1 //
   2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // Block initializing store
 475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
 476 
 477 // tertiary op of a LoadP or StoreP encoding
 478 #define REGP_OP true
 479 
 480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 482 static Register reg_to_register_object(int register_encoding);
 483 
 484 // Used by the DFA in dfa_sparc.cpp.
 485 // Check for being able to use a V9 branch-on-register.  Requires a
 486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 487 // extended.  Doesn't work following an integer ADD, for example, because of
 488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 490 // replace them with zero, which could become sign-extension in a different OS
 491 // release.  There's no obvious reason why an interrupt will ever fill these
 492 // bits with non-zero junk (the registers are reloaded with standard LD
 493 // instructions which either zero-fill or sign-fill).
 494 bool can_branch_register( Node *bol, Node *cmp ) {
 495   if( !BranchOnRegister ) return false;
 496 #ifdef _LP64
 497   if( cmp->Opcode() == Op_CmpP )
 498     return true;  // No problems with pointer compares
 499 #endif
 500   if( cmp->Opcode() == Op_CmpL )
 501     return true;  // No problems with long compares
 502 
 503   if( !SparcV9RegsHiBitsZero ) return false;
 504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 505       bol->as_Bool()->_test._test != BoolTest::eq )
 506      return false;
 507 
 508   // Check for comparing against a 'safe' value.  Any operation which
 509   // clears out the high word is safe.  Thus, loads and certain shifts
 510   // are safe, as are non-negative constants.  Any operation which
 511   // preserves zero bits in the high word is safe as long as each of its
 512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 513   // inputs are safe.  At present, the only important case to recognize
 514   // seems to be loads.  Constants should fold away, and shifts &
 515   // logicals can use the 'cc' forms.
 516   Node *x = cmp->in(1);
 517   if( x->is_Load() ) return true;
 518   if( x->is_Phi() ) {
 519     for( uint i = 1; i < x->req(); i++ )
 520       if( !x->in(i)->is_Load() )
 521         return false;
 522     return true;
 523   }
 524   return false;
 525 }
 526 
 527 // ****************************************************************************
 528 
 529 // REQUIRED FUNCTIONALITY
 530 
 531 // !!!!! Special hack to get all type of calls to specify the byte offset
 532 //       from the start of the call to the point where the return address
 533 //       will point.
 534 //       The "return address" is the address of the call instruction, plus 8.
 535 
 536 int MachCallStaticJavaNode::ret_addr_offset() {
 537   int offset = NativeCall::instruction_size;  // call; delay slot
 538   if (_method_handle_invoke)
 539     offset += 4;  // restore SP
 540   return offset;
 541 }
 542 
 543 int MachCallDynamicJavaNode::ret_addr_offset() {
 544   int vtable_index = this->_vtable_index;
 545   if (vtable_index < 0) {
 546     // must be invalid_vtable_index, not nonvirtual_vtable_index
 547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 548     return (NativeMovConstReg::instruction_size +
 549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 550   } else {
 551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 554     int klass_load_size;
 555     if (UseCompressedOops) {
 556       assert(Universe::heap() != NULL, "java heap should be initialized");
 557       if (Universe::narrow_oop_base() == NULL)
 558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 559       else
 560         klass_load_size = 3*BytesPerInstWord;
 561     } else {
 562       klass_load_size = 1*BytesPerInstWord;
 563     }
 564     if( Assembler::is_simm13(v_off) ) {
 565       return klass_load_size +
 566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 567              NativeCall::instruction_size);  // call; delay slot
 568     } else {
 569       return klass_load_size +
 570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 571              NativeCall::instruction_size);  // call; delay slot
 572     }
 573   }
 574 }
 575 
 576 int MachCallRuntimeNode::ret_addr_offset() {
 577 #ifdef _LP64
 578   if (MacroAssembler::is_far_target(entry_point())) {
 579     return NativeFarCall::instruction_size;
 580   } else {
 581     return NativeCall::instruction_size;
 582   }
 583 #else
 584   return NativeCall::instruction_size;  // call; delay slot
 585 #endif
 586 }
 587 
 588 // Indicate if the safepoint node needs the polling page as an input.
 589 // Since Sparc does not have absolute addressing, it does.
 590 bool SafePointNode::needs_polling_address_input() {
 591   return true;
 592 }
 593 
 594 // emit an interrupt that is caught by the debugger (for debugging compiler)
 595 void emit_break(CodeBuffer &cbuf) {
 596   MacroAssembler _masm(&cbuf);
 597   __ breakpoint_trap();
 598 }
 599 
 600 #ifndef PRODUCT
 601 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 602   st->print("TA");
 603 }
 604 #endif
 605 
 606 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 607   emit_break(cbuf);
 608 }
 609 
 610 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 611   return MachNode::size(ra_);
 612 }
 613 
 614 // Traceable jump
 615 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 616   MacroAssembler _masm(&cbuf);
 617   Register rdest = reg_to_register_object(jump_target);
 618   __ JMP(rdest, 0);
 619   __ delayed()->nop();
 620 }
 621 
 622 // Traceable jump and set exception pc
 623 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 624   MacroAssembler _masm(&cbuf);
 625   Register rdest = reg_to_register_object(jump_target);
 626   __ JMP(rdest, 0);
 627   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 628 }
 629 
 630 void emit_nop(CodeBuffer &cbuf) {
 631   MacroAssembler _masm(&cbuf);
 632   __ nop();
 633 }
 634 
 635 void emit_illtrap(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ illtrap(0);
 638 }
 639 
 640 
 641 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 642   assert(n->rule() != loadUB_rule, "");
 643 
 644   intptr_t offset = 0;
 645   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 646   const Node* addr = n->get_base_and_disp(offset, adr_type);
 647   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 648   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 649   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 650   atype = atype->add_offset(offset);
 651   assert(disp32 == offset, "wrong disp32");
 652   return atype->_offset;
 653 }
 654 
 655 
 656 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 657   assert(n->rule() != loadUB_rule, "");
 658 
 659   intptr_t offset = 0;
 660   Node* addr = n->in(2);
 661   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 662   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 663     Node* a = addr->in(2/*AddPNode::Address*/);
 664     Node* o = addr->in(3/*AddPNode::Offset*/);
 665     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 666     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 667     assert(atype->isa_oop_ptr(), "still an oop");
 668   }
 669   offset = atype->is_ptr()->_offset;
 670   if (offset != Type::OffsetBot)  offset += disp32;
 671   return offset;
 672 }
 673 
 674 static inline jdouble replicate_immI(int con, int count, int width) {
 675   // Load a constant replicated "count" times with width "width"
 676   int bit_width = width * 8;
 677   jlong elt_val = con;
 678   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 679   jlong val = elt_val;
 680   for (int i = 0; i < count - 1; i++) {
 681     val <<= bit_width;
 682     val |= elt_val;
 683   }
 684   jdouble dval = *((jdouble*) &val);  // coerce to double type
 685   return dval;
 686 }
 687 
 688 // Standard Sparc opcode form2 field breakdown
 689 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 690   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 691   int op = (f30 << 30) |
 692            (f29 << 29) |
 693            (f25 << 25) |
 694            (f22 << 22) |
 695            (f20 << 20) |
 696            (f19 << 19) |
 697            (f0  <<  0);
 698   cbuf.insts()->emit_int32(op);
 699 }
 700 
 701 // Standard Sparc opcode form2 field breakdown
 702 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 703   f0 >>= 10;           // Drop 10 bits
 704   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f22 << 22) |
 708            (f0  <<  0);
 709   cbuf.insts()->emit_int32(op);
 710 }
 711 
 712 // Standard Sparc opcode form3 field breakdown
 713 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 714   int op = (f30 << 30) |
 715            (f25 << 25) |
 716            (f19 << 19) |
 717            (f14 << 14) |
 718            (f5  <<  5) |
 719            (f0  <<  0);
 720   cbuf.insts()->emit_int32(op);
 721 }
 722 
 723 // Standard Sparc opcode form3 field breakdown
 724 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 725   simm13 &= (1<<13)-1; // Mask to 13 bits
 726   int op = (f30 << 30) |
 727            (f25 << 25) |
 728            (f19 << 19) |
 729            (f14 << 14) |
 730            (1   << 13) | // bit to indicate immediate-mode
 731            (simm13<<0);
 732   cbuf.insts()->emit_int32(op);
 733 }
 734 
 735 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 736   simm10 &= (1<<10)-1; // Mask to 10 bits
 737   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 738 }
 739 
 740 #ifdef ASSERT
 741 // Helper function for VerifyOops in emit_form3_mem_reg
 742 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 743   warning("VerifyOops encountered unexpected instruction:");
 744   n->dump(2);
 745   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 746 }
 747 #endif
 748 
 749 
 750 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 751                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 752 
 753 #ifdef ASSERT
 754   // The following code implements the +VerifyOops feature.
 755   // It verifies oop values which are loaded into or stored out of
 756   // the current method activation.  +VerifyOops complements techniques
 757   // like ScavengeALot, because it eagerly inspects oops in transit,
 758   // as they enter or leave the stack, as opposed to ScavengeALot,
 759   // which inspects oops "at rest", in the stack or heap, at safepoints.
 760   // For this reason, +VerifyOops can sometimes detect bugs very close
 761   // to their point of creation.  It can also serve as a cross-check
 762   // on the validity of oop maps, when used toegether with ScavengeALot.
 763 
 764   // It would be good to verify oops at other points, especially
 765   // when an oop is used as a base pointer for a load or store.
 766   // This is presently difficult, because it is hard to know when
 767   // a base address is biased or not.  (If we had such information,
 768   // it would be easy and useful to make a two-argument version of
 769   // verify_oop which unbiases the base, and performs verification.)
 770 
 771   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 772   bool is_verified_oop_base  = false;
 773   bool is_verified_oop_load  = false;
 774   bool is_verified_oop_store = false;
 775   int tmp_enc = -1;
 776   if (VerifyOops && src1_enc != R_SP_enc) {
 777     // classify the op, mainly for an assert check
 778     int st_op = 0, ld_op = 0;
 779     switch (primary) {
 780     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 781     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 782     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 783     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 784     case Assembler::std_op3:  st_op = Op_StoreL; break;
 785     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 786     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 787 
 788     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 789     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 790     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 791     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 792     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 793     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 794     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 795     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 796     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 797     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 798     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 799 
 800     default: ShouldNotReachHere();
 801     }
 802     if (tertiary == REGP_OP) {
 803       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 804       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 805       else                          ShouldNotReachHere();
 806       if (st_op) {
 807         // a store
 808         // inputs are (0:control, 1:memory, 2:address, 3:value)
 809         Node* n2 = n->in(3);
 810         if (n2 != NULL) {
 811           const Type* t = n2->bottom_type();
 812           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 813         }
 814       } else {
 815         // a load
 816         const Type* t = n->bottom_type();
 817         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 818       }
 819     }
 820 
 821     if (ld_op) {
 822       // a Load
 823       // inputs are (0:control, 1:memory, 2:address)
 824       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 825           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 826           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 827           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 828           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 829           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 830           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 831           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 832           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 833           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 834           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 835           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 836           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 837           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
 839           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
 840           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
 841           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
 842           !(n->rule() == loadUB_rule)) {
 843         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 844       }
 845     } else if (st_op) {
 846       // a Store
 847       // inputs are (0:control, 1:memory, 2:address, 3:value)
 848       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 849           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 850           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 851           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 852           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 853           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
 854           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
 855           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
 856           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 857         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 858       }
 859     }
 860 
 861     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 862       Node* addr = n->in(2);
 863       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 864         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 865         if (atype != NULL) {
 866           intptr_t offset = get_offset_from_base(n, atype, disp32);
 867           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 868           if (offset != offset_2) {
 869             get_offset_from_base(n, atype, disp32);
 870             get_offset_from_base_2(n, atype, disp32);
 871           }
 872           assert(offset == offset_2, "different offsets");
 873           if (offset == disp32) {
 874             // we now know that src1 is a true oop pointer
 875             is_verified_oop_base = true;
 876             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 877               if( primary == Assembler::ldd_op3 ) {
 878                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 879               } else {
 880                 tmp_enc = dst_enc;
 881                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 882                 assert(src1_enc != dst_enc, "");
 883               }
 884             }
 885           }
 886           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 887                        || offset == oopDesc::mark_offset_in_bytes())) {
 888                       // loading the mark should not be allowed either, but
 889                       // we don't check this since it conflicts with InlineObjectHash
 890                       // usage of LoadINode to get the mark. We could keep the
 891                       // check if we create a new LoadMarkNode
 892             // but do not verify the object before its header is initialized
 893             ShouldNotReachHere();
 894           }
 895         }
 896       }
 897     }
 898   }
 899 #endif
 900 
 901   uint instr;
 902   instr = (Assembler::ldst_op << 30)
 903         | (dst_enc        << 25)
 904         | (primary        << 19)
 905         | (src1_enc       << 14);
 906 
 907   uint index = src2_enc;
 908   int disp = disp32;
 909 
 910   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 911     disp += STACK_BIAS;
 912 
 913   // We should have a compiler bailout here rather than a guarantee.
 914   // Better yet would be some mechanism to handle variable-size matches correctly.
 915   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 916 
 917   if( disp == 0 ) {
 918     // use reg-reg form
 919     // bit 13 is already zero
 920     instr |= index;
 921   } else {
 922     // use reg-imm form
 923     instr |= 0x00002000;          // set bit 13 to one
 924     instr |= disp & 0x1FFF;
 925   }
 926 
 927   cbuf.insts()->emit_int32(instr);
 928 
 929 #ifdef ASSERT
 930   {
 931     MacroAssembler _masm(&cbuf);
 932     if (is_verified_oop_base) {
 933       __ verify_oop(reg_to_register_object(src1_enc));
 934     }
 935     if (is_verified_oop_store) {
 936       __ verify_oop(reg_to_register_object(dst_enc));
 937     }
 938     if (tmp_enc != -1) {
 939       __ mov(O7, reg_to_register_object(tmp_enc));
 940     }
 941     if (is_verified_oop_load) {
 942       __ verify_oop(reg_to_register_object(dst_enc));
 943     }
 944   }
 945 #endif
 946 }
 947 
 948 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 949   // The method which records debug information at every safepoint
 950   // expects the call to be the first instruction in the snippet as
 951   // it creates a PcDesc structure which tracks the offset of a call
 952   // from the start of the codeBlob. This offset is computed as
 953   // code_end() - code_begin() of the code which has been emitted
 954   // so far.
 955   // In this particular case we have skirted around the problem by
 956   // putting the "mov" instruction in the delay slot but the problem
 957   // may bite us again at some other point and a cleaner/generic
 958   // solution using relocations would be needed.
 959   MacroAssembler _masm(&cbuf);
 960   __ set_inst_mark();
 961 
 962   // We flush the current window just so that there is a valid stack copy
 963   // the fact that the current window becomes active again instantly is
 964   // not a problem there is nothing live in it.
 965 
 966 #ifdef ASSERT
 967   int startpos = __ offset();
 968 #endif /* ASSERT */
 969 
 970   __ call((address)entry_point, rtype);
 971 
 972   if (preserve_g2)   __ delayed()->mov(G2, L7);
 973   else __ delayed()->nop();
 974 
 975   if (preserve_g2)   __ mov(L7, G2);
 976 
 977 #ifdef ASSERT
 978   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 979 #ifdef _LP64
 980     // Trash argument dump slots.
 981     __ set(0xb0b8ac0db0b8ac0d, G1);
 982     __ mov(G1, G5);
 983     __ stx(G1, SP, STACK_BIAS + 0x80);
 984     __ stx(G1, SP, STACK_BIAS + 0x88);
 985     __ stx(G1, SP, STACK_BIAS + 0x90);
 986     __ stx(G1, SP, STACK_BIAS + 0x98);
 987     __ stx(G1, SP, STACK_BIAS + 0xA0);
 988     __ stx(G1, SP, STACK_BIAS + 0xA8);
 989 #else // _LP64
 990     // this is also a native call, so smash the first 7 stack locations,
 991     // and the various registers
 992 
 993     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
 994     // while [SP+0x44..0x58] are the argument dump slots.
 995     __ set((intptr_t)0xbaadf00d, G1);
 996     __ mov(G1, G5);
 997     __ sllx(G1, 32, G1);
 998     __ or3(G1, G5, G1);
 999     __ mov(G1, G5);
1000     __ stx(G1, SP, 0x40);
1001     __ stx(G1, SP, 0x48);
1002     __ stx(G1, SP, 0x50);
1003     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1004 #endif // _LP64
1005   }
1006 #endif /*ASSERT*/
1007 }
1008 
1009 //=============================================================================
1010 // REQUIRED FUNCTIONALITY for encoding
1011 void emit_lo(CodeBuffer &cbuf, int val) {  }
1012 void emit_hi(CodeBuffer &cbuf, int val) {  }
1013 
1014 
1015 //=============================================================================
1016 const bool Matcher::constant_table_absolute_addressing = false;
1017 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
1018 
1019 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1020   Compile* C = ra_->C;
1021   Compile::ConstantTable& constant_table = C->constant_table();
1022   MacroAssembler _masm(&cbuf);
1023 
1024   Register r = as_Register(ra_->get_encode(this));
1025   CodeSection* cs = __ code()->consts();
1026   int consts_size = cs->align_at_start(cs->size());
1027 
1028   if (UseRDPCForConstantTableBase) {
1029     // For the following RDPC logic to work correctly the consts
1030     // section must be allocated right before the insts section.  This
1031     // assert checks for that.  The layout and the SECT_* constants
1032     // are defined in src/share/vm/asm/codeBuffer.hpp.
1033     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1034     int offset = __ offset();
1035     int disp;
1036 
1037     // If the displacement from the current PC to the constant table
1038     // base fits into simm13 we set the constant table base to the
1039     // current PC.
1040     if (__ is_simm13(-(consts_size + offset))) {
1041       constant_table.set_table_base_offset(-(consts_size + offset));
1042       disp = 0;
1043     } else {
1044       // If the offset of the top constant (last entry in the table)
1045       // fits into simm13 we set the constant table base to the actual
1046       // table base.
1047       if (__ is_simm13(constant_table.top_offset())) {
1048         constant_table.set_table_base_offset(0);
1049         disp = consts_size + offset;
1050       } else {
1051         // Otherwise we set the constant table base in the middle of the
1052         // constant table.
1053         int half_consts_size = consts_size / 2;
1054         assert(half_consts_size * 2 == consts_size, "sanity");
1055         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
1056         disp = half_consts_size + offset;
1057       }
1058     }
1059 
1060     __ rdpc(r);
1061 
1062     if (disp != 0) {
1063       assert(r != O7, "need temporary");
1064       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1065     }
1066   }
1067   else {
1068     // Materialize the constant table base.
1069     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1070     address baseaddr = cs->start() + -(constant_table.table_base_offset());
1071     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1072     AddressLiteral base(baseaddr, rspec);
1073     __ set(base, r);
1074   }
1075 }
1076 
1077 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1078   if (UseRDPCForConstantTableBase) {
1079     // This is really the worst case but generally it's only 1 instruction.
1080     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1081   } else {
1082     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1083   }
1084 }
1085 
1086 #ifndef PRODUCT
1087 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1088   char reg[128];
1089   ra_->dump_register(this, reg);
1090   if (UseRDPCForConstantTableBase) {
1091     st->print("RDPC   %s\t! constant table base", reg);
1092   } else {
1093     st->print("SET    &constanttable,%s\t! constant table base", reg);
1094   }
1095 }
1096 #endif
1097 
1098 
1099 //=============================================================================
1100 
1101 #ifndef PRODUCT
1102 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1103   Compile* C = ra_->C;
1104 
1105   for (int i = 0; i < OptoPrologueNops; i++) {
1106     st->print_cr("NOP"); st->print("\t");
1107   }
1108 
1109   if( VerifyThread ) {
1110     st->print_cr("Verify_Thread"); st->print("\t");
1111   }
1112 
1113   size_t framesize = C->frame_slots() << LogBytesPerInt;
1114 
1115   // Calls to C2R adapters often do not accept exceptional returns.
1116   // We require that their callers must bang for them.  But be careful, because
1117   // some VM calls (such as call site linkage) can use several kilobytes of
1118   // stack.  But the stack safety zone should account for that.
1119   // See bugs 4446381, 4468289, 4497237.
1120   if (C->need_stack_bang(framesize)) {
1121     st->print_cr("! stack bang"); st->print("\t");
1122   }
1123 
1124   if (Assembler::is_simm13(-framesize)) {
1125     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1126   } else {
1127     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1128     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1129     st->print   ("SAVE   R_SP,R_G3,R_SP");
1130   }
1131 
1132 }
1133 #endif
1134 
1135 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1136   Compile* C = ra_->C;
1137   MacroAssembler _masm(&cbuf);
1138 
1139   for (int i = 0; i < OptoPrologueNops; i++) {
1140     __ nop();
1141   }
1142 
1143   __ verify_thread();
1144 
1145   size_t framesize = C->frame_slots() << LogBytesPerInt;
1146   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1147   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1148 
1149   // Calls to C2R adapters often do not accept exceptional returns.
1150   // We require that their callers must bang for them.  But be careful, because
1151   // some VM calls (such as call site linkage) can use several kilobytes of
1152   // stack.  But the stack safety zone should account for that.
1153   // See bugs 4446381, 4468289, 4497237.
1154   if (C->need_stack_bang(framesize)) {
1155     __ generate_stack_overflow_check(framesize);
1156   }
1157 
1158   if (Assembler::is_simm13(-framesize)) {
1159     __ save(SP, -framesize, SP);
1160   } else {
1161     __ sethi(-framesize & ~0x3ff, G3);
1162     __ add(G3, -framesize & 0x3ff, G3);
1163     __ save(SP, G3, SP);
1164   }
1165   C->set_frame_complete( __ offset() );
1166 }
1167 
1168 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1169   return MachNode::size(ra_);
1170 }
1171 
1172 int MachPrologNode::reloc() const {
1173   return 10; // a large enough number
1174 }
1175 
1176 //=============================================================================
1177 #ifndef PRODUCT
1178 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1179   Compile* C = ra_->C;
1180 
1181   if( do_polling() && ra_->C->is_method_compilation() ) {
1182     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1183 #ifdef _LP64
1184     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1185 #else
1186     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1187 #endif
1188   }
1189 
1190   if( do_polling() )
1191     st->print("RET\n\t");
1192 
1193   st->print("RESTORE");
1194 }
1195 #endif
1196 
1197 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1198   MacroAssembler _masm(&cbuf);
1199   Compile* C = ra_->C;
1200 
1201   __ verify_thread();
1202 
1203   // If this does safepoint polling, then do it here
1204   if( do_polling() && ra_->C->is_method_compilation() ) {
1205     AddressLiteral polling_page(os::get_polling_page());
1206     __ sethi(polling_page, L0);
1207     __ relocate(relocInfo::poll_return_type);
1208     __ ld_ptr( L0, 0, G0 );
1209   }
1210 
1211   // If this is a return, then stuff the restore in the delay slot
1212   if( do_polling() ) {
1213     __ ret();
1214     __ delayed()->restore();
1215   } else {
1216     __ restore();
1217   }
1218 }
1219 
1220 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1221   return MachNode::size(ra_);
1222 }
1223 
1224 int MachEpilogNode::reloc() const {
1225   return 16; // a large enough number
1226 }
1227 
1228 const Pipeline * MachEpilogNode::pipeline() const {
1229   return MachNode::pipeline_class();
1230 }
1231 
1232 int MachEpilogNode::safepoint_offset() const {
1233   assert( do_polling(), "no return for this epilog node");
1234   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1235 }
1236 
1237 //=============================================================================
1238 
1239 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1240 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1241 static enum RC rc_class( OptoReg::Name reg ) {
1242   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1243   if (OptoReg::is_stack(reg)) return rc_stack;
1244   VMReg r = OptoReg::as_VMReg(reg);
1245   if (r->is_Register()) return rc_int;
1246   assert(r->is_FloatRegister(), "must be");
1247   return rc_float;
1248 }
1249 
1250 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1251   if( cbuf ) {
1252     // Better yet would be some mechanism to handle variable-size matches correctly
1253     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1254       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1255     } else {
1256       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1257     }
1258   }
1259 #ifndef PRODUCT
1260   else if( !do_size ) {
1261     if( size != 0 ) st->print("\n\t");
1262     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1263     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1264   }
1265 #endif
1266   return size+4;
1267 }
1268 
1269 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1270   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1271 #ifndef PRODUCT
1272   else if( !do_size ) {
1273     if( size != 0 ) st->print("\n\t");
1274     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1275   }
1276 #endif
1277   return size+4;
1278 }
1279 
1280 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1281                                         PhaseRegAlloc *ra_,
1282                                         bool do_size,
1283                                         outputStream* st ) const {
1284   // Get registers to move
1285   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1286   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1287   OptoReg::Name dst_second = ra_->get_reg_second(this );
1288   OptoReg::Name dst_first = ra_->get_reg_first(this );
1289 
1290   enum RC src_second_rc = rc_class(src_second);
1291   enum RC src_first_rc = rc_class(src_first);
1292   enum RC dst_second_rc = rc_class(dst_second);
1293   enum RC dst_first_rc = rc_class(dst_first);
1294 
1295   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1296 
1297   // Generate spill code!
1298   int size = 0;
1299 
1300   if( src_first == dst_first && src_second == dst_second )
1301     return size;            // Self copy, no move
1302 
1303   // --------------------------------------
1304   // Check for mem-mem move.  Load into unused float registers and fall into
1305   // the float-store case.
1306   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1307     int offset = ra_->reg2offset(src_first);
1308     // Further check for aligned-adjacent pair, so we can use a double load
1309     if( (src_first&1)==0 && src_first+1 == src_second ) {
1310       src_second    = OptoReg::Name(R_F31_num);
1311       src_second_rc = rc_float;
1312       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1313     } else {
1314       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1315     }
1316     src_first    = OptoReg::Name(R_F30_num);
1317     src_first_rc = rc_float;
1318   }
1319 
1320   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1321     int offset = ra_->reg2offset(src_second);
1322     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1323     src_second    = OptoReg::Name(R_F31_num);
1324     src_second_rc = rc_float;
1325   }
1326 
1327   // --------------------------------------
1328   // Check for float->int copy; requires a trip through memory
1329   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1330     int offset = frame::register_save_words*wordSize;
1331     if (cbuf) {
1332       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1333       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1334       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1335       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1336     }
1337 #ifndef PRODUCT
1338     else if (!do_size) {
1339       if (size != 0) st->print("\n\t");
1340       st->print(  "SUB    R_SP,16,R_SP\n");
1341       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1342       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1343       st->print("\tADD    R_SP,16,R_SP\n");
1344     }
1345 #endif
1346     size += 16;
1347   }
1348 
1349   // Check for float->int copy on T4
1350   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1351     // Further check for aligned-adjacent pair, so we can use a double move
1352     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1353       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1354     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1355   }
1356   // Check for int->float copy on T4
1357   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1358     // Further check for aligned-adjacent pair, so we can use a double move
1359     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1360       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1361     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1362   }
1363 
1364   // --------------------------------------
1365   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1366   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1367   // hardware does the flop for me.  Doubles are always aligned, so no problem
1368   // there.  Misaligned sources only come from native-long-returns (handled
1369   // special below).
1370 #ifndef _LP64
1371   if( src_first_rc == rc_int &&     // source is already big-endian
1372       src_second_rc != rc_bad &&    // 64-bit move
1373       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1374     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1375     // Do the big-endian flop.
1376     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1377     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1378   }
1379 #endif
1380 
1381   // --------------------------------------
1382   // Check for integer reg-reg copy
1383   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1384 #ifndef _LP64
1385     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1386       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1387       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1388       //       operand contains the least significant word of the 64-bit value and vice versa.
1389       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1390       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1391       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1392       if( cbuf ) {
1393         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1394         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1395         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1396 #ifndef PRODUCT
1397       } else if( !do_size ) {
1398         if( size != 0 ) st->print("\n\t");
1399         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1400         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1401         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1402 #endif
1403       }
1404       return size+12;
1405     }
1406     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1407       // returning a long value in I0/I1
1408       // a SpillCopy must be able to target a return instruction's reg_class
1409       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1410       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1411       //       operand contains the least significant word of the 64-bit value and vice versa.
1412       OptoReg::Name tdest = dst_first;
1413 
1414       if (src_first == dst_first) {
1415         tdest = OptoReg::Name(R_O7_num);
1416         size += 4;
1417       }
1418 
1419       if( cbuf ) {
1420         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1421         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1422         // ShrL_reg_imm6
1423         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1424         // ShrR_reg_imm6  src, 0, dst
1425         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1426         if (tdest != dst_first) {
1427           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1428         }
1429       }
1430 #ifndef PRODUCT
1431       else if( !do_size ) {
1432         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1433         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1434         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1435         if (tdest != dst_first) {
1436           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1437         }
1438       }
1439 #endif // PRODUCT
1440       return size+8;
1441     }
1442 #endif // !_LP64
1443     // Else normal reg-reg copy
1444     assert( src_second != dst_first, "smashed second before evacuating it" );
1445     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1446     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1447     // This moves an aligned adjacent pair.
1448     // See if we are done.
1449     if( src_first+1 == src_second && dst_first+1 == dst_second )
1450       return size;
1451   }
1452 
1453   // Check for integer store
1454   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1455     int offset = ra_->reg2offset(dst_first);
1456     // Further check for aligned-adjacent pair, so we can use a double store
1457     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1458       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1459     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1460   }
1461 
1462   // Check for integer load
1463   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1464     int offset = ra_->reg2offset(src_first);
1465     // Further check for aligned-adjacent pair, so we can use a double load
1466     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1467       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1468     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1469   }
1470 
1471   // Check for float reg-reg copy
1472   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1473     // Further check for aligned-adjacent pair, so we can use a double move
1474     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1475       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1476     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1477   }
1478 
1479   // Check for float store
1480   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1481     int offset = ra_->reg2offset(dst_first);
1482     // Further check for aligned-adjacent pair, so we can use a double store
1483     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1484       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1485     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1486   }
1487 
1488   // Check for float load
1489   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1490     int offset = ra_->reg2offset(src_first);
1491     // Further check for aligned-adjacent pair, so we can use a double load
1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1493       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1494     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1495   }
1496 
1497   // --------------------------------------------------------------------
1498   // Check for hi bits still needing moving.  Only happens for misaligned
1499   // arguments to native calls.
1500   if( src_second == dst_second )
1501     return size;               // Self copy; no move
1502   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1503 
1504 #ifndef _LP64
1505   // In the LP64 build, all registers can be moved as aligned/adjacent
1506   // pairs, so there's never any need to move the high bits separately.
1507   // The 32-bit builds have to deal with the 32-bit ABI which can force
1508   // all sorts of silly alignment problems.
1509 
1510   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1511   // 32-bits of a 64-bit register, but are needed in low bits of another
1512   // register (else it's a hi-bits-to-hi-bits copy which should have
1513   // happened already as part of a 64-bit move)
1514   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1515     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1516     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1517     // Shift src_second down to dst_second's low bits.
1518     if( cbuf ) {
1519       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1520 #ifndef PRODUCT
1521     } else if( !do_size ) {
1522       if( size != 0 ) st->print("\n\t");
1523       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1524 #endif
1525     }
1526     return size+4;
1527   }
1528 
1529   // Check for high word integer store.  Must down-shift the hi bits
1530   // into a temp register, then fall into the case of storing int bits.
1531   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1532     // Shift src_second down to dst_second's low bits.
1533     if( cbuf ) {
1534       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1535 #ifndef PRODUCT
1536     } else if( !do_size ) {
1537       if( size != 0 ) st->print("\n\t");
1538       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1539 #endif
1540     }
1541     size+=4;
1542     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1543   }
1544 
1545   // Check for high word integer load
1546   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1547     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1548 
1549   // Check for high word integer store
1550   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1551     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1552 
1553   // Check for high word float store
1554   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1555     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1556 
1557 #endif // !_LP64
1558 
1559   Unimplemented();
1560 }
1561 
1562 #ifndef PRODUCT
1563 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1564   implementation( NULL, ra_, false, st );
1565 }
1566 #endif
1567 
1568 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1569   implementation( &cbuf, ra_, false, NULL );
1570 }
1571 
1572 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1573   return implementation( NULL, ra_, true, NULL );
1574 }
1575 
1576 //=============================================================================
1577 #ifndef PRODUCT
1578 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1579   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1580 }
1581 #endif
1582 
1583 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1584   MacroAssembler _masm(&cbuf);
1585   for(int i = 0; i < _count; i += 1) {
1586     __ nop();
1587   }
1588 }
1589 
1590 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1591   return 4 * _count;
1592 }
1593 
1594 
1595 //=============================================================================
1596 #ifndef PRODUCT
1597 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1598   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1599   int reg = ra_->get_reg_first(this);
1600   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1601 }
1602 #endif
1603 
1604 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1605   MacroAssembler _masm(&cbuf);
1606   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1607   int reg = ra_->get_encode(this);
1608 
1609   if (Assembler::is_simm13(offset)) {
1610      __ add(SP, offset, reg_to_register_object(reg));
1611   } else {
1612      __ set(offset, O7);
1613      __ add(SP, O7, reg_to_register_object(reg));
1614   }
1615 }
1616 
1617 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1618   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1619   assert(ra_ == ra_->C->regalloc(), "sanity");
1620   return ra_->C->scratch_emit_size(this);
1621 }
1622 
1623 //=============================================================================
1624 
1625 // emit call stub, compiled java to interpretor
1626 void emit_java_to_interp(CodeBuffer &cbuf ) {
1627 
1628   // Stub is fixed up when the corresponding call is converted from calling
1629   // compiled code to calling interpreted code.
1630   // set (empty), G5
1631   // jmp -1
1632 
1633   address mark = cbuf.insts_mark();  // get mark within main instrs section
1634 
1635   MacroAssembler _masm(&cbuf);
1636 
1637   address base =
1638   __ start_a_stub(Compile::MAX_stubs_size);
1639   if (base == NULL)  return;  // CodeBuffer::expand failed
1640 
1641   // static stub relocation stores the instruction address of the call
1642   __ relocate(static_stub_Relocation::spec(mark));
1643 
1644   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1645 
1646   __ set_inst_mark();
1647   AddressLiteral addrlit(-1);
1648   __ JUMP(addrlit, G3, 0);
1649 
1650   __ delayed()->nop();
1651 
1652   // Update current stubs pointer and restore code_end.
1653   __ end_a_stub();
1654 }
1655 
1656 // size of call stub, compiled java to interpretor
1657 uint size_java_to_interp() {
1658   // This doesn't need to be accurate but it must be larger or equal to
1659   // the real size of the stub.
1660   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1661           NativeJump::instruction_size + // sethi; jmp; nop
1662           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1663 }
1664 // relocation entries for call stub, compiled java to interpretor
1665 uint reloc_java_to_interp() {
1666   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1667 }
1668 
1669 
1670 //=============================================================================
1671 #ifndef PRODUCT
1672 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1673   st->print_cr("\nUEP:");
1674 #ifdef    _LP64
1675   if (UseCompressedOops) {
1676     assert(Universe::heap() != NULL, "java heap should be initialized");
1677     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1678     st->print_cr("\tSLL    R_G5,3,R_G5");
1679     if (Universe::narrow_oop_base() != NULL)
1680       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1681   } else {
1682     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1683   }
1684   st->print_cr("\tCMP    R_G5,R_G3" );
1685   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1686 #else  // _LP64
1687   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1688   st->print_cr("\tCMP    R_G5,R_G3" );
1689   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1690 #endif // _LP64
1691 }
1692 #endif
1693 
1694 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1695   MacroAssembler _masm(&cbuf);
1696   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1697   Register temp_reg   = G3;
1698   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1699 
1700   // Load klass from receiver
1701   __ load_klass(O0, temp_reg);
1702   // Compare against expected klass
1703   __ cmp(temp_reg, G5_ic_reg);
1704   // Branch to miss code, checks xcc or icc depending
1705   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1706 }
1707 
1708 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1709   return MachNode::size(ra_);
1710 }
1711 
1712 
1713 //=============================================================================
1714 
1715 uint size_exception_handler() {
1716   if (TraceJumps) {
1717     return (400); // just a guess
1718   }
1719   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1720 }
1721 
1722 uint size_deopt_handler() {
1723   if (TraceJumps) {
1724     return (400); // just a guess
1725   }
1726   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1727 }
1728 
1729 // Emit exception handler code.
