1 //
   2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // Block initializing store
 475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
 476 
 477 // tertiary op of a LoadP or StoreP encoding
 478 #define REGP_OP true
 479 
 480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 482 static Register reg_to_register_object(int register_encoding);
 483 
 484 // Used by the DFA in dfa_sparc.cpp.
 485 // Check for being able to use a V9 branch-on-register.  Requires a
 486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 487 // extended.  Doesn't work following an integer ADD, for example, because of
 488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 490 // replace them with zero, which could become sign-extension in a different OS
 491 // release.  There's no obvious reason why an interrupt will ever fill these
 492 // bits with non-zero junk (the registers are reloaded with standard LD
 493 // instructions which either zero-fill or sign-fill).
 494 bool can_branch_register( Node *bol, Node *cmp ) {
 495   if( !BranchOnRegister ) return false;
 496 #ifdef _LP64
 497   if( cmp->Opcode() == Op_CmpP )
 498     return true;  // No problems with pointer compares
 499 #endif
 500   if( cmp->Opcode() == Op_CmpL )
 501     return true;  // No problems with long compares
 502 
 503   if( !SparcV9RegsHiBitsZero ) return false;
 504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 505       bol->as_Bool()->_test._test != BoolTest::eq )
 506      return false;
 507 
 508   // Check for comparing against a 'safe' value.  Any operation which
 509   // clears out the high word is safe.  Thus, loads and certain shifts
 510   // are safe, as are non-negative constants.  Any operation which
 511   // preserves zero bits in the high word is safe as long as each of its
 512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 513   // inputs are safe.  At present, the only important case to recognize
 514   // seems to be loads.  Constants should fold away, and shifts &
 515   // logicals can use the 'cc' forms.
 516   Node *x = cmp->in(1);
 517   if( x->is_Load() ) return true;
 518   if( x->is_Phi() ) {
 519     for( uint i = 1; i < x->req(); i++ )
 520       if( !x->in(i)->is_Load() )
 521         return false;
 522     return true;
 523   }
 524   return false;
 525 }
 526 
 527 // ****************************************************************************
 528 
 529 // REQUIRED FUNCTIONALITY
 530 
 531 // !!!!! Special hack to get all type of calls to specify the byte offset
 532 //       from the start of the call to the point where the return address
 533 //       will point.
 534 //       The "return address" is the address of the call instruction, plus 8.
 535 
 536 int MachCallStaticJavaNode::ret_addr_offset() {
 537   int offset = NativeCall::instruction_size;  // call; delay slot
 538   if (_method_handle_invoke)
 539     offset += 4;  // restore SP
 540   return offset;
 541 }
 542 
 543 int MachCallDynamicJavaNode::ret_addr_offset() {
 544   int vtable_index = this->_vtable_index;
 545   if (vtable_index < 0) {
 546     // must be invalid_vtable_index, not nonvirtual_vtable_index
 547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 548     return (NativeMovConstReg::instruction_size +
 549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 550   } else {
 551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 554     int klass_load_size;
 555     if (UseCompressedOops) {
 556       assert(Universe::heap() != NULL, "java heap should be initialized");
 557       if (Universe::narrow_oop_base() == NULL)
 558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 559       else
 560         klass_load_size = 3*BytesPerInstWord;
 561     } else {
 562       klass_load_size = 1*BytesPerInstWord;
 563     }
 564     if( Assembler::is_simm13(v_off) ) {
 565       return klass_load_size +
 566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 567              NativeCall::instruction_size);  // call; delay slot
 568     } else {
 569       return klass_load_size +
 570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 571              NativeCall::instruction_size);  // call; delay slot
 572     }
 573   }
 574 }
 575 
 576 int MachCallRuntimeNode::ret_addr_offset() {
 577 #ifdef _LP64
 578   if (MacroAssembler::is_far_target(entry_point())) {
 579     return NativeFarCall::instruction_size;
 580   } else {
 581     return NativeCall::instruction_size;
 582   }
 583 #else
 584   return NativeCall::instruction_size;  // call; delay slot
 585 #endif
 586 }
 587 
 588 // Indicate if the safepoint node needs the polling page as an input.
 589 // Since Sparc does not have absolute addressing, it does.
