1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/exceptionHandlerTable.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/block.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/callnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/chaitin.hpp"
  39 #include "opto/compile.hpp"
  40 #include "opto/connode.hpp"
  41 #include "opto/divnode.hpp"
  42 #include "opto/escape.hpp"
  43 #include "opto/idealGraphPrinter.hpp"
  44 #include "opto/loopnode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/macro.hpp"
  47 #include "opto/matcher.hpp"
  48 #include "opto/memnode.hpp"
  49 #include "opto/mulnode.hpp"
  50 #include "opto/node.hpp"
  51 #include "opto/opcodes.hpp"
  52 #include "opto/output.hpp"
  53 #include "opto/parse.hpp"
  54 #include "opto/phaseX.hpp"
  55 #include "opto/rootnode.hpp"
  56 #include "opto/runtime.hpp"
  57 #include "opto/stringopts.hpp"
  58 #include "opto/type.hpp"
  59 #include "opto/vectornode.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/signature.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "utilities/copy.hpp"
  65 #ifdef TARGET_ARCH_MODEL_x86_32
  66 # include "adfiles/ad_x86_32.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_MODEL_x86_64
  69 # include "adfiles/ad_x86_64.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_MODEL_sparc
  72 # include "adfiles/ad_sparc.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_zero
  75 # include "adfiles/ad_zero.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_arm
  78 # include "adfiles/ad_arm.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_ppc
  81 # include "adfiles/ad_ppc.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new (C) MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 101 #ifdef ASSERT
 102   for (int i = 1; i < _intrinsics->length(); i++) {
 103     CallGenerator* cg1 = _intrinsics->at(i-1);
 104     CallGenerator* cg2 = _intrinsics->at(i);
 105     assert(cg1->method() != cg2->method()
 106            ? cg1->method()     < cg2->method()
 107            : cg1->is_virtual() < cg2->is_virtual(),
 108            "compiler intrinsics list must stay sorted");
 109   }
 110 #endif
 111   // Binary search sorted list, in decreasing intervals [lo, hi].
 112   int lo = 0, hi = _intrinsics->length()-1;
 113   while (lo <= hi) {
 114     int mid = (uint)(hi + lo) / 2;
 115     ciMethod* mid_m = _intrinsics->at(mid)->method();
 116     if (m < mid_m) {
 117       hi = mid-1;
 118     } else if (m > mid_m) {
 119       lo = mid+1;
 120     } else {
 121       // look at minor sort key
 122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 123       if (is_virtual < mid_virt) {
 124         hi = mid-1;
 125       } else if (is_virtual > mid_virt) {
 126         lo = mid+1;
 127       } else {
 128         return mid;  // exact match
 129       }
 130     }
 131   }
 132   return lo;  // inexact match
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new GrowableArray<CallGenerator*>(60);
 138   }
 139   // This code is stolen from ciObjectFactory::insert.
 140   // Really, GrowableArray should have methods for
 141   // insert_at, remove_at, and binary_search.
 142   int len = _intrinsics->length();
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 144   if (index == len) {
 145     _intrinsics->append(cg);
 146   } else {
 147 #ifdef ASSERT
 148     CallGenerator* oldcg = _intrinsics->at(index);
 149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 150 #endif
 151     _intrinsics->append(_intrinsics->at(len-1));
 152     int pos;
 153     for (pos = len-2; pos >= index; pos--) {
 154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 155     }
 156     _intrinsics->at_put(index, cg);
 157   }
 158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 159 }
 160 
 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 162   assert(m->is_loaded(), "don't try this on unloaded methods");
 163   if (_intrinsics != NULL) {
 164     int index = intrinsic_insertion_index(m, is_virtual);
 165     if (index < _intrinsics->length()
 166         && _intrinsics->at(index)->method() == m
 167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 168       return _intrinsics->at(index);
 169     }
 170   }
 171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 172   if (m->intrinsic_id() != vmIntrinsics::_none &&
 173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 175     if (cg != NULL) {
 176       // Save it for next time:
 177       register_intrinsic(cg);
 178       return cg;
 179     } else {
 180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 181     }
 182   }
 183   return NULL;
 184 }
 185 
 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 187 // in library_call.cpp.
 188 
 189 
 190 #ifndef PRODUCT
 191 // statistics gathering...
 192 
 193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 195 
 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 198   int oflags = _intrinsic_hist_flags[id];
 199   assert(flags != 0, "what happened?");
 200   if (is_virtual) {
 201     flags |= _intrinsic_virtual;
 202   }
 203   bool changed = (flags != oflags);
 204   if ((flags & _intrinsic_worked) != 0) {
 205     juint count = (_intrinsic_hist_count[id] += 1);
 206     if (count == 1) {
 207       changed = true;           // first time
 208     }
 209     // increment the overall count also:
 210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 211   }
 212   if (changed) {
 213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 214       // Something changed about the intrinsic's virtuality.
 215       if ((flags & _intrinsic_virtual) != 0) {
 216         // This is the first use of this intrinsic as a virtual call.
 217         if (oflags != 0) {
 218           // We already saw it as a non-virtual, so note both cases.
 219           flags |= _intrinsic_both;
 220         }
 221       } else if ((oflags & _intrinsic_both) == 0) {
 222         // This is the first use of this intrinsic as a non-virtual
 223         flags |= _intrinsic_both;
 224       }
 225     }
 226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 227   }
 228   // update the overall flags also:
 229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 230   return changed;
 231 }
 232 
 233 static char* format_flags(int flags, char* buf) {
 234   buf[0] = 0;
 235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 240   if (buf[0] == 0)  strcat(buf, ",");
 241   assert(buf[0] == ',', "must be");
 242   return &buf[1];
 243 }
 244 
 245 void Compile::print_intrinsic_statistics() {
 246   char flagsbuf[100];
 247   ttyLocker ttyl;
 248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 249   tty->print_cr("Compiler intrinsic usage:");
 250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 252   #define PRINT_STAT_LINE(name, c, f) \
 253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 256     int   flags = _intrinsic_hist_flags[id];
 257     juint count = _intrinsic_hist_count[id];
 258     if ((flags | count) != 0) {
 259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 260     }
 261   }
 262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 263   if (xtty != NULL)  xtty->tail("statistics");
 264 }
 265 
 266 void Compile::print_statistics() {
 267   { ttyLocker ttyl;
 268     if (xtty != NULL)  xtty->head("statistics type='opto'");
 269     Parse::print_statistics();
 270     PhaseCCP::print_statistics();
 271     PhaseRegAlloc::print_statistics();
 272     Scheduling::print_statistics();
 273     PhasePeephole::print_statistics();
 274     PhaseIdealLoop::print_statistics();
 275     if (xtty != NULL)  xtty->tail("statistics");
 276   }
 277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 278     // put this under its own <statistics> element.
 279     print_intrinsic_statistics();
 280   }
 281 }
 282 #endif //PRODUCT
 283 
 284 // Support for bundling info
 285 Bundle* Compile::node_bundling(const Node *n) {
 286   assert(valid_bundle_info(n), "oob");
 287   return &_node_bundling_base[n->_idx];
 288 }
 289 
 290 bool Compile::valid_bundle_info(const Node *n) {
 291   return (_node_bundling_limit > n->_idx);
 292 }
 293 
 294 
 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
 296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 297     Node* use = n->last_out(i);
 298     bool is_in_table = initial_gvn()->hash_delete(use);
 299     uint uses_found = 0;
 300     for (uint j = 0; j < use->len(); j++) {
 301       if (use->in(j) == n) {
 302         if (j < use->req())
 303           use->set_req(j, nn);
 304         else
 305           use->set_prec(j, nn);
 306         uses_found++;
 307       }
 308     }
 309     if (is_in_table) {
 310       // reinsert into table
 311       initial_gvn()->hash_find_insert(use);
 312     }
 313     record_for_igvn(use);
 314     i -= uses_found;    // we deleted 1 or more copies of this edge
 315   }
 316 }
 317 
 318 
 319 
 320 
 321 // Identify all nodes that are reachable from below, useful.
 322 // Use breadth-first pass that records state in a Unique_Node_List,
 323 // recursive traversal is slower.
 324 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 325   int estimated_worklist_size = unique();
 326   useful.map( estimated_worklist_size, NULL );  // preallocate space
 327 
 328   // Initialize worklist
 329   if (root() != NULL)     { useful.push(root()); }
 330   // If 'top' is cached, declare it useful to preserve cached node
 331   if( cached_top_node() ) { useful.push(cached_top_node()); }
 332 
 333   // Push all useful nodes onto the list, breadthfirst
 334   for( uint next = 0; next < useful.size(); ++next ) {
 335     assert( next < unique(), "Unique useful nodes < total nodes");
 336     Node *n  = useful.at(next);
 337     uint max = n->len();
 338     for( uint i = 0; i < max; ++i ) {
 339       Node *m = n->in(i);
 340       if( m == NULL ) continue;
 341       useful.push(m);
 342     }
 343   }
 344 }
 345 
 346 // Disconnect all useless nodes by disconnecting those at the boundary.
 347 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 348   uint next = 0;
 349   while( next < useful.size() ) {
 350     Node *n = useful.at(next++);
 351     // Use raw traversal of out edges since this code removes out edges
 352     int max = n->outcnt();
 353     for (int j = 0; j < max; ++j ) {
 354       Node* child = n->raw_out(j);
 355       if( ! useful.member(child) ) {
 356         assert( !child->is_top() || child != top(),
 357                 "If top is cached in Compile object it is in useful list");
 358         // Only need to remove this out-edge to the useless node
 359         n->raw_del_out(j);
 360         --j;
 361         --max;
 362       }
 363     }
 364     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 365       record_for_igvn( n->unique_out() );
 366     }
 367   }
 368   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 369 }
 370 
 371 //------------------------------frame_size_in_words-----------------------------
 372 // frame_slots in units of words
 373 int Compile::frame_size_in_words() const {
 374   // shift is 0 in LP32 and 1 in LP64
 375   const int shift = (LogBytesPerWord - LogBytesPerInt);
 376   int words = _frame_slots >> shift;
 377   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 378   return words;
 379 }
 380 
 381 // ============================================================================
 382 //------------------------------CompileWrapper---------------------------------
 383 class CompileWrapper : public StackObj {
 384   Compile *const _compile;
 385  public:
 386   CompileWrapper(Compile* compile);
 387 
 388   ~CompileWrapper();
 389 };
 390 
 391 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 392   // the Compile* pointer is stored in the current ciEnv:
 393   ciEnv* env = compile->env();
 394   assert(env == ciEnv::current(), "must already be a ciEnv active");
 395   assert(env->compiler_data() == NULL, "compile already active?");
 396   env->set_compiler_data(compile);
 397   assert(compile == Compile::current(), "sanity");
 398 
 399   compile->set_type_dict(NULL);
 400   compile->set_type_hwm(NULL);
 401   compile->set_type_last_size(0);
 402   compile->set_last_tf(NULL, NULL);
 403   compile->set_indexSet_arena(NULL);
 404   compile->set_indexSet_free_block_list(NULL);
 405   compile->init_type_arena();
 406   Type::Initialize(compile);
 407   _compile->set_scratch_buffer_blob(NULL);
 408   _compile->begin_method();
 409 }
 410 CompileWrapper::~CompileWrapper() {
 411   _compile->end_method();
 412   if (_compile->scratch_buffer_blob() != NULL)
 413     BufferBlob::free(_compile->scratch_buffer_blob());
 414   _compile->env()->set_compiler_data(NULL);
 415 }
 416 
 417 
 418 //----------------------------print_compile_messages---------------------------
 419 void Compile::print_compile_messages() {
 420 #ifndef PRODUCT
 421   // Check if recompiling
 422   if (_subsume_loads == false && PrintOpto) {
 423     // Recompiling without allowing machine instructions to subsume loads
 424     tty->print_cr("*********************************************************");
 425     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 426     tty->print_cr("*********************************************************");
 427   }
 428   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 429     // Recompiling without escape analysis
 430     tty->print_cr("*********************************************************");
 431     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 432     tty->print_cr("*********************************************************");
 433   }
 434   if (env()->break_at_compile()) {
 435     // Open the debugger when compiling this method.
 436     tty->print("### Breaking when compiling: ");
 437     method()->print_short_name();
 438     tty->cr();
 439     BREAKPOINT;
 440   }
 441 
 442   if( PrintOpto ) {
 443     if (is_osr_compilation()) {
 444       tty->print("[OSR]%3d", _compile_id);
 445     } else {
 446       tty->print("%3d", _compile_id);
 447     }
 448   }
 449 #endif
 450 }
 451 
 452 
 453 //-----------------------init_scratch_buffer_blob------------------------------
 454 // Construct a temporary BufferBlob and cache it for this compile.
 455 void Compile::init_scratch_buffer_blob(int const_size) {
 456   // If there is already a scratch buffer blob allocated and the
 457   // constant section is big enough, use it.  Otherwise free the
 458   // current and allocate a new one.
 459   BufferBlob* blob = scratch_buffer_blob();
 460   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 461     // Use the current blob.
 462   } else {
 463     if (blob != NULL) {
 464       BufferBlob::free(blob);
 465     }
 466 
 467     ResourceMark rm;
 468     _scratch_const_size = const_size;
 469     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 470     blob = BufferBlob::create("Compile::scratch_buffer", size);
 471     // Record the buffer blob for next time.
 472     set_scratch_buffer_blob(blob);
 473     // Have we run out of code space?
