1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodDataOop.hpp"
  34 #include "oops/methodOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/timer.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/debug.hpp"
  47 
  48 #ifndef CC_INTERP
  49 #ifndef FAST_DISPATCH
  50 #define FAST_DISPATCH 1
  51 #endif
  52 #undef FAST_DISPATCH
  53 
  54 
  55 // Generation of Interpreter
  56 //
  57 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
  58 
  59 
  60 #define __ _masm->
  61 
  62 
  63 //----------------------------------------------------------------------------------------------------
  64 
  65 
  66 void InterpreterGenerator::save_native_result(void) {
  67   // result potentially in O0/O1: save it across calls
  68   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  69 
  70   // result potentially in F0/F1: save it across calls
  71   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  72 
  73   // save and restore any potential method result value around the unlocking operation
  74   __ stf(FloatRegisterImpl::D, F0, d_tmp);
  75 #ifdef _LP64
  76   __ stx(O0, l_tmp);
  77 #else
  78   __ std(O0, l_tmp);
  79 #endif
  80 }
  81 
  82 void InterpreterGenerator::restore_native_result(void) {
  83   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  84   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  85 
  86   // Restore any method result value
  87   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
  88 #ifdef _LP64
  89   __ ldx(l_tmp, O0);
  90 #else
  91   __ ldd(l_tmp, O0);
  92 #endif
  93 }
  94 
  95 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
  96   assert(!pass_oop || message == NULL, "either oop or message but not both");
  97   address entry = __ pc();
  98   // expression stack must be empty before entering the VM if an exception happened
  99   __ empty_expression_stack();
 100   // load exception object
 101   __ set((intptr_t)name, G3_scratch);
 102   if (pass_oop) {
 103     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 104   } else {
 105     __ set((intptr_t)message, G4_scratch);
 106     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 107   }
 108   // throw exception
 109   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 110   AddressLiteral thrower(Interpreter::throw_exception_entry());
 111   __ jump_to(thrower, G3_scratch);
 112   __ delayed()->nop();
 113   return entry;
 114 }
 115 
 116 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 117   address entry = __ pc();
 118   // expression stack must be empty before entering the VM if an exception
 119   // happened
 120   __ empty_expression_stack();
 121   // load exception object
 122   __ call_VM(Oexception,
 123              CAST_FROM_FN_PTR(address,
 124                               InterpreterRuntime::throw_ClassCastException),
 125              Otos_i);
 126   __ should_not_reach_here();
 127   return entry;
 128 }
 129 
 130 
 131 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 132   address entry = __ pc();
 133   // expression stack must be empty before entering the VM if an exception happened
 134   __ empty_expression_stack();
 135   // convention: expect aberrant index in register G3_scratch, then shuffle the
 136   // index to G4_scratch for the VM call
 137   __ mov(G3_scratch, G4_scratch);
 138   __ set((intptr_t)name, G3_scratch);
 139   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 140   __ should_not_reach_here();
 141   return entry;
 142 }
 143 
 144 
 145 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 146   address entry = __ pc();
 147   // expression stack must be empty before entering the VM if an exception happened
 148   __ empty_expression_stack();
 149   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 150   __ should_not_reach_here();
 151   return entry;
 152 }
 153 
 154 
 155 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 156   TosState incoming_state = state;
 157 
 158   Label cont;
 159   address compiled_entry = __ pc();
 160 
 161   address entry = __ pc();
 162 #if !defined(_LP64) && defined(COMPILER2)
 163   // All return values are where we want them, except for Longs.  C2 returns
 164   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 165   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 166   // build even if we are returning from interpreted we just do a little
 167   // stupid shuffing.
 168   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 169   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 170   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 171 
 172   if (incoming_state == ltos) {
 173     __ srl (G1,  0, O1);
 174     __ srlx(G1, 32, O0);
 175   }
 176 #endif // !_LP64 && COMPILER2
 177 
 178   __ bind(cont);
 179 
 180   // The callee returns with the stack possibly adjusted by adapter transition
 181   // We remove that possible adjustment here.
 182   // All interpreter local registers are untouched. Any result is passed back
 183   // in the O0/O1 or float registers. Before continuing, the arguments must be
 184   // popped from the java expression stack; i.e., Lesp must be adjusted.
 185 
 186   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 187 
 188   Label L_got_cache, L_giant_index;
 189   const Register cache = G3_scratch;
 190   const Register size  = G1_scratch;
 191   if (EnableInvokeDynamic) {
 192     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode.
 193     __ cmp(G1_scratch, Bytecodes::_invokedynamic);
 194     __ br(Assembler::equal, false, Assembler::pn, L_giant_index);
 195     __ delayed()->nop();
 196   }
 197   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
 198   __ bind(L_got_cache);
 199   __ ld_ptr(cache, constantPoolCacheOopDesc::base_offset() +
 200                    ConstantPoolCacheEntry::flags_offset(), size);
 201   __ and3(size, 0xFF, size);                   // argument size in words
 202   __ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes
 203   __ add(Lesp, size, Lesp);                    // pop arguments
 204   __ dispatch_next(state, step);
 205 
 206   // out of the main line of code...
 207   if (EnableInvokeDynamic) {
 208     __ bind(L_giant_index);
 209     __ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4));
 210     __ ba(false, L_got_cache);
 211     __ delayed()->nop();
 212   }
 213 
 214   return entry;
 215 }
 216 
 217 
 218 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 219   address entry = __ pc();
 220   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 221   { Label L;
 222     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 223     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 224     __ tst(Gtemp);
 225     __ brx(Assembler::equal, false, Assembler::pt, L);
 226     __ delayed()->nop();
 227     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 228     __ should_not_reach_here();
 229     __ bind(L);
 230   }
 231   __ dispatch_next(state, step);
 232   return entry;
 233 }
 234 
 235 // A result handler converts/unboxes a native call result into
 236 // a java interpreter/compiler result. The current frame is an
 237 // interpreter frame. The activation frame unwind code must be
 238 // consistent with that of TemplateTable::_return(...). In the
 239 // case of native methods, the caller's SP was not modified.
 240 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 241   address entry = __ pc();
 242   Register Itos_i  = Otos_i ->after_save();
 243   Register Itos_l  = Otos_l ->after_save();
 244   Register Itos_l1 = Otos_l1->after_save();
 245   Register Itos_l2 = Otos_l2->after_save();
 246   switch (type) {
 247     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 248     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 249     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 250     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 251     case T_LONG   :
 252 #ifndef _LP64
 253                     __ mov(O1, Itos_l2);  // move other half of long
 254 #endif              // ifdef or no ifdef, fall through to the T_INT case
 255     case T_INT    : __ mov(O0, Itos_i);                         break;
 256     case T_VOID   : /* nothing to do */                         break;
 257     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 258     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 259     case T_OBJECT :
 260       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 261       __ verify_oop(Itos_i);
 262       break;
 263     default       : ShouldNotReachHere();
 264   }
 265   __ ret();                           // return from interpreter activation
 266   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 267   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
 268   return entry;
 269 }
 270 
 271 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 272   address entry = __ pc();
 273   __ push(state);
 274   __ call_VM(noreg, runtime_entry);
 275   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 276   return entry;
 277 }
 278 
 279 
 280 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 281   address entry = __ pc();
 282   __ dispatch_next(state);
 283   return entry;
 284 }
 285 
 286 //
 287 // Helpers for commoning out cases in the various type of method entries.
 288 //
 289 
 290 // increment invocation count & check for overflow
 291 //
 292 // Note: checking for negative value instead of overflow
 293 //       so we have a 'sticky' overflow test
 294 //
 295 // Lmethod: method
 296 // ??: invocation counter
 297 //
 298 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 299   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
 300   if (TieredCompilation) {
 301     const int increment = InvocationCounter::count_increment;
 302     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
 303     Label no_mdo, done;
 304     if (ProfileInterpreter) {
 305       // If no method data exists, go to profile_continue.
