1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_sparc.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #ifndef SERIALGC
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  42 #include "gc_implementation/g1/heapRegion.hpp"
  43 #endif
  44 
  45 #ifdef PRODUCT
  46 #define BLOCK_COMMENT(str) /* nothing */
  47 #else
  48 #define BLOCK_COMMENT(str) block_comment(str)
  49 #endif
  50 
  51 // Convert the raw encoding form into the form expected by the
  52 // constructor for Address.
  53 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
  54   assert(scale == 0, "not supported");
  55   RelocationHolder rspec;
  56   if (disp_is_oop) {
  57     rspec = Relocation::spec_simple(relocInfo::oop_type);
  58   }
  59 
  60   Register rindex = as_Register(index);
  61   if (rindex != G0) {
  62     Address madr(as_Register(base), rindex);
  63     madr._rspec = rspec;
  64     return madr;
  65   } else {
  66     Address madr(as_Register(base), disp);
  67     madr._rspec = rspec;
  68     return madr;
  69   }
  70 }
  71 
  72 Address Argument::address_in_frame() const {
  73   // Warning: In LP64 mode disp will occupy more than 10 bits, but
  74   //          op codes such as ld or ldx, only access disp() to get
  75   //          their simm13 argument.
  76   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
  77   if (is_in())
  78     return Address(FP, disp); // In argument.
  79   else
  80     return Address(SP, disp); // Out argument.
  81 }
  82 
  83 static const char* argumentNames[][2] = {
  84   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
  85   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
  86   {"A(n>9)","P(n>9)"}
  87 };
  88 
  89 const char* Argument::name() const {
  90   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
  91   int num = number();
  92   if (num >= nofArgs)  num = nofArgs - 1;
  93   return argumentNames[num][is_in() ? 1 : 0];
  94 }
  95 
  96 void Assembler::print_instruction(int inst) {
  97   const char* s;
  98   switch (inv_op(inst)) {
  99   default:         s = "????"; break;
 100   case call_op:    s = "call"; break;
 101   case branch_op:
 102     switch (inv_op2(inst)) {
 103       case fb_op2:     s = "fb";   break;
 104       case fbp_op2:    s = "fbp";  break;
 105       case br_op2:     s = "br";   break;
 106       case bp_op2:     s = "bp";   break;
 107       case cb_op2:     s = "cb";   break;
 108       case bpr_op2: {
 109         if (is_cbcond(inst)) {
 110           s = is_cxb(inst) ? "cxb" : "cwb";
 111         } else {
 112           s = "bpr";
 113         }
 114         break;
 115       }
 116       default:         s = "????"; break;
 117     }
 118   }
 119   ::tty->print("%s", s);
 120 }
 121 
 122 
 123 // Patch instruction inst at offset inst_pos to refer to dest_pos
 124 // and return the resulting instruction.
 125 // We should have pcs, not offsets, but since all is relative, it will work out
 126 // OK.
 127 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
 128 
 129   int m; // mask for displacement field
 130   int v; // new value for displacement field
 131   const int word_aligned_ones = -4;
 132   switch (inv_op(inst)) {
 133   default: ShouldNotReachHere();
 134   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
 135   case branch_op:
 136     switch (inv_op2(inst)) {
 137       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 138       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 139       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 140       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 141       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 142       case bpr_op2: {
 143         if (is_cbcond(inst)) {
 144           m = wdisp10(word_aligned_ones, 0);
 145           v = wdisp10(dest_pos, inst_pos);
 146         } else {
 147           m = wdisp16(word_aligned_ones, 0);
 148           v = wdisp16(dest_pos, inst_pos);
 149         }
 150         break;
 151       }
 152       default: ShouldNotReachHere();
 153     }
 154   }
 155   return  inst & ~m  |  v;
 156 }
 157 
 158 // Return the offset of the branch destionation of instruction inst
 159 // at offset pos.
 160 // Should have pcs, but since all is relative, it works out.
 161 int Assembler::branch_destination(int inst, int pos) {
 162   int r;
 163   switch (inv_op(inst)) {
 164   default: ShouldNotReachHere();
 165   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
 166   case branch_op:
 167     switch (inv_op2(inst)) {
 168       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
 169       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
 170       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 171       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 172       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 173       case bpr_op2: {
 174         if (is_cbcond(inst)) {
 175           r = inv_wdisp10(inst, pos);
 176         } else {
 177           r = inv_wdisp16(inst, pos);
 178         }
 179         break;
 180       }
 181       default: ShouldNotReachHere();
 182     }
 183   }
 184   return r;
 185 }
 186 
 187 int AbstractAssembler::code_fill_byte() {
 188   return 0x00;                  // illegal instruction 0x00000000
 189 }
 190 
 191 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
 192   switch (in) {
 193   case rc_z:   return equal;
 194   case rc_lez: return lessEqual;
 195   case rc_lz:  return less;
 196   case rc_nz:  return notEqual;
 197   case rc_gz:  return greater;
 198   case rc_gez: return greaterEqual;
 199   default:
 200     ShouldNotReachHere();
 201   }
 202   return equal;
 203 }
 204 
 205 // Generate a bunch 'o stuff (including v9's
 206 #ifndef PRODUCT
 207 void Assembler::test_v9() {
 208   add(    G0, G1, G2 );
 209   add(    G3,  0, G4 );
 210 
 211   addcc(  G5, G6, G7 );
 212   addcc(  I0,  1, I1 );
 213   addc(   I2, I3, I4 );
 214   addc(   I5, -1, I6 );
 215   addccc( I7, L0, L1 );
 216   addccc( L2, (1 << 12) - 2, L3 );
 217 
 218   Label lbl1, lbl2, lbl3;
 219 
 220   bind(lbl1);
 221 
 222   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
 223   delayed()->nop();
 224   bpr( rc_lez, false, pt, L5, lbl1);
 225   delayed()->nop();
 226 
 227   fb( f_never,     true, pc() + 4,  relocInfo::none);
 228   delayed()->nop();
 229   fb( f_notEqual, false, lbl2 );
 230   delayed()->nop();
 231 
 232   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
 233   delayed()->nop();
 234   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
 235   delayed()->nop();
 236 
 237   br( equal,  true, pc() + 1024, relocInfo::none);
 238   delayed()->nop();
 239   br( lessEqual, false, lbl1 );
 240   delayed()->nop();
 241   br( never, false, lbl1 );
 242   delayed()->nop();
 243 
 244   bp( less,               true, icc, pn, pc(), relocInfo::none);
 245   delayed()->nop();
 246   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
 247   delayed()->nop();
 248 
 249   call( pc(), relocInfo::none);
 250   delayed()->nop();
 251   call( lbl3 );
 252   delayed()->nop();
 253 
 254 
 255   casa(  L6, L7, O0 );
 256   casxa( O1, O2, O3, 0 );
 257 
 258   udiv(   O4, O5, O7 );
 259   udiv(   G0, (1 << 12) - 1, G1 );
 260   sdiv(   G1, G2, G3 );
 261   sdiv(   G4, -((1 << 12) - 1), G5 );
 262   udivcc( G6, G7, I0 );
 263   udivcc( I1, -((1 << 12) - 2), I2 );
 264   sdivcc( I3, I4, I5 );
 265   sdivcc( I6, -((1 << 12) - 0), I7 );
 266 
 267   done();
 268   retry();
 269 
 270   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
 271   fsub( FloatRegisterImpl::D, F34, F0, F62 );
 272 
 273   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
 274   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
 275 
 276   ftox( FloatRegisterImpl::D, F2, F4 );
 277   ftoi( FloatRegisterImpl::Q, F4, F8 );
 278 
 279   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
 280 
 281   fxtof( FloatRegisterImpl::S, F4, F5 );
 282   fitof( FloatRegisterImpl::D, F6, F8 );
 283 
 284   fmov( FloatRegisterImpl::Q, F16, F20 );
 285   fneg( FloatRegisterImpl::S, F6, F7 );
 286   fabs( FloatRegisterImpl::D, F10, F12 );
 287 
 288   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
 289   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
 290   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
 291 
 292   fsqrt( FloatRegisterImpl::S, F13, F14 );
 293 
 294   flush( L0, L1 );
 295   flush( L2, -1 );
 296 
 297   flushw();
 298 
 299   illtrap( (1 << 22) - 2);
 300 
 301   impdep1( 17, (1 << 19) - 1 );
 302   impdep2( 3,  0 );
 303 
 304   jmpl( L3, L4, L5 );
 305   delayed()->nop();
 306   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
 307   delayed()->nop();
 308 
 309 
 310   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
 311   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
 312 
 313 
 314   ldfsr(  O3, O4 );
 315   ldfsr(  O5, -1 );
 316   ldxfsr( O6, O7 );
 317   ldxfsr( I0, -1 );
 318 
 319   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
 320   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
 321 
 322   ldsb(  I4, I5, I6 );
 323   ldsb(  I7, -1, G0 );
 324   ldsh(  G1, G3, G4 );
 325   ldsh(  G5, -1, G6 );
 326   ldsw(  G7, L0, L1 );
 327   ldsw(  L2, -1, L3 );
 328   ldub(  L4, L5, L6 );
 329   ldub(  L7, -1, O0 );
 330   lduh(  O1, O2, O3 );
 331   lduh(  O4, -1, O5 );
 332   lduw(  O6, O7, G0 );
 333   lduw(  G1, -1, G2 );
 334   ldx(   G3, G4, G5 );
 335   ldx(   G6, -1, G7 );
 336   ldd(   I0, I1, I2 );
 337   ldd(   I3, -1, I4 );
 338 
 339   ldsba(  I5, I6, 2, I7 );
 340   ldsba(  L0, -1, L1 );
 341   ldsha(  L2, L3, 3, L4 );
 342   ldsha(  L5, -1, L6 );
 343   ldswa(  L7, O0, (1 << 8) - 1, O1 );
 344   ldswa(  O2, -1, O3 );
 345   lduba(  O4, O5, 0, O6 );
 346   lduba(  O7, -1, I0 );
 347   lduha(  I1, I2, 1, I3 );
 348   lduha(  I4, -1, I5 );
 349   lduwa(  I6, I7, 2, L0 );
 350   lduwa(  L1, -1, L2 );
 351   ldxa(   L3, L4, 3, L5 );
 352   ldxa(   L6, -1, L7 );
 353   ldda(   G0, G1, 4, G2 );
 354   ldda(   G3, -1, G4 );
 355 
 356   ldstub(  G5, G6, G7 );
 357   ldstub(  O0, -1, O1 );
 358 
 359   ldstuba( O2, O3, 5, O4 );
 360   ldstuba( O5, -1, O6 );
 361 
 362   and3(    I0, L0, O0 );
 363   and3(    G7, -1, O7 );
 364   andcc(   L2, I2, G2 );
 365   andcc(   L4, -1, G4 );
 366   andn(    I5, I6, I7 );
 367   andn(    I6, -1, I7 );
 368   andncc(  I5, I6, I7 );
 369   andncc(  I7, -1, I6 );
 370   or3(     I5, I6, I7 );
 371   or3(     I7, -1, I6 );
 372   orcc(    I5, I6, I7 );
 373   orcc(    I7, -1, I6 );
 374   orn(     I5, I6, I7 );
 375   orn(     I7, -1, I6 );
 376   orncc(   I5, I6, I7 );
 377   orncc(   I7, -1, I6 );
 378   xor3(    I5, I6, I7 );
 379   xor3(    I7, -1, I6 );
 380   xorcc(   I5, I6, I7 );
 381   xorcc(   I7, -1, I6 );
 382   xnor(    I5, I6, I7 );
 383   xnor(    I7, -1, I6 );
 384   xnorcc(  I5, I6, I7 );
 385   xnorcc(  I7, -1, I6 );
 386 
 387   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
 388   membar( StoreStore );
 389   membar( LoadStore );
 390   membar( StoreLoad );
 391   membar( LoadLoad );
 392   membar( Sync );
 393   membar( MemIssue );
 394   membar( Lookaside );
 395 
 396   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
 397   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
 398 
 399   movcc( overflowClear,  false, icc, I6, L4 );
 400   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
 401 
 402   movr( rc_nz, I5, I6, I7 );
 403   movr( rc_gz, L1, -1,  L2 );
 404 
 405   mulx(  I5, I6, I7 );
 406   mulx(  I7, -1, I6 );
 407   sdivx( I5, I6, I7 );
 408   sdivx( I7, -1, I6 );
 409   udivx( I5, I6, I7 );
 410   udivx( I7, -1, I6 );
 411 
 412   umul(   I5, I6, I7 );
 413   umul(   I7, -1, I6 );
 414   smul(   I5, I6, I7 );
 415   smul(   I7, -1, I6 );
 416   umulcc( I5, I6, I7 );
 417   umulcc( I7, -1, I6 );
 418   smulcc( I5, I6, I7 );
 419   smulcc( I7, -1, I6 );
 420 
 421   mulscc(   I5, I6, I7 );
 422   mulscc(   I7, -1, I6 );
 423 
 424   nop();
 425 
 426 
 427   popc( G0,  G1);
 428   popc( -1, G2);
 429 
 430   prefetch(   L1, L2,    severalReads );
 431   prefetch(   L3, -1,    oneRead );
 432   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
 433   prefetcha(  G2, -1,    oneWrite );
 434 
 435   rett( I7, I7);
 436   delayed()->nop();
 437   rett( G0, -1, relocInfo::none);
 438   delayed()->nop();
 439 
 440   save(    I5, I6, I7 );
 441   save(    I7, -1, I6 );
 442   restore( I5, I6, I7 );
 443   restore( I7, -1, I6 );
 444 
 445   saved();
 446   restored();
 447 
 448   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
 449 
 450   sll(  I5, I6, I7 );
 451   sll(  I7, 31, I6 );
 452   srl(  I5, I6, I7 );
 453   srl(  I7,  0, I6 );
 454   sra(  I5, I6, I7 );
 455   sra(  I7, 30, I6 );
 456   sllx( I5, I6, I7 );
 457   sllx( I7, 63, I6 );
 458   srlx( I5, I6, I7 );
 459   srlx( I7,  0, I6 );
 460   srax( I5, I6, I7 );
 461   srax( I7, 62, I6 );
 462 
 463   sir( -1 );
 464 
 465   stbar();
 466 
 467   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
 468   stf(    FloatRegisterImpl::S, F18, I3, -1 );
 469 
 470   stfsr(  L1, L2 );
 471   stfsr(  I7, -1 );
 472   stxfsr( I6, I5 );
 473   stxfsr( L4, -1 );
 474 
 475   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
 476   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
 477 
 478   stb(  L5, O2, I7 );
 479   stb(  I7, I6, -1 );
 480   sth(  L5, O2, I7 );
 481   sth(  I7, I6, -1 );
 482   stw(  L5, O2, I7 );
 483   stw(  I7, I6, -1 );
 484   stx(  L5, O2, I7 );
 485   stx(  I7, I6, -1 );
 486   std(  L5, O2, I7 );
 487   std(  I7, I6, -1 );
 488 
 489   stba(  L5, O2, I7, 8 );
 490   stba(  I7, I6, -1    );
 491   stha(  L5, O2, I7, 9 );
 492   stha(  I7, I6, -1    );
 493   stwa(  L5, O2, I7, 0 );
 494   stwa(  I7, I6, -1    );
 495   stxa(  L5, O2, I7, 11 );
 496   stxa(  I7, I6, -1     );
 497   stda(  L5, O2, I7, 12 );
 498   stda(  I7, I6, -1     );
 499 
 500   sub(    I5, I6, I7 );
 501   sub(    I7, -1, I6 );
 502   subcc(  I5, I6, I7 );
 503   subcc(  I7, -1, I6 );
 504   subc(   I5, I6, I7 );
 505   subc(   I7, -1, I6 );
 506   subccc( I5, I6, I7 );
 507   subccc( I7, -1, I6 );
 508 
 509   swap( I5, I6, I7 );
 510   swap( I7, -1, I6 );
 511 
 512   swapa(   G0, G1, 13, G2 );
 513   swapa(   I7, -1,     I6 );
 514 
 515   taddcc(    I5, I6, I7 );
 516   taddcc(    I7, -1, I6 );
 517   taddcctv(  I5, I6, I7 );
 518   taddcctv(  I7, -1, I6 );
 519 
 520   tsubcc(    I5, I6, I7 );
 521   tsubcc(    I7, -1, I6 );
 522   tsubcctv(  I5, I6, I7 );
 523   tsubcctv(  I7, -1, I6 );
 524 
 525   trap( overflowClear, xcc, G0, G1 );
 526   trap( lessEqual,     icc, I7, 17 );
 527 
 528   bind(lbl2);
 529   bind(lbl3);
 530 
 531   code()->decode();
 532 }
 533 
 534 // Generate a bunch 'o stuff unique to V8
 535 void Assembler::test_v8_onlys() {
 536   Label lbl1;
 537 
 538   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
 539   delayed()->nop();
 540   cb( cp_never,    true, lbl1);
 541   delayed()->nop();
 542 
 543   cpop1(1, 2, 3, 4);
 544   cpop2(5, 6, 7, 8);
 545 
 546   ldc( I0, I1, 31);
 547   ldc( I2, -1,  0);
 548 
 549   lddc( I4, I4, 30);
 550   lddc( I6,  0, 1 );
 551 
 552   ldcsr( L0, L1, 0);
 553   ldcsr( L1, (1 << 12) - 1, 17 );
 554 
 555   stc( 31, L4, L5);
 556   stc( 30, L6, -(1 << 12) );
 557 
 558   stdc( 0, L7, G0);
 559   stdc( 1, G1, 0 );
 560 
 561   stcsr( 16, G2, G3);
 562   stcsr( 17, G4, 1 );
 563 
 564   stdcq( 4, G5, G6);
 565   stdcq( 5, G7, -1 );
 566 
 567   bind(lbl1);
 568 
 569   code()->decode();
 570 }
 571 #endif
 572 
 573 // Implementation of MacroAssembler
 574 
 575 void MacroAssembler::null_check(Register reg, int offset) {
 576   if (needs_explicit_null_check((intptr_t)offset)) {
 577     // provoke OS NULL exception if reg = NULL by
 578     // accessing M[reg] w/o changing any registers
 579     ld_ptr(reg, 0, G0);
 580   }
 581   else {
 582     // nothing to do, (later) access of M[reg + offset]
 583     // will provoke OS NULL exception if reg = NULL
 584   }
 585 }
 586 
 587 // Ring buffer jumps
 588 
 589 #ifndef PRODUCT
 590 void MacroAssembler::ret(  bool trace )   { if (trace) {
 591                                                     mov(I7, O7); // traceable register
 592                                                     JMP(O7, 2 * BytesPerInstWord);
 593                                                   } else {
 594                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
 595                                                   }
 596                                                 }
 597 
 598 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
 599                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
 600 #endif /* PRODUCT */
 601 
 602 
 603 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
 604   assert_not_delayed();
 605   // This can only be traceable if r1 & r2 are visible after a window save
 606   if (TraceJumps) {
 607 #ifndef PRODUCT
 608     save_frame(0);
 609     verify_thread();
 610     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 611     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 612     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 613     add(O2, O1, O1);
 614 
 615     add(r1->after_save(), r2->after_save(), O2);
 616     set((intptr_t)file, O3);
 617     set(line, O4);
 618     Label L;
 619     // get nearby pc, store jmp target
 620     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 621     delayed()->st(O2, O1, 0);
 622     bind(L);
 623 
 624     // store nearby pc
 625     st(O7, O1, sizeof(intptr_t));
 626     // store file
 627     st(O3, O1, 2*sizeof(intptr_t));
 628     // store line
 629     st(O4, O1, 3*sizeof(intptr_t));
 630     add(O0, 1, O0);
 631     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 632     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 633     restore();
 634 #endif /* PRODUCT */
 635   }
 636   jmpl(r1, r2, G0);
 637 }
 638 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
 639   assert_not_delayed();
 640   // This can only be traceable if r1 is visible after a window save
 641   if (TraceJumps) {
 642 #ifndef PRODUCT
 643     save_frame(0);
 644     verify_thread();
 645     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 646     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 647     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 648     add(O2, O1, O1);
 649 
 650     add(r1->after_save(), offset, O2);
 651     set((intptr_t)file, O3);
 652     set(line, O4);
 653     Label L;
 654     // get nearby pc, store jmp target
 655     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 656     delayed()->st(O2, O1, 0);
 657     bind(L);
 658 
 659     // store nearby pc
 660     st(O7, O1, sizeof(intptr_t));
 661     // store file
 662     st(O3, O1, 2*sizeof(intptr_t));
 663     // store line
 664     st(O4, O1, 3*sizeof(intptr_t));
 665     add(O0, 1, O0);
 666     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 667     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 668     restore();
 669 #endif /* PRODUCT */
 670   }
 671   jmp(r1, offset);
 672 }
 673 
 674 // This code sequence is relocatable to any address, even on LP64.