1730 int emit_exception_handler(CodeBuffer& cbuf) {
1731   Register temp_reg = G3;
1732   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1733   MacroAssembler _masm(&cbuf);
1734 
1735   address base =
1736   __ start_a_stub(size_exception_handler());
1737   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1738 
1739   int offset = __ offset();
1740 
1741   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1742   __ delayed()->nop();
1743 
1744   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1745 
1746   __ end_a_stub();
1747 
1748   return offset;
1749 }
1750 
1751 int emit_deopt_handler(CodeBuffer& cbuf) {
1752   // Can't use any of the current frame's registers as we may have deopted
1753   // at a poll and everything (including G3) can be live.
1754   Register temp_reg = L0;
1755   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1756   MacroAssembler _masm(&cbuf);
1757 
1758   address base =
1759   __ start_a_stub(size_deopt_handler());
1760   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1761 
1762   int offset = __ offset();
1763   __ save_frame(0);
1764   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1765   __ delayed()->restore();
1766 
1767   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1768 
1769   __ end_a_stub();
1770   return offset;
1771 
1772 }
1773 
1774 // Given a register encoding, produce a Integer Register object
1775 static Register reg_to_register_object(int register_encoding) {
1776   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1777   return as_Register(register_encoding);
1778 }
1779 
1780 // Given a register encoding, produce a single-precision Float Register object
1781 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1782   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1783   return as_SingleFloatRegister(register_encoding);
1784 }
1785 
1786 // Given a register encoding, produce a double-precision Float Register object
1787 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1788   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1789   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1790   return as_DoubleFloatRegister(register_encoding);
1791 }
1792 
1793 const bool Matcher::match_rule_supported(int opcode) {
1794   if (!has_match_rule(opcode))
1795     return false;
1796 
1797   switch (opcode) {
1798   case Op_CountLeadingZerosI:
1799   case Op_CountLeadingZerosL:
1800   case Op_CountTrailingZerosI:
1801   case Op_CountTrailingZerosL:
1802     if (!UsePopCountInstruction)
1803       return false;
1804     break;
1805   }
1806 
1807   return true;  // Per default match rules are supported.
1808 }
1809 
1810 int Matcher::regnum_to_fpu_offset(int regnum) {
1811   return regnum - 32; // The FP registers are in the second chunk
1812 }
1813 
1814 #ifdef ASSERT
1815 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1816 #endif
1817 
1818 // Vector width in bytes
1819 const uint Matcher::vector_width_in_bytes(void) {
1820   return 8;
1821 }
1822 
1823 // Vector ideal reg
1824 const uint Matcher::vector_ideal_reg(void) {
1825   return Op_RegD;
1826 }
1827 
1828 // USII supports fxtof through the whole range of number, USIII doesn't
1829 const bool Matcher::convL2FSupported(void) {
1830   return VM_Version::has_fast_fxtof();
1831 }
1832 
1833 // Is this branch offset short enough that a short branch can be used?
1834 //
1835 // NOTE: If the platform does not provide any short branch variants, then
1836 //       this method should return false for offset 0.
1837 bool Matcher::is_short_branch_offset(int rule, int offset) {
1838   return false;
1839 }
1840 
1841 const bool Matcher::isSimpleConstant64(jlong value) {
1842   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1843   // Depends on optimizations in MacroAssembler::setx.
1844   int hi = (int)(value >> 32);
1845   int lo = (int)(value & ~0);
1846   return (hi == 0) || (hi == -1) || (lo == 0);
1847 }
1848 
1849 // No scaling for the parameter the ClearArray node.
1850 const bool Matcher::init_array_count_is_in_bytes = true;
1851 
1852 // Threshold size for cleararray.
1853 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1854 
1855 // Should the Matcher clone shifts on addressing modes, expecting them to
1856 // be subsumed into complex addressing expressions or compute them into
1857 // registers?  True for Intel but false for most RISCs
1858 const bool Matcher::clone_shift_expressions = false;
1859 
1860 // Do we need to mask the count passed to shift instructions or does
1861 // the cpu only look at the lower 5/6 bits anyway?
1862 const bool Matcher::need_masked_shift_count = false;
1863 
1864 bool Matcher::narrow_oop_use_complex_address() {
1865   NOT_LP64(ShouldNotCallThis());
1866   assert(UseCompressedOops, "only for compressed oops code");
1867   return false;
1868 }
1869 
1870 // Is it better to copy float constants, or load them directly from memory?
1871 // Intel can load a float constant from a direct address, requiring no
1872 // extra registers.  Most RISCs will have to materialize an address into a
1873 // register first, so they would do better to copy the constant from stack.
1874 const bool Matcher::rematerialize_float_constants = false;
1875 
1876 // If CPU can load and store mis-aligned doubles directly then no fixup is
1877 // needed.  Else we split the double into 2 integer pieces and move it
1878 // piece-by-piece.  Only happens when passing doubles into C code as the
1879 // Java calling convention forces doubles to be aligned.
1880 #ifdef _LP64
1881 const bool Matcher::misaligned_doubles_ok = true;
1882 #else
1883 const bool Matcher::misaligned_doubles_ok = false;
1884 #endif
1885 
1886 // No-op on SPARC.
1887 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1888 }
1889 
1890 // Advertise here if the CPU requires explicit rounding operations
1891 // to implement the UseStrictFP mode.
1892 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1893 
1894 // Are floats conerted to double when stored to stack during deoptimization?
1895 // Sparc does not handle callee-save floats.
1896 bool Matcher::float_in_double() { return false; }
1897 
1898 // Do ints take an entire long register or just half?
1899 // Note that we if-def off of _LP64.
1900 // The relevant question is how the int is callee-saved.  In _LP64
1901 // the whole long is written but de-opt'ing will have to extract
1902 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1903 #ifdef _LP64
1904 const bool Matcher::int_in_long = true;
1905 #else
1906 const bool Matcher::int_in_long = false;
1907 #endif
1908 
1909 // Return whether or not this register is ever used as an argument.  This
1910 // function is used on startup to build the trampoline stubs in generateOptoStub.
1911 // Registers not mentioned will be killed by the VM call in the trampoline, and
1912 // arguments in those registers not be available to the callee.
1913 bool Matcher::can_be_java_arg( int reg ) {
1914   // Standard sparc 6 args in registers
1915   if( reg == R_I0_num ||
1916       reg == R_I1_num ||
1917       reg == R_I2_num ||
1918       reg == R_I3_num ||
1919       reg == R_I4_num ||
1920       reg == R_I5_num ) return true;
1921 #ifdef _LP64
1922   // 64-bit builds can pass 64-bit pointers and longs in
1923   // the high I registers
1924   if( reg == R_I0H_num ||
1925       reg == R_I1H_num ||
1926       reg == R_I2H_num ||
1927       reg == R_I3H_num ||
1928       reg == R_I4H_num ||
1929       reg == R_I5H_num ) return true;
1930 
1931   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1932     return true;
1933   }
1934 
1935 #else
1936   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1937   // Longs cannot be passed in O regs, because O regs become I regs
1938   // after a 'save' and I regs get their high bits chopped off on
1939   // interrupt.
1940   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1941   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1942 #endif
1943   // A few float args in registers
1944   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1945 
1946   return false;
1947 }
1948 
1949 bool Matcher::is_spillable_arg( int reg ) {
1950   return can_be_java_arg(reg);
1951 }
1952 
1953 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1954   // Use hardware SDIVX instruction when it is
1955   // faster than a code which use multiply.
1956   return VM_Version::has_fast_idiv();
1957 }
1958 
1959 // Register for DIVI projection of divmodI
1960 RegMask Matcher::divI_proj_mask() {
1961   ShouldNotReachHere();
1962   return RegMask();
1963 }
1964 
1965 // Register for MODI projection of divmodI
1966 RegMask Matcher::modI_proj_mask() {
1967   ShouldNotReachHere();
1968   return RegMask();
1969 }
1970 
1971 // Register for DIVL projection of divmodL
1972 RegMask Matcher::divL_proj_mask() {
1973   ShouldNotReachHere();
1974   return RegMask();
1975 }
1976 
1977 // Register for MODL projection of divmodL
1978 RegMask Matcher::modL_proj_mask() {
1979   ShouldNotReachHere();
1980   return RegMask();
1981 }
1982 
1983 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1984   return L7_REGP_mask;
1985 }
1986 
1987 %}
1988 
1989 
1990 // The intptr_t operand types, defined by textual substitution.
1991 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1992 #ifdef _LP64
1993 #define immX      immL
1994 #define immX13    immL13
1995 #define immX13m7  immL13m7
1996 #define iRegX     iRegL
1997 #define g1RegX    g1RegL
1998 #else
1999 #define immX      immI
2000 #define immX13    immI13
2001 #define immX13m7  immI13m7
2002 #define iRegX     iRegI
2003 #define g1RegX    g1RegI
2004 #endif
2005 
2006 //----------ENCODING BLOCK-----------------------------------------------------
2007 // This block specifies the encoding classes used by the compiler to output
2008 // byte streams.  Encoding classes are parameterized macros used by
2009 // Machine Instruction Nodes in order to generate the bit encoding of the
2010 // instruction.  Operands specify their base encoding interface with the
2011 // interface keyword.  There are currently supported four interfaces,
2012 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2013 // operand to generate a function which returns its register number when
2014 // queried.   CONST_INTER causes an operand to generate a function which
2015 // returns the value of the constant when queried.  MEMORY_INTER causes an
2016 // operand to generate four functions which return the Base Register, the
2017 // Index Register, the Scale Value, and the Offset Value of the operand when
2018 // queried.  COND_INTER causes an operand to generate six functions which
2019 // return the encoding code (ie - encoding bits for the instruction)
2020 // associated with each basic boolean condition for a conditional instruction.
2021 //
2022 // Instructions specify two basic values for encoding.  Again, a function
2023 // is available to check if the constant displacement is an oop. They use the
2024 // ins_encode keyword to specify their encoding classes (which must be
2025 // a sequence of enc_class names, and their parameters, specified in
2026 // the encoding block), and they use the
2027 // opcode keyword to specify, in order, their primary, secondary, and
2028 // tertiary opcode.  Only the opcode sections which a particular instruction
2029 // needs for encoding need to be specified.
2030 encode %{
2031   enc_class enc_untested %{
2032 #ifdef ASSERT
2033     MacroAssembler _masm(&cbuf);
2034     __ untested("encoding");
2035 #endif
2036   %}
2037 
2038   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2039     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2040                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2041   %}
2042 
2043   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2044     emit_form3_mem_reg(cbuf, this, $primary, -1,
2045                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2046   %}
2047 
2048   enc_class form3_mem_prefetch_read( memory mem ) %{
2049     emit_form3_mem_reg(cbuf, this, $primary, -1,
2050                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2051   %}
2052 
2053   enc_class form3_mem_prefetch_write( memory mem ) %{
2054     emit_form3_mem_reg(cbuf, this, $primary, -1,
2055                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2056   %}
2057 
2058   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2059     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2060     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2061     guarantee($mem$$index == R_G0_enc, "double index?");
2062     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2063     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2064     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2065     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2066   %}
2067 
2068   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2069     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2070     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2071     guarantee($mem$$index == R_G0_enc, "double index?");
2072     // Load long with 2 instructions
2073     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2074     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2075   %}
2076 
2077   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2078   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2079     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2080     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2081   %}
2082 
2083   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2084     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2085     if( $rs2$$reg != $rd$$reg )
2086       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2087   %}
2088 
2089   // Target lo half of long
2090   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2091     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2092     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2093       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2094   %}
2095 
2096   // Source lo half of long
2097   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2098     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2099     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2100       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2101   %}
2102 
2103   // Target hi half of long
2104   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2105     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2106   %}
2107 
2108   // Source lo half of long, and leave it sign extended.
2109   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2110     // Sign extend low half
2111     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2112   %}
2113 
2114   // Source hi half of long, and leave it sign extended.
2115   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2116     // Shift high half to low half
2117     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2118   %}
2119 
2120   // Source hi half of long
2121   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2122     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2123     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2124       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2125   %}
2126 
2127   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2128     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2129   %}
2130 
2131   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2132     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2133     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2134   %}
2135 
2136   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2137     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2138     // clear if nothing else is happening
2139     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2140     // blt,a,pn done
2141     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2142     // mov dst,-1 in delay slot
2143     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2144   %}
2145 
2146   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2147     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2148   %}
2149 
2150   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2151     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2152   %}
2153 
2154   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2155     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2156   %}
2157 
2158   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2159     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2160   %}
2161 
2162   enc_class move_return_pc_to_o1() %{
2163     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2164   %}
2165 
2166 #ifdef _LP64
2167   /* %%% merge with enc_to_bool */
2168   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2169     MacroAssembler _masm(&cbuf);
2170 
2171     Register   src_reg = reg_to_register_object($src$$reg);
2172     Register   dst_reg = reg_to_register_object($dst$$reg);
2173     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2174   %}
2175 #endif
2176 
2177   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2178     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2179     MacroAssembler _masm(&cbuf);
2180 
2181     Register   p_reg = reg_to_register_object($p$$reg);
2182     Register   q_reg = reg_to_register_object($q$$reg);
2183     Register   y_reg = reg_to_register_object($y$$reg);
2184     Register tmp_reg = reg_to_register_object($tmp$$reg);
2185 
2186     __ subcc( p_reg, q_reg,   p_reg );
2187     __ add  ( p_reg, y_reg, tmp_reg );
2188     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2189   %}
2190 
2191   enc_class form_d2i_helper(regD src, regF dst) %{
2192     // fcmp %fcc0,$src,$src
2193     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2194     // branch %fcc0 not-nan, predict taken
2195     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2196     // fdtoi $src,$dst
2197     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2198     // fitos $dst,$dst (if nan)
2199     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2200     // clear $dst (if nan)
2201     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2202     // carry on here...
2203   %}
2204 
2205   enc_class form_d2l_helper(regD src, regD dst) %{
2206     // fcmp %fcc0,$src,$src  check for NAN
2207     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2208     // branch %fcc0 not-nan, predict taken
2209     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2210     // fdtox $src,$dst   convert in delay slot
2211     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2212     // fxtod $dst,$dst  (if nan)
2213     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2214     // clear $dst (if nan)
2215     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2216     // carry on here...
2217   %}
2218 
2219   enc_class form_f2i_helper(regF src, regF dst) %{
2220     // fcmps %fcc0,$src,$src
2221     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2222     // branch %fcc0 not-nan, predict taken
2223     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2224     // fstoi $src,$dst
2225     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2226     // fitos $dst,$dst (if nan)
2227     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2228     // clear $dst (if nan)
2229     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2230     // carry on here...
2231   %}
2232 
2233   enc_class form_f2l_helper(regF src, regD dst) %{
2234     // fcmps %fcc0,$src,$src
2235     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2236     // branch %fcc0 not-nan, predict taken
2237     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2238     // fstox $src,$dst
2239     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2240     // fxtod $dst,$dst (if nan)
2241     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2242     // clear $dst (if nan)
2243     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2244     // carry on here...
2245   %}
2246 
2247   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2248   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2249   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2250   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2251 
2252   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2253 
2254   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2255   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2256 
2257   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2258     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2259   %}
2260 
2261   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2262     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2263   %}
2264 
2265   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2266     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2267   %}
2268 
2269   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2270     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2271   %}
2272 
2273   enc_class form3_convI2F(regF rs2, regF rd) %{
2274     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2275   %}
2276 
2277   // Encloding class for traceable jumps
2278   enc_class form_jmpl(g3RegP dest) %{
2279     emit_jmpl(cbuf, $dest$$reg);
2280   %}
2281 
2282   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2283     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2284   %}
2285 
2286   enc_class form2_nop() %{
2287     emit_nop(cbuf);
2288   %}
2289 
2290   enc_class form2_illtrap() %{
2291     emit_illtrap(cbuf);
2292   %}
2293 
2294 
2295   // Compare longs and convert into -1, 0, 1.
2296   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2297     // CMP $src1,$src2
2298     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2299     // blt,a,pn done
2300     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2301     // mov dst,-1 in delay slot
2302     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2303     // bgt,a,pn done
2304     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2305     // mov dst,1 in delay slot
2306     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2307     // CLR    $dst
2308     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2309   %}
2310 
2311   enc_class enc_PartialSubtypeCheck() %{
2312     MacroAssembler _masm(&cbuf);
2313     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2314     __ delayed()->nop();
2315   %}
2316 
2317   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2318     MacroAssembler _masm(&cbuf);
2319     Label* L = $labl$$label;
2320     assert(L != NULL, "need Label");
2321     Assembler::Predict predict_taken =
2322       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2323 
2324     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2325     __ delayed()->nop();
2326   %}
2327 
2328   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2329     MacroAssembler _masm(&cbuf);
2330     Label* L = $labl$$label;
2331     assert(L != NULL, "need Label");
2332     Assembler::Predict predict_taken =
2333       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2334 
2335     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2336     __ delayed()->nop();
2337   %}
2338 
2339   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2340     int op = (Assembler::arith_op << 30) |
2341              ($dst$$reg << 25) |
2342              (Assembler::movcc_op3 << 19) |
2343              (1 << 18) |                    // cc2 bit for 'icc'
2344              ($cmp$$cmpcode << 14) |
2345              (0 << 13) |                    // select register move
2346              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2347              ($src$$reg << 0);
2348     cbuf.insts()->emit_int32(op);
2349   %}
2350 
2351   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2352     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2353     int op = (Assembler::arith_op << 30) |
2354              ($dst$$reg << 25) |
2355              (Assembler::movcc_op3 << 19) |
2356              (1 << 18) |                    // cc2 bit for 'icc'
2357              ($cmp$$cmpcode << 14) |
2358              (1 << 13) |                    // select immediate move
2359              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2360              (simm11 << 0);
2361     cbuf.insts()->emit_int32(op);
2362   %}
2363 
2364   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2365     int op = (Assembler::arith_op << 30) |
2366              ($dst$$reg << 25) |
2367              (Assembler::movcc_op3 << 19) |
2368              (0 << 18) |                    // cc2 bit for 'fccX'
2369              ($cmp$$cmpcode << 14) |
2370              (0 << 13) |                    // select register move
2371              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2372              ($src$$reg << 0);
2373     cbuf.insts()->emit_int32(op);
2374   %}
2375 
2376   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2377     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2378     int op = (Assembler::arith_op << 30) |
2379              ($dst$$reg << 25) |
2380              (Assembler::movcc_op3 << 19) |
2381              (0 << 18) |                    // cc2 bit for 'fccX'
2382              ($cmp$$cmpcode << 14) |
2383              (1 << 13) |                    // select immediate move
2384              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2385              (simm11 << 0);
2386     cbuf.insts()->emit_int32(op);
2387   %}
2388 
2389   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2390     int op = (Assembler::arith_op << 30) |
2391              ($dst$$reg << 25) |
2392              (Assembler::fpop2_op3 << 19) |
2393              (0 << 18) |
2394              ($cmp$$cmpcode << 14) |
2395              (1 << 13) |                    // select register move
2396              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2397              ($primary << 5) |              // select single, double or quad
2398              ($src$$reg << 0);
2399     cbuf.insts()->emit_int32(op);
2400   %}
2401 
2402   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2403     int op = (Assembler::arith_op << 30) |
2404              ($dst$$reg << 25) |
2405              (Assembler::fpop2_op3 << 19) |
2406              (0 << 18) |
2407              ($cmp$$cmpcode << 14) |
2408              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2409              ($primary << 5) |              // select single, double or quad
2410              ($src$$reg << 0);
2411     cbuf.insts()->emit_int32(op);
2412   %}
2413 
2414   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2415   // the condition comes from opcode-field instead of an argument.
2416   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2417     int op = (Assembler::arith_op << 30) |
2418              ($dst$$reg << 25) |
2419              (Assembler::movcc_op3 << 19) |
2420              (1 << 18) |                    // cc2 bit for 'icc'
2421              ($primary << 14) |
2422              (0 << 13) |                    // select register move
2423              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2424              ($src$$reg << 0);
2425     cbuf.insts()->emit_int32(op);
2426   %}
2427 
2428   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2429     int op = (Assembler::arith_op << 30) |
2430              ($dst$$reg << 25) |
2431              (Assembler::movcc_op3 << 19) |
2432              (6 << 16) |                    // cc2 bit for 'xcc'
2433              ($primary << 14) |
2434              (0 << 13) |                    // select register move
2435              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2436              ($src$$reg << 0);
2437     cbuf.insts()->emit_int32(op);
2438   %}
2439 
2440   enc_class Set13( immI13 src, iRegI rd ) %{
2441     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2442   %}
2443 
2444   enc_class SetHi22( immI src, iRegI rd ) %{
2445     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2446   %}
2447 
2448   enc_class Set32( immI src, iRegI rd ) %{
2449     MacroAssembler _masm(&cbuf);
2450     __ set($src$$constant, reg_to_register_object($rd$$reg));
2451   %}
2452 
2453   enc_class call_epilog %{
2454     if( VerifyStackAtCalls ) {
2455       MacroAssembler _masm(&cbuf);
2456       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2457       Register temp_reg = G3;
2458       __ add(SP, framesize, temp_reg);
2459       __ cmp(temp_reg, FP);
2460       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2461     }
2462   %}
2463 
2464   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2465   // to G1 so the register allocator will not have to deal with the misaligned register
2466   // pair.
2467   enc_class adjust_long_from_native_call %{
2468 #ifndef _LP64
2469     if (returns_long()) {
2470       //    sllx  O0,32,O0
2471       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2472       //    srl   O1,0,O1
2473       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2474       //    or    O0,O1,G1
2475       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2476     }
2477 #endif
2478   %}
2479 
2480   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2481     // CALL directly to the runtime
2482     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2483     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2484                     /*preserve_g2=*/true);
2485   %}
2486 
2487   enc_class preserve_SP %{
2488     MacroAssembler _masm(&cbuf);
2489     __ mov(SP, L7_mh_SP_save);
2490   %}
2491 
2492   enc_class restore_SP %{
2493     MacroAssembler _masm(&cbuf);
2494     __ mov(L7_mh_SP_save, SP);
2495   %}
2496 
2497   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2498     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2499     // who we intended to call.
2500     if ( !_method ) {
2501       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2502     } else if (_optimized_virtual) {
2503       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2504     } else {
2505       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2506     }
2507     if( _method ) {  // Emit stub for static call
2508       emit_java_to_interp(cbuf);
2509     }
2510   %}
2511 
2512   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2513     MacroAssembler _masm(&cbuf);
2514     __ set_inst_mark();
2515     int vtable_index = this->_vtable_index;
2516     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2517     if (vtable_index < 0) {
2518       // must be invalid_vtable_index, not nonvirtual_vtable_index
2519       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2520       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2521       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2522       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2523       // !!!!!
2524       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2525       // emit_call_dynamic_prologue( cbuf );
2526       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2527 
2528       address  virtual_call_oop_addr = __ inst_mark();
2529       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2530       // who we intended to call.
2531       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2532       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2533     } else {
2534       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2535       // Just go thru the vtable
2536       // get receiver klass (receiver already checked for non-null)
2537       // If we end up going thru a c2i adapter interpreter expects method in G5
2538       int off = __ offset();
2539       __ load_klass(O0, G3_scratch);
2540       int klass_load_size;
2541       if (UseCompressedOops) {
2542         assert(Universe::heap() != NULL, "java heap should be initialized");
2543         if (Universe::narrow_oop_base() == NULL)
2544           klass_load_size = 2*BytesPerInstWord;
2545         else
2546           klass_load_size = 3*BytesPerInstWord;
2547       } else {
2548         klass_load_size = 1*BytesPerInstWord;
2549       }
2550       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2551       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2552       if( __ is_simm13(v_off) ) {
2553         __ ld_ptr(G3, v_off, G5_method);
2554       } else {
2555         // Generate 2 instructions
2556         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2557         __ or3(G5_method, v_off & 0x3ff, G5_method);
2558         // ld_ptr, set_hi, set
2559         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2560                "Unexpected instruction size(s)");
2561         __ ld_ptr(G3, G5_method, G5_method);
2562       }
2563       // NOTE: for vtable dispatches, the vtable entry will never be null.
2564       // However it may very well end up in handle_wrong_method if the
2565       // method is abstract for the particular class.
2566       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2567       // jump to target (either compiled code or c2iadapter)
2568       __ jmpl(G3_scratch, G0, O7);
2569       __ delayed()->nop();
2570     }
2571   %}
2572 
2573   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2574     MacroAssembler _masm(&cbuf);
2575 
2576     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2577     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2578                               // we might be calling a C2I adapter which needs it.
2579 
2580     assert(temp_reg != G5_ic_reg, "conflicting registers");
2581     // Load nmethod
2582     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2583 
2584     // CALL to compiled java, indirect the contents of G3
2585     __ set_inst_mark();
2586     __ callr(temp_reg, G0);
2587     __ delayed()->nop();
2588   %}
2589 
2590 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2591     MacroAssembler _masm(&cbuf);
2592     Register Rdividend = reg_to_register_object($src1$$reg);
2593     Register Rdivisor = reg_to_register_object($src2$$reg);
2594     Register Rresult = reg_to_register_object($dst$$reg);
2595 
2596     __ sra(Rdivisor, 0, Rdivisor);
2597     __ sra(Rdividend, 0, Rdividend);
2598     __ sdivx(Rdividend, Rdivisor, Rresult);
2599 %}
2600 
2601 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2602     MacroAssembler _masm(&cbuf);
2603 
2604     Register Rdividend = reg_to_register_object($src1$$reg);
2605     int divisor = $imm$$constant;
2606     Register Rresult = reg_to_register_object($dst$$reg);
2607 
2608     __ sra(Rdividend, 0, Rdividend);
2609     __ sdivx(Rdividend, divisor, Rresult);
2610 %}
2611 
2612 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2613     MacroAssembler _masm(&cbuf);
2614     Register Rsrc1 = reg_to_register_object($src1$$reg);
2615     Register Rsrc2 = reg_to_register_object($src2$$reg);
2616     Register Rdst  = reg_to_register_object($dst$$reg);
2617 
2618     __ sra( Rsrc1, 0, Rsrc1 );
2619     __ sra( Rsrc2, 0, Rsrc2 );
2620     __ mulx( Rsrc1, Rsrc2, Rdst );
2621     __ srlx( Rdst, 32, Rdst );
2622 %}
2623 
2624 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2625     MacroAssembler _masm(&cbuf);
2626     Register Rdividend = reg_to_register_object($src1$$reg);
2627     Register Rdivisor = reg_to_register_object($src2$$reg);
2628     Register Rresult = reg_to_register_object($dst$$reg);
2629     Register Rscratch = reg_to_register_object($scratch$$reg);
2630 
2631     assert(Rdividend != Rscratch, "");
2632     assert(Rdivisor  != Rscratch, "");
2633 
2634     __ sra(Rdividend, 0, Rdividend);
2635     __ sra(Rdivisor, 0, Rdivisor);
2636     __ sdivx(Rdividend, Rdivisor, Rscratch);
2637     __ mulx(Rscratch, Rdivisor, Rscratch);
2638     __ sub(Rdividend, Rscratch, Rresult);
2639 %}
2640 
2641 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2642     MacroAssembler _masm(&cbuf);
2643 
2644     Register Rdividend = reg_to_register_object($src1$$reg);
2645     int divisor = $imm$$constant;
2646     Register Rresult = reg_to_register_object($dst$$reg);
2647     Register Rscratch = reg_to_register_object($scratch$$reg);
2648 
2649     assert(Rdividend != Rscratch, "");
2650 
2651     __ sra(Rdividend, 0, Rdividend);
2652     __ sdivx(Rdividend, divisor, Rscratch);
2653     __ mulx(Rscratch, divisor, Rscratch);
2654     __ sub(Rdividend, Rscratch, Rresult);
2655 %}
2656 
2657 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2658     MacroAssembler _masm(&cbuf);
2659 
2660     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2661     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2662 
2663     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2664 %}
2665 
2666 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2667     MacroAssembler _masm(&cbuf);
2668 
2669     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2670     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2671 
2672     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2673 %}
2674 
2675 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2676     MacroAssembler _masm(&cbuf);
2677 
2678     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2679     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2680 
2681     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2682 %}
2683 
2684 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2685     MacroAssembler _masm(&cbuf);
2686 
2687     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2688     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2689 
2690     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2691 %}
2692 
2693 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2694     MacroAssembler _masm(&cbuf);
2695 
2696     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2697     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2698 
2699     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2700 %}
2701 
2702 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2703     MacroAssembler _masm(&cbuf);
2704 
2705     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2706     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2707 
2708     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2709 %}
2710 
2711 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2712     MacroAssembler _masm(&cbuf);
2713 
2714     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2715     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2716 
2717     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2718 %}
2719 
2720 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2721     MacroAssembler _masm(&cbuf);
2722 
2723     Register Roop  = reg_to_register_object($oop$$reg);
2724     Register Rbox  = reg_to_register_object($box$$reg);
2725     Register Rscratch = reg_to_register_object($scratch$$reg);
2726     Register Rmark =    reg_to_register_object($scratch2$$reg);
2727 
2728     assert(Roop  != Rscratch, "");
2729     assert(Roop  != Rmark, "");
2730     assert(Rbox  != Rscratch, "");
2731     assert(Rbox  != Rmark, "");
2732 
2733     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2734 %}
2735 
2736 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2737     MacroAssembler _masm(&cbuf);
2738 
2739     Register Roop  = reg_to_register_object($oop$$reg);
2740     Register Rbox  = reg_to_register_object($box$$reg);
2741     Register Rscratch = reg_to_register_object($scratch$$reg);
2742     Register Rmark =    reg_to_register_object($scratch2$$reg);
2743 
2744     assert(Roop  != Rscratch, "");
2745     assert(Roop  != Rmark, "");
2746     assert(Rbox  != Rscratch, "");
2747     assert(Rbox  != Rmark, "");
2748 
2749     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2750   %}
2751 
2752   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2753     MacroAssembler _masm(&cbuf);
2754     Register Rmem = reg_to_register_object($mem$$reg);
2755     Register Rold = reg_to_register_object($old$$reg);
2756     Register Rnew = reg_to_register_object($new$$reg);
2757 
2758     // casx_under_lock picks 1 of 3 encodings:
2759     // For 32-bit pointers you get a 32-bit CAS
2760     // For 64-bit pointers you get a 64-bit CASX
2761     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2762     __ cmp( Rold, Rnew );
2763   %}
2764 
2765   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2766     Register Rmem = reg_to_register_object($mem$$reg);
2767     Register Rold = reg_to_register_object($old$$reg);
2768     Register Rnew = reg_to_register_object($new$$reg);
2769 
2770     MacroAssembler _masm(&cbuf);
2771     __ mov(Rnew, O7);
2772     __ casx(Rmem, Rold, O7);
2773     __ cmp( Rold, O7 );
2774   %}
2775 
2776   // raw int cas, used for compareAndSwap
2777   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2778     Register Rmem = reg_to_register_object($mem$$reg);
2779     Register Rold = reg_to_register_object($old$$reg);
2780     Register Rnew = reg_to_register_object($new$$reg);
2781 
2782     MacroAssembler _masm(&cbuf);
2783     __ mov(Rnew, O7);
2784     __ cas(Rmem, Rold, O7);
2785     __ cmp( Rold, O7 );
2786   %}
2787 
2788   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2789     Register Rres = reg_to_register_object($res$$reg);
2790 
2791     MacroAssembler _masm(&cbuf);
2792     __ mov(1, Rres);
2793     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2794   %}
2795 
2796   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2797     Register Rres = reg_to_register_object($res$$reg);
2798 
2799     MacroAssembler _masm(&cbuf);
2800     __ mov(1, Rres);
2801     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2802   %}
2803 
2804   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2805     MacroAssembler _masm(&cbuf);
2806     Register Rdst = reg_to_register_object($dst$$reg);
2807     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2808                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2809     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2810                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2811 
2812     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2813     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2814   %}
2815 
2816   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2817   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2818     MacroAssembler _masm(&cbuf);
2819     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2820     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2821     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2822 
2823     Label loop;
2824     __ mov(nof_bytes_arg, nof_bytes_tmp);
2825 
2826     // Loop and clear, walking backwards through the array.
2827     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2828     __ bind(loop);
2829     __ deccc(nof_bytes_tmp, 8);
2830     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2831     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2832     // %%%% this mini-loop must not cross a cache boundary!
2833   %}
2834 
2835 
2836   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2837     Label Ldone, Lloop;
2838     MacroAssembler _masm(&cbuf);
2839 
2840     Register   str1_reg = reg_to_register_object($str1$$reg);
2841     Register   str2_reg = reg_to_register_object($str2$$reg);
2842     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2843     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2844     Register result_reg = reg_to_register_object($result$$reg);
2845 
2846     assert(result_reg != str1_reg &&
2847            result_reg != str2_reg &&
2848            result_reg != cnt1_reg &&
2849            result_reg != cnt2_reg ,
2850            "need different registers");
2851 
2852     // Compute the minimum of the string lengths(str1_reg) and the
2853     // difference of the string lengths (stack)
2854 
2855     // See if the lengths are different, and calculate min in str1_reg.
2856     // Stash diff in O7 in case we need it for a tie-breaker.
2857     Label Lskip;
2858     __ subcc(cnt1_reg, cnt2_reg, O7);
2859     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2860     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2861     // cnt2 is shorter, so use its count:
2862     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2863     __ bind(Lskip);
2864 
2865     // reallocate cnt1_reg, cnt2_reg, result_reg
2866     // Note:  limit_reg holds the string length pre-scaled by 2
2867     Register limit_reg =   cnt1_reg;
2868     Register  chr2_reg =   cnt2_reg;
2869     Register  chr1_reg = result_reg;
2870     // str{12} are the base pointers
2871 
2872     // Is the minimum length zero?
2873     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2874     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2875     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2876 
2877     // Load first characters
2878     __ lduh(str1_reg, 0, chr1_reg);
2879     __ lduh(str2_reg, 0, chr2_reg);
2880 
2881     // Compare first characters
2882     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2883     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2884     assert(chr1_reg == result_reg, "result must be pre-placed");
2885     __ delayed()->nop();
2886 
2887     {
2888       // Check after comparing first character to see if strings are equivalent
2889       Label LSkip2;
2890       // Check if the strings start at same location
2891       __ cmp(str1_reg, str2_reg);
2892       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2893       __ delayed()->nop();
2894 
2895       // Check if the length difference is zero (in O7)
2896       __ cmp(G0, O7);
2897       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2898       __ delayed()->mov(G0, result_reg);  // result is zero
2899 
2900       // Strings might not be equal
2901       __ bind(LSkip2);
2902     }
2903 
2904     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2905     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2906     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2907 
2908     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2909     __ add(str1_reg, limit_reg, str1_reg);
2910     __ add(str2_reg, limit_reg, str2_reg);
2911     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2912 
2913     // Compare the rest of the characters
2914     __ lduh(str1_reg, limit_reg, chr1_reg);
2915     __ bind(Lloop);
2916     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2917     __ lduh(str2_reg, limit_reg, chr2_reg);
2918     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2919     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2920     assert(chr1_reg == result_reg, "result must be pre-placed");
2921     __ delayed()->inccc(limit_reg, sizeof(jchar));
2922     // annul LDUH if branch is not taken to prevent access past end of string
2923     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2924     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2925 
2926     // If strings are equal up to min length, return the length difference.
2927     __ mov(O7, result_reg);
2928 
2929     // Otherwise, return the difference between the first mismatched chars.
2930     __ bind(Ldone);
2931   %}
2932 
2933 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2934     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2935     MacroAssembler _masm(&cbuf);
2936 
2937     Register   str1_reg = reg_to_register_object($str1$$reg);
2938     Register   str2_reg = reg_to_register_object($str2$$reg);
2939     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2940     Register   tmp1_reg = O7;
2941     Register result_reg = reg_to_register_object($result$$reg);
2942 
2943     assert(result_reg != str1_reg &&
2944            result_reg != str2_reg &&
2945            result_reg !=  cnt_reg &&
2946            result_reg != tmp1_reg ,
2947            "need different registers");
2948 
2949     __ cmp(str1_reg, str2_reg); //same char[] ?
