted normally.
3225 
3226   // save exception oop in JavaThread and fall through into the
3227   // exception_in_tls case since they are handled in same way except
3228   // for where the pending exception is kept.
3229   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3230 
3231   //
3232   // Vanilla deoptimization with an exception pending in exception_oop
3233   //
3234   int exception_in_tls_offset = __ offset() - start;
3235 
3236   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3237   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3238 
3239   // Restore G2_thread
3240   __ get_thread();
3241 
3242 #ifdef ASSERT
3243   {
3244     // verify that there is really an exception oop in exception_oop
3245     Label has_exception;
3246     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3247     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
3248     __ stop("no exception in thread");
3249     __ bind(has_exception);
3250 
3251     // verify that there is no pending exception
3252     Label no_pending_exception;
3253     Address exception_addr(G2_thread, Thread::pending_exception_offset());
3254     __ ld_ptr(exception_addr, Oexception);
3255     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
3256     __ stop("must not have pending exception here");
3257     __ bind(no_pending_exception);
3258   }
3259 #endif
3260 
3261   __ ba(cont);
3262   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3263 
3264   //
3265   // Reexecute entry, similar to c2 uncommon trap
3266   //
3267   int reexecute_offset = __ offset() - start;
3268 
3269   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3270   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3271 
3272   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3273 
3274   __ bind(cont);
3275 
3276   __ set_last_Java_frame(SP, noreg);
3277 
3278   // do the call by hand so we can get the oopmap
3279 
3280   __ mov(G2_thread, L7_thread_cache);
3281   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3282   __ delayed()->mov(G2_thread, O0);
3283 
3284   // Set an oopmap for the call site this describes all our saved volatile registers
3285 
3286   oop_maps->add_gc_map( __ offset()-start, map);
3287 
3288   __ mov(L7_thread_cache, G2_thread);
3289 
3290   __ reset_last_Java_frame();
3291 
3292   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3293   // so this move will survive
3294 
3295   __ mov(L0deopt_mode, G4deopt_mode);
3296 
3297   __ mov(O0, O2UnrollBlock->after_save());
3298 
3299   RegisterSaver::restore_result_registers(masm);
3300 
3301   Label noException;
3302   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
3303 
3304   // Move the pending exception from exception_oop to Oexception so
3305   // the pending exception will be picked up the interpreter.
3306   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3307   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3308   __ bind(noException);
3309 
3310   // deallocate the deoptimization frame taking care to preserve the return values
3311   __ mov(Oreturn0,     Oreturn0->after_save());
3312   __ mov(Oreturn1,     Oreturn1->after_save());
3313   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3314   __ restore();
3315 
3316   // Allocate new interpreter frame(s) and possible c2i adapter frame
3317 
3318   make_new_frames(masm, true);
3319 
3320   // push a dummy "unpack_frame" taking care of float return values and
3321   // call Deoptimization::unpack_frames to have the unpacker layout
3322   // information in the interpreter frames just created and then return
3323   // to the interpreter entry point
3324   __ save(SP, -frame_size_words*wordSize, SP);
3325   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3326 #if !defined(_LP64)
3327 #if defined(COMPILER2)
3328   // 32-bit 1-register longs return longs in G1
3329   __ stx(Greturn1, saved_Greturn1_addr);
3330 #endif
3331   __ set_last_Java_frame(SP, noreg);
3332   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3333 #else
3334   // LP64 uses g4 in set_last_Java_frame
3335   __ mov(G4deopt_mode, O1);
3336   __ set_last_Java_frame(SP, G0);
3337   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3338 #endif
3339   __ reset_last_Java_frame();
3340   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3341 
3342 #if !defined(_LP64) && defined(COMPILER2)
3343   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3344   // I0/I1 if the return value is long.
3345   Label not_long;
3346   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
3347   __ ldd(saved_Greturn1_addr,I0);
3348   __ bind(not_long);
3349 #endif
3350   __ ret();
3351   __ delayed()->restore();
3352 
3353   masm->flush();
3354   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3355   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3356 }
3357 
3358 #ifdef COMPILER2
3359 
3360 //------------------------------generate_uncommon_trap_blob--------------------
3361 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3362 // instead.
