1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodDataOop.hpp"
  34 #include "oops/methodOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/timer.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/debug.hpp"
  47 
  48 #ifndef CC_INTERP
  49 #ifndef FAST_DISPATCH
  50 #define FAST_DISPATCH 1
  51 #endif
  52 #undef FAST_DISPATCH
  53 
  54 
  55 // Generation of Interpreter
  56 //
  57 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
  58 
  59 
  60 #define __ _masm->
  61 
  62 
  63 //----------------------------------------------------------------------------------------------------
  64 
  65 
  66 void InterpreterGenerator::save_native_result(void) {
  67   // result potentially in O0/O1: save it across calls
  68   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  69 
  70   // result potentially in F0/F1: save it across calls
  71   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  72 
  73   // save and restore any potential method result value around the unlocking operation
  74   __ stf(FloatRegisterImpl::D, F0, d_tmp);
  75 #ifdef _LP64
  76   __ stx(O0, l_tmp);
  77 #else
  78   __ std(O0, l_tmp);
  79 #endif
  80 }
  81 
  82 void InterpreterGenerator::restore_native_result(void) {
  83   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  84   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  85 
  86   // Restore any method result value
  87   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
  88 #ifdef _LP64
  89   __ ldx(l_tmp, O0);
  90 #else
  91   __ ldd(l_tmp, O0);
  92 #endif
  93 }
  94 
  95 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
  96   assert(!pass_oop || message == NULL, "either oop or message but not both");
  97   address entry = __ pc();
  98   // expression stack must be empty before entering the VM if an exception happened
  99   __ empty_expression_stack();
 100   // load exception object
 101   __ set((intptr_t)name, G3_scratch);
 102   if (pass_oop) {
 103     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 104   } else {
 105     __ set((intptr_t)message, G4_scratch);
 106     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 107   }
 108   // throw exception
 109   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 110   AddressLiteral thrower(Interpreter::throw_exception_entry());
 111   __ jump_to(thrower, G3_scratch);
 112   __ delayed()->nop();
 113   return entry;
 114 }
 115 
 116 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 117   address entry = __ pc();
 118   // expression stack must be empty before entering the VM if an exception
 119   // happened
 120   __ empty_expression_stack();
 121   // load exception object
 122   __ call_VM(Oexception,
 123              CAST_FROM_FN_PTR(address,
 124                               InterpreterRuntime::throw_ClassCastException),
 125              Otos_i);
 126   __ should_not_reach_here();
 127   return entry;
 128 }
 129 
 130 
 131 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 132   address entry = __ pc();
 133   // expression stack must be empty before entering the VM if an exception happened
 134   __ empty_expression_stack();
 135   // convention: expect aberrant index in register G3_scratch, then shuffle the
 136   // index to G4_scratch for the VM call
 137   __ mov(G3_scratch, G4_scratch);
 138   __ set((intptr_t)name, G3_scratch);
 139   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 140   __ should_not_reach_here();
 141   return entry;
 142 }
 143 
 144 
 145 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 146   address entry = __ pc();
 147   // expression stack must be empty before entering the VM if an exception happened
 148   __ empty_expression_stack();
 149   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 150   __ should_not_reach_here();
 151   return entry;
 152 }
 153 
 154 
 155 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 156   TosState incoming_state = state;
 157 
 158   Label cont;
 159   address compiled_entry = __ pc();
 160 
 161   address entry = __ pc();
 162 #if !defined(_LP64) && defined(COMPILER2)
 163   // All return values are where we want them, except for Longs.  C2 returns
 164   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 165   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 166   // build even if we are returning from interpreted we just do a little
 167   // stupid shuffing.
 168   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 169   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 170   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 171 
 172   if (incoming_state == ltos) {
 173     __ srl (G1,  0, O1);
 174     __ srlx(G1, 32, O0);
 175   }
 176 #endif // !_LP64 && COMPILER2
 177 
 178   __ bind(cont);
 179 
 180   // The callee returns with the stack possibly adjusted by adapter transition
 181   // We remove that possible adjustment here.
 182   // All interpreter local registers are untouched. Any result is passed back
 183   // in the O0/O1 or float registers. Before continuing, the arguments must be
 184   // popped from the java expression stack; i.e., Lesp must be adjusted.
 185 
 186   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 187 
 188   Label L_got_cache, L_giant_index;
 189   const Register cache = G3_scratch;
 190   const Register size  = G1_scratch;
 191   if (EnableInvokeDynamic) {
 192     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode.
 193     __ cmp_and_br(G1_scratch, Bytecodes::_invokedynamic, Assembler::equal, false, Assembler::pn, L_giant_index);
 194   }
 195   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
 196   __ bind(L_got_cache);
 197   __ ld_ptr(cache, constantPoolCacheOopDesc::base_offset() +
 198                    ConstantPoolCacheEntry::flags_offset(), size);
 199   __ and3(size, 0xFF, size);                   // argument size in words
 200   __ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes
 201   __ add(Lesp, size, Lesp);                    // pop arguments
 202   __ dispatch_next(state, step);
 203 
 204   // out of the main line of code...
 205   if (EnableInvokeDynamic) {
 206     __ bind(L_giant_index);
 207     __ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4));
 208     __ ba(L_got_cache);
 209   }
 210 
 211   return entry;
 212 }
 213 
 214 
 215 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 216   address entry = __ pc();
 217   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 218   { Label L;
 219     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 220     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 221     __ br_null(Gtemp, false, Assembler::pt, L);
 222     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 223     __ should_not_reach_here();
 224     __ bind(L);
 225   }
 226   __ dispatch_next(state, step);
 227   return entry;
 228 }
 229 
 230 // A result handler converts/unboxes a native call result into
 231 // a java interpreter/compiler result. The current frame is an
 232 // interpreter frame. The activation frame unwind code must be
 233 // consistent with that of TemplateTable::_return(...). In the
 234 // case of native methods, the caller's SP was not modified.
 235 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 236   address entry = __ pc();
 237   Register Itos_i  = Otos_i ->after_save();
 238   Register Itos_l  = Otos_l ->after_save();
 239   Register Itos_l1 = Otos_l1->after_save();
 240   Register Itos_l2 = Otos_l2->after_save();
 241   switch (type) {
 242     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 243     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 244     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 245     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 246     case T_LONG   :
 247 #ifndef _LP64
 248                     __ mov(O1, Itos_l2);  // move other half of long
 249 #endif              // ifdef or no ifdef, fall through to the T_INT case
 250     case T_INT    : __ mov(O0, Itos_i);                         break;
 251     case T_VOID   : /* nothing to do */                         break;
 252     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 253     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 254     case T_OBJECT :
 255       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 256       __ verify_oop(Itos_i);
 257       break;
 258     default       : ShouldNotReachHere();
 259   }
 260   __ ret();                           // return from interpreter activation
 261   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 262   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
 263   return entry;
 264 }
 265 
 266 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 267   address entry = __ pc();
 268   __ push(state);
 269   __ call_VM(noreg, runtime_entry);
 270   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 271   return entry;
 272 }
 273 
 274 
 275 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 276   address entry = __ pc();
 277   __ dispatch_next(state);
 278   return entry;
 279 }
 280 
 281 //
 282 // Helpers for commoning out cases in the various type of method entries.
 283 //
 284 
 285 // increment invocation count & check for overflow
 286 //
 287 // Note: checking for negative value instead of overflow
 288 //       so we have a 'sticky' overflow test
 289 //
 290 // Lmethod: method
 291 // ??: invocation counter
 292 //
 293 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 294   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
 295   if (TieredCompilation) {
 296     const int increment = InvocationCounter::count_increment;
 297     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
 298     Label no_mdo, done;
 299     if (ProfileInterpreter) {
 300       // If no method data exists, go to profile_continue.