2950     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2951     __ delayed()->add(G0, 1, result_reg);
2952 
2953     __ bpr(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
2954     __ delayed()->add(G0, 1, result_reg); // count == 0
2955 
2956     //rename registers
2957     Register limit_reg =    cnt_reg;
2958     Register  chr1_reg = result_reg;
2959     Register  chr2_reg =   tmp1_reg;
2960 
2961     //check for alignment and position the pointers to the ends
2962     __ or3(str1_reg, str2_reg, chr1_reg);
2963     __ andcc(chr1_reg, 0x3, chr1_reg);
2964     // notZero means at least one not 4-byte aligned.
2965     // We could optimize the case when both arrays are not aligned
2966     // but it is not frequent case and it requires additional checks.
2967     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2968     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2969 
2970     // Compare char[] arrays aligned to 4 bytes.
2971     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2972                           chr1_reg, chr2_reg, Ldone);
2973     __ ba(Ldone, false);
2974     __ delayed()->add(G0, 1, result_reg);
2975 
2976     // char by char compare
2977     __ bind(Lchar);
2978     __ add(str1_reg, limit_reg, str1_reg);
2979     __ add(str2_reg, limit_reg, str2_reg);
2980     __ neg(limit_reg); //negate count
2981 
2982     __ lduh(str1_reg, limit_reg, chr1_reg);
2983     // Lchar_loop
2984     __ bind(Lchar_loop);
2985     __ lduh(str2_reg, limit_reg, chr2_reg);
2986     __ cmp(chr1_reg, chr2_reg);
2987     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2988     __ delayed()->mov(G0, result_reg); //not equal
2989     __ inccc(limit_reg, sizeof(jchar));
2990     // annul LDUH if branch is not taken to prevent access past end of string
2991     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
2992     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2993 
2994     __ add(G0, 1, result_reg);  //equal
2995 
2996     __ bind(Ldone);
2997   %}
2998 
2999 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3000     Label Lvector, Ldone, Lloop;
3001     MacroAssembler _masm(&cbuf);
3002 
3003     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3004     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3005     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3006     Register   tmp2_reg = O7;
3007     Register result_reg = reg_to_register_object($result$$reg);
3008 
3009     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3010     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3011 
3012     // return true if the same array
3013     __ cmp(ary1_reg, ary2_reg);
3014     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3015     __ delayed()->add(G0, 1, result_reg); // equal
3016 
3017     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3018     __ delayed()->mov(G0, result_reg);    // not equal
3019 
3020     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3021     __ delayed()->mov(G0, result_reg);    // not equal
3022 
3023     //load the lengths of arrays
3024     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3025     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3026 
3027     // return false if the two arrays are not equal length
3028     __ cmp(tmp1_reg, tmp2_reg);
3029     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3030     __ delayed()->mov(G0, result_reg);     // not equal
3031 
3032     __ bpr(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
3033     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3034 
3035     // load array addresses
3036     __ add(ary1_reg, base_offset, ary1_reg);
3037     __ add(ary2_reg, base_offset, ary2_reg);
3038 
3039     // renaming registers
3040     Register chr1_reg  =  result_reg; // for characters in ary1
3041     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3042     Register limit_reg =  tmp1_reg;   // length
3043 
3044     // set byte count
3045     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3046 
3047     // Compare char[] arrays aligned to 4 bytes.
3048     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3049                           chr1_reg, chr2_reg, Ldone);
3050     __ add(G0, 1, result_reg); // equals
3051 
3052     __ bind(Ldone);
3053   %}
3054 
3055   enc_class enc_rethrow() %{
3056     cbuf.set_insts_mark();
3057     Register temp_reg = G3;
3058     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3059     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3060     MacroAssembler _masm(&cbuf);
3061 #ifdef ASSERT
3062     __ save_frame(0);
3063     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3064     __ sethi(last_rethrow_addrlit, L1);
3065     Address addr(L1, last_rethrow_addrlit.low10());
3066     __ get_pc(L2);
3067     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3068     __ st_ptr(L2, addr);
3069     __ restore();
3070 #endif
3071     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3072     __ delayed()->nop();
3073   %}
3074 
3075   enc_class emit_mem_nop() %{
3076     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3077     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3078   %}
3079 
3080   enc_class emit_fadd_nop() %{
3081     // Generates the instruction FMOVS f31,f31
3082     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3083   %}
3084 
3085   enc_class emit_br_nop() %{
3086     // Generates the instruction BPN,PN .
3087     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3088   %}
3089 
3090   enc_class enc_membar_acquire %{
3091     MacroAssembler _masm(&cbuf);
3092     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3093   %}
3094 
3095   enc_class enc_membar_release %{
3096     MacroAssembler _masm(&cbuf);
3097     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3098   %}
3099 
3100   enc_class enc_membar_volatile %{
3101     MacroAssembler _masm(&cbuf);
3102     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3103   %}
3104 
3105   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3106     MacroAssembler _masm(&cbuf);
3107     Register src_reg = reg_to_register_object($src$$reg);
3108     Register dst_reg = reg_to_register_object($dst$$reg);
3109     __ sllx(src_reg, 56, dst_reg);
3110     __ srlx(dst_reg,  8, O7);
3111     __ or3 (dst_reg, O7, dst_reg);
3112     __ srlx(dst_reg, 16, O7);
3113     __ or3 (dst_reg, O7, dst_reg);
3114     __ srlx(dst_reg, 32, O7);
3115     __ or3 (dst_reg, O7, dst_reg);
3116   %}
3117 
3118   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3119     MacroAssembler _masm(&cbuf);
3120     Register src_reg = reg_to_register_object($src$$reg);
3121     Register dst_reg = reg_to_register_object($dst$$reg);
3122     __ sll(src_reg, 24, dst_reg);
3123     __ srl(dst_reg,  8, O7);
3124     __ or3(dst_reg, O7, dst_reg);
3125     __ srl(dst_reg, 16, O7);
3126     __ or3(dst_reg, O7, dst_reg);
3127   %}
3128 
3129   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3130     MacroAssembler _masm(&cbuf);
3131     Register src_reg = reg_to_register_object($src$$reg);
3132     Register dst_reg = reg_to_register_object($dst$$reg);
3133     __ sllx(src_reg, 48, dst_reg);
3134     __ srlx(dst_reg, 16, O7);
3135     __ or3 (dst_reg, O7, dst_reg);
3136     __ srlx(dst_reg, 32, O7);
3137     __ or3 (dst_reg, O7, dst_reg);
3138   %}
3139 
3140   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3141     MacroAssembler _masm(&cbuf);
3142     Register src_reg = reg_to_register_object($src$$reg);
3143     Register dst_reg = reg_to_register_object($dst$$reg);
3144     __ sllx(src_reg, 32, dst_reg);
3145     __ srlx(dst_reg, 32, O7);
3146     __ or3 (dst_reg, O7, dst_reg);
3147   %}
3148 
3149 %}
3150 
3151 //----------FRAME--------------------------------------------------------------
3152 // Definition of frame structure and management information.
3153 //
3154 //  S T A C K   L A Y O U T    Allocators stack-slot number
3155 //                             |   (to get allocators register number
3156 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3157 //  r   CALLER     |        |
3158 //  o     |        +--------+      pad to even-align allocators stack-slot
3159 //  w     V        |  pad0  |        numbers; owned by CALLER
3160 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3161 //  h     ^        |   in   |  5
3162 //        |        |  args  |  4   Holes in incoming args owned by SELF
3163 //  |     |        |        |  3
3164 //  |     |        +--------+
3165 //  V     |        | old out|      Empty on Intel, window on Sparc
3166 //        |    old |preserve|      Must be even aligned.
3167 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3168 //        |        |   in   |  3   area for Intel ret address
3169 //     Owned by    |preserve|      Empty on Sparc.
3170 //       SELF      +--------+
3171 //        |        |  pad2  |  2   pad to align old SP
3172 //        |        +--------+  1
3173 //        |        | locks  |  0
3174 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3175 //        |        |  pad1  | 11   pad to align new SP
3176 //        |        +--------+
3177 //        |        |        | 10
3178 //        |        | spills |  9   spills
3179 //        V        |        |  8   (pad0 slot for callee)
3180 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3181 //        ^        |  out   |  7
3182 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3183 //     Owned by    +--------+
3184 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3185 //        |    new |preserve|      Must be even-aligned.
3186 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3187 //        |        |        |
3188 //
3189 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3190 //         known from SELF's arguments and the Java calling convention.
3191 //         Region 6-7 is determined per call site.
3192 // Note 2: If the calling convention leaves holes in the incoming argument
3193 //         area, those holes are owned by SELF.  Holes in the outgoing area
3194 //         are owned by the CALLEE.  Holes should not be nessecary in the
3195 //         incoming area, as the Java calling convention is completely under
3196 //         the control of the AD file.  Doubles can be sorted and packed to
3197 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3198 //         varargs C calling conventions.
3199 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3200 //         even aligned with pad0 as needed.
3201 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3202 //         region 6-11 is even aligned; it may be padded out more so that
3203 //         the region from SP to FP meets the minimum stack alignment.
3204 
3205 frame %{
3206   // What direction does stack grow in (assumed to be same for native & Java)
3207   stack_direction(TOWARDS_LOW);
3208 
3209   // These two registers define part of the calling convention
3210   // between compiled code and the interpreter.
3211   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3212   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3213 
3214   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3215   cisc_spilling_operand_name(indOffset);
3216 
3217   // Number of stack slots consumed by a Monitor enter
3218 #ifdef _LP64
3219   sync_stack_slots(2);
3220 #else
3221   sync_stack_slots(1);
3222 #endif
3223 
3224   // Compiled code's Frame Pointer
3225   frame_pointer(R_SP);
3226 
3227   // Stack alignment requirement
3228   stack_alignment(StackAlignmentInBytes);
3229   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3230   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3231 
3232   // Number of stack slots between incoming argument block and the start of
3233   // a new frame.  The PROLOG must add this many slots to the stack.  The
3234   // EPILOG must remove this many slots.
3235   in_preserve_stack_slots(0);
3236 
3237   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3238   // for calls to C.  Supports the var-args backing area for register parms.
3239   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3240 #ifdef _LP64
3241   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3242   varargs_C_out_slots_killed(12);
3243 #else
3244   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3245   varargs_C_out_slots_killed( 7);
3246 #endif
3247 
3248   // The after-PROLOG location of the return address.  Location of
3249   // return address specifies a type (REG or STACK) and a number
3250   // representing the register number (i.e. - use a register name) or
3251   // stack slot.
3252   return_addr(REG R_I7);          // Ret Addr is in register I7
3253 
3254   // Body of function which returns an OptoRegs array locating
3255   // arguments either in registers or in stack slots for calling
3256   // java
3257   calling_convention %{
3258     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3259 
3260   %}
3261 
3262   // Body of function which returns an OptoRegs array locating
3263   // arguments either in registers or in stack slots for callin
3264   // C.
3265   c_calling_convention %{
3266     // This is obviously always outgoing
3267     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3268   %}
3269 
3270   // Location of native (C/C++) and interpreter return values.  This is specified to
3271   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3272   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3273   // to and from the register pairs is done by the appropriate call and epilog
3274   // opcodes.  This simplifies the register allocator.
3275   c_return_value %{
3276     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3277 #ifdef     _LP64
3278     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3279     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3280     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3281     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3282 #else  // !_LP64
3283     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3284     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3285     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3286     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3287 #endif
3288     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3289                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3290   %}
3291 
3292   // Location of compiled Java return values.  Same as C
3293   return_value %{
3294     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3295 #ifdef     _LP64
3296     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3297     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3298     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3299     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3300 #else  // !_LP64
3301     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3302     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3303     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3304     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3305 #endif
3306     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3307                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3308   %}
3309 
3310 %}
3311 
3312 
3313 //----------ATTRIBUTES---------------------------------------------------------
3314 //----------Operand Attributes-------------------------------------------------
3315 op_attrib op_cost(1);          // Required cost attribute
3316 
3317 //----------Instruction Attributes---------------------------------------------
3318 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3319 ins_attrib ins_size(32);       // Required size attribute (in bits)
3320 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3321 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3322                                 // non-matching short branch variant of some
3323                                                             // long branch?
3324 
3325 //----------OPERANDS-----------------------------------------------------------
3326 // Operand definitions must precede instruction definitions for correct parsing
3327 // in the ADLC because operands constitute user defined types which are used in
3328 // instruction definitions.
3329 
3330 //----------Simple Operands----------------------------------------------------
3331 // Immediate Operands
3332 // Integer Immediate: 32-bit
3333 operand immI() %{
3334   match(ConI);
3335 
3336   op_cost(0);
3337   // formats are generated automatically for constants and base registers
3338   format %{ %}
3339   interface(CONST_INTER);
3340 %}
3341 
3342 // Integer Immediate: 8-bit
3343 operand immI8() %{
3344   predicate(Assembler::is_simm(n->get_int(), 8));
3345   match(ConI);
3346   op_cost(0);
3347   format %{ %}
3348   interface(CONST_INTER);
3349 %}
3350 
3351 // Integer Immediate: 13-bit
3352 operand immI13() %{
3353   predicate(Assembler::is_simm13(n->get_int()));
3354   match(ConI);
3355   op_cost(0);
3356 
3357   format %{ %}
3358   interface(CONST_INTER);
3359 %}
3360 
3361 // Integer Immediate: 13-bit minus 7
3362 operand immI13m7() %{
3363   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3364   match(ConI);
3365   op_cost(0);
3366 
3367   format %{ %}
3368   interface(CONST_INTER);
3369 %}
3370 
3371 // Integer Immediate: 16-bit
3372 operand immI16() %{
3373   predicate(Assembler::is_simm(n->get_int(), 16));
3374   match(ConI);
3375   op_cost(0);
3376   format %{ %}
3377   interface(CONST_INTER);
3378 %}
3379 
3380 // Unsigned (positive) Integer Immediate: 13-bit
3381 operand immU13() %{
3382   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3383   match(ConI);
3384   op_cost(0);
3385 
3386   format %{ %}
3387   interface(CONST_INTER);
3388 %}
3389 
3390 // Integer Immediate: 6-bit
3391 operand immU6() %{
3392   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3393   match(ConI);
3394   op_cost(0);
3395   format %{ %}
3396   interface(CONST_INTER);
3397 %}
3398 
3399 // Integer Immediate: 11-bit
3400 operand immI11() %{
3401   predicate(Assembler::is_simm(n->get_int(),11));
3402   match(ConI);
3403   op_cost(0);
3404   format %{ %}
3405   interface(CONST_INTER);
3406 %}
3407 
3408 // Integer Immediate: 0-bit
3409 operand immI0() %{
3410   predicate(n->get_int() == 0);
3411   match(ConI);
3412   op_cost(0);
3413 
3414   format %{ %}
3415   interface(CONST_INTER);
3416 %}
3417 
3418 // Integer Immediate: the value 10
3419 operand immI10() %{
3420   predicate(n->get_int() == 10);
3421   match(ConI);
3422   op_cost(0);
3423 
3424   format %{ %}
3425   interface(CONST_INTER);
3426 %}
3427 
3428 // Integer Immediate: the values 0-31
3429 operand immU5() %{
3430   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3431   match(ConI);
3432   op_cost(0);
3433 
3434   format %{ %}
3435   interface(CONST_INTER);
3436 %}
3437 
3438 // Integer Immediate: the values 1-31
3439 operand immI_1_31() %{
3440   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3441   match(ConI);
3442   op_cost(0);
3443 
3444   format %{ %}
3445   interface(CONST_INTER);
3446 %}
3447 
3448 // Integer Immediate: the values 32-63
3449 operand immI_32_63() %{
3450   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3451   match(ConI);
3452   op_cost(0);
3453 
3454   format %{ %}
3455   interface(CONST_INTER);
3456 %}
3457 
3458 // Immediates for special shifts (sign extend)
3459 
3460 // Integer Immediate: the value 16
3461 operand immI_16() %{
3462   predicate(n->get_int() == 16);
3463   match(ConI);
3464   op_cost(0);
3465 
3466   format %{ %}
3467   interface(CONST_INTER);
3468 %}
3469 
3470 // Integer Immediate: the value 24
3471 operand immI_24() %{
3472   predicate(n->get_int() == 24);
3473   match(ConI);
3474   op_cost(0);
3475 
3476   format %{ %}
3477   interface(CONST_INTER);
3478 %}
3479 
3480 // Integer Immediate: the value 255
3481 operand immI_255() %{
3482   predicate( n->get_int() == 255 );
3483   match(ConI);
3484   op_cost(0);
3485 
3486   format %{ %}
3487   interface(CONST_INTER);
3488 %}
3489 
3490 // Integer Immediate: the value 65535
3491 operand immI_65535() %{
3492   predicate(n->get_int() == 65535);
3493   match(ConI);
3494   op_cost(0);
3495 
3496   format %{ %}
3497   interface(CONST_INTER);
3498 %}
3499 
3500 // Long Immediate: the value FF
3501 operand immL_FF() %{
3502   predicate( n->get_long() == 0xFFL );
3503   match(ConL);
3504   op_cost(0);
3505 
3506   format %{ %}
3507   interface(CONST_INTER);
3508 %}
3509 
3510 // Long Immediate: the value FFFF
3511 operand immL_FFFF() %{
3512   predicate( n->get_long() == 0xFFFFL );
3513   match(ConL);
3514   op_cost(0);
3515 
3516   format %{ %}
3517   interface(CONST_INTER);
3518 %}
3519 
3520 // Pointer Immediate: 32 or 64-bit
3521 operand immP() %{
3522   match(ConP);
3523 
3524   op_cost(5);
3525   // formats are generated automatically for constants and base registers
3526   format %{ %}
3527   interface(CONST_INTER);
3528 %}
3529 
3530 #ifdef _LP64
3531 // Pointer Immediate: 64-bit
3532 operand immP_set() %{
3533   predicate(!VM_Version::is_niagara_plus());
3534   match(ConP);
3535 
3536   op_cost(5);
3537   // formats are generated automatically for constants and base registers
3538   format %{ %}
3539   interface(CONST_INTER);
3540 %}
3541 
3542 // Pointer Immediate: 64-bit
3543 // From Niagara2 processors on a load should be better than materializing.
3544 operand immP_load() %{
3545   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3546   match(ConP);
3547 
3548   op_cost(5);
3549   // formats are generated automatically for constants and base registers
3550   format %{ %}
3551   interface(CONST_INTER);
3552 %}
3553 
3554 // Pointer Immediate: 64-bit
3555 operand immP_no_oop_cheap() %{
3556   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3557   match(ConP);
3558 
3559   op_cost(5);
3560   // formats are generated automatically for constants and base registers
3561   format %{ %}
3562   interface(CONST_INTER);
3563 %}
3564 #endif
3565 
3566 operand immP13() %{
3567   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3568   match(ConP);
3569   op_cost(0);
3570 
3571   format %{ %}
3572   interface(CONST_INTER);
3573 %}
3574 
3575 operand immP0() %{
3576   predicate(n->get_ptr() == 0);
3577   match(ConP);
3578   op_cost(0);
3579 
3580   format %{ %}
3581   interface(CONST_INTER);
3582 %}
3583 
3584 operand immP_poll() %{
3585   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3586   match(ConP);
3587 
3588   // formats are generated automatically for constants and base registers
3589   format %{ %}
3590   interface(CONST_INTER);
3591 %}
3592 
3593 // Pointer Immediate
3594 operand immN()
3595 %{
3596   match(ConN);
3597 
3598   op_cost(10);
3599   format %{ %}
3600   interface(CONST_INTER);
3601 %}
3602 
3603 // NULL Pointer Immediate
3604 operand immN0()
3605 %{
3606   predicate(n->get_narrowcon() == 0);
3607   match(ConN);
3608 
3609   op_cost(0);
3610   format %{ %}
3611   interface(CONST_INTER);
3612 %}
3613 
3614 operand immL() %{
3615   match(ConL);
3616   op_cost(40);
3617   // formats are generated automatically for constants and base registers
3618   format %{ %}
3619   interface(CONST_INTER);
3620 %}
3621 
3622 operand immL0() %{
3623   predicate(n->get_long() == 0L);
3624   match(ConL);
3625   op_cost(0);
3626   // formats are generated automatically for constants and base registers
3627   format %{ %}
3628   interface(CONST_INTER);
3629 %}
3630 
3631 // Long Immediate: 13-bit
3632 operand immL13() %{
3633   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3634   match(ConL);
3635   op_cost(0);
3636 
3637   format %{ %}
3638   interface(CONST_INTER);
3639 %}
3640 
3641 // Long Immediate: 13-bit minus 7
3642 operand immL13m7() %{
3643   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3644   match(ConL);
3645   op_cost(0);
3646 
3647   format %{ %}
3648   interface(CONST_INTER);
3649 %}
3650 
3651 // Long Immediate: low 32-bit mask
3652 operand immL_32bits() %{
3653   predicate(n->get_long() == 0xFFFFFFFFL);
3654   match(ConL);
3655   op_cost(0);
3656 
3657   format %{ %}
3658   interface(CONST_INTER);
3659 %}
3660 
3661 // Long Immediate: cheap (materialize in <= 3 instructions)
3662 operand immL_cheap() %{
3663   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3664   match(ConL);
3665   op_cost(0);
3666 
3667   format %{ %}
3668   interface(CONST_INTER);
3669 %}
3670 
3671 // Long Immediate: expensive (materialize in > 3 instructions)
3672 operand immL_expensive() %{
3673   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3674   match(ConL);
3675   op_cost(0);
3676 
3677   format %{ %}
3678   interface(CONST_INTER);
3679 %}
3680 
3681 // Double Immediate
3682 operand immD() %{
3683   match(ConD);
3684 
3685   op_cost(40);
3686   format %{ %}
3687   interface(CONST_INTER);
3688 %}
3689 
3690 operand immD0() %{
3691 #ifdef _LP64
3692   // on 64-bit architectures this comparision is faster
3693   predicate(jlong_cast(n->getd()) == 0);
3694 #else
3695   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3696 #endif
3697   match(ConD);
3698 
3699   op_cost(0);
3700   format %{ %}
3701   interface(CONST_INTER);
3702 %}
3703 
3704 // Float Immediate
3705 operand immF() %{
3706   match(ConF);
3707 
3708   op_cost(20);
3709   format %{ %}
3710   interface(CONST_INTER);
3711 %}
3712 
3713 // Float Immediate: 0
3714 operand immF0() %{
3715   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3716   match(ConF);
3717 
3718   op_cost(0);
3719   format %{ %}
3720   interface(CONST_INTER);
3721 %}
3722 
3723 // Integer Register Operands
3724 // Integer Register
3725 operand iRegI() %{
3726   constraint(ALLOC_IN_RC(int_reg));
3727   match(RegI);
3728 
3729   match(notemp_iRegI);
3730   match(g1RegI);
3731   match(o0RegI);
3732   match(iRegIsafe);
3733 
3734   format %{ %}
3735   interface(REG_INTER);
3736 %}
3737 
3738 operand notemp_iRegI() %{
3739   constraint(ALLOC_IN_RC(notemp_int_reg));
3740   match(RegI);
3741 
3742   match(o0RegI);
3743 
3744   format %{ %}
3745   interface(REG_INTER);
3746 %}
3747 
3748 operand o0RegI() %{
3749   constraint(ALLOC_IN_RC(o0_regI));
3750   match(iRegI);
3751 
3752   format %{ %}
3753   interface(REG_INTER);
3754 %}
3755 
3756 // Pointer Register
3757 operand iRegP() %{
3758   constraint(ALLOC_IN_RC(ptr_reg));
3759   match(RegP);
3760 
3761   match(lock_ptr_RegP);
3762   match(g1RegP);
3763   match(g2RegP);
3764   match(g3RegP);
3765   match(g4RegP);
3766   match(i0RegP);
3767   match(o0RegP);
3768   match(o1RegP);
3769   match(l7RegP);
3770 
3771   format %{ %}
3772   interface(REG_INTER);
3773 %}
3774 
3775 operand sp_ptr_RegP() %{
3776   constraint(ALLOC_IN_RC(sp_ptr_reg));
3777   match(RegP);
3778   match(iRegP);
3779 
3780   format %{ %}
3781   interface(REG_INTER);
3782 %}
3783 
3784 operand lock_ptr_RegP() %{
3785   constraint(ALLOC_IN_RC(lock_ptr_reg));
3786   match(RegP);
3787   match(i0RegP);
3788   match(o0RegP);
3789   match(o1RegP);
3790   match(l7RegP);
3791 
3792   format %{ %}
3793   interface(REG_INTER);
3794 %}
3795 
3796 operand g1RegP() %{
3797   constraint(ALLOC_IN_RC(g1_regP));
3798   match(iRegP);
3799 
3800   format %{ %}
3801   interface(REG_INTER);
3802 %}
3803 
3804 operand g2RegP() %{
3805   constraint(ALLOC_IN_RC(g2_regP));
3806   match(iRegP);
3807 
3808   format %{ %}
3809   interface(REG_INTER);
3810 %}
3811 
3812 operand g3RegP() %{
3813   constraint(ALLOC_IN_RC(g3_regP));
3814   match(iRegP);
3815 
3816   format %{ %}
3817   interface(REG_INTER);
3818 %}
3819 
3820 operand g1RegI() %{
3821   constraint(ALLOC_IN_RC(g1_regI));
3822   match(iRegI);
3823 
3824   format %{ %}
3825   interface(REG_INTER);
3826 %}
3827 
3828 operand g3RegI() %{
3829   constraint(ALLOC_IN_RC(g3_regI));
3830   match(iRegI);
3831 
3832   format %{ %}
3833   interface(REG_INTER);
3834 %}
3835 
3836 operand g4RegI() %{
3837   constraint(ALLOC_IN_RC(g4_regI));
3838   match(iRegI);
3839 
3840   format %{ %}
3841   interface(REG_INTER);
3842 %}
3843 
3844 operand g4RegP() %{
3845   constraint(ALLOC_IN_RC(g4_regP));
3846   match(iRegP);
3847 
3848   format %{ %}
3849   interface(REG_INTER);
3850 %}
3851 
3852 operand i0RegP() %{
3853   constraint(ALLOC_IN_RC(i0_regP));
3854   match(iRegP);
3855 
3856   format %{ %}
3857   interface(REG_INTER);
3858 %}
3859 
3860 operand o0RegP() %{
3861   constraint(ALLOC_IN_RC(o0_regP));
3862   match(iRegP);
3863 
3864   format %{ %}
3865   interface(REG_INTER);
3866 %}
3867 
3868 operand o1RegP() %{
3869   constraint(ALLOC_IN_RC(o1_regP));
3870   match(iRegP);
3871 
3872   format %{ %}
3873   interface(REG_INTER);
3874 %}
3875 
3876 operand o2RegP() %{
3877   constraint(ALLOC_IN_RC(o2_regP));
3878   match(iRegP);
3879 
3880   format %{ %}
3881   interface(REG_INTER);
3882 %}
3883 
3884 operand o7RegP() %{
3885   constraint(ALLOC_IN_RC(o7_regP));
3886   match(iRegP);
3887 
3888   format %{ %}
3889   interface(REG_INTER);
3890 %}
3891 
3892 operand l7RegP() %{
3893   constraint(ALLOC_IN_RC(l7_regP));
3894   match(iRegP);
3895 
3896   format %{ %}
3897   interface(REG_INTER);
3898 %}
3899 
3900 operand o7RegI() %{
3901   constraint(ALLOC_IN_RC(o7_regI));
3902   match(iRegI);
3903 
3904   format %{ %}
3905   interface(REG_INTER);
3906 %}
3907 
3908 operand iRegN() %{
3909   constraint(ALLOC_IN_RC(int_reg));
3910   match(RegN);
3911 
3912   format %{ %}
3913   interface(REG_INTER);
3914 %}
3915 
3916 // Long Register
3917 operand iRegL() %{
3918   constraint(ALLOC_IN_RC(long_reg));
3919   match(RegL);
3920 
3921   format %{ %}
3922   interface(REG_INTER);
3923 %}
3924 
3925 operand o2RegL() %{
3926   constraint(ALLOC_IN_RC(o2_regL));
3927   match(iRegL);
3928 
3929   format %{ %}
3930   interface(REG_INTER);
3931 %}
3932 
3933 operand o7RegL() %{
3934   constraint(ALLOC_IN_RC(o7_regL));
3935   match(iRegL);
3936 
3937   format %{ %}
3938   interface(REG_INTER);
3939 %}
3940 
3941 operand g1RegL() %{
3942   constraint(ALLOC_IN_RC(g1_regL));
3943   match(iRegL);
3944 
3945   format %{ %}
3946   interface(REG_INTER);
3947 %}
3948 
3949 operand g3RegL() %{
3950   constraint(ALLOC_IN_RC(g3_regL));
3951   match(iRegL);
3952 
3953   format %{ %}
3954   interface(REG_INTER);
3955 %}
3956 
3957 // Int Register safe
3958 // This is 64bit safe
3959 operand iRegIsafe() %{
3960   constraint(ALLOC_IN_RC(long_reg));
3961 
3962   match(iRegI);
3963 
3964   format %{ %}
3965   interface(REG_INTER);
3966 %}
3967 
3968 // Condition Code Flag Register
3969 operand flagsReg() %{
3970   constraint(ALLOC_IN_RC(int_flags));
3971   match(RegFlags);
3972 
3973   format %{ "ccr" %} // both ICC and XCC
3974   interface(REG_INTER);
3975 %}
3976 
3977 // Condition Code Register, unsigned comparisons.
3978 operand flagsRegU() %{
3979   constraint(ALLOC_IN_RC(int_flags));
3980   match(RegFlags);
3981 
3982   format %{ "icc_U" %}
3983   interface(REG_INTER);
3984 %}
3985 
3986 // Condition Code Register, pointer comparisons.
3987 operand flagsRegP() %{
3988   constraint(ALLOC_IN_RC(int_flags));
3989   match(RegFlags);
3990 
3991 #ifdef _LP64
3992   format %{ "xcc_P" %}
3993 #else
3994   format %{ "icc_P" %}
3995 #endif
3996   interface(REG_INTER);
3997 %}
3998 
3999 // Condition Code Register, long comparisons.
4000 operand flagsRegL() %{
4001   constraint(ALLOC_IN_RC(int_flags));
4002   match(RegFlags);
4003 
4004   format %{ "xcc_L" %}
4005   interface(REG_INTER);
4006 %}
4007 
4008 // Condition Code Register, floating comparisons, unordered same as "less".
4009 operand flagsRegF() %{
4010   constraint(ALLOC_IN_RC(float_flags));
4011   match(RegFlags);
4012   match(flagsRegF0);
4013 
4014   format %{ %}
4015   interface(REG_INTER);
4016 %}
4017 
4018 operand flagsRegF0() %{
4019   constraint(ALLOC_IN_RC(float_flag0));
4020   match(RegFlags);
4021 
4022   format %{ %}
4023   interface(REG_INTER);
4024 %}
4025 
4026 
4027 // Condition Code Flag Register used by long compare
4028 operand flagsReg_long_LTGE() %{
4029   constraint(ALLOC_IN_RC(int_flags));
4030   match(RegFlags);
4031   format %{ "icc_LTGE" %}
4032   interface(REG_INTER);
4033 %}
4034 operand flagsReg_long_EQNE() %{
4035   constraint(ALLOC_IN_RC(int_flags));
4036   match(RegFlags);
4037   format %{ "icc_EQNE" %}
4038   interface(REG_INTER);
4039 %}
4040 operand flagsReg_long_LEGT() %{
4041   constraint(ALLOC_IN_RC(int_flags));
4042   match(RegFlags);
4043   format %{ "icc_LEGT" %}
4044   interface(REG_INTER);
4045 %}
4046 
4047 
4048 operand regD() %{
4049   constraint(ALLOC_IN_RC(dflt_reg));
4050   match(RegD);
4051 
4052   match(regD_low);
4053 
4054   format %{ %}
4055   interface(REG_INTER);
4056 %}
4057 
4058 operand regF() %{
4059   constraint(ALLOC_IN_RC(sflt_reg));
4060   match(RegF);
4061 
4062   format %{ %}
4063   interface(REG_INTER);
4064 %}
4065 
4066 operand regD_low() %{
4067   constraint(ALLOC_IN_RC(dflt_low_reg));
4068   match(regD);
4069 
4070   format %{ %}
4071   interface(REG_INTER);
4072 %}
4073 
4074 // Special Registers
4075 
4076 // Method Register
4077 operand inline_cache_regP(iRegP reg) %{
4078   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4079   match(reg);
4080   format %{ %}
4081   interface(REG_INTER);
4082 %}
4083 
4084 operand interpreter_method_oop_regP(iRegP reg) %{
4085   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4086   match(reg);
4087   format %{ %}
4088   interface(REG_INTER);
4089 %}
4090 
4091 
4092 //----------Complex Operands---------------------------------------------------
4093 // Indirect Memory Reference
4094 operand indirect(sp_ptr_RegP reg) %{
4095   constraint(ALLOC_IN_RC(sp_ptr_reg));
4096   match(reg);
4097 
4098   op_cost(100);
4099   format %{ "[$reg]" %}
4100   interface(MEMORY_INTER) %{
4101     base($reg);
4102     index(0x0);
4103     scale(0x0);
4104     disp(0x0);
4105   %}
4106 %}
4107 
4108 // Indirect with simm13 Offset
4109 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4110   constraint(ALLOC_IN_RC(sp_ptr_reg));
4111   match(AddP reg offset);
4112 
4113   op_cost(100);
4114   format %{ "[$reg + $offset]" %}
4115   interface(MEMORY_INTER) %{
4116     base($reg);
4117     index(0x0);
4118     scale(0x0);
4119     disp($offset);
4120   %}
4121 %}
4122 
4123 // Indirect with simm13 Offset minus 7
4124 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4125   constraint(ALLOC_IN_RC(sp_ptr_reg));
4126   match(AddP reg offset);
4127 
4128   op_cost(100);
4129   format %{ "[$reg + $offset]" %}
4130   interface(MEMORY_INTER) %{
4131     base($reg);
4132     index(0x0);
4133     scale(0x0);
4134     disp($offset);
4135   %}
4136 %}
4137 
4138 // Note:  Intel has a swapped version also, like this:
4139 //operand indOffsetX(iRegI reg, immP offset) %{
4140 //  constraint(ALLOC_IN_RC(int_reg));
4141 //  match(AddP offset reg);
4142 //
4143 //  op_cost(100);
4144 //  format %{ "[$reg + $offset]" %}
4145 //  interface(MEMORY_INTER) %{
4146 //    base($reg);
4147 //    index(0x0);
4148 //    scale(0x0);
4149 //    disp($offset);
4150 //  %}
4151 //%}
4152 //// However, it doesn't make sense for SPARC, since
4153 // we have no particularly good way to embed oops in
4154 // single instructions.
4155 
4156 // Indirect with Register Index
4157 operand indIndex(iRegP addr, iRegX index) %{
4158   constraint(ALLOC_IN_RC(ptr_reg));
4159   match(AddP addr index);
4160 
4161   op_cost(100);
4162   format %{ "[$addr + $index]" %}
4163   interface(MEMORY_INTER) %{
4164     base($addr);
4165     index($index);
4166     scale(0x0);
4167     disp(0x0);
4168   %}
4169 %}
4170 
4171 //----------Special Memory Operands--------------------------------------------
4172 // Stack Slot Operand - This operand is used for loading and storing temporary
4173 //                      values on the stack where a match requires a value to
4174 //                      flow through memory.