 306       __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
 307       __ br_null(G4_scratch, false, Assembler::pn, no_mdo);
 308       __ delayed()->nop();
 309       // Increment counter
 310       Address mdo_invocation_counter(G4_scratch,
 311                                      in_bytes(methodDataOopDesc::invocation_counter_offset()) +
 312                                      in_bytes(InvocationCounter::counter_offset()));
 313       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 314                                  G3_scratch, Lscratch,
 315                                  Assembler::zero, overflow);
 316       __ ba(false, done);
 317       __ delayed()->nop();
 318     }
 319 
 320     // Increment counter in methodOop
 321     __ bind(no_mdo);
 322     Address invocation_counter(Lmethod,
 323                                in_bytes(methodOopDesc::invocation_counter_offset()) +
 324                                in_bytes(InvocationCounter::counter_offset()));
 325     __ increment_mask_and_jump(invocation_counter, increment, mask,
 326                                G3_scratch, Lscratch,
 327                                Assembler::zero, overflow);
 328     __ bind(done);
 329   } else {
 330     // Update standard invocation counters
 331     __ increment_invocation_counter(O0, G3_scratch);
 332     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
 333       Address interpreter_invocation_counter(Lmethod,in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
 334       __ ld(interpreter_invocation_counter, G3_scratch);
 335       __ inc(G3_scratch);
 336       __ st(G3_scratch, interpreter_invocation_counter);
 337     }
 338 
 339     if (ProfileInterpreter && profile_method != NULL) {
 340       // Test to see if we should create a method data oop
 341       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
 342       __ load_contents(profile_limit, G3_scratch);
 343       __ cmp(O0, G3_scratch);
 344       __ br(Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
 345       __ delayed()->nop();
 346 
 347       // if no method data exists, go to profile_method
 348       __ test_method_data_pointer(*profile_method);
 349     }
 350 
 351     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
 352     __ load_contents(invocation_limit, G3_scratch);
 353     __ cmp(O0, G3_scratch);
 354     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
 355     __ delayed()->nop();
 356   }
 357 
 358 }
 359 
 360 // Allocate monitor and lock method (asm interpreter)
 361 // ebx - methodOop
 362 //
 363 void InterpreterGenerator::lock_method(void) {
 364   __ ld(Lmethod, in_bytes(methodOopDesc::access_flags_offset()), O0);  // Load access flags.
 365 
 366 #ifdef ASSERT
 367  { Label ok;
 368    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 369    __ br( Assembler::notZero, false, Assembler::pt, ok);
 370    __ delayed()->nop();
 371    __ stop("method doesn't need synchronization");
 372    __ bind(ok);
 373   }
 374 #endif // ASSERT
 375 
 376   // get synchronization object to O0
 377   { Label done;
 378     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 379     __ btst(JVM_ACC_STATIC, O0);
 380     __ br( Assembler::zero, true, Assembler::pt, done);
 381     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 382 
 383     __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
 384     __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
 385 
 386     // lock the mirror, not the klassOop
 387     __ ld_ptr( O0, mirror_offset, O0);
 388 
 389 #ifdef ASSERT
 390     __ tst(O0);
 391     __ breakpoint_trap(Assembler::zero);
 392 #endif // ASSERT
 393 
 394     __ bind(done);
 395   }
 396 
 397   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 398   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 399   // __ untested("lock_object from method entry");
 400   __ lock_object(Lmonitors, O0);
 401 }
 402 
 403 
 404 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 405                                                          Register Rscratch,
 406                                                          Register Rscratch2) {
 407   const int page_size = os::vm_page_size();
 408   Address saved_exception_pc(G2_thread, JavaThread::saved_exception_pc_offset());
 409   Label after_frame_check;
 410 
 411   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
 412 
 413   __ set( page_size,   Rscratch );
 414   __ cmp( Rframe_size, Rscratch );
 415 
 416   __ br( Assembler::lessEqual, false, Assembler::pt, after_frame_check );
 417   __ delayed()->nop();
 418 
 419   // get the stack base, and in debug, verify it is non-zero
 420   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
 421 #ifdef ASSERT
 422   Label base_not_zero;
 423   __ cmp( Rscratch, G0 );
 424   __ brx( Assembler::notEqual, false, Assembler::pn, base_not_zero );
 425   __ delayed()->nop();
 426   __ stop("stack base is zero in generate_stack_overflow_check");
 427   __ bind(base_not_zero);
 428 #endif
 429 
 430   // get the stack size, and in debug, verify it is non-zero
 431   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
 432   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
 433 #ifdef ASSERT
 434   Label size_not_zero;
 435   __ cmp( Rscratch2, G0 );
 436   __ brx( Assembler::notEqual, false, Assembler::pn, size_not_zero );
 437   __ delayed()->nop();
 438   __ stop("stack size is zero in generate_stack_overflow_check");
 439   __ bind(size_not_zero);
 440 #endif
 441 
 442   // compute the beginning of the protected zone minus the requested frame size
 443   __ sub( Rscratch, Rscratch2,   Rscratch );
 444   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
 445   __ add( Rscratch, Rscratch2,   Rscratch );
 446 
 447   // Add in the size of the frame (which is the same as subtracting it from the
 448   // SP, which would take another register
 449   __ add( Rscratch, Rframe_size, Rscratch );
 450 
 451   // the frame is greater than one page in size, so check against
 452   // the bottom of the stack
 453   __ cmp( SP, Rscratch );
 454   __ brx( Assembler::greater, false, Assembler::pt, after_frame_check );
 455   __ delayed()->nop();
 456 
 457   // Save the return address as the exception pc
 458   __ st_ptr(O7, saved_exception_pc);
 459 
 460   // the stack will overflow, throw an exception
 461   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 462 
 463   // if you get to here, then there is enough stack space
 464   __ bind( after_frame_check );
 465 }
 466 
 467 
 468 //
 469 // Generate a fixed interpreter frame. This is identical setup for interpreted
 470 // methods and for native methods hence the shared code.
 471 
 472 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 473   //
 474   //
 475   // The entry code sets up a new interpreter frame in 4 steps:
 476   //
 477   // 1) Increase caller's SP by for the extra local space needed:
 478   //    (check for overflow)
 479   //    Efficient implementation of xload/xstore bytecodes requires
 480   //    that arguments and non-argument locals are in a contigously
 481   //    addressable memory block => non-argument locals must be
 482   //    allocated in the caller's frame.
 483   //
 484   // 2) Create a new stack frame and register window:
 485   //    The new stack frame must provide space for the standard
 486   //    register save area, the maximum java expression stack size,
 487   //    the monitor slots (0 slots initially), and some frame local
 488   //    scratch locations.
 489   //
 490   // 3) The following interpreter activation registers must be setup:
 491   //    Lesp       : expression stack pointer
 492   //    Lbcp       : bytecode pointer
 493   //    Lmethod    : method
 494   //    Llocals    : locals pointer
 495   //    Lmonitors  : monitor pointer
 496   //    LcpoolCache: constant pool cache
 497   //
 498   // 4) Initialize the non-argument locals if necessary:
 499   //    Non-argument locals may need to be initialized to NULL
 500   //    for GC to work. If the oop-map information is accurate
 501   //    (in the absence of the JSR problem), no initialization
 502   //    is necessary.
 503   //
 504   // (gri - 2/25/2000)
 505 
 506 
 507   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
 508   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
 509   const Address max_stack         (G5_method, methodOopDesc::max_stack_offset());
 510   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 511 
 512   const int extra_space =
 513     rounded_vm_local_words +                   // frame local scratch space
 514     //6815692//methodOopDesc::extra_stack_words() +       // extra push slots for MH adapters
 515     frame::memory_parameter_word_sp_offset +   // register save area
 516     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 517 
 518   const Register Glocals_size = G3;
 519   const Register Otmp1 = O3;
 520   const Register Otmp2 = O4;
 521   // Lscratch can't be used as a temporary because the call_stub uses
 522   // it to assert that the stack frame was setup correctly.