 301       __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
 302       __ br_null(G4_scratch, false, Assembler::pn, no_mdo);
 303       // Increment counter
 304       Address mdo_invocation_counter(G4_scratch,
 305                                      in_bytes(methodDataOopDesc::invocation_counter_offset()) +
 306                                      in_bytes(InvocationCounter::counter_offset()));
 307       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 308                                  G3_scratch, Lscratch,
 309                                  Assembler::zero, overflow);
 310       __ ba(done);
 311     }
 312 
 313     // Increment counter in methodOop
 314     __ bind(no_mdo);
 315     Address invocation_counter(Lmethod,
 316                                in_bytes(methodOopDesc::invocation_counter_offset()) +
 317                                in_bytes(InvocationCounter::counter_offset()));
 318     __ increment_mask_and_jump(invocation_counter, increment, mask,
 319                                G3_scratch, Lscratch,
 320                                Assembler::zero, overflow);
 321     __ bind(done);
 322   } else {
 323     // Update standard invocation counters
 324     __ increment_invocation_counter(O0, G3_scratch);
 325     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
 326       Address interpreter_invocation_counter(Lmethod,in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
 327       __ ld(interpreter_invocation_counter, G3_scratch);
 328       __ inc(G3_scratch);
 329       __ st(G3_scratch, interpreter_invocation_counter);
 330     }
 331 
 332     if (ProfileInterpreter && profile_method != NULL) {
 333       // Test to see if we should create a method data oop
 334       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
 335       __ load_contents(profile_limit, G3_scratch);
 336       __ cmp_and_br(O0, G3_scratch, Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
 337 
 338       // if no method data exists, go to profile_method
 339       __ test_method_data_pointer(*profile_method);
 340     }
 341 
 342     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
 343     __ load_contents(invocation_limit, G3_scratch);
 344     __ cmp(O0, G3_scratch);
 345     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 346     __ delayed()->nop();
 347   }
 348 
 349 }
 350 
 351 // Allocate monitor and lock method (asm interpreter)
 352 // ebx - methodOop
 353 //
 354 void InterpreterGenerator::lock_method(void) {
 355   __ ld(Lmethod, in_bytes(methodOopDesc::access_flags_offset()), O0);  // Load access flags.
 356 
 357 #ifdef ASSERT
 358  { Label ok;
 359    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 360    __ br( Assembler::notZero, false, Assembler::pt, ok);
 361    __ delayed()->nop();
 362    __ stop("method doesn't need synchronization");
 363    __ bind(ok);
 364   }
 365 #endif // ASSERT
 366 
 367   // get synchronization object to O0
 368   { Label done;
 369     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 370     __ btst(JVM_ACC_STATIC, O0);
 371     __ br( Assembler::zero, true, Assembler::pt, done);
 372     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 373 
 374     __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
 375     __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
 376 
 377     // lock the mirror, not the klassOop
 378     __ ld_ptr( O0, mirror_offset, O0);
 379 
 380 #ifdef ASSERT
 381     __ tst(O0);
 382     __ breakpoint_trap(Assembler::zero);
 383 #endif // ASSERT
 384 
 385     __ bind(done);
 386   }
 387 
 388   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 389   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 390   // __ untested("lock_object from method entry");
 391   __ lock_object(Lmonitors, O0);
 392 }
 393 
 394 
 395 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 396                                                          Register Rscratch,
 397                                                          Register Rscratch2) {
 398   const int page_size = os::vm_page_size();
 399   Address saved_exception_pc(G2_thread, JavaThread::saved_exception_pc_offset());
 400   Label after_frame_check;
 401 
 402   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
 403 
 404   __ set(page_size, Rscratch);
 405   __ cmp_and_br(Rframe_size, Rscratch, Assembler::lessEqual, false, Assembler::pt, after_frame_check);
 406 
 407   // get the stack base, and in debug, verify it is non-zero
 408   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
 409 #ifdef ASSERT
 410   Label base_not_zero;
 411   __ br_notnull(Rscratch, false, Assembler::pn, base_not_zero);
 412   __ stop("stack base is zero in generate_stack_overflow_check");
 413   __ bind(base_not_zero);
 414 #endif
 415 
 416   // get the stack size, and in debug, verify it is non-zero
 417   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
 418   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
 419 #ifdef ASSERT
 420   Label size_not_zero;
 421   __ br_notnull(Rscratch2, false, Assembler::pn, size_not_zero);
 422   __ stop("stack size is zero in generate_stack_overflow_check");
 423   __ bind(size_not_zero);
 424 #endif
 425 
 426   // compute the beginning of the protected zone minus the requested frame size
 427   __ sub( Rscratch, Rscratch2,   Rscratch );
 428   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
 429   __ add( Rscratch, Rscratch2,   Rscratch );
 430 
 431   // Add in the size of the frame (which is the same as subtracting it from the
 432   // SP, which would take another register
 433   __ add( Rscratch, Rframe_size, Rscratch );
 434 
 435   // the frame is greater than one page in size, so check against
 436   // the bottom of the stack
 437   __ cmp_and_brx(SP, Rscratch, Assembler::greater, false, Assembler::pt, after_frame_check);
 438 
 439   // Save the return address as the exception pc
 440   __ st_ptr(O7, saved_exception_pc);
 441 
 442   // the stack will overflow, throw an exception
 443   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 444 
 445   // if you get to here, then there is enough stack space
 446   __ bind( after_frame_check );
 447 }
 448 
 449 
 450 //
 451 // Generate a fixed interpreter frame. This is identical setup for interpreted
 452 // methods and for native methods hence the shared code.
 453 
 454 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 455   //
 456   //
 457   // The entry code sets up a new interpreter frame in 4 steps:
 458   //
 459   // 1) Increase caller's SP by for the extra local space needed:
 460   //    (check for overflow)
 461   //    Efficient implementation of xload/xstore bytecodes requires
 462   //    that arguments and non-argument locals are in a contigously
 463   //    addressable memory block => non-argument locals must be
 464   //    allocated in the caller's frame.
 465   //
 466   // 2) Create a new stack frame and register window:
 467   //    The new stack frame must provide space for the standard
 468   //    register save area, the maximum java expression stack size,
 469   //    the monitor slots (0 slots initially), and some frame local
 470   //    scratch locations.
 471   //
 472   // 3) The following interpreter activation registers must be setup:
 473   //    Lesp       : expression stack pointer
 474   //    Lbcp       : bytecode pointer
 475   //    Lmethod    : method
 476   //    Llocals    : locals pointer
 477   //    Lmonitors  : monitor pointer
 478   //    LcpoolCache: constant pool cache
 479   //
 480   // 4) Initialize the non-argument locals if necessary:
 481   //    Non-argument locals may need to be initialized to NULL
 482   //    for GC to work. If the oop-map information is accurate
 483   //    (in the absence of the JSR problem), no initialization
 484   //    is necessary.
 485   //
 486   // (gri - 2/25/2000)
 487 
 488 
 489   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
 490   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
 491   const Address max_stack         (G5_method, methodOopDesc::max_stack_offset());
 492   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 493 
 494   const int extra_space =
 495     rounded_vm_local_words +                   // frame local scratch space
 496     //6815692//methodOopDesc::extra_stack_words() +       // extra push slots for MH adapters
 497     frame::memory_parameter_word_sp_offset +   // register save area
 498     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 499 
 500   const Register Glocals_size = G3;
 501   const Register Otmp1 = O3;
 502   const Register Otmp2 = O4;
 503   // Lscratch can't be used as a temporary because the call_stub uses
 504   // it to assert that the stack frame was setup correctly.
 505 
 506   __ lduh( size_of_parameters, Glocals_size);
 507 
 508   // Gargs points to first local + BytesPerWord
 509   // Set the saved SP after the register window save
 510   //
 511   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 512   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 513   __ add(Gargs, Otmp1, Gargs);
 514 
 515   if (native_call) {
 516     __ calc_mem_param_words( Glocals_size, Gframe_size );
 517     __ add( Gframe_size,  extra_space, Gframe_size);
 518     __ round_to( Gframe_size, WordsPerLong );
 519     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 520   } else {
 521 
 522     //
 523     // Compute number of locals in method apart from incoming parameters
 524     //
 525     __ lduh( size_of_locals, Otmp1 );
 526     __ sub( Otmp1, Glocals_size, Glocals_size );
 527     __ round_to( Glocals_size, WordsPerLong );
 528     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
 529 
 530     // see if the frame is greater than one page in size. If so,
 531     // then we need to verify there is enough stack space remaining
 532     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 533     __ lduh( max_stack, Gframe_size );
 534     __ add( Gframe_size, extra_space, Gframe_size );
 535     __ round_to( Gframe_size, WordsPerLong );
 536     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 537 
 538     // Add in java locals size for stack overflow check only
 539     __ add( Gframe_size, Glocals_size, Gframe_size );
 540 
 541     const Register Otmp2 = O4;
 542     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 543     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
 544 
 545     __ sub( Gframe_size, Glocals_size, Gframe_size);
 546 
 547     //
 548     // bump SP to accomodate the extra locals
 549     //
 550     __ sub( SP, Glocals_size, SP );
 551   }
 552 
 553   //
 554   // now set up a stack frame with the size computed above
 555   //
 556   __ neg( Gframe_size );
 557   __ save( SP, Gframe_size, SP );
 558 
 559   //
 560   // now set up all the local cache registers
 561   //
 562   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 563   // that all present references to Lbyte_code initialize the register
 564   // immediately before use
 565   if (native_call) {
 566     __ mov(G0, Lbcp);
 567   } else {
 568     __ ld_ptr(G5_method, methodOopDesc::const_offset(), Lbcp);
 569     __ add(Lbcp, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
 570   }
 571   __ mov( G5_method, Lmethod);                 // set Lmethod
 572   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 573   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 574 #ifdef _LP64
 575   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 576 #endif
 577   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 578 
 579   // setup interpreter activation registers
 580   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 581 
 582   if (ProfileInterpreter) {
 583 #ifdef FAST_DISPATCH
 584     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 585     // they both use I2.