4175 operand stackSlotI(sRegI reg) %{
4176   constraint(ALLOC_IN_RC(stack_slots));
4177   op_cost(100);
4178   //match(RegI);
4179   format %{ "[$reg]" %}
4180   interface(MEMORY_INTER) %{
4181     base(0xE);   // R_SP
4182     index(0x0);
4183     scale(0x0);
4184     disp($reg);  // Stack Offset
4185   %}
4186 %}
4187 
4188 operand stackSlotP(sRegP reg) %{
4189   constraint(ALLOC_IN_RC(stack_slots));
4190   op_cost(100);
4191   //match(RegP);
4192   format %{ "[$reg]" %}
4193   interface(MEMORY_INTER) %{
4194     base(0xE);   // R_SP
4195     index(0x0);
4196     scale(0x0);
4197     disp($reg);  // Stack Offset
4198   %}
4199 %}
4200 
4201 operand stackSlotF(sRegF reg) %{
4202   constraint(ALLOC_IN_RC(stack_slots));
4203   op_cost(100);
4204   //match(RegF);
4205   format %{ "[$reg]" %}
4206   interface(MEMORY_INTER) %{
4207     base(0xE);   // R_SP
4208     index(0x0);
4209     scale(0x0);
4210     disp($reg);  // Stack Offset
4211   %}
4212 %}
4213 operand stackSlotD(sRegD reg) %{
4214   constraint(ALLOC_IN_RC(stack_slots));
4215   op_cost(100);
4216   //match(RegD);
4217   format %{ "[$reg]" %}
4218   interface(MEMORY_INTER) %{
4219     base(0xE);   // R_SP
4220     index(0x0);
4221     scale(0x0);
4222     disp($reg);  // Stack Offset
4223   %}
4224 %}
4225 operand stackSlotL(sRegL reg) %{
4226   constraint(ALLOC_IN_RC(stack_slots));
4227   op_cost(100);
4228   //match(RegL);
4229   format %{ "[$reg]" %}
4230   interface(MEMORY_INTER) %{
4231     base(0xE);   // R_SP
4232     index(0x0);
4233     scale(0x0);
4234     disp($reg);  // Stack Offset
4235   %}
4236 %}
4237 
4238 // Operands for expressing Control Flow
4239 // NOTE:  Label is a predefined operand which should not be redefined in
4240 //        the AD file.  It is generically handled within the ADLC.
4241 
4242 //----------Conditional Branch Operands----------------------------------------
4243 // Comparison Op  - This is the operation of the comparison, and is limited to
4244 //                  the following set of codes:
4245 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4246 //
4247 // Other attributes of the comparison, such as unsignedness, are specified
4248 // by the comparison instruction that sets a condition code flags register.
4249 // That result is represented by a flags operand whose subtype is appropriate
4250 // to the unsignedness (etc.) of the comparison.
4251 //
4252 // Later, the instruction which matches both the Comparison Op (a Bool) and
4253 // the flags (produced by the Cmp) specifies the coding of the comparison op
4254 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4255 
4256 operand cmpOp() %{
4257   match(Bool);
4258 
4259   format %{ "" %}
4260   interface(COND_INTER) %{
4261     equal(0x1);
4262     not_equal(0x9);
4263     less(0x3);
4264     greater_equal(0xB);
4265     less_equal(0x2);
4266     greater(0xA);
4267   %}
4268 %}
4269 
4270 // Comparison Op, unsigned
4271 operand cmpOpU() %{
4272   match(Bool);
4273 
4274   format %{ "u" %}
4275   interface(COND_INTER) %{
4276     equal(0x1);
4277     not_equal(0x9);
4278     less(0x5);
4279     greater_equal(0xD);
4280     less_equal(0x4);
4281     greater(0xC);
4282   %}
4283 %}
4284 
4285 // Comparison Op, pointer (same as unsigned)
4286 operand cmpOpP() %{
4287   match(Bool);
4288 
4289   format %{ "p" %}
4290   interface(COND_INTER) %{
4291     equal(0x1);
4292     not_equal(0x9);
4293     less(0x5);
4294     greater_equal(0xD);
4295     less_equal(0x4);
4296     greater(0xC);
4297   %}
4298 %}
4299 
4300 // Comparison Op, branch-register encoding
4301 operand cmpOp_reg() %{
4302   match(Bool);
4303 
4304   format %{ "" %}
4305   interface(COND_INTER) %{
4306     equal        (0x1);
4307     not_equal    (0x5);
4308     less         (0x3);
4309     greater_equal(0x7);
4310     less_equal   (0x2);
4311     greater      (0x6);
4312   %}
4313 %}
4314 
4315 // Comparison Code, floating, unordered same as less
4316 operand cmpOpF() %{
4317   match(Bool);
4318 
4319   format %{ "fl" %}
4320   interface(COND_INTER) %{
4321     equal(0x9);
4322     not_equal(0x1);
4323     less(0x3);
4324     greater_equal(0xB);
4325     less_equal(0xE);
4326     greater(0x6);
4327   %}
4328 %}
4329 
4330 // Used by long compare
4331 operand cmpOp_commute() %{
4332   match(Bool);
4333 
4334   format %{ "" %}
4335   interface(COND_INTER) %{
4336     equal(0x1);
4337     not_equal(0x9);
4338     less(0xA);
4339     greater_equal(0x2);
4340     less_equal(0xB);
4341     greater(0x3);
4342   %}
4343 %}
4344 
4345 //----------OPERAND CLASSES----------------------------------------------------
4346 // Operand Classes are groups of operands that are used to simplify
4347 // instruction definitions by not requiring the AD writer to specify separate
4348 // instructions for every form of operand when the instruction accepts
4349 // multiple operand types with the same basic encoding and format.  The classic
4350 // case of this is memory operands.
4351 opclass memory( indirect, indOffset13, indIndex );
4352 opclass indIndexMemory( indIndex );
4353 
4354 //----------PIPELINE-----------------------------------------------------------
4355 pipeline %{
4356 
4357 //----------ATTRIBUTES---------------------------------------------------------
4358 attributes %{
4359   fixed_size_instructions;           // Fixed size instructions
4360   branch_has_delay_slot;             // Branch has delay slot following
4361   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4362   instruction_unit_size = 4;         // An instruction is 4 bytes long
4363   instruction_fetch_unit_size = 16;  // The processor fetches one line
4364   instruction_fetch_units = 1;       // of 16 bytes
4365 
4366   // List of nop instructions
4367   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4368 %}
4369 
4370 //----------RESOURCES----------------------------------------------------------
4371 // Resources are the functional units available to the machine
4372 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4373 
4374 //----------PIPELINE DESCRIPTION-----------------------------------------------
4375 // Pipeline Description specifies the stages in the machine's pipeline
4376 
4377 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4378 
4379 //----------PIPELINE CLASSES---------------------------------------------------
4380 // Pipeline Classes describe the stages in which input and output are
4381 // referenced by the hardware pipeline.
4382 
4383 // Integer ALU reg-reg operation
4384 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4385     single_instruction;
4386     dst   : E(write);
4387     src1  : R(read);
4388     src2  : R(read);
4389     IALU  : R;
4390 %}
4391 
4392 // Integer ALU reg-reg long operation
4393 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4394     instruction_count(2);
4395     dst   : E(write);
4396     src1  : R(read);
4397     src2  : R(read);
4398     IALU  : R;
4399     IALU  : R;
4400 %}
4401 
4402 // Integer ALU reg-reg long dependent operation
4403 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4404     instruction_count(1); multiple_bundles;
4405     dst   : E(write);
4406     src1  : R(read);
4407     src2  : R(read);
4408     cr    : E(write);
4409     IALU  : R(2);
4410 %}
4411 
4412 // Integer ALU reg-imm operaion
4413 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4414     single_instruction;
4415     dst   : E(write);
4416     src1  : R(read);
4417     IALU  : R;
4418 %}
4419 
4420 // Integer ALU reg-reg operation with condition code
4421 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4422     single_instruction;
4423     dst   : E(write);
4424     cr    : E(write);
4425     src1  : R(read);
4426     src2  : R(read);
4427     IALU  : R;
4428 %}
4429 
4430 // Integer ALU reg-imm operation with condition code
4431 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4432     single_instruction;
4433     dst   : E(write);
4434     cr    : E(write);
4435     src1  : R(read);
4436     IALU  : R;
4437 %}
4438 
4439 // Integer ALU zero-reg operation
4440 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4441     single_instruction;
4442     dst   : E(write);
4443     src2  : R(read);
4444     IALU  : R;
4445 %}
4446 
4447 // Integer ALU zero-reg operation with condition code only
4448 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4449     single_instruction;
4450     cr    : E(write);
4451     src   : R(read);
4452     IALU  : R;
4453 %}
4454 
4455 // Integer ALU reg-reg operation with condition code only
4456 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4457     single_instruction;
4458     cr    : E(write);
4459     src1  : R(read);
4460     src2  : R(read);
4461     IALU  : R;
4462 %}
4463 
4464 // Integer ALU reg-imm operation with condition code only
4465 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4466     single_instruction;
4467     cr    : E(write);
4468     src1  : R(read);
4469     IALU  : R;
4470 %}
4471 
4472 // Integer ALU reg-reg-zero operation with condition code only
4473 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4474     single_instruction;
4475     cr    : E(write);
4476     src1  : R(read);
4477     src2  : R(read);
4478     IALU  : R;
4479 %}
4480 
4481 // Integer ALU reg-imm-zero operation with condition code only
4482 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4483     single_instruction;
4484     cr    : E(write);
4485     src1  : R(read);
4486     IALU  : R;
4487 %}
4488 
4489 // Integer ALU reg-reg operation with condition code, src1 modified
4490 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4491     single_instruction;
4492     cr    : E(write);
4493     src1  : E(write);
4494     src1  : R(read);
4495     src2  : R(read);
4496     IALU  : R;
4497 %}
4498 
4499 // Integer ALU reg-imm operation with condition code, src1 modified
4500 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4501     single_instruction;
4502     cr    : E(write);
4503     src1  : E(write);
4504     src1  : R(read);
4505     IALU  : R;
4506 %}
4507 
4508 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4509     multiple_bundles;
4510     dst   : E(write)+4;
4511     cr    : E(write);
4512     src1  : R(read);
4513     src2  : R(read);
4514     IALU  : R(3);
4515     BR    : R(2);
4516 %}
4517 
4518 // Integer ALU operation
4519 pipe_class ialu_none(iRegI dst) %{
4520     single_instruction;
4521     dst   : E(write);
4522     IALU  : R;
4523 %}
4524 
4525 // Integer ALU reg operation
4526 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4527     single_instruction; may_have_no_code;
4528     dst   : E(write);
4529     src   : R(read);
4530     IALU  : R;
4531 %}
4532 
4533 // Integer ALU reg conditional operation
4534 // This instruction has a 1 cycle stall, and cannot execute
4535 // in the same cycle as the instruction setting the condition
4536 // code. We kludge this by pretending to read the condition code
4537 // 1 cycle earlier, and by marking the functional units as busy
4538 // for 2 cycles with the result available 1 cycle later than
4539 // is really the case.
4540 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4541     single_instruction;
4542     op2_out : C(write);
4543     op1     : R(read);
4544     cr      : R(read);       // This is really E, with a 1 cycle stall
4545     BR      : R(2);
4546     MS      : R(2);
4547 %}
4548 
4549 #ifdef _LP64
4550 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4551     instruction_count(1); multiple_bundles;
4552     dst     : C(write)+1;
4553     src     : R(read)+1;
4554     IALU    : R(1);
4555     BR      : E(2);
4556     MS      : E(2);
4557 %}
4558 #endif
4559 
4560 // Integer ALU reg operation
4561 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4562     single_instruction; may_have_no_code;
4563     dst   : E(write);
4564     src   : R(read);
4565     IALU  : R;
4566 %}
4567 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4568     single_instruction; may_have_no_code;
4569     dst   : E(write);
4570     src   : R(read);
4571     IALU  : R;
4572 %}
4573 
4574 // Two integer ALU reg operations
4575 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4576     instruction_count(2);
4577     dst   : E(write);
4578     src   : R(read);
4579     A0    : R;
4580     A1    : R;
4581 %}
4582 
4583 // Two integer ALU reg operations
4584 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4585     instruction_count(2); may_have_no_code;
4586     dst   : E(write);
4587     src   : R(read);
4588     A0    : R;
4589     A1    : R;
4590 %}
4591 
4592 // Integer ALU imm operation
4593 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4594     single_instruction;
4595     dst   : E(write);
4596     IALU  : R;
4597 %}
4598 
4599 // Integer ALU reg-reg with carry operation
4600 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4601     single_instruction;
4602     dst   : E(write);
4603     src1  : R(read);
4604     src2  : R(read);
4605     IALU  : R;
4606 %}
4607 
4608 // Integer ALU cc operation
4609 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4610     single_instruction;
4611     dst   : E(write);
4612     cc    : R(read);
4613     IALU  : R;
4614 %}
4615 
4616 // Integer ALU cc / second IALU operation
4617 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4618     instruction_count(1); multiple_bundles;
4619     dst   : E(write)+1;
4620     src   : R(read);
4621     IALU  : R;
4622 %}
4623 
4624 // Integer ALU cc / second IALU operation
4625 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4626     instruction_count(1); multiple_bundles;
4627     dst   : E(write)+1;
4628     p     : R(read);
4629     q     : R(read);
4630     IALU  : R;
4631 %}
4632 
4633 // Integer ALU hi-lo-reg operation
4634 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4635     instruction_count(1); multiple_bundles;
4636     dst   : E(write)+1;
4637     IALU  : R(2);
4638 %}
4639 
4640 // Float ALU hi-lo-reg operation (with temp)
4641 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4642     instruction_count(1); multiple_bundles;
4643     dst   : E(write)+1;
4644     IALU  : R(2);
4645 %}
4646 
4647 // Long Constant
4648 pipe_class loadConL( iRegL dst, immL src ) %{
4649     instruction_count(2); multiple_bundles;
4650     dst   : E(write)+1;
4651     IALU  : R(2);
4652     IALU  : R(2);
4653 %}
4654 
4655 // Pointer Constant
4656 pipe_class loadConP( iRegP dst, immP src ) %{
4657     instruction_count(0); multiple_bundles;
4658     fixed_latency(6);
4659 %}
4660 
4661 // Polling Address
4662 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4663 #ifdef _LP64
4664     instruction_count(0); multiple_bundles;
4665     fixed_latency(6);
4666 #else
4667     dst   : E(write);
4668     IALU  : R;
4669 #endif
4670 %}
4671 
4672 // Long Constant small
4673 pipe_class loadConLlo( iRegL dst, immL src ) %{
4674     instruction_count(2);
4675     dst   : E(write);
4676     IALU  : R;
4677     IALU  : R;
4678 %}
4679 
4680 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4681 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4682     instruction_count(1); multiple_bundles;
4683     src   : R(read);
4684     dst   : M(write)+1;
4685     IALU  : R;
4686     MS    : E;
4687 %}
4688 
4689 // Integer ALU nop operation
4690 pipe_class ialu_nop() %{
4691     single_instruction;
4692     IALU  : R;
4693 %}
4694 
4695 // Integer ALU nop operation
4696 pipe_class ialu_nop_A0() %{
4697     single_instruction;
4698     A0    : R;
4699 %}
4700 
4701 // Integer ALU nop operation
4702 pipe_class ialu_nop_A1() %{
4703     single_instruction;
4704     A1    : R;
4705 %}
4706 
4707 // Integer Multiply reg-reg operation
4708 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4709     single_instruction;
4710     dst   : E(write);
4711     src1  : R(read);
4712     src2  : R(read);
4713     MS    : R(5);
4714 %}
4715 
4716 // Integer Multiply reg-imm operation
4717 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4718     single_instruction;
4719     dst   : E(write);
4720     src1  : R(read);
4721     MS    : R(5);
4722 %}
4723 
4724 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4725     single_instruction;
4726     dst   : E(write)+4;
4727     src1  : R(read);
4728     src2  : R(read);
4729     MS    : R(6);
4730 %}
4731 
4732 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4733     single_instruction;
4734     dst   : E(write)+4;
4735     src1  : R(read);
4736     MS    : R(6);
4737 %}
4738 
4739 // Integer Divide reg-reg
4740 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4741     instruction_count(1); multiple_bundles;
4742     dst   : E(write);
4743     temp  : E(write);
4744     src1  : R(read);
4745     src2  : R(read);
4746     temp  : R(read);
4747     MS    : R(38);
4748 %}
4749 
4750 // Integer Divide reg-imm
4751 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4752     instruction_count(1); multiple_bundles;
4753     dst   : E(write);
4754     temp  : E(write);
4755     src1  : R(read);
4756     temp  : R(read);
4757     MS    : R(38);
4758 %}
4759 
4760 // Long Divide
4761 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4762     dst  : E(write)+71;
4763     src1 : R(read);
4764     src2 : R(read)+1;
4765     MS   : R(70);
4766 %}
4767 
4768 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4769     dst  : E(write)+71;
4770     src1 : R(read);
4771     MS   : R(70);
4772 %}
4773 
4774 // Floating Point Add Float
4775 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4776     single_instruction;
4777     dst   : X(write);
4778     src1  : E(read);
4779     src2  : E(read);
4780     FA    : R;
4781 %}
4782 
4783 // Floating Point Add Double
4784 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4785     single_instruction;
4786     dst   : X(write);
4787     src1  : E(read);
4788     src2  : E(read);
4789     FA    : R;
4790 %}
4791 
4792 // Floating Point Conditional Move based on integer flags
4793 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4794     single_instruction;
4795     dst   : X(write);
4796     src   : E(read);
4797     cr    : R(read);
4798     FA    : R(2);
4799     BR    : R(2);
4800 %}
4801 
4802 // Floating Point Conditional Move based on integer flags
4803 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4804     single_instruction;
4805     dst   : X(write);
4806     src   : E(read);
4807     cr    : R(read);
4808     FA    : R(2);
4809     BR    : R(2);
4810 %}
4811 
4812 // Floating Point Multiply Float
4813 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4814     single_instruction;
4815     dst   : X(write);
4816     src1  : E(read);
4817     src2  : E(read);
4818     FM    : R;
4819 %}
4820 
4821 // Floating Point Multiply Double
4822 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4823     single_instruction;
4824     dst   : X(write);
4825     src1  : E(read);
4826     src2  : E(read);
4827     FM    : R;
4828 %}
4829 
4830 // Floating Point Divide Float
4831 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4832     single_instruction;
4833     dst   : X(write);
4834     src1  : E(read);
4835     src2  : E(read);
4836     FM    : R;
4837     FDIV  : C(14);
4838 %}
4839 
4840 // Floating Point Divide Double
4841 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4842     single_instruction;
4843     dst   : X(write);
4844     src1  : E(read);
4845     src2  : E(read);
4846     FM    : R;
4847     FDIV  : C(17);
4848 %}
4849 
4850 // Floating Point Move/Negate/Abs Float
4851 pipe_class faddF_reg(regF dst, regF src) %{
4852     single_instruction;
4853     dst   : W(write);
4854     src   : E(read);
4855     FA    : R(1);
4856 %}
4857 
4858 // Floating Point Move/Negate/Abs Double
4859 pipe_class faddD_reg(regD dst, regD src) %{
4860     single_instruction;
4861     dst   : W(write);
4862     src   : E(read);
4863     FA    : R;
4864 %}
4865 
4866 // Floating Point Convert F->D
4867 pipe_class fcvtF2D(regD dst, regF src) %{
4868     single_instruction;
4869     dst   : X(write);
4870     src   : E(read);
4871     FA    : R;
4872 %}
4873 
4874 // Floating Point Convert I->D
4875 pipe_class fcvtI2D(regD dst, regF src) %{
4876     single_instruction;
4877     dst   : X(write);
4878     src   : E(read);
4879     FA    : R;
4880 %}
4881 
4882 // Floating Point Convert LHi->D
4883 pipe_class fcvtLHi2D(regD dst, regD src) %{
4884     single_instruction;
4885     dst   : X(write);
4886     src   : E(read);
4887     FA    : R;
4888 %}
4889 
4890 // Floating Point Convert L->D
4891 pipe_class fcvtL2D(regD dst, regF src) %{
4892     single_instruction;
4893     dst   : X(write);
4894     src   : E(read);
4895     FA    : R;
4896 %}
4897 
4898 // Floating Point Convert L->F
4899 pipe_class fcvtL2F(regD dst, regF src) %{
4900     single_instruction;
4901     dst   : X(write);
4902     src   : E(read);
4903     FA    : R;
4904 %}
4905 
4906 // Floating Point Convert D->F
4907 pipe_class fcvtD2F(regD dst, regF src) %{
4908     single_instruction;
4909     dst   : X(write);
4910     src   : E(read);
4911     FA    : R;
4912 %}
4913 
4914 // Floating Point Convert I->L
4915 pipe_class fcvtI2L(regD dst, regF src) %{
4916     single_instruction;
4917     dst   : X(write);
4918     src   : E(read);
4919     FA    : R;
4920 %}
4921 
4922 // Floating Point Convert D->F
4923 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4924     instruction_count(1); multiple_bundles;
4925     dst   : X(write)+6;
4926     src   : E(read);
4927     FA    : R;
4928 %}
4929 
4930 // Floating Point Convert D->L
4931 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4932     instruction_count(1); multiple_bundles;
4933     dst   : X(write)+6;
4934     src   : E(read);
4935     FA    : R;
4936 %}
4937 
4938 // Floating Point Convert F->I
4939 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4940     instruction_count(1); multiple_bundles;
4941     dst   : X(write)+6;
4942     src   : E(read);
4943     FA    : R;
4944 %}
4945 
4946 // Floating Point Convert F->L
4947 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4948     instruction_count(1); multiple_bundles;
4949     dst   : X(write)+6;
4950     src   : E(read);
4951     FA    : R;
4952 %}
4953 
4954 // Floating Point Convert I->F
4955 pipe_class fcvtI2F(regF dst, regF src) %{
4956     single_instruction;
4957     dst   : X(write);
4958     src   : E(read);
4959     FA    : R;
4960 %}
4961 
4962 // Floating Point Compare
4963 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4964     single_instruction;
4965     cr    : X(write);
4966     src1  : E(read);
4967     src2  : E(read);
4968     FA    : R;
4969 %}
4970 
4971 // Floating Point Compare
4972 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4973     single_instruction;
4974     cr    : X(write);
4975     src1  : E(read);
4976     src2  : E(read);
4977     FA    : R;
4978 %}
4979 
4980 // Floating Add Nop
4981 pipe_class fadd_nop() %{
4982     single_instruction;
4983     FA  : R;
4984 %}
4985 
4986 // Integer Store to Memory
4987 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4988     single_instruction;
4989     mem   : R(read);
4990     src   : C(read);
4991     MS    : R;
4992 %}
4993 
4994 // Integer Store to Memory
4995 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4996     single_instruction;
4997     mem   : R(read);
4998     src   : C(read);
4999     MS    : R;
5000 %}
5001 
5002 // Integer Store Zero to Memory
5003 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5004     single_instruction;
5005     mem   : R(read);
5006     MS    : R;
5007 %}
5008 
5009 // Special Stack Slot Store
5010 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5011     single_instruction;
5012     stkSlot : R(read);
5013     src     : C(read);
5014     MS      : R;
5015 %}
5016 
5017 // Special Stack Slot Store
5018 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5019     instruction_count(2); multiple_bundles;
5020     stkSlot : R(read);
5021     src     : C(read);
5022     MS      : R(2);
5023 %}
5024 
5025 // Float Store
5026 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5027     single_instruction;
5028     mem : R(read);
5029     src : C(read);
5030     MS  : R;
5031 %}
5032 
5033 // Float Store
5034 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5035     single_instruction;
5036     mem : R(read);
5037     MS  : R;
5038 %}
5039 
5040 // Double Store
5041 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5042     instruction_count(1);
5043     mem : R(read);
5044     src : C(read);
5045     MS  : R;
5046 %}
5047 
5048 // Double Store
5049 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5050     single_instruction;
5051     mem : R(read);
5052     MS  : R;
5053 %}
5054 
5055 // Special Stack Slot Float Store
5056 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5057     single_instruction;
5058     stkSlot : R(read);
5059     src     : C(read);
5060     MS      : R;
5061 %}
5062 
5063 // Special Stack Slot Double Store
5064 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5065     single_instruction;
5066     stkSlot : R(read);
5067     src     : C(read);
5068     MS      : R;
5069 %}
5070 
5071 // Integer Load (when sign bit propagation not needed)
5072 pipe_class iload_mem(iRegI dst, memory mem) %{
5073     single_instruction;
5074     mem : R(read);
5075     dst : C(write);
5076     MS  : R;
5077 %}
5078 
5079 // Integer Load from stack operand
5080 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5081     single_instruction;
5082     mem : R(read);
5083     dst : C(write);
5084     MS  : R;
5085 %}
5086 
5087 // Integer Load (when sign bit propagation or masking is needed)
5088 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5089     single_instruction;
5090     mem : R(read);
5091     dst : M(write);
5092     MS  : R;
5093 %}
5094 
5095 // Float Load
5096 pipe_class floadF_mem(regF dst, memory mem) %{
5097     single_instruction;
5098     mem : R(read);
5099     dst : M(write);
5100     MS  : R;
5101 %}
5102 
5103 // Float Load
5104 pipe_class floadD_mem(regD dst, memory mem) %{
5105     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5106     mem : R(read);
5107     dst : M(write);
5108     MS  : R;
5109 %}
5110 
5111 // Float Load
5112 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5113     single_instruction;
5114     stkSlot : R(read);
5115     dst : M(write);
5116     MS  : R;
5117 %}
5118 
5119 // Float Load
5120 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5121     single_instruction;
5122     stkSlot : R(read);
5123     dst : M(write);
5124     MS  : R;
5125 %}
5126 
5127 // Memory Nop
5128 pipe_class mem_nop() %{
5129     single_instruction;
5130     MS  : R;
5131 %}
5132 
5133 pipe_class sethi(iRegP dst, immI src) %{
5134     single_instruction;
5135     dst  : E(write);
5136     IALU : R;
5137 %}
5138 
5139 pipe_class loadPollP(iRegP poll) %{
5140     single_instruction;
5141     poll : R(read);
5142     MS   : R;
5143 %}
5144 
5145 pipe_class br(Universe br, label labl) %{
5146     single_instruction_with_delay_slot;
5147     BR  : R;
5148 %}
5149 
5150 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5151     single_instruction_with_delay_slot;
5152     cr    : E(read);
5153     BR    : R;
5154 %}
5155 
5156 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5157     single_instruction_with_delay_slot;
5158     op1 : E(read);
5159     BR  : R;
5160     MS  : R;
5161 %}
5162 
5163 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5164     single_instruction_with_delay_slot;
5165     cr    : E(read);
5166     BR    : R;
5167 %}
5168 
5169 pipe_class br_nop() %{
5170     single_instruction;
5171     BR  : R;
5172 %}
5173 
5174 pipe_class simple_call(method meth) %{
5175     instruction_count(2); multiple_bundles; force_serialization;
5176     fixed_latency(100);
5177     BR  : R(1);
5178     MS  : R(1);
5179     A0  : R(1);
5180 %}
5181 
5182 pipe_class compiled_call(method meth) %{
5183     instruction_count(1); multiple_bundles; force_serialization;
5184     fixed_latency(100);
5185     MS  : R(1);
5186 %}
5187 
5188 pipe_class call(method meth) %{
5189     instruction_count(0); multiple_bundles; force_serialization;
5190     fixed_latency(100);
5191 %}
5192 
5193 pipe_class tail_call(Universe ignore, label labl) %{
5194     single_instruction; has_delay_slot;
5195     fixed_latency(100);
5196     BR  : R(1);
5197     MS  : R(1);
5198 %}
5199 
5200 pipe_class ret(Universe ignore) %{
5201     single_instruction; has_delay_slot;
5202     BR  : R(1);
5203     MS  : R(1);
5204 %}
5205 
5206 pipe_class ret_poll(g3RegP poll) %{
5207     instruction_count(3); has_delay_slot;
5208     poll : E(read);
5209     MS   : R;
5210 %}
5211 
5212 // The real do-nothing guy
5213 pipe_class empty( ) %{
5214     instruction_count(0);
5215 %}
5216 
5217 pipe_class long_memory_op() %{
5218     instruction_count(0); multiple_bundles; force_serialization;
5219     fixed_latency(25);
5220     MS  : R(1);
5221 %}
5222 
5223 // Check-cast
5224 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5225     array : R(read);
5226     match  : R(read);
5227     IALU   : R(2);
5228     BR     : R(2);
5229     MS     : R;
5230 %}
5231 
5232 // Convert FPU flags into +1,0,-1
5233 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5234     src1  : E(read);
5235     src2  : E(read);
5236     dst   : E(write);
5237     FA    : R;
5238     MS    : R(2);
5239     BR    : R(2);
5240 %}
5241 
5242 // Compare for p < q, and conditionally add y
5243 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5244     p     : E(read);
5245     q     : E(read);
5246     y     : E(read);
5247     IALU  : R(3)
5248 %}
5249 
5250 // Perform a compare, then move conditionally in a branch delay slot.
5251 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5252     src2   : E(read);
5253     srcdst : E(read);
5254     IALU   : R;
5255     BR     : R;
5256 %}
5257 
5258 // Define the class for the Nop node
5259 define %{
5260    MachNop = ialu_nop;
5261 %}
5262 
5263 %}
5264 
5265 //----------INSTRUCTIONS-------------------------------------------------------
5266 
5267 //------------Special Stack Slot instructions - no match rules-----------------
5268 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5269   // No match rule to avoid chain rule match.
5270   effect(DEF dst, USE src);
5271   ins_cost(MEMORY_REF_COST);
5272   size(4);
5273   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5274   opcode(Assembler::ldf_op3);
5275   ins_encode(simple_form3_mem_reg(src, dst));
5276   ins_pipe(floadF_stk);
5277 %}
5278 
5279 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5280   // No match rule to avoid chain rule match.
5281   effect(DEF dst, USE src);
5282   ins_cost(MEMORY_REF_COST);
5283   size(4);
5284   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5285   opcode(Assembler::lddf_op3);
5286   ins_encode(simple_form3_mem_reg(src, dst));
5287   ins_pipe(floadD_stk);
5288 %}
5289 
5290 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5291   // No match rule to avoid chain rule match.
5292   effect(DEF dst, USE src);
5293   ins_cost(MEMORY_REF_COST);
5294   size(4);
5295   format %{ "STF    $src,$dst\t! regF to stkI" %}
5296   opcode(Assembler::stf_op3);
5297   ins_encode(simple_form3_mem_reg(dst, src));
5298   ins_pipe(fstoreF_stk_reg);
5299 %}
5300 
5301 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5302   // No match rule to avoid chain rule match.
5303   effect(DEF dst, USE src);
5304   ins_cost(MEMORY_REF_COST);
5305   size(4);
5306   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5307   opcode(Assembler::stdf_op3);
5308   ins_encode(simple_form3_mem_reg(dst, src));
5309   ins_pipe(fstoreD_stk_reg);
5310 %}
5311 
5312 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5313   effect(DEF dst, USE src);
5314   ins_cost(MEMORY_REF_COST*2);
5315   size(8);
5316   format %{ "STW    $src,$dst.hi\t! long\n\t"
5317             "STW    R_G0,$dst.lo" %}
5318   opcode(Assembler::stw_op3);
5319   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5320   ins_pipe(lstoreI_stk_reg);
5321 %}
5322 
5323 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5324   // No match rule to avoid chain rule match.
5325   effect(DEF dst, USE src);
5326   ins_cost(MEMORY_REF_COST);
5327   size(4);
5328   format %{ "STX    $src,$dst\t! regL to stkD" %}
5329   opcode(Assembler::stx_op3);
5330   ins_encode(simple_form3_mem_reg( dst, src ) );
5331   ins_pipe(istore_stk_reg);
5332 %}
5333 
5334 //---------- Chain stack slots between similar types --------
5335 
5336 // Load integer from stack slot
5337 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5338   match(Set dst src);
5339   ins_cost(MEMORY_REF_COST);
5340 
5341   size(4);
5342   format %{ "LDUW   $src,$dst\t!stk" %}
5343   opcode(Assembler::lduw_op3);
5344   ins_encode(simple_form3_mem_reg( src, dst ) );
5345   ins_pipe(iload_mem);
5346 %}
5347 
5348 // Store integer to stack slot
5349 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5350   match(Set dst src);
5351   ins_cost(MEMORY_REF_COST);
5352 
5353   size(4);
5354   format %{ "STW    $src,$dst\t!stk" %}
5355   opcode(Assembler::stw_op3);
5356   ins_encode(simple_form3_mem_reg( dst, src ) );
5357   ins_pipe(istore_mem_reg);
5358 %}
5359 
5360 // Load long from stack slot
5361 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5362   match(Set dst src);
5363 
5364   ins_cost(MEMORY_REF_COST);
5365   size(4);
5366   format %{ "LDX    $src,$dst\t! long" %}
5367   opcode(Assembler::ldx_op3);
5368   ins_encode(simple_form3_mem_reg( src, dst ) );
5369   ins_pipe(iload_mem);
5370 %}
5371 
5372 // Store long to stack slot
5373 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5374   match(Set dst src);
5375 
5376   ins_cost(MEMORY_REF_COST);
5377   size(4);
5378   format %{ "STX    $src,$dst\t! long" %}
5379   opcode(Assembler::stx_op3);
5380   ins_encode(simple_form3_mem_reg( dst, src ) );
5381   ins_pipe(istore_mem_reg);
5382 %}
5383 
5384 #ifdef _LP64
5385 // Load pointer from stack slot, 64-bit encoding
5386 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5387   match(Set dst src);
5388   ins_cost(MEMORY_REF_COST);
5389   size(4);
5390   format %{ "LDX    $src,$dst\t!ptr" %}
5391   opcode(Assembler::ldx_op3);
5392   ins_encode(simple_form3_mem_reg( src, dst ) );
5393   ins_pipe(iload_mem);
5394 %}
5395 
5396 // Store pointer to stack slot
5397 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5398   match(Set dst src);
5399   ins_cost(MEMORY_REF_COST);
5400   size(4);
5401   format %{ "STX    $src,$dst\t!ptr" %}
5402   opcode(Assembler::stx_op3);
5403   ins_encode(simple_form3_mem_reg( dst, src ) );
5404   ins_pipe(istore_mem_reg);
5405 %}
5406 #else // _LP64
5407 // Load pointer from stack slot, 32-bit encoding
5408 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5409   match(Set dst src);
5410   ins_cost(MEMORY_REF_COST);
5411   format %{ "LDUW   $src,$dst\t!ptr" %}
5412   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5413   ins_encode(simple_form3_mem_reg( src, dst ) );
5414   ins_pipe(iload_mem);
5415 %}
5416 
5417 // Store pointer to stack slot
5418 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5419   match(Set dst src);
5420   ins_cost(MEMORY_REF_COST);
5421   format %{ "STW    $src,$dst\t!ptr" %}
5422   opcode(Assembler::stw_op3, Assembler::ldst_op);
5423   ins_encode(simple_form3_mem_reg( dst, src ) );
5424   ins_pipe(istore_mem_reg);
5425 %}
5426 #endif // _LP64
5427 
5428 //------------Special Nop instructions for bundling - no match rules-----------
5429 // Nop using the A0 functional unit
5430 instruct Nop_A0() %{
5431   ins_cost(0);
5432 
5433   format %{ "NOP    ! Alu Pipeline" %}
5434   opcode(Assembler::or_op3, Assembler::arith_op);
5435   ins_encode( form2_nop() );
5436   ins_pipe(ialu_nop_A0);
5437 %}
5438 
5439 // Nop using the A1 functional unit
5440 instruct Nop_A1( ) %{
5441   ins_cost(0);
5442 
5443   format %{ "NOP    ! Alu Pipeline" %}
5444   opcode(Assembler::or_op3, Assembler::arith_op);
5445   ins_encode( form2_nop() );
5446   ins_pipe(ialu_nop_A1);
5447 %}
5448 
5449 // Nop using the memory functional unit
5450 instruct Nop_MS( ) %{
5451   ins_cost(0);
5452 
5453   format %{ "NOP    ! Memory Pipeline" %}
5454   ins_encode( emit_mem_nop );
5455   ins_pipe(mem_nop);
5456 %}
5457 
5458 // Nop using the floating add functional unit
5459 instruct Nop_FA( ) %{
5460   ins_cost(0);
5461 
5462   format %{ "NOP    ! Floating Add Pipeline" %}
5463   ins_encode( emit_fadd_nop );
5464   ins_pipe(fadd_nop);
5465 %}
5466 
5467 // Nop using the branch functional unit
5468 instruct Nop_BR( ) %{
5469   ins_cost(0);
5470 
5471   format %{ "NOP    ! Branch Pipeline" %}
5472   ins_encode( emit_br_nop );
5473   ins_pipe(br_nop);
5474 %}
5475 
5476 //----------Load/Store/Move Instructions---------------------------------------
5477 //----------Load Instructions--------------------------------------------------
5478 // Load Byte (8bit signed)
5479 instruct loadB(iRegI dst, memory mem) %{
5480   match(Set dst (LoadB mem));
5481   ins_cost(MEMORY_REF_COST);
5482 
5483   size(4);
5484   format %{ "LDSB   $mem,$dst\t! byte" %}
5485   ins_encode %{
5486     __ ldsb($mem$$Address, $dst$$Register);
5487   %}
5488   ins_pipe(iload_mask_mem);
5489 %}
5490 
5491 // Load Byte (8bit signed) into a Long Register
5492 instruct loadB2L(iRegL dst, memory mem) %{
5493   match(Set dst (ConvI2L (LoadB mem)));
5494   ins_cost(MEMORY_REF_COST);
5495 
5496   size(4);
5497   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5498   ins_encode %{
5499     __ ldsb($mem$$Address, $dst$$Register);
5500   %}
5501   ins_pipe(iload_mask_mem);
5502 %}
5503 
5504 // Load Unsigned Byte (8bit UNsigned) into an int reg
5505 instruct loadUB(iRegI dst, memory mem) %{
5506   match(Set dst (LoadUB mem));
5507   ins_cost(MEMORY_REF_COST);
5508 
5509   size(4);
5510   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5511   ins_encode %{
5512     __ ldub($mem$$Address, $dst$$Register);
5513   %}
5514   ins_pipe(iload_mem);
5515 %}
5516 
5517 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5518 instruct loadUB2L(iRegL dst, memory mem) %{
5519   match(Set dst (ConvI2L (LoadUB mem)));
5520   ins_cost(MEMORY_REF_COST);
5521 
5522   size(4);
5523   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5524   ins_encode %{
5525     __ ldub($mem$$Address, $dst$$Register);
5526   %}
5527   ins_pipe(iload_mem);
5528 %}
5529 
5530 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5531 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5532   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5533   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5534 
5535   size(2*4);
5536   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5537             "AND    $dst,$mask,$dst" %}
5538   ins_encode %{
5539     __ ldub($mem$$Address, $dst$$Register);
5540     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5541   %}
5542   ins_pipe(iload_mem);
5543 %}
5544 
5545 // Load Short (16bit signed)
5546 instruct loadS(iRegI dst, memory mem) %{
5547   match(Set dst (LoadS mem));
5548   ins_cost(MEMORY_REF_COST);
5549 
5550   size(4);
5551   format %{ "LDSH   $mem,$dst\t! short" %}
5552   ins_encode %{
5553     __ ldsh($mem$$Address, $dst$$Register);
5554   %}
5555   ins_pipe(iload_mask_mem);
5556 %}
5557 
5558 // Load Short (16 bit signed) to Byte (8 bit signed)
5559 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5560   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5561   ins_cost(MEMORY_REF_COST);
5562 
5563   size(4);
5564 
5565   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5566   ins_encode %{
5567     __ ldsb($mem$$Address, $dst$$Register, 1);
5568   %}
5569   ins_pipe(iload_mask_mem);
5570 %}
5571 
5572 // Load Short (16bit signed) into a Long Register
5573 instruct loadS2L(iRegL dst, memory mem) %{
5574   match(Set dst (ConvI2L (LoadS mem)));
5575   ins_cost(MEMORY_REF_COST);
5576 
5577   size(4);
5578   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5579   ins_encode %{
5580     __ ldsh($mem$$Address, $dst$$Register);
5581   %}
5582   ins_pipe(iload_mask_mem);
5583 %}
5584 
5585 // Load Unsigned Short/Char (16bit UNsigned)
5586 instruct loadUS(iRegI dst, memory mem) %{
5587   match(Set dst (LoadUS mem));
5588   ins_cost(MEMORY_REF_COST);
5589 
5590   size(4);
5591   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5592   ins_encode %{
5593     __ lduh($mem$$Address, $dst$$Register);
5594   %}
5595   ins_pipe(iload_mem);
5596 %}
5597 
5598 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5599 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5600   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5601   ins_cost(MEMORY_REF_COST);
5602 
5603   size(4);
5604   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5605   ins_encode %{
5606     __ ldsb($mem$$Address, $dst$$Register, 1);
5607   %}
5608   ins_pipe(iload_mask_mem);
5609 %}
5610 
5611 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5612 instruct loadUS2L(iRegL dst, memory mem) %{
5613   match(Set dst (ConvI2L (LoadUS mem)));
5614   ins_cost(MEMORY_REF_COST);
5615 
5616   size(4);
5617   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5618   ins_encode %{
5619     __ lduh($mem$$Address, $dst$$Register);
5620   %}
5621   ins_pipe(iload_mem);
5622 %}
5623 
5624 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5625 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5626   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5627   ins_cost(MEMORY_REF_COST);
5628 
5629   size(4);
5630   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5631   ins_encode %{
5632     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5633   %}
5634   ins_pipe(iload_mem);
5635 %}
5636 
5637 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5638 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5639   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5640   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5641 
5642   size(2*4);
5643   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5644             "AND    $dst,$mask,$dst" %}
5645   ins_encode %{
5646     Register Rdst = $dst$$Register;
5647     __ lduh($mem$$Address, Rdst);
5648     __ and3(Rdst, $mask$$constant, Rdst);
5649   %}
5650   ins_pipe(iload_mem);
5651 %}
5652 
5653 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5654 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5655   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5656   effect(TEMP dst, TEMP tmp);
5657   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5658 
5659   size((3+1)*4);  // set may use two instructions.