 523 
 524   __ lduh( size_of_parameters, Glocals_size);
 525 
 526   // Gargs points to first local + BytesPerWord
 527   // Set the saved SP after the register window save
 528   //
 529   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 530   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 531   __ add(Gargs, Otmp1, Gargs);
 532 
 533   if (native_call) {
 534     __ calc_mem_param_words( Glocals_size, Gframe_size );
 535     __ add( Gframe_size,  extra_space, Gframe_size);
 536     __ round_to( Gframe_size, WordsPerLong );
 537     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 538   } else {
 539 
 540     //
 541     // Compute number of locals in method apart from incoming parameters
 542     //
 543     __ lduh( size_of_locals, Otmp1 );
 544     __ sub( Otmp1, Glocals_size, Glocals_size );
 545     __ round_to( Glocals_size, WordsPerLong );
 546     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
 547 
 548     // see if the frame is greater than one page in size. If so,
 549     // then we need to verify there is enough stack space remaining
 550     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 551     __ lduh( max_stack, Gframe_size );
 552     __ add( Gframe_size, extra_space, Gframe_size );
 553     __ round_to( Gframe_size, WordsPerLong );
 554     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 555 
 556     // Add in java locals size for stack overflow check only
 557     __ add( Gframe_size, Glocals_size, Gframe_size );
 558 
 559     const Register Otmp2 = O4;
 560     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 561     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
 562 
 563     __ sub( Gframe_size, Glocals_size, Gframe_size);
 564 
 565     //
 566     // bump SP to accomodate the extra locals
 567     //
 568     __ sub( SP, Glocals_size, SP );
 569   }
 570 
 571   //
 572   // now set up a stack frame with the size computed above
 573   //
 574   __ neg( Gframe_size );
 575   __ save( SP, Gframe_size, SP );
 576 
 577   //
 578   // now set up all the local cache registers
 579   //
 580   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 581   // that all present references to Lbyte_code initialize the register
 582   // immediately before use
 583   if (native_call) {
 584     __ mov(G0, Lbcp);
 585   } else {
 586     __ ld_ptr(G5_method, methodOopDesc::const_offset(), Lbcp);
 587     __ add(Lbcp, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
 588   }
 589   __ mov( G5_method, Lmethod);                 // set Lmethod
 590   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 591   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 592 #ifdef _LP64
 593   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 594 #endif
 595   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 596 
 597   // setup interpreter activation registers
 598   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 599 
 600   if (ProfileInterpreter) {
 601 #ifdef FAST_DISPATCH
 602     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 603     // they both use I2.
 604     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 605 #endif // FAST_DISPATCH
 606     __ set_method_data_pointer();
 607   }
 608 
 609 }
 610 
 611 // Empty method, generate a very fast return.
 612 
 613 address InterpreterGenerator::generate_empty_entry(void) {
 614 
 615   // A method that does nother but return...
 616 
 617   address entry = __ pc();
 618   Label slow_path;
 619 
 620   __ verify_oop(G5_method);
 621 
 622   // do nothing for empty methods (do not even increment invocation counter)
 623   if ( UseFastEmptyMethods) {
 624     // If we need a safepoint check, generate full interpreter entry.
 625     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 626     __ set(sync_state, G3_scratch);
 627     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 628     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 629     __ delayed()->nop();
 630 
 631     // Code: _return
 632     __ retl();
 633     __ delayed()->mov(O5_savedSP, SP);
 634 
 635     __ bind(slow_path);
 636     (void) generate_normal_entry(false);
 637 
 638     return entry;
 639   }
 640   return NULL;
 641 }
 642 
 643 // Call an accessor method (assuming it is resolved, otherwise drop into
 644 // vanilla (slow path) entry
 645 
 646 // Generates code to elide accessor methods
 647 // Uses G3_scratch and G1_scratch as scratch
 648 address InterpreterGenerator::generate_accessor_entry(void) {
 649 
 650   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 651   // parameter size = 1
 652   // Note: We can only use this code if the getfield has been resolved
 653   //       and if we don't have a null-pointer exception => check for
 654   //       these conditions first and use slow path if necessary.
 655   address entry = __ pc();
 656   Label slow_path;
 657 
 658 
 659   // XXX: for compressed oops pointer loading and decoding doesn't fit in
 660   // delay slot and damages G1
 661   if ( UseFastAccessorMethods && !UseCompressedOops ) {
 662     // Check if we need to reach a safepoint and generate full interpreter
 663     // frame if so.
 664     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 665     __ load_contents(sync_state, G3_scratch);
 666     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 667     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 668     __ delayed()->nop();
 669 
 670     // Check if local 0 != NULL
 671     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 672     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
 673     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
 674     __ delayed()->nop();
 675 
 676 
 677     // read first instruction word and extract bytecode @ 1 and index @ 2
 678     // get first 4 bytes of the bytecodes (big endian!)
 679     __ ld_ptr(G5_method, methodOopDesc::const_offset(), G1_scratch);
 680     __ ld(G1_scratch, constMethodOopDesc::codes_offset(), G1_scratch);
 681 
 682     // move index @ 2 far left then to the right most two bytes.
 683     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
 684     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 685                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 686 
 687     // get constant pool cache
 688     __ ld_ptr(G5_method, methodOopDesc::constants_offset(), G3_scratch);
 689     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
 690 
 691     // get specific constant pool cache entry
 692     __ add(G3_scratch, G1_scratch, G3_scratch);
 693 
 694     // Check the constant Pool cache entry to see if it has been resolved.
 695     // If not, need the slow path.
 696     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
 697     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
 698     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 699     __ and3(G1_scratch, 0xFF, G1_scratch);
 700     __ cmp(G1_scratch, Bytecodes::_getfield);
 701     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 702     __ delayed()->nop();
 703 
 704     // Get the type and return field offset from the constant pool cache
 705     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
 706     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
 707 
 708     Label xreturn_path;
 709     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 710     // because they are different sizes.
 711     // Get the type from the constant pool cache
 712     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
 713     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
 714     ConstantPoolCacheEntry::verify_tosBits();
 715     __ cmp(G1_scratch, atos );
 716     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 717     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 718     __ cmp(G1_scratch, itos);
 719     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 720     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 721     __ cmp(G1_scratch, stos);
 722     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 723     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 724     __ cmp(G1_scratch, ctos);
 725     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 726     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 727 #ifdef ASSERT
 728     __ cmp(G1_scratch, btos);
 729     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 730     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 731     __ should_not_reach_here();
 732 #endif
 733     __ ldsb(Otos_i, G3_scratch, Otos_i);
 734     __ bind(xreturn_path);
 735 
 736     // _ireturn/_areturn
 737     __ retl();                      // return from leaf routine
 738     __ delayed()->mov(O5_savedSP, SP);
 739 
 740     // Generate regular method entry
 741     __ bind(slow_path);
 742     (void) generate_normal_entry(false);
 743     return entry;
 744   }
 745   return NULL;
 746 }
 747 
 748 // Method entry for java.lang.ref.Reference.get.
 749 address InterpreterGenerator::generate_Reference_get_entry(void) {
 750 #ifndef SERIALGC
 751   // Code: _aload_0, _getfield, _areturn
 752   // parameter size = 1
 753   //
 754   // The code that gets generated by this routine is split into 2 parts:
 755   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 756   //    2. The slow path - which is an expansion of the regular method entry.
 757   //
 758   // Notes:-
 759   // * In the G1 code we do not check whether we need to block for
 760   //   a safepoint. If G1 is enabled then we must execute the specialized
 761   //   code for Reference.get (except when the Reference object is null)
 762   //   so that we can log the value in the referent field with an SATB
 763   //   update buffer.
 764   //   If the code for the getfield template is modified so that the
 765   //   G1 pre-barrier code is executed when the current method is
 766   //   Reference.get() then going through the normal method entry
 767   //   will be fine.
 768   // * The G1 code can, however, check the receiver object (the instance
 769   //   of java.lang.Reference) and jump to the slow path if null. If the
 770   //   Reference object is null then we obviously cannot fetch the referent
 771   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 772   //   regular method entry code to generate the NPE.
 773   //
 774   // This code is based on generate_accessor_enty.
 775 
 776   address entry = __ pc();
 777 
 778   const int referent_offset = java_lang_ref_Reference::referent_offset;
 779   guarantee(referent_offset > 0, "referent offset not initialized");
 780 
 781   if (UseG1GC) {
 782      Label slow_path;
 783 
 784     // In the G1 code we don't check if we need to reach a safepoint. We
 785     // continue and the thread will safepoint at the next bytecode dispatch.
 786 
 787     // Check if local 0 != NULL
 788     // If the receiver is null then it is OK to jump to the slow path.
 789     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 790     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
 791     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
 792     __ delayed()->nop();
 793 
 794 
 795     // Load the value of the referent field.
 796     if (Assembler::is_simm13(referent_offset)) {
 797       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 798     } else {
 799       __ set(referent_offset, G3_scratch);
 800       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 801     }
 802 
 803     // Generate the G1 pre-barrier code to log the value of
 804     // the referent field in an SATB buffer. Note with
 805     // these parameters the pre-barrier does not generate
 806     // the load of the previous value
 807 
 808     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 809                             Otos_i /* pre_val */,
 810                             G3_scratch /* tmp */,
 811                             true /* preserve_o_regs */);
 812 
 813     // _areturn
 814     __ retl();                      // return from leaf routine
 815     __ delayed()->mov(O5_savedSP, SP);
 816 
 817     // Generate regular method entry
 818     __ bind(slow_path);
 819     (void) generate_normal_entry(false);
 820     return entry;
 821   }
 822 #endif // SERIALGC
 823 
 824   // If G1 is not enabled then attempt to go through the accessor entry point
 825   // Reference.get is an accessor
 826   return generate_accessor_entry();
 827 }
 828 
 829 //
 830 // Interpreter stub for calling a native method. (asm interpreter)
 831 // This sets up a somewhat different looking stack for calling the native method
 832 // than the typical interpreter frame setup.