 586     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 587 #endif // FAST_DISPATCH
 588     __ set_method_data_pointer();
 589   }
 590 
 591 }
 592 
 593 // Empty method, generate a very fast return.
 594 
 595 address InterpreterGenerator::generate_empty_entry(void) {
 596 
 597   // A method that does nother but return...
 598 
 599   address entry = __ pc();
 600   Label slow_path;
 601 
 602   __ verify_oop(G5_method);
 603 
 604   // do nothing for empty methods (do not even increment invocation counter)
 605   if ( UseFastEmptyMethods) {
 606     // If we need a safepoint check, generate full interpreter entry.
 607     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 608     __ set(sync_state, G3_scratch);
 609     __ cmp_and_br(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, false, Assembler::pn, slow_path);
 610 
 611     // Code: _return
 612     __ retl();
 613     __ delayed()->mov(O5_savedSP, SP);
 614 
 615     __ bind(slow_path);
 616     (void) generate_normal_entry(false);
 617 
 618     return entry;
 619   }
 620   return NULL;
 621 }
 622 
 623 // Call an accessor method (assuming it is resolved, otherwise drop into
 624 // vanilla (slow path) entry
 625 
 626 // Generates code to elide accessor methods
 627 // Uses G3_scratch and G1_scratch as scratch
 628 address InterpreterGenerator::generate_accessor_entry(void) {
 629 
 630   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 631   // parameter size = 1
 632   // Note: We can only use this code if the getfield has been resolved
 633   //       and if we don't have a null-pointer exception => check for
 634   //       these conditions first and use slow path if necessary.
 635   address entry = __ pc();
 636   Label slow_path;
 637 
 638 
 639   // XXX: for compressed oops pointer loading and decoding doesn't fit in
 640   // delay slot and damages G1
 641   if ( UseFastAccessorMethods && !UseCompressedOops ) {
 642     // Check if we need to reach a safepoint and generate full interpreter
 643     // frame if so.
 644     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 645     __ load_contents(sync_state, G3_scratch);
 646     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 647     __ cmp_and_br(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, false, Assembler::pn, slow_path);
 648 
 649     // Check if local 0 != NULL
 650     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 651     // check if local 0 == NULL and go the slow path
 652     __ br_null(Otos_i, false, Assembler::pn, slow_path);
 653 
 654 
 655     // read first instruction word and extract bytecode @ 1 and index @ 2
 656     // get first 4 bytes of the bytecodes (big endian!)
 657     __ ld_ptr(G5_method, methodOopDesc::const_offset(), G1_scratch);
 658     __ ld(G1_scratch, constMethodOopDesc::codes_offset(), G1_scratch);
 659 
 660     // move index @ 2 far left then to the right most two bytes.
 661     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
 662     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 663                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 664 
 665     // get constant pool cache
 666     __ ld_ptr(G5_method, methodOopDesc::constants_offset(), G3_scratch);
 667     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
 668 
 669     // get specific constant pool cache entry
 670     __ add(G3_scratch, G1_scratch, G3_scratch);
 671 
 672     // Check the constant Pool cache entry to see if it has been resolved.
 673     // If not, need the slow path.
 674     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
 675     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
 676     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 677     __ and3(G1_scratch, 0xFF, G1_scratch);
 678     __ cmp_and_br(G1_scratch, Bytecodes::_getfield, Assembler::notEqual, false, Assembler::pn, slow_path);
 679 
 680     // Get the type and return field offset from the constant pool cache
 681     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
 682     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
 683 
 684     Label xreturn_path;
 685     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 686     // because they are different sizes.
 687     // Get the type from the constant pool cache
 688     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
 689     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
 690     ConstantPoolCacheEntry::verify_tosBits();
 691     __ cmp(G1_scratch, atos );
 692     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 693     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 694     __ cmp(G1_scratch, itos);
 695     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 696     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 697     __ cmp(G1_scratch, stos);
 698     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 699     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 700     __ cmp(G1_scratch, ctos);
 701     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 702     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 703 #ifdef ASSERT
 704     __ cmp(G1_scratch, btos);
 705     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 706     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 707     __ should_not_reach_here();
 708 #endif
 709     __ ldsb(Otos_i, G3_scratch, Otos_i);
 710     __ bind(xreturn_path);
 711 
 712     // _ireturn/_areturn
 713     __ retl();                      // return from leaf routine
 714     __ delayed()->mov(O5_savedSP, SP);
 715 
 716     // Generate regular method entry
 717     __ bind(slow_path);
 718     (void) generate_normal_entry(false);
 719     return entry;
 720   }
 721   return NULL;
 722 }
 723 
 724 // Method entry for java.lang.ref.Reference.get.
 725 address InterpreterGenerator::generate_Reference_get_entry(void) {
 726 #ifndef SERIALGC
 727   // Code: _aload_0, _getfield, _areturn
 728   // parameter size = 1
 729   //
 730   // The code that gets generated by this routine is split into 2 parts:
 731   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 732   //    2. The slow path - which is an expansion of the regular method entry.
 733   //
 734   // Notes:-
 735   // * In the G1 code we do not check whether we need to block for
 736   //   a safepoint. If G1 is enabled then we must execute the specialized
 737   //   code for Reference.get (except when the Reference object is null)
 738   //   so that we can log the value in the referent field with an SATB
 739   //   update buffer.
 740   //   If the code for the getfield template is modified so that the
 741   //   G1 pre-barrier code is executed when the current method is
 742   //   Reference.get() then going through the normal method entry
 743   //   will be fine.
 744   // * The G1 code can, however, check the receiver object (the instance
 745   //   of java.lang.Reference) and jump to the slow path if null. If the
 746   //   Reference object is null then we obviously cannot fetch the referent
 747   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 748   //   regular method entry code to generate the NPE.
 749   //
 750   // This code is based on generate_accessor_enty.
 751 
 752   address entry = __ pc();
 753 
 754   const int referent_offset = java_lang_ref_Reference::referent_offset;
 755   guarantee(referent_offset > 0, "referent offset not initialized");
 756 
 757   if (UseG1GC) {
 758      Label slow_path;
 759 
 760     // In the G1 code we don't check if we need to reach a safepoint. We
 761     // continue and the thread will safepoint at the next bytecode dispatch.
 762 
 763     // Check if local 0 != NULL
 764     // If the receiver is null then it is OK to jump to the slow path.
 765     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 766     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
 767     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
 768     __ delayed()->nop();
 769 
 770 
 771     // Load the value of the referent field.
 772     if (Assembler::is_simm13(referent_offset)) {
 773       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 774     } else {
 775       __ set(referent_offset, G3_scratch);
 776       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 777     }
 778 
 779     // Generate the G1 pre-barrier code to log the value of
 780     // the referent field in an SATB buffer. Note with
 781     // these parameters the pre-barrier does not generate
 782     // the load of the previous value
 783 
 784     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 785                             Otos_i /* pre_val */,
 786                             G3_scratch /* tmp */,
 787                             true /* preserve_o_regs */);
 788 
 789     // _areturn
 790     __ retl();                      // return from leaf routine
 791     __ delayed()->mov(O5_savedSP, SP);
 792 
 793     // Generate regular method entry
 794     __ bind(slow_path);
 795     (void) generate_normal_entry(false);
 796     return entry;
 797   }
 798 #endif // SERIALGC
 799 
 800   // If G1 is not enabled then attempt to go through the accessor entry point
 801   // Reference.get is an accessor
 802   return generate_accessor_entry();
 803 }
 804 
 805 //
 806 // Interpreter stub for calling a native method. (asm interpreter)
 807 // This sets up a somewhat different looking stack for calling the native method
 808 // than the typical interpreter frame setup.