5660   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5661             "SET    $mask,$tmp\n\t"
5662             "AND    $dst,$tmp,$dst" %}
5663   ins_encode %{
5664     Register Rdst = $dst$$Register;
5665     Register Rtmp = $tmp$$Register;
5666     __ lduh($mem$$Address, Rdst);
5667     __ set($mask$$constant, Rtmp);
5668     __ and3(Rdst, Rtmp, Rdst);
5669   %}
5670   ins_pipe(iload_mem);
5671 %}
5672 
5673 // Load Integer
5674 instruct loadI(iRegI dst, memory mem) %{
5675   match(Set dst (LoadI mem));
5676   ins_cost(MEMORY_REF_COST);
5677 
5678   size(4);
5679   format %{ "LDUW   $mem,$dst\t! int" %}
5680   ins_encode %{
5681     __ lduw($mem$$Address, $dst$$Register);
5682   %}
5683   ins_pipe(iload_mem);
5684 %}
5685 
5686 // Load Integer to Byte (8 bit signed)
5687 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5688   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5689   ins_cost(MEMORY_REF_COST);
5690 
5691   size(4);
5692 
5693   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5694   ins_encode %{
5695     __ ldsb($mem$$Address, $dst$$Register, 3);
5696   %}
5697   ins_pipe(iload_mask_mem);
5698 %}
5699 
5700 // Load Integer to Unsigned Byte (8 bit UNsigned)
5701 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5702   match(Set dst (AndI (LoadI mem) mask));
5703   ins_cost(MEMORY_REF_COST);
5704 
5705   size(4);
5706 
5707   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5708   ins_encode %{
5709     __ ldub($mem$$Address, $dst$$Register, 3);
5710   %}
5711   ins_pipe(iload_mask_mem);
5712 %}
5713 
5714 // Load Integer to Short (16 bit signed)
5715 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5716   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5717   ins_cost(MEMORY_REF_COST);
5718 
5719   size(4);
5720 
5721   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5722   ins_encode %{
5723     __ ldsh($mem$$Address, $dst$$Register, 2);
5724   %}
5725   ins_pipe(iload_mask_mem);
5726 %}
5727 
5728 // Load Integer to Unsigned Short (16 bit UNsigned)
5729 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5730   match(Set dst (AndI (LoadI mem) mask));
5731   ins_cost(MEMORY_REF_COST);
5732 
5733   size(4);
5734 
5735   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5736   ins_encode %{
5737     __ lduh($mem$$Address, $dst$$Register, 2);
5738   %}
5739   ins_pipe(iload_mask_mem);
5740 %}
5741 
5742 // Load Integer into a Long Register
5743 instruct loadI2L(iRegL dst, memory mem) %{
5744   match(Set dst (ConvI2L (LoadI mem)));
5745   ins_cost(MEMORY_REF_COST);
5746 
5747   size(4);
5748   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5749   ins_encode %{
5750     __ ldsw($mem$$Address, $dst$$Register);
5751   %}
5752   ins_pipe(iload_mask_mem);
5753 %}
5754 
5755 // Load Integer with mask 0xFF into a Long Register
5756 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5757   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5758   ins_cost(MEMORY_REF_COST);
5759 
5760   size(4);
5761   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5762   ins_encode %{
5763     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5764   %}
5765   ins_pipe(iload_mem);
5766 %}
5767 
5768 // Load Integer with mask 0xFFFF into a Long Register
5769 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5770   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5771   ins_cost(MEMORY_REF_COST);
5772 
5773   size(4);
5774   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5775   ins_encode %{
5776     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5777   %}
5778   ins_pipe(iload_mem);
5779 %}
5780 
5781 // Load Integer with a 13-bit mask into a Long Register
5782 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5783   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5784   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5785 
5786   size(2*4);
5787   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5788             "AND    $dst,$mask,$dst" %}
5789   ins_encode %{
5790     Register Rdst = $dst$$Register;
5791     __ lduw($mem$$Address, Rdst);
5792     __ and3(Rdst, $mask$$constant, Rdst);
5793   %}
5794   ins_pipe(iload_mem);
5795 %}
5796 
5797 // Load Integer with a 32-bit mask into a Long Register
5798 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5799   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5800   effect(TEMP dst, TEMP tmp);
5801   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5802 
5803   size((3+1)*4);  // set may use two instructions.
5804   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5805             "SET    $mask,$tmp\n\t"
5806             "AND    $dst,$tmp,$dst" %}
5807   ins_encode %{
5808     Register Rdst = $dst$$Register;
5809     Register Rtmp = $tmp$$Register;
5810     __ lduw($mem$$Address, Rdst);
5811     __ set($mask$$constant, Rtmp);
5812     __ and3(Rdst, Rtmp, Rdst);
5813   %}
5814   ins_pipe(iload_mem);
5815 %}
5816 
5817 // Load Unsigned Integer into a Long Register
5818 instruct loadUI2L(iRegL dst, memory mem) %{
5819   match(Set dst (LoadUI2L mem));
5820   ins_cost(MEMORY_REF_COST);
5821 
5822   size(4);
5823   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5824   ins_encode %{
5825     __ lduw($mem$$Address, $dst$$Register);
5826   %}
5827   ins_pipe(iload_mem);
5828 %}
5829 
5830 // Load Long - aligned
5831 instruct loadL(iRegL dst, memory mem ) %{
5832   match(Set dst (LoadL mem));
5833   ins_cost(MEMORY_REF_COST);
5834 
5835   size(4);
5836   format %{ "LDX    $mem,$dst\t! long" %}
5837   ins_encode %{
5838     __ ldx($mem$$Address, $dst$$Register);
5839   %}
5840   ins_pipe(iload_mem);
5841 %}
5842 
5843 // Load Long - UNaligned
5844 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5845   match(Set dst (LoadL_unaligned mem));
5846   effect(KILL tmp);
5847   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5848   size(16);
5849   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5850           "\tLDUW   $mem  ,$dst\n"
5851           "\tSLLX   #32, $dst, $dst\n"
5852           "\tOR     $dst, R_O7, $dst" %}
5853   opcode(Assembler::lduw_op3);
5854   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5855   ins_pipe(iload_mem);
5856 %}
5857 
5858 // Load Aligned Packed Byte into a Double Register
5859 instruct loadA8B(regD dst, memory mem) %{
5860   match(Set dst (Load8B mem));
5861   ins_cost(MEMORY_REF_COST);
5862   size(4);
5863   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5864   opcode(Assembler::lddf_op3);
5865   ins_encode(simple_form3_mem_reg( mem, dst ) );
5866   ins_pipe(floadD_mem);
5867 %}
5868 
5869 // Load Aligned Packed Char into a Double Register
5870 instruct loadA4C(regD dst, memory mem) %{
5871   match(Set dst (Load4C mem));
5872   ins_cost(MEMORY_REF_COST);
5873   size(4);
5874   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5875   opcode(Assembler::lddf_op3);
5876   ins_encode(simple_form3_mem_reg( mem, dst ) );
5877   ins_pipe(floadD_mem);
5878 %}
5879 
5880 // Load Aligned Packed Short into a Double Register
5881 instruct loadA4S(regD dst, memory mem) %{
5882   match(Set dst (Load4S mem));
5883   ins_cost(MEMORY_REF_COST);
5884   size(4);
5885   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5886   opcode(Assembler::lddf_op3);
5887   ins_encode(simple_form3_mem_reg( mem, dst ) );
5888   ins_pipe(floadD_mem);
5889 %}
5890 
5891 // Load Aligned Packed Int into a Double Register
5892 instruct loadA2I(regD dst, memory mem) %{
5893   match(Set dst (Load2I mem));
5894   ins_cost(MEMORY_REF_COST);
5895   size(4);
5896   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5897   opcode(Assembler::lddf_op3);
5898   ins_encode(simple_form3_mem_reg( mem, dst ) );
5899   ins_pipe(floadD_mem);
5900 %}
5901 
5902 // Load Range
5903 instruct loadRange(iRegI dst, memory mem) %{
5904   match(Set dst (LoadRange mem));
5905   ins_cost(MEMORY_REF_COST);
5906 
5907   size(4);
5908   format %{ "LDUW   $mem,$dst\t! range" %}
5909   opcode(Assembler::lduw_op3);
5910   ins_encode(simple_form3_mem_reg( mem, dst ) );
5911   ins_pipe(iload_mem);
5912 %}
5913 
5914 // Load Integer into %f register (for fitos/fitod)
5915 instruct loadI_freg(regF dst, memory mem) %{
5916   match(Set dst (LoadI mem));
5917   ins_cost(MEMORY_REF_COST);
5918   size(4);
5919 
5920   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5921   opcode(Assembler::ldf_op3);
5922   ins_encode(simple_form3_mem_reg( mem, dst ) );
5923   ins_pipe(floadF_mem);
5924 %}
5925 
5926 // Load Pointer
5927 instruct loadP(iRegP dst, memory mem) %{
5928   match(Set dst (LoadP mem));
5929   ins_cost(MEMORY_REF_COST);
5930   size(4);
5931 
5932 #ifndef _LP64
5933   format %{ "LDUW   $mem,$dst\t! ptr" %}
5934   ins_encode %{
5935     __ lduw($mem$$Address, $dst$$Register);
5936   %}
5937 #else
5938   format %{ "LDX    $mem,$dst\t! ptr" %}
5939   ins_encode %{
5940     __ ldx($mem$$Address, $dst$$Register);
5941   %}
5942 #endif
5943   ins_pipe(iload_mem);
5944 %}
5945 
5946 // Load Compressed Pointer
5947 instruct loadN(iRegN dst, memory mem) %{
5948   match(Set dst (LoadN mem));
5949   ins_cost(MEMORY_REF_COST);
5950   size(4);
5951 
5952   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5953   ins_encode %{
5954     __ lduw($mem$$Address, $dst$$Register);
5955   %}
5956   ins_pipe(iload_mem);
5957 %}
5958 
5959 // Load Klass Pointer
5960 instruct loadKlass(iRegP dst, memory mem) %{
5961   match(Set dst (LoadKlass mem));
5962   ins_cost(MEMORY_REF_COST);
5963   size(4);
5964 
5965 #ifndef _LP64
5966   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5967   ins_encode %{
5968     __ lduw($mem$$Address, $dst$$Register);
5969   %}
5970 #else
5971   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5972   ins_encode %{
5973     __ ldx($mem$$Address, $dst$$Register);
5974   %}
5975 #endif
5976   ins_pipe(iload_mem);
5977 %}
5978 
5979 // Load narrow Klass Pointer
5980 instruct loadNKlass(iRegN dst, memory mem) %{
5981   match(Set dst (LoadNKlass mem));
5982   ins_cost(MEMORY_REF_COST);
5983   size(4);
5984 
5985   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5986   ins_encode %{
5987     __ lduw($mem$$Address, $dst$$Register);
5988   %}
5989   ins_pipe(iload_mem);
5990 %}
5991 
5992 // Load Double
5993 instruct loadD(regD dst, memory mem) %{
5994   match(Set dst (LoadD mem));
5995   ins_cost(MEMORY_REF_COST);
5996 
5997   size(4);
5998   format %{ "LDDF   $mem,$dst" %}
5999   opcode(Assembler::lddf_op3);
6000   ins_encode(simple_form3_mem_reg( mem, dst ) );
6001   ins_pipe(floadD_mem);
6002 %}
6003 
6004 // Load Double - UNaligned
6005 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6006   match(Set dst (LoadD_unaligned mem));
6007   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6008   size(8);
6009   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6010           "\tLDF    $mem+4,$dst.lo\t!" %}
6011   opcode(Assembler::ldf_op3);
6012   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6013   ins_pipe(iload_mem);
6014 %}
6015 
6016 // Load Float
6017 instruct loadF(regF dst, memory mem) %{
6018   match(Set dst (LoadF mem));
6019   ins_cost(MEMORY_REF_COST);
6020 
6021   size(4);
6022   format %{ "LDF    $mem,$dst" %}
6023   opcode(Assembler::ldf_op3);
6024   ins_encode(simple_form3_mem_reg( mem, dst ) );
6025   ins_pipe(floadF_mem);
6026 %}
6027 
6028 // Load Constant
6029 instruct loadConI( iRegI dst, immI src ) %{
6030   match(Set dst src);
6031   ins_cost(DEFAULT_COST * 3/2);
6032   format %{ "SET    $src,$dst" %}
6033   ins_encode( Set32(src, dst) );
6034   ins_pipe(ialu_hi_lo_reg);
6035 %}
6036 
6037 instruct loadConI13( iRegI dst, immI13 src ) %{
6038   match(Set dst src);
6039 
6040   size(4);
6041   format %{ "MOV    $src,$dst" %}
6042   ins_encode( Set13( src, dst ) );
6043   ins_pipe(ialu_imm);
6044 %}
6045 
6046 #ifndef _LP64
6047 instruct loadConP(iRegP dst, immP con) %{
6048   match(Set dst con);
6049   ins_cost(DEFAULT_COST * 3/2);
6050   format %{ "SET    $con,$dst\t!ptr" %}
6051   ins_encode %{
6052     // [RGV] This next line should be generated from ADLC
6053     if (_opnds[1]->constant_is_oop()) {
6054       intptr_t val = $con$$constant;
6055       __ set_oop_constant((jobject) val, $dst$$Register);
6056     } else {          // non-oop pointers, e.g. card mark base, heap top
6057       __ set($con$$constant, $dst$$Register);
6058     }
6059   %}
6060   ins_pipe(loadConP);
6061 %}
6062 #else
6063 instruct loadConP_set(iRegP dst, immP_set con) %{
6064   match(Set dst con);
6065   ins_cost(DEFAULT_COST * 3/2);
6066   format %{ "SET    $con,$dst\t! ptr" %}
6067   ins_encode %{
6068     // [RGV] This next line should be generated from ADLC
6069     if (_opnds[1]->constant_is_oop()) {
6070       intptr_t val = $con$$constant;
6071       __ set_oop_constant((jobject) val, $dst$$Register);
6072     } else {          // non-oop pointers, e.g. card mark base, heap top
6073       __ set($con$$constant, $dst$$Register);
6074     }
6075   %}
6076   ins_pipe(loadConP);
6077 %}
6078 
6079 instruct loadConP_load(iRegP dst, immP_load con) %{
6080   match(Set dst con);
6081   ins_cost(MEMORY_REF_COST);
6082   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6083   ins_encode %{
6084     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6085     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6086   %}
6087   ins_pipe(loadConP);
6088 %}
6089 
6090 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6091   match(Set dst con);
6092   ins_cost(DEFAULT_COST * 3/2);
6093   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6094   ins_encode %{
6095     __ set($con$$constant, $dst$$Register);
6096   %}
6097   ins_pipe(loadConP);
6098 %}
6099 #endif // _LP64
6100 
6101 instruct loadConP0(iRegP dst, immP0 src) %{
6102   match(Set dst src);
6103 
6104   size(4);
6105   format %{ "CLR    $dst\t!ptr" %}
6106   ins_encode %{
6107     __ clr($dst$$Register);
6108   %}
6109   ins_pipe(ialu_imm);
6110 %}
6111 
6112 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6113   match(Set dst src);
6114   ins_cost(DEFAULT_COST);
6115   format %{ "SET    $src,$dst\t!ptr" %}
6116   ins_encode %{
6117     AddressLiteral polling_page(os::get_polling_page());
6118     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6119   %}
6120   ins_pipe(loadConP_poll);
6121 %}
6122 
6123 instruct loadConN0(iRegN dst, immN0 src) %{
6124   match(Set dst src);
6125 
6126   size(4);
6127   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6128   ins_encode %{
6129     __ clr($dst$$Register);
6130   %}
6131   ins_pipe(ialu_imm);
6132 %}
6133 
6134 instruct loadConN(iRegN dst, immN src) %{
6135   match(Set dst src);
6136   ins_cost(DEFAULT_COST * 3/2);
6137   format %{ "SET    $src,$dst\t! compressed ptr" %}
6138   ins_encode %{
6139     Register dst = $dst$$Register;
6140     __ set_narrow_oop((jobject)$src$$constant, dst);
6141   %}
6142   ins_pipe(ialu_hi_lo_reg);
6143 %}
6144 
6145 // Materialize long value (predicated by immL_cheap).
6146 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6147   match(Set dst con);
6148   effect(KILL tmp);
6149   ins_cost(DEFAULT_COST * 3);
6150   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6151   ins_encode %{
6152     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6153   %}
6154   ins_pipe(loadConL);
6155 %}
6156 
6157 // Load long value from constant table (predicated by immL_expensive).
6158 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6159   match(Set dst con);
6160   ins_cost(MEMORY_REF_COST);
6161   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6162   ins_encode %{
6163       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6164     __ ldx($constanttablebase, con_offset, $dst$$Register);
6165   %}
6166   ins_pipe(loadConL);
6167 %}
6168 
6169 instruct loadConL0( iRegL dst, immL0 src ) %{
6170   match(Set dst src);
6171   ins_cost(DEFAULT_COST);
6172   size(4);
6173   format %{ "CLR    $dst\t! long" %}
6174   ins_encode( Set13( src, dst ) );
6175   ins_pipe(ialu_imm);
6176 %}
6177 
6178 instruct loadConL13( iRegL dst, immL13 src ) %{
6179   match(Set dst src);
6180   ins_cost(DEFAULT_COST * 2);
6181 
6182   size(4);
6183   format %{ "MOV    $src,$dst\t! long" %}
6184   ins_encode( Set13( src, dst ) );
6185   ins_pipe(ialu_imm);
6186 %}
6187 
6188 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6189   match(Set dst con);
6190   effect(KILL tmp);
6191   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6192   ins_encode %{
6193       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6194     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6195   %}
6196   ins_pipe(loadConFD);
6197 %}
6198 
6199 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6200   match(Set dst con);
6201   effect(KILL tmp);
6202   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6203   ins_encode %{
6204     // XXX This is a quick fix for 6833573.
6205     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6206     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6207     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6208   %}
6209   ins_pipe(loadConFD);
6210 %}
6211 
6212 // Prefetch instructions.
6213 // Must be safe to execute with invalid address (cannot fault).
6214 
6215 instruct prefetchr( memory mem ) %{
6216   match( PrefetchRead mem );
6217   ins_cost(MEMORY_REF_COST);
6218 
6219   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6220   opcode(Assembler::prefetch_op3);
6221   ins_encode( form3_mem_prefetch_read( mem ) );
6222   ins_pipe(iload_mem);
6223 %}
6224 
6225 instruct prefetchw( memory mem ) %{
6226   predicate(AllocatePrefetchStyle != 3 );
6227   match( PrefetchWrite mem );
6228   ins_cost(MEMORY_REF_COST);
6229 
6230   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6231   opcode(Assembler::prefetch_op3);
6232   ins_encode( form3_mem_prefetch_write( mem ) );
6233   ins_pipe(iload_mem);
6234 %}
6235 
6236 // Use BIS instruction to prefetch.
6237 instruct prefetchw_bis( memory mem ) %{
6238   predicate(AllocatePrefetchStyle == 3);
6239   match( PrefetchWrite mem );
6240   ins_cost(MEMORY_REF_COST);
6241 
6242   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
6243   ins_encode %{
6244      Register base = as_Register($mem$$base);
6245      int disp = $mem$$disp;
6246      if (disp != 0) {
6247        __ add(base, AllocatePrefetchStepSize, base);
6248      }
6249      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
6250   %}
6251   ins_pipe(istore_mem_reg);
6252 %}
6253 
6254 //----------Store Instructions-------------------------------------------------
6255 // Store Byte
6256 instruct storeB(memory mem, iRegI src) %{
6257   match(Set mem (StoreB mem src));
6258   ins_cost(MEMORY_REF_COST);
6259 
6260   size(4);
6261   format %{ "STB    $src,$mem\t! byte" %}
6262   opcode(Assembler::stb_op3);
6263   ins_encode(simple_form3_mem_reg( mem, src ) );
6264   ins_pipe(istore_mem_reg);
6265 %}
6266 
6267 instruct storeB0(memory mem, immI0 src) %{
6268   match(Set mem (StoreB mem src));
6269   ins_cost(MEMORY_REF_COST);
6270 
6271   size(4);
6272   format %{ "STB    $src,$mem\t! byte" %}
6273   opcode(Assembler::stb_op3);
6274   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6275   ins_pipe(istore_mem_zero);
6276 %}
6277 
6278 instruct storeCM0(memory mem, immI0 src) %{
6279   match(Set mem (StoreCM mem src));
6280   ins_cost(MEMORY_REF_COST);
6281 
6282   size(4);
6283   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6284   opcode(Assembler::stb_op3);
6285   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6286   ins_pipe(istore_mem_zero);
6287 %}
6288 
6289 // Store Char/Short
6290 instruct storeC(memory mem, iRegI src) %{
6291   match(Set mem (StoreC mem src));
6292   ins_cost(MEMORY_REF_COST);
6293 
6294   size(4);
6295   format %{ "STH    $src,$mem\t! short" %}
6296   opcode(Assembler::sth_op3);
6297   ins_encode(simple_form3_mem_reg( mem, src ) );
6298   ins_pipe(istore_mem_reg);
6299 %}
6300 
6301 instruct storeC0(memory mem, immI0 src) %{
6302   match(Set mem (StoreC mem src));
6303   ins_cost(MEMORY_REF_COST);
6304 
6305   size(4);
6306   format %{ "STH    $src,$mem\t! short" %}
6307   opcode(Assembler::sth_op3);
6308   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6309   ins_pipe(istore_mem_zero);
6310 %}
6311 
6312 // Store Integer
6313 instruct storeI(memory mem, iRegI src) %{
6314   match(Set mem (StoreI mem src));
6315   ins_cost(MEMORY_REF_COST);
6316 
6317   size(4);
6318   format %{ "STW    $src,$mem" %}
6319   opcode(Assembler::stw_op3);
6320   ins_encode(simple_form3_mem_reg( mem, src ) );
6321   ins_pipe(istore_mem_reg);
6322 %}
6323 
6324 // Store Long
6325 instruct storeL(memory mem, iRegL src) %{
6326   match(Set mem (StoreL mem src));
6327   ins_cost(MEMORY_REF_COST);
6328   size(4);
6329   format %{ "STX    $src,$mem\t! long" %}
6330   opcode(Assembler::stx_op3);
6331   ins_encode(simple_form3_mem_reg( mem, src ) );
6332   ins_pipe(istore_mem_reg);
6333 %}
6334 
6335 instruct storeI0(memory mem, immI0 src) %{
6336   match(Set mem (StoreI mem src));
6337   ins_cost(MEMORY_REF_COST);
6338 
6339   size(4);
6340   format %{ "STW    $src,$mem" %}
6341   opcode(Assembler::stw_op3);
6342   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6343   ins_pipe(istore_mem_zero);
6344 %}
6345 
6346 instruct storeL0(memory mem, immL0 src) %{
6347   match(Set mem (StoreL mem src));
6348   ins_cost(MEMORY_REF_COST);
6349 
6350   size(4);
6351   format %{ "STX    $src,$mem" %}
6352   opcode(Assembler::stx_op3);
6353   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6354   ins_pipe(istore_mem_zero);
6355 %}
6356 
6357 // Store Integer from float register (used after fstoi)
6358 instruct storeI_Freg(memory mem, regF src) %{
6359   match(Set mem (StoreI mem src));
6360   ins_cost(MEMORY_REF_COST);
6361 
6362   size(4);
6363   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6364   opcode(Assembler::stf_op3);
6365   ins_encode(simple_form3_mem_reg( mem, src ) );
6366   ins_pipe(fstoreF_mem_reg);
6367 %}
6368 
6369 // Store Pointer
6370 instruct storeP(memory dst, sp_ptr_RegP src) %{
6371   match(Set dst (StoreP dst src));
6372   ins_cost(MEMORY_REF_COST);
6373   size(4);
6374 
6375 #ifndef _LP64
6376   format %{ "STW    $src,$dst\t! ptr" %}
6377   opcode(Assembler::stw_op3, 0, REGP_OP);
6378 #else
6379   format %{ "STX    $src,$dst\t! ptr" %}
6380   opcode(Assembler::stx_op3, 0, REGP_OP);
6381 #endif
6382   ins_encode( form3_mem_reg( dst, src ) );
6383   ins_pipe(istore_mem_spORreg);
6384 %}
6385 
6386 instruct storeP0(memory dst, immP0 src) %{
6387   match(Set dst (StoreP dst src));
6388   ins_cost(MEMORY_REF_COST);
6389   size(4);
6390 
6391 #ifndef _LP64
6392   format %{ "STW    $src,$dst\t! ptr" %}
6393   opcode(Assembler::stw_op3, 0, REGP_OP);
6394 #else
6395   format %{ "STX    $src,$dst\t! ptr" %}
6396   opcode(Assembler::stx_op3, 0, REGP_OP);
6397 #endif
6398   ins_encode( form3_mem_reg( dst, R_G0 ) );
6399   ins_pipe(istore_mem_zero);
6400 %}
6401 
6402 // Store Compressed Pointer
6403 instruct storeN(memory dst, iRegN src) %{
6404    match(Set dst (StoreN dst src));
6405    ins_cost(MEMORY_REF_COST);
6406    size(4);
6407 
6408    format %{ "STW    $src,$dst\t! compressed ptr" %}
6409    ins_encode %{
6410      Register base = as_Register($dst$$base);
6411      Register index = as_Register($dst$$index);
6412      Register src = $src$$Register;
6413      if (index != G0) {
6414        __ stw(src, base, index);
6415      } else {
6416        __ stw(src, base, $dst$$disp);
6417      }
6418    %}
6419    ins_pipe(istore_mem_spORreg);
6420 %}
6421 
6422 instruct storeN0(memory dst, immN0 src) %{
6423    match(Set dst (StoreN dst src));
6424    ins_cost(MEMORY_REF_COST);
6425    size(4);
6426 
6427    format %{ "STW    $src,$dst\t! compressed ptr" %}
6428    ins_encode %{
6429      Register base = as_Register($dst$$base);
6430      Register index = as_Register($dst$$index);
6431      if (index != G0) {
6432        __ stw(0, base, index);
6433      } else {
6434        __ stw(0, base, $dst$$disp);
6435      }
6436    %}
6437    ins_pipe(istore_mem_zero);
6438 %}
6439 
6440 // Store Double
6441 instruct storeD( memory mem, regD src) %{
6442   match(Set mem (StoreD mem src));
6443   ins_cost(MEMORY_REF_COST);
6444 
6445   size(4);
6446   format %{ "STDF   $src,$mem" %}
6447   opcode(Assembler::stdf_op3);
6448   ins_encode(simple_form3_mem_reg( mem, src ) );
6449   ins_pipe(fstoreD_mem_reg);
6450 %}
6451 
6452 instruct storeD0( memory mem, immD0 src) %{
6453   match(Set mem (StoreD mem src));
6454   ins_cost(MEMORY_REF_COST);
6455 
6456   size(4);
6457   format %{ "STX    $src,$mem" %}
6458   opcode(Assembler::stx_op3);
6459   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6460   ins_pipe(fstoreD_mem_zero);
6461 %}
6462 
6463 // Store Float
6464 instruct storeF( memory mem, regF src) %{
6465   match(Set mem (StoreF mem src));
6466   ins_cost(MEMORY_REF_COST);
6467 
6468   size(4);
6469   format %{ "STF    $src,$mem" %}
6470   opcode(Assembler::stf_op3);
6471   ins_encode(simple_form3_mem_reg( mem, src ) );
6472   ins_pipe(fstoreF_mem_reg);
6473 %}
6474 
6475 instruct storeF0( memory mem, immF0 src) %{
6476   match(Set mem (StoreF mem src));
6477   ins_cost(MEMORY_REF_COST);
6478 
6479   size(4);
6480   format %{ "STW    $src,$mem\t! storeF0" %}
6481   opcode(Assembler::stw_op3);
6482   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6483   ins_pipe(fstoreF_mem_zero);
6484 %}
6485 
6486 // Store Aligned Packed Bytes in Double register to memory
6487 instruct storeA8B(memory mem, regD src) %{
6488   match(Set mem (Store8B mem src));
6489   ins_cost(MEMORY_REF_COST);
6490   size(4);
6491   format %{ "STDF   $src,$mem\t! packed8B" %}
6492   opcode(Assembler::stdf_op3);
6493   ins_encode(simple_form3_mem_reg( mem, src ) );
6494   ins_pipe(fstoreD_mem_reg);
6495 %}
6496 
6497 // Convert oop pointer into compressed form
6498 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6499   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6500   match(Set dst (EncodeP src));
6501   format %{ "encode_heap_oop $src, $dst" %}
6502   ins_encode %{
6503     __ encode_heap_oop($src$$Register, $dst$$Register);
6504   %}
6505   ins_pipe(ialu_reg);
6506 %}
6507 
6508 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6509   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6510   match(Set dst (EncodeP src));
6511   format %{ "encode_heap_oop_not_null $src, $dst" %}
6512   ins_encode %{
6513     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6514   %}
6515   ins_pipe(ialu_reg);
6516 %}
6517 
6518 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6519   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6520             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6521   match(Set dst (DecodeN src));
6522   format %{ "decode_heap_oop $src, $dst" %}
6523   ins_encode %{
6524     __ decode_heap_oop($src$$Register, $dst$$Register);
6525   %}
6526   ins_pipe(ialu_reg);
6527 %}
6528 
6529 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6530   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6531             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6532   match(Set dst (DecodeN src));
6533   format %{ "decode_heap_oop_not_null $src, $dst" %}
6534   ins_encode %{
6535     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6536   %}
6537   ins_pipe(ialu_reg);
6538 %}
6539 
6540 
6541 // Store Zero into Aligned Packed Bytes
6542 instruct storeA8B0(memory mem, immI0 zero) %{
6543   match(Set mem (Store8B mem zero));
6544   ins_cost(MEMORY_REF_COST);
6545   size(4);
6546   format %{ "STX    $zero,$mem\t! packed8B" %}
6547   opcode(Assembler::stx_op3);
6548   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6549   ins_pipe(fstoreD_mem_zero);
6550 %}
6551 
6552 // Store Aligned Packed Chars/Shorts in Double register to memory
6553 instruct storeA4C(memory mem, regD src) %{
6554   match(Set mem (Store4C mem src));
6555   ins_cost(MEMORY_REF_COST);
6556   size(4);
6557   format %{ "STDF   $src,$mem\t! packed4C" %}
6558   opcode(Assembler::stdf_op3);
6559   ins_encode(simple_form3_mem_reg( mem, src ) );
6560   ins_pipe(fstoreD_mem_reg);
6561 %}
6562 
6563 // Store Zero into Aligned Packed Chars/Shorts
6564 instruct storeA4C0(memory mem, immI0 zero) %{
6565   match(Set mem (Store4C mem (Replicate4C zero)));
6566   ins_cost(MEMORY_REF_COST);
6567   size(4);
6568   format %{ "STX    $zero,$mem\t! packed4C" %}
6569   opcode(Assembler::stx_op3);
6570   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6571   ins_pipe(fstoreD_mem_zero);
6572 %}
6573 
6574 // Store Aligned Packed Ints in Double register to memory
6575 instruct storeA2I(memory mem, regD src) %{
6576   match(Set mem (Store2I mem src));
6577   ins_cost(MEMORY_REF_COST);
6578   size(4);
6579   format %{ "STDF   $src,$mem\t! packed2I" %}
6580   opcode(Assembler::stdf_op3);
6581   ins_encode(simple_form3_mem_reg( mem, src ) );
6582   ins_pipe(fstoreD_mem_reg);
6583 %}
6584 
6585 // Store Zero into Aligned Packed Ints
6586 instruct storeA2I0(memory mem, immI0 zero) %{
6587   match(Set mem (Store2I mem zero));
6588   ins_cost(MEMORY_REF_COST);
6589   size(4);
6590   format %{ "STX    $zero,$mem\t! packed2I" %}
6591   opcode(Assembler::stx_op3);
6592   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6593   ins_pipe(fstoreD_mem_zero);
6594 %}
6595 
6596 
6597 //----------MemBar Instructions-----------------------------------------------
6598 // Memory barrier flavors
6599 
6600 instruct membar_acquire() %{
6601   match(MemBarAcquire);
6602   ins_cost(4*MEMORY_REF_COST);
6603 
6604   size(0);
6605   format %{ "MEMBAR-acquire" %}
6606   ins_encode( enc_membar_acquire );
6607   ins_pipe(long_memory_op);
6608 %}
6609 
6610 instruct membar_acquire_lock() %{
6611   match(MemBarAcquire);
6612   predicate(Matcher::prior_fast_lock(n));
6613   ins_cost(0);
6614 
6615   size(0);
6616   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6617   ins_encode( );
6618   ins_pipe(empty);
6619 %}
6620 
6621 instruct membar_release() %{
6622   match(MemBarRelease);
6623   ins_cost(4*MEMORY_REF_COST);
6624 
6625   size(0);
6626   format %{ "MEMBAR-release" %}
6627   ins_encode( enc_membar_release );
6628   ins_pipe(long_memory_op);
6629 %}
6630 
6631 instruct membar_release_lock() %{
6632   match(MemBarRelease);
6633   predicate(Matcher::post_fast_unlock(n));
6634   ins_cost(0);
6635 
6636   size(0);
6637   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6638   ins_encode( );
6639   ins_pipe(empty);
6640 %}
6641 
6642 instruct membar_volatile() %{
6643   match(MemBarVolatile);
6644   ins_cost(4*MEMORY_REF_COST);
6645 
6646   size(4);
6647   format %{ "MEMBAR-volatile" %}
6648   ins_encode( enc_membar_volatile );
6649   ins_pipe(long_memory_op);
6650 %}
6651 
6652 instruct unnecessary_membar_volatile() %{
6653   match(MemBarVolatile);
6654   predicate(Matcher::post_store_load_barrier(n));
6655   ins_cost(0);
6656 
6657   size(0);
6658   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6659   ins_encode( );
6660   ins_pipe(empty);
6661 %}
6662 
6663 //----------Register Move Instructions-----------------------------------------
6664 instruct roundDouble_nop(regD dst) %{
6665   match(Set dst (RoundDouble dst));
6666   ins_cost(0);
6667   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6668   ins_encode( );
6669   ins_pipe(empty);
6670 %}
6671 
6672 
6673 instruct roundFloat_nop(regF dst) %{
6674   match(Set dst (RoundFloat dst));
6675   ins_cost(0);
6676   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6677   ins_encode( );
6678   ins_pipe(empty);
6679 %}
6680 
6681 
6682 // Cast Index to Pointer for unsafe natives
6683 instruct castX2P(iRegX src, iRegP dst) %{
6684   match(Set dst (CastX2P src));
6685 
6686   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6687   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6688   ins_pipe(ialu_reg);
6689 %}
6690 
6691 // Cast Pointer to Index for unsafe natives
6692 instruct castP2X(iRegP src, iRegX dst) %{
6693   match(Set dst (CastP2X src));
6694 
6695   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6696   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6697   ins_pipe(ialu_reg);
6698 %}
6699 
6700 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6701   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6702   match(Set stkSlot src);   // chain rule
6703   ins_cost(MEMORY_REF_COST);
6704   format %{ "STDF   $src,$stkSlot\t!stk" %}
6705   opcode(Assembler::stdf_op3);
6706   ins_encode(simple_form3_mem_reg(stkSlot, src));
6707   ins_pipe(fstoreD_stk_reg);
6708 %}
6709 
6710 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6711   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6712   match(Set dst stkSlot);   // chain rule
6713   ins_cost(MEMORY_REF_COST);
6714   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6715   opcode(Assembler::lddf_op3);
6716   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6717   ins_pipe(floadD_stk);
6718 %}
6719 
6720 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6721   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6722   match(Set stkSlot src);   // chain rule
6723   ins_cost(MEMORY_REF_COST);
6724   format %{ "STF   $src,$stkSlot\t!stk" %}
6725   opcode(Assembler::stf_op3);
6726   ins_encode(simple_form3_mem_reg(stkSlot, src));
6727   ins_pipe(fstoreF_stk_reg);
6728 %}
6729 
6730 //----------Conditional Move---------------------------------------------------
6731 // Conditional move
6732 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6733   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6734   ins_cost(150);
6735   format %{ "MOV$cmp $pcc,$src,$dst" %}
6736   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6737   ins_pipe(ialu_reg);
6738 %}
6739 
6740 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6741   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6742   ins_cost(140);
6743   format %{ "MOV$cmp $pcc,$src,$dst" %}
6744   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6745   ins_pipe(ialu_imm);
6746 %}
6747 
6748 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6749   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6750   ins_cost(150);
6751   size(4);
6752   format %{ "MOV$cmp  $icc,$src,$dst" %}
6753   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6754   ins_pipe(ialu_reg);
6755 %}
6756 
6757 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6758   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6759   ins_cost(140);
6760   size(4);
6761   format %{ "MOV$cmp  $icc,$src,$dst" %}
6762   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6763   ins_pipe(ialu_imm);
6764 %}
6765 
6766 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6767   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6768   ins_cost(150);
6769   size(4);
6770   format %{ "MOV$cmp  $icc,$src,$dst" %}
6771   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6772   ins_pipe(ialu_reg);
6773 %}
6774 
6775 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6776   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6777   ins_cost(140);
6778   size(4);
6779   format %{ "MOV$cmp  $icc,$src,$dst" %}
6780   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6781   ins_pipe(ialu_imm);
6782 %}
6783 
6784 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6785   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6786   ins_cost(150);
6787   size(4);
6788   format %{ "MOV$cmp $fcc,$src,$dst" %}
6789   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6790   ins_pipe(ialu_reg);
6791 %}
6792 
6793 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6794   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6795   ins_cost(140);
6796   size(4);
6797   format %{ "MOV$cmp $fcc,$src,$dst" %}
6798   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6799   ins_pipe(ialu_imm);
6800 %}
6801 
6802 // Conditional move for RegN. Only cmov(reg,reg).