 833 //
 834 
 835 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 836   address entry = __ pc();
 837 
 838   // the following temporary registers are used during frame creation
 839   const Register Gtmp1 = G3_scratch ;
 840   const Register Gtmp2 = G1_scratch;
 841   bool inc_counter  = UseCompiler || CountCompiledCalls;
 842 
 843   // make sure registers are different!
 844   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 845 
 846   const Address Laccess_flags(Lmethod, methodOopDesc::access_flags_offset());
 847 
 848   __ verify_oop(G5_method);
 849 
 850   const Register Glocals_size = G3;
 851   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 852 
 853   // make sure method is native & not abstract
 854   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 855 #ifdef ASSERT
 856   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
 857   {
 858     Label L;
 859     __ btst(JVM_ACC_NATIVE, Gtmp1);
 860     __ br(Assembler::notZero, false, Assembler::pt, L);
 861     __ delayed()->nop();
 862     __ stop("tried to execute non-native method as native");
 863     __ bind(L);
 864   }
 865   { Label L;
 866     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 867     __ br(Assembler::zero, false, Assembler::pt, L);
 868     __ delayed()->nop();
 869     __ stop("tried to execute abstract method as non-abstract");
 870     __ bind(L);
 871   }
 872 #endif // ASSERT
 873 
 874  // generate the code to allocate the interpreter stack frame
 875   generate_fixed_frame(true);
 876 
 877   //
 878   // No locals to initialize for native method
 879   //
 880 
 881   // this slot will be set later, we initialize it to null here just in
 882   // case we get a GC before the actual value is stored later
 883   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
 884 
 885   const Address do_not_unlock_if_synchronized(G2_thread,
 886     JavaThread::do_not_unlock_if_synchronized_offset());
 887   // Since at this point in the method invocation the exception handler
 888   // would try to exit the monitor of synchronized methods which hasn't
 889   // been entered yet, we set the thread local variable
 890   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 891   // runtime, exception handling i.e. unlock_if_synchronized_method will
 892   // check this thread local flag.
 893   // This flag has two effects, one is to force an unwind in the topmost
 894   // interpreter frame and not perform an unlock while doing so.
 895 
 896   __ movbool(true, G3_scratch);
 897   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 898 
 899   // increment invocation counter and check for overflow
 900   //
 901   // Note: checking for negative value instead of overflow
 902   //       so we have a 'sticky' overflow test (may be of
 903   //       importance as soon as we have true MT/MP)
 904   Label invocation_counter_overflow;
 905   Label Lcontinue;
 906   if (inc_counter) {
 907     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 908 
 909   }
 910   __ bind(Lcontinue);
 911 
 912   bang_stack_shadow_pages(true);
 913 
 914   // reset the _do_not_unlock_if_synchronized flag
 915   __ stbool(G0, do_not_unlock_if_synchronized);
 916 
 917   // check for synchronized methods
 918   // Must happen AFTER invocation_counter check and stack overflow check,
 919   // so method is not locked if overflows.
 920 
 921   if (synchronized) {
 922     lock_method();
 923   } else {
 924 #ifdef ASSERT
 925     { Label ok;
 926       __ ld(Laccess_flags, O0);
 927       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 928       __ br( Assembler::zero, false, Assembler::pt, ok);
 929       __ delayed()->nop();
 930       __ stop("method needs synchronization");
 931       __ bind(ok);
 932     }
 933 #endif // ASSERT
 934   }
 935 
 936 
 937   // start execution
 938   __ verify_thread();
 939 
 940   // JVMTI support
 941   __ notify_method_entry();
 942 
 943   // native call
 944 
 945   // (note that O0 is never an oop--at most it is a handle)
 946   // It is important not to smash any handles created by this call,
 947   // until any oop handle in O0 is dereferenced.
 948 
 949   // (note that the space for outgoing params is preallocated)
 950 
 951   // get signature handler
 952   { Label L;
 953     Address signature_handler(Lmethod, methodOopDesc::signature_handler_offset());
 954     __ ld_ptr(signature_handler, G3_scratch);
 955     __ tst(G3_scratch);
 956     __ brx(Assembler::notZero, false, Assembler::pt, L);
 957     __ delayed()->nop();
 958     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
 959     __ ld_ptr(signature_handler, G3_scratch);
 960     __ bind(L);
 961   }
 962 
 963   // Push a new frame so that the args will really be stored in
 964   // Copy a few locals across so the new frame has the variables
 965   // we need but these values will be dead at the jni call and
 966   // therefore not gc volatile like the values in the current
 967   // frame (Lmethod in particular)
 968 
 969   // Flush the method pointer to the register save area
 970   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 971   __ mov(Llocals, O1);
 972 
 973   // calculate where the mirror handle body is allocated in the interpreter frame:
 974   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
 975 
 976   // Calculate current frame size
 977   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 978   __ save(SP, O3, SP);        // Allocate an identical sized frame
 979 
 980   // Note I7 has leftover trash. Slow signature handler will fill it in
 981   // should we get there. Normal jni call will set reasonable last_Java_pc
 982   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 983   // in it).
 984 
 985   // Load interpreter frame's Lmethod into same register here
 986 
 987   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 988 
 989   __ mov(I1, Llocals);
 990   __ mov(I2, Lscratch2);     // save the address of the mirror
 991 
 992 
 993   // ONLY Lmethod and Llocals are valid here!
 994 
 995   // call signature handler, It will move the arg properly since Llocals in current frame
 996   // matches that in outer frame
 997 
 998   __ callr(G3_scratch, 0);
 999   __ delayed()->nop();
1000 
1001   // Result handler is in Lscratch
1002 
1003   // Reload interpreter frame's Lmethod since slow signature handler may block
1004   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1005 
1006   { Label not_static;
1007 
1008     __ ld(Laccess_flags, O0);
1009     __ btst(JVM_ACC_STATIC, O0);
1010     __ br( Assembler::zero, false, Assembler::pt, not_static);
1011     // get native function entry point(O0 is a good temp until the very end)
1012     __ delayed()->ld_ptr(Lmethod, in_bytes(methodOopDesc::native_function_offset()), O0);
1013     // for static methods insert the mirror argument
1014     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
1015 
1016     __ ld_ptr(Lmethod, methodOopDesc:: constants_offset(), O1);
1017     __ ld_ptr(O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
1018     __ ld_ptr(O1, mirror_offset, O1);
1019 #ifdef ASSERT
1020     if (!PrintSignatureHandlers)  // do not dirty the output with this
1021     { Label L;
1022       __ tst(O1);
1023       __ brx(Assembler::notZero, false, Assembler::pt, L);
1024       __ delayed()->nop();
1025       __ stop("mirror is missing");
1026       __ bind(L);
1027     }
1028 #endif // ASSERT
1029     __ st_ptr(O1, Lscratch2, 0);
1030     __ mov(Lscratch2, O1);
1031     __ bind(not_static);
1032   }
1033 
1034   // At this point, arguments have been copied off of stack into
1035   // their JNI positions, which are O1..O5 and SP[68..].
1036   // Oops are boxed in-place on the stack, with handles copied to arguments.
1037   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1038 
1039 #ifdef ASSERT
1040   { Label L;
1041     __ tst(O0);
1042     __ brx(Assembler::notZero, false, Assembler::pt, L);
1043     __ delayed()->nop();
1044     __ stop("native entry point is missing");
1045     __ bind(L);
1046   }
1047 #endif // ASSERT
1048 
1049   //
1050   // setup the frame anchor
1051   //
1052   // The scavenge function only needs to know that the PC of this frame is
1053   // in the interpreter method entry code, it doesn't need to know the exact
1054   // PC and hence we can use O7 which points to the return address from the
1055   // previous call in the code stream (signature handler function)
1056   //
1057   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1058   // we have pushed the extra frame in order to protect the volatile register(s)
1059   // in that frame when we return from the jni call
1060   //
1061 
1062   __ set_last_Java_frame(FP, O7);
1063   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1064                    // not meaningless information that'll confuse me.