 809 //
 810 
 811 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 812   address entry = __ pc();
 813 
 814   // the following temporary registers are used during frame creation
 815   const Register Gtmp1 = G3_scratch ;
 816   const Register Gtmp2 = G1_scratch;
 817   bool inc_counter  = UseCompiler || CountCompiledCalls;
 818 
 819   // make sure registers are different!
 820   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 821 
 822   const Address Laccess_flags(Lmethod, methodOopDesc::access_flags_offset());
 823 
 824   __ verify_oop(G5_method);
 825 
 826   const Register Glocals_size = G3;
 827   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 828 
 829   // make sure method is native & not abstract
 830   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 831 #ifdef ASSERT
 832   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
 833   {
 834     Label L;
 835     __ btst(JVM_ACC_NATIVE, Gtmp1);
 836     __ br(Assembler::notZero, false, Assembler::pt, L);
 837     __ delayed()->nop();
 838     __ stop("tried to execute non-native method as native");
 839     __ bind(L);
 840   }
 841   { Label L;
 842     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 843     __ br(Assembler::zero, false, Assembler::pt, L);
 844     __ delayed()->nop();
 845     __ stop("tried to execute abstract method as non-abstract");
 846     __ bind(L);
 847   }
 848 #endif // ASSERT
 849 
 850  // generate the code to allocate the interpreter stack frame
 851   generate_fixed_frame(true);
 852 
 853   //
 854   // No locals to initialize for native method
 855   //
 856 
 857   // this slot will be set later, we initialize it to null here just in
 858   // case we get a GC before the actual value is stored later
 859   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
 860 
 861   const Address do_not_unlock_if_synchronized(G2_thread,
 862     JavaThread::do_not_unlock_if_synchronized_offset());
 863   // Since at this point in the method invocation the exception handler
 864   // would try to exit the monitor of synchronized methods which hasn't
 865   // been entered yet, we set the thread local variable
 866   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 867   // runtime, exception handling i.e. unlock_if_synchronized_method will
 868   // check this thread local flag.
 869   // This flag has two effects, one is to force an unwind in the topmost
 870   // interpreter frame and not perform an unlock while doing so.
 871 
 872   __ movbool(true, G3_scratch);
 873   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 874 
 875   // increment invocation counter and check for overflow
 876   //
 877   // Note: checking for negative value instead of overflow
 878   //       so we have a 'sticky' overflow test (may be of
 879   //       importance as soon as we have true MT/MP)
 880   Label invocation_counter_overflow;
 881   Label Lcontinue;
 882   if (inc_counter) {
 883     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 884 
 885   }
 886   __ bind(Lcontinue);
 887 
 888   bang_stack_shadow_pages(true);
 889 
 890   // reset the _do_not_unlock_if_synchronized flag
 891   __ stbool(G0, do_not_unlock_if_synchronized);
 892 
 893   // check for synchronized methods
 894   // Must happen AFTER invocation_counter check and stack overflow check,
 895   // so method is not locked if overflows.
 896 
 897   if (synchronized) {
 898     lock_method();
 899   } else {
 900 #ifdef ASSERT
 901     { Label ok;
 902       __ ld(Laccess_flags, O0);
 903       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 904       __ br( Assembler::zero, false, Assembler::pt, ok);
 905       __ delayed()->nop();
 906       __ stop("method needs synchronization");
 907       __ bind(ok);
 908     }
 909 #endif // ASSERT
 910   }
 911 
 912 
 913   // start execution
 914   __ verify_thread();
 915 
 916   // JVMTI support
 917   __ notify_method_entry();
 918 
 919   // native call
 920 
 921   // (note that O0 is never an oop--at most it is a handle)
 922   // It is important not to smash any handles created by this call,
 923   // until any oop handle in O0 is dereferenced.
 924 
 925   // (note that the space for outgoing params is preallocated)
 926 
 927   // get signature handler
 928   { Label L;
 929     Address signature_handler(Lmethod, methodOopDesc::signature_handler_offset());
 930     __ ld_ptr(signature_handler, G3_scratch);
 931     __ br_notnull(G3_scratch, false, Assembler::pt, L);
 932     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
 933     __ ld_ptr(signature_handler, G3_scratch);
 934     __ bind(L);
 935   }
 936 
 937   // Push a new frame so that the args will really be stored in
 938   // Copy a few locals across so the new frame has the variables
 939   // we need but these values will be dead at the jni call and
 940   // therefore not gc volatile like the values in the current
 941   // frame (Lmethod in particular)
 942 
 943   // Flush the method pointer to the register save area
 944   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 945   __ mov(Llocals, O1);
 946 
 947   // calculate where the mirror handle body is allocated in the interpreter frame:
 948   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
 949 
 950   // Calculate current frame size
 951   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 952   __ save(SP, O3, SP);        // Allocate an identical sized frame
 953 
 954   // Note I7 has leftover trash. Slow signature handler will fill it in
 955   // should we get there. Normal jni call will set reasonable last_Java_pc
 956   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 957   // in it).
 958 
 959   // Load interpreter frame's Lmethod into same register here
 960 
 961   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 962 
 963   __ mov(I1, Llocals);
 964   __ mov(I2, Lscratch2);     // save the address of the mirror
 965 
 966 
 967   // ONLY Lmethod and Llocals are valid here!
 968 
 969   // call signature handler, It will move the arg properly since Llocals in current frame
 970   // matches that in outer frame
 971 
 972   __ callr(G3_scratch, 0);
 973   __ delayed()->nop();
 974 
 975   // Result handler is in Lscratch
 976 
 977   // Reload interpreter frame's Lmethod since slow signature handler may block
 978   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 979 
 980   { Label not_static;
 981 
 982     __ ld(Laccess_flags, O0);
 983     __ btst(JVM_ACC_STATIC, O0);
 984     __ br( Assembler::zero, false, Assembler::pt, not_static);
 985     // get native function entry point(O0 is a good temp until the very end)
 986     __ delayed()->ld_ptr(Lmethod, in_bytes(methodOopDesc::native_function_offset()), O0);
 987     // for static methods insert the mirror argument
 988     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 989 
 990     __ ld_ptr(Lmethod, methodOopDesc:: constants_offset(), O1);
 991     __ ld_ptr(O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
 992     __ ld_ptr(O1, mirror_offset, O1);
 993 #ifdef ASSERT
 994     if (!PrintSignatureHandlers)  // do not dirty the output with this
 995     { Label L;
 996       __ br_notnull(O1, false, Assembler::pt, L);
 997       __ stop("mirror is missing");
 998       __ bind(L);
 999     }
1000 #endif // ASSERT
1001     __ st_ptr(O1, Lscratch2, 0);
1002     __ mov(Lscratch2, O1);
1003     __ bind(not_static);
1004   }
1005 
1006   // At this point, arguments have been copied off of stack into
1007   // their JNI positions, which are O1..O5 and SP[68..].
1008   // Oops are boxed in-place on the stack, with handles copied to arguments.
1009   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1010 
1011 #ifdef ASSERT
1012   { Label L;
1013     __ br_notnull(O0, false, Assembler::pt, L);
1014     __ stop("native entry point is missing");
1015     __ bind(L);
1016   }
1017 #endif // ASSERT
1018 
1019   //
1020   // setup the frame anchor
1021   //
1022   // The scavenge function only needs to know that the PC of this frame is
1023   // in the interpreter method entry code, it doesn't need to know the exact
1024   // PC and hence we can use O7 which points to the return address from the
1025   // previous call in the code stream (signature handler function)
1026   //
1027   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1028   // we have pushed the extra frame in order to protect the volatile register(s)
1029   // in that frame when we return from the jni call
1030   //
1031 
1032   __ set_last_Java_frame(FP, O7);
1033   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1034                    // not meaningless information that'll confuse me.