 474     if (scratch_buffer_blob() == NULL) {
 475       // Let CompilerBroker disable further compilations.
 476       record_failure("Not enough space for scratch buffer in CodeCache");
 477       return;
 478     }
 479   }
 480 
 481   // Initialize the relocation buffers
 482   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 483   set_scratch_locs_memory(locs_buf);
 484 }
 485 
 486 
 487 //-----------------------scratch_emit_size-------------------------------------
 488 // Helper function that computes size by emitting code
 489 uint Compile::scratch_emit_size(const Node* n) {
 490   // Start scratch_emit_size section.
 491   set_in_scratch_emit_size(true);
 492 
 493   // Emit into a trash buffer and count bytes emitted.
 494   // This is a pretty expensive way to compute a size,
 495   // but it works well enough if seldom used.
 496   // All common fixed-size instructions are given a size
 497   // method by the AD file.
 498   // Note that the scratch buffer blob and locs memory are
 499   // allocated at the beginning of the compile task, and
 500   // may be shared by several calls to scratch_emit_size.
 501   // The allocation of the scratch buffer blob is particularly
 502   // expensive, since it has to grab the code cache lock.
 503   BufferBlob* blob = this->scratch_buffer_blob();
 504   assert(blob != NULL, "Initialize BufferBlob at start");
 505   assert(blob->size() > MAX_inst_size, "sanity");
 506   relocInfo* locs_buf = scratch_locs_memory();
 507   address blob_begin = blob->content_begin();
 508   address blob_end   = (address)locs_buf;
 509   assert(blob->content_contains(blob_end), "sanity");
 510   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 511   buf.initialize_consts_size(_scratch_const_size);
 512   buf.initialize_stubs_size(MAX_stubs_size);
 513   assert(locs_buf != NULL, "sanity");
 514   int lsize = MAX_locs_size / 3;
 515   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 516   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 517   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 518 
 519   // Do the emission.
 520 
 521   // Fake label for branch instructions.
 522   Label fakeL;
 523   if (n->is_Branch() && n->as_Mach()->ideal_Opcode() != Op_Jump) {
 524     MacroAssembler masm(&buf);
 525     masm.bind(fakeL);
 526     n->as_Mach()->label_set(fakeL, 0);
 527   }
 528   n->emit(buf, this->regalloc());
 529 
 530   // End scratch_emit_size section.
 531   set_in_scratch_emit_size(false);
 532 
 533   return buf.insts_size();
 534 }
 535 
 536 
 537 // ============================================================================
 538 //------------------------------Compile standard-------------------------------
 539 debug_only( int Compile::_debug_idx = 100000; )
 540 
 541 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 542 // the continuation bci for on stack replacement.
 543 
 544 
 545 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 546                 : Phase(Compiler),
 547                   _env(ci_env),
 548                   _log(ci_env->log()),
 549                   _compile_id(ci_env->compile_id()),
 550                   _save_argument_registers(false),
 551                   _stub_name(NULL),
 552                   _stub_function(NULL),
 553                   _stub_entry_point(NULL),
 554                   _method(target),
 555                   _entry_bci(osr_bci),
 556                   _initial_gvn(NULL),
 557                   _for_igvn(NULL),
 558                   _warm_calls(NULL),
 559                   _subsume_loads(subsume_loads),
 560                   _do_escape_analysis(do_escape_analysis),
 561                   _failure_reason(NULL),
 562                   _code_buffer("Compile::Fill_buffer"),
 563                   _orig_pc_slot(0),
 564                   _orig_pc_slot_offset_in_bytes(0),
 565                   _has_method_handle_invokes(false),
 566                   _mach_constant_base_node(NULL),
 567                   _node_bundling_limit(0),
 568                   _node_bundling_base(NULL),
 569                   _java_calls(0),
 570                   _inner_loops(0),
 571                   _scratch_const_size(-1),
 572                   _in_scratch_emit_size(false),
 573 #ifndef PRODUCT
 574                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 575                   _printer(IdealGraphPrinter::printer()),
 576 #endif
 577                   _congraph(NULL) {
 578   C = this;
 579 
 580   CompileWrapper cw(this);
 581 #ifndef PRODUCT
 582   if (TimeCompiler2) {
 583     tty->print(" ");
 584     target->holder()->name()->print();
 585     tty->print(".");
 586     target->print_short_name();
 587     tty->print("  ");
 588   }
 589   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 590   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 591   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 592   if (!print_opto_assembly) {
 593     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 594     if (print_assembly && !Disassembler::can_decode()) {
 595       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 596       print_opto_assembly = true;
 597     }
 598   }
 599   set_print_assembly(print_opto_assembly);
 600   set_parsed_irreducible_loop(false);
 601 #endif
 602 
 603   if (ProfileTraps) {
 604     // Make sure the method being compiled gets its own MDO,
 605     // so we can at least track the decompile_count().
 606     method()->ensure_method_data();
 607   }
 608 
 609   Init(::AliasLevel);
 610 
 611 
 612   print_compile_messages();
 613 
 614   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 615     _ilt = InlineTree::build_inline_tree_root();
 616   else
 617     _ilt = NULL;
 618 
 619   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 620   assert(num_alias_types() >= AliasIdxRaw, "");
 621 
 622 #define MINIMUM_NODE_HASH  1023
 623   // Node list that Iterative GVN will start with
 624   Unique_Node_List for_igvn(comp_arena());
 625   set_for_igvn(&for_igvn);
 626 
 627   // GVN that will be run immediately on new nodes
 628   uint estimated_size = method()->code_size()*4+64;
 629   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 630   PhaseGVN gvn(node_arena(), estimated_size);
 631   set_initial_gvn(&gvn);
 632 
 633   { // Scope for timing the parser
 634     TracePhase t3("parse", &_t_parser, true);
 635 
 636     // Put top into the hash table ASAP.
 637     initial_gvn()->transform_no_reclaim(top());
 638 
 639     // Set up tf(), start(), and find a CallGenerator.
 640     CallGenerator* cg = NULL;
 641     if (is_osr_compilation()) {
 642       const TypeTuple *domain = StartOSRNode::osr_domain();
 643       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 644       init_tf(TypeFunc::make(domain, range));
 645       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
 646       initial_gvn()->set_type_bottom(s);
 647       init_start(s);
 648       cg = CallGenerator::for_osr(method(), entry_bci());
 649     } else {
 650       // Normal case.
 651       init_tf(TypeFunc::make(method()));
 652       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
 653       initial_gvn()->set_type_bottom(s);
 654       init_start(s);
 655       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 656         // With java.lang.ref.reference.get() we must go through the
 657         // intrinsic when G1 is enabled - even when get() is the root
 658         // method of the compile - so that, if necessary, the value in
 659         // the referent field of the reference object gets recorded by
 660         // the pre-barrier code.
 661         // Specifically, if G1 is enabled, the value in the referent
 662         // field is recorded by the G1 SATB pre barrier. This will
 663         // result in the referent being marked live and the reference
 664         // object removed from the list of discovered references during
 665         // reference processing.
 666         cg = find_intrinsic(method(), false);
 667       }
 668       if (cg == NULL) {
 669         float past_uses = method()->interpreter_invocation_count();
 670         float expected_uses = past_uses;
 671         cg = CallGenerator::for_inline(method(), expected_uses);
 672       }
 673     }
 674     if (failing())  return;
 675     if (cg == NULL) {
 676       record_method_not_compilable_all_tiers("cannot parse method");
 677       return;
 678     }
 679     JVMState* jvms = build_start_state(start(), tf());
 680     if ((jvms = cg->generate(jvms)) == NULL) {
 681       record_method_not_compilable("method parse failed");
 682       return;
 683     }
 684     GraphKit kit(jvms);
 685 
 686     if (!kit.stopped()) {
 687       // Accept return values, and transfer control we know not where.
 688       // This is done by a special, unique ReturnNode bound to root.
 689       return_values(kit.jvms());
 690     }
 691 
 692     if (kit.has_exceptions()) {
 693       // Any exceptions that escape from this call must be rethrown
 694       // to whatever caller is dynamically above us on the stack.
 695       // This is done by a special, unique RethrowNode bound to root.
 696       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 697     }
 698 
 699     if (!failing() && has_stringbuilder()) {
 700       {
 701         // remove useless nodes to make the usage analysis simpler
 702         ResourceMark rm;
 703         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 704       }
 705 
 706       {
 707         ResourceMark rm;
 708         print_method("Before StringOpts", 3);
 709         PhaseStringOpts pso(initial_gvn(), &for_igvn);
 710         print_method("After StringOpts", 3);
 711       }
 712 
 713       // now inline anything that we skipped the first time around
 714       while (_late_inlines.length() > 0) {
 715         CallGenerator* cg = _late_inlines.pop();
 716         cg->do_late_inline();
 717       }
 718     }
 719     assert(_late_inlines.length() == 0, "should have been processed");
 720 
 721     print_method("Before RemoveUseless", 3);
 722 
 723     // Remove clutter produced by parsing.
 724     if (!failing()) {
 725       ResourceMark rm;
 726       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 727     }
 728   }
 729 
 730   // Note:  Large methods are capped off in do_one_bytecode().
 731   if (failing())  return;
 732 
 733   // After parsing, node notes are no longer automagic.
 734   // They must be propagated by register_new_node_with_optimizer(),
 735   // clone(), or the like.
 736   set_default_node_notes(NULL);
 737 
 738   for (;;) {
 739     int successes = Inline_Warm();
 740     if (failing())  return;
 741     if (successes == 0)  break;
 742   }
 743 
 744   // Drain the list.
 745   Finish_Warm();
 746 #ifndef PRODUCT
 747   if (_printer) {
 748     _printer->print_inlining(this);
 749   }
 750 #endif
 751 
 752   if (failing())  return;
 753   NOT_PRODUCT( verify_graph_edges(); )
 754 
 755   // Now optimize
 756   Optimize();
 757   if (failing())  return;
 758   NOT_PRODUCT( verify_graph_edges(); )
 759 
 760 #ifndef PRODUCT
 761   if (PrintIdeal) {
 762     ttyLocker ttyl;  // keep the following output all in one block
 763     // This output goes directly to the tty, not the compiler log.
 764     // To enable tools to match it up with the compilation activity,
 765     // be sure to tag this tty output with the compile ID.
 766     if (xtty != NULL) {
 767       xtty->head("ideal compile_id='%d'%s", compile_id(),
 768                  is_osr_compilation()    ? " compile_kind='osr'" :
 769                  "");
 770     }
 771     root()->dump(9999);
 772     if (xtty != NULL) {
 773       xtty->tail("ideal");
 774     }
 775   }
 776 #endif
 777 
 778   // Now that we know the size of all the monitors we can add a fixed slot
 779   // for the original deopt pc.
 780 
 781   _orig_pc_slot =  fixed_slots();
 782   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 783   set_fixed_slots(next_slot);
 784 
 785   // Now generate code
 786   Code_Gen();
 787   if (failing())  return;
 788 
 789   // Check if we want to skip execution of all compiled code.