 675 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
 676   assert_not_delayed();
 677   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 678   // variable length instruction streams.
 679   patchable_sethi(addrlit, temp);
 680   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
 681   if (TraceJumps) {
 682 #ifndef PRODUCT
 683     // Must do the add here so relocation can find the remainder of the
 684     // value to be relocated.
 685     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
 686     save_frame(0);
 687     verify_thread();
 688     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 689     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 690     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 691     add(O2, O1, O1);
 692 
 693     set((intptr_t)file, O3);
 694     set(line, O4);
 695     Label L;
 696 
 697     // get nearby pc, store jmp target
 698     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 699     delayed()->st(a.base()->after_save(), O1, 0);
 700     bind(L);
 701 
 702     // store nearby pc
 703     st(O7, O1, sizeof(intptr_t));
 704     // store file
 705     st(O3, O1, 2*sizeof(intptr_t));
 706     // store line
 707     st(O4, O1, 3*sizeof(intptr_t));
 708     add(O0, 1, O0);
 709     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 710     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 711     restore();
 712     jmpl(a.base(), G0, d);
 713 #else
 714     jmpl(a.base(), a.disp(), d);
 715 #endif /* PRODUCT */
 716   } else {
 717     jmpl(a.base(), a.disp(), d);
 718   }
 719 }
 720 
 721 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
 722   jumpl(addrlit, temp, G0, offset, file, line);
 723 }
 724 
 725 
 726 // Convert to C varargs format
 727 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
 728   // spill register-resident args to their memory slots
 729   // (SPARC calling convention requires callers to have already preallocated these)
 730   // Note that the inArg might in fact be an outgoing argument,
 731   // if a leaf routine or stub does some tricky argument shuffling.
 732   // This routine must work even though one of the saved arguments
 733   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
 734   for (Argument savePtr = inArg;
 735        savePtr.is_register();
 736        savePtr = savePtr.successor()) {
 737     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
 738   }
 739   // return the address of the first memory slot
 740   Address a = inArg.address_in_frame();
 741   add(a.base(), a.disp(), d);
 742 }
 743 
 744 // Conditional breakpoint (for assertion checks in assembly code)
 745 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
 746   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
 747 }
 748 
 749 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
 750 void MacroAssembler::breakpoint_trap() {
 751   trap(ST_RESERVED_FOR_USER_0);
 752 }
 753 
 754 // flush windows (except current) using flushw instruction if avail.
 755 void MacroAssembler::flush_windows() {
 756   if (VM_Version::v9_instructions_work())  flushw();
 757   else                                     flush_windows_trap();
 758 }
 759 
 760 // Write serialization page so VM thread can do a pseudo remote membar
 761 // We use the current thread pointer to calculate a thread specific
 762 // offset to write to within the page. This minimizes bus traffic
 763 // due to cache line collision.
 764 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
 765   srl(thread, os::get_serialize_page_shift_count(), tmp2);
 766   if (Assembler::is_simm13(os::vm_page_size())) {
 767     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
 768   }
 769   else {
 770     set((os::vm_page_size() - sizeof(int)), tmp1);
 771     and3(tmp2, tmp1, tmp2);
 772   }
 773   set(os::get_memory_serialize_page(), tmp1);
 774   st(G0, tmp1, tmp2);
 775 }
 776 
 777 
 778 
 779 void MacroAssembler::enter() {
 780   Unimplemented();
 781 }
 782 
 783 void MacroAssembler::leave() {
 784   Unimplemented();
 785 }
 786 
 787 void MacroAssembler::mult(Register s1, Register s2, Register d) {
 788   if(VM_Version::v9_instructions_work()) {
 789     mulx (s1, s2, d);
 790   } else {
 791     smul (s1, s2, d);
 792   }
 793 }
 794 
 795 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
 796   if(VM_Version::v9_instructions_work()) {
 797     mulx (s1, simm13a, d);
 798   } else {
 799     smul (s1, simm13a, d);
 800   }
 801 }
 802 
 803 
 804 #ifdef ASSERT
 805 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
 806   const Register s1 = G3_scratch;
 807   const Register s2 = G4_scratch;
 808   Label get_psr_test;
 809   // Get the condition codes the V8 way.
 810   read_ccr_trap(s1);
 811   mov(ccr_save, s2);
 812   // This is a test of V8 which has icc but not xcc
 813   // so mask off the xcc bits
 814   and3(s2, 0xf, s2);
 815   // Compare condition codes from the V8 and V9 ways.
 816   subcc(s2, s1, G0);
 817   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
 818   delayed()->breakpoint_trap();
 819   bind(get_psr_test);
 820 }
 821 
 822 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
 823   const Register s1 = G3_scratch;
 824   const Register s2 = G4_scratch;
 825   Label set_psr_test;
 826   // Write out the saved condition codes the V8 way
 827   write_ccr_trap(ccr_save, s1, s2);
 828   // Read back the condition codes using the V9 instruction
 829   rdccr(s1);
 830   mov(ccr_save, s2);
 831   // This is a test of V8 which has icc but not xcc
 832   // so mask off the xcc bits
 833   and3(s2, 0xf, s2);
 834   and3(s1, 0xf, s1);
 835   // Compare the V8 way with the V9 way.
 836   subcc(s2, s1, G0);
 837   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
 838   delayed()->breakpoint_trap();
 839   bind(set_psr_test);
 840 }
 841 #else
 842 #define read_ccr_v8_assert(x)
 843 #define write_ccr_v8_assert(x)
 844 #endif // ASSERT
 845 
 846 void MacroAssembler::read_ccr(Register ccr_save) {
 847   if (VM_Version::v9_instructions_work()) {
 848     rdccr(ccr_save);
 849     // Test code sequence used on V8.  Do not move above rdccr.
 850     read_ccr_v8_assert(ccr_save);
 851   } else {
 852     read_ccr_trap(ccr_save);
 853   }
 854 }
 855 
 856 void MacroAssembler::write_ccr(Register ccr_save) {
 857   if (VM_Version::v9_instructions_work()) {
 858     // Test code sequence used on V8.  Do not move below wrccr.
 859     write_ccr_v8_assert(ccr_save);
 860     wrccr(ccr_save);
 861   } else {
 862     const Register temp_reg1 = G3_scratch;
 863     const Register temp_reg2 = G4_scratch;
 864     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
 865   }
 866 }
 867 
 868 
 869 // Calls to C land
 870 
 871 #ifdef ASSERT
 872 // a hook for debugging
 873 static Thread* reinitialize_thread() {
 874   return ThreadLocalStorage::thread();
 875 }
 876 #else
 877 #define reinitialize_thread ThreadLocalStorage::thread
 878 #endif
 879 
 880 #ifdef ASSERT
 881 address last_get_thread = NULL;
 882 #endif
 883 
 884 // call this when G2_thread is not known to be valid
 885 void MacroAssembler::get_thread() {
 886   save_frame(0);                // to avoid clobbering O0
 887   mov(G1, L0);                  // avoid clobbering G1
 888   mov(G5_method, L1);           // avoid clobbering G5
 889   mov(G3, L2);                  // avoid clobbering G3 also
 890   mov(G4, L5);                  // avoid clobbering G4
 891 #ifdef ASSERT
 892   AddressLiteral last_get_thread_addrlit(&last_get_thread);
 893   set(last_get_thread_addrlit, L3);
 894   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
 895   st_ptr(L4, L3, 0);
 896 #endif
 897   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
 898   delayed()->nop();
 899   mov(L0, G1);
 900   mov(L1, G5_method);
 901   mov(L2, G3);
 902   mov(L5, G4);
 903   restore(O0, 0, G2_thread);
 904 }
 905 
 906 static Thread* verify_thread_subroutine(Thread* gthread_value) {
 907   Thread* correct_value = ThreadLocalStorage::thread();
 908   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
 909   return correct_value;
 910 }
 911 
 912 void MacroAssembler::verify_thread() {
 913   if (VerifyThread) {
 914     // NOTE: this chops off the heads of the 64-bit O registers.
 915 #ifdef CC_INTERP
 916     save_frame(0);
 917 #else
 918     // make sure G2_thread contains the right value
 919     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
 920     mov(G1, L1);                // avoid clobbering G1
 921     // G2 saved below
 922     mov(G3, L3);                // avoid clobbering G3
 923     mov(G4, L4);                // avoid clobbering G4
 924     mov(G5_method, L5);         // avoid clobbering G5_method
 925 #endif /* CC_INTERP */
 926 #if defined(COMPILER2) && !defined(_LP64)
 927     // Save & restore possible 64-bit Long arguments in G-regs
 928     srlx(G1,32,L0);
 929     srlx(G4,32,L6);
 930 #endif
 931     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
 932     delayed()->mov(G2_thread, O0);
 933 
 934     mov(L1, G1);                // Restore G1
 935     // G2 restored below
 936     mov(L3, G3);                // restore G3
 937     mov(L4, G4);                // restore G4
 938     mov(L5, G5_method);         // restore G5_method
 939 #if defined(COMPILER2) && !defined(_LP64)
 940     // Save & restore possible 64-bit Long arguments in G-regs
 941     sllx(L0,32,G2);             // Move old high G1 bits high in G2
 942     srl(G1, 0,G1);              // Clear current high G1 bits
 943     or3 (G1,G2,G1);             // Recover 64-bit G1
 944     sllx(L6,32,G2);             // Move old high G4 bits high in G2
 945     srl(G4, 0,G4);              // Clear current high G4 bits
 946     or3 (G4,G2,G4);             // Recover 64-bit G4
 947 #endif
 948     restore(O0, 0, G2_thread);
 949   }
 950 }
 951 
 952 
 953 void MacroAssembler::save_thread(const Register thread_cache) {
 954   verify_thread();
 955   if (thread_cache->is_valid()) {
 956     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 957     mov(G2_thread, thread_cache);
 958   }
 959   if (VerifyThread) {
 960     // smash G2_thread, as if the VM were about to anyway
 961     set(0x67676767, G2_thread);
 962   }
 963 }
 964 
 965 
 966 void MacroAssembler::restore_thread(const Register thread_cache) {
 967   if (thread_cache->is_valid()) {
 968     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 969     mov(thread_cache, G2_thread);
 970     verify_thread();
 971   } else {
 972     // do it the slow way
 973     get_thread();
 974   }
 975 }
 976 
 977 
 978 // %%% maybe get rid of [re]set_last_Java_frame
 979 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
 980   assert_not_delayed();
 981   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
 982                            JavaFrameAnchor::flags_offset());
 983   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
 984 
 985   // Always set last_Java_pc and flags first because once last_Java_sp is visible
 986   // has_last_Java_frame is true and users will look at the rest of the fields.
 987   // (Note: flags should always be zero before we get here so doesn't need to be set.)
 988 
 989 #ifdef ASSERT
 990   // Verify that flags was zeroed on return to Java
 991   Label PcOk;
 992   save_frame(0);                // to avoid clobbering O0
 993   ld_ptr(pc_addr, L0);
 994   br_null_short(L0, Assembler::pt, PcOk);
 995   stop("last_Java_pc not zeroed before leaving Java");
 996   bind(PcOk);
 997 
 998   // Verify that flags was zeroed on return to Java
 999   Label FlagsOk;
1000   ld(flags, L0);
1001   tst(L0);
1002   br(Assembler::zero, false, Assembler::pt, FlagsOk);
1003   delayed() -> restore();
1004   stop("flags not zeroed before leaving Java");
1005   bind(FlagsOk);
1006 #endif /* ASSERT */
1007   //
1008   // When returning from calling out from Java mode the frame anchor's last_Java_pc
1009   // will always be set to NULL. It is set here so that if we are doing a call to
1010   // native (not VM) that we capture the known pc and don't have to rely on the
1011   // native call having a standard frame linkage where we can find the pc.
1012 
1013   if (last_Java_pc->is_valid()) {
1014     st_ptr(last_Java_pc, pc_addr);
1015   }
1016 
1017 #ifdef _LP64
1018 #ifdef ASSERT
1019   // Make sure that we have an odd stack
1020   Label StackOk;
1021   andcc(last_java_sp, 0x01, G0);
1022   br(Assembler::notZero, false, Assembler::pt, StackOk);
1023   delayed()->nop();
1024   stop("Stack Not Biased in set_last_Java_frame");
1025   bind(StackOk);
1026 #endif // ASSERT
1027   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
1028   add( last_java_sp, STACK_BIAS, G4_scratch );
1029   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
1030 #else
1031   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
1032 #endif // _LP64
1033 }
1034 
1035 void MacroAssembler::reset_last_Java_frame(void) {
1036   assert_not_delayed();
1037 
1038   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
1039   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
1040   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1041 
1042 #ifdef ASSERT
1043   // check that it WAS previously set
1044 #ifdef CC_INTERP
1045     save_frame(0);
1046 #else
1047     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
1048 #endif /* CC_INTERP */
1049     ld_ptr(sp_addr, L0);
1050     tst(L0);
1051     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1052     restore();
1053 #endif // ASSERT
1054 
1055   st_ptr(G0, sp_addr);
1056   // Always return last_Java_pc to zero
1057   st_ptr(G0, pc_addr);
1058   // Always null flags after return to Java
1059   st(G0, flags);
1060 }
1061 
1062 
1063 void MacroAssembler::call_VM_base(
1064   Register        oop_result,
1065   Register        thread_cache,
1066   Register        last_java_sp,
1067   address         entry_point,
1068   int             number_of_arguments,
1069   bool            check_exceptions)
1070 {
1071   assert_not_delayed();
1072 
1073   // determine last_java_sp register
1074   if (!last_java_sp->is_valid()) {
1075     last_java_sp = SP;
1076   }
1077   // debugging support
1078   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
1079 
1080   // 64-bit last_java_sp is biased!
1081   set_last_Java_frame(last_java_sp, noreg);
1082   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
1083   save_thread(thread_cache);
1084   // do the call
1085   call(entry_point, relocInfo::runtime_call_type);
1086   if (!VerifyThread)
1087     delayed()->mov(G2_thread, O0);  // pass thread as first argument
1088   else
1089     delayed()->nop();             // (thread already passed)
1090   restore_thread(thread_cache);
1091   reset_last_Java_frame();
1092 
1093   // check for pending exceptions. use Gtemp as scratch register.
1094   if (check_exceptions) {
1095     check_and_forward_exception(Gtemp);
1096   }
1097 
1098 #ifdef ASSERT
1099   set(badHeapWordVal, G3);
1100   set(badHeapWordVal, G4);
1101   set(badHeapWordVal, G5);
1102 #endif
1103 
1104   // get oop result if there is one and reset the value in the thread
1105   if (oop_result->is_valid()) {
1106     get_vm_result(oop_result);
1107   }
1108 }
1109 
1110 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1111 {
1112   Label L;
1113 
1114   check_and_handle_popframe(scratch_reg);
1115   check_and_handle_earlyret(scratch_reg);
1116 
1117   Address exception_addr(G2_thread, Thread::pending_exception_offset());
1118   ld_ptr(exception_addr, scratch_reg);
1119   br_null_short(scratch_reg, pt, L);
1120   // we use O7 linkage so that forward_exception_entry has the issuing PC
1121   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1122   delayed()->nop();
1123   bind(L);
1124 }
1125 
1126 
1127 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1128 }
1129 
1130 
1131 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1132 }
1133 
1134 
1135 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1136   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1137 }
1138 
1139 
1140 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1141   // O0 is reserved for the thread
1142   mov(arg_1, O1);
1143   call_VM(oop_result, entry_point, 1, check_exceptions);
1144 }
1145 
1146 
1147 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1148   // O0 is reserved for the thread
1149   mov(arg_1, O1);
1150   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1151   call_VM(oop_result, entry_point, 2, check_exceptions);
1152 }
1153 
1154 
1155 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1156   // O0 is reserved for the thread
1157   mov(arg_1, O1);
1158   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1159   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1160   call_VM(oop_result, entry_point, 3, check_exceptions);
1161 }
1162 
1163 
1164 
1165 // Note: The following call_VM overloadings are useful when a "save"
1166 // has already been performed by a stub, and the last Java frame is
1167 // the previous one.  In that case, last_java_sp must be passed as FP
1168 // instead of SP.
1169 
1170 
1171 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1172   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1173 }
1174 
1175 
1176 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1177   // O0 is reserved for the thread
1178   mov(arg_1, O1);
1179   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1180 }
1181 
1182 
1183 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1184   // O0 is reserved for the thread
1185   mov(arg_1, O1);
1186   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1187   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1188 }
1189 
1190 
1191 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1192   // O0 is reserved for the thread
1193   mov(arg_1, O1);
1194   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1195   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1196   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1197 }
1198 
1199 
1200 
1201 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1202   assert_not_delayed();
1203   save_thread(thread_cache);
1204   // do the call
1205   call(entry_point, relocInfo::runtime_call_type);
1206   delayed()->nop();
1207   restore_thread(thread_cache);
1208 #ifdef ASSERT
1209   set(badHeapWordVal, G3);
1210   set(badHeapWordVal, G4);
1211   set(badHeapWordVal, G5);
1212 #endif
1213 }
1214 
1215 
1216 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1217   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1218 }
1219 
1220 
1221 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1222   mov(arg_1, O0);
1223   call_VM_leaf(thread_cache, entry_point, 1);
1224 }
1225 
1226 
1227 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1228   mov(arg_1, O0);
1229   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1230   call_VM_leaf(thread_cache, entry_point, 2);
1231 }
1232 
1233 
1234 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1235   mov(arg_1, O0);
1236   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
1237   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1238   call_VM_leaf(thread_cache, entry_point, 3);
1239 }
1240 
1241 
1242 void MacroAssembler::get_vm_result(Register oop_result) {
1243   verify_thread();
1244   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1245   ld_ptr(    vm_result_addr, oop_result);
1246   st_ptr(G0, vm_result_addr);
1247   verify_oop(oop_result);
1248 }
1249 
1250 
1251 void MacroAssembler::get_vm_result_2(Register oop_result) {
1252   verify_thread();
1253   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
1254   ld_ptr(vm_result_addr_2, oop_result);
1255   st_ptr(G0, vm_result_addr_2);
1256   verify_oop(oop_result);
1257 }
1258 
1259 
1260 // We require that C code which does not return a value in vm_result will
1261 // leave it undisturbed.
1262 void MacroAssembler::set_vm_result(Register oop_result) {
1263   verify_thread();
1264   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1265   verify_oop(oop_result);
1266 
1267 # ifdef ASSERT
1268     // Check that we are not overwriting any other oop.