1035 
1036   // flush the windows now. We don't care about the current (protection) frame
1037   // only the outer frames
1038 
1039   __ flush_windows();
1040 
1041   // mark windows as flushed
1042   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1043   __ set(JavaFrameAnchor::flushed, G3_scratch);
1044   __ st(G3_scratch, flags);
1045 
1046   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1047 
1048   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1049 #ifdef ASSERT
1050   { Label L;
1051     __ ld(thread_state, G3_scratch);
1052     __ cmp_and_br(G3_scratch, _thread_in_Java, Assembler::equal, false, Assembler::pt, L);
1053     __ stop("Wrong thread state in native stub");
1054     __ bind(L);
1055   }
1056 #endif // ASSERT
1057   __ set(_thread_in_native, G3_scratch);
1058   __ st(G3_scratch, thread_state);
1059 
1060   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1061   __ save_thread(L7_thread_cache); // save Gthread
1062   __ callr(O0, 0);
1063   __ delayed()->
1064      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1065 
1066   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1067 
1068   __ restore_thread(L7_thread_cache); // restore G2_thread
1069   __ reinit_heapbase();
1070 
1071   // must we block?
1072 
1073   // Block, if necessary, before resuming in _thread_in_Java state.
1074   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1075   { Label no_block;
1076     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1077 
1078     // Switch thread to "native transition" state before reading the synchronization state.
1079     // This additional state is necessary because reading and testing the synchronization
1080     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1081     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1082     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1083     //     Thread A is resumed to finish this native method, but doesn't block here since it
1084     //     didn't see any synchronization is progress, and escapes.
1085     __ set(_thread_in_native_trans, G3_scratch);
1086     __ st(G3_scratch, thread_state);
1087     if(os::is_MP()) {
1088       if (UseMembar) {
1089         // Force this write out before the read below
1090         __ membar(Assembler::StoreLoad);
1091       } else {
1092         // Write serialization page so VM thread can do a pseudo remote membar.
1093         // We use the current thread pointer to calculate a thread specific
1094         // offset to write to within the page. This minimizes bus traffic
1095         // due to cache line collision.
1096         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1097       }
1098     }
1099     __ load_contents(sync_state, G3_scratch);
1100     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1101 
1102     Label L;
1103     __ br(Assembler::notEqual, false, Assembler::pn, L);
1104     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1105     __ br_zero(G3_scratch, no_block);
1106     __ bind(L);
1107 
1108     // Block.  Save any potential method result value before the operation and
1109     // use a leaf call to leave the last_Java_frame setup undisturbed.
1110     save_native_result();
1111     __ call_VM_leaf(L7_thread_cache,
1112                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1113                     G2_thread);
1114 
1115     // Restore any method result value
1116     restore_native_result();
1117     __ bind(no_block);
1118   }
1119 
1120   // Clear the frame anchor now
1121 
1122   __ reset_last_Java_frame();
1123 
1124   // Move the result handler address
1125   __ mov(Lscratch, G3_scratch);
1126   // return possible result to the outer frame
1127 #ifndef __LP64
1128   __ mov(O0, I0);
1129   __ restore(O1, G0, O1);
1130 #else
1131   __ restore(O0, G0, O0);
1132 #endif /* __LP64 */
1133 
1134   // Move result handler to expected register
1135   __ mov(G3_scratch, Lscratch);
1136 
1137   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1138   // switch to thread_in_Java.
1139 
1140   __ set(_thread_in_Java, G3_scratch);
1141   __ st(G3_scratch, thread_state);
1142 
1143   // reset handle block
1144   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1145   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1146 
1147   // If we have an oop result store it where it will be safe for any further gc
1148   // until we return now that we've released the handle it might be protected by
1149 
1150   {
1151     Label no_oop, store_result;
1152 
1153     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1154     __ cmp_and_brx(G3_scratch, Lscratch, Assembler::notEqual, false, Assembler::pt, no_oop);
1155     __ addcc(G0, O0, O0);
1156     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1157     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1158     __ mov(G0, O0);
1159 
1160     __ bind(store_result);
1161     // Store it where gc will look for it and result handler expects it.
1162     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1163 
1164     __ bind(no_oop);
1165 
1166   }
1167 
1168 
1169   // handle exceptions (exception handling will handle unlocking!)
1170   { Label L;
1171     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1172     __ ld_ptr(exception_addr, Gtemp);
1173     __ br_null(Gtemp, false, Assembler::pt, L);
1174     // Note: This could be handled more efficiently since we know that the native
1175     //       method doesn't have an exception handler. We could directly return
1176     //       to the exception handler for the caller.
1177     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1178     __ should_not_reach_here();
1179     __ bind(L);
1180   }
1181 
1182   // JVMTI support (preserves thread register)
1183   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1184 
1185   if (synchronized) {
1186     // save and restore any potential method result value around the unlocking operation
1187     save_native_result();
1188 
1189     __ add( __ top_most_monitor(), O1);
1190     __ unlock_object(O1);
1191 
1192     restore_native_result();
1193   }
1194 
1195 #if defined(COMPILER2) && !defined(_LP64)
1196 
1197   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1198   // or compiled so just be safe.
1199 
1200   __ sllx(O0, 32, G1);          // Shift bits into high G1
1201   __ srl (O1, 0, O1);           // Zero extend O1
1202   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1203 
1204 #endif /* COMPILER2 && !_LP64 */
1205 
1206   // dispose of return address and remove activation
1207 #ifdef ASSERT
1208   {
1209     Label ok;
1210     __ cmp_and_brx(I5_savedSP, FP, Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
1211     __ stop("bad I5_savedSP value");
1212     __ should_not_reach_here();
1213     __ bind(ok);
1214   }
1215 #endif
1216   if (TraceJumps) {
1217     // Move target to register that is recordable
1218     __ mov(Lscratch, G3_scratch);
1219     __ JMP(G3_scratch, 0);
1220   } else {
1221     __ jmp(Lscratch, 0);
1222   }
1223   __ delayed()->nop();
1224 
1225 
1226   if (inc_counter) {
1227     // handle invocation counter overflow
1228     __ bind(invocation_counter_overflow);
1229     generate_counter_overflow(Lcontinue);
1230   }
1231 
1232 
1233 
1234   return entry;
1235 }
1236 
1237 
1238 // Generic method entry to (asm) interpreter
1239 //------------------------------------------------------------------------------------------------------------------------
1240 //
1241 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1242   address entry = __ pc();
1243 
1244   bool inc_counter  = UseCompiler || CountCompiledCalls;
1245 
1246   // the following temporary registers are used during frame creation
1247   const Register Gtmp1 = G3_scratch ;
1248   const Register Gtmp2 = G1_scratch;
1249 
1250   // make sure registers are different!
1251   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1252 
1253   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
1254   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
1255   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1256   // and use in the asserts.
1257   const Address access_flags      (Lmethod,   methodOopDesc::access_flags_offset());
1258 
1259   __ verify_oop(G5_method);
1260 
1261   const Register Glocals_size = G3;
1262   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1263 
1264   // make sure method is not native & not abstract
1265   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1266 #ifdef ASSERT
1267   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
1268   {
1269     Label L;
1270     __ btst(JVM_ACC_NATIVE, Gtmp1);
1271     __ br(Assembler::zero, false, Assembler::pt, L);
1272     __ delayed()->nop();
1273     __ stop("tried to execute native method as non-native");
1274     __ bind(L);
1275   }
1276   { Label L;
1277     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1278     __ br(Assembler::zero, false, Assembler::pt, L);
1279     __ delayed()->nop();
1280     __ stop("tried to execute abstract method as non-abstract");
1281     __ bind(L);
1282   }
1283 #endif // ASSERT
1284 
1285   // generate the code to allocate the interpreter stack frame
1286 
1287   generate_fixed_frame(false);
1288 
1289 #ifdef FAST_DISPATCH
1290   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1291                                           // set bytecode dispatch table base
1292 #endif
1293 
1294   //
1295   // Code to initialize the extra (i.e. non-parm) locals
1296   //
1297   Register init_value = noreg;    // will be G0 if we must clear locals
1298   // The way the code was setup before zerolocals was always true for vanilla java entries.
1299   // It could only be false for the specialized entries like accessor or empty which have
1300   // no extra locals so the testing was a waste of time and the extra locals were always
1301   // initialized. We removed this extra complication to already over complicated code.
1302 
1303   init_value = G0;
1304   Label clear_loop;
1305 
1306   // NOTE: If you change the frame layout, this code will need to
1307   // be updated!