6803 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6804   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6805   ins_cost(150);
6806   format %{ "MOV$cmp $pcc,$src,$dst" %}
6807   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6808   ins_pipe(ialu_reg);
6809 %}
6810 
6811 // This instruction also works with CmpN so we don't need cmovNN_reg.
6812 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6813   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6814   ins_cost(150);
6815   size(4);
6816   format %{ "MOV$cmp  $icc,$src,$dst" %}
6817   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6818   ins_pipe(ialu_reg);
6819 %}
6820 
6821 // This instruction also works with CmpN so we don't need cmovNN_reg.
6822 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6823   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6824   ins_cost(150);
6825   size(4);
6826   format %{ "MOV$cmp  $icc,$src,$dst" %}
6827   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6828   ins_pipe(ialu_reg);
6829 %}
6830 
6831 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6832   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6833   ins_cost(150);
6834   size(4);
6835   format %{ "MOV$cmp $fcc,$src,$dst" %}
6836   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6837   ins_pipe(ialu_reg);
6838 %}
6839 
6840 // Conditional move
6841 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6842   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6843   ins_cost(150);
6844   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6845   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6846   ins_pipe(ialu_reg);
6847 %}
6848 
6849 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6850   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6851   ins_cost(140);
6852   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6853   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6854   ins_pipe(ialu_imm);
6855 %}
6856 
6857 // This instruction also works with CmpN so we don't need cmovPN_reg.
6858 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6859   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6860   ins_cost(150);
6861 
6862   size(4);
6863   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6864   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6865   ins_pipe(ialu_reg);
6866 %}
6867 
6868 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6869   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6870   ins_cost(150);
6871 
6872   size(4);
6873   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6874   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6875   ins_pipe(ialu_reg);
6876 %}
6877 
6878 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6879   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6880   ins_cost(140);
6881 
6882   size(4);
6883   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6884   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6885   ins_pipe(ialu_imm);
6886 %}
6887 
6888 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6889   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6890   ins_cost(140);
6891 
6892   size(4);
6893   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6894   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6895   ins_pipe(ialu_imm);
6896 %}
6897 
6898 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6899   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6900   ins_cost(150);
6901   size(4);
6902   format %{ "MOV$cmp $fcc,$src,$dst" %}
6903   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6904   ins_pipe(ialu_imm);
6905 %}
6906 
6907 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6908   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6909   ins_cost(140);
6910   size(4);
6911   format %{ "MOV$cmp $fcc,$src,$dst" %}
6912   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6913   ins_pipe(ialu_imm);
6914 %}
6915 
6916 // Conditional move
6917 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6918   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6919   ins_cost(150);
6920   opcode(0x101);
6921   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6922   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6923   ins_pipe(int_conditional_float_move);
6924 %}
6925 
6926 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6927   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6928   ins_cost(150);
6929 
6930   size(4);
6931   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6932   opcode(0x101);
6933   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6934   ins_pipe(int_conditional_float_move);
6935 %}
6936 
6937 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6938   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6939   ins_cost(150);
6940 
6941   size(4);
6942   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6943   opcode(0x101);
6944   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6945   ins_pipe(int_conditional_float_move);
6946 %}
6947 
6948 // Conditional move,
6949 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6950   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6951   ins_cost(150);
6952   size(4);
6953   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6954   opcode(0x1);
6955   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6956   ins_pipe(int_conditional_double_move);
6957 %}
6958 
6959 // Conditional move
6960 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6961   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6962   ins_cost(150);
6963   size(4);
6964   opcode(0x102);
6965   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6966   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6967   ins_pipe(int_conditional_double_move);
6968 %}
6969 
6970 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6971   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6972   ins_cost(150);
6973 
6974   size(4);
6975   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6976   opcode(0x102);
6977   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6978   ins_pipe(int_conditional_double_move);
6979 %}
6980 
6981 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6982   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6983   ins_cost(150);
6984 
6985   size(4);
6986   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6987   opcode(0x102);
6988   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6989   ins_pipe(int_conditional_double_move);
6990 %}
6991 
6992 // Conditional move,
6993 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6994   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6995   ins_cost(150);
6996   size(4);
6997   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6998   opcode(0x2);
6999   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7000   ins_pipe(int_conditional_double_move);
7001 %}
7002 
7003 // Conditional move
7004 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7005   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7006   ins_cost(150);
7007   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7008   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7009   ins_pipe(ialu_reg);
7010 %}
7011 
7012 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7013   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7014   ins_cost(140);
7015   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7016   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7017   ins_pipe(ialu_imm);
7018 %}
7019 
7020 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7021   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7022   ins_cost(150);
7023 
7024   size(4);
7025   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7026   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7027   ins_pipe(ialu_reg);
7028 %}
7029 
7030 
7031 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7032   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7033   ins_cost(150);
7034 
7035   size(4);
7036   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7037   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7038   ins_pipe(ialu_reg);
7039 %}
7040 
7041 
7042 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7043   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7044   ins_cost(150);
7045 
7046   size(4);
7047   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7048   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7049   ins_pipe(ialu_reg);
7050 %}
7051 
7052 
7053 
7054 //----------OS and Locking Instructions----------------------------------------
7055 
7056 // This name is KNOWN by the ADLC and cannot be changed.
7057 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7058 // for this guy.
7059 instruct tlsLoadP(g2RegP dst) %{
7060   match(Set dst (ThreadLocal));
7061 
7062   size(0);
7063   ins_cost(0);
7064   format %{ "# TLS is in G2" %}
7065   ins_encode( /*empty encoding*/ );
7066   ins_pipe(ialu_none);
7067 %}
7068 
7069 instruct checkCastPP( iRegP dst ) %{
7070   match(Set dst (CheckCastPP dst));
7071 
7072   size(0);
7073   format %{ "# checkcastPP of $dst" %}
7074   ins_encode( /*empty encoding*/ );
7075   ins_pipe(empty);
7076 %}
7077 
7078 
7079 instruct castPP( iRegP dst ) %{
7080   match(Set dst (CastPP dst));
7081   format %{ "# castPP of $dst" %}
7082   ins_encode( /*empty encoding*/ );
7083   ins_pipe(empty);
7084 %}
7085 
7086 instruct castII( iRegI dst ) %{
7087   match(Set dst (CastII dst));
7088   format %{ "# castII of $dst" %}
7089   ins_encode( /*empty encoding*/ );
7090   ins_cost(0);
7091   ins_pipe(empty);
7092 %}
7093 
7094 //----------Arithmetic Instructions--------------------------------------------
7095 // Addition Instructions
7096 // Register Addition
7097 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7098   match(Set dst (AddI src1 src2));
7099 
7100   size(4);
7101   format %{ "ADD    $src1,$src2,$dst" %}
7102   ins_encode %{
7103     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7104   %}
7105   ins_pipe(ialu_reg_reg);
7106 %}
7107 
7108 // Immediate Addition
7109 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7110   match(Set dst (AddI src1 src2));
7111 
7112   size(4);
7113   format %{ "ADD    $src1,$src2,$dst" %}
7114   opcode(Assembler::add_op3, Assembler::arith_op);
7115   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7116   ins_pipe(ialu_reg_imm);
7117 %}
7118 
7119 // Pointer Register Addition
7120 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7121   match(Set dst (AddP src1 src2));
7122 
7123   size(4);
7124   format %{ "ADD    $src1,$src2,$dst" %}
7125   opcode(Assembler::add_op3, Assembler::arith_op);
7126   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7127   ins_pipe(ialu_reg_reg);
7128 %}
7129 
7130 // Pointer Immediate Addition
7131 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7132   match(Set dst (AddP src1 src2));
7133 
7134   size(4);
7135   format %{ "ADD    $src1,$src2,$dst" %}
7136   opcode(Assembler::add_op3, Assembler::arith_op);
7137   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7138   ins_pipe(ialu_reg_imm);
7139 %}
7140 
7141 // Long Addition
7142 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7143   match(Set dst (AddL src1 src2));
7144 
7145   size(4);
7146   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7147   opcode(Assembler::add_op3, Assembler::arith_op);
7148   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7149   ins_pipe(ialu_reg_reg);
7150 %}
7151 
7152 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7153   match(Set dst (AddL src1 con));
7154 
7155   size(4);
7156   format %{ "ADD    $src1,$con,$dst" %}
7157   opcode(Assembler::add_op3, Assembler::arith_op);
7158   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7159   ins_pipe(ialu_reg_imm);
7160 %}
7161 
7162 //----------Conditional_store--------------------------------------------------
7163 // Conditional-store of the updated heap-top.
7164 // Used during allocation of the shared heap.
7165 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7166 
7167 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7168 instruct loadPLocked(iRegP dst, memory mem) %{
7169   match(Set dst (LoadPLocked mem));
7170   ins_cost(MEMORY_REF_COST);
7171 
7172 #ifndef _LP64
7173   size(4);
7174   format %{ "LDUW   $mem,$dst\t! ptr" %}
7175   opcode(Assembler::lduw_op3, 0, REGP_OP);
7176 #else
7177   format %{ "LDX    $mem,$dst\t! ptr" %}
7178   opcode(Assembler::ldx_op3, 0, REGP_OP);
7179 #endif
7180   ins_encode( form3_mem_reg( mem, dst ) );
7181   ins_pipe(iload_mem);
7182 %}
7183 
7184 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7185 instruct loadLLocked(iRegL dst, memory mem) %{
7186   match(Set dst (LoadLLocked mem));
7187   ins_cost(MEMORY_REF_COST);
7188   size(4);
7189   format %{ "LDX    $mem,$dst\t! long" %}
7190   opcode(Assembler::ldx_op3);
7191   ins_encode(simple_form3_mem_reg( mem, dst ) );
7192   ins_pipe(iload_mem);
7193 %}
7194 
7195 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7196   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7197   effect( KILL newval );
7198   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7199             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7200   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7201   ins_pipe( long_memory_op );
7202 %}
7203 
7204 // Conditional-store of an int value.
7205 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7206   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7207   effect( KILL newval );
7208   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7209             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7210   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7211   ins_pipe( long_memory_op );
7212 %}
7213 
7214 // Conditional-store of a long value.
7215 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7216   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7217   effect( KILL newval );
7218   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7219             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7220   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7221   ins_pipe( long_memory_op );
7222 %}
7223 
7224 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7225 
7226 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7227   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7228   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7229   format %{
7230             "MOV    $newval,O7\n\t"
7231             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7232             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7233             "MOV    1,$res\n\t"
7234             "MOVne  xcc,R_G0,$res"
7235   %}
7236   ins_encode( enc_casx(mem_ptr, oldval, newval),
7237               enc_lflags_ne_to_boolean(res) );
7238   ins_pipe( long_memory_op );
7239 %}
7240 
7241 
7242 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7243   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7244   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7245   format %{
7246             "MOV    $newval,O7\n\t"
7247             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7248             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7249             "MOV    1,$res\n\t"
7250             "MOVne  icc,R_G0,$res"
7251   %}
7252   ins_encode( enc_casi(mem_ptr, oldval, newval),
7253               enc_iflags_ne_to_boolean(res) );
7254   ins_pipe( long_memory_op );
7255 %}
7256 
7257 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7258   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7259   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7260   format %{
7261             "MOV    $newval,O7\n\t"
7262             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7263             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7264             "MOV    1,$res\n\t"
7265             "MOVne  xcc,R_G0,$res"
7266   %}
7267 #ifdef _LP64
7268   ins_encode( enc_casx(mem_ptr, oldval, newval),
7269               enc_lflags_ne_to_boolean(res) );
7270 #else
7271   ins_encode( enc_casi(mem_ptr, oldval, newval),
7272               enc_iflags_ne_to_boolean(res) );
7273 #endif
7274   ins_pipe( long_memory_op );
7275 %}
7276 
7277 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7278   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7279   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7280   format %{
7281             "MOV    $newval,O7\n\t"
7282             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7283             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7284             "MOV    1,$res\n\t"
7285             "MOVne  icc,R_G0,$res"
7286   %}
7287   ins_encode( enc_casi(mem_ptr, oldval, newval),
7288               enc_iflags_ne_to_boolean(res) );
7289   ins_pipe( long_memory_op );
7290 %}
7291 
7292 //---------------------
7293 // Subtraction Instructions
7294 // Register Subtraction
7295 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7296   match(Set dst (SubI src1 src2));
7297 
7298   size(4);
7299   format %{ "SUB    $src1,$src2,$dst" %}
7300   opcode(Assembler::sub_op3, Assembler::arith_op);
7301   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7302   ins_pipe(ialu_reg_reg);
7303 %}
7304 
7305 // Immediate Subtraction
7306 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7307   match(Set dst (SubI src1 src2));
7308 
7309   size(4);
7310   format %{ "SUB    $src1,$src2,$dst" %}
7311   opcode(Assembler::sub_op3, Assembler::arith_op);
7312   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7313   ins_pipe(ialu_reg_imm);
7314 %}
7315 
7316 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7317   match(Set dst (SubI zero src2));
7318 
7319   size(4);
7320   format %{ "NEG    $src2,$dst" %}
7321   opcode(Assembler::sub_op3, Assembler::arith_op);
7322   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7323   ins_pipe(ialu_zero_reg);
7324 %}
7325 
7326 // Long subtraction
7327 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7328   match(Set dst (SubL src1 src2));
7329 
7330   size(4);
7331   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7332   opcode(Assembler::sub_op3, Assembler::arith_op);
7333   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7334   ins_pipe(ialu_reg_reg);
7335 %}
7336 
7337 // Immediate Subtraction
7338 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7339   match(Set dst (SubL src1 con));
7340 
7341   size(4);
7342   format %{ "SUB    $src1,$con,$dst\t! long" %}
7343   opcode(Assembler::sub_op3, Assembler::arith_op);
7344   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7345   ins_pipe(ialu_reg_imm);
7346 %}
7347 
7348 // Long negation
7349 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7350   match(Set dst (SubL zero src2));
7351 
7352   size(4);
7353   format %{ "NEG    $src2,$dst\t! long" %}
7354   opcode(Assembler::sub_op3, Assembler::arith_op);
7355   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7356   ins_pipe(ialu_zero_reg);
7357 %}
7358 
7359 // Multiplication Instructions
7360 // Integer Multiplication
7361 // Register Multiplication
7362 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7363   match(Set dst (MulI src1 src2));
7364 
7365   size(4);
7366   format %{ "MULX   $src1,$src2,$dst" %}
7367   opcode(Assembler::mulx_op3, Assembler::arith_op);
7368   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7369   ins_pipe(imul_reg_reg);
7370 %}
7371 
7372 // Immediate Multiplication
7373 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7374   match(Set dst (MulI src1 src2));
7375 
7376   size(4);
7377   format %{ "MULX   $src1,$src2,$dst" %}
7378   opcode(Assembler::mulx_op3, Assembler::arith_op);
7379   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7380   ins_pipe(imul_reg_imm);
7381 %}
7382 
7383 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7384   match(Set dst (MulL src1 src2));
7385   ins_cost(DEFAULT_COST * 5);
7386   size(4);
7387   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7388   opcode(Assembler::mulx_op3, Assembler::arith_op);
7389   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7390   ins_pipe(mulL_reg_reg);
7391 %}
7392 
7393 // Immediate Multiplication
7394 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7395   match(Set dst (MulL src1 src2));
7396   ins_cost(DEFAULT_COST * 5);
7397   size(4);
7398   format %{ "MULX   $src1,$src2,$dst" %}
7399   opcode(Assembler::mulx_op3, Assembler::arith_op);
7400   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7401   ins_pipe(mulL_reg_imm);
7402 %}
7403 
7404 // Integer Division
7405 // Register Division
7406 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7407   match(Set dst (DivI src1 src2));
7408   ins_cost((2+71)*DEFAULT_COST);
7409 
7410   format %{ "SRA     $src2,0,$src2\n\t"
7411             "SRA     $src1,0,$src1\n\t"
7412             "SDIVX   $src1,$src2,$dst" %}
7413   ins_encode( idiv_reg( src1, src2, dst ) );
7414   ins_pipe(sdiv_reg_reg);
7415 %}
7416 
7417 // Immediate Division
7418 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7419   match(Set dst (DivI src1 src2));
7420   ins_cost((2+71)*DEFAULT_COST);
7421 
7422   format %{ "SRA     $src1,0,$src1\n\t"
7423             "SDIVX   $src1,$src2,$dst" %}
7424   ins_encode( idiv_imm( src1, src2, dst ) );
7425   ins_pipe(sdiv_reg_imm);
7426 %}
7427 
7428 //----------Div-By-10-Expansion------------------------------------------------
7429 // Extract hi bits of a 32x32->64 bit multiply.
7430 // Expand rule only, not matched
7431 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7432   effect( DEF dst, USE src1, USE src2 );
7433   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7434             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7435   ins_encode( enc_mul_hi(dst,src1,src2));
7436   ins_pipe(sdiv_reg_reg);
7437 %}
7438 
7439 // Magic constant, reciprocal of 10
7440 instruct loadConI_x66666667(iRegIsafe dst) %{
7441   effect( DEF dst );
7442 
7443   size(8);
7444   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7445   ins_encode( Set32(0x66666667, dst) );
7446   ins_pipe(ialu_hi_lo_reg);
7447 %}
7448 
7449 // Register Shift Right Arithmetic Long by 32-63
7450 instruct sra_31( iRegI dst, iRegI src ) %{
7451   effect( DEF dst, USE src );
7452   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7453   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7454   ins_pipe(ialu_reg_reg);
7455 %}
7456 
7457 // Arithmetic Shift Right by 8-bit immediate
7458 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7459   effect( DEF dst, USE src );
7460   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7461   opcode(Assembler::sra_op3, Assembler::arith_op);
7462   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7463   ins_pipe(ialu_reg_imm);
7464 %}
7465 
7466 // Integer DIV with 10
7467 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7468   match(Set dst (DivI src div));
7469   ins_cost((6+6)*DEFAULT_COST);
7470   expand %{
7471     iRegIsafe tmp1;               // Killed temps;
7472     iRegIsafe tmp2;               // Killed temps;
7473     iRegI tmp3;                   // Killed temps;
7474     iRegI tmp4;                   // Killed temps;
7475     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7476     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7477     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7478     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7479     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7480   %}
7481 %}
7482 
7483 // Register Long Division
7484 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7485   match(Set dst (DivL src1 src2));
7486   ins_cost(DEFAULT_COST*71);
7487   size(4);
7488   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7489   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7490   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7491   ins_pipe(divL_reg_reg);
7492 %}
7493 
7494 // Register Long Division
7495 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7496   match(Set dst (DivL src1 src2));
7497   ins_cost(DEFAULT_COST*71);
7498   size(4);
7499   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7500   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7501   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7502   ins_pipe(divL_reg_imm);
7503 %}
7504 
7505 // Integer Remainder
7506 // Register Remainder
7507 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7508   match(Set dst (ModI src1 src2));
7509   effect( KILL ccr, KILL temp);
7510 
7511   format %{ "SREM   $src1,$src2,$dst" %}
7512   ins_encode( irem_reg(src1, src2, dst, temp) );
7513   ins_pipe(sdiv_reg_reg);
7514 %}
7515 
7516 // Immediate Remainder
7517 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7518   match(Set dst (ModI src1 src2));
7519   effect( KILL ccr, KILL temp);
7520 
7521   format %{ "SREM   $src1,$src2,$dst" %}
7522   ins_encode( irem_imm(src1, src2, dst, temp) );
7523   ins_pipe(sdiv_reg_imm);
7524 %}
7525 
7526 // Register Long Remainder
7527 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7528   effect(DEF dst, USE src1, USE src2);
7529   size(4);
7530   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7531   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7532   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7533   ins_pipe(divL_reg_reg);
7534 %}
7535 
7536 // Register Long Division
7537 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7538   effect(DEF dst, USE src1, USE src2);
7539   size(4);
7540   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7541   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7542   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7543   ins_pipe(divL_reg_imm);
7544 %}
7545 
7546 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7547   effect(DEF dst, USE src1, USE src2);
7548   size(4);
7549   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7550   opcode(Assembler::mulx_op3, Assembler::arith_op);
7551   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7552   ins_pipe(mulL_reg_reg);
7553 %}
7554 
7555 // Immediate Multiplication
7556 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7557   effect(DEF dst, USE src1, USE src2);
7558   size(4);
7559   format %{ "MULX   $src1,$src2,$dst" %}
7560   opcode(Assembler::mulx_op3, Assembler::arith_op);
7561   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7562   ins_pipe(mulL_reg_imm);
7563 %}
7564 
7565 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7566   effect(DEF dst, USE src1, USE src2);
7567   size(4);
7568   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7569   opcode(Assembler::sub_op3, Assembler::arith_op);
7570   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7571   ins_pipe(ialu_reg_reg);
7572 %}
7573 
7574 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7575   effect(DEF dst, USE src1, USE src2);
7576   size(4);
7577   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7578   opcode(Assembler::sub_op3, Assembler::arith_op);
7579   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7580   ins_pipe(ialu_reg_reg);
7581 %}
7582 
7583 // Register Long Remainder
7584 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7585   match(Set dst (ModL src1 src2));
7586   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7587   expand %{
7588     iRegL tmp1;
7589     iRegL tmp2;
7590     divL_reg_reg_1(tmp1, src1, src2);
7591     mulL_reg_reg_1(tmp2, tmp1, src2);
7592     subL_reg_reg_1(dst,  src1, tmp2);
7593   %}
7594 %}
7595 
7596 // Register Long Remainder
7597 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7598   match(Set dst (ModL src1 src2));
7599   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7600   expand %{
7601     iRegL tmp1;
7602     iRegL tmp2;
7603     divL_reg_imm13_1(tmp1, src1, src2);
7604     mulL_reg_imm13_1(tmp2, tmp1, src2);
7605     subL_reg_reg_2  (dst,  src1, tmp2);
7606   %}
7607 %}
7608 
7609 // Integer Shift Instructions
7610 // Register Shift Left
7611 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7612   match(Set dst (LShiftI src1 src2));
7613 
7614   size(4);
7615   format %{ "SLL    $src1,$src2,$dst" %}
7616   opcode(Assembler::sll_op3, Assembler::arith_op);
7617   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7618   ins_pipe(ialu_reg_reg);
7619 %}
7620 
7621 // Register Shift Left Immediate
7622 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7623   match(Set dst (LShiftI src1 src2));
7624 
7625   size(4);
7626   format %{ "SLL    $src1,$src2,$dst" %}
7627   opcode(Assembler::sll_op3, Assembler::arith_op);
7628   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7629   ins_pipe(ialu_reg_imm);
7630 %}
7631 
7632 // Register Shift Left
7633 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7634   match(Set dst (LShiftL src1 src2));
7635 
7636   size(4);
7637   format %{ "SLLX   $src1,$src2,$dst" %}
7638   opcode(Assembler::sllx_op3, Assembler::arith_op);
7639   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7640   ins_pipe(ialu_reg_reg);
7641 %}
7642 
7643 // Register Shift Left Immediate
7644 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7645   match(Set dst (LShiftL src1 src2));
7646 
7647   size(4);
7648   format %{ "SLLX   $src1,$src2,$dst" %}
7649   opcode(Assembler::sllx_op3, Assembler::arith_op);
7650   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7651   ins_pipe(ialu_reg_imm);
7652 %}
7653 
7654 // Register Arithmetic Shift Right
7655 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7656   match(Set dst (RShiftI src1 src2));
7657   size(4);
7658   format %{ "SRA    $src1,$src2,$dst" %}
7659   opcode(Assembler::sra_op3, Assembler::arith_op);
7660   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7661   ins_pipe(ialu_reg_reg);
7662 %}
7663 
7664 // Register Arithmetic Shift Right Immediate
7665 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7666   match(Set dst (RShiftI src1 src2));
7667 
7668   size(4);
7669   format %{ "SRA    $src1,$src2,$dst" %}
7670   opcode(Assembler::sra_op3, Assembler::arith_op);
7671   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7672   ins_pipe(ialu_reg_imm);
7673 %}
7674 
7675 // Register Shift Right Arithmatic Long
7676 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7677   match(Set dst (RShiftL src1 src2));
7678 
7679   size(4);
7680   format %{ "SRAX   $src1,$src2,$dst" %}
7681   opcode(Assembler::srax_op3, Assembler::arith_op);
7682   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7683   ins_pipe(ialu_reg_reg);
7684 %}
7685 
7686 // Register Shift Left Immediate
7687 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7688   match(Set dst (RShiftL src1 src2));
7689 
7690   size(4);
7691   format %{ "SRAX   $src1,$src2,$dst" %}
7692   opcode(Assembler::srax_op3, Assembler::arith_op);
7693   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7694   ins_pipe(ialu_reg_imm);
7695 %}
7696 
7697 // Register Shift Right
7698 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7699   match(Set dst (URShiftI src1 src2));
7700 
7701   size(4);
7702   format %{ "SRL    $src1,$src2,$dst" %}
7703   opcode(Assembler::srl_op3, Assembler::arith_op);
7704   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7705   ins_pipe(ialu_reg_reg);
7706 %}
7707 
7708 // Register Shift Right Immediate
7709 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7710   match(Set dst (URShiftI src1 src2));
7711 
7712   size(4);
7713   format %{ "SRL    $src1,$src2,$dst" %}
7714   opcode(Assembler::srl_op3, Assembler::arith_op);
7715   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7716   ins_pipe(ialu_reg_imm);
7717 %}
7718 
7719 // Register Shift Right
7720 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7721   match(Set dst (URShiftL src1 src2));
7722 
7723   size(4);
7724   format %{ "SRLX   $src1,$src2,$dst" %}
7725   opcode(Assembler::srlx_op3, Assembler::arith_op);
7726   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7727   ins_pipe(ialu_reg_reg);
7728 %}
7729 
7730 // Register Shift Right Immediate
7731 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7732   match(Set dst (URShiftL src1 src2));
7733 
7734   size(4);
7735   format %{ "SRLX   $src1,$src2,$dst" %}
7736   opcode(Assembler::srlx_op3, Assembler::arith_op);
7737   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7738   ins_pipe(ialu_reg_imm);
7739 %}
7740 
7741 // Register Shift Right Immediate with a CastP2X
7742 #ifdef _LP64
7743 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7744   match(Set dst (URShiftL (CastP2X src1) src2));
7745   size(4);
7746   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7747   opcode(Assembler::srlx_op3, Assembler::arith_op);
7748   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7749   ins_pipe(ialu_reg_imm);
7750 %}
7751 #else
7752 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7753   match(Set dst (URShiftI (CastP2X src1) src2));
7754   size(4);
7755   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7756   opcode(Assembler::srl_op3, Assembler::arith_op);
7757   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7758   ins_pipe(ialu_reg_imm);
7759 %}
7760 #endif
7761 
7762 
7763 //----------Floating Point Arithmetic Instructions-----------------------------
7764 
7765 //  Add float single precision
7766 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7767   match(Set dst (AddF src1 src2));
7768 
7769   size(4);
7770   format %{ "FADDS  $src1,$src2,$dst" %}
7771   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7772   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7773   ins_pipe(faddF_reg_reg);
7774 %}
7775 
7776 //  Add float double precision
7777 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7778   match(Set dst (AddD src1 src2));
7779 
7780   size(4);
7781   format %{ "FADDD  $src1,$src2,$dst" %}
7782   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7783   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7784   ins_pipe(faddD_reg_reg);
7785 %}
7786 
7787 //  Sub float single precision
7788 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7789   match(Set dst (SubF src1 src2));
7790 
7791   size(4);
7792   format %{ "FSUBS  $src1,$src2,$dst" %}
7793   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7794   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7795   ins_pipe(faddF_reg_reg);
7796 %}
7797 
7798 //  Sub float double precision
7799 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7800   match(Set dst (SubD src1 src2));
7801 
7802   size(4);
7803   format %{ "FSUBD  $src1,$src2,$dst" %}
7804   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7805   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7806   ins_pipe(faddD_reg_reg);
7807 %}
7808 
7809 //  Mul float single precision
7810 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7811   match(Set dst (MulF src1 src2));
7812 
7813   size(4);
7814   format %{ "FMULS  $src1,$src2,$dst" %}
7815   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7816   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7817   ins_pipe(fmulF_reg_reg);
7818 %}
7819 
7820 //  Mul float double precision
7821 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7822   match(Set dst (MulD src1 src2));
7823 
7824   size(4);
7825   format %{ "FMULD  $src1,$src2,$dst" %}
7826   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7827   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7828   ins_pipe(fmulD_reg_reg);
7829 %}
7830 
7831 //  Div float single precision
7832 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7833   match(Set dst (DivF src1 src2));
7834 
7835   size(4);
7836   format %{ "FDIVS  $src1,$src2,$dst" %}
7837   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7838   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7839   ins_pipe(fdivF_reg_reg);
7840 %}
7841 
7842 //  Div float double precision
7843 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7844   match(Set dst (DivD src1 src2));
7845 
7846   size(4);
7847   format %{ "FDIVD  $src1,$src2,$dst" %}
7848   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7849   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7850   ins_pipe(fdivD_reg_reg);
7851 %}
7852 
7853 //  Absolute float double precision
7854 instruct absD_reg(regD dst, regD src) %{
7855   match(Set dst (AbsD src));
7856 
7857   format %{ "FABSd  $src,$dst" %}
7858   ins_encode(fabsd(dst, src));
7859   ins_pipe(faddD_reg);
7860 %}
7861 
7862 //  Absolute float single precision
7863 instruct absF_reg(regF dst, regF src) %{
7864   match(Set dst (AbsF src));
7865 
7866   format %{ "FABSs  $src,$dst" %}
7867   ins_encode(fabss(dst, src));
7868   ins_pipe(faddF_reg);
7869 %}
7870 
7871 instruct negF_reg(regF dst, regF src) %{
7872   match(Set dst (NegF src));
7873 
7874   size(4);
7875   format %{ "FNEGs  $src,$dst" %}
7876   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7877   ins_encode(form3_opf_rs2F_rdF(src, dst));
7878   ins_pipe(faddF_reg);
7879 %}
7880 
7881 instruct negD_reg(regD dst, regD src) %{
7882   match(Set dst (NegD src));
7883 
7884   format %{ "FNEGd  $src,$dst" %}
7885   ins_encode(fnegd(dst, src));
7886   ins_pipe(faddD_reg);
7887 %}
7888 
7889 //  Sqrt float double precision
7890 instruct sqrtF_reg_reg(regF dst, regF src) %{
7891   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7892 
7893   size(4);
7894   format %{ "FSQRTS $src,$dst" %}
7895   ins_encode(fsqrts(dst, src));
7896   ins_pipe(fdivF_reg_reg);
7897 %}
7898 
7899 //  Sqrt float double precision
7900 instruct sqrtD_reg_reg(regD dst, regD src) %{
7901   match(Set dst (SqrtD src));
7902 
7903   size(4);
7904   format %{ "FSQRTD $src,$dst" %}
7905   ins_encode(fsqrtd(dst, src));
7906   ins_pipe(fdivD_reg_reg);
7907 %}
7908 
7909 //----------Logical Instructions-----------------------------------------------
7910 // And Instructions
7911 // Register And
7912 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7913   match(Set dst (AndI src1 src2));
7914 
7915   size(4);
7916   format %{ "AND    $src1,$src2,$dst" %}
7917   opcode(Assembler::and_op3, Assembler::arith_op);
7918   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7919   ins_pipe(ialu_reg_reg);
7920 %}
7921 
7922 // Immediate And
7923 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7924   match(Set dst (AndI src1 src2));
7925 
7926   size(4);
7927   format %{ "AND    $src1,$src2,$dst" %}
7928   opcode(Assembler::and_op3, Assembler::arith_op);
7929   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7930   ins_pipe(ialu_reg_imm);
7931 %}
7932 
7933 // Register And Long
7934 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7935   match(Set dst (AndL src1 src2));
7936 
7937   ins_cost(DEFAULT_COST);
7938   size(4);
7939   format %{ "AND    $src1,$src2,$dst\t! long" %}
7940   opcode(Assembler::and_op3, Assembler::arith_op);
7941   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7942   ins_pipe(ialu_reg_reg);
7943 %}
7944 
7945 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7946   match(Set dst (AndL src1 con));
7947 
7948   ins_cost(DEFAULT_COST);
7949   size(4);
7950   format %{ "AND    $src1,$con,$dst\t! long" %}
7951   opcode(Assembler::and_op3, Assembler::arith_op);
7952   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7953   ins_pipe(ialu_reg_imm);
7954 %}
7955 
7956 // Or Instructions
7957 // Register Or
7958 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7959   match(Set dst (OrI src1 src2));
7960 
7961   size(4);
7962   format %{ "OR     $src1,$src2,$dst" %}
7963   opcode(Assembler::or_op3, Assembler::arith_op);
7964   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7965   ins_pipe(ialu_reg_reg);
7966 %}
7967 
7968 // Immediate Or
7969 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7970   match(Set dst (OrI src1 src2));
7971 
7972   size(4);
7973   format %{ "OR     $src1,$src2,$dst" %}
7974   opcode(Assembler::or_op3, Assembler::arith_op);
7975   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7976   ins_pipe(ialu_reg_imm);
7977 %}
7978 
7979 // Register Or Long
7980 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7981   match(Set dst (OrL src1 src2));
7982 
7983   ins_cost(DEFAULT_COST);
7984   size(4);
7985   format %{ "OR     $src1,$src2,$dst\t! long" %}
7986   opcode(Assembler::or_op3, Assembler::arith_op);
7987   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7988   ins_pipe(ialu_reg_reg);
7989 %}
7990 
7991 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7992   match(Set dst (OrL src1 con));
7993   ins_cost(DEFAULT_COST*2);
7994 
7995   ins_cost(DEFAULT_COST);
7996   size(4);
7997   format %{ "OR     $src1,$con,$dst\t! long" %}
7998   opcode(Assembler::or_op3, Assembler::arith_op);
7999   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8000   ins_pipe(ialu_reg_imm);
8001 %}
8002 
8003 #ifndef _LP64
8004 
8005 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8006 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8007   match(Set dst (OrI src1 (CastP2X src2)));
8008 
8009   size(4);
8010   format %{ "OR     $src1,$src2,$dst" %}
8011   opcode(Assembler::or_op3, Assembler::arith_op);
8012   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8013   ins_pipe(ialu_reg_reg);
8014 %}
8015 
8016 #else
8017 
8018 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8019   match(Set dst (OrL src1 (CastP2X src2)));
8020 
8021   ins_cost(DEFAULT_COST);
8022   size(4);
8023   format %{ "OR     $src1,$src2,$dst\t! long" %}
8024   opcode(Assembler::or_op3, Assembler::arith_op);
8025   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8026   ins_pipe(ialu_reg_reg);
8027 %}
8028 
8029 #endif
8030 
8031 // Xor Instructions
8032 // Register Xor
8033 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8034   match(Set dst (XorI src1 src2));
8035 
8036   size(4);
8037   format %{ "XOR    $src1,$src2,$dst" %}
8038   opcode(Assembler::xor_op3, Assembler::arith_op);
8039   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8040   ins_pipe(ialu_reg_reg);
8041 %}
8042 
8043 // Immediate Xor
8044 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8045   match(Set dst (XorI src1 src2));
8046 
8047   size(4);
8048   format %{ "XOR    $src1,$src2,$dst" %}
8049   opcode(Assembler::xor_op3, Assembler::arith_op);
8050   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8051   ins_pipe(ialu_reg_imm);
8052 %}
8053 
8054 // Register Xor Long
8055 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8056   match(Set dst (XorL src1 src2));
8057 
8058   ins_cost(DEFAULT_COST);
8059   size(4);
8060   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8061   opcode(Assembler::xor_op3, Assembler::arith_op);
8062   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8063   ins_pipe(ialu_reg_reg);
8064 %}
8065 
8066 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8067   match(Set dst (XorL src1 con));
8068 
8069   ins_cost(DEFAULT_COST);
8070   size(4);
8071   format %{ "XOR    $src1,$con,$dst\t! long" %}
8072   opcode(Assembler::xor_op3, Assembler::arith_op);
8073   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8074   ins_pipe(ialu_reg_imm);
8075 %}
8076 
8077 //----------Convert to Boolean-------------------------------------------------
8078 // Nice hack for 32-bit tests but doesn't work for
8079 // 64-bit pointers.