3363 void SharedRuntime::generate_uncommon_trap_blob() {
3364   // allocate space for the code
3365   ResourceMark rm;
3366   // setup code generation tools
3367   int pad = VerifyThread ? 512 : 0;
3368 #ifdef _LP64
3369   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3370 #else
3371   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3372   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3373   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3374 #endif
3375   MacroAssembler* masm               = new MacroAssembler(&buffer);
3376   Register        O2UnrollBlock      = O2;
3377   Register        O2klass_index      = O2;
3378 
3379   //
3380   // This is the entry point for all traps the compiler takes when it thinks
3381   // it cannot handle further execution of compilation code. The frame is
3382   // deoptimized in these cases and converted into interpreter frames for
3383   // execution
3384   // The steps taken by this frame are as follows:
3385   //   - push a fake "unpack_frame"
3386   //   - call the C routine Deoptimization::uncommon_trap (this function
3387   //     packs the current compiled frame into vframe arrays and returns
3388   //     information about the number and size of interpreter frames which
3389   //     are equivalent to the frame which is being deoptimized)
3390   //   - deallocate the "unpack_frame"
3391   //   - deallocate the deoptimization frame
3392   //   - in a loop using the information returned in the previous step
3393   //     push interpreter frames;
3394   //   - create a dummy "unpack_frame"
3395   //   - call the C routine: Deoptimization::unpack_frames (this function
3396   //     lays out values on the interpreter frame which was just created)
3397   //   - deallocate the dummy unpack_frame
3398   //   - return to the interpreter entry point
3399   //
3400   //  Refer to the following methods for more information:
3401   //   - Deoptimization::uncommon_trap
3402   //   - Deoptimization::unpack_frame
3403 
3404   // the unloaded class index is in O0 (first parameter to this blob)
3405 
3406   // push a dummy "unpack_frame"
3407   // and call Deoptimization::uncommon_trap to pack the compiled frame into
3408   // vframe array and return the UnrollBlock information
3409   __ save_frame(0);
3410   __ set_last_Java_frame(SP, noreg);
3411   __ mov(I0, O2klass_index);
3412   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3413   __ reset_last_Java_frame();
3414   __ mov(O0, O2UnrollBlock->after_save());
3415   __ restore();
3416 
3417   // deallocate the deoptimized frame taking care to preserve the return values
3418   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3419   __ restore();
3420 
3421   // Allocate new interpreter frame(s) and possible c2i adapter frame
3422 
3423   make_new_frames(masm, false);
3424 
3425   // push a dummy "unpack_frame" taking care of float return values and
3426   // call Deoptimization::unpack_frames to have the unpacker layout
3427   // information in the interpreter frames just created and then return
3428   // to the interpreter entry point
3429   __ save_frame(0);
3430   __ set_last_Java_frame(SP, noreg);
3431   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3432   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3433   __ reset_last_Java_frame();
3434   __ ret();
3435   __ delayed()->restore();
3436 
3437   masm->flush();
3438   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3439 }
3440 
3441 #endif // COMPILER2
3442 
3443 //------------------------------generate_handler_blob-------------------
3444 //
3445 // Generate a special Compile2Runtime blob that saves all registers, and sets
3446 // up an OopMap.
3447 //
3448 // This blob is jumped to (via a breakpoint and the signal handler) from a
3449 // safepoint in compiled code.  On entry to this blob, O7 contains the
3450 // address in the original nmethod at which we should resume normal execution.
3451 // Thus, this blob looks like a subroutine which must preserve lots of
3452 // registers and return normally.  Note that O7 is never register-allocated,
3453 // so it is guaranteed to be free here.
3454 //
3455 
3456 // The hardest part of what this blob must do is to save the 64-bit %o
3457 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3458 // an interrupt will chop off their heads.  Making space in the caller's frame
3459 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
3460 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
3461 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3462 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3463 // Tricky, tricky, tricky...
3464 
3465 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
3466   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3467 
3468   // allocate space for the code
3469   ResourceMark rm;
3470   // setup code generation tools
3471   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3472   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3473   // even larger with TraceJumps
3474   int pad = TraceJumps ? 512 : 0;
3475   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3476   MacroAssembler* masm                = new MacroAssembler(&buffer);
3477   int             frame_size_words;
3478   OopMapSet *oop_maps = new OopMapSet();
3479   OopMap* map = NULL;
3480 
3481   int start = __ offset();
3482 
3483   // If this causes a return before the processing, then do a "restore"
3484   if (cause_return) {
3485     __ restore();
3486   } else {
3487     // Make it look like we were called via the poll
3488     // so that frame constructor always sees a valid return address
3489     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3490     __ sub(O7, frame::pc_return_offset, O7);
3491   }
3492 
3493   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3494 
3495   // setup last_Java_sp (blows G4)
3496   __ set_last_Java_frame(SP, noreg);
3497 
3498   // call into the runtime to handle illegal instructions exception
3499   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3500   __ mov(G2_thread, O0);
3501   __ save_thread(L7_thread_cache);
3502   __ call(call_ptr);
3503   __ delayed()->nop();
3504 
3505   // Set an oopmap for the call site.