1308   __ lduh( size_of_locals, O2 );
1309   __ lduh( size_of_parameters, O1 );
1310   __ sll( O2, Interpreter::logStackElementSize, O2);
1311   __ sll( O1, Interpreter::logStackElementSize, O1 );
1312   __ sub( Llocals, O2, O2 );
1313   __ sub( Llocals, O1, O1 );
1314 
1315   __ bind( clear_loop );
1316   __ inc( O2, wordSize );
1317 
1318   __ cmp( O2, O1 );
1319   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1320   __ delayed()->st_ptr( init_value, O2, 0 );
1321 
1322   const Address do_not_unlock_if_synchronized(G2_thread,
1323     JavaThread::do_not_unlock_if_synchronized_offset());
1324   // Since at this point in the method invocation the exception handler
1325   // would try to exit the monitor of synchronized methods which hasn't
1326   // been entered yet, we set the thread local variable
1327   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1328   // runtime, exception handling i.e. unlock_if_synchronized_method will
1329   // check this thread local flag.
1330   __ movbool(true, G3_scratch);
1331   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1332 
1333   // increment invocation counter and check for overflow
1334   //
1335   // Note: checking for negative value instead of overflow
1336   //       so we have a 'sticky' overflow test (may be of
1337   //       importance as soon as we have true MT/MP)
1338   Label invocation_counter_overflow;
1339   Label profile_method;
1340   Label profile_method_continue;
1341   Label Lcontinue;
1342   if (inc_counter) {
1343     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1344     if (ProfileInterpreter) {
1345       __ bind(profile_method_continue);
1346     }
1347   }
1348   __ bind(Lcontinue);
1349 
1350   bang_stack_shadow_pages(false);
1351 
1352   // reset the _do_not_unlock_if_synchronized flag
1353   __ stbool(G0, do_not_unlock_if_synchronized);
1354 
1355   // check for synchronized methods
1356   // Must happen AFTER invocation_counter check and stack overflow check,
1357   // so method is not locked if overflows.
1358 
1359   if (synchronized) {
1360     lock_method();
1361   } else {
1362 #ifdef ASSERT
1363     { Label ok;
1364       __ ld(access_flags, O0);
1365       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1366       __ br( Assembler::zero, false, Assembler::pt, ok);
1367       __ delayed()->nop();
1368       __ stop("method needs synchronization");
1369       __ bind(ok);
1370     }
1371 #endif // ASSERT
1372   }
1373 
1374   // start execution
1375 
1376   __ verify_thread();
1377 
1378   // jvmti support
1379   __ notify_method_entry();
1380 
1381   // start executing instructions
1382   __ dispatch_next(vtos);
1383 
1384 
1385   if (inc_counter) {
1386     if (ProfileInterpreter) {
1387       // We have decided to profile this method in the interpreter
1388       __ bind(profile_method);
1389 
1390       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1391       __ set_method_data_pointer_for_bcp();
1392       __ ba(profile_method_continue);
1393     }
1394 
1395     // handle invocation counter overflow
1396     __ bind(invocation_counter_overflow);
1397     generate_counter_overflow(Lcontinue);
1398   }
1399 
1400 
1401   return entry;
1402 }
1403 
1404 
1405 //----------------------------------------------------------------------------------------------------
1406 // Entry points & stack frame layout
1407 //
1408 // Here we generate the various kind of entries into the interpreter.
1409 // The two main entry type are generic bytecode methods and native call method.
1410 // These both come in synchronized and non-synchronized versions but the
1411 // frame layout they create is very similar. The other method entry
1412 // types are really just special purpose entries that are really entry
1413 // and interpretation all in one. These are for trivial methods like
1414 // accessor, empty, or special math methods.
1415 //
1416 // When control flow reaches any of the entry types for the interpreter
1417 // the following holds ->
1418 //
1419 // C2 Calling Conventions:
1420 //
1421 // The entry code below assumes that the following registers are set
1422 // when coming in:
1423 //    G5_method: holds the methodOop of the method to call
1424 //    Lesp:    points to the TOS of the callers expression stack
1425 //             after having pushed all the parameters
1426 //
1427 // The entry code does the following to setup an interpreter frame
1428 //   pop parameters from the callers stack by adjusting Lesp
1429 //   set O0 to Lesp
1430 //   compute X = (max_locals - num_parameters)
1431 //   bump SP up by X to accomadate the extra locals
1432 //   compute X = max_expression_stack
1433 //               + vm_local_words
1434 //               + 16 words of register save area
1435 //   save frame doing a save sp, -X, sp growing towards lower addresses
1436 //   set Lbcp, Lmethod, LcpoolCache
1437 //   set Llocals to i0
1438 //   set Lmonitors to FP - rounded_vm_local_words
1439 //   set Lesp to Lmonitors - 4
1440 //
1441 //  The frame has now been setup to do the rest of the entry code
1442 
1443 // Try this optimization:  Most method entries could live in a
1444 // "one size fits all" stack frame without all the dynamic size
1445 // calculations.  It might be profitable to do all this calculation
1446 // statically and approximately for "small enough" methods.
1447 
1448 //-----------------------------------------------------------------------------------------------
1449 
1450 // C1 Calling conventions
1451 //
1452 // Upon method entry, the following registers are setup:
1453 //
1454 // g2 G2_thread: current thread
1455 // g5 G5_method: method to activate
1456 // g4 Gargs  : pointer to last argument
1457 //
1458 //
1459 // Stack:
1460 //
1461 // +---------------+ <--- sp
1462 // |               |
1463 // : reg save area :
1464 // |               |
1465 // +---------------+ <--- sp + 0x40
1466 // |               |
1467 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1468 // |               |
1469 // +---------------+ <--- sp + 0x5c
1470 // |               |
1471 // :     free      :
1472 // |               |
1473 // +---------------+ <--- Gargs
1474 // |               |
1475 // :   arguments   :
1476 // |               |
1477 // +---------------+
1478 // |               |
1479 //
1480 //
1481 //
1482 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
1483 //
1484 // +---------------+ <--- sp
1485 // |               |
1486 // : reg save area :
1487 // |               |
1488 // +---------------+ <--- sp + 0x40
1489 // |               |
1490 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1491 // |               |
1492 // +---------------+ <--- sp + 0x5c
1493 // |               |
1494 // :               :
1495 // |               | <--- Lesp
1496 // +---------------+ <--- Lmonitors (fp - 0x18)
1497 // |   VM locals   |
1498 // +---------------+ <--- fp
1499 // |               |
1500 // : reg save area :
1501 // |               |
1502 // +---------------+ <--- fp + 0x40
1503 // |               |
1504 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1505 // |               |
1506 // +---------------+ <--- fp + 0x5c
1507 // |               |
1508 // :     free      :
1509 // |               |
1510 // +---------------+
1511 // |               |
1512 // : nonarg locals :
1513 // |               |
1514 // +---------------+
1515 // |               |
1516 // :   arguments   :
1517 // |               | <--- Llocals
1518 // +---------------+ <--- Gargs
1519 // |               |
1520 
1521 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
1522 
1523   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
1524   // expression stack, the callee will have callee_extra_locals (so we can account for
1525   // frame extension) and monitor_size for monitors. Basically we need to calculate
1526   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
1527   //
1528   //
1529   // The big complicating thing here is that we must ensure that the stack stays properly
1530   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
1531   // needs to be aligned for). We are given that the sp (fp) is already aligned by
1532   // the caller so we must ensure that it is properly aligned for our callee.
1533   //
1534   const int rounded_vm_local_words =
1535        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1536   // callee_locals and max_stack are counts, not the size in frame.
1537   const int locals_size =
1538        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
1539   const int max_stack_words = max_stack * Interpreter::stackElementWords;
1540   return (round_to((max_stack_words
1541                    //6815692//+ methodOopDesc::extra_stack_words()
1542                    + rounded_vm_local_words
1543                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
1544                    // already rounded
1545                    + locals_size + monitor_size);
1546 }
1547 
1548 // How much stack a method top interpreter activation needs in words.
1549 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
1550 
1551   // See call_stub code
1552   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
1553                                  WordsPerLong);    // 7 + register save area
1554 
1555   // Save space for one monitor to get into the interpreted method in case
1556   // the method is synchronized
1557   int monitor_size    = method->is_synchronized() ?