1269 #ifdef CC_INTERP
1270     save_frame(0);
1271 #else
1272     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
1273 #endif /* CC_INTERP */
1274     ld_ptr(vm_result_addr, L0);
1275     tst(L0);
1276     restore();
1277     breakpoint_trap(notZero, Assembler::ptr_cc);
1278     // }
1279 # endif
1280 
1281   st_ptr(oop_result, vm_result_addr);
1282 }
1283 
1284 
1285 void MacroAssembler::card_table_write(jbyte* byte_map_base,
1286                                       Register tmp, Register obj) {
1287 #ifdef _LP64
1288   srlx(obj, CardTableModRefBS::card_shift, obj);
1289 #else
1290   srl(obj, CardTableModRefBS::card_shift, obj);
1291 #endif
1292   assert(tmp != obj, "need separate temp reg");
1293   set((address) byte_map_base, tmp);
1294   stb(G0, tmp, obj);
1295 }
1296 
1297 
1298 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1299   address save_pc;
1300   int shiftcnt;
1301 #ifdef _LP64
1302 # ifdef CHECK_DELAY
1303   assert_not_delayed((char*) "cannot put two instructions in delay slot");
1304 # endif
1305   v9_dep();
1306   save_pc = pc();
1307 
1308   int msb32 = (int) (addrlit.value() >> 32);
1309   int lsb32 = (int) (addrlit.value());
1310 
1311   if (msb32 == 0 && lsb32 >= 0) {
1312     Assembler::sethi(lsb32, d, addrlit.rspec());
1313   }
1314   else if (msb32 == -1) {
1315     Assembler::sethi(~lsb32, d, addrlit.rspec());
1316     xor3(d, ~low10(~0), d);
1317   }
1318   else {
1319     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
1320     if (msb32 & 0x3ff)                            // Any bits?
1321       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
1322     if (lsb32 & 0xFFFFFC00) {                     // done?
1323       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
1324         sllx(d, 12, d);                           // Make room for next 12 bits
1325         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
1326         shiftcnt = 0;                             // We already shifted
1327       }
1328       else
1329         shiftcnt = 12;
1330       if ((lsb32 >> 10) & 0x3ff) {
1331         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
1332         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
1333         shiftcnt = 0;
1334       }
1335       else
1336         shiftcnt = 10;
1337       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
1338     }
1339     else
1340       sllx(d, 32, d);
1341   }
1342   // Pad out the instruction sequence so it can be patched later.
1343   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
1344                            addrlit.rtype() != relocInfo::runtime_call_type)) {
1345     while (pc() < (save_pc + (7 * BytesPerInstWord)))
1346       nop();
1347   }
1348 #else
1349   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
1350 #endif
1351 }
1352 
1353 
1354 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
1355   internal_sethi(addrlit, d, false);
1356 }
1357 
1358 
1359 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
1360   internal_sethi(addrlit, d, true);
1361 }
1362 
1363 
1364 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
1365 #ifdef _LP64
1366   if (worst_case)  return 7;
1367   intptr_t iaddr = (intptr_t) a;
1368   int msb32 = (int) (iaddr >> 32);
1369   int lsb32 = (int) (iaddr);
1370   int count;
1371   if (msb32 == 0 && lsb32 >= 0)
1372     count = 1;
1373   else if (msb32 == -1)
1374     count = 2;
1375   else {
1376     count = 2;
1377     if (msb32 & 0x3ff)
1378       count++;
1379     if (lsb32 & 0xFFFFFC00 ) {
1380       if ((lsb32 >> 20) & 0xfff)  count += 2;
1381       if ((lsb32 >> 10) & 0x3ff)  count += 2;
1382     }
1383   }
1384   return count;
1385 #else
1386   return 1;
1387 #endif
1388 }
1389 
1390 int MacroAssembler::worst_case_insts_for_set() {
1391   return insts_for_sethi(NULL, true) + 1;
1392 }
1393 
1394 
1395 // Keep in sync with MacroAssembler::insts_for_internal_set
1396 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1397   intptr_t value = addrlit.value();
1398 
1399   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
1400     // can optimize
1401     if (-4096 <= value && value <= 4095) {
1402       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1403       return;
1404     }
1405     if (inv_hi22(hi22(value)) == value) {
1406       sethi(addrlit, d);
1407       return;
1408     }
1409   }
1410   assert_not_delayed((char*) "cannot put two instructions in delay slot");
1411   internal_sethi(addrlit, d, ForceRelocatable);
1412   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
1413     add(d, addrlit.low10(), d, addrlit.rspec());
1414   }
1415 }
1416 
1417 // Keep in sync with MacroAssembler::internal_set
1418 int MacroAssembler::insts_for_internal_set(intptr_t value) {
1419   // can optimize
1420   if (-4096 <= value && value <= 4095) {
1421     return 1;
1422   }
1423   if (inv_hi22(hi22(value)) == value) {
1424     return insts_for_sethi((address) value);
1425   }
1426   int count = insts_for_sethi((address) value);
1427   AddressLiteral al(value);
1428   if (al.low10() != 0) {
1429     count++;
1430   }
1431   return count;
1432 }
1433 
1434 void MacroAssembler::set(const AddressLiteral& al, Register d) {
1435   internal_set(al, d, false);
1436 }
1437 
1438 void MacroAssembler::set(intptr_t value, Register d) {
1439   AddressLiteral al(value);
1440   internal_set(al, d, false);
1441 }
1442 
1443 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
1444   AddressLiteral al(addr, rspec);
1445   internal_set(al, d, false);
1446 }
1447 
1448 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
1449   internal_set(al, d, true);
1450 }
1451 
1452 void MacroAssembler::patchable_set(intptr_t value, Register d) {
1453   AddressLiteral al(value);
1454   internal_set(al, d, true);
1455 }
1456 
1457 
1458 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1459   assert_not_delayed();
1460   v9_dep();
1461 
1462   int hi = (int)(value >> 32);
1463   int lo = (int)(value & ~0);
1464   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1465   if (Assembler::is_simm13(lo) && value == lo) {
1466     or3(G0, lo, d);
1467   } else if (hi == 0) {
1468     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
1469     if (low10(lo) != 0)
1470       or3(d, low10(lo), d);
1471   }
1472   else if (hi == -1) {
1473     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
1474     xor3(d, low10(lo) ^ ~low10(~0), d);
1475   }
1476   else if (lo == 0) {
1477     if (Assembler::is_simm13(hi)) {
1478       or3(G0, hi, d);
1479     } else {
1480       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
1481       if (low10(hi) != 0)
1482         or3(d, low10(hi), d);
1483     }
1484     sllx(d, 32, d);
1485   }
1486   else {
1487     Assembler::sethi(hi, tmp);
1488     Assembler::sethi(lo,   d); // macro assembler version sign-extends
1489     if (low10(hi) != 0)
1490       or3 (tmp, low10(hi), tmp);
1491     if (low10(lo) != 0)
1492       or3 (  d, low10(lo),   d);
1493     sllx(tmp, 32, tmp);
1494     or3 (d, tmp, d);
1495   }
1496 }
1497 
1498 int MacroAssembler::insts_for_set64(jlong value) {
1499   v9_dep();
1500 
1501   int hi = (int) (value >> 32);
1502   int lo = (int) (value & ~0);
1503   int count = 0;
1504 
1505   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1506   if (Assembler::is_simm13(lo) && value == lo) {
1507     count++;
1508   } else if (hi == 0) {
1509     count++;
1510     if (low10(lo) != 0)
1511       count++;
1512   }
1513   else if (hi == -1) {
1514     count += 2;
1515   }
1516   else if (lo == 0) {
1517     if (Assembler::is_simm13(hi)) {
1518       count++;
1519     } else {
1520       count++;
1521       if (low10(hi) != 0)
1522         count++;
1523     }
1524     count++;
1525   }
1526   else {
1527     count += 2;
1528     if (low10(hi) != 0)
1529       count++;
1530     if (low10(lo) != 0)
1531       count++;
1532     count += 2;
1533   }
1534   return count;
1535 }
1536 
1537 // compute size in bytes of sparc frame, given
1538 // number of extraWords
1539 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1540 
1541   int nWords = frame::memory_parameter_word_sp_offset;
1542 
1543   nWords += extraWords;
1544 
1545   if (nWords & 1) ++nWords; // round up to double-word
1546 
1547   return nWords * BytesPerWord;
1548 }
1549 
1550 
1551 // save_frame: given number of "extra" words in frame,
1552 // issue approp. save instruction (p 200, v8 manual)
1553 
1554 void MacroAssembler::save_frame(int extraWords) {
1555   int delta = -total_frame_size_in_bytes(extraWords);
1556   if (is_simm13(delta)) {
1557     save(SP, delta, SP);
1558   } else {
1559     set(delta, G3_scratch);
1560     save(SP, G3_scratch, SP);
1561   }
1562 }
1563 
1564 
1565 void MacroAssembler::save_frame_c1(int size_in_bytes) {
1566   if (is_simm13(-size_in_bytes)) {
1567     save(SP, -size_in_bytes, SP);
1568   } else {
1569     set(-size_in_bytes, G3_scratch);
1570     save(SP, G3_scratch, SP);
1571   }
1572 }
1573 
1574 
1575 void MacroAssembler::save_frame_and_mov(int extraWords,
1576                                         Register s1, Register d1,
1577                                         Register s2, Register d2) {
1578   assert_not_delayed();
1579 
1580   // The trick here is to use precisely the same memory word
1581   // that trap handlers also use to save the register.
1582   // This word cannot be used for any other purpose, but
1583   // it works fine to save the register's value, whether or not
1584   // an interrupt flushes register windows at any given moment!
1585   Address s1_addr;
1586   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1587     s1_addr = s1->address_in_saved_window();
1588     st_ptr(s1, s1_addr);
1589   }
1590 
1591   Address s2_addr;
1592   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1593     s2_addr = s2->address_in_saved_window();
1594     st_ptr(s2, s2_addr);
1595   }
1596 
1597   save_frame(extraWords);
1598 
1599   if (s1_addr.base() == SP) {
1600     ld_ptr(s1_addr.after_save(), d1);
1601   } else if (s1->is_valid()) {
1602     mov(s1->after_save(), d1);
1603   }
1604 
1605   if (s2_addr.base() == SP) {
1606     ld_ptr(s2_addr.after_save(), d2);
1607   } else if (s2->is_valid()) {
1608     mov(s2->after_save(), d2);
1609   }
1610 }
1611 
1612 
1613 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1614   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1615   int oop_index = oop_recorder()->allocate_index(obj);
1616   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1617 }
1618 
1619 
1620 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1621   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1622   int oop_index = oop_recorder()->find_index(obj);
1623   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1624 }
1625 
1626 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1627   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1628   int oop_index = oop_recorder()->find_index(obj);
1629   RelocationHolder rspec = oop_Relocation::spec(oop_index);
1630 
1631   assert_not_delayed();
1632   // Relocation with special format (see relocInfo_sparc.hpp).
1633   relocate(rspec, 1);
1634   // Assembler::sethi(0x3fffff, d);
1635   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1636   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1637   add(d, 0x3ff, d);
1638 
1639 }
1640 
1641 
1642 void MacroAssembler::align(int modulus) {
1643   while (offset() % modulus != 0) nop();
1644 }
1645 
1646 
1647 void MacroAssembler::safepoint() {
1648   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1649 }
1650 
1651 
1652 void RegistersForDebugging::print(outputStream* s) {
1653   int j;
1654   for ( j = 0;  j < 8;  ++j )
1655     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
1656     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
1657   s->cr();
1658 
1659   for ( j = 0;  j < 8;  ++j )
1660     s->print_cr("l%d = 0x%.16lx", j, l[j]);
1661   s->cr();
1662 
1663   for ( j = 0;  j < 8;  ++j )
1664     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
1665     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
1666   s->cr();
1667 
1668   for ( j = 0;  j < 8;  ++j )
1669     s->print_cr("g%d = 0x%.16lx", j, g[j]);
1670   s->cr();
1671 
1672   // print out floats with compression
1673   for (j = 0; j < 32; ) {
1674     jfloat val = f[j];
1675     int last = j;
1676     for ( ;  last+1 < 32;  ++last ) {
1677       char b1[1024], b2[1024];
1678       sprintf(b1, "%f", val);
1679       sprintf(b2, "%f", f[last+1]);
1680       if (strcmp(b1, b2))
1681         break;
1682     }
1683     s->print("f%d", j);
1684     if ( j != last )  s->print(" - f%d", last);
1685     s->print(" = %f", val);
1686     s->fill_to(25);
1687     s->print_cr(" (0x%x)", val);
1688     j = last + 1;
1689   }
1690   s->cr();
1691 
1692   // and doubles (evens only)
1693   for (j = 0; j < 32; ) {
1694     jdouble val = d[j];
1695     int last = j;
1696     for ( ;  last+1 < 32;  ++last ) {
1697       char b1[1024], b2[1024];
1698       sprintf(b1, "%f", val);
1699       sprintf(b2, "%f", d[last+1]);
1700       if (strcmp(b1, b2))
1701         break;
1702     }
1703     s->print("d%d", 2 * j);
1704     if ( j != last )  s->print(" - d%d", last);
1705     s->print(" = %f", val);
1706     s->fill_to(30);
1707     s->print("(0x%x)", *(int*)&val);
1708     s->fill_to(42);
1709     s->print_cr("(0x%x)", *(1 + (int*)&val));
1710     j = last + 1;
1711   }
1712   s->cr();
1713 }
1714 
1715 void RegistersForDebugging::save_registers(MacroAssembler* a) {
1716   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1717   a->flush_windows();
1718   int i;
1719   for (i = 0; i < 8; ++i) {
1720     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1721     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1722     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1723     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1724   }
1725   for (i = 0;  i < 32; ++i) {
1726     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1727   }
1728   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1729     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1730   }
1731 }
1732 
1733 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1734   for (int i = 1; i < 8;  ++i) {
1735     a->ld_ptr(r, g_offset(i), as_gRegister(i));
1736   }
1737   for (int j = 0; j < 32; ++j) {
1738     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1739   }
1740   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1741     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1742   }
1743 }
1744 
1745 
1746 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1747 void MacroAssembler::push_fTOS() {
1748   // %%%%%% need to implement this
1749 }
1750 
1751 // pops double TOS element from CPU stack and pushes on FPU stack
1752 void MacroAssembler::pop_fTOS() {
1753   // %%%%%% need to implement this
1754 }
1755 
1756 void MacroAssembler::empty_FPU_stack() {
1757   // %%%%%% need to implement this
1758 }
1759 
1760 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1761   // plausibility check for oops
1762   if (!VerifyOops) return;
1763 
1764   if (reg == G0)  return;       // always NULL, which is always an oop
1765 
1766   BLOCK_COMMENT("verify_oop {");
1767   char buffer[64];
1768 #ifdef COMPILER1
1769   if (CommentedAssembly) {
1770     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1771     block_comment(buffer);
1772   }
1773 #endif
1774 
1775   int len = strlen(file) + strlen(msg) + 1 + 4;
1776   sprintf(buffer, "%d", line);
1777   len += strlen(buffer);
1778   sprintf(buffer, " at offset %d ", offset());
1779   len += strlen(buffer);
1780   char * real_msg = new char[len];
1781   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
1782 
1783   // Call indirectly to solve generation ordering problem
1784   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1785 
1786   // Make some space on stack above the current register window.
1787   // Enough to hold 8 64-bit registers.
1788   add(SP,-8*8,SP);
1789 
1790   // Save some 64-bit registers; a normal 'save' chops the heads off
1791   // of 64-bit longs in the 32-bit build.
1792   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1793   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1794   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1795   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1796 
1797   set((intptr_t)real_msg, O1);
1798   // Load address to call to into O7
1799   load_ptr_contents(a, O7);
1800   // Register call to verify_oop_subroutine
1801   callr(O7, G0);
1802   delayed()->nop();
1803   // recover frame size
1804   add(SP, 8*8,SP);
1805   BLOCK_COMMENT("} verify_oop");
1806 }
1807 
1808 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1809   // plausibility check for oops
1810   if (!VerifyOops) return;
1811 
1812   char buffer[64];
1813   sprintf(buffer, "%d", line);
1814   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1815   sprintf(buffer, " at SP+%d ", addr.disp());
1816   len += strlen(buffer);
1817   char * real_msg = new char[len];
1818   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1819 
1820   // Call indirectly to solve generation ordering problem
1821   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1822 
1823   // Make some space on stack above the current register window.
1824   // Enough to hold 8 64-bit registers.
1825   add(SP,-8*8,SP);
1826 
1827   // Save some 64-bit registers; a normal 'save' chops the heads off
1828   // of 64-bit longs in the 32-bit build.
1829   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1830   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1831   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1832   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1833 
1834   set((intptr_t)real_msg, O1);
1835   // Load address to call to into O7
1836   load_ptr_contents(a, O7);
1837   // Register call to verify_oop_subroutine
1838   callr(O7, G0);
1839   delayed()->nop();
1840   // recover frame size
1841   add(SP, 8*8,SP);
1842 }
1843 
1844 // side-door communication with signalHandler in os_solaris.cpp
1845 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1846 
1847 // This macro is expanded just once; it creates shared code.  Contract:
1848 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1849 // registers, including flags.  May not use a register 'save', as this blows
1850 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1851 // call.
1852 void MacroAssembler::verify_oop_subroutine() {
1853   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1854 
1855   // Leaf call; no frame.
1856   Label succeed, fail, null_or_fail;
1857 
1858   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1859   // O0 is now the oop to be checked.  O7 is the return address.
1860   Register O0_obj = O0;
1861 
1862   // Save some more registers for temps.
1863   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1864   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1865   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1866   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1867 
1868   // Save flags
1869   Register O5_save_flags = O5;
1870   rdccr( O5_save_flags );
1871 
1872   { // count number of verifies
1873     Register O2_adr   = O2;
1874     Register O3_accum = O3;
1875     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1876   }
1877 
1878   Register O2_mask = O2;
1879   Register O3_bits = O3;
1880   Register O4_temp = O4;
1881 
1882   // mark lower end of faulting range
1883   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1884   _verify_oop_implicit_branch[0] = pc();
1885 
1886   // We can't check the mark oop because it could be in the process of
1887   // locking or unlocking while this is running.
1888   set(Universe::verify_oop_mask (), O2_mask);
1889   set(Universe::verify_oop_bits (), O3_bits);
1890 
1891   // assert((obj & oop_mask) == oop_bits);
1892   and3(O0_obj, O2_mask, O4_temp);
1893   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
1894 
1895   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1896     // the null_or_fail case is useless; must test for null separately
1897     br_null_short(O0_obj, pn, succeed);
1898   }
1899 
1900   // Check the klassOop of this object for being in the right area of memory.
1901   // Cannot do the load in the delay above slot in case O0 is null
1902   load_klass(O0_obj, O0_obj);
1903   // assert((klass & klass_mask) == klass_bits);
1904   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
1905     set(Universe::verify_klass_mask(), O2_mask);
1906   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
1907     set(Universe::verify_klass_bits(), O3_bits);
1908   and3(O0_obj, O2_mask, O4_temp);
1909   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, fail);
1910   // Check the klass's klass
1911   load_klass(O0_obj, O0_obj);
1912   and3(O0_obj, O2_mask, O4_temp);
1913   cmp(O4_temp, O3_bits);
1914   brx(notEqual, false, pn, fail);
1915   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1916 
1917   // mark upper end of faulting range
1918   _verify_oop_implicit_branch[1] = pc();
1919 
1920   //-----------------------
1921   // all tests pass
1922   bind(succeed);
1923 
1924   // Restore prior 64-bit registers
1925   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1926   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1927   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1928   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1929   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1930   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1931 
1932   retl();                       // Leaf return; restore prior O7 in delay slot
1933   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1934 
1935   //-----------------------
1936   bind(null_or_fail);           // nulls are less common but OK
1937   br_null(O0_obj, false, pt, succeed);
1938   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1939 
1940   //-----------------------
1941   // report failure:
1942   bind(fail);
1943   _verify_oop_implicit_branch[2] = pc();
1944 
1945   wrccr( O5_save_flags ); // Restore CCR's
1946 
1947   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1948 
1949   // stop_subroutine expects message pointer in I1.