1065 
1066   // flush the windows now. We don't care about the current (protection) frame
1067   // only the outer frames
1068 
1069   __ flush_windows();
1070 
1071   // mark windows as flushed
1072   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1073   __ set(JavaFrameAnchor::flushed, G3_scratch);
1074   __ st(G3_scratch, flags);
1075 
1076   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1077 
1078   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1079 #ifdef ASSERT
1080   { Label L;
1081     __ ld(thread_state, G3_scratch);
1082     __ cmp(G3_scratch, _thread_in_Java);
1083     __ br(Assembler::equal, false, Assembler::pt, L);
1084     __ delayed()->nop();
1085     __ stop("Wrong thread state in native stub");
1086     __ bind(L);
1087   }
1088 #endif // ASSERT
1089   __ set(_thread_in_native, G3_scratch);
1090   __ st(G3_scratch, thread_state);
1091 
1092   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1093   __ save_thread(L7_thread_cache); // save Gthread
1094   __ callr(O0, 0);
1095   __ delayed()->
1096      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1097 
1098   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1099 
1100   __ restore_thread(L7_thread_cache); // restore G2_thread
1101   __ reinit_heapbase();
1102 
1103   // must we block?
1104 
1105   // Block, if necessary, before resuming in _thread_in_Java state.
1106   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1107   { Label no_block;
1108     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1109 
1110     // Switch thread to "native transition" state before reading the synchronization state.
1111     // This additional state is necessary because reading and testing the synchronization
1112     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1113     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1114     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1115     //     Thread A is resumed to finish this native method, but doesn't block here since it
1116     //     didn't see any synchronization is progress, and escapes.
1117     __ set(_thread_in_native_trans, G3_scratch);
1118     __ st(G3_scratch, thread_state);
1119     if(os::is_MP()) {
1120       if (UseMembar) {
1121         // Force this write out before the read below
1122         __ membar(Assembler::StoreLoad);
1123       } else {
1124         // Write serialization page so VM thread can do a pseudo remote membar.
1125         // We use the current thread pointer to calculate a thread specific
1126         // offset to write to within the page. This minimizes bus traffic
1127         // due to cache line collision.
1128         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1129       }
1130     }
1131     __ load_contents(sync_state, G3_scratch);
1132     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1133 
1134     Label L;
1135     __ br(Assembler::notEqual, false, Assembler::pn, L);
1136     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1137     __ cmp(G3_scratch, 0);
1138     __ br(Assembler::equal, false, Assembler::pt, no_block);
1139     __ delayed()->nop();
1140     __ bind(L);
1141 
1142     // Block.  Save any potential method result value before the operation and
1143     // use a leaf call to leave the last_Java_frame setup undisturbed.
1144     save_native_result();
1145     __ call_VM_leaf(L7_thread_cache,
1146                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1147                     G2_thread);
1148 
1149     // Restore any method result value
1150     restore_native_result();
1151     __ bind(no_block);
1152   }
1153 
1154   // Clear the frame anchor now
1155 
1156   __ reset_last_Java_frame();
1157 
1158   // Move the result handler address
1159   __ mov(Lscratch, G3_scratch);
1160   // return possible result to the outer frame
1161 #ifndef __LP64
1162   __ mov(O0, I0);
1163   __ restore(O1, G0, O1);
1164 #else
1165   __ restore(O0, G0, O0);
1166 #endif /* __LP64 */
1167 
1168   // Move result handler to expected register
1169   __ mov(G3_scratch, Lscratch);
1170 
1171   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1172   // switch to thread_in_Java.
1173 
1174   __ set(_thread_in_Java, G3_scratch);
1175   __ st(G3_scratch, thread_state);
1176 
1177   // reset handle block
1178   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1179   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1180 
1181   // If we have an oop result store it where it will be safe for any further gc
1182   // until we return now that we've released the handle it might be protected by
1183 
1184   {
1185     Label no_oop, store_result;
1186 
1187     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1188     __ cmp(G3_scratch, Lscratch);
1189     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
1190     __ delayed()->nop();
1191     __ addcc(G0, O0, O0);
1192     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1193     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1194     __ mov(G0, O0);
1195 
1196     __ bind(store_result);
1197     // Store it where gc will look for it and result handler expects it.
1198     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1199 
1200     __ bind(no_oop);
1201 
1202   }
1203 
1204 
1205   // handle exceptions (exception handling will handle unlocking!)
1206   { Label L;
1207     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1208     __ ld_ptr(exception_addr, Gtemp);
1209     __ tst(Gtemp);
1210     __ brx(Assembler::equal, false, Assembler::pt, L);
1211     __ delayed()->nop();
1212     // Note: This could be handled more efficiently since we know that the native
1213     //       method doesn't have an exception handler. We could directly return
1214     //       to the exception handler for the caller.
1215     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1216     __ should_not_reach_here();
1217     __ bind(L);
1218   }
1219 
1220   // JVMTI support (preserves thread register)
1221   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1222 
1223   if (synchronized) {
1224     // save and restore any potential method result value around the unlocking operation
1225     save_native_result();
1226 
1227     __ add( __ top_most_monitor(), O1);
1228     __ unlock_object(O1);
1229 
1230     restore_native_result();
1231   }
1232 
1233 #if defined(COMPILER2) && !defined(_LP64)
1234 
1235   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1236   // or compiled so just be safe.
1237 
1238   __ sllx(O0, 32, G1);          // Shift bits into high G1
1239   __ srl (O1, 0, O1);           // Zero extend O1
1240   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1241 
1242 #endif /* COMPILER2 && !_LP64 */
1243 
1244   // dispose of return address and remove activation
1245 #ifdef ASSERT
1246   {
1247     Label ok;
1248     __ cmp(I5_savedSP, FP);
1249     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
1250     __ delayed()->nop();
1251     __ stop("bad I5_savedSP value");
1252     __ should_not_reach_here();
1253     __ bind(ok);
1254   }
1255 #endif
1256   if (TraceJumps) {
1257     // Move target to register that is recordable
1258     __ mov(Lscratch, G3_scratch);
1259     __ JMP(G3_scratch, 0);
1260   } else {
1261     __ jmp(Lscratch, 0);
1262   }
1263   __ delayed()->nop();
1264 
1265 
1266   if (inc_counter) {
1267     // handle invocation counter overflow
1268     __ bind(invocation_counter_overflow);
1269     generate_counter_overflow(Lcontinue);
1270   }
1271 
1272 
1273 
1274   return entry;
1275 }
1276 
1277 
1278 // Generic method entry to (asm) interpreter
1279 //------------------------------------------------------------------------------------------------------------------------
1280 //
1281 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1282   address entry = __ pc();
1283 
1284   bool inc_counter  = UseCompiler || CountCompiledCalls;
1285 
1286   // the following temporary registers are used during frame creation
1287   const Register Gtmp1 = G3_scratch ;
1288   const Register Gtmp2 = G1_scratch;
1289 
1290   // make sure registers are different!
1291   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1292 
1293   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
1294   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
1295   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1296   // and use in the asserts.
1297   const Address access_flags      (Lmethod,   methodOopDesc::access_flags_offset());
1298 
1299   __ verify_oop(G5_method);
1300 
1301   const Register Glocals_size = G3;
1302   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1303 
1304   // make sure method is not native & not abstract
1305   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1306 #ifdef ASSERT
1307   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
1308   {
1309     Label L;
1310     __ btst(JVM_ACC_NATIVE, Gtmp1);
1311     __ br(Assembler::zero, false, Assembler::pt, L);
1312     __ delayed()->nop();
1313     __ stop("tried to execute native method as non-native");
1314     __ bind(L);
1315   }
1316   { Label L;
1317     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1318     __ br(Assembler::zero, false, Assembler::pt, L);
1319     __ delayed()->nop();
1320     __ stop("tried to execute abstract method as non-abstract");
1321     __ bind(L);
1322   }
1323 #endif // ASSERT
1324 
1325   // generate the code to allocate the interpreter stack frame
1326 
1327   generate_fixed_frame(false);
1328 
1329 #ifdef FAST_DISPATCH
1330   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1331                                           // set bytecode dispatch table base
1332 #endif
1333 
1334   //
1335   // Code to initialize the extra (i.e. non-parm) locals
1336   //
1337   Register init_value = noreg;    // will be G0 if we must clear locals
1338   // The way the code was setup before zerolocals was always true for vanilla java entries.
1339   // It could only be false for the specialized entries like accessor or empty which have
1340   // no extra locals so the testing was a waste of time and the extra locals were always
1341   // initialized. We removed this extra complication to already over complicated code.
1342 
1343   init_value = G0;
1344   Label clear_loop;
1345 
1346   // NOTE: If you change the frame layout, this code will need to
1347   // be updated!