 790   {
 791 #ifndef PRODUCT
 792     if (OptoNoExecute) {
 793       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 794       return;
 795     }
 796     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 797 #endif
 798 
 799     if (is_osr_compilation()) {
 800       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 801       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 802     } else {
 803       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 804       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 805     }
 806 
 807     env()->register_method(_method, _entry_bci,
 808                            &_code_offsets,
 809                            _orig_pc_slot_offset_in_bytes,
 810                            code_buffer(),
 811                            frame_size_in_words(), _oop_map_set,
 812                            &_handler_table, &_inc_table,
 813                            compiler,
 814                            env()->comp_level(),
 815                            true, /*has_debug_info*/
 816                            has_unsafe_access()
 817                            );
 818   }
 819 }
 820 
 821 //------------------------------Compile----------------------------------------
 822 // Compile a runtime stub
 823 Compile::Compile( ciEnv* ci_env,
 824                   TypeFunc_generator generator,
 825                   address stub_function,
 826                   const char *stub_name,
 827                   int is_fancy_jump,
 828                   bool pass_tls,
 829                   bool save_arg_registers,
 830                   bool return_pc )
 831   : Phase(Compiler),
 832     _env(ci_env),
 833     _log(ci_env->log()),
 834     _compile_id(-1),
 835     _save_argument_registers(save_arg_registers),
 836     _method(NULL),
 837     _stub_name(stub_name),
 838     _stub_function(stub_function),
 839     _stub_entry_point(NULL),
 840     _entry_bci(InvocationEntryBci),
 841     _initial_gvn(NULL),
 842     _for_igvn(NULL),
 843     _warm_calls(NULL),
 844     _orig_pc_slot(0),
 845     _orig_pc_slot_offset_in_bytes(0),
 846     _subsume_loads(true),
 847     _do_escape_analysis(false),
 848     _failure_reason(NULL),
 849     _code_buffer("Compile::Fill_buffer"),
 850     _has_method_handle_invokes(false),
 851     _mach_constant_base_node(NULL),
 852     _node_bundling_limit(0),
 853     _node_bundling_base(NULL),
 854     _java_calls(0),
 855     _inner_loops(0),
 856 #ifndef PRODUCT
 857     _trace_opto_output(TraceOptoOutput),
 858     _printer(NULL),
 859 #endif
 860     _congraph(NULL) {
 861   C = this;
 862 
 863 #ifndef PRODUCT
 864   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 865   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 866   set_print_assembly(PrintFrameConverterAssembly);
 867   set_parsed_irreducible_loop(false);
 868 #endif
 869   CompileWrapper cw(this);
 870   Init(/*AliasLevel=*/ 0);
 871   init_tf((*generator)());
 872 
 873   {
 874     // The following is a dummy for the sake of GraphKit::gen_stub
 875     Unique_Node_List for_igvn(comp_arena());
 876     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 877     PhaseGVN gvn(Thread::current()->resource_area(),255);
 878     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 879     gvn.transform_no_reclaim(top());
 880 
 881     GraphKit kit;
 882     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 883   }
 884 
 885   NOT_PRODUCT( verify_graph_edges(); )
 886   Code_Gen();
 887   if (failing())  return;
 888 
 889 
 890   // Entry point will be accessed using compile->stub_entry_point();
 891   if (code_buffer() == NULL) {
 892     Matcher::soft_match_failure();
 893   } else {
 894     if (PrintAssembly && (WizardMode || Verbose))
 895       tty->print_cr("### Stub::%s", stub_name);
 896 
 897     if (!failing()) {
 898       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 899 
 900       // Make the NMethod
 901       // For now we mark the frame as never safe for profile stackwalking
 902       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 903                                                       code_buffer(),
 904                                                       CodeOffsets::frame_never_safe,
 905                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 906                                                       frame_size_in_words(),
 907                                                       _oop_map_set,
 908                                                       save_arg_registers);
 909       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 910 
 911       _stub_entry_point = rs->entry_point();
 912     }
 913   }
 914 }
 915 
 916 #ifndef PRODUCT
 917 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
 918   if(PrintOpto && Verbose) {
 919     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
 920   }
 921 }
 922 #endif
 923 
 924 void Compile::print_codes() {
 925 }
 926 
 927 //------------------------------Init-------------------------------------------
 928 // Prepare for a single compilation
 929 void Compile::Init(int aliaslevel) {
 930   _unique  = 0;
 931   _regalloc = NULL;
 932 
 933   _tf      = NULL;  // filled in later
 934   _top     = NULL;  // cached later
 935   _matcher = NULL;  // filled in later
 936   _cfg     = NULL;  // filled in later
 937 
 938   set_24_bit_selection_and_mode(Use24BitFP, false);
 939 
 940   _node_note_array = NULL;
 941   _default_node_notes = NULL;
 942 
 943   _immutable_memory = NULL; // filled in at first inquiry
 944 
 945   // Globally visible Nodes
 946   // First set TOP to NULL to give safe behavior during creation of RootNode
 947   set_cached_top_node(NULL);
 948   set_root(new (this, 3) RootNode());
 949   // Now that you have a Root to point to, create the real TOP
 950   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
 951   set_recent_alloc(NULL, NULL);
 952 
 953   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 954   env()->set_oop_recorder(new OopRecorder(comp_arena()));
 955   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 956   env()->set_dependencies(new Dependencies(env()));
 957 
 958   _fixed_slots = 0;
 959   set_has_split_ifs(false);
 960   set_has_loops(has_method() && method()->has_loops()); // first approximation
 961   set_has_stringbuilder(false);
 962   _trap_can_recompile = false;  // no traps emitted yet
 963   _major_progress = true; // start out assuming good things will happen
 964   set_has_unsafe_access(false);
 965   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 966   set_decompile_count(0);
 967 
 968   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 969   set_num_loop_opts(LoopOptsCount);
 970   set_do_inlining(Inline);
 971   set_max_inline_size(MaxInlineSize);
 972   set_freq_inline_size(FreqInlineSize);
 973   set_do_scheduling(OptoScheduling);
 974   set_do_count_invocations(false);
 975   set_do_method_data_update(false);
 976 
 977   if (debug_info()->recording_non_safepoints()) {
 978     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 979                         (comp_arena(), 8, 0, NULL));
 980     set_default_node_notes(Node_Notes::make(this));
 981   }
 982 
 983   // // -- Initialize types before each compile --
 984   // // Update cached type information
 985   // if( _method && _method->constants() )
 986   //   Type::update_loaded_types(_method, _method->constants());
 987 
 988   // Init alias_type map.
 989   if (!_do_escape_analysis && aliaslevel == 3)
 990     aliaslevel = 2;  // No unique types without escape analysis
 991   _AliasLevel = aliaslevel;
 992   const int grow_ats = 16;
 993   _max_alias_types = grow_ats;
 994   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 995   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 996   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 997   {
 998     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 999   }
1000   // Initialize the first few types.
1001   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1002   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1003   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1004   _num_alias_types = AliasIdxRaw+1;
1005   // Zero out the alias type cache.
1006   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1007   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1008   probe_alias_cache(NULL)->_index = AliasIdxTop;
1009 
1010   _intrinsics = NULL;
1011   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1012   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1013   register_library_intrinsics();
1014 }
1015 
1016 //---------------------------init_start----------------------------------------
1017 // Install the StartNode on this compile object.
1018 void Compile::init_start(StartNode* s) {
1019   if (failing())
1020     return; // already failing
1021   assert(s == start(), "");
1022 }
1023 
1024 StartNode* Compile::start() const {
1025   assert(!failing(), "");
1026   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1027     Node* start = root()->fast_out(i);
1028     if( start->is_Start() )
1029       return start->as_Start();
1030   }
1031   ShouldNotReachHere();
1032   return NULL;
1033 }
1034 
1035 //-------------------------------immutable_memory-------------------------------------
1036 // Access immutable memory
1037 Node* Compile::immutable_memory() {
1038   if (_immutable_memory != NULL) {
1039     return _immutable_memory;
1040   }
1041   StartNode* s = start();
1042   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1043     Node *p = s->fast_out(i);
1044     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1045       _immutable_memory = p;
1046       return _immutable_memory;
1047     }
1048   }
1049   ShouldNotReachHere();
1050   return NULL;
1051 }
1052 
1053 //----------------------set_cached_top_node------------------------------------
1054 // Install the cached top node, and make sure Node::is_top works correctly.
1055 void Compile::set_cached_top_node(Node* tn) {
1056   if (tn != NULL)  verify_top(tn);
1057   Node* old_top = _top;
1058   _top = tn;
1059   // Calling Node::setup_is_top allows the nodes the chance to adjust
1060   // their _out arrays.
1061   if (_top != NULL)     _top->setup_is_top();
1062   if (old_top != NULL)  old_top->setup_is_top();
1063   assert(_top == NULL || top()->is_top(), "");
1064 }
1065 
1066 #ifndef PRODUCT
1067 void Compile::verify_top(Node* tn) const {
1068   if (tn != NULL) {
1069     assert(tn->is_Con(), "top node must be a constant");
1070     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1071     assert(tn->in(0) != NULL, "must have live top node");
1072   }
1073 }
1074 #endif
1075 
1076 
1077 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1078 
1079 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1080   guarantee(arr != NULL, "");
1081   int num_blocks = arr->length();
1082   if (grow_by < num_blocks)  grow_by = num_blocks;
1083   int num_notes = grow_by * _node_notes_block_size;
1084   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1085   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1086   while (num_notes > 0) {
1087     arr->append(notes);
1088     notes     += _node_notes_block_size;
1089     num_notes -= _node_notes_block_size;
1090   }
1091   assert(num_notes == 0, "exact multiple, please");
1092 }
1093 
1094 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1095   if (source == NULL || dest == NULL)  return false;
1096 
1097   if (dest->is_Con())
1098     return false;               // Do not push debug info onto constants.
1099 
1100 #ifdef ASSERT
1101   // Leave a bread crumb trail pointing to the original node:
1102   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1103     dest->set_debug_orig(source);
1104   }
1105 #endif
1106 
1107   if (node_note_array() == NULL)
1108     return false;               // Not collecting any notes now.
1109 
1110   // This is a copy onto a pre-existing node, which may already have notes.
1111   // If both nodes have notes, do not overwrite any pre-existing notes.
1112   Node_Notes* source_notes = node_notes_at(source->_idx);
1113   if (source_notes == NULL || source_notes->is_clear())  return false;
1114   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1115   if (dest_notes == NULL || dest_notes->is_clear()) {
1116     return set_node_notes_at(dest->_idx, source_notes);
1117   }
1118 
1119   Node_Notes merged_notes = (*source_notes);
1120   // The order of operations here ensures that dest notes will win...
1121   merged_notes.update_from(dest_notes);
1122   return set_node_notes_at(dest->_idx, &merged_notes);
1123 }
1124 
1125 
1126 //--------------------------allow_range_check_smearing-------------------------
1127 // Gating condition for coalescing similar range checks.
1128 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1129 // single covering check that is at least as strong as any of them.
1130 // If the optimization succeeds, the simplified (strengthened) range check
1131 // will always succeed.  If it fails, we will deopt, and then give up
1132 // on the optimization.
1133 bool Compile::allow_range_check_smearing() const {
1134   // If this method has already thrown a range-check,
1135   // assume it was because we already tried range smearing
1136   // and it failed.
1137   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1138   return !already_trapped;
1139 }
1140 
1141 
1142 //------------------------------flatten_alias_type-----------------------------
1143 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1144   int offset = tj->offset();
1145   TypePtr::PTR ptr = tj->ptr();
1146 
1147   // Known instance (scalarizable allocation) alias only with itself.
1148   bool is_known_inst = tj->isa_oopptr() != NULL &&
1149                        tj->is_oopptr()->is_known_instance();
1150 
1151   // Process weird unsafe references.
1152   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1153     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1154     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1155     tj = TypeOopPtr::BOTTOM;
1156     ptr = tj->ptr();
1157     offset = tj->offset();
1158   }
1159 
1160   // Array pointers need some flattening
1161   const TypeAryPtr *ta = tj->isa_aryptr();
1162   if( ta && is_known_inst ) {
1163     if ( offset != Type::OffsetBot &&
1164          offset > arrayOopDesc::length_offset_in_bytes() ) {
1165       offset = Type::OffsetBot; // Flatten constant access into array body only
1166       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1167     }
1168   } else if( ta && _AliasLevel >= 2 ) {
1169     // For arrays indexed by constant indices, we flatten the alias
1170     // space to include all of the array body.  Only the header, klass
1171     // and array length can be accessed un-aliased.
1172     if( offset != Type::OffsetBot ) {
1173       if( ta->const_oop() ) { // methodDataOop or methodOop
1174         offset = Type::OffsetBot;   // Flatten constant access into array body
1175         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1176       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1177         // range is OK as-is.
1178         tj = ta = TypeAryPtr::RANGE;
1179       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1180         tj = TypeInstPtr::KLASS; // all klass loads look alike
1181         ta = TypeAryPtr::RANGE; // generic ignored junk
1182         ptr = TypePtr::BotPTR;
1183       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1184         tj = TypeInstPtr::MARK;
1185         ta = TypeAryPtr::RANGE; // generic ignored junk
1186         ptr = TypePtr::BotPTR;
1187       } else {                  // Random constant offset into array body
1188         offset = Type::OffsetBot;   // Flatten constant access into array body
1189         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1190       }
1191     }
1192     // Arrays of fixed size alias with arrays of unknown size.
1193     if (ta->size() != TypeInt::POS) {
1194       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1195       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1196     }
1197     // Arrays of known objects become arrays of unknown objects.
1198     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1199       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1200       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1201     }
1202     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1203       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1204       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1205     }
1206     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1207     // cannot be distinguished by bytecode alone.
1208     if (ta->elem() == TypeInt::BOOL) {
1209       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1210       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1211       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1212     }
1213     // During the 2nd round of IterGVN, NotNull castings are removed.
1214     // Make sure the Bottom and NotNull variants alias the same.
1215     // Also, make sure exact and non-exact variants alias the same.
1216     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1217       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1218     }
1219   }
1220 
1221   // Oop pointers need some flattening
1222   const TypeInstPtr *to = tj->isa_instptr();
1223   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1224     ciInstanceKlass *k = to->klass()->as_instance_klass();
1225     if( ptr == TypePtr::Constant ) {
1226       if (to->klass() != ciEnv::current()->Class_klass() ||
1227           offset < k->size_helper() * wordSize) {
1228         // No constant oop pointers (such as Strings); they alias with
1229         // unknown strings.
1230         assert(!is_known_inst, "not scalarizable allocation");
1231         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1232       }
1233     } else if( is_known_inst ) {
1234       tj = to; // Keep NotNull and klass_is_exact for instance type
1235     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1236       // During the 2nd round of IterGVN, NotNull castings are removed.
1237       // Make sure the Bottom and NotNull variants alias the same.
1238       // Also, make sure exact and non-exact variants alias the same.
1239       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1240     }
1241     // Canonicalize the holder of this field
1242     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1243       // First handle header references such as a LoadKlassNode, even if the
1244       // object's klass is unloaded at compile time (4965979).
1245       if (!is_known_inst) { // Do it only for non-instance types
1246         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1247       }
1248     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1249       // Static fields are in the space above the normal instance
1250       // fields in the java.lang.Class instance.
1251       if (to->klass() != ciEnv::current()->Class_klass()) {
1252         to = NULL;
1253         tj = TypeOopPtr::BOTTOM;
1254         offset = tj->offset();
1255       }
1256     } else {
1257       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1258       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1259         if( is_known_inst ) {
1260           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1261         } else {
1262           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1263         }
1264       }
1265     }
1266   }
1267 
1268   // Klass pointers to object array klasses need some flattening
1269   const TypeKlassPtr *tk = tj->isa_klassptr();
1270   if( tk ) {
1271     // If we are referencing a field within a Klass, we need
1272     // to assume the worst case of an Object.  Both exact and
1273     // inexact types must flatten to the same alias class.