1950   mov(I1, O1);
1951 
1952   // Restore prior 64-bit registers
1953   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1954   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1955   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1956   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1957   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1958   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1959 
1960   // factor long stop-sequence into subroutine to save space
1961   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1962 
1963   // call indirectly to solve generation ordering problem
1964   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1965   load_ptr_contents(al, O5);
1966   jmpl(O5, 0, O7);
1967   delayed()->nop();
1968 }
1969 
1970 
1971 void MacroAssembler::stop(const char* msg) {
1972   // save frame first to get O7 for return address
1973   // add one word to size in case struct is odd number of words long
1974   // It must be doubleword-aligned for storing doubles into it.
1975 
1976     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1977 
1978     // stop_subroutine expects message pointer in I1.
1979     set((intptr_t)msg, O1);
1980 
1981     // factor long stop-sequence into subroutine to save space
1982     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1983 
1984     // call indirectly to solve generation ordering problem
1985     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1986     load_ptr_contents(a, O5);
1987     jmpl(O5, 0, O7);
1988     delayed()->nop();
1989 
1990     breakpoint_trap();   // make stop actually stop rather than writing
1991                          // unnoticeable results in the output files.
1992 
1993     // restore(); done in callee to save space!
1994 }
1995 
1996 
1997 void MacroAssembler::warn(const char* msg) {
1998   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1999   RegistersForDebugging::save_registers(this);
2000   mov(O0, L0);
2001   set((intptr_t)msg, O0);
2002   call( CAST_FROM_FN_PTR(address, warning) );
2003   delayed()->nop();
2004 //  ret();
2005 //  delayed()->restore();
2006   RegistersForDebugging::restore_registers(this, L0);
2007   restore();
2008 }
2009 
2010 
2011 void MacroAssembler::untested(const char* what) {
2012   // We must be able to turn interactive prompting off
2013   // in order to run automated test scripts on the VM
2014   // Use the flag ShowMessageBoxOnError
2015 
2016   char* b = new char[1024];
2017   sprintf(b, "untested: %s", what);
2018 
2019   if ( ShowMessageBoxOnError )   stop(b);
2020   else                           warn(b);
2021 }
2022 
2023 
2024 void MacroAssembler::stop_subroutine() {
2025   RegistersForDebugging::save_registers(this);
2026 
2027   // for the sake of the debugger, stick a PC on the current frame
2028   // (this assumes that the caller has performed an extra "save")
2029   mov(I7, L7);
2030   add(O7, -7 * BytesPerInt, I7);
2031 
2032   save_frame(); // one more save to free up another O7 register
2033   mov(I0, O1); // addr of reg save area
2034 
2035   // We expect pointer to message in I1. Caller must set it up in O1
2036   mov(I1, O0); // get msg
2037   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
2038   delayed()->nop();
2039 
2040   restore();
2041 
2042   RegistersForDebugging::restore_registers(this, O0);
2043 
2044   save_frame(0);
2045   call(CAST_FROM_FN_PTR(address,breakpoint));
2046   delayed()->nop();
2047   restore();
2048 
2049   mov(L7, I7);
2050   retl();
2051   delayed()->restore(); // see stop above
2052 }
2053 
2054 
2055 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
2056   if ( ShowMessageBoxOnError ) {
2057       JavaThreadState saved_state = JavaThread::current()->thread_state();
2058       JavaThread::current()->set_thread_state(_thread_in_vm);
2059       {
2060         // In order to get locks work, we need to fake a in_VM state
2061         ttyLocker ttyl;
2062         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
2063         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2064           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
2065         }
2066         if (os::message_box(msg, "Execution stopped, print registers?"))
2067           regs->print(::tty);
2068       }
2069       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
2070   }
2071   else
2072      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
2073   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
2074 }
2075 
2076 
2077 #ifndef PRODUCT
2078 void MacroAssembler::test() {
2079   ResourceMark rm;
2080 
2081   CodeBuffer cb("test", 10000, 10000);
2082   MacroAssembler* a = new MacroAssembler(&cb);
2083   VM_Version::allow_all();
2084   a->test_v9();
2085   a->test_v8_onlys();
2086   VM_Version::revert();
2087 
2088   StubRoutines::Sparc::test_stop_entry()();
2089 }
2090 #endif
2091 
2092 
2093 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
2094   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
2095   Label no_extras;
2096   br( negative, true, pt, no_extras ); // if neg, clear reg
2097   delayed()->set(0, Rresult);          // annuled, so only if taken
2098   bind( no_extras );
2099 }
2100 
2101 
2102 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
2103 #ifdef _LP64
2104   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
2105 #else
2106   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
2107 #endif
2108   bclr(1, Rresult);
2109   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
2110 }
2111 
2112 
2113 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
2114   calc_frame_size(Rextra_words, Rresult);
2115   neg(Rresult);
2116   save(SP, Rresult, SP);
2117 }
2118 
2119 
2120 // ---------------------------------------------------------
2121 Assembler::RCondition cond2rcond(Assembler::Condition c) {
2122   switch (c) {
2123     /*case zero: */
2124     case Assembler::equal:        return Assembler::rc_z;
2125     case Assembler::lessEqual:    return Assembler::rc_lez;
2126     case Assembler::less:         return Assembler::rc_lz;
2127     /*case notZero:*/
2128     case Assembler::notEqual:     return Assembler::rc_nz;
2129     case Assembler::greater:      return Assembler::rc_gz;
2130     case Assembler::greaterEqual: return Assembler::rc_gez;
2131   }
2132   ShouldNotReachHere();
2133   return Assembler::rc_z;
2134 }
2135 
2136 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
2137 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
2138   tst(s1);
2139   br (c, a, p, L);
2140 }
2141 
2142 // Compares a pointer register with zero and branches on null.
2143 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2144 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2145   assert_not_delayed();
2146 #ifdef _LP64
2147   bpr( rc_z, a, p, s1, L );
2148 #else
2149   tst(s1);
2150   br ( zero, a, p, L );
2151 #endif
2152 }
2153 
2154 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2155   assert_not_delayed();
2156 #ifdef _LP64
2157   bpr( rc_nz, a, p, s1, L );
2158 #else
2159   tst(s1);
2160   br ( notZero, a, p, L );
2161 #endif
2162 }
2163 
2164 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2165                                      Register s1, address d,
2166                                      relocInfo::relocType rt ) {
2167   assert_not_delayed();
2168   if (VM_Version::v9_instructions_work()) {
2169     bpr(rc, a, p, s1, d, rt);
2170   } else {
2171     tst(s1);
2172     br(reg_cond_to_cc_cond(rc), a, p, d, rt);
2173   }
2174 }
2175 
2176 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2177                                      Register s1, Label& L ) {
2178   assert_not_delayed();
2179   if (VM_Version::v9_instructions_work()) {
2180     bpr(rc, a, p, s1, L);
2181   } else {
2182     tst(s1);
2183     br(reg_cond_to_cc_cond(rc), a, p, L);
2184   }
2185 }
2186 
2187 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
2188 
2189 // Compare integer (32 bit) values (icc only).
2190 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
2191                                       Predict p, Label& L) {
2192   assert_not_delayed();
2193   if (use_cbcond(L)) {
2194     Assembler::cbcond(c, icc, s1, s2, L);
2195   } else {
2196     cmp(s1, s2);
2197     br(c, false, p, L);
2198     delayed()->nop();
2199   }
2200 }
2201 
2202 // Compare integer (32 bit) values (icc only).
2203 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
2204                                       Predict p, Label& L) {
2205   assert_not_delayed();
2206   if (is_simm(simm13a,5) && use_cbcond(L)) {
2207     Assembler::cbcond(c, icc, s1, simm13a, L);
2208   } else {
2209     cmp(s1, simm13a);
2210     br(c, false, p, L);
2211     delayed()->nop();
2212   }
2213 }
2214 
2215 // Branch that tests xcc in LP64 and icc in !LP64
2216 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
2217                                        Predict p, Label& L) {
2218   assert_not_delayed();
2219   if (use_cbcond(L)) {
2220     Assembler::cbcond(c, ptr_cc, s1, s2, L);
2221   } else {
2222     cmp(s1, s2);
2223     brx(c, false, p, L);
2224     delayed()->nop();
2225   }
2226 }
2227 
2228 // Branch that tests xcc in LP64 and icc in !LP64
2229 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
2230                                        Predict p, Label& L) {
2231   assert_not_delayed();
2232   if (is_simm(simm13a,5) && use_cbcond(L)) {
2233     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
2234   } else {
2235     cmp(s1, simm13a);
2236     brx(c, false, p, L);
2237     delayed()->nop();
2238   }
2239 }
2240 
2241 // Short branch version for compares a pointer with zero.
2242 
2243 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
2244   assert_not_delayed();
2245   if (use_cbcond(L)) {
2246     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
2247     return;
2248   }
2249   br_null(s1, false, p, L);
2250   delayed()->nop();
2251 }
2252 
2253 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
2254   assert_not_delayed();
2255   if (use_cbcond(L)) {
2256     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
2257     return;
2258   }
2259   br_notnull(s1, false, p, L);
2260   delayed()->nop();
2261 }
2262 
2263 // Unconditional short branch
2264 void MacroAssembler::ba_short(Label& L) {
2265   if (use_cbcond(L)) {
2266     Assembler::cbcond(equal, icc, G0, G0, L);
2267     return;
2268   }
2269   br(always, false, pt, L);
2270   delayed()->nop();
2271 }
2272 
2273 // instruction sequences factored across compiler & interpreter
2274 
2275 
2276 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2277                            Register Rb_hi, Register Rb_low,
2278                            Register Rresult) {
2279 
2280   Label check_low_parts, done;
2281 
2282   cmp(Ra_hi, Rb_hi );  // compare hi parts
2283   br(equal, true, pt, check_low_parts);
2284   delayed()->cmp(Ra_low, Rb_low); // test low parts
2285 
2286   // And, with an unsigned comparison, it does not matter if the numbers
2287   // are negative or not.
2288   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2289   // The second one is bigger (unsignedly).
2290 
2291   // Other notes:  The first move in each triplet can be unconditional
2292   // (and therefore probably prefetchable).
2293   // And the equals case for the high part does not need testing,
2294   // since that triplet is reached only after finding the high halves differ.
2295 
2296   if (VM_Version::v9_instructions_work()) {
2297     mov(-1, Rresult);
2298     ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
2299   } else {
2300     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
2301     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2302   }
2303 
2304   bind( check_low_parts );
2305 
2306   if (VM_Version::v9_instructions_work()) {
2307     mov(                               -1, Rresult);
2308     movcc(equal,           false, icc,  0, Rresult);
2309     movcc(greaterUnsigned, false, icc,  1, Rresult);
2310   } else {
2311     set(-1, Rresult);
2312     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
2313     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2314   }
2315   bind( done );
2316 }
2317 
2318 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2319   subcc(  G0, Rlow, Rlow );
2320   subc(   G0, Rhi,  Rhi  );
2321 }
2322 
2323 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
2324                            Register Rcount,
2325                            Register Rout_high, Register Rout_low,
2326                            Register Rtemp ) {
2327 
2328 
2329   Register Ralt_count = Rtemp;
2330   Register Rxfer_bits = Rtemp;
2331 
2332   assert( Ralt_count != Rin_high
2333       &&  Ralt_count != Rin_low
2334       &&  Ralt_count != Rcount
2335       &&  Rxfer_bits != Rin_low
2336       &&  Rxfer_bits != Rin_high
2337       &&  Rxfer_bits != Rcount
2338       &&  Rxfer_bits != Rout_low
2339       &&  Rout_low   != Rin_high,
2340         "register alias checks");
2341 
2342   Label big_shift, done;
2343 
2344   // This code can be optimized to use the 64 bit shifts in V9.
2345   // Here we use the 32 bit shifts.
2346 
2347   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
2348   subcc(Rcount,   31, Ralt_count);
2349   br(greater, true, pn, big_shift);
2350   delayed()->dec(Ralt_count);
2351 
2352   // shift < 32 bits, Ralt_count = Rcount-31
2353 
2354   // We get the transfer bits by shifting right by 32-count the low
2355   // register. This is done by shifting right by 31-count and then by one
2356   // more to take care of the special (rare) case where count is zero
2357   // (shifting by 32 would not work).
2358 
2359   neg(Ralt_count);
2360 
2361   // The order of the next two instructions is critical in the case where
2362   // Rin and Rout are the same and should not be reversed.
2363 
2364   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
2365   if (Rcount != Rout_low) {
2366     sll(Rin_low, Rcount, Rout_low); // low half
2367   }
2368   sll(Rin_high, Rcount, Rout_high);
2369   if (Rcount == Rout_low) {
2370     sll(Rin_low, Rcount, Rout_low); // low half
2371   }
2372   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
2373   ba(done);
2374   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
2375 
2376   // shift >= 32 bits, Ralt_count = Rcount-32
2377   bind(big_shift);
2378   sll(Rin_low, Ralt_count, Rout_high  );
2379   clr(Rout_low);
2380 
2381   bind(done);
2382 }
2383 
2384 
2385 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
2386                            Register Rcount,
2387                            Register Rout_high, Register Rout_low,
2388                            Register Rtemp ) {
2389 
2390   Register Ralt_count = Rtemp;
2391   Register Rxfer_bits = Rtemp;
2392 
2393   assert( Ralt_count != Rin_high
2394       &&  Ralt_count != Rin_low
2395       &&  Ralt_count != Rcount
2396       &&  Rxfer_bits != Rin_low
2397       &&  Rxfer_bits != Rin_high
2398       &&  Rxfer_bits != Rcount
2399       &&  Rxfer_bits != Rout_high
2400       &&  Rout_high  != Rin_low,
2401         "register alias checks");
2402 
2403   Label big_shift, done;
2404 
2405   // This code can be optimized to use the 64 bit shifts in V9.
2406   // Here we use the 32 bit shifts.
2407 
2408   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
2409   subcc(Rcount,   31, Ralt_count);
2410   br(greater, true, pn, big_shift);
2411   delayed()->dec(Ralt_count);
2412 
2413   // shift < 32 bits, Ralt_count = Rcount-31
2414 
2415   // We get the transfer bits by shifting left by 32-count the high
2416   // register. This is done by shifting left by 31-count and then by one
2417   // more to take care of the special (rare) case where count is zero
2418   // (shifting by 32 would not work).
2419 
2420   neg(Ralt_count);
2421   if (Rcount != Rout_low) {
2422     srl(Rin_low, Rcount, Rout_low);
2423   }
2424 
2425   // The order of the next two instructions is critical in the case where
2426   // Rin and Rout are the same and should not be reversed.
2427 
2428   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
2429   sra(Rin_high,     Rcount, Rout_high ); // high half
2430   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
2431   if (Rcount == Rout_low) {
2432     srl(Rin_low, Rcount, Rout_low);
2433   }
2434   ba(done);
2435   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
2436 
2437   // shift >= 32 bits, Ralt_count = Rcount-32
2438   bind(big_shift);
2439 
2440   sra(Rin_high, Ralt_count, Rout_low);
2441   sra(Rin_high,         31, Rout_high); // sign into hi
2442 
2443   bind( done );
2444 }
2445 
2446 
2447 
2448 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
2449                             Register Rcount,
2450                             Register Rout_high, Register Rout_low,
2451                             Register Rtemp ) {
2452 
2453   Register Ralt_count = Rtemp;
2454   Register Rxfer_bits = Rtemp;
2455 
2456   assert( Ralt_count != Rin_high
2457       &&  Ralt_count != Rin_low
2458       &&  Ralt_count != Rcount
2459       &&  Rxfer_bits != Rin_low
2460       &&  Rxfer_bits != Rin_high
2461       &&  Rxfer_bits != Rcount
2462       &&  Rxfer_bits != Rout_high
2463       &&  Rout_high  != Rin_low,
2464         "register alias checks");
2465 
2466   Label big_shift, done;
2467 
2468   // This code can be optimized to use the 64 bit shifts in V9.
2469   // Here we use the 32 bit shifts.
2470 
2471   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
2472   subcc(Rcount,   31, Ralt_count);
2473   br(greater, true, pn, big_shift);
2474   delayed()->dec(Ralt_count);
2475 
2476   // shift < 32 bits, Ralt_count = Rcount-31
2477 
2478   // We get the transfer bits by shifting left by 32-count the high
2479   // register. This is done by shifting left by 31-count and then by one
2480   // more to take care of the special (rare) case where count is zero
2481   // (shifting by 32 would not work).
2482 
2483   neg(Ralt_count);
2484   if (Rcount != Rout_low) {
2485     srl(Rin_low, Rcount, Rout_low);
2486   }
2487 
2488   // The order of the next two instructions is critical in the case where
2489   // Rin and Rout are the same and should not be reversed.
2490 
2491   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
2492   srl(Rin_high,     Rcount, Rout_high ); // high half
2493   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
2494   if (Rcount == Rout_low) {
2495     srl(Rin_low, Rcount, Rout_low);
2496   }
2497   ba(done);
2498   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
2499 
2500   // shift >= 32 bits, Ralt_count = Rcount-32
2501   bind(big_shift);
2502 
2503   srl(Rin_high, Ralt_count, Rout_low);
2504   clr(Rout_high);
2505 
2506   bind( done );
2507 }
2508 
2509 #ifdef _LP64
2510 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2511   cmp(Ra, Rb);
2512   mov(-1, Rresult);
2513   movcc(equal,   false, xcc,  0, Rresult);
2514   movcc(greater, false, xcc,  1, Rresult);
2515 }
2516 #endif
2517 
2518 
2519 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
2520   switch (size_in_bytes) {
2521   case  8:  ld_long(src, dst); break;
2522   case  4:  ld(     src, dst); break;
2523   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
2524   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
2525   default:  ShouldNotReachHere();
2526   }
2527 }
2528 
2529 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
2530   switch (size_in_bytes) {
2531   case  8:  st_long(src, dst); break;
2532   case  4:  st(     src, dst); break;
2533   case  2:  sth(    src, dst); break;
2534   case  1:  stb(    src, dst); break;
2535   default:  ShouldNotReachHere();
2536   }
2537 }
2538 
2539 
2540 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2541                                 FloatRegister Fa, FloatRegister Fb,
2542                                 Register Rresult) {
2543 
2544   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2545 
2546   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
2547   Condition eq =                          f_equal;
2548   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
2549 
2550   if (VM_Version::v9_instructions_work()) {
2551 
2552     mov(-1, Rresult);
2553     movcc(eq, true, fcc0, 0, Rresult);
2554     movcc(gt, true, fcc0, 1, Rresult);
2555 
2556   } else {
2557     Label done;
2558 
2559     set( -1, Rresult );
2560     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2561     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
2562     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
2563 
2564     bind (done);
2565   }
2566 }
2567 
2568 
2569 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2570 {
2571   if (VM_Version::v9_instructions_work()) {
2572     Assembler::fneg(w, s, d);
2573   } else {
2574     if (w == FloatRegisterImpl::S) {
2575       Assembler::fneg(w, s, d);
2576     } else if (w == FloatRegisterImpl::D) {
2577       // number() does a sanity check on the alignment.
2578       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2579         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2580 
2581       Assembler::fneg(FloatRegisterImpl::S, s, d);
2582       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2583     } else {
2584       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2585 
2586       // number() does a sanity check on the alignment.
2587       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2588         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2589 
2590       Assembler::fneg(FloatRegisterImpl::S, s, d);
2591       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2592       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2593       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2594     }
2595   }
2596 }
2597 
2598 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2599 {
2600   if (VM_Version::v9_instructions_work()) {
2601     Assembler::fmov(w, s, d);
2602   } else {
2603     if (w == FloatRegisterImpl::S) {
2604       Assembler::fmov(w, s, d);
2605     } else if (w == FloatRegisterImpl::D) {
2606       // number() does a sanity check on the alignment.