1348   __ lduh( size_of_locals, O2 );
1349   __ lduh( size_of_parameters, O1 );
1350   __ sll( O2, Interpreter::logStackElementSize, O2);
1351   __ sll( O1, Interpreter::logStackElementSize, O1 );
1352   __ sub( Llocals, O2, O2 );
1353   __ sub( Llocals, O1, O1 );
1354 
1355   __ bind( clear_loop );
1356   __ inc( O2, wordSize );
1357 
1358   __ cmp( O2, O1 );
1359   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1360   __ delayed()->st_ptr( init_value, O2, 0 );
1361 
1362   const Address do_not_unlock_if_synchronized(G2_thread,
1363     JavaThread::do_not_unlock_if_synchronized_offset());
1364   // Since at this point in the method invocation the exception handler
1365   // would try to exit the monitor of synchronized methods which hasn't
1366   // been entered yet, we set the thread local variable
1367   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1368   // runtime, exception handling i.e. unlock_if_synchronized_method will
1369   // check this thread local flag.
1370   __ movbool(true, G3_scratch);
1371   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1372 
1373   // increment invocation counter and check for overflow
1374   //
1375   // Note: checking for negative value instead of overflow
1376   //       so we have a 'sticky' overflow test (may be of
1377   //       importance as soon as we have true MT/MP)
1378   Label invocation_counter_overflow;
1379   Label profile_method;
1380   Label profile_method_continue;
1381   Label Lcontinue;
1382   if (inc_counter) {
1383     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1384     if (ProfileInterpreter) {
1385       __ bind(profile_method_continue);
1386     }
1387   }
1388   __ bind(Lcontinue);
1389 
1390   bang_stack_shadow_pages(false);
1391 
1392   // reset the _do_not_unlock_if_synchronized flag
1393   __ stbool(G0, do_not_unlock_if_synchronized);
1394 
1395   // check for synchronized methods
1396   // Must happen AFTER invocation_counter check and stack overflow check,
1397   // so method is not locked if overflows.
1398 
1399   if (synchronized) {
1400     lock_method();
1401   } else {
1402 #ifdef ASSERT
1403     { Label ok;
1404       __ ld(access_flags, O0);
1405       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1406       __ br( Assembler::zero, false, Assembler::pt, ok);
1407       __ delayed()->nop();
1408       __ stop("method needs synchronization");
1409       __ bind(ok);
1410     }
1411 #endif // ASSERT
1412   }
1413 
1414   // start execution
1415 
1416   __ verify_thread();
1417 
1418   // jvmti support
1419   __ notify_method_entry();
1420 
1421   // start executing instructions
1422   __ dispatch_next(vtos);
1423 
1424 
1425   if (inc_counter) {
1426     if (ProfileInterpreter) {
1427       // We have decided to profile this method in the interpreter
1428       __ bind(profile_method);
1429 
1430       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1431       __ set_method_data_pointer_for_bcp();
1432       __ ba(false, profile_method_continue);
1433       __ delayed()->nop();
1434     }
1435 
1436     // handle invocation counter overflow
1437     __ bind(invocation_counter_overflow);
1438     generate_counter_overflow(Lcontinue);
1439   }
1440 
1441 
1442   return entry;
1443 }
1444 
1445 
1446 //----------------------------------------------------------------------------------------------------
1447 // Entry points & stack frame layout
1448 //
1449 // Here we generate the various kind of entries into the interpreter.
1450 // The two main entry type are generic bytecode methods and native call method.
1451 // These both come in synchronized and non-synchronized versions but the
1452 // frame layout they create is very similar. The other method entry
1453 // types are really just special purpose entries that are really entry
1454 // and interpretation all in one. These are for trivial methods like
1455 // accessor, empty, or special math methods.
1456 //
1457 // When control flow reaches any of the entry types for the interpreter
1458 // the following holds ->
1459 //
1460 // C2 Calling Conventions:
1461 //
1462 // The entry code below assumes that the following registers are set
1463 // when coming in:
1464 //    G5_method: holds the methodOop of the method to call
1465 //    Lesp:    points to the TOS of the callers expression stack
1466 //             after having pushed all the parameters
1467 //
1468 // The entry code does the following to setup an interpreter frame
1469 //   pop parameters from the callers stack by adjusting Lesp
1470 //   set O0 to Lesp
1471 //   compute X = (max_locals - num_parameters)
1472 //   bump SP up by X to accomadate the extra locals
1473 //   compute X = max_expression_stack
1474 //               + vm_local_words
1475 //               + 16 words of register save area
1476 //   save frame doing a save sp, -X, sp growing towards lower addresses
1477 //   set Lbcp, Lmethod, LcpoolCache
1478 //   set Llocals to i0
1479 //   set Lmonitors to FP - rounded_vm_local_words
1480 //   set Lesp to Lmonitors - 4
1481 //
1482 //  The frame has now been setup to do the rest of the entry code
1483 
1484 // Try this optimization:  Most method entries could live in a
1485 // "one size fits all" stack frame without all the dynamic size
1486 // calculations.  It might be profitable to do all this calculation
1487 // statically and approximately for "small enough" methods.
1488 
1489 //-----------------------------------------------------------------------------------------------
1490 
1491 // C1 Calling conventions
1492 //
1493 // Upon method entry, the following registers are setup:
1494 //
1495 // g2 G2_thread: current thread
1496 // g5 G5_method: method to activate
1497 // g4 Gargs  : pointer to last argument
1498 //
1499 //
1500 // Stack:
1501 //
1502 // +---------------+ <--- sp
1503 // |               |
1504 // : reg save area :
1505 // |               |
1506 // +---------------+ <--- sp + 0x40
1507 // |               |
1508 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1509 // |               |
1510 // +---------------+ <--- sp + 0x5c
1511 // |               |
1512 // :     free      :
1513 // |               |
1514 // +---------------+ <--- Gargs
1515 // |               |
1516 // :   arguments   :
1517 // |               |
1518 // +---------------+
1519 // |               |
1520 //
1521 //
1522 //
1523 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
1524 //
1525 // +---------------+ <--- sp
1526 // |               |
1527 // : reg save area :
1528 // |               |
1529 // +---------------+ <--- sp + 0x40
1530 // |               |
1531 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1532 // |               |
1533 // +---------------+ <--- sp + 0x5c
1534 // |               |
1535 // :               :
1536 // |               | <--- Lesp
1537 // +---------------+ <--- Lmonitors (fp - 0x18)
1538 // |   VM locals   |
1539 // +---------------+ <--- fp
1540 // |               |
1541 // : reg save area :
1542 // |               |
1543 // +---------------+ <--- fp + 0x40
1544 // |               |
1545 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1546 // |               |
1547 // +---------------+ <--- fp + 0x5c
1548 // |               |
1549 // :     free      :
1550 // |               |
1551 // +---------------+
1552 // |               |
1553 // : nonarg locals :
1554 // |               |
1555 // +---------------+
1556 // |               |
1557 // :   arguments   :
1558 // |               | <--- Llocals
1559 // +---------------+ <--- Gargs
1560 // |               |
1561 
1562 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
1563 
1564   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
1565   // expression stack, the callee will have callee_extra_locals (so we can account for
1566   // frame extension) and monitor_size for monitors. Basically we need to calculate
1567   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
1568   //
1569   //
1570   // The big complicating thing here is that we must ensure that the stack stays properly
1571   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
1572   // needs to be aligned for). We are given that the sp (fp) is already aligned by
1573   // the caller so we must ensure that it is properly aligned for our callee.
1574   //
1575   const int rounded_vm_local_words =
1576        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1577   // callee_locals and max_stack are counts, not the size in frame.
1578   const int locals_size =
1579        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
1580   const int max_stack_words = max_stack * Interpreter::stackElementWords;
1581   return (round_to((max_stack_words
1582                    //6815692//+ methodOopDesc::extra_stack_words()
1583                    + rounded_vm_local_words
1584                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
1585                    // already rounded
1586                    + locals_size + monitor_size);
1587 }
1588 
1589 // How much stack a method top interpreter activation needs in words.
1590 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
1591 
1592   // See call_stub code
1593   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
1594                                  WordsPerLong);    // 7 + register save area
1595 
1596   // Save space for one monitor to get into the interpreted method in case
1597   // the method is synchronized
1598   int monitor_size    = method->is_synchronized() ?