1274     // Since the flattened result for a klass is defined to be
1275     // precisely java.lang.Object, use a constant ptr.
1276     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1277 
1278       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1279                                    TypeKlassPtr::OBJECT->klass(),
1280                                    offset);
1281     }
1282 
1283     ciKlass* klass = tk->klass();
1284     if( klass->is_obj_array_klass() ) {
1285       ciKlass* k = TypeAryPtr::OOPS->klass();
1286       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1287         k = TypeInstPtr::BOTTOM->klass();
1288       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1289     }
1290 
1291     // Check for precise loads from the primary supertype array and force them
1292     // to the supertype cache alias index.  Check for generic array loads from
1293     // the primary supertype array and also force them to the supertype cache
1294     // alias index.  Since the same load can reach both, we need to merge
1295     // these 2 disparate memories into the same alias class.  Since the
1296     // primary supertype array is read-only, there's no chance of confusion
1297     // where we bypass an array load and an array store.
1298     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1299     if( offset == Type::OffsetBot ||
1300         off2 < Klass::primary_super_limit()*wordSize ) {
1301       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1302       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1303     }
1304   }
1305 
1306   // Flatten all Raw pointers together.
1307   if (tj->base() == Type::RawPtr)
1308     tj = TypeRawPtr::BOTTOM;
1309 
1310   if (tj->base() == Type::AnyPtr)
1311     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1312 
1313   // Flatten all to bottom for now
1314   switch( _AliasLevel ) {
1315   case 0:
1316     tj = TypePtr::BOTTOM;
1317     break;
1318   case 1:                       // Flatten to: oop, static, field or array
1319     switch (tj->base()) {
1320     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1321     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1322     case Type::AryPtr:   // do not distinguish arrays at all
1323     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1324     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1325     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1326     default: ShouldNotReachHere();
1327     }
1328     break;
1329   case 2:                       // No collapsing at level 2; keep all splits
1330   case 3:                       // No collapsing at level 3; keep all splits
1331     break;
1332   default:
1333     Unimplemented();
1334   }
1335 
1336   offset = tj->offset();
1337   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1338 
1339   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1340           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1341           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1342           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1343           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1344           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1345           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1346           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1347   assert( tj->ptr() != TypePtr::TopPTR &&
1348           tj->ptr() != TypePtr::AnyNull &&
1349           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1350 //    assert( tj->ptr() != TypePtr::Constant ||
1351 //            tj->base() == Type::RawPtr ||
1352 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1353 
1354   return tj;
1355 }
1356 
1357 void Compile::AliasType::Init(int i, const TypePtr* at) {
1358   _index = i;
1359   _adr_type = at;
1360   _field = NULL;
1361   _is_rewritable = true; // default
1362   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1363   if (atoop != NULL && atoop->is_known_instance()) {
1364     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1365     _general_index = Compile::current()->get_alias_index(gt);
1366   } else {
1367     _general_index = 0;
1368   }
1369 }
1370 
1371 //---------------------------------print_on------------------------------------
1372 #ifndef PRODUCT
1373 void Compile::AliasType::print_on(outputStream* st) {
1374   if (index() < 10)
1375         st->print("@ <%d> ", index());
1376   else  st->print("@ <%d>",  index());
1377   st->print(is_rewritable() ? "   " : " RO");
1378   int offset = adr_type()->offset();
1379   if (offset == Type::OffsetBot)
1380         st->print(" +any");
1381   else  st->print(" +%-3d", offset);
1382   st->print(" in ");
1383   adr_type()->dump_on(st);
1384   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1385   if (field() != NULL && tjp) {
1386     if (tjp->klass()  != field()->holder() ||
1387         tjp->offset() != field()->offset_in_bytes()) {
1388       st->print(" != ");
1389       field()->print();
1390       st->print(" ***");
1391     }
1392   }
1393 }
1394 
1395 void print_alias_types() {
1396   Compile* C = Compile::current();
1397   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1398   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1399     C->alias_type(idx)->print_on(tty);
1400     tty->cr();
1401   }
1402 }
1403 #endif
1404 
1405 
1406 //----------------------------probe_alias_cache--------------------------------
1407 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1408   intptr_t key = (intptr_t) adr_type;
1409   key ^= key >> logAliasCacheSize;
1410   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1411 }
1412 
1413 
1414 //-----------------------------grow_alias_types--------------------------------
1415 void Compile::grow_alias_types() {
1416   const int old_ats  = _max_alias_types; // how many before?
1417   const int new_ats  = old_ats;          // how many more?
1418   const int grow_ats = old_ats+new_ats;  // how many now?
1419   _max_alias_types = grow_ats;
1420   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1421   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1422   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1423   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1424 }
1425 
1426 
1427 //--------------------------------find_alias_type------------------------------
1428 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1429   if (_AliasLevel == 0)
1430     return alias_type(AliasIdxBot);
1431 
1432   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1433   if (ace->_adr_type == adr_type) {
1434     return alias_type(ace->_index);
1435   }
1436 
1437   // Handle special cases.
1438   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1439   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1440 
1441   // Do it the slow way.
1442   const TypePtr* flat = flatten_alias_type(adr_type);
1443 
1444 #ifdef ASSERT
1445   assert(flat == flatten_alias_type(flat), "idempotent");
1446   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1447   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1448     const TypeOopPtr* foop = flat->is_oopptr();
1449     // Scalarizable allocations have exact klass always.
1450     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1451     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1452     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1453   }
1454   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1455 #endif
1456 
1457   int idx = AliasIdxTop;
1458   for (int i = 0; i < num_alias_types(); i++) {
1459     if (alias_type(i)->adr_type() == flat) {
1460       idx = i;
1461       break;
1462     }
1463   }
1464 
1465   if (idx == AliasIdxTop) {
1466     if (no_create)  return NULL;
1467     // Grow the array if necessary.
1468     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1469     // Add a new alias type.
1470     idx = _num_alias_types++;
1471     _alias_types[idx]->Init(idx, flat);
1472     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1473     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1474     if (flat->isa_instptr()) {
1475       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1476           && flat->is_instptr()->klass() == env()->Class_klass())
1477         alias_type(idx)->set_rewritable(false);
1478     }
1479     if (flat->isa_klassptr()) {
1480       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1481         alias_type(idx)->set_rewritable(false);
1482       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1483         alias_type(idx)->set_rewritable(false);
1484       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1485         alias_type(idx)->set_rewritable(false);
1486       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1487         alias_type(idx)->set_rewritable(false);
1488     }
1489     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1490     // but the base pointer type is not distinctive enough to identify
1491     // references into JavaThread.)
1492 
1493     // Check for final fields.
1494     const TypeInstPtr* tinst = flat->isa_instptr();
1495     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1496       ciField* field;
1497       if (tinst->const_oop() != NULL &&
1498           tinst->klass() == ciEnv::current()->Class_klass() &&
1499           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1500         // static field
1501         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1502         field = k->get_field_by_offset(tinst->offset(), true);
1503       } else {
1504         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1505         field = k->get_field_by_offset(tinst->offset(), false);
1506       }
1507       assert(field == NULL ||
1508              original_field == NULL ||
1509              (field->holder() == original_field->holder() &&
1510               field->offset() == original_field->offset() &&
1511               field->is_static() == original_field->is_static()), "wrong field?");
1512       // Set field() and is_rewritable() attributes.
1513       if (field != NULL)  alias_type(idx)->set_field(field);
1514     }
1515   }
1516 
1517   // Fill the cache for next time.
1518   ace->_adr_type = adr_type;
1519   ace->_index    = idx;
1520   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1521 
1522   // Might as well try to fill the cache for the flattened version, too.
1523   AliasCacheEntry* face = probe_alias_cache(flat);
1524   if (face->_adr_type == NULL) {
1525     face->_adr_type = flat;
1526     face->_index    = idx;
1527     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1528   }
1529 
1530   return alias_type(idx);
1531 }
1532 
1533 
1534 Compile::AliasType* Compile::alias_type(ciField* field) {
1535   const TypeOopPtr* t;
1536   if (field->is_static())
1537     t = TypeInstPtr::make(field->holder()->java_mirror());
1538   else
1539     t = TypeOopPtr::make_from_klass_raw(field->holder());
1540   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1541   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1542   return atp;
1543 }
1544 
1545 
1546 //------------------------------have_alias_type--------------------------------
1547 bool Compile::have_alias_type(const TypePtr* adr_type) {
1548   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1549   if (ace->_adr_type == adr_type) {
1550     return true;
1551   }
1552 
1553   // Handle special cases.
1554   if (adr_type == NULL)             return true;
1555   if (adr_type == TypePtr::BOTTOM)  return true;
1556 
1557   return find_alias_type(adr_type, true, NULL) != NULL;
1558 }
1559 
1560 //-----------------------------must_alias--------------------------------------
1561 // True if all values of the given address type are in the given alias category.
1562 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1563   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1564   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1565   if (alias_idx == AliasIdxTop)         return false; // the empty category
1566   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1567 
1568   // the only remaining possible overlap is identity
1569   int adr_idx = get_alias_index(adr_type);
1570   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1571   assert(adr_idx == alias_idx ||
1572          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1573           && adr_type                       != TypeOopPtr::BOTTOM),
1574          "should not be testing for overlap with an unsafe pointer");
1575   return adr_idx == alias_idx;
1576 }
1577 
1578 //------------------------------can_alias--------------------------------------
1579 // True if any values of the given address type are in the given alias category.
1580 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1581   if (alias_idx == AliasIdxTop)         return false; // the empty category
1582   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1583   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1584   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1585 
1586   // the only remaining possible overlap is identity
1587   int adr_idx = get_alias_index(adr_type);
1588   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1589   return adr_idx == alias_idx;
1590 }
1591 
1592 
1593 
1594 //---------------------------pop_warm_call-------------------------------------
1595 WarmCallInfo* Compile::pop_warm_call() {
1596   WarmCallInfo* wci = _warm_calls;
1597   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1598   return wci;
1599 }
1600 
1601 //----------------------------Inline_Warm--------------------------------------
1602 int Compile::Inline_Warm() {
1603   // If there is room, try to inline some more warm call sites.
1604   // %%% Do a graph index compaction pass when we think we're out of space?
1605   if (!InlineWarmCalls)  return 0;
1606 
1607   int calls_made_hot = 0;
1608   int room_to_grow   = NodeCountInliningCutoff - unique();
1609   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1610   int amount_grown   = 0;
1611   WarmCallInfo* call;
1612   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1613     int est_size = (int)call->size();
1614     if (est_size > (room_to_grow - amount_grown)) {
1615       // This one won't fit anyway.  Get rid of it.
1616       call->make_cold();
1617       continue;
1618     }
1619     call->make_hot();
1620     calls_made_hot++;
1621     amount_grown   += est_size;
1622     amount_to_grow -= est_size;
1623   }
1624 
1625   if (calls_made_hot > 0)  set_major_progress();
1626   return calls_made_hot;
1627 }
1628 
1629 
1630 //----------------------------Finish_Warm--------------------------------------
1631 void Compile::Finish_Warm() {
1632   if (!InlineWarmCalls)  return;
1633   if (failing())  return;
1634   if (warm_calls() == NULL)  return;
1635 
1636   // Clean up loose ends, if we are out of space for inlining.
1637   WarmCallInfo* call;
1638   while ((call = pop_warm_call()) != NULL) {
1639     call->make_cold();
1640   }
1641 }
1642 
1643 //---------------------cleanup_loop_predicates-----------------------
1644 // Remove the opaque nodes that protect the predicates so that all unused
1645 // checks and uncommon_traps will be eliminated from the ideal graph
1646 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1647   if (predicate_count()==0) return;
1648   for (int i = predicate_count(); i > 0; i--) {
1649     Node * n = predicate_opaque1_node(i-1);
1650     assert(n->Opcode() == Op_Opaque1, "must be");
1651     igvn.replace_node(n, n->in(1));
1652   }
1653   assert(predicate_count()==0, "should be clean!");
1654 }
1655 
1656 //------------------------------Optimize---------------------------------------
1657 // Given a graph, optimize it.
1658 void Compile::Optimize() {
1659   TracePhase t1("optimizer", &_t_optimizer, true);
1660 
1661 #ifndef PRODUCT
1662   if (env()->break_at_compile()) {
1663     BREAKPOINT;
1664   }
1665 
1666 #endif
1667 
1668   ResourceMark rm;
1669   int          loop_opts_cnt;
1670 
1671   NOT_PRODUCT( verify_graph_edges(); )
1672 
1673   print_method("After Parsing");
1674 
1675  {
1676   // Iterative Global Value Numbering, including ideal transforms
1677   // Initialize IterGVN with types and values from parse-time GVN
1678   PhaseIterGVN igvn(initial_gvn());
1679   {
1680     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1681     igvn.optimize();
1682   }
1683 
1684   print_method("Iter GVN 1", 2);
1685 
1686   if (failing())  return;
1687 
1688   // Perform escape analysis
1689   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
1690     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
1691     ConnectionGraph::do_analysis(this, &igvn);
1692 
1693     if (failing())  return;
1694 
1695     igvn.optimize();
1696     print_method("Iter GVN 3", 2);
1697 
1698     if (failing())  return;
1699 
1700   }
1701 
1702   // Loop transforms on the ideal graph.  Range Check Elimination,
1703   // peeling, unrolling, etc.