2607       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2608         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2609 
2610       Assembler::fmov(FloatRegisterImpl::S, s, d);
2611       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2612     } else {
2613       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2614 
2615       // number() does a sanity check on the alignment.
2616       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2617         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2618 
2619       Assembler::fmov(FloatRegisterImpl::S, s, d);
2620       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2621       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2622       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2623     }
2624   }
2625 }
2626 
2627 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2628 {
2629   if (VM_Version::v9_instructions_work()) {
2630     Assembler::fabs(w, s, d);
2631   } else {
2632     if (w == FloatRegisterImpl::S) {
2633       Assembler::fabs(w, s, d);
2634     } else if (w == FloatRegisterImpl::D) {
2635       // number() does a sanity check on the alignment.
2636       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2637         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2638 
2639       Assembler::fabs(FloatRegisterImpl::S, s, d);
2640       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2641     } else {
2642       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2643 
2644       // number() does a sanity check on the alignment.
2645       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2646        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2647 
2648       Assembler::fabs(FloatRegisterImpl::S, s, d);
2649       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2650       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2651       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2652     }
2653   }
2654 }
2655 
2656 void MacroAssembler::save_all_globals_into_locals() {
2657   mov(G1,L1);
2658   mov(G2,L2);
2659   mov(G3,L3);
2660   mov(G4,L4);
2661   mov(G5,L5);
2662   mov(G6,L6);
2663   mov(G7,L7);
2664 }
2665 
2666 void MacroAssembler::restore_globals_from_locals() {
2667   mov(L1,G1);
2668   mov(L2,G2);
2669   mov(L3,G3);
2670   mov(L4,G4);
2671   mov(L5,G5);
2672   mov(L6,G6);
2673   mov(L7,G7);
2674 }
2675 
2676 // Use for 64 bit operation.
2677 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2678 {
2679   // store ptr_reg as the new top value
2680 #ifdef _LP64
2681   casx(top_ptr_reg, top_reg, ptr_reg);
2682 #else
2683   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2684 #endif // _LP64
2685 }
2686 
2687 // [RGV] This routine does not handle 64 bit operations.
2688 //       use casx_under_lock() or casx directly!!!
2689 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2690 {
2691   // store ptr_reg as the new top value
2692   if (VM_Version::v9_instructions_work()) {
2693     cas(top_ptr_reg, top_reg, ptr_reg);
2694   } else {
2695 
2696     // If the register is not an out nor global, it is not visible
2697     // after the save.  Allocate a register for it, save its
2698     // value in the register save area (the save may not flush
2699     // registers to the save area).
2700 
2701     Register top_ptr_reg_after_save;
2702     Register top_reg_after_save;
2703     Register ptr_reg_after_save;
2704 
2705     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2706       top_ptr_reg_after_save = top_ptr_reg->after_save();
2707     } else {
2708       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2709       top_ptr_reg_after_save = L0;
2710       st(top_ptr_reg, reg_save_addr);
2711     }
2712 
2713     if (top_reg->is_out() || top_reg->is_global()) {
2714       top_reg_after_save = top_reg->after_save();
2715     } else {
2716       Address reg_save_addr = top_reg->address_in_saved_window();
2717       top_reg_after_save = L1;
2718       st(top_reg, reg_save_addr);
2719     }
2720 
2721     if (ptr_reg->is_out() || ptr_reg->is_global()) {
2722       ptr_reg_after_save = ptr_reg->after_save();
2723     } else {
2724       Address reg_save_addr = ptr_reg->address_in_saved_window();
2725       ptr_reg_after_save = L2;
2726       st(ptr_reg, reg_save_addr);
2727     }
2728 
2729     const Register& lock_reg = L3;
2730     const Register& lock_ptr_reg = L4;
2731     const Register& value_reg = L5;
2732     const Register& yield_reg = L6;
2733     const Register& yieldall_reg = L7;
2734 
2735     save_frame();
2736 
2737     if (top_ptr_reg_after_save == L0) {
2738       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2739     }
2740 
2741     if (top_reg_after_save == L1) {
2742       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2743     }
2744 
2745     if (ptr_reg_after_save == L2) {
2746       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2747     }
2748 
2749     Label(retry_get_lock);
2750     Label(not_same);
2751     Label(dont_yield);
2752 
2753     assert(lock_addr, "lock_address should be non null for v8");
2754     set((intptr_t)lock_addr, lock_ptr_reg);
2755     // Initialize yield counter
2756     mov(G0,yield_reg);
2757     mov(G0, yieldall_reg);
2758     set(StubRoutines::Sparc::locked, lock_reg);
2759 
2760     bind(retry_get_lock);
2761     cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
2762 
2763     if(use_call_vm) {
2764       Untested("Need to verify global reg consistancy");
2765       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2766     } else {
2767       // Save the regs and make space for a C call
2768       save(SP, -96, SP);
2769       save_all_globals_into_locals();
2770       call(CAST_FROM_FN_PTR(address,os::yield_all));
2771       delayed()->mov(yieldall_reg, O0);
2772       restore_globals_from_locals();
2773       restore();
2774     }
2775 
2776     // reset the counter
2777     mov(G0,yield_reg);
2778     add(yieldall_reg, 1, yieldall_reg);
2779 
2780     bind(dont_yield);
2781     // try to get lock
2782     swap(lock_ptr_reg, 0, lock_reg);
2783 
2784     // did we get the lock?
2785     cmp(lock_reg, StubRoutines::Sparc::unlocked);
2786     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2787     delayed()->add(yield_reg,1,yield_reg);
2788 
2789     // yes, got lock.  do we have the same top?
2790     ld(top_ptr_reg_after_save, 0, value_reg);
2791     cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
2792 
2793     // yes, same top.
2794     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2795     membar(Assembler::StoreStore);
2796 
2797     bind(not_same);
2798     mov(value_reg, ptr_reg_after_save);
2799     st(lock_reg, lock_ptr_reg, 0); // unlock
2800 
2801     restore();
2802   }
2803 }
2804 
2805 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2806                                                       Register tmp,
2807                                                       int offset) {
2808   intptr_t value = *delayed_value_addr;
2809   if (value != 0)
2810     return RegisterOrConstant(value + offset);
2811 
2812   // load indirectly to solve generation ordering problem
2813   AddressLiteral a(delayed_value_addr);
2814   load_ptr_contents(a, tmp);
2815 
2816 #ifdef ASSERT
2817   tst(tmp);
2818   breakpoint_trap(zero, xcc);
2819 #endif
2820 
2821   if (offset != 0)
2822     add(tmp, offset, tmp);
2823 
2824   return RegisterOrConstant(tmp);
2825 }
2826 
2827 
2828 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2829   assert(d.register_or_noreg() != G0, "lost side effect");
2830   if ((s2.is_constant() && s2.as_constant() == 0) ||
2831       (s2.is_register() && s2.as_register() == G0)) {
2832     // Do nothing, just move value.
2833     if (s1.is_register()) {
2834       if (d.is_constant())  d = temp;
2835       mov(s1.as_register(), d.as_register());
2836       return d;
2837     } else {
2838       return s1;
2839     }
2840   }
2841 
2842   if (s1.is_register()) {
2843     assert_different_registers(s1.as_register(), temp);
2844     if (d.is_constant())  d = temp;
2845     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2846     return d;
2847   } else {
2848     if (s2.is_register()) {
2849       assert_different_registers(s2.as_register(), temp);
2850       if (d.is_constant())  d = temp;
2851       set(s1.as_constant(), temp);
2852       andn(temp, s2.as_register(), d.as_register());
2853       return d;
2854     } else {
2855       intptr_t res = s1.as_constant() & ~s2.as_constant();
2856       return res;
2857     }
2858   }
2859 }
2860 
2861 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2862   assert(d.register_or_noreg() != G0, "lost side effect");
2863   if ((s2.is_constant() && s2.as_constant() == 0) ||
2864       (s2.is_register() && s2.as_register() == G0)) {
2865     // Do nothing, just move value.
2866     if (s1.is_register()) {
2867       if (d.is_constant())  d = temp;
2868       mov(s1.as_register(), d.as_register());
2869       return d;
2870     } else {
2871       return s1;
2872     }
2873   }
2874 
2875   if (s1.is_register()) {
2876     assert_different_registers(s1.as_register(), temp);
2877     if (d.is_constant())  d = temp;
2878     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2879     return d;
2880   } else {
2881     if (s2.is_register()) {
2882       assert_different_registers(s2.as_register(), temp);
2883       if (d.is_constant())  d = temp;
2884       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2885       return d;
2886     } else {
2887       intptr_t res = s1.as_constant() + s2.as_constant();
2888       return res;
2889     }
2890   }
2891 }
2892 
2893 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2894   assert(d.register_or_noreg() != G0, "lost side effect");
2895   if (!is_simm13(s2.constant_or_zero()))
2896     s2 = (s2.as_constant() & 0xFF);
2897   if ((s2.is_constant() && s2.as_constant() == 0) ||
2898       (s2.is_register() && s2.as_register() == G0)) {
2899     // Do nothing, just move value.
2900     if (s1.is_register()) {
2901       if (d.is_constant())  d = temp;
2902       mov(s1.as_register(), d.as_register());
2903       return d;
2904     } else {
2905       return s1;
2906     }
2907   }
2908 
2909   if (s1.is_register()) {
2910     assert_different_registers(s1.as_register(), temp);
2911     if (d.is_constant())  d = temp;
2912     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2913     return d;
2914   } else {
2915     if (s2.is_register()) {
2916       assert_different_registers(s2.as_register(), temp);
2917       if (d.is_constant())  d = temp;
2918       set(s1.as_constant(), temp);
2919       sll_ptr(temp, s2.as_register(), d.as_register());
2920       return d;
2921     } else {
2922       intptr_t res = s1.as_constant() << s2.as_constant();
2923       return res;
2924     }
2925   }
2926 }
2927 
2928 
2929 // Look up the method for a megamorphic invokeinterface call.
2930 // The target method is determined by <intf_klass, itable_index>.
2931 // The receiver klass is in recv_klass.
2932 // On success, the result will be in method_result, and execution falls through.
2933 // On failure, execution transfers to the given label.
2934 void MacroAssembler::lookup_interface_method(Register recv_klass,
2935                                              Register intf_klass,
2936                                              RegisterOrConstant itable_index,
2937                                              Register method_result,
2938                                              Register scan_temp,
2939                                              Register sethi_temp,
2940                                              Label& L_no_such_interface) {
2941   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2942   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2943          "caller must use same register for non-constant itable index as for method");
2944 
2945   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2946   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
2947   int scan_step   = itableOffsetEntry::size() * wordSize;
2948   int vte_size    = vtableEntry::size() * wordSize;
2949 
2950   lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
2951   // %%% We should store the aligned, prescaled offset in the klassoop.
2952   // Then the next several instructions would fold away.
2953 
2954   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2955   int itb_offset = vtable_base;
2956   if (round_to_unit != 0) {
2957     // hoist first instruction of round_to(scan_temp, BytesPerLong):
2958     itb_offset += round_to_unit - wordSize;
2959   }
2960   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2961   sll(scan_temp, itb_scale,  scan_temp);
2962   add(scan_temp, itb_offset, scan_temp);
2963   if (round_to_unit != 0) {
2964     // Round up to align_object_offset boundary
2965     // see code for instanceKlass::start_of_itable!
2966     // Was: round_to(scan_temp, BytesPerLong);
2967     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2968     and3(scan_temp, -round_to_unit, scan_temp);
2969   }
2970   add(recv_klass, scan_temp, scan_temp);
2971 
2972   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2973   RegisterOrConstant itable_offset = itable_index;
2974   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2975   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2976   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2977 
2978   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2979   //   if (scan->interface() == intf) {
2980   //     result = (klass + scan->offset() + itable_index);
2981   //   }
2982   // }
2983   Label search, found_method;
2984 
2985   for (int peel = 1; peel >= 0; peel--) {
2986     // %%%% Could load both offset and interface in one ldx, if they were
2987     // in the opposite order.  This would save a load.
2988     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2989 
2990     // Check that this entry is non-null.  A null entry means that
2991     // the receiver class doesn't implement the interface, and wasn't the
2992     // same as when the caller was compiled.
2993     bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
2994     delayed()->cmp(method_result, intf_klass);
2995 
2996     if (peel) {
2997       brx(Assembler::equal,    false, Assembler::pt, found_method);
2998     } else {
2999       brx(Assembler::notEqual, false, Assembler::pn, search);
3000       // (invert the test to fall through to found_method...)
3001     }
3002     delayed()->add(scan_temp, scan_step, scan_temp);
3003 
3004     if (!peel)  break;
3005 
3006     bind(search);
3007   }
3008 
3009   bind(found_method);
3010 
3011   // Got a hit.
3012   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
3013   // scan_temp[-scan_step] points to the vtable offset we need
3014   ito_offset -= scan_step;
3015   lduw(scan_temp, ito_offset, scan_temp);
3016   ld_ptr(recv_klass, scan_temp, method_result);
3017 }
3018 
3019 
3020 void MacroAssembler::check_klass_subtype(Register sub_klass,
3021                                          Register super_klass,
3022                                          Register temp_reg,
3023                                          Register temp2_reg,
3024                                          Label& L_success) {
3025   Label L_failure, L_pop_to_failure;
3026   check_klass_subtype_fast_path(sub_klass, super_klass,
3027                                 temp_reg, temp2_reg,
3028                                 &L_success, &L_failure, NULL);
3029   Register sub_2 = sub_klass;
3030   Register sup_2 = super_klass;
3031   if (!sub_2->is_global())  sub_2 = L0;
3032   if (!sup_2->is_global())  sup_2 = L1;
3033 
3034   save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
3035   check_klass_subtype_slow_path(sub_2, sup_2,
3036                                 L2, L3, L4, L5,
3037                                 NULL, &L_pop_to_failure);
3038 
3039   // on success:
3040   restore();
3041   ba_short(L_success);
3042 
3043   // on failure:
3044   bind(L_pop_to_failure);
3045   restore();
3046   bind(L_failure);
3047 }
3048 
3049 
3050 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
3051                                                    Register super_klass,
3052                                                    Register temp_reg,
3053                                                    Register temp2_reg,
3054                                                    Label* L_success,
3055                                                    Label* L_failure,
3056                                                    Label* L_slow_path,
3057                                         RegisterOrConstant super_check_offset) {
3058   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
3059                    Klass::secondary_super_cache_offset_in_bytes());
3060   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
3061                     Klass::super_check_offset_offset_in_bytes());
3062 
3063   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
3064   bool need_slow_path = (must_load_sco ||
3065                          super_check_offset.constant_or_zero() == sco_offset);
3066 
3067   assert_different_registers(sub_klass, super_klass, temp_reg);
3068   if (super_check_offset.is_register()) {
3069     assert_different_registers(sub_klass, super_klass, temp_reg,
3070                                super_check_offset.as_register());
3071   } else if (must_load_sco) {
3072     assert(temp2_reg != noreg, "supply either a temp or a register offset");
3073   }
3074 
3075   Label L_fallthrough;
3076   int label_nulls = 0;
3077   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
3078   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
3079   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
3080   assert(label_nulls <= 1 ||
3081          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
3082          "at most one NULL in the batch, usually");
3083 
3084   // If the pointers are equal, we are done (e.g., String[] elements).
3085   // This self-check enables sharing of secondary supertype arrays among
3086   // non-primary types such as array-of-interface.  Otherwise, each such
3087   // type would need its own customized SSA.
3088   // We move this check to the front of the fast path because many
3089   // type checks are in fact trivially successful in this manner,
3090   // so we get a nicely predicted branch right at the start of the check.
3091   cmp(super_klass, sub_klass);
3092   brx(Assembler::equal, false, Assembler::pn, *L_success);
3093   delayed()->nop();
3094 
3095   // Check the supertype display:
3096   if (must_load_sco) {
3097     // The super check offset is always positive...
3098     lduw(super_klass, sco_offset, temp2_reg);
3099     super_check_offset = RegisterOrConstant(temp2_reg);
3100     // super_check_offset is register.
3101     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
3102   }
3103   ld_ptr(sub_klass, super_check_offset, temp_reg);
3104   cmp(super_klass, temp_reg);
3105 
3106   // This check has worked decisively for primary supers.
3107   // Secondary supers are sought in the super_cache ('super_cache_addr').
3108   // (Secondary supers are interfaces and very deeply nested subtypes.)
3109   // This works in the same check above because of a tricky aliasing
3110   // between the super_cache and the primary super display elements.
3111   // (The 'super_check_addr' can address either, as the case requires.)
3112   // Note that the cache is updated below if it does not help us find
3113   // what we need immediately.
3114   // So if it was a primary super, we can just fail immediately.
3115   // Otherwise, it's the slow path for us (no success at this point).
3116 
3117   // Hacked ba(), which may only be used just before L_fallthrough.
3118 #define FINAL_JUMP(label)            \
3119   if (&(label) != &L_fallthrough) {  \
3120     ba(label);  delayed()->nop();    \
3121   }
3122 
3123   if (super_check_offset.is_register()) {
3124     brx(Assembler::equal, false, Assembler::pn, *L_success);
3125     delayed()->cmp(super_check_offset.as_register(), sc_offset);
3126 
3127     if (L_failure == &L_fallthrough) {
3128       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
3129       delayed()->nop();
3130     } else {
3131       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
3132       delayed()->nop();
3133       FINAL_JUMP(*L_slow_path);
3134     }
3135   } else if (super_check_offset.as_constant() == sc_offset) {
3136     // Need a slow path; fast failure is impossible.
3137     if (L_slow_path == &L_fallthrough) {
3138       brx(Assembler::equal, false, Assembler::pt, *L_success);
3139       delayed()->nop();
3140     } else {
3141       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
3142       delayed()->nop();
3143       FINAL_JUMP(*L_success);
3144     }
3145   } else {
3146     // No slow path; it's a fast decision.
3147     if (L_failure == &L_fallthrough) {
3148       brx(Assembler::equal, false, Assembler::pt, *L_success);
3149       delayed()->nop();
3150     } else {
3151       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
3152       delayed()->nop();
3153       FINAL_JUMP(*L_success);
3154     }
3155   }
3156 
3157   bind(L_fallthrough);
3158 
3159 #undef FINAL_JUMP
3160 }
3161 
3162 
3163 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
3164                                                    Register super_klass,
3165                                                    Register count_temp,
3166                                                    Register scan_temp,
3167                                                    Register scratch_reg,
3168                                                    Register coop_reg,
3169                                                    Label* L_success,
3170                                                    Label* L_failure) {
3171   assert_different_registers(sub_klass, super_klass,
3172                              count_temp, scan_temp, scratch_reg, coop_reg);
3173 
3174   Label L_fallthrough, L_loop;
3175   int label_nulls = 0;
3176   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
3177   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
3178   assert(label_nulls <= 1, "at most one NULL in the batch");
3179 
3180   // a couple of useful fields in sub_klass:
3181   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
3182                    Klass::secondary_supers_offset_in_bytes());
3183   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
3184                    Klass::secondary_super_cache_offset_in_bytes());
3185 
3186   // Do a linear scan of the secondary super-klass chain.
3187   // This code is rarely used, so simplicity is a virtue here.
3188 
3189 #ifndef PRODUCT
3190   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
3191   inc_counter((address) pst_counter, count_temp, scan_temp);
3192 #endif
3193 
3194   // We will consult the secondary-super array.
3195   ld_ptr(sub_klass, ss_offset, scan_temp);
3196 
3197   // Compress superclass if necessary.
3198   Register search_key = super_klass;
3199   bool decode_super_klass = false;
3200   if (UseCompressedOops) {
3201     if (coop_reg != noreg) {
3202       encode_heap_oop_not_null(super_klass, coop_reg);
3203       search_key = coop_reg;
3204     } else {
3205       encode_heap_oop_not_null(super_klass);
3206       decode_super_klass = true; // scarce temps!