3506   // We need this not only for callee-saved registers, but also for volatile
3507   // registers that the compiler might be keeping live across a safepoint.
3508 
3509   oop_maps->add_gc_map( __ offset() - start, map);
3510 
3511   __ restore_thread(L7_thread_cache);
3512   // clear last_Java_sp
3513   __ reset_last_Java_frame();
3514 
3515   // Check for exceptions
3516   Label pending;
3517 
3518   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3519   __ br_notnull_short(O1, Assembler::pn, pending);
3520 
3521   RegisterSaver::restore_live_registers(masm);
3522 
3523   // We are back the the original state on entry and ready to go.
3524 
3525   __ retl();
3526   __ delayed()->nop();
3527 
3528   // Pending exception after the safepoint
3529 
3530   __ bind(pending);
3531 
3532   RegisterSaver::restore_live_registers(masm);
3533 
3534   // We are back the the original state on entry.
3535 
3536   // Tail-call forward_exception_entry, with the issuing PC in O7,
3537   // so it looks like the original nmethod called forward_exception_entry.
3538   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3539   __ JMP(O0, 0);
3540   __ delayed()->nop();
3541 
3542   // -------------
3543   // make sure all code is generated
3544   masm->flush();
3545 
3546   // return exception blob
3547   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3548 }
3549 
3550 //
3551 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3552 //
3553 // Generate a stub that calls into vm to find out the proper destination
3554 // of a java call. All the argument registers are live at this point
3555 // but since this is generic code we don't know what they are and the caller
3556 // must do any gc of the args.
3557 //
3558 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3559   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3560 
3561   // allocate space for the code
3562   ResourceMark rm;
3563   // setup code generation tools
3564   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3565   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3566   // even larger with TraceJumps
3567   int pad = TraceJumps ? 512 : 0;
3568   CodeBuffer buffer(name, 1600 + pad, 512);
3569   MacroAssembler* masm                = new MacroAssembler(&buffer);
3570   int             frame_size_words;
3571   OopMapSet *oop_maps = new OopMapSet();
3572   OopMap* map = NULL;
3573 
3574   int start = __ offset();
3575 
3576   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3577 
3578   int frame_complete = __ offset();
3579 
3580   // setup last_Java_sp (blows G4)
3581   __ set_last_Java_frame(SP, noreg);
3582 
3583   // call into the runtime to handle illegal instructions exception
3584   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3585   __ mov(G2_thread, O0);
3586   __ save_thread(L7_thread_cache);
3587   __ call(destination, relocInfo::runtime_call_type);
3588   __ delayed()->nop();
3589 
3590   // O0 contains the address we are going to jump to assuming no exception got installed
3591 
3592   // Set an oopmap for the call site.
3593   // We need this not only for callee-saved registers, but also for volatile
3594   // registers that the compiler might be keeping live across a safepoint.
3595 
3596   oop_maps->add_gc_map( __ offset() - start, map);
3597 
3598   __ restore_thread(L7_thread_cache);
3599   // clear last_Java_sp
3600   __ reset_last_Java_frame();
3601 
3602   // Check for exceptions
3603   Label pending;
3604 
3605   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3606   __ br_notnull_short(O1, Assembler::pn, pending);
3607 
3608   // get the returned methodOop
3609 
3610   __ get_vm_result(G5_method);
3611   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3612 
3613   // O0 is where we want to jump, overwrite G3 which is saved and scratch
3614 
3615   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3616 
3617   RegisterSaver::restore_live_registers(masm);
3618 
3619   // We are back the the original state on entry and ready to go.
3620 
3621   __ JMP(G3, 0);
3622   __ delayed()->nop();
3623 
3624   // Pending exception after the safepoint
3625 
3626   __ bind(pending);
3627 
3628   RegisterSaver::restore_live_registers(masm);
3629 
3630   // We are back the the original state on entry.
3631 
3632   // Tail-call forward_exception_entry, with the issuing PC in O7,
3633   // so it looks like the original nmethod called forward_exception_entry.
3634   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3635   __ JMP(O0, 0);
3636   __ delayed()->nop();
3637 
3638   // -------------
3639   // make sure all code is generated
3640   masm->flush();
3641 
3642   // return the  blob
3643   // frame_size_words or bytes??
3644   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3645 }