1704 
1705   // Set loop opts counter
1706   loop_opts_cnt = num_loop_opts();
1707   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1708     {
1709       TracePhase t2("idealLoop", &_t_idealLoop, true);
1710       PhaseIdealLoop ideal_loop( igvn, true );
1711       loop_opts_cnt--;
1712       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1713       if (failing())  return;
1714     }
1715     // Loop opts pass if partial peeling occurred in previous pass
1716     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1717       TracePhase t3("idealLoop", &_t_idealLoop, true);
1718       PhaseIdealLoop ideal_loop( igvn, false );
1719       loop_opts_cnt--;
1720       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1721       if (failing())  return;
1722     }
1723     // Loop opts pass for loop-unrolling before CCP
1724     if(major_progress() && (loop_opts_cnt > 0)) {
1725       TracePhase t4("idealLoop", &_t_idealLoop, true);
1726       PhaseIdealLoop ideal_loop( igvn, false );
1727       loop_opts_cnt--;
1728       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1729     }
1730     if (!failing()) {
1731       // Verify that last round of loop opts produced a valid graph
1732       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1733       PhaseIdealLoop::verify(igvn);
1734     }
1735   }
1736   if (failing())  return;
1737 
1738   // Conditional Constant Propagation;
1739   PhaseCCP ccp( &igvn );
1740   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1741   {
1742     TracePhase t2("ccp", &_t_ccp, true);
1743     ccp.do_transform();
1744   }
1745   print_method("PhaseCPP 1", 2);
1746 
1747   assert( true, "Break here to ccp.dump_old2new_map()");
1748 
1749   // Iterative Global Value Numbering, including ideal transforms
1750   {
1751     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1752     igvn = ccp;
1753     igvn.optimize();
1754   }
1755 
1756   print_method("Iter GVN 2", 2);
1757 
1758   if (failing())  return;
1759 
1760   // Loop transforms on the ideal graph.  Range Check Elimination,
1761   // peeling, unrolling, etc.
1762   if(loop_opts_cnt > 0) {
1763     debug_only( int cnt = 0; );
1764     while(major_progress() && (loop_opts_cnt > 0)) {
1765       TracePhase t2("idealLoop", &_t_idealLoop, true);
1766       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1767       PhaseIdealLoop ideal_loop( igvn, true);
1768       loop_opts_cnt--;
1769       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1770       if (failing())  return;
1771     }
1772   }
1773 
1774   {
1775     // Verify that all previous optimizations produced a valid graph
1776     // at least to this point, even if no loop optimizations were done.
1777     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1778     PhaseIdealLoop::verify(igvn);
1779   }
1780 
1781   {
1782     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1783     PhaseMacroExpand  mex(igvn);
1784     if (mex.expand_macro_nodes()) {
1785       assert(failing(), "must bail out w/ explicit message");
1786       return;
1787     }
1788   }
1789 
1790  } // (End scope of igvn; run destructor if necessary for asserts.)
1791 
1792   // A method with only infinite loops has no edges entering loops from root
1793   {
1794     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1795     if (final_graph_reshaping()) {
1796       assert(failing(), "must bail out w/ explicit message");
1797       return;
1798     }
1799   }
1800 
1801   print_method("Optimize finished", 2);
1802 }
1803 
1804 
1805 //------------------------------Code_Gen---------------------------------------
1806 // Given a graph, generate code for it
1807 void Compile::Code_Gen() {
1808   if (failing())  return;
1809 
1810   // Perform instruction selection.  You might think we could reclaim Matcher
1811   // memory PDQ, but actually the Matcher is used in generating spill code.
1812   // Internals of the Matcher (including some VectorSets) must remain live
1813   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1814   // set a bit in reclaimed memory.
1815 
1816   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1817   // nodes.  Mapping is only valid at the root of each matched subtree.
1818   NOT_PRODUCT( verify_graph_edges(); )
1819 
1820   Node_List proj_list;
1821   Matcher m(proj_list);
1822   _matcher = &m;
1823   {
1824     TracePhase t2("matcher", &_t_matcher, true);
1825     m.match();
1826   }
1827   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1828   // nodes.  Mapping is only valid at the root of each matched subtree.
1829   NOT_PRODUCT( verify_graph_edges(); )
1830 
1831   // If you have too many nodes, or if matching has failed, bail out
1832   check_node_count(0, "out of nodes matching instructions");
1833   if (failing())  return;
1834 
1835   // Build a proper-looking CFG
1836   PhaseCFG cfg(node_arena(), root(), m);
1837   _cfg = &cfg;
1838   {
1839     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1840     cfg.Dominators();
1841     if (failing())  return;
1842 
1843     NOT_PRODUCT( verify_graph_edges(); )
1844 
1845     cfg.Estimate_Block_Frequency();
1846     cfg.GlobalCodeMotion(m,unique(),proj_list);
1847 
1848     print_method("Global code motion", 2);
1849 
1850     if (failing())  return;
1851     NOT_PRODUCT( verify_graph_edges(); )
1852 
1853     debug_only( cfg.verify(); )
1854   }
1855   NOT_PRODUCT( verify_graph_edges(); )
1856 
1857   PhaseChaitin regalloc(unique(),cfg,m);
1858   _regalloc = &regalloc;
1859   {
1860     TracePhase t2("regalloc", &_t_registerAllocation, true);
1861     // Perform any platform dependent preallocation actions.  This is used,
1862     // for example, to avoid taking an implicit null pointer exception
1863     // using the frame pointer on win95.
1864     _regalloc->pd_preallocate_hook();
1865 
1866     // Perform register allocation.  After Chaitin, use-def chains are
1867     // no longer accurate (at spill code) and so must be ignored.
1868     // Node->LRG->reg mappings are still accurate.
1869     _regalloc->Register_Allocate();
1870 
1871     // Bail out if the allocator builds too many nodes
1872     if (failing())  return;
1873   }
1874 
1875   // Prior to register allocation we kept empty basic blocks in case the
1876   // the allocator needed a place to spill.  After register allocation we
1877   // are not adding any new instructions.  If any basic block is empty, we
1878   // can now safely remove it.
1879   {
1880     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1881     cfg.remove_empty();
1882     if (do_freq_based_layout()) {
1883       PhaseBlockLayout layout(cfg);
1884     } else {
1885       cfg.set_loop_alignment();
1886     }
1887     cfg.fixup_flow();
1888   }
1889 
1890   // Perform any platform dependent postallocation verifications.
1891   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1892 
1893   // Apply peephole optimizations
1894   if( OptoPeephole ) {
1895     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1896     PhasePeephole peep( _regalloc, cfg);
1897     peep.do_transform();
1898   }
1899 
1900   // Convert Nodes to instruction bits in a buffer
1901   {
1902     // %%%% workspace merge brought two timers together for one job
1903     TracePhase t2a("output", &_t_output, true);
1904     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1905     Output();
1906   }
1907 
1908   print_method("Final Code");
1909 
1910   // He's dead, Jim.
1911   _cfg     = (PhaseCFG*)0xdeadbeef;
1912   _regalloc = (PhaseChaitin*)0xdeadbeef;
1913 }
1914 
1915 
1916 //------------------------------dump_asm---------------------------------------
1917 // Dump formatted assembly
1918 #ifndef PRODUCT
1919 void Compile::dump_asm(int *pcs, uint pc_limit) {
1920   bool cut_short = false;
1921   tty->print_cr("#");
1922   tty->print("#  ");  _tf->dump();  tty->cr();
1923   tty->print_cr("#");
1924 
1925   // For all blocks
1926   int pc = 0x0;                 // Program counter
1927   char starts_bundle = ' ';
1928   _regalloc->dump_frame();
1929 
1930   Node *n = NULL;
1931   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1932     if (VMThread::should_terminate()) { cut_short = true; break; }
1933     Block *b = _cfg->_blocks[i];
1934     if (b->is_connector() && !Verbose) continue;
1935     n = b->_nodes[0];
1936     if (pcs && n->_idx < pc_limit)
1937       tty->print("%3.3x   ", pcs[n->_idx]);
1938     else
1939       tty->print("      ");
1940     b->dump_head( &_cfg->_bbs );
1941     if (b->is_connector()) {
1942       tty->print_cr("        # Empty connector block");
1943     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1944       tty->print_cr("        # Block is sole successor of call");
1945     }
1946 
1947     // For all instructions
1948     Node *delay = NULL;
1949     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1950       if (VMThread::should_terminate()) { cut_short = true; break; }
1951       n = b->_nodes[j];
1952       if (valid_bundle_info(n)) {
1953         Bundle *bundle = node_bundling(n);
1954         if (bundle->used_in_unconditional_delay()) {
1955           delay = n;
1956           continue;
1957         }
1958         if (bundle->starts_bundle())
1959           starts_bundle = '+';
1960       }
1961 
1962       if (WizardMode) n->dump();
1963 
1964       if( !n->is_Region() &&    // Dont print in the Assembly
1965           !n->is_Phi() &&       // a few noisely useless nodes
1966           !n->is_Proj() &&
1967           !n->is_MachTemp() &&
1968           !n->is_SafePointScalarObject() &&
1969           !n->is_Catch() &&     // Would be nice to print exception table targets
1970           !n->is_MergeMem() &&  // Not very interesting
1971           !n->is_top() &&       // Debug info table constants
1972           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1973           ) {
1974         if (pcs && n->_idx < pc_limit)
1975           tty->print("%3.3x", pcs[n->_idx]);
1976         else
1977           tty->print("   ");
1978         tty->print(" %c ", starts_bundle);
1979         starts_bundle = ' ';
1980         tty->print("\t");
1981         n->format(_regalloc, tty);
1982         tty->cr();
1983       }
1984 
1985       // If we have an instruction with a delay slot, and have seen a delay,
1986       // then back up and print it
1987       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1988         assert(delay != NULL, "no unconditional delay instruction");
1989         if (WizardMode) delay->dump();
1990 
1991         if (node_bundling(delay)->starts_bundle())
1992           starts_bundle = '+';
1993         if (pcs && n->_idx < pc_limit)
1994           tty->print("%3.3x", pcs[n->_idx]);
1995         else
1996           tty->print("   ");
1997         tty->print(" %c ", starts_bundle);
1998         starts_bundle = ' ';
1999         tty->print("\t");
2000         delay->format(_regalloc, tty);
2001         tty->print_cr("");
2002         delay = NULL;
2003       }
2004 
2005       // Dump the exception table as well
2006       if( n->is_Catch() && (Verbose || WizardMode) ) {
2007         // Print the exception table for this offset
2008         _handler_table.print_subtable_for(pc);
2009       }
2010     }
2011 
2012     if (pcs && n->_idx < pc_limit)
2013       tty->print_cr("%3.3x", pcs[n->_idx]);
2014     else
2015       tty->print_cr("");
2016 
2017     assert(cut_short || delay == NULL, "no unconditional delay branch");
2018 
2019   } // End of per-block dump
2020   tty->print_cr("");
2021 
2022   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2023 }
2024 #endif
2025 
2026 //------------------------------Final_Reshape_Counts---------------------------
2027 // This class defines counters to help identify when a method
2028 // may/must be executed using hardware with only 24-bit precision.
2029 struct Final_Reshape_Counts : public StackObj {
2030   int  _call_count;             // count non-inlined 'common' calls
2031   int  _float_count;            // count float ops requiring 24-bit precision
2032   int  _double_count;           // count double ops requiring more precision
2033   int  _java_call_count;        // count non-inlined 'java' calls
2034   int  _inner_loop_count;       // count loops which need alignment
2035   VectorSet _visited;           // Visitation flags
2036   Node_List _tests;             // Set of IfNodes & PCTableNodes
2037 
2038   Final_Reshape_Counts() :
2039     _call_count(0), _float_count(0), _double_count(0),
2040     _java_call_count(0), _inner_loop_count(0),
2041     _visited( Thread::current()->resource_area() ) { }
2042 
2043   void inc_call_count  () { _call_count  ++; }
2044   void inc_float_count () { _float_count ++; }
2045   void inc_double_count() { _double_count++; }
2046   void inc_java_call_count() { _java_call_count++; }
2047   void inc_inner_loop_count() { _inner_loop_count++; }
2048 
2049   int  get_call_count  () const { return _call_count  ; }
2050   int  get_float_count () const { return _float_count ; }
2051   int  get_double_count() const { return _double_count; }
2052   int  get_java_call_count() const { return _java_call_count; }
2053   int  get_inner_loop_count() const { return _inner_loop_count; }
2054 };
2055 
2056 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2057   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2058   // Make sure the offset goes inside the instance layout.
2059   return k->contains_field_offset(tp->offset());
2060   // Note that OffsetBot and OffsetTop are very negative.
2061 }
2062 
2063 // Eliminate trivially redundant StoreCMs and accumulate their
2064 // precedence edges.
2065 static void eliminate_redundant_card_marks(Node* n) {
2066   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2067   if (n->in(MemNode::Address)->outcnt() > 1) {
2068     // There are multiple users of the same address so it might be
2069     // possible to eliminate some of the StoreCMs
2070     Node* mem = n->in(MemNode::Memory);
2071     Node* adr = n->in(MemNode::Address);
2072     Node* val = n->in(MemNode::ValueIn);
2073     Node* prev = n;
2074     bool done = false;
2075     // Walk the chain of StoreCMs eliminating ones that match.  As
2076     // long as it's a chain of single users then the optimization is
2077     // safe.  Eliminating partially redundant StoreCMs would require
2078     // cloning copies down the other paths.