3207     }
3208     // The superclass is never null; it would be a basic system error if a null
3209     // pointer were to sneak in here.  Note that we have already loaded the
3210     // Klass::super_check_offset from the super_klass in the fast path,
3211     // so if there is a null in that register, we are already in the afterlife.
3212   }
3213 
3214   // Load the array length.  (Positive movl does right thing on LP64.)
3215   lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
3216 
3217   // Check for empty secondary super list
3218   tst(count_temp);
3219 
3220   // Top of search loop
3221   bind(L_loop);
3222   br(Assembler::equal, false, Assembler::pn, *L_failure);
3223   delayed()->add(scan_temp, heapOopSize, scan_temp);
3224   assert(heapOopSize != 0, "heapOopSize should be initialized");
3225 
3226   // Skip the array header in all array accesses.
3227   int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
3228   elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also
3229 
3230   // Load next super to check
3231   if (UseCompressedOops) {
3232     // Don't use load_heap_oop; we don't want to decode the element.
3233     lduw(   scan_temp, elem_offset, scratch_reg );
3234   } else {
3235     ld_ptr( scan_temp, elem_offset, scratch_reg );
3236   }
3237 
3238   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
3239   cmp(scratch_reg, search_key);
3240 
3241   // A miss means we are NOT a subtype and need to keep looping
3242   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
3243   delayed()->deccc(count_temp); // decrement trip counter in delay slot
3244 
3245   // Falling out the bottom means we found a hit; we ARE a subtype
3246   if (decode_super_klass) decode_heap_oop(super_klass);
3247 
3248   // Success.  Cache the super we found and proceed in triumph.
3249   st_ptr(super_klass, sub_klass, sc_offset);
3250 
3251   if (L_success != &L_fallthrough) {
3252     ba(*L_success);
3253     delayed()->nop();
3254   }
3255 
3256   bind(L_fallthrough);
3257 }
3258 
3259 
3260 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
3261                                               Register temp_reg,
3262                                               Label& wrong_method_type) {
3263   assert_different_registers(mtype_reg, mh_reg, temp_reg);
3264   // compare method type against that of the receiver
3265   RegisterOrConstant mhtype_offset = delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg);
3266   load_heap_oop(mh_reg, mhtype_offset, temp_reg);
3267   cmp_and_brx_short(temp_reg, mtype_reg, Assembler::notEqual, Assembler::pn, wrong_method_type);
3268 }
3269 
3270 
3271 // A method handle has a "vmslots" field which gives the size of its
3272 // argument list in JVM stack slots.  This field is either located directly
3273 // in every method handle, or else is indirectly accessed through the
3274 // method handle's MethodType.  This macro hides the distinction.
3275 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
3276                                                 Register temp_reg) {
3277   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
3278   // load mh.type.form.vmslots
3279   if (java_lang_invoke_MethodHandle::vmslots_offset_in_bytes() != 0) {
3280     // hoist vmslots into every mh to avoid dependent load chain
3281     ld(           Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::vmslots_offset_in_bytes, temp_reg)),   vmslots_reg);
3282   } else {
3283     Register temp2_reg = vmslots_reg;
3284     load_heap_oop(Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)),      temp2_reg);
3285     load_heap_oop(Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)),        temp2_reg);
3286     ld(           Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
3287   }
3288 }
3289 
3290 
3291 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
3292   assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
3293   assert_different_registers(mh_reg, temp_reg);
3294 
3295   // pick out the interpreted side of the handler
3296   // NOTE: vmentry is not an oop!
3297   ld_ptr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
3298 
3299   // off we go...
3300   ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
3301   jmp(temp_reg, 0);
3302 
3303   // for the various stubs which take control at this point,
3304   // see MethodHandles::generate_method_handle_stub
3305 
3306   // Some callers can fill the delay slot.
3307   if (emit_delayed_nop) {
3308     delayed()->nop();
3309   }
3310 }
3311 
3312 
3313 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
3314                                                    Register temp_reg,
3315                                                    int extra_slot_offset) {
3316   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
3317   int stackElementSize = Interpreter::stackElementSize;
3318   int offset = extra_slot_offset * stackElementSize;
3319   if (arg_slot.is_constant()) {
3320     offset += arg_slot.as_constant() * stackElementSize;
3321     return offset;
3322   } else {
3323     assert(temp_reg != noreg, "must specify");
3324     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
3325     if (offset != 0)
3326       add(temp_reg, offset, temp_reg);
3327     return temp_reg;
3328   }
3329 }
3330 
3331 
3332 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
3333                                          Register temp_reg,
3334                                          int extra_slot_offset) {
3335   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
3336 }
3337 
3338 
3339 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
3340                                           Register temp_reg,
3341                                           Label& done, Label* slow_case,
3342                                           BiasedLockingCounters* counters) {
3343   assert(UseBiasedLocking, "why call this otherwise?");
3344 
3345   if (PrintBiasedLockingStatistics) {
3346     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
3347     if (counters == NULL)
3348       counters = BiasedLocking::counters();
3349   }
3350 
3351   Label cas_label;
3352 
3353   // Biased locking
3354   // See whether the lock is currently biased toward our thread and
3355   // whether the epoch is still valid
3356   // Note that the runtime guarantees sufficient alignment of JavaThread
3357   // pointers to allow age to be placed into low bits
3358   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
3359   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3360   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
3361 
3362   load_klass(obj_reg, temp_reg);
3363   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3364   or3(G2_thread, temp_reg, temp_reg);
3365   xor3(mark_reg, temp_reg, temp_reg);
3366   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
3367   if (counters != NULL) {
3368     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
3369     // Reload mark_reg as we may need it later
3370     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
3371   }
3372   brx(Assembler::equal, true, Assembler::pt, done);
3373   delayed()->nop();
3374 
3375   Label try_revoke_bias;
3376   Label try_rebias;
3377   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3378   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3379 
3380   // At this point we know that the header has the bias pattern and
3381   // that we are not the bias owner in the current epoch. We need to
3382   // figure out more details about the state of the header in order to
3383   // know what operations can be legally performed on the object's
3384   // header.
3385 
3386   // If the low three bits in the xor result aren't clear, that means
3387   // the prototype header is no longer biased and we have to revoke
3388   // the bias on this object.
3389   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
3390   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
3391 
3392   // Biasing is still enabled for this data type. See whether the
3393   // epoch of the current bias is still valid, meaning that the epoch
3394   // bits of the mark word are equal to the epoch bits of the
3395   // prototype header. (Note that the prototype header's epoch bits
3396   // only change at a safepoint.) If not, attempt to rebias the object
3397   // toward the current thread. Note that we must be absolutely sure
3398   // that the current epoch is invalid in order to do this because
3399   // otherwise the manipulations it performs on the mark word are
3400   // illegal.
3401   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
3402   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
3403 
3404   // The epoch of the current bias is still valid but we know nothing
3405   // about the owner; it might be set or it might be clear. Try to
3406   // acquire the bias of the object using an atomic operation. If this
3407   // fails we will go in to the runtime to revoke the object's bias.
3408   // Note that we first construct the presumed unbiased header so we
3409   // don't accidentally blow away another thread's valid bias.
3410   delayed()->and3(mark_reg,
3411                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
3412                   mark_reg);
3413   or3(G2_thread, mark_reg, temp_reg);
3414   casn(mark_addr.base(), mark_reg, temp_reg);
3415   // If the biasing toward our thread failed, this means that
3416   // another thread succeeded in biasing it toward itself and we
3417   // need to revoke that bias. The revocation will occur in the
3418   // interpreter runtime in the slow case.
3419   cmp(mark_reg, temp_reg);
3420   if (counters != NULL) {
3421     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
3422   }
3423   if (slow_case != NULL) {
3424     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3425     delayed()->nop();
3426   }
3427   ba_short(done);
3428 
3429   bind(try_rebias);
3430   // At this point we know the epoch has expired, meaning that the
3431   // current "bias owner", if any, is actually invalid. Under these
3432   // circumstances _only_, we are allowed to use the current header's
3433   // value as the comparison value when doing the cas to acquire the
3434   // bias in the current epoch. In other words, we allow transfer of
3435   // the bias from one thread to another directly in this situation.
3436   //
3437   // FIXME: due to a lack of registers we currently blow away the age
3438   // bits in this situation. Should attempt to preserve them.
3439   load_klass(obj_reg, temp_reg);
3440   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3441   or3(G2_thread, temp_reg, temp_reg);
3442   casn(mark_addr.base(), mark_reg, temp_reg);
3443   // If the biasing toward our thread failed, this means that
3444   // another thread succeeded in biasing it toward itself and we
3445   // need to revoke that bias. The revocation will occur in the
3446   // interpreter runtime in the slow case.
3447   cmp(mark_reg, temp_reg);
3448   if (counters != NULL) {
3449     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
3450   }
3451   if (slow_case != NULL) {
3452     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3453     delayed()->nop();
3454   }
3455   ba_short(done);
3456 
3457   bind(try_revoke_bias);
3458   // The prototype mark in the klass doesn't have the bias bit set any
3459   // more, indicating that objects of this data type are not supposed
3460   // to be biased any more. We are going to try to reset the mark of
3461   // this object to the prototype value and fall through to the
3462   // CAS-based locking scheme. Note that if our CAS fails, it means
3463   // that another thread raced us for the privilege of revoking the
3464   // bias of this particular object, so it's okay to continue in the
3465   // normal locking code.
3466   //
3467   // FIXME: due to a lack of registers we currently blow away the age
3468   // bits in this situation. Should attempt to preserve them.
3469   load_klass(obj_reg, temp_reg);
3470   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3471   casn(mark_addr.base(), mark_reg, temp_reg);
3472   // Fall through to the normal CAS-based lock, because no matter what
3473   // the result of the above CAS, some thread must have succeeded in
3474   // removing the bias bit from the object's header.
3475   if (counters != NULL) {
3476     cmp(mark_reg, temp_reg);
3477     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
3478   }
3479 
3480   bind(cas_label);
3481 }
3482 
3483 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
3484                                           bool allow_delay_slot_filling) {
3485   // Check for biased locking unlock case, which is a no-op
3486   // Note: we do not have to check the thread ID for two reasons.
3487   // First, the interpreter checks for IllegalMonitorStateException at
3488   // a higher level. Second, if the bias was revoked while we held the
3489   // lock, the object could not be rebiased toward another thread, so
3490   // the bias bit would be clear.
3491   ld_ptr(mark_addr, temp_reg);
3492   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3493   cmp(temp_reg, markOopDesc::biased_lock_pattern);
3494   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
3495   delayed();
3496   if (!allow_delay_slot_filling) {
3497     nop();
3498   }
3499 }
3500 
3501 
3502 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
3503 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
3504 
3505 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
3506   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3507 }
3508 
3509 
3510 
3511 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
3512 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
3513 // The code could be tightened up considerably.
3514 //
3515 // box->dhw disposition - post-conditions at DONE_LABEL.
3516 // -   Successful inflated lock:  box->dhw != 0.
3517 //     Any non-zero value suffices.
3518 //     Consider G2_thread, rsp, boxReg, or unused_mark()
3519 // -   Successful Stack-lock: box->dhw == mark.
3520 //     box->dhw must contain the displaced mark word value
3521 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
3522 //     The slow-path fast_enter() and slow_enter() operators
3523 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
3524 // -   Biased: box->dhw is undefined
3525 //
3526 // SPARC refworkload performance - specifically jetstream and scimark - are
3527 // extremely sensitive to the size of the code emitted by compiler_lock_object
3528 // and compiler_unlock_object.  Critically, the key factor is code size, not path
3529 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
3530 // effect).
3531 
3532 
3533 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
3534                                           Register Rbox, Register Rscratch,
3535                                           BiasedLockingCounters* counters,
3536                                           bool try_bias) {
3537    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3538 
3539    verify_oop(Roop);
3540    Label done ;
3541 
3542    if (counters != NULL) {
3543      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
3544    }
3545 
3546    if (EmitSync & 1) {
3547      mov(3, Rscratch);
3548      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3549      cmp(SP, G0);
3550      return ;
3551    }
3552 
3553    if (EmitSync & 2) {
3554 
3555      // Fetch object's markword
3556      ld_ptr(mark_addr, Rmark);
3557 
3558      if (try_bias) {
3559         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3560      }
3561 
3562      // Save Rbox in Rscratch to be used for the cas operation
3563      mov(Rbox, Rscratch);
3564 
3565      // set Rmark to markOop | markOopDesc::unlocked_value
3566      or3(Rmark, markOopDesc::unlocked_value, Rmark);
3567 
3568      // Initialize the box.  (Must happen before we update the object mark!)
3569      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3570 
3571      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
3572      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3573      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
3574         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3575 
3576      // if compare/exchange succeeded we found an unlocked object and we now have locked it
3577      // hence we are done
3578      cmp(Rmark, Rscratch);
3579 #ifdef _LP64
3580      sub(Rscratch, STACK_BIAS, Rscratch);
3581 #endif
3582      brx(Assembler::equal, false, Assembler::pt, done);
3583      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
3584 
3585      // we did not find an unlocked object so see if this is a recursive case
3586      // sub(Rscratch, SP, Rscratch);
3587      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3588      andcc(Rscratch, 0xfffff003, Rscratch);
3589      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3590      bind (done);
3591      return ;
3592    }
3593 
3594    Label Egress ;
3595 
3596    if (EmitSync & 256) {
3597       Label IsInflated ;
3598 
3599       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
3600       // Triage: biased, stack-locked, neutral, inflated
3601       if (try_bias) {
3602         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3603         // Invariant: if control reaches this point in the emitted stream
3604         // then Rmark has not been modified.
3605       }
3606 
3607       // Store mark into displaced mark field in the on-stack basic-lock "box"
3608       // Critically, this must happen before the CAS
3609       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
3610       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3611       andcc(Rmark, 2, G0);
3612       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
3613       delayed()->
3614 
3615       // Try stack-lock acquisition.
3616       // Beware: the 1st instruction is in a delay slot
3617       mov(Rbox,  Rscratch);
3618       or3(Rmark, markOopDesc::unlocked_value, Rmark);
3619       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3620       casn(mark_addr.base(), Rmark, Rscratch);
3621       cmp(Rmark, Rscratch);
3622       brx(Assembler::equal, false, Assembler::pt, done);
3623       delayed()->sub(Rscratch, SP, Rscratch);
3624 
3625       // Stack-lock attempt failed - check for recursive stack-lock.
3626       // See the comments below about how we might remove this case.
3627 #ifdef _LP64
3628       sub(Rscratch, STACK_BIAS, Rscratch);
3629 #endif
3630       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3631       andcc(Rscratch, 0xfffff003, Rscratch);
3632       br(Assembler::always, false, Assembler::pt, done);
3633       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3634 
3635       bind(IsInflated);
3636       if (EmitSync & 64) {
3637          // If m->owner != null goto IsLocked
3638          // Pessimistic form: Test-and-CAS vs CAS
3639          // The optimistic form avoids RTS->RTO cache line upgrades.
3640          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3641          andcc(Rscratch, Rscratch, G0);
3642          brx(Assembler::notZero, false, Assembler::pn, done);
3643          delayed()->nop();
3644          // m->owner == null : it's unlocked.
3645       }
3646 
3647       // Try to CAS m->owner from null to Self
3648       // Invariant: if we acquire the lock then _recursions should be 0.
3649       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3650       mov(G2_thread, Rscratch);
3651       casn(Rmark, G0, Rscratch);
3652       cmp(Rscratch, G0);
3653       // Intentional fall-through into done
3654    } else {
3655       // Aggressively avoid the Store-before-CAS penalty
3656       // Defer the store into box->dhw until after the CAS
3657       Label IsInflated, Recursive ;
3658 
3659 // Anticipate CAS -- Avoid RTS->RTO upgrade
3660 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
3661 
3662       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
3663       // Triage: biased, stack-locked, neutral, inflated
3664 
3665       if (try_bias) {
3666         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3667         // Invariant: if control reaches this point in the emitted stream
3668         // then Rmark has not been modified.
3669       }
3670       andcc(Rmark, 2, G0);
3671       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
3672       delayed()->                         // Beware - dangling delay-slot
3673 
3674       // Try stack-lock acquisition.
3675       // Transiently install BUSY (0) encoding in the mark word.
3676       // if the CAS of 0 into the mark was successful then we execute:
3677       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
3678       //   ST obj->mark = box    -- overwrite transient 0 value
3679       // This presumes TSO, of course.
3680 
3681       mov(0, Rscratch);
3682       or3(Rmark, markOopDesc::unlocked_value, Rmark);
3683       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3684       casn(mark_addr.base(), Rmark, Rscratch);
3685 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
3686       cmp(Rscratch, Rmark);
3687       brx(Assembler::notZero, false, Assembler::pn, Recursive);
3688       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3689       if (counters != NULL) {
3690         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3691       }
3692       ba(done);
3693       delayed()->st_ptr(Rbox, mark_addr);
3694 
3695       bind(Recursive);
3696       // Stack-lock attempt failed - check for recursive stack-lock.
3697       // Tests show that we can remove the recursive case with no impact
3698       // on refworkload 0.83.  If we need to reduce the size of the code
3699       // emitted by compiler_lock_object() the recursive case is perfect
3700       // candidate.
3701       //
3702       // A more extreme idea is to always inflate on stack-lock recursion.
3703       // This lets us eliminate the recursive checks in compiler_lock_object
3704       // and compiler_unlock_object and the (box->dhw == 0) encoding.
3705       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
3706       // and showed a performance *increase*.  In the same experiment I eliminated
3707       // the fast-path stack-lock code from the interpreter and always passed
3708       // control to the "slow" operators in synchronizer.cpp.
3709 
3710       // RScratch contains the fetched obj->mark value from the failed CASN.
3711 #ifdef _LP64
3712       sub(Rscratch, STACK_BIAS, Rscratch);
3713 #endif
3714       sub(Rscratch, SP, Rscratch);
3715       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3716       andcc(Rscratch, 0xfffff003, Rscratch);
3717       if (counters != NULL) {
3718         // Accounting needs the Rscratch register
3719         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3720         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3721         ba_short(done);
3722       } else {
3723         ba(done);
3724         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3725       }
3726 
3727       bind   (IsInflated);
3728       if (EmitSync & 64) {
3729          // If m->owner != null goto IsLocked
3730          // Test-and-CAS vs CAS
3731          // Pessimistic form avoids futile (doomed) CAS attempts
3732          // The optimistic form avoids RTS->RTO cache line upgrades.
3733          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3734          andcc(Rscratch, Rscratch, G0);
3735          brx(Assembler::notZero, false, Assembler::pn, done);
3736          delayed()->nop();
3737          // m->owner == null : it's unlocked.
3738       }
3739 
3740       // Try to CAS m->owner from null to Self
3741       // Invariant: if we acquire the lock then _recursions should be 0.
3742       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3743       mov(G2_thread, Rscratch);
3744       casn(Rmark, G0, Rscratch);
3745       cmp(Rscratch, G0);
3746       // ST box->displaced_header = NonZero.
3747       // Any non-zero value suffices:
3748       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
3749       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
3750       // Intentional fall-through into done
3751    }
3752 
3753    bind   (done);
3754 }
3755 
3756 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
3757                                             Register Rbox, Register Rscratch,
3758                                             bool try_bias) {
3759    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3760 
3761    Label done ;
3762 
3763    if (EmitSync & 4) {
3764      cmp(SP, G0);
3765      return ;
3766    }
3767 
3768    if (EmitSync & 8) {
3769      if (try_bias) {
3770         biased_locking_exit(mark_addr, Rscratch, done);
3771      }
3772 
3773      // Test first if it is a fast recursive unlock
3774      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3775      br_null_short(Rmark, Assembler::pt, done);
3776 
3777      // Check if it is still a light weight lock, this is is true if we see
3778      // the stack address of the basicLock in the markOop of the object
3779      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3780      casx_under_lock(mark_addr.base(), Rbox, Rmark,
3781        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3782      ba(done);
3783      delayed()->cmp(Rbox, Rmark);
3784      bind(done);
3785      return ;
3786    }
3787 
3788    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3789    // is too large performance rolls abruptly off a cliff.