1558                                 1*frame::interpreter_frame_monitor_size() : 0;
1559   return size_activation_helper(method->max_locals(), method->max_stack(),
1560                                  monitor_size) + call_stub_size;
1561 }
1562 
1563 int AbstractInterpreter::layout_activation(methodOop method,
1564                                            int tempcount,
1565                                            int popframe_extra_args,
1566                                            int moncount,
1567                                            int caller_actual_parameters,
1568                                            int callee_param_count,
1569                                            int callee_local_count,
1570                                            frame* caller,
1571                                            frame* interpreter_frame,
1572                                            bool is_top_frame) {
1573   // Note: This calculation must exactly parallel the frame setup
1574   // in InterpreterGenerator::generate_fixed_frame.
1575   // If f!=NULL, set up the following variables:
1576   //   - Lmethod
1577   //   - Llocals
1578   //   - Lmonitors (to the indicated number of monitors)
1579   //   - Lesp (to the indicated number of temps)
1580   // The frame f (if not NULL) on entry is a description of the caller of the frame
1581   // we are about to layout. We are guaranteed that we will be able to fill in a
1582   // new interpreter frame as its callee (i.e. the stack space is allocated and
1583   // the amount was determined by an earlier call to this method with f == NULL).
1584   // On return f (if not NULL) while describe the interpreter frame we just layed out.
1585 
1586   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
1587   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1588 
1589   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
1590   //
1591   // Note: if you look closely this appears to be doing something much different
1592   // than generate_fixed_frame. What is happening is this. On sparc we have to do
1593   // this dance with interpreter_sp_adjustment because the window save area would
1594   // appear just below the bottom (tos) of the caller's java expression stack. Because
1595   // the interpreter want to have the locals completely contiguous generate_fixed_frame
1596   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
1597   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
1598   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
1599   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
1600   // because the oldest frame would have adjust its callers frame and yet that frame
1601   // already exists and isn't part of this array of frames we are unpacking. So at first
1602   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
1603   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
1604   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
1605   // add up. It does seem like it simpler to account for the adjustment here (and remove the
1606   // callee... parameters here). However this would mean that this routine would have to take
1607   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
1608   // and run the calling loop in the reverse order. This would also would appear to mean making
1609   // this code aware of what the interactions are when that initial caller fram was an osr or
1610   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
1611   // there is no sense in messing working code.
1612   //
1613 
1614   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
1615   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
1616 
1617   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
1618                                               monitor_size);
1619 
1620   if (interpreter_frame != NULL) {
1621     // The skeleton frame must already look like an interpreter frame
1622     // even if not fully filled out.
1623     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
1624 
1625     intptr_t* fp = interpreter_frame->fp();
1626 
1627     JavaThread* thread = JavaThread::current();
1628     RegisterMap map(thread, false);
1629     // More verification that skeleton frame is properly walkable
1630     assert(fp == caller->sp(), "fp must match");
1631 
1632     intptr_t* montop     = fp - rounded_vm_local_words;
1633 
1634     // preallocate monitors (cf. __ add_monitor_to_stack)
1635     intptr_t* monitors = montop - monitor_size;
1636 
1637     // preallocate stack space
1638     intptr_t*  esp = monitors - 1 -
1639                      (tempcount * Interpreter::stackElementWords) -
1640                      popframe_extra_args;
1641 
1642     int local_words = method->max_locals() * Interpreter::stackElementWords;
1643     NEEDS_CLEANUP;
1644     intptr_t* locals;
1645     if (caller->is_interpreted_frame()) {
1646       // Can force the locals area to end up properly overlapping the top of the expression stack.
1647       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
1648       // Note that this computation means we replace size_of_parameters() values from the caller
1649       // interpreter frame's expression stack with our argument locals
1650       int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
1651       locals = Lesp_ptr + parm_words;
1652       int delta = local_words - parm_words;
1653       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
1654       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
1655     } else {
1656       assert(caller->is_compiled_frame() || caller->is_entry_frame() || caller->is_ricochet_frame(), "only possible cases");
1657       // Don't have Lesp available; lay out locals block in the caller
1658       // adjacent to the register window save area.
1659       //
1660       // Compiled frames do not allocate a varargs area which is why this if
1661       // statement is needed.
1662       //
1663       if (caller->is_compiled_frame()) {
1664         locals = fp + frame::register_save_words + local_words - 1;
1665       } else {
1666         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
1667       }
1668       if (!caller->is_entry_frame()) {
1669         // Caller wants his own SP back
1670         int caller_frame_size = caller->cb()->frame_size();
1671         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
1672       }
1673     }
1674     if (TraceDeoptimization) {
1675       if (caller->is_entry_frame()) {
1676         // make sure I5_savedSP and the entry frames notion of saved SP
1677         // agree.  This assertion duplicate a check in entry frame code
1678         // but catches the failure earlier.
1679         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
1680                "would change callers SP");
1681       }
1682       if (caller->is_entry_frame()) {
1683         tty->print("entry ");
1684       }
1685       if (caller->is_compiled_frame()) {
1686         tty->print("compiled ");
1687         if (caller->is_deoptimized_frame()) {
1688           tty->print("(deopt) ");
1689         }
1690       }
1691       if (caller->is_interpreted_frame()) {
1692         tty->print("interpreted ");
1693       }
1694       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
1695       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
1696       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
1697       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
1698       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
1699       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
1700       tty->print_cr("Llocals = 0x%x", locals);
1701       tty->print_cr("Lesp = 0x%x", esp);
1702       tty->print_cr("Lmonitors = 0x%x", monitors);
1703     }
1704 
1705     if (method->max_locals() > 0) {
1706       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
1707       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
1708       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
1709       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
1710     }
1711 #ifdef _LP64
1712     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
1713 #endif
1714 
1715     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
1716     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
1717     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
1718     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
1719     // Llast_SP will be same as SP as there is no adapter space
1720     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
1721     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
1722 #ifdef FAST_DISPATCH
1723     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
1724 #endif
1725 
1726 
1727 #ifdef ASSERT
1728     BasicObjectLock* mp = (BasicObjectLock*)monitors;
1729 
1730     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
1731     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
1732     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
1733     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
1734     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
1735 
1736     // check bounds
1737     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
1738     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
1739     assert(lo < monitors && montop <= hi, "monitors in bounds");
1740     assert(lo <= esp && esp < monitors, "esp in bounds");
1741 #endif // ASSERT
1742   }
1743 
1744   return raw_frame_size;
1745 }
1746 
1747 //----------------------------------------------------------------------------------------------------
1748 // Exceptions
1749 void TemplateInterpreterGenerator::generate_throw_exception() {
1750 
1751   // Entry point in previous activation (i.e., if the caller was interpreted)
1752   Interpreter::_rethrow_exception_entry = __ pc();
1753   // O0: exception
1754 
1755   // entry point for exceptions thrown within interpreter code
1756   Interpreter::_throw_exception_entry = __ pc();
1757   __ verify_thread();
1758   // expression stack is undefined here
1759   // O0: exception, i.e. Oexception
1760   // Lbcp: exception bcx
1761   __ verify_oop(Oexception);
1762 
1763 
1764   // expression stack must be empty before entering the VM in case of an exception
1765   __ empty_expression_stack();
1766   // find exception handler address and preserve exception oop
1767   // call C routine to find handler and jump to it
1768   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1769   __ push_ptr(O1); // push exception for exception handler bytecodes
1770 
1771   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1772   __ delayed()->nop();
1773 
1774 
1775   // if the exception is not handled in the current frame
1776   // the frame is removed and the exception is rethrown
1777   // (i.e. exception continuation is _rethrow_exception)
1778   //
1779   // Note: At this point the bci is still the bxi for the instruction which caused
1780   //       the exception and the expression stack is empty. Thus, for any VM calls
1781   //       at this point, GC will find a legal oop map (with empty expression stack).
1782 
1783   // in current activation
1784   // tos: exception
1785   // Lbcp: exception bcp
1786 
1787   //
1788   // JVMTI PopFrame support
1789   //
1790 
1791   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1792   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1793   // Set the popframe_processing bit in popframe_condition indicating that we are
1794   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1795   // popframe handling cycles.
1796 
1797   __ ld(popframe_condition_addr, G3_scratch);
1798   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1799   __ stw(G3_scratch, popframe_condition_addr);
1800 
1801   // Empty the expression stack, as in normal exception handling
1802   __ empty_expression_stack();
1803   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1804 
1805   {
1806     // Check to see whether we are returning to a deoptimized frame.
1807     // (The PopFrame call ensures that the caller of the popped frame is
1808     // either interpreted or compiled and deoptimizes it if compiled.)
1809     // In this case, we can't call dispatch_next() after the frame is
1810     // popped, but instead must save the incoming arguments and restore
1811     // them after deoptimization has occurred.