2079     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2080       if (adr == mem->in(MemNode::Address) &&
2081           val == mem->in(MemNode::ValueIn)) {
2082         // redundant StoreCM
2083         if (mem->req() > MemNode::OopStore) {
2084           // Hasn't been processed by this code yet.
2085           n->add_prec(mem->in(MemNode::OopStore));
2086         } else {
2087           // Already converted to precedence edge
2088           for (uint i = mem->req(); i < mem->len(); i++) {
2089             // Accumulate any precedence edges
2090             if (mem->in(i) != NULL) {
2091               n->add_prec(mem->in(i));
2092             }
2093           }
2094           // Everything above this point has been processed.
2095           done = true;
2096         }
2097         // Eliminate the previous StoreCM
2098         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2099         assert(mem->outcnt() == 0, "should be dead");
2100         mem->disconnect_inputs(NULL);
2101       } else {
2102         prev = mem;
2103       }
2104       mem = prev->in(MemNode::Memory);
2105     }
2106   }
2107 }
2108 
2109 //------------------------------final_graph_reshaping_impl----------------------
2110 // Implement items 1-5 from final_graph_reshaping below.
2111 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
2112 
2113   if ( n->outcnt() == 0 ) return; // dead node
2114   uint nop = n->Opcode();
2115 
2116   // Check for 2-input instruction with "last use" on right input.
2117   // Swap to left input.  Implements item (2).
2118   if( n->req() == 3 &&          // two-input instruction
2119       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2120       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2121       n->in(2)->outcnt() == 1 &&// right use IS a last use
2122       !n->in(2)->is_Con() ) {   // right use is not a constant
2123     // Check for commutative opcode
2124     switch( nop ) {
2125     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2126     case Op_MaxI:  case Op_MinI:
2127     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2128     case Op_AndL:  case Op_XorL:  case Op_OrL:
2129     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2130       // Move "last use" input to left by swapping inputs
2131       n->swap_edges(1, 2);
2132       break;
2133     }
2134     default:
2135       break;
2136     }
2137   }
2138 
2139 #ifdef ASSERT
2140   if( n->is_Mem() ) {
2141     Compile* C = Compile::current();
2142     int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
2143     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2144             // oop will be recorded in oop map if load crosses safepoint
2145             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2146                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2147             "raw memory operations should have control edge");
2148   }
2149 #endif
2150   // Count FPU ops and common calls, implements item (3)
2151   switch( nop ) {
2152   // Count all float operations that may use FPU
2153   case Op_AddF:
2154   case Op_SubF:
2155   case Op_MulF:
2156   case Op_DivF:
2157   case Op_NegF:
2158   case Op_ModF:
2159   case Op_ConvI2F:
2160   case Op_ConF:
2161   case Op_CmpF:
2162   case Op_CmpF3:
2163   // case Op_ConvL2F: // longs are split into 32-bit halves
2164     frc.inc_float_count();
2165     break;
2166 
2167   case Op_ConvF2D:
2168   case Op_ConvD2F:
2169     frc.inc_float_count();
2170     frc.inc_double_count();
2171     break;
2172 
2173   // Count all double operations that may use FPU
2174   case Op_AddD:
2175   case Op_SubD:
2176   case Op_MulD:
2177   case Op_DivD:
2178   case Op_NegD:
2179   case Op_ModD:
2180   case Op_ConvI2D:
2181   case Op_ConvD2I:
2182   // case Op_ConvL2D: // handled by leaf call
2183   // case Op_ConvD2L: // handled by leaf call
2184   case Op_ConD:
2185   case Op_CmpD:
2186   case Op_CmpD3:
2187     frc.inc_double_count();
2188     break;
2189   case Op_Opaque1:              // Remove Opaque Nodes before matching
2190   case Op_Opaque2:              // Remove Opaque Nodes before matching
2191     n->subsume_by(n->in(1));
2192     break;
2193   case Op_CallStaticJava:
2194   case Op_CallJava:
2195   case Op_CallDynamicJava:
2196     frc.inc_java_call_count(); // Count java call site;
2197   case Op_CallRuntime:
2198   case Op_CallLeaf:
2199   case Op_CallLeafNoFP: {
2200     assert( n->is_Call(), "" );
2201     CallNode *call = n->as_Call();
2202     // Count call sites where the FP mode bit would have to be flipped.
2203     // Do not count uncommon runtime calls:
2204     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2205     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2206     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2207       frc.inc_call_count();   // Count the call site
2208     } else {                  // See if uncommon argument is shared
2209       Node *n = call->in(TypeFunc::Parms);
2210       int nop = n->Opcode();
2211       // Clone shared simple arguments to uncommon calls, item (1).
2212       if( n->outcnt() > 1 &&
2213           !n->is_Proj() &&
2214           nop != Op_CreateEx &&
2215           nop != Op_CheckCastPP &&
2216           nop != Op_DecodeN &&
2217           !n->is_Mem() ) {
2218         Node *x = n->clone();
2219         call->set_req( TypeFunc::Parms, x );
2220       }
2221     }
2222     break;
2223   }
2224 
2225   case Op_StoreD:
2226   case Op_LoadD:
2227   case Op_LoadD_unaligned:
2228     frc.inc_double_count();
2229     goto handle_mem;
2230   case Op_StoreF:
2231   case Op_LoadF:
2232     frc.inc_float_count();
2233     goto handle_mem;
2234 
2235   case Op_StoreCM:
2236     {
2237       // Convert OopStore dependence into precedence edge
2238       Node* prec = n->in(MemNode::OopStore);
2239       n->del_req(MemNode::OopStore);
2240       n->add_prec(prec);
2241       eliminate_redundant_card_marks(n);
2242     }
2243 
2244     // fall through
2245 
2246   case Op_StoreB:
2247   case Op_StoreC:
2248   case Op_StorePConditional:
2249   case Op_StoreI:
2250   case Op_StoreL:
2251   case Op_StoreIConditional:
2252   case Op_StoreLConditional:
2253   case Op_CompareAndSwapI:
2254   case Op_CompareAndSwapL:
2255   case Op_CompareAndSwapP:
2256   case Op_CompareAndSwapN:
2257   case Op_StoreP:
2258   case Op_StoreN:
2259   case Op_LoadB:
2260   case Op_LoadUB:
2261   case Op_LoadUS:
2262   case Op_LoadI:
2263   case Op_LoadUI2L:
2264   case Op_LoadKlass:
2265   case Op_LoadNKlass:
2266   case Op_LoadL:
2267   case Op_LoadL_unaligned:
2268   case Op_LoadPLocked:
2269   case Op_LoadLLocked:
2270   case Op_LoadP:
2271   case Op_LoadN:
2272   case Op_LoadRange:
2273   case Op_LoadS: {
2274   handle_mem:
2275 #ifdef ASSERT
2276     if( VerifyOptoOopOffsets ) {
2277       assert( n->is_Mem(), "" );
2278       MemNode *mem  = (MemNode*)n;
2279       // Check to see if address types have grounded out somehow.
2280       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2281       assert( !tp || oop_offset_is_sane(tp), "" );
2282     }
2283 #endif
2284     break;
2285   }
2286 
2287   case Op_AddP: {               // Assert sane base pointers
2288     Node *addp = n->in(AddPNode::Address);
2289     assert( !addp->is_AddP() ||
2290             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2291             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2292             "Base pointers must match" );
2293 #ifdef _LP64
2294     if (UseCompressedOops &&
2295         addp->Opcode() == Op_ConP &&
2296         addp == n->in(AddPNode::Base) &&
2297         n->in(AddPNode::Offset)->is_Con()) {
2298       // Use addressing with narrow klass to load with offset on x86.
2299       // On sparc loading 32-bits constant and decoding it have less
2300       // instructions (4) then load 64-bits constant (7).
2301       // Do this transformation here since IGVN will convert ConN back to ConP.
2302       const Type* t = addp->bottom_type();
2303       if (t->isa_oopptr()) {
2304         Node* nn = NULL;
2305 
2306         // Look for existing ConN node of the same exact type.
2307         Compile* C = Compile::current();
2308         Node* r  = C->root();
2309         uint cnt = r->outcnt();
2310         for (uint i = 0; i < cnt; i++) {
2311           Node* m = r->raw_out(i);
2312           if (m!= NULL && m->Opcode() == Op_ConN &&
2313               m->bottom_type()->make_ptr() == t) {
2314             nn = m;
2315             break;
2316           }
2317         }
2318         if (nn != NULL) {
2319           // Decode a narrow oop to match address
2320           // [R12 + narrow_oop_reg<<3 + offset]
2321           nn = new (C,  2) DecodeNNode(nn, t);
2322           n->set_req(AddPNode::Base, nn);
2323           n->set_req(AddPNode::Address, nn);
2324           if (addp->outcnt() == 0) {
2325             addp->disconnect_inputs(NULL);
2326           }
2327         }
2328       }
2329     }
2330 #endif
2331     break;
2332   }
2333 
2334 #ifdef _LP64
2335   case Op_CastPP:
2336     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2337       Compile* C = Compile::current();
2338       Node* in1 = n->in(1);
2339       const Type* t = n->bottom_type();
2340       Node* new_in1 = in1->clone();
2341       new_in1->as_DecodeN()->set_type(t);
2342 
2343       if (!Matcher::narrow_oop_use_complex_address()) {
2344         //
2345         // x86, ARM and friends can handle 2 adds in addressing mode
2346         // and Matcher can fold a DecodeN node into address by using
2347         // a narrow oop directly and do implicit NULL check in address:
2348         //
2349         // [R12 + narrow_oop_reg<<3 + offset]
2350         // NullCheck narrow_oop_reg
2351         //
2352         // On other platforms (Sparc) we have to keep new DecodeN node and
2353         // use it to do implicit NULL check in address:
2354         //
2355         // decode_not_null narrow_oop_reg, base_reg
2356         // [base_reg + offset]
2357         // NullCheck base_reg
2358         //
2359         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2360         // to keep the information to which NULL check the new DecodeN node
2361         // corresponds to use it as value in implicit_null_check().
2362         //
2363         new_in1->set_req(0, n->in(0));
2364       }
2365 
2366       n->subsume_by(new_in1);
2367       if (in1->outcnt() == 0) {
2368         in1->disconnect_inputs(NULL);
2369       }
2370     }
2371     break;
2372 
2373   case Op_CmpP:
2374     // Do this transformation here to preserve CmpPNode::sub() and
2375     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2376     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2377       Node* in1 = n->in(1);
2378       Node* in2 = n->in(2);
2379       if (!in1->is_DecodeN()) {
2380         in2 = in1;
2381         in1 = n->in(2);
2382       }
2383       assert(in1->is_DecodeN(), "sanity");
2384 
2385       Compile* C = Compile::current();
2386       Node* new_in2 = NULL;
2387       if (in2->is_DecodeN()) {
2388         new_in2 = in2->in(1);
2389       } else if (in2->Opcode() == Op_ConP) {
2390         const Type* t = in2->bottom_type();
2391         if (t == TypePtr::NULL_PTR) {
2392           // Don't convert CmpP null check into CmpN if compressed
2393           // oops implicit null check is not generated.
2394           // This will allow to generate normal oop implicit null check.
2395           if (Matcher::gen_narrow_oop_implicit_null_checks())
2396             new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2397           //
2398           // This transformation together with CastPP transformation above
2399           // will generated code for implicit NULL checks for compressed oops.
2400           //
2401           // The original code after Optimize()
2402           //
2403           //    LoadN memory, narrow_oop_reg
2404           //    decode narrow_oop_reg, base_reg
2405           //    CmpP base_reg, NULL
2406           //    CastPP base_reg // NotNull
2407           //    Load [base_reg + offset], val_reg
2408           //
2409           // after these transformations will be
2410           //
2411           //    LoadN memory, narrow_oop_reg
2412           //    CmpN narrow_oop_reg, NULL
2413           //    decode_not_null narrow_oop_reg, base_reg
2414           //    Load [base_reg + offset], val_reg
2415           //
2416           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2417           // since narrow oops can be used in debug info now (see the code in
2418           // final_graph_reshaping_walk()).
2419           //
2420           // At the end the code will be matched to
2421           // on x86:
2422           //
2423           //    Load_narrow_oop memory, narrow_oop_reg
2424           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2425           //    NullCheck narrow_oop_reg
2426           //
2427           // and on sparc:
2428           //
2429           //    Load_narrow_oop memory, narrow_oop_reg
2430           //    decode_not_null narrow_oop_reg, base_reg
2431           //    Load [base_reg + offset], val_reg
2432           //    NullCheck base_reg
2433           //
2434         } else if (t->isa_oopptr()) {
2435           new_in2 = ConNode::make(C, t->make_narrowoop());
2436         }
2437       }
2438       if (new_in2 != NULL) {
2439         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2440         n->subsume_by( cmpN );
2441         if (in1->outcnt() == 0) {
2442           in1->disconnect_inputs(NULL);
2443         }
2444         if (in2->outcnt() == 0) {
2445           in2->disconnect_inputs(NULL);
2446         }
2447       }
2448     }
2449     break;
2450 
2451   case Op_DecodeN:
2452     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2453     // DecodeN could be pinned when it can't be fold into
2454     // an address expression, see the code for Op_CastPP above.