3790    // This could be related to inlining policies, code cache management, or
3791    // I$ effects.
3792    Label LStacked ;
3793 
3794    if (try_bias) {
3795       // TODO: eliminate redundant LDs of obj->mark
3796       biased_locking_exit(mark_addr, Rscratch, done);
3797    }
3798 
3799    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
3800    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3801    andcc(Rscratch, Rscratch, G0);
3802    brx(Assembler::zero, false, Assembler::pn, done);
3803    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
3804    andcc(Rmark, 2, G0);
3805    brx(Assembler::zero, false, Assembler::pt, LStacked);
3806    delayed()->nop();
3807 
3808    // It's inflated
3809    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3810    // the ST of 0 into _owner which releases the lock.  This prevents loads
3811    // and stores within the critical section from reordering (floating)
3812    // past the store that releases the lock.  But TSO is a strong memory model
3813    // and that particular flavor of barrier is a noop, so we can safely elide it.
3814    // Note that we use 1-0 locking by default for the inflated case.  We
3815    // close the resultant (and rare) race by having contented threads in
3816    // monitorenter periodically poll _owner.
3817    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3818    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
3819    xor3(Rscratch, G2_thread, Rscratch);
3820    orcc(Rbox, Rscratch, Rbox);
3821    brx(Assembler::notZero, false, Assembler::pn, done);
3822    delayed()->
3823    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
3824    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
3825    orcc(Rbox, Rscratch, G0);
3826    if (EmitSync & 65536) {
3827       Label LSucc ;
3828       brx(Assembler::notZero, false, Assembler::pn, LSucc);
3829       delayed()->nop();
3830       ba(done);
3831       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3832 
3833       bind(LSucc);
3834       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3835       if (os::is_MP()) { membar (StoreLoad); }
3836       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
3837       andcc(Rscratch, Rscratch, G0);
3838       brx(Assembler::notZero, false, Assembler::pt, done);
3839       delayed()->andcc(G0, G0, G0);
3840       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3841       mov(G2_thread, Rscratch);
3842       casn(Rmark, G0, Rscratch);
3843       // invert icc.zf and goto done
3844       br_notnull(Rscratch, false, Assembler::pt, done);
3845       delayed()->cmp(G0, G0);
3846       ba(done);
3847       delayed()->cmp(G0, 1);
3848    } else {
3849       brx(Assembler::notZero, false, Assembler::pn, done);
3850       delayed()->nop();
3851       ba(done);
3852       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3853    }
3854 
3855    bind   (LStacked);
3856    // Consider: we could replace the expensive CAS in the exit
3857    // path with a simple ST of the displaced mark value fetched from
3858    // the on-stack basiclock box.  That admits a race where a thread T2
3859    // in the slow lock path -- inflating with monitor M -- could race a
3860    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3861    // More precisely T1 in the stack-lock unlock path could "stomp" the
3862    // inflated mark value M installed by T2, resulting in an orphan
3863    // object monitor M and T2 becoming stranded.  We can remedy that situation
3864    // by having T2 periodically poll the object's mark word using timed wait
3865    // operations.  If T2 discovers that a stomp has occurred it vacates
3866    // the monitor M and wakes any other threads stranded on the now-orphan M.
3867    // In addition the monitor scavenger, which performs deflation,
3868    // would also need to check for orpan monitors and stranded threads.
3869    //
3870    // Finally, inflation is also used when T2 needs to assign a hashCode
3871    // to O and O is stack-locked by T1.  The "stomp" race could cause
3872    // an assigned hashCode value to be lost.  We can avoid that condition
3873    // and provide the necessary hashCode stability invariants by ensuring
3874    // that hashCode generation is idempotent between copying GCs.
3875    // For example we could compute the hashCode of an object O as
3876    // O's heap address XOR some high quality RNG value that is refreshed
3877    // at GC-time.  The monitor scavenger would install the hashCode
3878    // found in any orphan monitors.  Again, the mechanism admits a
3879    // lost-update "stomp" WAW race but detects and recovers as needed.
3880    //
3881    // A prototype implementation showed excellent results, although
3882    // the scavenger and timeout code was rather involved.
3883 
3884    casn(mark_addr.base(), Rbox, Rscratch);
3885    cmp(Rbox, Rscratch);
3886    // Intentional fall through into done ...
3887 
3888    bind(done);
3889 }
3890 
3891 
3892 
3893 void MacroAssembler::print_CPU_state() {
3894   // %%%%% need to implement this
3895 }
3896 
3897 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3898   // %%%%% need to implement this
3899 }
3900 
3901 void MacroAssembler::push_IU_state() {
3902   // %%%%% need to implement this
3903 }
3904 
3905 
3906 void MacroAssembler::pop_IU_state() {
3907   // %%%%% need to implement this
3908 }
3909 
3910 
3911 void MacroAssembler::push_FPU_state() {
3912   // %%%%% need to implement this
3913 }
3914 
3915 
3916 void MacroAssembler::pop_FPU_state() {
3917   // %%%%% need to implement this
3918 }
3919 
3920 
3921 void MacroAssembler::push_CPU_state() {
3922   // %%%%% need to implement this
3923 }
3924 
3925 
3926 void MacroAssembler::pop_CPU_state() {
3927   // %%%%% need to implement this
3928 }
3929 
3930 
3931 
3932 void MacroAssembler::verify_tlab() {
3933 #ifdef ASSERT
3934   if (UseTLAB && VerifyOops) {
3935     Label next, next2, ok;
3936     Register t1 = L0;
3937     Register t2 = L1;
3938     Register t3 = L2;
3939 
3940     save_frame(0);
3941     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3942     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3943     or3(t1, t2, t3);
3944     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
3945     stop("assert(top >= start)");
3946     should_not_reach_here();
3947 
3948     bind(next);
3949     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3950     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3951     or3(t3, t2, t3);
3952     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
3953     stop("assert(top <= end)");
3954     should_not_reach_here();
3955 
3956     bind(next2);
3957     and3(t3, MinObjAlignmentInBytesMask, t3);
3958     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
3959     stop("assert(aligned)");
3960     should_not_reach_here();
3961 
3962     bind(ok);
3963     restore();
3964   }
3965 #endif
3966 }
3967 
3968 
3969 void MacroAssembler::eden_allocate(
3970   Register obj,                        // result: pointer to object after successful allocation
3971   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3972   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3973   Register t1,                         // temp register
3974   Register t2,                         // temp register
3975   Label&   slow_case                   // continuation point if fast allocation fails
3976 ){
3977   // make sure arguments make sense
3978   assert_different_registers(obj, var_size_in_bytes, t1, t2);
3979   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3980   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3981 
3982   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3983     // No allocation in the shared eden.
3984     ba_short(slow_case);
3985   } else {
3986     // get eden boundaries
3987     // note: we need both top & top_addr!
3988     const Register top_addr = t1;
3989     const Register end      = t2;
3990 
3991     CollectedHeap* ch = Universe::heap();
3992     set((intx)ch->top_addr(), top_addr);
3993     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3994     ld_ptr(top_addr, delta, end);
3995     ld_ptr(top_addr, 0, obj);
3996 
3997     // try to allocate
3998     Label retry;
3999     bind(retry);
4000 #ifdef ASSERT
4001     // make sure eden top is properly aligned
4002     {
4003       Label L;
4004       btst(MinObjAlignmentInBytesMask, obj);
4005       br(Assembler::zero, false, Assembler::pt, L);
4006       delayed()->nop();
4007       stop("eden top is not properly aligned");
4008       bind(L);
4009     }
4010 #endif // ASSERT
4011     const Register free = end;
4012     sub(end, obj, free);                                   // compute amount of free space
4013     if (var_size_in_bytes->is_valid()) {
4014       // size is unknown at compile time
4015       cmp(free, var_size_in_bytes);
4016       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
4017       delayed()->add(obj, var_size_in_bytes, end);
4018     } else {
4019       // size is known at compile time
4020       cmp(free, con_size_in_bytes);
4021       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
4022       delayed()->add(obj, con_size_in_bytes, end);
4023     }
4024     // Compare obj with the value at top_addr; if still equal, swap the value of
4025     // end with the value at top_addr. If not equal, read the value at top_addr
4026     // into end.
4027     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
4028     // if someone beat us on the allocation, try again, otherwise continue
4029     cmp(obj, end);
4030     brx(Assembler::notEqual, false, Assembler::pn, retry);
4031     delayed()->mov(end, obj);                              // nop if successfull since obj == end
4032 
4033 #ifdef ASSERT
4034     // make sure eden top is properly aligned
4035     {
4036       Label L;
4037       const Register top_addr = t1;
4038 
4039       set((intx)ch->top_addr(), top_addr);
4040       ld_ptr(top_addr, 0, top_addr);
4041       btst(MinObjAlignmentInBytesMask, top_addr);
4042       br(Assembler::zero, false, Assembler::pt, L);
4043       delayed()->nop();
4044       stop("eden top is not properly aligned");
4045       bind(L);
4046     }
4047 #endif // ASSERT
4048   }
4049 }
4050 
4051 
4052 void MacroAssembler::tlab_allocate(
4053   Register obj,                        // result: pointer to object after successful allocation
4054   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
4055   int      con_size_in_bytes,          // object size in bytes if   known at compile time
4056   Register t1,                         // temp register
4057   Label&   slow_case                   // continuation point if fast allocation fails
4058 ){
4059   // make sure arguments make sense
4060   assert_different_registers(obj, var_size_in_bytes, t1);
4061   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
4062   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
4063 
4064   const Register free  = t1;
4065 
4066   verify_tlab();
4067 
4068   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
4069 
4070   // calculate amount of free space
4071   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
4072   sub(free, obj, free);
4073 
4074   Label done;
4075   if (var_size_in_bytes == noreg) {
4076     cmp(free, con_size_in_bytes);
4077   } else {
4078     cmp(free, var_size_in_bytes);
4079   }
4080   br(Assembler::less, false, Assembler::pn, slow_case);
4081   // calculate the new top pointer
4082   if (var_size_in_bytes == noreg) {
4083     delayed()->add(obj, con_size_in_bytes, free);
4084   } else {
4085     delayed()->add(obj, var_size_in_bytes, free);
4086   }
4087 
4088   bind(done);
4089 
4090 #ifdef ASSERT
4091   // make sure new free pointer is properly aligned
4092   {
4093     Label L;
4094     btst(MinObjAlignmentInBytesMask, free);
4095     br(Assembler::zero, false, Assembler::pt, L);
4096     delayed()->nop();
4097     stop("updated TLAB free is not properly aligned");
4098     bind(L);
4099   }
4100 #endif // ASSERT
4101 
4102   // update the tlab top pointer
4103   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
4104   verify_tlab();
4105 }
4106 
4107 
4108 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
4109   Register top = O0;
4110   Register t1 = G1;
4111   Register t2 = G3;
4112   Register t3 = O1;
4113   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
4114   Label do_refill, discard_tlab;
4115 
4116   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
4117     // No allocation in the shared eden.
4118     ba_short(slow_case);
4119   }
4120 
4121   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
4122   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
4123   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
4124 
4125   // calculate amount of free space
4126   sub(t1, top, t1);
4127   srl_ptr(t1, LogHeapWordSize, t1);
4128 
4129   // Retain tlab and allocate object in shared space if
4130   // the amount free in the tlab is too large to discard.
4131   cmp(t1, t2);
4132   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
4133 
4134   // increment waste limit to prevent getting stuck on this slow path
4135   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
4136   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
4137   if (TLABStats) {
4138     // increment number of slow_allocations
4139     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
4140     add(t2, 1, t2);
4141     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
4142   }
4143   ba_short(try_eden);
4144 
4145   bind(discard_tlab);
4146   if (TLABStats) {
4147     // increment number of refills
4148     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
4149     add(t2, 1, t2);
4150     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
4151     // accumulate wastage
4152     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
4153     add(t2, t1, t2);
4154     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
4155   }
4156 
4157   // if tlab is currently allocated (top or end != null) then
4158   // fill [top, end + alignment_reserve) with array object
4159   br_null_short(top, Assembler::pn, do_refill);
4160 
4161   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
4162   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
4163   // set klass to intArrayKlass
4164   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
4165   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
4166   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
4167   st(t1, top, arrayOopDesc::length_offset_in_bytes());
4168   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
4169   ld_ptr(t2, 0, t2);
4170   // store klass last.  concurrent gcs assumes klass length is valid if
4171   // klass field is not null.
4172   store_klass(t2, top);
4173   verify_oop(top);
4174 
4175   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
4176   sub(top, t1, t1); // size of tlab's allocated portion
4177   incr_allocated_bytes(t1, t2, t3);
4178 
4179   // refill the tlab with an eden allocation
4180   bind(do_refill);
4181   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
4182   sll_ptr(t1, LogHeapWordSize, t1);
4183   // allocate new tlab, address returned in top
4184   eden_allocate(top, t1, 0, t2, t3, slow_case);
4185 
4186   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
4187   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
4188 #ifdef ASSERT
4189   // check that tlab_size (t1) is still valid
4190   {
4191     Label ok;
4192     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
4193     sll_ptr(t2, LogHeapWordSize, t2);
4194     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
4195     stop("assert(t1 == tlab_size)");
4196     should_not_reach_here();
4197 
4198     bind(ok);
4199   }
4200 #endif // ASSERT
4201   add(top, t1, top); // t1 is tlab_size
4202   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
4203   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
4204   verify_tlab();
4205   ba_short(retry);
4206 }
4207 
4208 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
4209                                           Register t1, Register t2) {
4210   // Bump total bytes allocated by this thread
4211   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
4212   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
4213   // v8 support has gone the way of the dodo
4214   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
4215   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
4216   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
4217 }
4218 
4219 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
4220   switch (cond) {
4221     // Note some conditions are synonyms for others
4222     case Assembler::never:                return Assembler::always;
4223     case Assembler::zero:                 return Assembler::notZero;
4224     case Assembler::lessEqual:            return Assembler::greater;
4225     case Assembler::less:                 return Assembler::greaterEqual;
4226     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
4227     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
4228     case Assembler::negative:             return Assembler::positive;
4229     case Assembler::overflowSet:          return Assembler::overflowClear;
4230     case Assembler::always:               return Assembler::never;
4231     case Assembler::notZero:              return Assembler::zero;
4232     case Assembler::greater:              return Assembler::lessEqual;
4233     case Assembler::greaterEqual:         return Assembler::less;
4234     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
4235     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
4236     case Assembler::positive:             return Assembler::negative;
4237     case Assembler::overflowClear:        return Assembler::overflowSet;
4238   }
4239 
4240   ShouldNotReachHere(); return Assembler::overflowClear;
4241 }
4242 
4243 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
4244                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
4245   Condition negated_cond = negate_condition(cond);
4246   Label L;
4247   brx(negated_cond, false, Assembler::pt, L);
4248   delayed()->nop();
4249   inc_counter(counter_ptr, Rtmp1, Rtmp2);
4250   bind(L);
4251 }
4252 
4253 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
4254   AddressLiteral addrlit(counter_addr);
4255   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
4256   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
4257   ld(addr, Rtmp2);
4258   inc(Rtmp2);
4259   st(Rtmp2, addr);
4260 }
4261 
4262 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
4263   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
4264 }
4265 
4266 SkipIfEqual::SkipIfEqual(
4267     MacroAssembler* masm, Register temp, const bool* flag_addr,
4268     Assembler::Condition condition) {
4269   _masm = masm;
4270   AddressLiteral flag(flag_addr);
4271   _masm->sethi(flag, temp);
4272   _masm->ldub(temp, flag.low10(), temp);
4273   _masm->tst(temp);
4274   _masm->br(condition, false, Assembler::pt, _label);
4275   _masm->delayed()->nop();
4276 }
4277 
4278 SkipIfEqual::~SkipIfEqual() {
4279   _masm->bind(_label);
4280 }
4281 
4282 
4283 // Writes to stack successive pages until offset reached to check for
4284 // stack overflow + shadow pages.  This clobbers tsp and scratch.
4285 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
4286                                      Register Rscratch) {
4287   // Use stack pointer in temp stack pointer
4288   mov(SP, Rtsp);
4289 
4290   // Bang stack for total size given plus stack shadow page size.
4291   // Bang one page at a time because a large size can overflow yellow and
4292   // red zones (the bang will fail but stack overflow handling can't tell that
4293   // it was a stack overflow bang vs a regular segv).
4294   int offset = os::vm_page_size();
4295   Register Roffset = Rscratch;
4296 
4297   Label loop;
4298   bind(loop);
4299   set((-offset)+STACK_BIAS, Rscratch);
4300   st(G0, Rtsp, Rscratch);
4301   set(offset, Roffset);
4302   sub(Rsize, Roffset, Rsize);
4303   cmp(Rsize, G0);
4304   br(Assembler::greater, false, Assembler::pn, loop);
4305   delayed()->sub(Rtsp, Roffset, Rtsp);
4306 
4307   // Bang down shadow pages too.
4308   // The -1 because we already subtracted 1 page.
4309   for (int i = 0; i< StackShadowPages-1; i++) {
4310     set((-i*offset)+STACK_BIAS, Rscratch);
4311     st(G0, Rtsp, Rscratch);
4312   }
4313 }
4314 
4315 ///////////////////////////////////////////////////////////////////////////////////
4316 #ifndef SERIALGC
4317 
4318 static address satb_log_enqueue_with_frame = NULL;
4319 static u_char* satb_log_enqueue_with_frame_end = NULL;
4320 
4321 static address satb_log_enqueue_frameless = NULL;
4322 static u_char* satb_log_enqueue_frameless_end = NULL;
4323 
4324 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
4325 
4326 static void generate_satb_log_enqueue(bool with_frame) {
4327   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
4328   CodeBuffer buf(bb);
4329   MacroAssembler masm(&buf);
4330 
4331 #define __ masm.
4332 
4333   address start = __ pc();
4334   Register pre_val;
4335 
4336   Label refill, restart;
4337   if (with_frame) {
4338     __ save_frame(0);
4339     pre_val = I0;  // Was O0 before the save.
4340   } else {
4341     pre_val = O0;
4342   }
4343   int satb_q_index_byte_offset =
4344     in_bytes(JavaThread::satb_mark_queue_offset() +
4345              PtrQueue::byte_offset_of_index());
4346   int satb_q_buf_byte_offset =
4347     in_bytes(JavaThread::satb_mark_queue_offset() +
4348              PtrQueue::byte_offset_of_buf());
4349   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
4350          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
4351          "check sizes in assembly below");
4352 
4353   __ bind(restart);
4354   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
4355 
4356   __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
4357   // If the branch is taken, no harm in executing this in the delay slot.
4358   __ delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
4359   __ sub(L0, oopSize, L0);
4360 
4361   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
4362   if (!with_frame) {
4363     // Use return-from-leaf
4364     __ retl();
4365     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4366   } else {
4367     // Not delayed.
4368     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4369   }
4370   if (with_frame) {
4371     __ ret();
4372     __ delayed()->restore();
4373   }
4374   __ bind(refill);
4375 
4376   address handle_zero =
4377     CAST_FROM_FN_PTR(address,
4378                      &SATBMarkQueueSet::handle_zero_index_for_thread);
4379   // This should be rare enough that we can afford to save all the
4380   // scratch registers that the calling context might be using.
4381   __ mov(G1_scratch, L0);
4382   __ mov(G3_scratch, L1);
4383   __ mov(G4, L2);
4384   // We need the value of O0 above (for the write into the buffer), so we
4385   // save and restore it.