1599                                 1*frame::interpreter_frame_monitor_size() : 0;
1600   return size_activation_helper(method->max_locals(), method->max_stack(),
1601                                  monitor_size) + call_stub_size;
1602 }
1603 
1604 int AbstractInterpreter::layout_activation(methodOop method,
1605                                            int tempcount,
1606                                            int popframe_extra_args,
1607                                            int moncount,
1608                                            int caller_actual_parameters,
1609                                            int callee_param_count,
1610                                            int callee_local_count,
1611                                            frame* caller,
1612                                            frame* interpreter_frame,
1613                                            bool is_top_frame) {
1614   // Note: This calculation must exactly parallel the frame setup
1615   // in InterpreterGenerator::generate_fixed_frame.
1616   // If f!=NULL, set up the following variables:
1617   //   - Lmethod
1618   //   - Llocals
1619   //   - Lmonitors (to the indicated number of monitors)
1620   //   - Lesp (to the indicated number of temps)
1621   // The frame f (if not NULL) on entry is a description of the caller of the frame
1622   // we are about to layout. We are guaranteed that we will be able to fill in a
1623   // new interpreter frame as its callee (i.e. the stack space is allocated and
1624   // the amount was determined by an earlier call to this method with f == NULL).
1625   // On return f (if not NULL) while describe the interpreter frame we just layed out.
1626 
1627   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
1628   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1629 
1630   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
1631   //
1632   // Note: if you look closely this appears to be doing something much different
1633   // than generate_fixed_frame. What is happening is this. On sparc we have to do
1634   // this dance with interpreter_sp_adjustment because the window save area would
1635   // appear just below the bottom (tos) of the caller's java expression stack. Because
1636   // the interpreter want to have the locals completely contiguous generate_fixed_frame
1637   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
1638   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
1639   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
1640   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
1641   // because the oldest frame would have adjust its callers frame and yet that frame
1642   // already exists and isn't part of this array of frames we are unpacking. So at first
1643   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
1644   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
1645   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
1646   // add up. It does seem like it simpler to account for the adjustment here (and remove the
1647   // callee... parameters here). However this would mean that this routine would have to take
1648   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
1649   // and run the calling loop in the reverse order. This would also would appear to mean making
1650   // this code aware of what the interactions are when that initial caller fram was an osr or
1651   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
1652   // there is no sense in messing working code.
1653   //
1654 
1655   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
1656   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
1657 
1658   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
1659                                               monitor_size);
1660 
1661   if (interpreter_frame != NULL) {
1662     // The skeleton frame must already look like an interpreter frame
1663     // even if not fully filled out.
1664     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
1665 
1666     intptr_t* fp = interpreter_frame->fp();
1667 
1668     JavaThread* thread = JavaThread::current();
1669     RegisterMap map(thread, false);
1670     // More verification that skeleton frame is properly walkable
1671     assert(fp == caller->sp(), "fp must match");
1672 
1673     intptr_t* montop     = fp - rounded_vm_local_words;
1674 
1675     // preallocate monitors (cf. __ add_monitor_to_stack)
1676     intptr_t* monitors = montop - monitor_size;
1677 
1678     // preallocate stack space
1679     intptr_t*  esp = monitors - 1 -
1680                      (tempcount * Interpreter::stackElementWords) -
1681                      popframe_extra_args;
1682 
1683     int local_words = method->max_locals() * Interpreter::stackElementWords;
1684     NEEDS_CLEANUP;
1685     intptr_t* locals;
1686     if (caller->is_interpreted_frame()) {
1687       // Can force the locals area to end up properly overlapping the top of the expression stack.
1688       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
1689       // Note that this computation means we replace size_of_parameters() values from the caller
1690       // interpreter frame's expression stack with our argument locals
1691       int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
1692       locals = Lesp_ptr + parm_words;
1693       int delta = local_words - parm_words;
1694       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
1695       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
1696     } else {
1697       assert(caller->is_compiled_frame() || caller->is_entry_frame() || caller->is_ricochet_frame(), "only possible cases");
1698       // Don't have Lesp available; lay out locals block in the caller
1699       // adjacent to the register window save area.
1700       //
1701       // Compiled frames do not allocate a varargs area which is why this if
1702       // statement is needed.
1703       //
1704       if (caller->is_compiled_frame()) {
1705         locals = fp + frame::register_save_words + local_words - 1;
1706       } else {
1707         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
1708       }
1709       if (!caller->is_entry_frame()) {
1710         // Caller wants his own SP back
1711         int caller_frame_size = caller->cb()->frame_size();
1712         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
1713       }
1714     }
1715     if (TraceDeoptimization) {
1716       if (caller->is_entry_frame()) {
1717         // make sure I5_savedSP and the entry frames notion of saved SP
1718         // agree.  This assertion duplicate a check in entry frame code
1719         // but catches the failure earlier.
1720         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
1721                "would change callers SP");
1722       }
1723       if (caller->is_entry_frame()) {
1724         tty->print("entry ");
1725       }
1726       if (caller->is_compiled_frame()) {
1727         tty->print("compiled ");
1728         if (caller->is_deoptimized_frame()) {
1729           tty->print("(deopt) ");
1730         }
1731       }
1732       if (caller->is_interpreted_frame()) {
1733         tty->print("interpreted ");
1734       }
1735       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
1736       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
1737       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
1738       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
1739       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
1740       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
1741       tty->print_cr("Llocals = 0x%x", locals);
1742       tty->print_cr("Lesp = 0x%x", esp);
1743       tty->print_cr("Lmonitors = 0x%x", monitors);
1744     }
1745 
1746     if (method->max_locals() > 0) {
1747       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
1748       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
1749       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
1750       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
1751     }
1752 #ifdef _LP64
1753     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
1754 #endif
1755 
1756     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
1757     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
1758     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
1759     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
1760     // Llast_SP will be same as SP as there is no adapter space
1761     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
1762     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
1763 #ifdef FAST_DISPATCH
1764     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
1765 #endif
1766 
1767 
1768 #ifdef ASSERT
1769     BasicObjectLock* mp = (BasicObjectLock*)monitors;
1770 
1771     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
1772     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
1773     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
1774     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
1775     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
1776 
1777     // check bounds
1778     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
1779     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
1780     assert(lo < monitors && montop <= hi, "monitors in bounds");
1781     assert(lo <= esp && esp < monitors, "esp in bounds");
1782 #endif // ASSERT
1783   }
1784 
1785   return raw_frame_size;
1786 }
1787 
1788 //----------------------------------------------------------------------------------------------------
1789 // Exceptions
1790 void TemplateInterpreterGenerator::generate_throw_exception() {
1791 
1792   // Entry point in previous activation (i.e., if the caller was interpreted)
1793   Interpreter::_rethrow_exception_entry = __ pc();
1794   // O0: exception
1795 
1796   // entry point for exceptions thrown within interpreter code
1797   Interpreter::_throw_exception_entry = __ pc();
1798   __ verify_thread();
1799   // expression stack is undefined here
1800   // O0: exception, i.e. Oexception
1801   // Lbcp: exception bcx
1802   __ verify_oop(Oexception);
1803 
1804 
1805   // expression stack must be empty before entering the VM in case of an exception
1806   __ empty_expression_stack();
1807   // find exception handler address and preserve exception oop
1808   // call C routine to find handler and jump to it
1809   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1810   __ push_ptr(O1); // push exception for exception handler bytecodes
1811 
1812   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1813   __ delayed()->nop();
1814 
1815 
1816   // if the exception is not handled in the current frame
1817   // the frame is removed and the exception is rethrown
1818   // (i.e. exception continuation is _rethrow_exception)
1819   //
1820   // Note: At this point the bci is still the bxi for the instruction which caused
1821   //       the exception and the expression stack is empty. Thus, for any VM calls
1822   //       at this point, GC will find a legal oop map (with empty expression stack).
1823 
1824   // in current activation
1825   // tos: exception
1826   // Lbcp: exception bcp
1827 
1828   //
1829   // JVMTI PopFrame support
1830   //
1831 
1832   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1833   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1834   // Set the popframe_processing bit in popframe_condition indicating that we are
1835   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1836   // popframe handling cycles.
1837 
1838   __ ld(popframe_condition_addr, G3_scratch);
1839   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1840   __ stw(G3_scratch, popframe_condition_addr);
1841 
1842   // Empty the expression stack, as in normal exception handling
1843   __ empty_expression_stack();
1844   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1845 
1846   {
1847     // Check to see whether we are returning to a deoptimized frame.
1848     // (The PopFrame call ensures that the caller of the popped frame is
1849     // either interpreted or compiled and deoptimizes it if compiled.)
1850     // In this case, we can't call dispatch_next() after the frame is
1851     // popped, but instead must save the incoming arguments and restore
1852     // them after deoptimization has occurred.