1812     //
1813     // Note that we don't compare the return PC against the
1814     // deoptimization blob's unpack entry because of the presence of
1815     // adapter frames in C2.
1816     Label caller_not_deoptimized;
1817     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1818     __ br_notnull(O0, false, Assembler::pt, caller_not_deoptimized);
1819 
1820     const Register Gtmp1 = G3_scratch;
1821     const Register Gtmp2 = G1_scratch;
1822 
1823     // Compute size of arguments for saving when returning to deoptimized caller
1824     __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
1825     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1826     __ sub(Llocals, Gtmp1, Gtmp2);
1827     __ add(Gtmp2, wordSize, Gtmp2);
1828     // Save these arguments
1829     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1830     // Inform deoptimization that it is responsible for restoring these arguments
1831     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1832     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1833     __ st(Gtmp1, popframe_condition_addr);
1834 
1835     // Return from the current method
1836     // The caller's SP was adjusted upon method entry to accomodate
1837     // the callee's non-argument locals. Undo that adjustment.
1838     __ ret();
1839     __ delayed()->restore(I5_savedSP, G0, SP);
1840 
1841     __ bind(caller_not_deoptimized);
1842   }
1843 
1844   // Clear the popframe condition flag
1845   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1846 
1847   // Get out of the current method (how this is done depends on the particular compiler calling
1848   // convention that the interpreter currently follows)
1849   // The caller's SP was adjusted upon method entry to accomodate
1850   // the callee's non-argument locals. Undo that adjustment.
1851   __ restore(I5_savedSP, G0, SP);
1852   // The method data pointer was incremented already during
1853   // call profiling. We have to restore the mdp for the current bcp.
1854   if (ProfileInterpreter) {
1855     __ set_method_data_pointer_for_bcp();
1856   }
1857   // Resume bytecode interpretation at the current bcp
1858   __ dispatch_next(vtos);
1859   // end of JVMTI PopFrame support
1860 
1861   Interpreter::_remove_activation_entry = __ pc();
1862 
1863   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1864   __ pop_ptr(Oexception);                                  // get exception
1865 
1866   // Intel has the following comment:
1867   //// remove the activation (without doing throws on illegalMonitorExceptions)
1868   // They remove the activation without checking for bad monitor state.
1869   // %%% We should make sure this is the right semantics before implementing.
1870 
1871   // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
1872   __ set_vm_result(Oexception);
1873   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1874 
1875   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1876 
1877   __ get_vm_result(Oexception);
1878   __ verify_oop(Oexception);
1879 
1880     const int return_reg_adjustment = frame::pc_return_offset;
1881   Address issuing_pc_addr(I7, return_reg_adjustment);
1882 
1883   // We are done with this activation frame; find out where to go next.
1884   // The continuation point will be an exception handler, which expects
1885   // the following registers set up:
1886   //
1887   // Oexception: exception
1888   // Oissuing_pc: the local call that threw exception
1889   // Other On: garbage
1890   // In/Ln:  the contents of the caller's register window
1891   //
1892   // We do the required restore at the last possible moment, because we
1893   // need to preserve some state across a runtime call.
1894   // (Remember that the caller activation is unknown--it might not be
1895   // interpreted, so things like Lscratch are useless in the caller.)
1896 
1897   // Although the Intel version uses call_C, we can use the more
1898   // compact call_VM.  (The only real difference on SPARC is a
1899   // harmlessly ignored [re]set_last_Java_frame, compared with
1900   // the Intel code which lacks this.)
1901   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1902   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1903   __ super_call_VM_leaf(L7_thread_cache,
1904                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1905                         G2_thread, Oissuing_pc->after_save());
1906 
1907   // The caller's SP was adjusted upon method entry to accomodate
1908   // the callee's non-argument locals. Undo that adjustment.
1909   __ JMP(O0, 0);                         // return exception handler in caller
1910   __ delayed()->restore(I5_savedSP, G0, SP);
1911 
1912   // (same old exception object is already in Oexception; see above)
1913   // Note that an "issuing PC" is actually the next PC after the call
1914 }
1915 
1916 
1917 //
1918 // JVMTI ForceEarlyReturn support
1919 //
1920 
1921 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1922   address entry = __ pc();
1923 
1924   __ empty_expression_stack();
1925   __ load_earlyret_value(state);
1926 
1927   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1928   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1929 
1930   // Clear the earlyret state
1931   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1932 
1933   __ remove_activation(state,
1934                        /* throw_monitor_exception */ false,
1935                        /* install_monitor_exception */ false);
1936 
1937   // The caller's SP was adjusted upon method entry to accomodate
1938   // the callee's non-argument locals. Undo that adjustment.
1939   __ ret();                             // return to caller
1940   __ delayed()->restore(I5_savedSP, G0, SP);
1941 
1942   return entry;
1943 } // end of JVMTI ForceEarlyReturn support
1944 
1945 
1946 //------------------------------------------------------------------------------------------------------------------------
1947 // Helper for vtos entry point generation
1948 
1949 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1950   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1951   Label L;
1952   aep = __ pc(); __ push_ptr(); __ ba(L);
1953   fep = __ pc(); __ push_f();   __ ba(L);
1954   dep = __ pc(); __ push_d();   __ ba(L);
1955   lep = __ pc(); __ push_l();   __ ba(L);
1956   iep = __ pc(); __ push_i();
1957   bep = cep = sep = iep;                        // there aren't any
1958   vep = __ pc(); __ bind(L);                    // fall through
1959   generate_and_dispatch(t);
1960 }
1961 
1962 // --------------------------------------------------------------------------------
1963 
1964 
1965 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1966  : TemplateInterpreterGenerator(code) {
1967    generate_all(); // down here so it can be "virtual"
1968 }
1969 
1970 // --------------------------------------------------------------------------------
1971 
1972 // Non-product code
1973 #ifndef PRODUCT
1974 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1975   address entry = __ pc();
1976 
1977   __ push(state);
1978   __ mov(O7, Lscratch); // protect return address within interpreter
1979 
1980   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
1981   __ mov( Otos_l2, G3_scratch );
1982   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
1983   __ mov(Lscratch, O7); // restore return address
1984   __ pop(state);
1985   __ retl();
1986   __ delayed()->nop();
1987 
1988   return entry;
1989 }
1990 
1991 
1992 // helpers for generate_and_dispatch
1993 
1994 void TemplateInterpreterGenerator::count_bytecode() {
1995   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
1996 }
1997 
1998 
1999 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2000   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
2001 }
2002 
2003 
2004 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2005   AddressLiteral index   (&BytecodePairHistogram::_index);
2006   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
2007 
2008   // get index, shift out old bytecode, bring in new bytecode, and store it
2009   // _index = (_index >> log2_number_of_codes) |
2010   //          (bytecode << log2_number_of_codes);
2011 
2012   __ load_contents(index, G4_scratch);
2013   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
2014   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
2015   __ or3( G3_scratch,  G4_scratch, G4_scratch );
2016   __ store_contents(G4_scratch, index, G3_scratch);
2017 
2018   // bump bucket contents
2019   // _counters[_index] ++;
2020 
2021   __ set(counters, G3_scratch);                       // loads into G3_scratch
2022   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2023   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2024   __ ld (G3_scratch, 0, G4_scratch);
2025   __ inc (G4_scratch);
2026   __ st (G4_scratch, 0, G3_scratch);
2027 }
2028 
2029 
2030 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2031   // Call a little run-time stub to avoid blow-up for each bytecode.
2032   // The run-time runtime saves the right registers, depending on
2033   // the tosca in-state for the given template.
2034   address entry = Interpreter::trace_code(t->tos_in());
2035   guarantee(entry != NULL, "entry must have been generated");
2036   __ call(entry, relocInfo::none);
2037   __ delayed()->nop();
2038 }
2039 
2040 
2041 void TemplateInterpreterGenerator::stop_interpreter_at() {
2042   AddressLiteral counter(&BytecodeCounter::_counter_value);
2043   __ load_contents(counter, G3_scratch);
2044   AddressLiteral stop_at(&StopInterpreterAt);
2045   __ load_ptr_contents(stop_at, G4_scratch);
2046   __ cmp(G3_scratch, G4_scratch);
2047   __ breakpoint_trap(Assembler::equal);
2048 }
2049 #endif // not PRODUCT
2050 #endif // !CC_INTERP