4386   __ mov(O0, L3);
4387   // Since the call will overwrite O7, we save and restore that, as well.
4388   __ mov(O7, L4);
4389   __ call_VM_leaf(L5, handle_zero, G2_thread);
4390   __ mov(L0, G1_scratch);
4391   __ mov(L1, G3_scratch);
4392   __ mov(L2, G4);
4393   __ mov(L3, O0);
4394   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4395   __ delayed()->mov(L4, O7);
4396 
4397   if (with_frame) {
4398     satb_log_enqueue_with_frame = start;
4399     satb_log_enqueue_with_frame_end = __ pc();
4400   } else {
4401     satb_log_enqueue_frameless = start;
4402     satb_log_enqueue_frameless_end = __ pc();
4403   }
4404 
4405 #undef __
4406 }
4407 
4408 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
4409   if (with_frame) {
4410     if (satb_log_enqueue_with_frame == 0) {
4411       generate_satb_log_enqueue(with_frame);
4412       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
4413       if (G1SATBPrintStubs) {
4414         tty->print_cr("Generated with-frame satb enqueue:");
4415         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
4416                              satb_log_enqueue_with_frame_end,
4417                              tty);
4418       }
4419     }
4420   } else {
4421     if (satb_log_enqueue_frameless == 0) {
4422       generate_satb_log_enqueue(with_frame);
4423       assert(satb_log_enqueue_frameless != 0, "postcondition.");
4424       if (G1SATBPrintStubs) {
4425         tty->print_cr("Generated frameless satb enqueue:");
4426         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
4427                              satb_log_enqueue_frameless_end,
4428                              tty);
4429       }
4430     }
4431   }
4432 }
4433 
4434 void MacroAssembler::g1_write_barrier_pre(Register obj,
4435                                           Register index,
4436                                           int offset,
4437                                           Register pre_val,
4438                                           Register tmp,
4439                                           bool preserve_o_regs) {
4440   Label filtered;
4441 
4442   if (obj == noreg) {
4443     // We are not loading the previous value so make
4444     // sure that we don't trash the value in pre_val
4445     // with the code below.
4446     assert_different_registers(pre_val, tmp);
4447   } else {
4448     // We will be loading the previous value
4449     // in this code so...
4450     assert(offset == 0 || index == noreg, "choose one");
4451     assert(pre_val == noreg, "check this code");
4452   }
4453 
4454   // Is marking active?
4455   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4456     ld(G2,
4457        in_bytes(JavaThread::satb_mark_queue_offset() +
4458                 PtrQueue::byte_offset_of_active()),
4459        tmp);
4460   } else {
4461     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
4462               "Assumption");
4463     ldsb(G2,
4464          in_bytes(JavaThread::satb_mark_queue_offset() +
4465                   PtrQueue::byte_offset_of_active()),
4466          tmp);
4467   }
4468 
4469   // Check on whether to annul.
4470   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
4471   delayed()->nop();
4472 
4473   // Do we need to load the previous value?
4474   if (obj != noreg) {
4475     // Load the previous value...
4476     if (index == noreg) {
4477       if (Assembler::is_simm13(offset)) {
4478         load_heap_oop(obj, offset, tmp);
4479       } else {
4480         set(offset, tmp);
4481         load_heap_oop(obj, tmp, tmp);
4482       }
4483     } else {
4484       load_heap_oop(obj, index, tmp);
4485     }
4486     // Previous value has been loaded into tmp
4487     pre_val = tmp;
4488   }
4489 
4490   assert(pre_val != noreg, "must have a real register");
4491 
4492   // Is the previous value null?
4493   // Check on whether to annul.
4494   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
4495   delayed()->nop();
4496 
4497   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
4498   // case, pre_val will be a scratch G-reg, but there are some cases in
4499   // which it's an O-reg.  In the first case, do a normal call.  In the
4500   // latter, do a save here and call the frameless version.
4501 
4502   guarantee(pre_val->is_global() || pre_val->is_out(),
4503             "Or we need to think harder.");
4504 
4505   if (pre_val->is_global() && !preserve_o_regs) {
4506     generate_satb_log_enqueue_if_necessary(true); // with frame
4507 
4508     call(satb_log_enqueue_with_frame);
4509     delayed()->mov(pre_val, O0);
4510   } else {
4511     generate_satb_log_enqueue_if_necessary(false); // frameless
4512 
4513     save_frame(0);
4514     call(satb_log_enqueue_frameless);
4515     delayed()->mov(pre_val->after_save(), O0);
4516     restore();
4517   }
4518 
4519   bind(filtered);
4520 }
4521 
4522 static jint num_ct_writes = 0;
4523 static jint num_ct_writes_filtered_in_hr = 0;
4524 static jint num_ct_writes_filtered_null = 0;
4525 static G1CollectedHeap* g1 = NULL;
4526 
4527 static Thread* count_ct_writes(void* filter_val, void* new_val) {
4528   Atomic::inc(&num_ct_writes);
4529   if (filter_val == NULL) {
4530     Atomic::inc(&num_ct_writes_filtered_in_hr);
4531   } else if (new_val == NULL) {
4532     Atomic::inc(&num_ct_writes_filtered_null);
4533   } else {
4534     if (g1 == NULL) {
4535       g1 = G1CollectedHeap::heap();
4536     }
4537   }
4538   if ((num_ct_writes % 1000000) == 0) {
4539     jint num_ct_writes_filtered =
4540       num_ct_writes_filtered_in_hr +
4541       num_ct_writes_filtered_null;
4542 
4543     tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
4544                   "   (%5.2f%% intra-HR, %5.2f%% null).",
4545                   num_ct_writes,
4546                   100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
4547                   100.0*(float)num_ct_writes_filtered_in_hr/
4548                   (float)num_ct_writes,
4549                   100.0*(float)num_ct_writes_filtered_null/
4550                   (float)num_ct_writes);
4551   }
4552   return Thread::current();
4553 }
4554 
4555 static address dirty_card_log_enqueue = 0;
4556 static u_char* dirty_card_log_enqueue_end = 0;
4557 
4558 // This gets to assume that o0 contains the object address.
4559 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
4560   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
4561   CodeBuffer buf(bb);
4562   MacroAssembler masm(&buf);
4563 #define __ masm.
4564   address start = __ pc();
4565 
4566   Label not_already_dirty, restart, refill;
4567 
4568 #ifdef _LP64
4569   __ srlx(O0, CardTableModRefBS::card_shift, O0);
4570 #else
4571   __ srl(O0, CardTableModRefBS::card_shift, O0);
4572 #endif
4573   AddressLiteral addrlit(byte_map_base);
4574   __ set(addrlit, O1); // O1 := <card table base>
4575   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
4576 
4577   __ br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
4578                       O2, not_already_dirty);
4579   // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
4580   // case, harmless if not.
4581   __ delayed()->add(O0, O1, O3);
4582 
4583   // We didn't take the branch, so we're already dirty: return.
4584   // Use return-from-leaf
4585   __ retl();
4586   __ delayed()->nop();
4587 
4588   // Not dirty.
4589   __ bind(not_already_dirty);
4590   // First, dirty it.
4591   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
4592   int dirty_card_q_index_byte_offset =
4593     in_bytes(JavaThread::dirty_card_queue_offset() +
4594              PtrQueue::byte_offset_of_index());
4595   int dirty_card_q_buf_byte_offset =
4596     in_bytes(JavaThread::dirty_card_queue_offset() +
4597              PtrQueue::byte_offset_of_buf());
4598   __ bind(restart);
4599   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
4600 
4601   __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
4602                       L0, refill);
4603   // If the branch is taken, no harm in executing this in the delay slot.
4604   __ delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
4605   __ sub(L0, oopSize, L0);
4606 
4607   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
4608   // Use return-from-leaf
4609   __ retl();
4610   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
4611 
4612   __ bind(refill);
4613   address handle_zero =
4614     CAST_FROM_FN_PTR(address,
4615                      &DirtyCardQueueSet::handle_zero_index_for_thread);
4616   // This should be rare enough that we can afford to save all the
4617   // scratch registers that the calling context might be using.
4618   __ mov(G1_scratch, L3);
4619   __ mov(G3_scratch, L5);
4620   // We need the value of O3 above (for the write into the buffer), so we
4621   // save and restore it.
4622   __ mov(O3, L6);
4623   // Since the call will overwrite O7, we save and restore that, as well.
4624   __ mov(O7, L4);
4625 
4626   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
4627   __ mov(L3, G1_scratch);
4628   __ mov(L5, G3_scratch);
4629   __ mov(L6, O3);
4630   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4631   __ delayed()->mov(L4, O7);
4632 
4633   dirty_card_log_enqueue = start;
4634   dirty_card_log_enqueue_end = __ pc();
4635   // XXX Should have a guarantee here about not going off the end!
4636   // Does it already do so?  Do an experiment...
4637 
4638 #undef __
4639 
4640 }
4641 
4642 static inline void
4643 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
4644   if (dirty_card_log_enqueue == 0) {
4645     generate_dirty_card_log_enqueue(byte_map_base);
4646     assert(dirty_card_log_enqueue != 0, "postcondition.");
4647     if (G1SATBPrintStubs) {
4648       tty->print_cr("Generated dirty_card enqueue:");
4649       Disassembler::decode((u_char*)dirty_card_log_enqueue,
4650                            dirty_card_log_enqueue_end,
4651                            tty);
4652     }
4653   }
4654 }
4655 
4656 
4657 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4658 
4659   Label filtered;
4660   MacroAssembler* post_filter_masm = this;
4661 
4662   if (new_val == G0) return;
4663 
4664   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
4665   assert(bs->kind() == BarrierSet::G1SATBCT ||
4666          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
4667   if (G1RSBarrierRegionFilter) {
4668     xor3(store_addr, new_val, tmp);
4669 #ifdef _LP64
4670     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4671 #else
4672     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4673 #endif
4674 
4675     if (G1PrintCTFilterStats) {
4676       guarantee(tmp->is_global(), "Or stats won't work...");
4677       // This is a sleazy hack: I'm temporarily hijacking G2, which I
4678       // promise to restore.
4679       mov(new_val, G2);
4680       save_frame(0);
4681       mov(tmp, O0);
4682       mov(G2, O1);
4683       // Save G-regs that target may use.
4684       mov(G1, L1);
4685       mov(G2, L2);
4686       mov(G3, L3);
4687       mov(G4, L4);
4688       mov(G5, L5);
4689       call(CAST_FROM_FN_PTR(address, &count_ct_writes));
4690       delayed()->nop();
4691       mov(O0, G2);
4692       // Restore G-regs that target may have used.
4693       mov(L1, G1);
4694       mov(L3, G3);
4695       mov(L4, G4);
4696       mov(L5, G5);
4697       restore(G0, G0, G0);
4698     }
4699     // XXX Should I predict this taken or not?  Does it mattern?
4700     br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
4701     delayed()->nop();
4702   }
4703 
4704   // If the "store_addr" register is an "in" or "local" register, move it to
4705   // a scratch reg so we can pass it as an argument.
4706   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
4707   // Pick a scratch register different from "tmp".
4708   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
4709   // Make sure we use up the delay slot!
4710   if (use_scr) {
4711     post_filter_masm->mov(store_addr, scr);
4712   } else {
4713     post_filter_masm->nop();
4714   }
4715   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
4716   save_frame(0);
4717   call(dirty_card_log_enqueue);
4718   if (use_scr) {
4719     delayed()->mov(scr, O0);
4720   } else {
4721     delayed()->mov(store_addr->after_save(), O0);
4722   }
4723   restore();
4724 
4725   bind(filtered);
4726 
4727 }
4728 
4729 #endif  // SERIALGC
4730 ///////////////////////////////////////////////////////////////////////////////////
4731 
4732 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4733   // If we're writing constant NULL, we can skip the write barrier.
4734   if (new_val == G0) return;
4735   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
4736   assert(bs->kind() == BarrierSet::CardTableModRef ||
4737          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
4738   card_table_write(bs->byte_map_base, tmp, store_addr);
4739 }
4740 
4741 void MacroAssembler::load_klass(Register src_oop, Register klass) {
4742   // The number of bytes in this code is used by
4743   // MachCallDynamicJavaNode::ret_addr_offset()
4744   // if this changes, change that.
4745   if (UseCompressedOops) {
4746     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4747     decode_heap_oop_not_null(klass);
4748   } else {
4749     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4750   }
4751 }
4752 
4753 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4754   if (UseCompressedOops) {
4755     assert(dst_oop != klass, "not enough registers");
4756     encode_heap_oop_not_null(klass);
4757     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4758   } else {
4759     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4760   }
4761 }
4762 
4763 void MacroAssembler::store_klass_gap(Register s, Register d) {
4764   if (UseCompressedOops) {
4765     assert(s != d, "not enough registers");
4766     st(s, d, oopDesc::klass_gap_offset_in_bytes());
4767   }
4768 }
4769 
4770 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
4771   if (UseCompressedOops) {
4772     lduw(s, d);
4773     decode_heap_oop(d);
4774   } else {
4775     ld_ptr(s, d);
4776   }
4777 }
4778 
4779 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
4780    if (UseCompressedOops) {
4781     lduw(s1, s2, d);
4782     decode_heap_oop(d, d);
4783   } else {
4784     ld_ptr(s1, s2, d);
4785   }
4786 }
4787 
4788 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4789    if (UseCompressedOops) {
4790     lduw(s1, simm13a, d);
4791     decode_heap_oop(d, d);
4792   } else {
4793     ld_ptr(s1, simm13a, d);
4794   }
4795 }
4796 
4797 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
4798   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
4799   else                   load_heap_oop(s1, s2.as_register(), d);
4800 }
4801 
4802 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4803   if (UseCompressedOops) {
4804     assert(s1 != d && s2 != d, "not enough registers");
4805     encode_heap_oop(d);
4806     st(d, s1, s2);
4807   } else {
4808     st_ptr(d, s1, s2);
4809   }
4810 }
4811 
4812 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4813   if (UseCompressedOops) {
4814     assert(s1 != d, "not enough registers");
4815     encode_heap_oop(d);
4816     st(d, s1, simm13a);
4817   } else {
4818     st_ptr(d, s1, simm13a);
4819   }
4820 }
4821 
4822 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4823   if (UseCompressedOops) {
4824     assert(a.base() != d, "not enough registers");
4825     encode_heap_oop(d);
4826     st(d, a, offset);
4827   } else {
4828     st_ptr(d, a, offset);
4829   }
4830 }
4831 
4832 
4833 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4834   assert (UseCompressedOops, "must be compressed");
4835   assert (Universe::heap() != NULL, "java heap should be initialized");
4836   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4837   verify_oop(src);
4838   if (Universe::narrow_oop_base() == NULL) {
4839     srlx(src, LogMinObjAlignmentInBytes, dst);
4840     return;
4841   }
4842   Label done;
4843   if (src == dst) {
4844     // optimize for frequent case src == dst
4845     bpr(rc_nz, true, Assembler::pt, src, done);
4846     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4847     bind(done);
4848     srlx(src, LogMinObjAlignmentInBytes, dst);
4849   } else {
4850     bpr(rc_z, false, Assembler::pn, src, done);
4851     delayed() -> mov(G0, dst);
4852     // could be moved before branch, and annulate delay,
4853     // but may add some unneeded work decoding null
4854     sub(src, G6_heapbase, dst);
4855     srlx(dst, LogMinObjAlignmentInBytes, dst);
4856     bind(done);
4857   }
4858 }
4859 
4860 
4861 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4862   assert (UseCompressedOops, "must be compressed");
4863   assert (Universe::heap() != NULL, "java heap should be initialized");
4864   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4865   verify_oop(r);
4866   if (Universe::narrow_oop_base() != NULL)
4867     sub(r, G6_heapbase, r);
4868   srlx(r, LogMinObjAlignmentInBytes, r);
4869 }
4870 
4871 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4872   assert (UseCompressedOops, "must be compressed");
4873   assert (Universe::heap() != NULL, "java heap should be initialized");
4874   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4875   verify_oop(src);
4876   if (Universe::narrow_oop_base() == NULL) {
4877     srlx(src, LogMinObjAlignmentInBytes, dst);
4878   } else {
4879     sub(src, G6_heapbase, dst);
4880     srlx(dst, LogMinObjAlignmentInBytes, dst);
4881   }
4882 }
4883 
4884 // Same algorithm as oops.inline.hpp decode_heap_oop.
4885 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4886   assert (UseCompressedOops, "must be compressed");
4887   assert (Universe::heap() != NULL, "java heap should be initialized");
4888   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4889   sllx(src, LogMinObjAlignmentInBytes, dst);
4890   if (Universe::narrow_oop_base() != NULL) {
4891     Label done;
4892     bpr(rc_nz, true, Assembler::pt, dst, done);
4893     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4894     bind(done);
4895   }
4896   verify_oop(dst);
4897 }
4898 
4899 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4900   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4901   // pd_code_size_limit.
4902   // Also do not verify_oop as this is called by verify_oop.
4903   assert (UseCompressedOops, "must be compressed");
4904   assert (Universe::heap() != NULL, "java heap should be initialized");
4905   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4906   sllx(r, LogMinObjAlignmentInBytes, r);
4907   if (Universe::narrow_oop_base() != NULL)
4908     add(r, G6_heapbase, r);
4909 }
4910 
4911 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4912   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4913   // pd_code_size_limit.
4914   // Also do not verify_oop as this is called by verify_oop.
4915   assert (UseCompressedOops, "must be compressed");
4916   assert (Universe::heap() != NULL, "java heap should be initialized");
4917   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4918   sllx(src, LogMinObjAlignmentInBytes, dst);
4919   if (Universe::narrow_oop_base() != NULL)
4920     add(dst, G6_heapbase, dst);
4921 }
4922 
4923 void MacroAssembler::reinit_heapbase() {
4924   if (UseCompressedOops) {
4925     // call indirectly to solve generation ordering problem
4926     AddressLiteral base(Universe::narrow_oop_base_addr());
4927     load_ptr_contents(base, G6_heapbase);
4928   }
4929 }
4930 
4931 // Compare char[] arrays aligned to 4 bytes.
4932 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4933                                         Register limit, Register result,
4934                                         Register chr1, Register chr2, Label& Ldone) {
4935   Label Lvector, Lloop;
4936   assert(chr1 == result, "should be the same");
4937 
4938   // Note: limit contains number of bytes (2*char_elements) != 0.
4939   andcc(limit, 0x2, chr1); // trailing character ?
4940   br(Assembler::zero, false, Assembler::pt, Lvector);
4941   delayed()->nop();
4942 
4943   // compare the trailing char
4944   sub(limit, sizeof(jchar), limit);
4945   lduh(ary1, limit, chr1);
4946   lduh(ary2, limit, chr2);
4947   cmp(chr1, chr2);
4948   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4949   delayed()->mov(G0, result);     // not equal
4950 
4951   // only one char ?
4952   bpr(rc_z, true, Assembler::pn, limit, Ldone);
4953   delayed()->add(G0, 1, result); // zero-length arrays are equal
4954 
4955   // word by word compare, dont't need alignment check
4956   bind(Lvector);
4957   // Shift ary1 and ary2 to the end of the arrays, negate limit
4958   add(ary1, limit, ary1);
4959   add(ary2, limit, ary2);
4960   neg(limit, limit);
4961 
4962   lduw(ary1, limit, chr1);
4963   bind(Lloop);
4964   lduw(ary2, limit, chr2);
4965   cmp(chr1, chr2);
4966   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4967   delayed()->mov(G0, result);     // not equal
4968   inccc(limit, 2*sizeof(jchar));
4969   // annul LDUW if branch is not taken to prevent access past end of array
4970   br(Assembler::notZero, true, Assembler::pt, Lloop);
4971   delayed()->lduw(ary1, limit, chr1); // hoisted
4972 
4973   // Caller should set it:
4974   // add(G0, 1, result); // equals
4975 }