2455     assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
2456     break;
2457 
2458   case Op_EncodeP: {
2459     Node* in1 = n->in(1);
2460     if (in1->is_DecodeN()) {
2461       n->subsume_by(in1->in(1));
2462     } else if (in1->Opcode() == Op_ConP) {
2463       Compile* C = Compile::current();
2464       const Type* t = in1->bottom_type();
2465       if (t == TypePtr::NULL_PTR) {
2466         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2467       } else if (t->isa_oopptr()) {
2468         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2469       }
2470     }
2471     if (in1->outcnt() == 0) {
2472       in1->disconnect_inputs(NULL);
2473     }
2474     break;
2475   }
2476 
2477   case Op_Proj: {
2478     if (OptimizeStringConcat) {
2479       ProjNode* p = n->as_Proj();
2480       if (p->_is_io_use) {
2481         // Separate projections were used for the exception path which
2482         // are normally removed by a late inline.  If it wasn't inlined
2483         // then they will hang around and should just be replaced with
2484         // the original one.
2485         Node* proj = NULL;
2486         // Replace with just one
2487         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2488           Node *use = i.get();
2489           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2490             proj = use;
2491             break;
2492           }
2493         }
2494         assert(p != NULL, "must be found");
2495         p->subsume_by(proj);
2496       }
2497     }
2498     break;
2499   }
2500 
2501   case Op_Phi:
2502     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2503       // The EncodeP optimization may create Phi with the same edges
2504       // for all paths. It is not handled well by Register Allocator.
2505       Node* unique_in = n->in(1);
2506       assert(unique_in != NULL, "");
2507       uint cnt = n->req();
2508       for (uint i = 2; i < cnt; i++) {
2509         Node* m = n->in(i);
2510         assert(m != NULL, "");
2511         if (unique_in != m)
2512           unique_in = NULL;
2513       }
2514       if (unique_in != NULL) {
2515         n->subsume_by(unique_in);
2516       }
2517     }
2518     break;
2519 
2520 #endif
2521 
2522   case Op_ModI:
2523     if (UseDivMod) {
2524       // Check if a%b and a/b both exist
2525       Node* d = n->find_similar(Op_DivI);
2526       if (d) {
2527         // Replace them with a fused divmod if supported
2528         Compile* C = Compile::current();
2529         if (Matcher::has_match_rule(Op_DivModI)) {
2530           DivModINode* divmod = DivModINode::make(C, n);
2531           d->subsume_by(divmod->div_proj());
2532           n->subsume_by(divmod->mod_proj());
2533         } else {
2534           // replace a%b with a-((a/b)*b)
2535           Node* mult = new (C, 3) MulINode(d, d->in(2));
2536           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2537           n->subsume_by( sub );
2538         }
2539       }
2540     }
2541     break;
2542 
2543   case Op_ModL:
2544     if (UseDivMod) {
2545       // Check if a%b and a/b both exist
2546       Node* d = n->find_similar(Op_DivL);
2547       if (d) {
2548         // Replace them with a fused divmod if supported
2549         Compile* C = Compile::current();
2550         if (Matcher::has_match_rule(Op_DivModL)) {
2551           DivModLNode* divmod = DivModLNode::make(C, n);
2552           d->subsume_by(divmod->div_proj());
2553           n->subsume_by(divmod->mod_proj());
2554         } else {
2555           // replace a%b with a-((a/b)*b)
2556           Node* mult = new (C, 3) MulLNode(d, d->in(2));
2557           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2558           n->subsume_by( sub );
2559         }
2560       }
2561     }
2562     break;
2563 
2564   case Op_Load16B:
2565   case Op_Load8B:
2566   case Op_Load4B:
2567   case Op_Load8S:
2568   case Op_Load4S:
2569   case Op_Load2S:
2570   case Op_Load8C:
2571   case Op_Load4C:
2572   case Op_Load2C:
2573   case Op_Load4I:
2574   case Op_Load2I:
2575   case Op_Load2L:
2576   case Op_Load4F:
2577   case Op_Load2F:
2578   case Op_Load2D:
2579   case Op_Store16B:
2580   case Op_Store8B:
2581   case Op_Store4B:
2582   case Op_Store8C:
2583   case Op_Store4C:
2584   case Op_Store2C:
2585   case Op_Store4I:
2586   case Op_Store2I:
2587   case Op_Store2L:
2588   case Op_Store4F:
2589   case Op_Store2F:
2590   case Op_Store2D:
2591     break;
2592 
2593   case Op_PackB:
2594   case Op_PackS:
2595   case Op_PackC:
2596   case Op_PackI:
2597   case Op_PackF:
2598   case Op_PackL:
2599   case Op_PackD:
2600     if (n->req()-1 > 2) {
2601       // Replace many operand PackNodes with a binary tree for matching
2602       PackNode* p = (PackNode*) n;
2603       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2604       n->subsume_by(btp);
2605     }
2606     break;
2607   case Op_Loop:
2608   case Op_CountedLoop:
2609     if (n->as_Loop()->is_inner_loop()) {
2610       frc.inc_inner_loop_count();
2611     }
2612     break;
2613   case Op_LShiftI:
2614   case Op_RShiftI:
2615   case Op_URShiftI:
2616   case Op_LShiftL:
2617   case Op_RShiftL:
2618   case Op_URShiftL:
2619     if (Matcher::need_masked_shift_count) {
2620       // The cpu's shift instructions don't restrict the count to the
2621       // lower 5/6 bits. We need to do the masking ourselves.
2622       Node* in2 = n->in(2);
2623       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2624       const TypeInt* t = in2->find_int_type();
2625       if (t != NULL && t->is_con()) {
2626         juint shift = t->get_con();
2627         if (shift > mask) { // Unsigned cmp
2628           Compile* C = Compile::current();
2629           n->set_req(2, ConNode::make(C, TypeInt::make(shift & mask)));
2630         }
2631       } else {
2632         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2633           Compile* C = Compile::current();
2634           Node* shift = new (C, 3) AndINode(in2, ConNode::make(C, TypeInt::make(mask)));
2635           n->set_req(2, shift);
2636         }
2637       }
2638       if (in2->outcnt() == 0) { // Remove dead node
2639         in2->disconnect_inputs(NULL);
2640       }
2641     }
2642     break;
2643   default:
2644     assert( !n->is_Call(), "" );
2645     assert( !n->is_Mem(), "" );
2646     break;
2647   }
2648 
2649   // Collect CFG split points
2650   if (n->is_MultiBranch())
2651     frc._tests.push(n);
2652 }
2653 
2654 //------------------------------final_graph_reshaping_walk---------------------
2655 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2656 // requires that the walk visits a node's inputs before visiting the node.
2657 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2658   ResourceArea *area = Thread::current()->resource_area();
2659   Unique_Node_List sfpt(area);
2660 
2661   frc._visited.set(root->_idx); // first, mark node as visited
2662   uint cnt = root->req();
2663   Node *n = root;
2664   uint  i = 0;
2665   while (true) {
2666     if (i < cnt) {
2667       // Place all non-visited non-null inputs onto stack
2668       Node* m = n->in(i);
2669       ++i;
2670       if (m != NULL && !frc._visited.test_set(m->_idx)) {
2671         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2672           sfpt.push(m);
2673         cnt = m->req();
2674         nstack.push(n, i); // put on stack parent and next input's index
2675         n = m;
2676         i = 0;
2677       }
2678     } else {
2679       // Now do post-visit work
2680       final_graph_reshaping_impl( n, frc );
2681       if (nstack.is_empty())
2682         break;             // finished
2683       n = nstack.node();   // Get node from stack
2684       cnt = n->req();
2685       i = nstack.index();
2686       nstack.pop();        // Shift to the next node on stack
2687     }
2688   }
2689 
2690   // Skip next transformation if compressed oops are not used.
2691   if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
2692     return;
2693 
2694   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2695   // It could be done for an uncommon traps or any safepoints/calls
2696   // if the DecodeN node is referenced only in a debug info.
2697   while (sfpt.size() > 0) {
2698     n = sfpt.pop();
2699     JVMState *jvms = n->as_SafePoint()->jvms();
2700     assert(jvms != NULL, "sanity");
2701     int start = jvms->debug_start();
2702     int end   = n->req();
2703     bool is_uncommon = (n->is_CallStaticJava() &&
2704                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2705     for (int j = start; j < end; j++) {
2706       Node* in = n->in(j);
2707       if (in->is_DecodeN()) {
2708         bool safe_to_skip = true;
2709         if (!is_uncommon ) {
2710           // Is it safe to skip?
2711           for (uint i = 0; i < in->outcnt(); i++) {
2712             Node* u = in->raw_out(i);
2713             if (!u->is_SafePoint() ||
2714                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2715               safe_to_skip = false;
2716             }
2717           }
2718         }
2719         if (safe_to_skip) {
2720           n->set_req(j, in->in(1));
2721         }
2722         if (in->outcnt() == 0) {
2723           in->disconnect_inputs(NULL);
2724         }
2725       }
2726     }
2727   }
2728 }
2729 
2730 //------------------------------final_graph_reshaping--------------------------
2731 // Final Graph Reshaping.
2732 //
2733 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2734 //     and not commoned up and forced early.  Must come after regular
2735 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2736 //     inputs to Loop Phis; these will be split by the allocator anyways.
2737 //     Remove Opaque nodes.
2738 // (2) Move last-uses by commutative operations to the left input to encourage
2739 //     Intel update-in-place two-address operations and better register usage
2740 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2741 //     calls canonicalizing them back.
2742 // (3) Count the number of double-precision FP ops, single-precision FP ops
2743 //     and call sites.  On Intel, we can get correct rounding either by
2744 //     forcing singles to memory (requires extra stores and loads after each
2745 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2746 //     clearing the mode bit around call sites).  The mode bit is only used
2747 //     if the relative frequency of single FP ops to calls is low enough.
2748 //     This is a key transform for SPEC mpeg_audio.
2749 // (4) Detect infinite loops; blobs of code reachable from above but not
2750 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2751 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2752 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2753 //     Detection is by looking for IfNodes where only 1 projection is
2754 //     reachable from below or CatchNodes missing some targets.
2755 // (5) Assert for insane oop offsets in debug mode.
2756 
2757 bool Compile::final_graph_reshaping() {
2758   // an infinite loop may have been eliminated by the optimizer,
2759   // in which case the graph will be empty.
2760   if (root()->req() == 1) {
2761     record_method_not_compilable("trivial infinite loop");
2762     return true;
2763   }
2764 
2765   Final_Reshape_Counts frc;
2766 
2767   // Visit everybody reachable!
2768   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2769   Node_Stack nstack(unique() >> 1);
2770   final_graph_reshaping_walk(nstack, root(), frc);
2771 
2772   // Check for unreachable (from below) code (i.e., infinite loops).
2773   for( uint i = 0; i < frc._tests.size(); i++ ) {
2774     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2775     // Get number of CFG targets.
2776     // Note that PCTables include exception targets after calls.
2777     uint required_outcnt = n->required_outcnt();
2778     if (n->outcnt() != required_outcnt) {
2779       // Check for a few special cases.  Rethrow Nodes never take the
2780       // 'fall-thru' path, so expected kids is 1 less.
2781       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2782         if (n->in(0)->in(0)->is_Call()) {
2783           CallNode *call = n->in(0)->in(0)->as_Call();
2784           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2785             required_outcnt--;      // Rethrow always has 1 less kid
2786           } else if (call->req() > TypeFunc::Parms &&
2787                      call->is_CallDynamicJava()) {
2788             // Check for null receiver. In such case, the optimizer has
2789             // detected that the virtual call will always result in a null
2790             // pointer exception. The fall-through projection of this CatchNode
2791             // will not be populated.
2792             Node *arg0 = call->in(TypeFunc::Parms);
2793             if (arg0->is_Type() &&
2794                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2795               required_outcnt--;
2796             }
2797           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2798                      call->req() > TypeFunc::Parms+1 &&
2799                      call->is_CallStaticJava()) {
2800             // Check for negative array length. In such case, the optimizer has
2801             // detected that the allocation attempt will always result in an
2802             // exception. There is no fall-through projection of this CatchNode .
2803             Node *arg1 = call->in(TypeFunc::Parms+1);
2804             if (arg1->is_Type() &&
2805                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2806               required_outcnt--;
2807             }
2808           }
2809         }
2810       }
2811       // Recheck with a better notion of 'required_outcnt'
2812       if (n->outcnt() != required_outcnt) {
2813         record_method_not_compilable("malformed control flow");
2814         return true;            // Not all targets reachable!
2815       }
2816     }
2817     // Check that I actually visited all kids.  Unreached kids
2818     // must be infinite loops.
2819     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2820       if (!frc._visited.test(n->fast_out(j)->_idx)) {
2821         record_method_not_compilable("infinite loop");
2822         return true;            // Found unvisited kid; must be unreach
2823       }
2824   }
2825 
2826   // If original bytecodes contained a mixture of floats and doubles
2827   // check if the optimizer has made it homogenous, item (3).
2828   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2829       frc.get_float_count() > 32 &&
2830       frc.get_double_count() == 0 &&
2831       (10 * frc.get_call_count() < frc.get_float_count()) ) {
2832     set_24_bit_selection_and_mode( false,  true );
2833   }
2834 
2835   set_java_calls(frc.get_java_call_count());
2836   set_inner_loops(frc.get_inner_loop_count());
2837 
2838   // No infinite loops, no reason to bail out.
2839   return false;
2840 }
2841 
2842 //-----------------------------too_many_traps----------------------------------
2843 // Report if there are too many traps at the current method and bci.