1853     //
1854     // Note that we don't compare the return PC against the
1855     // deoptimization blob's unpack entry because of the presence of
1856     // adapter frames in C2.
1857     Label caller_not_deoptimized;
1858     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1859     __ tst(O0);
1860     __ brx(Assembler::notEqual, false, Assembler::pt, caller_not_deoptimized);
1861     __ delayed()->nop();
1862 
1863     const Register Gtmp1 = G3_scratch;
1864     const Register Gtmp2 = G1_scratch;
1865 
1866     // Compute size of arguments for saving when returning to deoptimized caller
1867     __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
1868     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1869     __ sub(Llocals, Gtmp1, Gtmp2);
1870     __ add(Gtmp2, wordSize, Gtmp2);
1871     // Save these arguments
1872     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1873     // Inform deoptimization that it is responsible for restoring these arguments
1874     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1875     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1876     __ st(Gtmp1, popframe_condition_addr);
1877 
1878     // Return from the current method
1879     // The caller's SP was adjusted upon method entry to accomodate
1880     // the callee's non-argument locals. Undo that adjustment.
1881     __ ret();
1882     __ delayed()->restore(I5_savedSP, G0, SP);
1883 
1884     __ bind(caller_not_deoptimized);
1885   }
1886 
1887   // Clear the popframe condition flag
1888   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1889 
1890   // Get out of the current method (how this is done depends on the particular compiler calling
1891   // convention that the interpreter currently follows)
1892   // The caller's SP was adjusted upon method entry to accomodate
1893   // the callee's non-argument locals. Undo that adjustment.
1894   __ restore(I5_savedSP, G0, SP);
1895   // The method data pointer was incremented already during
1896   // call profiling. We have to restore the mdp for the current bcp.
1897   if (ProfileInterpreter) {
1898     __ set_method_data_pointer_for_bcp();
1899   }
1900   // Resume bytecode interpretation at the current bcp
1901   __ dispatch_next(vtos);
1902   // end of JVMTI PopFrame support
1903 
1904   Interpreter::_remove_activation_entry = __ pc();
1905 
1906   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1907   __ pop_ptr(Oexception);                                  // get exception
1908 
1909   // Intel has the following comment:
1910   //// remove the activation (without doing throws on illegalMonitorExceptions)
1911   // They remove the activation without checking for bad monitor state.
1912   // %%% We should make sure this is the right semantics before implementing.
1913 
1914   // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
1915   __ set_vm_result(Oexception);
1916   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1917 
1918   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1919 
1920   __ get_vm_result(Oexception);
1921   __ verify_oop(Oexception);
1922 
1923     const int return_reg_adjustment = frame::pc_return_offset;
1924   Address issuing_pc_addr(I7, return_reg_adjustment);
1925 
1926   // We are done with this activation frame; find out where to go next.
1927   // The continuation point will be an exception handler, which expects
1928   // the following registers set up:
1929   //
1930   // Oexception: exception
1931   // Oissuing_pc: the local call that threw exception
1932   // Other On: garbage
1933   // In/Ln:  the contents of the caller's register window
1934   //
1935   // We do the required restore at the last possible moment, because we
1936   // need to preserve some state across a runtime call.
1937   // (Remember that the caller activation is unknown--it might not be
1938   // interpreted, so things like Lscratch are useless in the caller.)
1939 
1940   // Although the Intel version uses call_C, we can use the more
1941   // compact call_VM.  (The only real difference on SPARC is a
1942   // harmlessly ignored [re]set_last_Java_frame, compared with
1943   // the Intel code which lacks this.)
1944   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1945   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1946   __ super_call_VM_leaf(L7_thread_cache,
1947                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1948                         G2_thread, Oissuing_pc->after_save());
1949 
1950   // The caller's SP was adjusted upon method entry to accomodate
1951   // the callee's non-argument locals. Undo that adjustment.
1952   __ JMP(O0, 0);                         // return exception handler in caller
1953   __ delayed()->restore(I5_savedSP, G0, SP);
1954 
1955   // (same old exception object is already in Oexception; see above)
1956   // Note that an "issuing PC" is actually the next PC after the call
1957 }
1958 
1959 
1960 //
1961 // JVMTI ForceEarlyReturn support
1962 //
1963 
1964 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1965   address entry = __ pc();
1966 
1967   __ empty_expression_stack();
1968   __ load_earlyret_value(state);
1969 
1970   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1971   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1972 
1973   // Clear the earlyret state
1974   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1975 
1976   __ remove_activation(state,
1977                        /* throw_monitor_exception */ false,
1978                        /* install_monitor_exception */ false);
1979 
1980   // The caller's SP was adjusted upon method entry to accomodate
1981   // the callee's non-argument locals. Undo that adjustment.
1982   __ ret();                             // return to caller
1983   __ delayed()->restore(I5_savedSP, G0, SP);
1984 
1985   return entry;
1986 } // end of JVMTI ForceEarlyReturn support
1987 
1988 
1989 //------------------------------------------------------------------------------------------------------------------------
1990 // Helper for vtos entry point generation
1991 
1992 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1993   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1994   Label L;
1995   aep = __ pc(); __ push_ptr(); __ ba(false, L); __ delayed()->nop();
1996   fep = __ pc(); __ push_f();   __ ba(false, L); __ delayed()->nop();
1997   dep = __ pc(); __ push_d();   __ ba(false, L); __ delayed()->nop();
1998   lep = __ pc(); __ push_l();   __ ba(false, L); __ delayed()->nop();
1999   iep = __ pc(); __ push_i();
2000   bep = cep = sep = iep;                        // there aren't any
2001   vep = __ pc(); __ bind(L);                    // fall through
2002   generate_and_dispatch(t);
2003 }
2004 
2005 // --------------------------------------------------------------------------------
2006 
2007 
2008 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2009  : TemplateInterpreterGenerator(code) {
2010    generate_all(); // down here so it can be "virtual"
2011 }
2012 
2013 // --------------------------------------------------------------------------------
2014 
2015 // Non-product code
2016 #ifndef PRODUCT
2017 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2018   address entry = __ pc();
2019 
2020   __ push(state);
2021   __ mov(O7, Lscratch); // protect return address within interpreter
2022 
2023   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
2024   __ mov( Otos_l2, G3_scratch );
2025   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
2026   __ mov(Lscratch, O7); // restore return address
2027   __ pop(state);
2028   __ retl();
2029   __ delayed()->nop();
2030 
2031   return entry;
2032 }
2033 
2034 
2035 // helpers for generate_and_dispatch
2036 
2037 void TemplateInterpreterGenerator::count_bytecode() {
2038   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
2039 }
2040 
2041 
2042 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2043   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
2044 }
2045 
2046 
2047 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2048   AddressLiteral index   (&BytecodePairHistogram::_index);
2049   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
2050 
2051   // get index, shift out old bytecode, bring in new bytecode, and store it
2052   // _index = (_index >> log2_number_of_codes) |
2053   //          (bytecode << log2_number_of_codes);
2054 
2055   __ load_contents(index, G4_scratch);
2056   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
2057   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
2058   __ or3( G3_scratch,  G4_scratch, G4_scratch );
2059   __ store_contents(G4_scratch, index, G3_scratch);
2060 
2061   // bump bucket contents
2062   // _counters[_index] ++;
2063 
2064   __ set(counters, G3_scratch);                       // loads into G3_scratch
2065   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2066   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2067   __ ld (G3_scratch, 0, G4_scratch);
2068   __ inc (G4_scratch);
2069   __ st (G4_scratch, 0, G3_scratch);
2070 }
2071 
2072 
2073 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2074   // Call a little run-time stub to avoid blow-up for each bytecode.
2075   // The run-time runtime saves the right registers, depending on
2076   // the tosca in-state for the given template.
2077   address entry = Interpreter::trace_code(t->tos_in());
2078   guarantee(entry != NULL, "entry must have been generated");
2079   __ call(entry, relocInfo::none);
2080   __ delayed()->nop();
2081 }
2082 
2083 
2084 void TemplateInterpreterGenerator::stop_interpreter_at() {
2085   AddressLiteral counter(&BytecodeCounter::_counter_value);
2086   __ load_contents(counter, G3_scratch);
2087   AddressLiteral stop_at(&StopInterpreterAt);
2088   __ load_ptr_contents(stop_at, G4_scratch);
2089   __ cmp(G3_scratch, G4_scratch);
2090   __ breakpoint_trap(Assembler::equal);
2091 }
2092 #endif // not PRODUCT
2093 #endif // !CC_INTERP