8080 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8081   match(Set dst (Conv2B src));
8082   effect( KILL ccr );
8083   ins_cost(DEFAULT_COST*2);
8084   format %{ "CMP    R_G0,$src\n\t"
8085             "ADDX   R_G0,0,$dst" %}
8086   ins_encode( enc_to_bool( src, dst ) );
8087   ins_pipe(ialu_reg_ialu);
8088 %}
8089 
8090 #ifndef _LP64
8091 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8092   match(Set dst (Conv2B src));
8093   effect( KILL ccr );
8094   ins_cost(DEFAULT_COST*2);
8095   format %{ "CMP    R_G0,$src\n\t"
8096             "ADDX   R_G0,0,$dst" %}
8097   ins_encode( enc_to_bool( src, dst ) );
8098   ins_pipe(ialu_reg_ialu);
8099 %}
8100 #else
8101 instruct convP2B( iRegI dst, iRegP src ) %{
8102   match(Set dst (Conv2B src));
8103   ins_cost(DEFAULT_COST*2);
8104   format %{ "MOV    $src,$dst\n\t"
8105             "MOVRNZ $src,1,$dst" %}
8106   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8107   ins_pipe(ialu_clr_and_mover);
8108 %}
8109 #endif
8110 
8111 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8112   match(Set dst (CmpLTMask src zero));
8113   effect(KILL ccr);
8114   size(4);
8115   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8116   ins_encode %{
8117     __ sra($src$$Register, 31, $dst$$Register);
8118   %}
8119   ins_pipe(ialu_reg_imm);
8120 %}
8121 
8122 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8123   match(Set dst (CmpLTMask p q));
8124   effect( KILL ccr );
8125   ins_cost(DEFAULT_COST*4);
8126   format %{ "CMP    $p,$q\n\t"
8127             "MOV    #0,$dst\n\t"
8128             "BLT,a  .+8\n\t"
8129             "MOV    #-1,$dst" %}
8130   ins_encode( enc_ltmask(p,q,dst) );
8131   ins_pipe(ialu_reg_reg_ialu);
8132 %}
8133 
8134 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8135   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8136   effect(KILL ccr, TEMP tmp);
8137   ins_cost(DEFAULT_COST*3);
8138 
8139   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8140             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8141             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8142   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8143   ins_pipe( cadd_cmpltmask );
8144 %}
8145 
8146 
8147 //-----------------------------------------------------------------
8148 // Direct raw moves between float and general registers using VIS3.
8149 
8150 //  ins_pipe(faddF_reg);
8151 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8152   predicate(UseVIS >= 3);
8153   match(Set dst (MoveF2I src));
8154 
8155   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8156   ins_encode %{
8157     __ movstouw($src$$FloatRegister, $dst$$Register);
8158   %}
8159   ins_pipe(ialu_reg_reg);
8160 %}
8161 
8162 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8163   predicate(UseVIS >= 3);
8164   match(Set dst (MoveI2F src));
8165 
8166   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8167   ins_encode %{
8168     __ movwtos($src$$Register, $dst$$FloatRegister);
8169   %}
8170   ins_pipe(ialu_reg_reg);
8171 %}
8172 
8173 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8174   predicate(UseVIS >= 3);
8175   match(Set dst (MoveD2L src));
8176 
8177   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8178   ins_encode %{
8179     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8180   %}
8181   ins_pipe(ialu_reg_reg);
8182 %}
8183 
8184 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8185   predicate(UseVIS >= 3);
8186   match(Set dst (MoveL2D src));
8187 
8188   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8189   ins_encode %{
8190     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8191   %}
8192   ins_pipe(ialu_reg_reg);
8193 %}
8194 
8195 
8196 // Raw moves between float and general registers using stack.
8197 
8198 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8199   match(Set dst (MoveF2I src));
8200   effect(DEF dst, USE src);
8201   ins_cost(MEMORY_REF_COST);
8202 
8203   size(4);
8204   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8205   opcode(Assembler::lduw_op3);
8206   ins_encode(simple_form3_mem_reg( src, dst ) );
8207   ins_pipe(iload_mem);
8208 %}
8209 
8210 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8211   match(Set dst (MoveI2F src));
8212   effect(DEF dst, USE src);
8213   ins_cost(MEMORY_REF_COST);
8214 
8215   size(4);
8216   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8217   opcode(Assembler::ldf_op3);
8218   ins_encode(simple_form3_mem_reg(src, dst));
8219   ins_pipe(floadF_stk);
8220 %}
8221 
8222 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8223   match(Set dst (MoveD2L src));
8224   effect(DEF dst, USE src);
8225   ins_cost(MEMORY_REF_COST);
8226 
8227   size(4);
8228   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8229   opcode(Assembler::ldx_op3);
8230   ins_encode(simple_form3_mem_reg( src, dst ) );
8231   ins_pipe(iload_mem);
8232 %}
8233 
8234 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8235   match(Set dst (MoveL2D src));
8236   effect(DEF dst, USE src);
8237   ins_cost(MEMORY_REF_COST);
8238 
8239   size(4);
8240   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8241   opcode(Assembler::lddf_op3);
8242   ins_encode(simple_form3_mem_reg(src, dst));
8243   ins_pipe(floadD_stk);
8244 %}
8245 
8246 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8247   match(Set dst (MoveF2I src));
8248   effect(DEF dst, USE src);
8249   ins_cost(MEMORY_REF_COST);
8250 
8251   size(4);
8252   format %{ "STF   $src,$dst\t! MoveF2I" %}
8253   opcode(Assembler::stf_op3);
8254   ins_encode(simple_form3_mem_reg(dst, src));
8255   ins_pipe(fstoreF_stk_reg);
8256 %}
8257 
8258 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8259   match(Set dst (MoveI2F src));
8260   effect(DEF dst, USE src);
8261   ins_cost(MEMORY_REF_COST);
8262 
8263   size(4);
8264   format %{ "STW    $src,$dst\t! MoveI2F" %}
8265   opcode(Assembler::stw_op3);
8266   ins_encode(simple_form3_mem_reg( dst, src ) );
8267   ins_pipe(istore_mem_reg);
8268 %}
8269 
8270 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8271   match(Set dst (MoveD2L src));
8272   effect(DEF dst, USE src);
8273   ins_cost(MEMORY_REF_COST);
8274 
8275   size(4);
8276   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8277   opcode(Assembler::stdf_op3);
8278   ins_encode(simple_form3_mem_reg(dst, src));
8279   ins_pipe(fstoreD_stk_reg);
8280 %}
8281 
8282 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8283   match(Set dst (MoveL2D src));
8284   effect(DEF dst, USE src);
8285   ins_cost(MEMORY_REF_COST);
8286 
8287   size(4);
8288   format %{ "STX    $src,$dst\t! MoveL2D" %}
8289   opcode(Assembler::stx_op3);
8290   ins_encode(simple_form3_mem_reg( dst, src ) );
8291   ins_pipe(istore_mem_reg);
8292 %}
8293 
8294 
8295 //----------Arithmetic Conversion Instructions---------------------------------
8296 // The conversions operations are all Alpha sorted.  Please keep it that way!
8297 
8298 instruct convD2F_reg(regF dst, regD src) %{
8299   match(Set dst (ConvD2F src));
8300   size(4);
8301   format %{ "FDTOS  $src,$dst" %}
8302   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8303   ins_encode(form3_opf_rs2D_rdF(src, dst));
8304   ins_pipe(fcvtD2F);
8305 %}
8306 
8307 
8308 // Convert a double to an int in a float register.
8309 // If the double is a NAN, stuff a zero in instead.
8310 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8311   effect(DEF dst, USE src, KILL fcc0);
8312   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8313             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8314             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8315             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8316             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8317       "skip:" %}
8318   ins_encode(form_d2i_helper(src,dst));
8319   ins_pipe(fcvtD2I);
8320 %}
8321 
8322 instruct convD2I_stk(stackSlotI dst, regD src) %{
8323   match(Set dst (ConvD2I src));
8324   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8325   expand %{
8326     regF tmp;
8327     convD2I_helper(tmp, src);
8328     regF_to_stkI(dst, tmp);
8329   %}
8330 %}
8331 
8332 instruct convD2I_reg(iRegI dst, regD src) %{
8333   predicate(UseVIS >= 3);
8334   match(Set dst (ConvD2I src));
8335   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8336   expand %{
8337     regF tmp;
8338     convD2I_helper(tmp, src);
8339     MoveF2I_reg_reg(dst, tmp);
8340   %}
8341 %}
8342 
8343 
8344 // Convert a double to a long in a double register.
8345 // If the double is a NAN, stuff a zero in instead.
8346 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8347   effect(DEF dst, USE src, KILL fcc0);
8348   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8349             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8350             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8351             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8352             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8353       "skip:" %}
8354   ins_encode(form_d2l_helper(src,dst));
8355   ins_pipe(fcvtD2L);
8356 %}
8357 
8358 instruct convD2L_stk(stackSlotL dst, regD src) %{
8359   match(Set dst (ConvD2L src));
8360   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8361   expand %{
8362     regD tmp;
8363     convD2L_helper(tmp, src);
8364     regD_to_stkL(dst, tmp);
8365   %}
8366 %}
8367 
8368 instruct convD2L_reg(iRegL dst, regD src) %{
8369   predicate(UseVIS >= 3);
8370   match(Set dst (ConvD2L src));
8371   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8372   expand %{
8373     regD tmp;
8374     convD2L_helper(tmp, src);
8375     MoveD2L_reg_reg(dst, tmp);
8376   %}
8377 %}
8378 
8379 
8380 instruct convF2D_reg(regD dst, regF src) %{
8381   match(Set dst (ConvF2D src));
8382   format %{ "FSTOD  $src,$dst" %}
8383   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8384   ins_encode(form3_opf_rs2F_rdD(src, dst));
8385   ins_pipe(fcvtF2D);
8386 %}
8387 
8388 
8389 // Convert a float to an int in a float register.
8390 // If the float is a NAN, stuff a zero in instead.
8391 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8392   effect(DEF dst, USE src, KILL fcc0);
8393   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8394             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8395             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8396             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8397             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8398       "skip:" %}
8399   ins_encode(form_f2i_helper(src,dst));
8400   ins_pipe(fcvtF2I);
8401 %}
8402 
8403 instruct convF2I_stk(stackSlotI dst, regF src) %{
8404   match(Set dst (ConvF2I src));
8405   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8406   expand %{
8407     regF tmp;
8408     convF2I_helper(tmp, src);
8409     regF_to_stkI(dst, tmp);
8410   %}
8411 %}
8412 
8413 instruct convF2I_reg(iRegI dst, regF src) %{
8414   predicate(UseVIS >= 3);
8415   match(Set dst (ConvF2I src));
8416   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8417   expand %{
8418     regF tmp;
8419     convF2I_helper(tmp, src);
8420     MoveF2I_reg_reg(dst, tmp);
8421   %}
8422 %}
8423 
8424 
8425 // Convert a float to a long in a float register.
8426 // If the float is a NAN, stuff a zero in instead.
8427 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8428   effect(DEF dst, USE src, KILL fcc0);
8429   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8430             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8431             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8432             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8433             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8434       "skip:" %}
8435   ins_encode(form_f2l_helper(src,dst));
8436   ins_pipe(fcvtF2L);
8437 %}
8438 
8439 instruct convF2L_stk(stackSlotL dst, regF src) %{
8440   match(Set dst (ConvF2L src));
8441   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8442   expand %{
8443     regD tmp;
8444     convF2L_helper(tmp, src);
8445     regD_to_stkL(dst, tmp);
8446   %}
8447 %}
8448 
8449 instruct convF2L_reg(iRegL dst, regF src) %{
8450   predicate(UseVIS >= 3);
8451   match(Set dst (ConvF2L src));
8452   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8453   expand %{
8454     regD tmp;
8455     convF2L_helper(tmp, src);
8456     MoveD2L_reg_reg(dst, tmp);
8457   %}
8458 %}
8459 
8460 
8461 instruct convI2D_helper(regD dst, regF tmp) %{
8462   effect(USE tmp, DEF dst);
8463   format %{ "FITOD  $tmp,$dst" %}
8464   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8465   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8466   ins_pipe(fcvtI2D);
8467 %}
8468 
8469 instruct convI2D_stk(stackSlotI src, regD dst) %{
8470   match(Set dst (ConvI2D src));
8471   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8472   expand %{
8473     regF tmp;
8474     stkI_to_regF(tmp, src);
8475     convI2D_helper(dst, tmp);
8476   %}
8477 %}
8478 
8479 instruct convI2D_reg(regD_low dst, iRegI src) %{
8480   predicate(UseVIS >= 3);
8481   match(Set dst (ConvI2D src));
8482   expand %{
8483     regF tmp;
8484     MoveI2F_reg_reg(tmp, src);
8485     convI2D_helper(dst, tmp);
8486   %}
8487 %}
8488 
8489 instruct convI2D_mem(regD_low dst, memory mem) %{
8490   match(Set dst (ConvI2D (LoadI mem)));
8491   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8492   size(8);
8493   format %{ "LDF    $mem,$dst\n\t"
8494             "FITOD  $dst,$dst" %}
8495   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8496   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8497   ins_pipe(floadF_mem);
8498 %}
8499 
8500 
8501 instruct convI2F_helper(regF dst, regF tmp) %{
8502   effect(DEF dst, USE tmp);
8503   format %{ "FITOS  $tmp,$dst" %}
8504   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8505   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8506   ins_pipe(fcvtI2F);
8507 %}
8508 
8509 instruct convI2F_stk(regF dst, stackSlotI src) %{
8510   match(Set dst (ConvI2F src));
8511   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8512   expand %{
8513     regF tmp;
8514     stkI_to_regF(tmp,src);
8515     convI2F_helper(dst, tmp);
8516   %}
8517 %}
8518 
8519 instruct convI2F_reg(regF dst, iRegI src) %{
8520   predicate(UseVIS >= 3);
8521   match(Set dst (ConvI2F src));
8522   ins_cost(DEFAULT_COST);
8523   expand %{
8524     regF tmp;
8525     MoveI2F_reg_reg(tmp, src);
8526     convI2F_helper(dst, tmp);
8527   %}
8528 %}
8529 
8530 instruct convI2F_mem( regF dst, memory mem ) %{
8531   match(Set dst (ConvI2F (LoadI mem)));
8532   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8533   size(8);
8534   format %{ "LDF    $mem,$dst\n\t"
8535             "FITOS  $dst,$dst" %}
8536   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8537   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8538   ins_pipe(floadF_mem);
8539 %}
8540 
8541 
8542 instruct convI2L_reg(iRegL dst, iRegI src) %{
8543   match(Set dst (ConvI2L src));
8544   size(4);
8545   format %{ "SRA    $src,0,$dst\t! int->long" %}
8546   opcode(Assembler::sra_op3, Assembler::arith_op);
8547   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8548   ins_pipe(ialu_reg_reg);
8549 %}
8550 
8551 // Zero-extend convert int to long
8552 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8553   match(Set dst (AndL (ConvI2L src) mask) );
8554   size(4);
8555   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8556   opcode(Assembler::srl_op3, Assembler::arith_op);
8557   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8558   ins_pipe(ialu_reg_reg);
8559 %}
8560 
8561 // Zero-extend long
8562 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8563   match(Set dst (AndL src mask) );
8564   size(4);
8565   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8566   opcode(Assembler::srl_op3, Assembler::arith_op);
8567   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8568   ins_pipe(ialu_reg_reg);
8569 %}
8570 
8571 
8572 //-----------
8573 // Long to Double conversion using V8 opcodes.
8574 // Still useful because cheetah traps and becomes
8575 // amazingly slow for some common numbers.
8576 
8577 // Magic constant, 0x43300000
8578 instruct loadConI_x43300000(iRegI dst) %{
8579   effect(DEF dst);
8580   size(4);
8581   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8582   ins_encode(SetHi22(0x43300000, dst));
8583   ins_pipe(ialu_none);
8584 %}
8585 
8586 // Magic constant, 0x41f00000
8587 instruct loadConI_x41f00000(iRegI dst) %{
8588   effect(DEF dst);
8589   size(4);
8590   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8591   ins_encode(SetHi22(0x41f00000, dst));
8592   ins_pipe(ialu_none);
8593 %}
8594 
8595 // Construct a double from two float halves
8596 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8597   effect(DEF dst, USE src1, USE src2);
8598   size(8);
8599   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8600             "FMOVS  $src2.lo,$dst.lo" %}
8601   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8602   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8603   ins_pipe(faddD_reg_reg);
8604 %}
8605 
8606 // Convert integer in high half of a double register (in the lower half of
8607 // the double register file) to double
8608 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8609   effect(DEF dst, USE src);
8610   size(4);
8611   format %{ "FITOD  $src,$dst" %}
8612   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8613   ins_encode(form3_opf_rs2D_rdD(src, dst));
8614   ins_pipe(fcvtLHi2D);
8615 %}
8616 
8617 // Add float double precision
8618 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8619   effect(DEF dst, USE src1, USE src2);
8620   size(4);
8621   format %{ "FADDD  $src1,$src2,$dst" %}
8622   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8623   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8624   ins_pipe(faddD_reg_reg);
8625 %}
8626 
8627 // Sub float double precision
8628 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8629   effect(DEF dst, USE src1, USE src2);
8630   size(4);
8631   format %{ "FSUBD  $src1,$src2,$dst" %}
8632   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8633   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8634   ins_pipe(faddD_reg_reg);
8635 %}
8636 
8637 // Mul float double precision
8638 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8639   effect(DEF dst, USE src1, USE src2);
8640   size(4);
8641   format %{ "FMULD  $src1,$src2,$dst" %}
8642   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8643   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8644   ins_pipe(fmulD_reg_reg);
8645 %}
8646 
8647 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8648   match(Set dst (ConvL2D src));
8649   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8650 
8651   expand %{
8652     regD_low   tmpsrc;
8653     iRegI      ix43300000;
8654     iRegI      ix41f00000;
8655     stackSlotL lx43300000;
8656     stackSlotL lx41f00000;
8657     regD_low   dx43300000;
8658     regD       dx41f00000;
8659     regD       tmp1;
8660     regD_low   tmp2;
8661     regD       tmp3;
8662     regD       tmp4;
8663 
8664     stkL_to_regD(tmpsrc, src);
8665 
8666     loadConI_x43300000(ix43300000);
8667     loadConI_x41f00000(ix41f00000);
8668     regI_to_stkLHi(lx43300000, ix43300000);
8669     regI_to_stkLHi(lx41f00000, ix41f00000);
8670     stkL_to_regD(dx43300000, lx43300000);
8671     stkL_to_regD(dx41f00000, lx41f00000);
8672 
8673     convI2D_regDHi_regD(tmp1, tmpsrc);
8674     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8675     subD_regD_regD(tmp3, tmp2, dx43300000);
8676     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8677     addD_regD_regD(dst, tmp3, tmp4);
8678   %}
8679 %}
8680 
8681 // Long to Double conversion using fast fxtof
8682 instruct convL2D_helper(regD dst, regD tmp) %{
8683   effect(DEF dst, USE tmp);
8684   size(4);
8685   format %{ "FXTOD  $tmp,$dst" %}
8686   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8687   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8688   ins_pipe(fcvtL2D);
8689 %}
8690 
8691 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8692   predicate(VM_Version::has_fast_fxtof());
8693   match(Set dst (ConvL2D src));
8694   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8695   expand %{
8696     regD tmp;
8697     stkL_to_regD(tmp, src);
8698     convL2D_helper(dst, tmp);
8699   %}
8700 %}
8701 
8702 instruct convL2D_reg(regD dst, iRegL src) %{
8703   predicate(UseVIS >= 3);
8704   match(Set dst (ConvL2D src));
8705   expand %{
8706     regD tmp;
8707     MoveL2D_reg_reg(tmp, src);
8708     convL2D_helper(dst, tmp);
8709   %}
8710 %}
8711 
8712 // Long to Float conversion using fast fxtof
8713 instruct convL2F_helper(regF dst, regD tmp) %{
8714   effect(DEF dst, USE tmp);
8715   size(4);
8716   format %{ "FXTOS  $tmp,$dst" %}
8717   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8718   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8719   ins_pipe(fcvtL2F);
8720 %}
8721 
8722 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8723   match(Set dst (ConvL2F src));
8724   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8725   expand %{
8726     regD tmp;
8727     stkL_to_regD(tmp, src);
8728     convL2F_helper(dst, tmp);
8729   %}
8730 %}
8731 
8732 instruct convL2F_reg(regF dst, iRegL src) %{
8733   predicate(UseVIS >= 3);
8734   match(Set dst (ConvL2F src));
8735   ins_cost(DEFAULT_COST);
8736   expand %{
8737     regD tmp;
8738     MoveL2D_reg_reg(tmp, src);
8739     convL2F_helper(dst, tmp);
8740   %}
8741 %}
8742 
8743 //-----------
8744 
8745 instruct convL2I_reg(iRegI dst, iRegL src) %{
8746   match(Set dst (ConvL2I src));
8747 #ifndef _LP64
8748   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8749   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8750   ins_pipe(ialu_move_reg_I_to_L);
8751 #else
8752   size(4);
8753   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8754   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8755   ins_pipe(ialu_reg);
8756 #endif
8757 %}
8758 
8759 // Register Shift Right Immediate
8760 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8761   match(Set dst (ConvL2I (RShiftL src cnt)));
8762 
8763   size(4);
8764   format %{ "SRAX   $src,$cnt,$dst" %}
8765   opcode(Assembler::srax_op3, Assembler::arith_op);
8766   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8767   ins_pipe(ialu_reg_imm);
8768 %}
8769 
8770 // Replicate scalar to packed byte values in Double register
8771 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8772   effect(DEF dst, USE src);
8773   format %{ "SLLX  $src,56,$dst\n\t"
8774             "SRLX  $dst, 8,O7\n\t"
8775             "OR    $dst,O7,$dst\n\t"
8776             "SRLX  $dst,16,O7\n\t"
8777             "OR    $dst,O7,$dst\n\t"
8778             "SRLX  $dst,32,O7\n\t"
8779             "OR    $dst,O7,$dst\t! replicate8B" %}
8780   ins_encode( enc_repl8b(src, dst));
8781   ins_pipe(ialu_reg);
8782 %}
8783 
8784 // Replicate scalar to packed byte values in Double register
8785 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8786   match(Set dst (Replicate8B src));
8787   expand %{
8788     iRegL tmp;
8789     Repl8B_reg_helper(tmp, src);
8790     regL_to_stkD(dst, tmp);
8791   %}
8792 %}
8793 
8794 // Replicate scalar constant to packed byte values in Double register
8795 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
8796   match(Set dst (Replicate8B con));
8797   effect(KILL tmp);
8798   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
8799   ins_encode %{
8800     // XXX This is a quick fix for 6833573.
8801     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
8802     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
8803     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8804   %}
8805   ins_pipe(loadConFD);
8806 %}
8807 
8808 // Replicate scalar to packed char values into stack slot
8809 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8810   effect(DEF dst, USE src);
8811   format %{ "SLLX  $src,48,$dst\n\t"
8812             "SRLX  $dst,16,O7\n\t"
8813             "OR    $dst,O7,$dst\n\t"
8814             "SRLX  $dst,32,O7\n\t"
8815             "OR    $dst,O7,$dst\t! replicate4C" %}
8816   ins_encode( enc_repl4s(src, dst) );
8817   ins_pipe(ialu_reg);
8818 %}
8819 
8820 // Replicate scalar to packed char values into stack slot
8821 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8822   match(Set dst (Replicate4C src));
8823   expand %{
8824     iRegL tmp;
8825     Repl4C_reg_helper(tmp, src);
8826     regL_to_stkD(dst, tmp);
8827   %}
8828 %}
8829 
8830 // Replicate scalar constant to packed char values in Double register
8831 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
8832   match(Set dst (Replicate4C con));
8833   effect(KILL tmp);
8834   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
8835   ins_encode %{
8836     // XXX This is a quick fix for 6833573.
8837     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8838     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8839     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8840   %}
8841   ins_pipe(loadConFD);
8842 %}
8843 
8844 // Replicate scalar to packed short values into stack slot
8845 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8846   effect(DEF dst, USE src);
8847   format %{ "SLLX  $src,48,$dst\n\t"
8848             "SRLX  $dst,16,O7\n\t"
8849             "OR    $dst,O7,$dst\n\t"
8850             "SRLX  $dst,32,O7\n\t"
8851             "OR    $dst,O7,$dst\t! replicate4S" %}
8852   ins_encode( enc_repl4s(src, dst) );
8853   ins_pipe(ialu_reg);
8854 %}
8855 
8856 // Replicate scalar to packed short values into stack slot
8857 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8858   match(Set dst (Replicate4S src));
8859   expand %{
8860     iRegL tmp;
8861     Repl4S_reg_helper(tmp, src);
8862     regL_to_stkD(dst, tmp);
8863   %}
8864 %}
8865 
8866 // Replicate scalar constant to packed short values in Double register
8867 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
8868   match(Set dst (Replicate4S con));
8869   effect(KILL tmp);
8870   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
8871   ins_encode %{
8872     // XXX This is a quick fix for 6833573.
8873     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8874     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8875     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8876   %}
8877   ins_pipe(loadConFD);
8878 %}
8879 
8880 // Replicate scalar to packed int values in Double register
8881 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8882   effect(DEF dst, USE src);
8883   format %{ "SLLX  $src,32,$dst\n\t"
8884             "SRLX  $dst,32,O7\n\t"
8885             "OR    $dst,O7,$dst\t! replicate2I" %}
8886   ins_encode( enc_repl2i(src, dst));
8887   ins_pipe(ialu_reg);
8888 %}
8889 
8890 // Replicate scalar to packed int values in Double register
8891 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8892   match(Set dst (Replicate2I src));
8893   expand %{
8894     iRegL tmp;
8895     Repl2I_reg_helper(tmp, src);
8896     regL_to_stkD(dst, tmp);
8897   %}
8898 %}
8899 
8900 // Replicate scalar zero constant to packed int values in Double register
8901 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
8902   match(Set dst (Replicate2I con));
8903   effect(KILL tmp);
8904   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
8905   ins_encode %{
8906     // XXX This is a quick fix for 6833573.
8907     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
8908     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
8909     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8910   %}
8911   ins_pipe(loadConFD);
8912 %}
8913 
8914 //----------Control Flow Instructions------------------------------------------
8915 // Compare Instructions
8916 // Compare Integers
8917 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8918   match(Set icc (CmpI op1 op2));
8919   effect( DEF icc, USE op1, USE op2 );
8920 
8921   size(4);
8922   format %{ "CMP    $op1,$op2" %}
8923   opcode(Assembler::subcc_op3, Assembler::arith_op);
8924   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8925   ins_pipe(ialu_cconly_reg_reg);
8926 %}
8927 
8928 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8929   match(Set icc (CmpU op1 op2));
8930 
8931   size(4);
8932   format %{ "CMP    $op1,$op2\t! unsigned" %}
8933   opcode(Assembler::subcc_op3, Assembler::arith_op);
8934   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8935   ins_pipe(ialu_cconly_reg_reg);
8936 %}
8937 
8938 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8939   match(Set icc (CmpI op1 op2));
8940   effect( DEF icc, USE op1 );
8941 
8942   size(4);
8943   format %{ "CMP    $op1,$op2" %}
8944   opcode(Assembler::subcc_op3, Assembler::arith_op);
8945   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8946   ins_pipe(ialu_cconly_reg_imm);
8947 %}
8948 
8949 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8950   match(Set icc (CmpI (AndI op1 op2) zero));
8951 
8952   size(4);
8953   format %{ "BTST   $op2,$op1" %}
8954   opcode(Assembler::andcc_op3, Assembler::arith_op);
8955   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8956   ins_pipe(ialu_cconly_reg_reg_zero);
8957 %}
8958 
8959 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8960   match(Set icc (CmpI (AndI op1 op2) zero));
8961 
8962   size(4);
8963   format %{ "BTST   $op2,$op1" %}
8964   opcode(Assembler::andcc_op3, Assembler::arith_op);
8965   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8966   ins_pipe(ialu_cconly_reg_imm_zero);
8967 %}
8968 
8969 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8970   match(Set xcc (CmpL op1 op2));
8971   effect( DEF xcc, USE op1, USE op2 );
8972 
8973   size(4);
8974   format %{ "CMP    $op1,$op2\t\t! long" %}
8975   opcode(Assembler::subcc_op3, Assembler::arith_op);
8976   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8977   ins_pipe(ialu_cconly_reg_reg);
8978 %}
8979 
8980 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8981   match(Set xcc (CmpL op1 con));
8982   effect( DEF xcc, USE op1, USE con );
8983 
8984   size(4);
8985   format %{ "CMP    $op1,$con\t\t! long" %}
8986   opcode(Assembler::subcc_op3, Assembler::arith_op);
8987   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8988   ins_pipe(ialu_cconly_reg_reg);
8989 %}
8990 
8991 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8992   match(Set xcc (CmpL (AndL op1 op2) zero));
8993   effect( DEF xcc, USE op1, USE op2 );
8994 
8995   size(4);
8996   format %{ "BTST   $op1,$op2\t\t! long" %}
8997   opcode(Assembler::andcc_op3, Assembler::arith_op);
8998   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8999   ins_pipe(ialu_cconly_reg_reg);
9000 %}
9001 
9002 // useful for checking the alignment of a pointer:
9003 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9004   match(Set xcc (CmpL (AndL op1 con) zero));
9005   effect( DEF xcc, USE op1, USE con );
9006 
9007   size(4);
9008   format %{ "BTST   $op1,$con\t\t! long" %}
9009   opcode(Assembler::andcc_op3, Assembler::arith_op);
9010   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9011   ins_pipe(ialu_cconly_reg_reg);
9012 %}
9013 
9014 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
9015   match(Set icc (CmpU op1 op2));
9016 
9017   size(4);
9018   format %{ "CMP    $op1,$op2\t! unsigned" %}
9019   opcode(Assembler::subcc_op3, Assembler::arith_op);
9020   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9021   ins_pipe(ialu_cconly_reg_imm);
9022 %}
9023 
9024 // Compare Pointers
9025 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9026   match(Set pcc (CmpP op1 op2));
9027 
9028   size(4);
9029   format %{ "CMP    $op1,$op2\t! ptr" %}
9030   opcode(Assembler::subcc_op3, Assembler::arith_op);
9031   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9032   ins_pipe(ialu_cconly_reg_reg);
9033 %}
9034 
9035 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9036   match(Set pcc (CmpP op1 op2));
9037 
9038   size(4);
9039   format %{ "CMP    $op1,$op2\t! ptr" %}
9040   opcode(Assembler::subcc_op3, Assembler::arith_op);
9041   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9042   ins_pipe(ialu_cconly_reg_imm);
9043 %}
9044 
9045 // Compare Narrow oops
9046 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9047   match(Set icc (CmpN op1 op2));
9048 
9049   size(4);
9050   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9051   opcode(Assembler::subcc_op3, Assembler::arith_op);
9052   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9053   ins_pipe(ialu_cconly_reg_reg);
9054 %}
9055 
9056 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9057   match(Set icc (CmpN op1 op2));
9058 
9059   size(4);
9060   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9061   opcode(Assembler::subcc_op3, Assembler::arith_op);
9062   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9063   ins_pipe(ialu_cconly_reg_imm);
9064 %}
9065 
9066 //----------Max and Min--------------------------------------------------------
9067 // Min Instructions
9068 // Conditional move for min
9069 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9070   effect( USE_DEF op2, USE op1, USE icc );
9071 
9072   size(4);
9073   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9074   opcode(Assembler::less);
9075   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9076   ins_pipe(ialu_reg_flags);
9077 %}
9078 
9079 // Min Register with Register.