2844 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2845 bool Compile::too_many_traps(ciMethod* method,
2846                              int bci,
2847                              Deoptimization::DeoptReason reason) {
2848   ciMethodData* md = method->method_data();
2849   if (md->is_empty()) {
2850     // Assume the trap has not occurred, or that it occurred only
2851     // because of a transient condition during start-up in the interpreter.
2852     return false;
2853   }
2854   if (md->has_trap_at(bci, reason) != 0) {
2855     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2856     // Also, if there are multiple reasons, or if there is no per-BCI record,
2857     // assume the worst.
2858     if (log())
2859       log()->elem("observe trap='%s' count='%d'",
2860                   Deoptimization::trap_reason_name(reason),
2861                   md->trap_count(reason));
2862     return true;
2863   } else {
2864     // Ignore method/bci and see if there have been too many globally.
2865     return too_many_traps(reason, md);
2866   }
2867 }
2868 
2869 // Less-accurate variant which does not require a method and bci.
2870 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2871                              ciMethodData* logmd) {
2872  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2873     // Too many traps globally.
2874     // Note that we use cumulative trap_count, not just md->trap_count.
2875     if (log()) {
2876       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2877       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2878                   Deoptimization::trap_reason_name(reason),
2879                   mcount, trap_count(reason));
2880     }
2881     return true;
2882   } else {
2883     // The coast is clear.
2884     return false;
2885   }
2886 }
2887 
2888 //--------------------------too_many_recompiles--------------------------------
2889 // Report if there are too many recompiles at the current method and bci.
2890 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2891 // Is not eager to return true, since this will cause the compiler to use
2892 // Action_none for a trap point, to avoid too many recompilations.
2893 bool Compile::too_many_recompiles(ciMethod* method,
2894                                   int bci,
2895                                   Deoptimization::DeoptReason reason) {
2896   ciMethodData* md = method->method_data();
2897   if (md->is_empty()) {
2898     // Assume the trap has not occurred, or that it occurred only
2899     // because of a transient condition during start-up in the interpreter.
2900     return false;
2901   }
2902   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2903   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2904   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2905   Deoptimization::DeoptReason per_bc_reason
2906     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2907   if ((per_bc_reason == Deoptimization::Reason_none
2908        || md->has_trap_at(bci, reason) != 0)
2909       // The trap frequency measure we care about is the recompile count:
2910       && md->trap_recompiled_at(bci)
2911       && md->overflow_recompile_count() >= bc_cutoff) {
2912     // Do not emit a trap here if it has already caused recompilations.
2913     // Also, if there are multiple reasons, or if there is no per-BCI record,
2914     // assume the worst.
2915     if (log())
2916       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2917                   Deoptimization::trap_reason_name(reason),
2918                   md->trap_count(reason),
2919                   md->overflow_recompile_count());
2920     return true;
2921   } else if (trap_count(reason) != 0
2922              && decompile_count() >= m_cutoff) {
2923     // Too many recompiles globally, and we have seen this sort of trap.
2924     // Use cumulative decompile_count, not just md->decompile_count.
2925     if (log())
2926       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2927                   Deoptimization::trap_reason_name(reason),
2928                   md->trap_count(reason), trap_count(reason),
2929                   md->decompile_count(), decompile_count());
2930     return true;
2931   } else {
2932     // The coast is clear.
2933     return false;
2934   }
2935 }
2936 
2937 
2938 #ifndef PRODUCT
2939 //------------------------------verify_graph_edges---------------------------
2940 // Walk the Graph and verify that there is a one-to-one correspondence
2941 // between Use-Def edges and Def-Use edges in the graph.
2942 void Compile::verify_graph_edges(bool no_dead_code) {
2943   if (VerifyGraphEdges) {
2944     ResourceArea *area = Thread::current()->resource_area();
2945     Unique_Node_List visited(area);
2946     // Call recursive graph walk to check edges
2947     _root->verify_edges(visited);
2948     if (no_dead_code) {
2949       // Now make sure that no visited node is used by an unvisited node.
2950       bool dead_nodes = 0;
2951       Unique_Node_List checked(area);
2952       while (visited.size() > 0) {
2953         Node* n = visited.pop();
2954         checked.push(n);
2955         for (uint i = 0; i < n->outcnt(); i++) {
2956           Node* use = n->raw_out(i);
2957           if (checked.member(use))  continue;  // already checked
2958           if (visited.member(use))  continue;  // already in the graph
2959           if (use->is_Con())        continue;  // a dead ConNode is OK
2960           // At this point, we have found a dead node which is DU-reachable.
2961           if (dead_nodes++ == 0)
2962             tty->print_cr("*** Dead nodes reachable via DU edges:");
2963           use->dump(2);
2964           tty->print_cr("---");
2965           checked.push(use);  // No repeats; pretend it is now checked.
2966         }
2967       }
2968       assert(dead_nodes == 0, "using nodes must be reachable from root");
2969     }
2970   }
2971 }
2972 #endif
2973 
2974 // The Compile object keeps track of failure reasons separately from the ciEnv.
2975 // This is required because there is not quite a 1-1 relation between the
2976 // ciEnv and its compilation task and the Compile object.  Note that one
2977 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2978 // to backtrack and retry without subsuming loads.  Other than this backtracking
2979 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2980 // by the logic in C2Compiler.
2981 void Compile::record_failure(const char* reason) {
2982   if (log() != NULL) {
2983     log()->elem("failure reason='%s' phase='compile'", reason);
2984   }
2985   if (_failure_reason == NULL) {
2986     // Record the first failure reason.
2987     _failure_reason = reason;
2988   }
2989   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2990     C->print_method(_failure_reason);
2991   }
2992   _root = NULL;  // flush the graph, too
2993 }
2994 
2995 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2996   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2997 {
2998   if (dolog) {
2999     C = Compile::current();
3000     _log = C->log();
3001   } else {
3002     C = NULL;
3003     _log = NULL;
3004   }
3005   if (_log != NULL) {
3006     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
3007     _log->stamp();
3008     _log->end_head();
3009   }
3010 }
3011 
3012 Compile::TracePhase::~TracePhase() {
3013   if (_log != NULL) {
3014     _log->done("phase nodes='%d'", C->unique());
3015   }
3016 }
3017 
3018 //=============================================================================
3019 // Two Constant's are equal when the type and the value are equal.
3020 bool Compile::Constant::operator==(const Constant& other) {
3021   if (type()          != other.type()         )  return false;
3022   if (can_be_reused() != other.can_be_reused())  return false;
3023   // For floating point values we compare the bit pattern.
3024   switch (type()) {
3025   case T_FLOAT:   return (_value.i == other._value.i);
3026   case T_LONG:
3027   case T_DOUBLE:  return (_value.j == other._value.j);
3028   case T_OBJECT:
3029   case T_ADDRESS: return (_value.l == other._value.l);
3030   case T_VOID:    return (_value.l == other._value.l);  // jump-table entries
3031   default: ShouldNotReachHere();
3032   }
3033   return false;
3034 }
3035 
3036 // Emit constants grouped in the following order:
3037 static BasicType type_order[] = {
3038   T_FLOAT,    // 32-bit
3039   T_OBJECT,   // 32 or 64-bit
3040   T_ADDRESS,  // 32 or 64-bit
3041   T_DOUBLE,   // 64-bit
3042   T_LONG,     // 64-bit
3043   T_VOID,     // 32 or 64-bit (jump-tables are at the end of the constant table for code emission reasons)
3044   T_ILLEGAL
3045 };
3046 
3047 static int type_to_size_in_bytes(BasicType t) {
3048   switch (t) {
3049   case T_LONG:    return sizeof(jlong  );
3050   case T_FLOAT:   return sizeof(jfloat );
3051   case T_DOUBLE:  return sizeof(jdouble);
3052     // We use T_VOID as marker for jump-table entries (labels) which
3053     // need an interal word relocation.
3054   case T_VOID:
3055   case T_ADDRESS:
3056   case T_OBJECT:  return sizeof(jobject);
3057   }
3058 
3059   ShouldNotReachHere();
3060   return -1;
3061 }
3062 
3063 void Compile::ConstantTable::calculate_offsets_and_size() {
3064   int size = 0;
3065   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
3066     BasicType type = type_order[t];
3067 
3068     for (int i = 0; i < _constants.length(); i++) {
3069       Constant con = _constants.at(i);
3070       if (con.type() != type)  continue;  // Skip other types.
3071 
3072       // Align size for type.
3073       int typesize = type_to_size_in_bytes(con.type());
3074       size = align_size_up(size, typesize);
3075 
3076       // Set offset.
3077       con.set_offset(size);
3078       _constants.at_put(i, con);
3079 
3080       // Add type size.
3081       size = size + typesize;
3082     }
3083   }
3084 
3085   // Align size up to the next section start (which is insts; see
3086   // CodeBuffer::align_at_start).
3087   assert(_size == -1, "already set?");
3088   _size = align_size_up(size, CodeEntryAlignment);
3089 
3090   if (Matcher::constant_table_absolute_addressing) {
3091     set_table_base_offset(0);  // No table base offset required
3092   } else {
3093     if (UseRDPCForConstantTableBase) {
3094       // table base offset is set in MachConstantBaseNode::emit
3095     } else {
3096       // When RDPC is not used, the table base is set into the middle of
3097       // the constant table.
3098       int half_size = _size / 2;
3099       assert(half_size * 2 == _size, "sanity");
3100       set_table_base_offset(-half_size);
3101     }
3102   }
3103 }
3104 
3105 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3106   MacroAssembler _masm(&cb);
3107   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
3108     BasicType type = type_order[t];
3109 
3110     for (int i = 0; i < _constants.length(); i++) {
3111       Constant con = _constants.at(i);
3112       if (con.type() != type)  continue;  // Skip other types.
3113 
3114       address constant_addr;
3115       switch (con.type()) {
3116       case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3117       case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3118       case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3119       case T_OBJECT: {
3120         jobject obj = con.get_jobject();
3121         int oop_index = _masm.oop_recorder()->find_index(obj);
3122         constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3123         break;
3124       }
3125       case T_ADDRESS: {
3126         address addr = (address) con.get_jobject();
3127         constant_addr = _masm.address_constant(addr);
3128         break;
3129       }
3130       // We use T_VOID as marker for jump-table entries (labels) which
3131       // need an interal word relocation.
3132       case T_VOID: {
3133         // Write a dummy word.  The real value is filled in later
3134         // in fill_jump_table_in_constant_table.
3135         address addr = (address) con.get_jobject();
3136         constant_addr = _masm.address_constant(addr);
3137         break;
3138       }
3139       default: ShouldNotReachHere();
3140       }
3141       assert(constant_addr != NULL, "consts section too small");
3142       assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3143     }
3144   }
3145 }
3146 
3147 int Compile::ConstantTable::find_offset(Constant& con) const {
3148   int idx = _constants.find(con);
3149   assert(idx != -1, "constant must be in constant table");
3150   int offset = _constants.at(idx).offset();
3151   assert(offset != -1, "constant table not emitted yet?");
3152   return offset;
3153 }
3154 
3155 void Compile::ConstantTable::add(Constant& con) {
3156   if (con.can_be_reused()) {
3157     int idx = _constants.find(con);
3158     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3159       return;
3160     }
3161   }
3162   (void) _constants.append(con);
3163 }
3164 
3165 Compile::Constant Compile::ConstantTable::add(BasicType type, jvalue value) {
3166   Constant con(type, value);
3167   add(con);
3168   return con;
3169 }
3170 
3171 Compile::Constant Compile::ConstantTable::add(MachOper* oper) {
3172   jvalue value;
3173   BasicType type = oper->type()->basic_type();
3174   switch (type) {
3175   case T_LONG:    value.j = oper->constantL(); break;
3176   case T_FLOAT:   value.f = oper->constantF(); break;
3177   case T_DOUBLE:  value.d = oper->constantD(); break;
3178   case T_OBJECT:
3179   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3180   default: ShouldNotReachHere();
3181   }
3182   return add(type, value);
3183 }
3184 
3185 Compile::Constant Compile::ConstantTable::allocate_jump_table(MachConstantNode* n) {
3186   jvalue value;
3187   // We can use the node pointer here to identify the right jump-table
3188   // as this method is called from Compile::Fill_buffer right before
3189   // the MachNodes are emitted and the jump-table is filled (means the
3190   // MachNode pointers do not change anymore).
3191   value.l = (jobject) n;
3192   Constant con(T_VOID, value, false);  // Labels of a jump-table cannot be reused.
3193   for (uint i = 0; i < n->outcnt(); i++) {
3194     add(con);
3195   }
3196   return con;
3197 }
3198 
3199 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3200   // If called from Compile::scratch_emit_size do nothing.
3201   if (Compile::current()->in_scratch_emit_size())  return;
3202 
3203   assert(labels.is_nonempty(), "must be");
3204   assert((uint) labels.length() == n->outcnt(), err_msg("must be equal: %d == %d", labels.length(), n->outcnt()));
3205 
3206   // Since MachConstantNode::constant_offset() also contains
3207   // table_base_offset() we need to subtract the table_base_offset()
3208   // to get the plain offset into the constant table.
3209   int offset = n->constant_offset() - table_base_offset();
3210 
3211   MacroAssembler _masm(&cb);
3212   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3213 
3214   for (int i = 0; i < labels.length(); i++) {
3215     address* constant_addr = &jump_table_base[i];
3216     assert(*constant_addr == (address) n, "all jump-table entries must contain node pointer");
3217     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3218     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3219   }
3220 }