9080 instruct minI_eReg(iRegI op1, iRegI op2) %{
9081   match(Set op2 (MinI op1 op2));
9082   ins_cost(DEFAULT_COST*2);
9083   expand %{
9084     flagsReg icc;
9085     compI_iReg(icc,op1,op2);
9086     cmovI_reg_lt(op2,op1,icc);
9087   %}
9088 %}
9089 
9090 // Max Instructions
9091 // Conditional move for max
9092 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9093   effect( USE_DEF op2, USE op1, USE icc );
9094   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9095   opcode(Assembler::greater);
9096   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9097   ins_pipe(ialu_reg_flags);
9098 %}
9099 
9100 // Max Register with Register
9101 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9102   match(Set op2 (MaxI op1 op2));
9103   ins_cost(DEFAULT_COST*2);
9104   expand %{
9105     flagsReg icc;
9106     compI_iReg(icc,op1,op2);
9107     cmovI_reg_gt(op2,op1,icc);
9108   %}
9109 %}
9110 
9111 
9112 //----------Float Compares----------------------------------------------------
9113 // Compare floating, generate condition code
9114 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9115   match(Set fcc (CmpF src1 src2));
9116 
9117   size(4);
9118   format %{ "FCMPs  $fcc,$src1,$src2" %}
9119   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9120   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9121   ins_pipe(faddF_fcc_reg_reg_zero);
9122 %}
9123 
9124 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9125   match(Set fcc (CmpD src1 src2));
9126 
9127   size(4);
9128   format %{ "FCMPd  $fcc,$src1,$src2" %}
9129   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9130   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9131   ins_pipe(faddD_fcc_reg_reg_zero);
9132 %}
9133 
9134 
9135 // Compare floating, generate -1,0,1
9136 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9137   match(Set dst (CmpF3 src1 src2));
9138   effect(KILL fcc0);
9139   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9140   format %{ "fcmpl  $dst,$src1,$src2" %}
9141   // Primary = float
9142   opcode( true );
9143   ins_encode( floating_cmp( dst, src1, src2 ) );
9144   ins_pipe( floating_cmp );
9145 %}
9146 
9147 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9148   match(Set dst (CmpD3 src1 src2));
9149   effect(KILL fcc0);
9150   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9151   format %{ "dcmpl  $dst,$src1,$src2" %}
9152   // Primary = double (not float)
9153   opcode( false );
9154   ins_encode( floating_cmp( dst, src1, src2 ) );
9155   ins_pipe( floating_cmp );
9156 %}
9157 
9158 //----------Branches---------------------------------------------------------
9159 // Jump
9160 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9161 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9162   match(Jump switch_val);
9163 
9164   ins_cost(350);
9165 
9166   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9167              "LD     [O7 + $switch_val], O7\n\t"
9168              "JUMP   O7"
9169          %}
9170   ins_encode %{
9171     // Calculate table address into a register.
9172     Register table_reg;
9173     Register label_reg = O7;
9174     if (constant_offset() == 0) {
9175       table_reg = $constanttablebase;
9176     } else {
9177       table_reg = O7;
9178       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9179       __ add($constanttablebase, con_offset, table_reg);
9180     }
9181 
9182     // Jump to base address + switch value
9183     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9184     __ jmp(label_reg, G0);
9185     __ delayed()->nop();
9186   %}
9187   ins_pc_relative(1);
9188   ins_pipe(ialu_reg_reg);
9189 %}
9190 
9191 // Direct Branch.  Use V8 version with longer range.
9192 instruct branch(label labl) %{
9193   match(Goto);
9194   effect(USE labl);
9195 
9196   size(8);
9197   ins_cost(BRANCH_COST);
9198   format %{ "BA     $labl" %}
9199   ins_encode %{
9200     Label* L = $labl$$label;
9201     assert(L != NULL, "need Label");
9202     __ ba(*L, false);
9203     __ delayed()->nop();
9204   %}
9205   ins_pc_relative(1);
9206   ins_pipe(br);
9207 %}
9208 
9209 // Conditional Direct Branch
9210 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9211   match(If cmp icc);
9212   effect(USE labl);
9213 
9214   size(8);
9215   ins_cost(BRANCH_COST);
9216   format %{ "BP$cmp   $icc,$labl" %}
9217   // Prim = bits 24-22, Secnd = bits 31-30
9218   ins_encode( enc_bp( labl, cmp, icc ) );
9219   ins_pc_relative(1);
9220   ins_pipe(br_cc);
9221 %}
9222 
9223 // Branch-on-register tests all 64 bits.  We assume that values
9224 // in 64-bit registers always remains zero or sign extended
9225 // unless our code munges the high bits.  Interrupts can chop
9226 // the high order bits to zero or sign at any time.
9227 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9228   match(If cmp (CmpI op1 zero));
9229   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9230   effect(USE labl);
9231 
9232   size(8);
9233   ins_cost(BRANCH_COST);
9234   format %{ "BR$cmp   $op1,$labl" %}
9235   ins_encode( enc_bpr( labl, cmp, op1 ) );
9236   ins_pc_relative(1);
9237   ins_pipe(br_reg);
9238 %}
9239 
9240 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9241   match(If cmp (CmpP op1 null));
9242   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9243   effect(USE labl);
9244 
9245   size(8);
9246   ins_cost(BRANCH_COST);
9247   format %{ "BR$cmp   $op1,$labl" %}
9248   ins_encode( enc_bpr( labl, cmp, op1 ) );
9249   ins_pc_relative(1);
9250   ins_pipe(br_reg);
9251 %}
9252 
9253 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9254   match(If cmp (CmpL op1 zero));
9255   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9256   effect(USE labl);
9257 
9258   size(8);
9259   ins_cost(BRANCH_COST);
9260   format %{ "BR$cmp   $op1,$labl" %}
9261   ins_encode( enc_bpr( labl, cmp, op1 ) );
9262   ins_pc_relative(1);
9263   ins_pipe(br_reg);
9264 %}
9265 
9266 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9267   match(If cmp icc);
9268   effect(USE labl);
9269 
9270   format %{ "BP$cmp  $icc,$labl" %}
9271   // Prim = bits 24-22, Secnd = bits 31-30
9272   ins_encode( enc_bp( labl, cmp, icc ) );
9273   ins_pc_relative(1);
9274   ins_pipe(br_cc);
9275 %}
9276 
9277 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9278   match(If cmp pcc);
9279   effect(USE labl);
9280 
9281   size(8);
9282   ins_cost(BRANCH_COST);
9283   format %{ "BP$cmp  $pcc,$labl" %}
9284   ins_encode %{
9285     Label* L = $labl$$label;
9286     assert(L != NULL, "need Label");
9287     Assembler::Predict predict_taken =
9288       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9289 
9290     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9291     __ delayed()->nop();
9292   %}
9293   ins_pc_relative(1);
9294   ins_pipe(br_cc);
9295 %}
9296 
9297 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9298   match(If cmp fcc);
9299   effect(USE labl);
9300 
9301   size(8);
9302   ins_cost(BRANCH_COST);
9303   format %{ "FBP$cmp $fcc,$labl" %}
9304   ins_encode %{
9305     Label* L = $labl$$label;
9306     assert(L != NULL, "need Label");
9307     Assembler::Predict predict_taken =
9308       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9309 
9310     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9311     __ delayed()->nop();
9312   %}
9313   ins_pc_relative(1);
9314   ins_pipe(br_fcc);
9315 %}
9316 
9317 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9318   match(CountedLoopEnd cmp icc);
9319   effect(USE labl);
9320 
9321   size(8);
9322   ins_cost(BRANCH_COST);
9323   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9324   // Prim = bits 24-22, Secnd = bits 31-30
9325   ins_encode( enc_bp( labl, cmp, icc ) );
9326   ins_pc_relative(1);
9327   ins_pipe(br_cc);
9328 %}
9329 
9330 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9331   match(CountedLoopEnd cmp icc);
9332   effect(USE labl);
9333 
9334   size(8);
9335   ins_cost(BRANCH_COST);
9336   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9337   // Prim = bits 24-22, Secnd = bits 31-30
9338   ins_encode( enc_bp( labl, cmp, icc ) );
9339   ins_pc_relative(1);
9340   ins_pipe(br_cc);
9341 %}
9342 
9343 // ============================================================================
9344 // Long Compare
9345 //
9346 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9347 // is tricky.  The flavor of compare used depends on whether we are testing
9348 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9349 // The GE test is the negated LT test.  The LE test can be had by commuting
9350 // the operands (yielding a GE test) and then negating; negate again for the
9351 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9352 // NE test is negated from that.
9353 
9354 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9355 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9356 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9357 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9358 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9359 // foo match ends up with the wrong leaf.  One fix is to not match both
9360 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9361 // both forms beat the trinary form of long-compare and both are very useful
9362 // on Intel which has so few registers.
9363 
9364 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9365   match(If cmp xcc);
9366   effect(USE labl);
9367 
9368   size(8);
9369   ins_cost(BRANCH_COST);
9370   format %{ "BP$cmp   $xcc,$labl" %}
9371   ins_encode %{
9372     Label* L = $labl$$label;
9373     assert(L != NULL, "need Label");
9374     Assembler::Predict predict_taken =
9375       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9376 
9377     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9378     __ delayed()->nop();
9379   %}
9380   ins_pc_relative(1);
9381   ins_pipe(br_cc);
9382 %}
9383 
9384 // Manifest a CmpL3 result in an integer register.  Very painful.
9385 // This is the test to avoid.
9386 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9387   match(Set dst (CmpL3 src1 src2) );
9388   effect( KILL ccr );
9389   ins_cost(6*DEFAULT_COST);
9390   size(24);
9391   format %{ "CMP    $src1,$src2\t\t! long\n"
9392           "\tBLT,a,pn done\n"
9393           "\tMOV    -1,$dst\t! delay slot\n"
9394           "\tBGT,a,pn done\n"
9395           "\tMOV    1,$dst\t! delay slot\n"
9396           "\tCLR    $dst\n"
9397     "done:"     %}
9398   ins_encode( cmpl_flag(src1,src2,dst) );
9399   ins_pipe(cmpL_reg);
9400 %}
9401 
9402 // Conditional move
9403 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9404   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9405   ins_cost(150);
9406   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9407   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9408   ins_pipe(ialu_reg);
9409 %}
9410 
9411 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9412   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9413   ins_cost(140);
9414   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9415   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9416   ins_pipe(ialu_imm);
9417 %}
9418 
9419 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9420   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9421   ins_cost(150);
9422   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9423   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9424   ins_pipe(ialu_reg);
9425 %}
9426 
9427 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9428   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9429   ins_cost(140);
9430   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9431   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9432   ins_pipe(ialu_imm);
9433 %}
9434 
9435 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9436   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9437   ins_cost(150);
9438   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9439   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9440   ins_pipe(ialu_reg);
9441 %}
9442 
9443 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9444   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9445   ins_cost(150);
9446   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9447   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9448   ins_pipe(ialu_reg);
9449 %}
9450 
9451 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9452   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9453   ins_cost(140);
9454   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9455   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9456   ins_pipe(ialu_imm);
9457 %}
9458 
9459 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9460   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9461   ins_cost(150);
9462   opcode(0x101);
9463   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9464   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9465   ins_pipe(int_conditional_float_move);
9466 %}
9467 
9468 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9469   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9470   ins_cost(150);
9471   opcode(0x102);
9472   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9473   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9474   ins_pipe(int_conditional_float_move);
9475 %}
9476 
9477 // ============================================================================
9478 // Safepoint Instruction
9479 instruct safePoint_poll(iRegP poll) %{
9480   match(SafePoint poll);
9481   effect(USE poll);
9482 
9483   size(4);
9484 #ifdef _LP64
9485   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9486 #else
9487   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9488 #endif
9489   ins_encode %{
9490     __ relocate(relocInfo::poll_type);
9491     __ ld_ptr($poll$$Register, 0, G0);
9492   %}
9493   ins_pipe(loadPollP);
9494 %}
9495 
9496 // ============================================================================
9497 // Call Instructions
9498 // Call Java Static Instruction
9499 instruct CallStaticJavaDirect( method meth ) %{
9500   match(CallStaticJava);
9501   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9502   effect(USE meth);
9503 
9504   size(8);
9505   ins_cost(CALL_COST);
9506   format %{ "CALL,static  ; NOP ==> " %}
9507   ins_encode( Java_Static_Call( meth ), call_epilog );
9508   ins_pc_relative(1);
9509   ins_pipe(simple_call);
9510 %}
9511 
9512 // Call Java Static Instruction (method handle version)
9513 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9514   match(CallStaticJava);
9515   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9516   effect(USE meth, KILL l7_mh_SP_save);
9517 
9518   size(8);
9519   ins_cost(CALL_COST);
9520   format %{ "CALL,static/MethodHandle" %}
9521   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9522   ins_pc_relative(1);
9523   ins_pipe(simple_call);
9524 %}
9525 
9526 // Call Java Dynamic Instruction
9527 instruct CallDynamicJavaDirect( method meth ) %{
9528   match(CallDynamicJava);
9529   effect(USE meth);
9530 
9531   ins_cost(CALL_COST);
9532   format %{ "SET    (empty),R_G5\n\t"
9533             "CALL,dynamic  ; NOP ==> " %}
9534   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9535   ins_pc_relative(1);
9536   ins_pipe(call);
9537 %}
9538 
9539 // Call Runtime Instruction
9540 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9541   match(CallRuntime);
9542   effect(USE meth, KILL l7);
9543   ins_cost(CALL_COST);
9544   format %{ "CALL,runtime" %}
9545   ins_encode( Java_To_Runtime( meth ),
9546               call_epilog, adjust_long_from_native_call );
9547   ins_pc_relative(1);
9548   ins_pipe(simple_call);
9549 %}
9550 
9551 // Call runtime without safepoint - same as CallRuntime
9552 instruct CallLeafDirect(method meth, l7RegP l7) %{
9553   match(CallLeaf);
9554   effect(USE meth, KILL l7);
9555   ins_cost(CALL_COST);
9556   format %{ "CALL,runtime leaf" %}
9557   ins_encode( Java_To_Runtime( meth ),
9558               call_epilog,
9559               adjust_long_from_native_call );
9560   ins_pc_relative(1);
9561   ins_pipe(simple_call);
9562 %}
9563 
9564 // Call runtime without safepoint - same as CallLeaf
9565 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9566   match(CallLeafNoFP);
9567   effect(USE meth, KILL l7);
9568   ins_cost(CALL_COST);
9569   format %{ "CALL,runtime leaf nofp" %}
9570   ins_encode( Java_To_Runtime( meth ),
9571               call_epilog,
9572               adjust_long_from_native_call );
9573   ins_pc_relative(1);
9574   ins_pipe(simple_call);
9575 %}
9576 
9577 // Tail Call; Jump from runtime stub to Java code.
9578 // Also known as an 'interprocedural jump'.
9579 // Target of jump will eventually return to caller.
9580 // TailJump below removes the return address.
9581 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9582   match(TailCall jump_target method_oop );
9583 
9584   ins_cost(CALL_COST);
9585   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9586   ins_encode(form_jmpl(jump_target));
9587   ins_pipe(tail_call);
9588 %}
9589 
9590 
9591 // Return Instruction
9592 instruct Ret() %{
9593   match(Return);
9594 
9595   // The epilogue node did the ret already.
9596   size(0);
9597   format %{ "! return" %}
9598   ins_encode();
9599   ins_pipe(empty);
9600 %}
9601 
9602 
9603 // Tail Jump; remove the return address; jump to target.
9604 // TailCall above leaves the return address around.
9605 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9606 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9607 // "restore" before this instruction (in Epilogue), we need to materialize it
9608 // in %i0.
9609 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9610   match( TailJump jump_target ex_oop );
9611   ins_cost(CALL_COST);
9612   format %{ "! discard R_O7\n\t"
9613             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9614   ins_encode(form_jmpl_set_exception_pc(jump_target));
9615   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9616   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9617   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9618   ins_pipe(tail_call);
9619 %}
9620 
9621 // Create exception oop: created by stack-crawling runtime code.
9622 // Created exception is now available to this handler, and is setup
9623 // just prior to jumping to this handler.  No code emitted.
9624 instruct CreateException( o0RegP ex_oop )
9625 %{
9626   match(Set ex_oop (CreateEx));
9627   ins_cost(0);
9628 
9629   size(0);
9630   // use the following format syntax
9631   format %{ "! exception oop is in R_O0; no code emitted" %}
9632   ins_encode();
9633   ins_pipe(empty);
9634 %}
9635 
9636 
9637 // Rethrow exception:
9638 // The exception oop will come in the first argument position.
9639 // Then JUMP (not call) to the rethrow stub code.
9640 instruct RethrowException()
9641 %{
9642   match(Rethrow);
9643   ins_cost(CALL_COST);
9644 
9645   // use the following format syntax
9646   format %{ "Jmp    rethrow_stub" %}
9647   ins_encode(enc_rethrow);
9648   ins_pipe(tail_call);
9649 %}
9650 
9651 
9652 // Die now
9653 instruct ShouldNotReachHere( )
9654 %{
9655   match(Halt);
9656   ins_cost(CALL_COST);
9657 
9658   size(4);
9659   // Use the following format syntax
9660   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9661   ins_encode( form2_illtrap() );
9662   ins_pipe(tail_call);
9663 %}
9664 
9665 // ============================================================================
9666 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9667 // array for an instance of the superklass.  Set a hidden internal cache on a
9668 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9669 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9670 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9671   match(Set index (PartialSubtypeCheck sub super));
9672   effect( KILL pcc, KILL o7 );
9673   ins_cost(DEFAULT_COST*10);
9674   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9675   ins_encode( enc_PartialSubtypeCheck() );
9676   ins_pipe(partial_subtype_check_pipe);
9677 %}
9678 
9679 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9680   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9681   effect( KILL idx, KILL o7 );
9682   ins_cost(DEFAULT_COST*10);
9683   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9684   ins_encode( enc_PartialSubtypeCheck() );
9685   ins_pipe(partial_subtype_check_pipe);
9686 %}
9687 
9688 
9689 // ============================================================================
9690 // inlined locking and unlocking
9691 
9692 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9693   match(Set pcc (FastLock object box));
9694 
9695   effect(KILL scratch, TEMP scratch2);
9696   ins_cost(100);
9697 
9698   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9699   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9700   ins_pipe(long_memory_op);
9701 %}
9702 
9703 
9704 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9705   match(Set pcc (FastUnlock object box));
9706   effect(KILL scratch, TEMP scratch2);
9707   ins_cost(100);
9708 
9709   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9710   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9711   ins_pipe(long_memory_op);
9712 %}
9713 
9714 // Count and Base registers are fixed because the allocator cannot
9715 // kill unknown registers.  The encodings are generic.
9716 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9717   match(Set dummy (ClearArray cnt base));
9718   effect(TEMP temp, KILL ccr);
9719   ins_cost(300);
9720   format %{ "MOV    $cnt,$temp\n"
9721     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9722     "        BRge   loop\t\t! Clearing loop\n"
9723     "        STX    G0,[$base+$temp]\t! delay slot" %}
9724   ins_encode( enc_Clear_Array(cnt, base, temp) );
9725   ins_pipe(long_memory_op);
9726 %}
9727 
9728 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9729                         o7RegI tmp, flagsReg ccr) %{
9730   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9731   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9732   ins_cost(300);
9733   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9734   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
9735   ins_pipe(long_memory_op);
9736 %}
9737 
9738 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9739                        o7RegI tmp, flagsReg ccr) %{
9740   match(Set result (StrEquals (Binary str1 str2) cnt));
9741   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9742   ins_cost(300);
9743   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9744   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
9745   ins_pipe(long_memory_op);
9746 %}
9747 
9748 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9749                       o7RegI tmp2, flagsReg ccr) %{
9750   match(Set result (AryEq ary1 ary2));
9751   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9752   ins_cost(300);
9753   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9754   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
9755   ins_pipe(long_memory_op);
9756 %}
9757 
9758 
9759 //---------- Zeros Count Instructions ------------------------------------------
9760 
9761 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9762   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9763   match(Set dst (CountLeadingZerosI src));
9764   effect(TEMP dst, TEMP tmp, KILL cr);
9765 
9766   // x |= (x >> 1);
9767   // x |= (x >> 2);
9768   // x |= (x >> 4);
9769   // x |= (x >> 8);
9770   // x |= (x >> 16);
9771   // return (WORDBITS - popc(x));
9772   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
9773             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
9774             "OR      $dst,$tmp,$dst\n\t"
9775             "SRL     $dst,2,$tmp\n\t"
9776             "OR      $dst,$tmp,$dst\n\t"
9777             "SRL     $dst,4,$tmp\n\t"
9778             "OR      $dst,$tmp,$dst\n\t"
9779             "SRL     $dst,8,$tmp\n\t"
9780             "OR      $dst,$tmp,$dst\n\t"
9781             "SRL     $dst,16,$tmp\n\t"
9782             "OR      $dst,$tmp,$dst\n\t"
9783             "POPC    $dst,$dst\n\t"
9784             "MOV     32,$tmp\n\t"
9785             "SUB     $tmp,$dst,$dst" %}
9786   ins_encode %{
9787     Register Rdst = $dst$$Register;
9788     Register Rsrc = $src$$Register;
9789     Register Rtmp = $tmp$$Register;
9790     __ srl(Rsrc, 1,    Rtmp);
9791     __ srl(Rsrc, 0,    Rdst);
9792     __ or3(Rdst, Rtmp, Rdst);
9793     __ srl(Rdst, 2,    Rtmp);
9794     __ or3(Rdst, Rtmp, Rdst);
9795     __ srl(Rdst, 4,    Rtmp);
9796     __ or3(Rdst, Rtmp, Rdst);
9797     __ srl(Rdst, 8,    Rtmp);
9798     __ or3(Rdst, Rtmp, Rdst);
9799     __ srl(Rdst, 16,   Rtmp);
9800     __ or3(Rdst, Rtmp, Rdst);
9801     __ popc(Rdst, Rdst);
9802     __ mov(BitsPerInt, Rtmp);
9803     __ sub(Rtmp, Rdst, Rdst);
9804   %}
9805   ins_pipe(ialu_reg);
9806 %}
9807 
9808 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
9809   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9810   match(Set dst (CountLeadingZerosL src));
9811   effect(TEMP dst, TEMP tmp, KILL cr);
9812 
9813   // x |= (x >> 1);
9814   // x |= (x >> 2);
9815   // x |= (x >> 4);
9816   // x |= (x >> 8);
9817   // x |= (x >> 16);
9818   // x |= (x >> 32);
9819   // return (WORDBITS - popc(x));
9820   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
9821             "OR      $src,$tmp,$dst\n\t"
9822             "SRLX    $dst,2,$tmp\n\t"
9823             "OR      $dst,$tmp,$dst\n\t"
9824             "SRLX    $dst,4,$tmp\n\t"
9825             "OR      $dst,$tmp,$dst\n\t"
9826             "SRLX    $dst,8,$tmp\n\t"
9827             "OR      $dst,$tmp,$dst\n\t"
9828             "SRLX    $dst,16,$tmp\n\t"
9829             "OR      $dst,$tmp,$dst\n\t"
9830             "SRLX    $dst,32,$tmp\n\t"
9831             "OR      $dst,$tmp,$dst\n\t"
9832             "POPC    $dst,$dst\n\t"
9833             "MOV     64,$tmp\n\t"
9834             "SUB     $tmp,$dst,$dst" %}
9835   ins_encode %{
9836     Register Rdst = $dst$$Register;
9837     Register Rsrc = $src$$Register;
9838     Register Rtmp = $tmp$$Register;
9839     __ srlx(Rsrc, 1,    Rtmp);
9840     __ or3( Rsrc, Rtmp, Rdst);
9841     __ srlx(Rdst, 2,    Rtmp);
9842     __ or3( Rdst, Rtmp, Rdst);
9843     __ srlx(Rdst, 4,    Rtmp);
9844     __ or3( Rdst, Rtmp, Rdst);
9845     __ srlx(Rdst, 8,    Rtmp);
9846     __ or3( Rdst, Rtmp, Rdst);
9847     __ srlx(Rdst, 16,   Rtmp);
9848     __ or3( Rdst, Rtmp, Rdst);
9849     __ srlx(Rdst, 32,   Rtmp);
9850     __ or3( Rdst, Rtmp, Rdst);
9851     __ popc(Rdst, Rdst);
9852     __ mov(BitsPerLong, Rtmp);
9853     __ sub(Rtmp, Rdst, Rdst);
9854   %}
9855   ins_pipe(ialu_reg);
9856 %}
9857 
9858 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9859   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9860   match(Set dst (CountTrailingZerosI src));
9861   effect(TEMP dst, KILL cr);
9862 
9863   // return popc(~x & (x - 1));
9864   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9865             "ANDN    $dst,$src,$dst\n\t"
9866             "SRL     $dst,R_G0,$dst\n\t"
9867             "POPC    $dst,$dst" %}
9868   ins_encode %{
9869     Register Rdst = $dst$$Register;
9870     Register Rsrc = $src$$Register;
9871     __ sub(Rsrc, 1, Rdst);
9872     __ andn(Rdst, Rsrc, Rdst);
9873     __ srl(Rdst, G0, Rdst);
9874     __ popc(Rdst, Rdst);
9875   %}
9876   ins_pipe(ialu_reg);
9877 %}
9878 
9879 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9880   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9881   match(Set dst (CountTrailingZerosL src));
9882   effect(TEMP dst, KILL cr);
9883 
9884   // return popc(~x & (x - 1));
9885   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9886             "ANDN    $dst,$src,$dst\n\t"
9887             "POPC    $dst,$dst" %}
9888   ins_encode %{
9889     Register Rdst = $dst$$Register;
9890     Register Rsrc = $src$$Register;
9891     __ sub(Rsrc, 1, Rdst);
9892     __ andn(Rdst, Rsrc, Rdst);
9893     __ popc(Rdst, Rdst);
9894   %}
9895   ins_pipe(ialu_reg);
9896 %}
9897 
9898 
9899 //---------- Population Count Instructions -------------------------------------
9900 
9901 instruct popCountI(iRegI dst, iRegI src) %{
9902   predicate(UsePopCountInstruction);
9903   match(Set dst (PopCountI src));
9904 
9905   format %{ "POPC   $src, $dst" %}
9906   ins_encode %{
9907     __ popc($src$$Register, $dst$$Register);
9908   %}
9909   ins_pipe(ialu_reg);
9910 %}
9911 
9912 // Note: Long.bitCount(long) returns an int.
9913 instruct popCountL(iRegI dst, iRegL src) %{
9914   predicate(UsePopCountInstruction);
9915   match(Set dst (PopCountL src));
9916 
9917   format %{ "POPC   $src, $dst" %}
9918   ins_encode %{
9919     __ popc($src$$Register, $dst$$Register);
9920   %}
9921   ins_pipe(ialu_reg);
9922 %}
9923 
9924 
9925 // ============================================================================
9926 //------------Bytes reverse--------------------------------------------------
9927 
9928 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9929   match(Set dst (ReverseBytesI src));
9930 
9931   // Op cost is artificially doubled to make sure that load or store
9932   // instructions are preferred over this one which requires a spill
9933   // onto a stack slot.
9934   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9935   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9936 
9937   ins_encode %{
9938     __ set($src$$disp + STACK_BIAS, O7);
9939     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9940   %}
9941   ins_pipe( iload_mem );
9942 %}
9943 
9944 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9945   match(Set dst (ReverseBytesL src));
9946 
9947   // Op cost is artificially doubled to make sure that load or store
9948   // instructions are preferred over this one which requires a spill
9949   // onto a stack slot.
9950   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9951   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9952 
9953   ins_encode %{
9954     __ set($src$$disp + STACK_BIAS, O7);
9955     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9956   %}
9957   ins_pipe( iload_mem );
9958 %}
9959 
9960 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
9961   match(Set dst (ReverseBytesUS src));
9962 
9963   // Op cost is artificially doubled to make sure that load or store
9964   // instructions are preferred over this one which requires a spill
9965   // onto a stack slot.
9966   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9967   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
9968 
9969   ins_encode %{
9970     // the value was spilled as an int so bias the load
9971     __ set($src$$disp + STACK_BIAS + 2, O7);
9972     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9973   %}
9974   ins_pipe( iload_mem );
9975 %}
9976 
9977 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
9978   match(Set dst (ReverseBytesS src));
9979 
9980   // Op cost is artificially doubled to make sure that load or store
9981   // instructions are preferred over this one which requires a spill
9982   // onto a stack slot.
9983   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9984   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
9985 
9986   ins_encode %{
9987     // the value was spilled as an int so bias the load
9988     __ set($src$$disp + STACK_BIAS + 2, O7);
9989     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9990   %}
9991   ins_pipe( iload_mem );
9992 %}
9993 
9994 // Load Integer reversed byte order
9995 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
9996   match(Set dst (ReverseBytesI (LoadI src)));
9997 
9998   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9999   size(4);
10000   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10001 
10002   ins_encode %{
10003     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10004   %}
10005   ins_pipe(iload_mem);
10006 %}
10007 
10008 // Load Long - aligned and reversed
10009 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10010   match(Set dst (ReverseBytesL (LoadL src)));
10011 
10012   ins_cost(MEMORY_REF_COST);
10013   size(4);
10014   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10015 
10016   ins_encode %{
10017     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10018   %}
10019   ins_pipe(iload_mem);
10020 %}
10021 
10022 // Load unsigned short / char reversed byte order
10023 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10024   match(Set dst (ReverseBytesUS (LoadUS src)));
10025 
10026   ins_cost(MEMORY_REF_COST);
10027   size(4);
10028   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10029 
10030   ins_encode %{
10031     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10032   %}
10033   ins_pipe(iload_mem);
10034 %}
10035 
10036 // Load short reversed byte order
10037 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10038   match(Set dst (ReverseBytesS (LoadS src)));
10039 
10040   ins_cost(MEMORY_REF_COST);
10041   size(4);
10042   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10043 
10044   ins_encode %{
10045     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10046   %}
10047   ins_pipe(iload_mem);
10048 %}
10049 
10050 // Store Integer reversed byte order
10051 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10052   match(Set dst (StoreI dst (ReverseBytesI src)));
10053 
10054   ins_cost(MEMORY_REF_COST);
10055   size(4);
10056   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10057 
10058   ins_encode %{
10059     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10060   %}
10061   ins_pipe(istore_mem_reg);
10062 %}
10063 
10064 // Store Long reversed byte order
10065 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10066   match(Set dst (StoreL dst (ReverseBytesL src)));
10067 
10068   ins_cost(MEMORY_REF_COST);
10069   size(4);
10070   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10071 
10072   ins_encode %{
10073     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10074   %}
10075   ins_pipe(istore_mem_reg);
10076 %}
10077 
10078 // Store unsighed short/char reversed byte order
10079 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10080   match(Set dst (StoreC dst (ReverseBytesUS src)));
10081 
10082   ins_cost(MEMORY_REF_COST);
10083   size(4);
10084   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10085 
10086   ins_encode %{
10087     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10088   %}
10089   ins_pipe(istore_mem_reg);
10090 %}
10091 
10092 // Store short reversed byte order
10093 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10094   match(Set dst (StoreC dst (ReverseBytesS src)));
10095 
10096   ins_cost(MEMORY_REF_COST);
10097   size(4);
10098   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10099 
10100   ins_encode %{
10101     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10102   %}
10103   ins_pipe(istore_mem_reg);
10104 %}
10105 
10106 //----------PEEPHOLE RULES-----------------------------------------------------
10107 // These must follow all instruction definitions as they use the names
10108 // defined in the instructions definitions.
10109 //
10110 // peepmatch ( root_instr_name [preceding_instruction]* );
10111 //
10112 // peepconstraint %{
10113 // (instruction_number.operand_name relational_op instruction_number.operand_name
10114 //  [, ...] );
10115 // // instruction numbers are zero-based using left to right order in peepmatch
10116 //
10117 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10118 // // provide an instruction_number.operand_name for each operand that appears
10119 // // in the replacement instruction's match rule
10120 //
10121 // ---------VM FLAGS---------------------------------------------------------
10122 //
10123 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10124 //
10125 // Each peephole rule is given an identifying number starting with zero and
10126 // increasing by one in the order seen by the parser.  An individual peephole
10127 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10128 // on the command-line.
10129 //
10130 // ---------CURRENT LIMITATIONS----------------------------------------------
10131 //
10132 // Only match adjacent instructions in same basic block
10133 // Only equality constraints
10134 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10135 // Only one replacement instruction
10136 //
10137 // ---------EXAMPLE----------------------------------------------------------
10138 //
10139 // // pertinent parts of existing instructions in architecture description
10140 // instruct movI(eRegI dst, eRegI src) %{
10141 //   match(Set dst (CopyI src));
10142 // %}
10143 //
10144 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10145 //   match(Set dst (AddI dst src));
10146 //   effect(KILL cr);
10147 // %}
10148 //
10149 // // Change (inc mov) to lea
10150 // peephole %{
10151 //   // increment preceeded by register-register move
10152 //   peepmatch ( incI_eReg movI );
10153 //   // require that the destination register of the increment
10154 //   // match the destination register of the move
10155 //   peepconstraint ( 0.dst == 1.dst );
10156 //   // construct a replacement instruction that sets
10157 //   // the destination to ( move's source register + one )
10158 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10159 // %}
10160 //
10161 
10162 // // Change load of spilled value to only a spill
10163 // instruct storeI(memory mem, eRegI src) %{
10164 //   match(Set mem (StoreI mem src));
10165 // %}
10166 //
10167 // instruct loadI(eRegI dst, memory mem) %{
10168 //   match(Set dst (LoadI mem));
10169 // %}
10170 //
10171 // peephole %{
10172 //   peepmatch ( loadI storeI );
10173 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10174 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10175 // %}
10176 
10177 //----------SMARTSPILL RULES---------------------------------------------------
10178 // These must follow all instruction definitions as they use the names
10179 // defined in the instructions definitions.
10180 //
10181 // SPARC will probably not have any of these rules due to RISC instruction set.
10182 
10183 //----------PIPELINE-----------------------------------------------------------
10184 // Rules which define the behavior of the target architectures pipeline.