 590 bool SafePointNode::needs_polling_address_input() {
 591   return true;
 592 }
 593 
 594 // emit an interrupt that is caught by the debugger (for debugging compiler)
 595 void emit_break(CodeBuffer &cbuf) {
 596   MacroAssembler _masm(&cbuf);
 597   __ breakpoint_trap();
 598 }
 599 
 600 #ifndef PRODUCT
 601 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 602   st->print("TA");
 603 }
 604 #endif
 605 
 606 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 607   emit_break(cbuf);
 608 }
 609 
 610 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 611   return MachNode::size(ra_);
 612 }
 613 
 614 // Traceable jump
 615 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 616   MacroAssembler _masm(&cbuf);
 617   Register rdest = reg_to_register_object(jump_target);
 618   __ JMP(rdest, 0);
 619   __ delayed()->nop();
 620 }
 621 
 622 // Traceable jump and set exception pc
 623 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 624   MacroAssembler _masm(&cbuf);
 625   Register rdest = reg_to_register_object(jump_target);
 626   __ JMP(rdest, 0);
 627   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 628 }
 629 
 630 void emit_nop(CodeBuffer &cbuf) {
 631   MacroAssembler _masm(&cbuf);
 632   __ nop();
 633 }
 634 
 635 void emit_illtrap(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ illtrap(0);
 638 }
 639 
 640 
 641 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 642   assert(n->rule() != loadUB_rule, "");
 643 
 644   intptr_t offset = 0;
 645   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 646   const Node* addr = n->get_base_and_disp(offset, adr_type);
 647   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 648   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 649   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 650   atype = atype->add_offset(offset);
 651   assert(disp32 == offset, "wrong disp32");
 652   return atype->_offset;
 653 }
 654 
 655 
 656 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 657   assert(n->rule() != loadUB_rule, "");
 658 
 659   intptr_t offset = 0;
 660   Node* addr = n->in(2);
 661   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 662   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 663     Node* a = addr->in(2/*AddPNode::Address*/);
 664     Node* o = addr->in(3/*AddPNode::Offset*/);
 665     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 666     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 667     assert(atype->isa_oop_ptr(), "still an oop");
 668   }
 669   offset = atype->is_ptr()->_offset;
 670   if (offset != Type::OffsetBot)  offset += disp32;
 671   return offset;
 672 }
 673 
 674 static inline jdouble replicate_immI(int con, int count, int width) {
 675   // Load a constant replicated "count" times with width "width"
 676   int bit_width = width * 8;
 677   jlong elt_val = con;
 678   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 679   jlong val = elt_val;
 680   for (int i = 0; i < count - 1; i++) {
 681     val <<= bit_width;
 682     val |= elt_val;
 683   }
 684   jdouble dval = *((jdouble*) &val);  // coerce to double type
 685   return dval;
 686 }
 687 
 688 // Standard Sparc opcode form2 field breakdown
 689 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 690   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 691   int op = (f30 << 30) |
 692            (f29 << 29) |
 693            (f25 << 25) |
 694            (f22 << 22) |
 695            (f20 << 20) |
 696            (f19 << 19) |
 697            (f0  <<  0);
 698   cbuf.insts()->emit_int32(op);
 699 }
 700 
 701 // Standard Sparc opcode form2 field breakdown
 702 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 703   f0 >>= 10;           // Drop 10 bits
 704   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f22 << 22) |
 708            (f0  <<  0);
 709   cbuf.insts()->emit_int32(op);
 710 }
 711 
 712 // Standard Sparc opcode form3 field breakdown
 713 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 714   int op = (f30 << 30) |
 715            (f25 << 25) |
 716            (f19 << 19) |
 717            (f14 << 14) |
 718            (f5  <<  5) |
 719            (f0  <<  0);
 720   cbuf.insts()->emit_int32(op);
 721 }
 722 
 723 // Standard Sparc opcode form3 field breakdown
 724 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 725   simm13 &= (1<<13)-1; // Mask to 13 bits
 726   int op = (f30 << 30) |
 727            (f25 << 25) |
 728            (f19 << 19) |
 729            (f14 << 14) |
 730            (1   << 13) | // bit to indicate immediate-mode
 731            (simm13<<0);
 732   cbuf.insts()->emit_int32(op);
 733 }
 734 
 735 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 736   simm10 &= (1<<10)-1; // Mask to 10 bits
 737   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 738 }
 739 
 740 #ifdef ASSERT
 741 // Helper function for VerifyOops in emit_form3_mem_reg
 742 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 743   warning("VerifyOops encountered unexpected instruction:");
 744   n->dump(2);
 745   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 746 }
 747 #endif
 748 
 749 
 750 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 751                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 752 
 753 #ifdef ASSERT
 754   // The following code implements the +VerifyOops feature.
 755   // It verifies oop values which are loaded into or stored out of
 756   // the current method activation.  +VerifyOops complements techniques
 757   // like ScavengeALot, because it eagerly inspects oops in transit,
 758   // as they enter or leave the stack, as opposed to ScavengeALot,
 759   // which inspects oops "at rest", in the stack or heap, at safepoints.
 760   // For this reason, +VerifyOops can sometimes detect bugs very close
 761   // to their point of creation.  It can also serve as a cross-check
 762   // on the validity of oop maps, when used toegether with ScavengeALot.
 763 
 764   // It would be good to verify oops at other points, especially
 765   // when an oop is used as a base pointer for a load or store.
 766   // This is presently difficult, because it is hard to know when
 767   // a base address is biased or not.  (If we had such information,
 768   // it would be easy and useful to make a two-argument version of
 769   // verify_oop which unbiases the base, and performs verification.)
 770 
 771   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 772   bool is_verified_oop_base  = false;
 773   bool is_verified_oop_load  = false;
 774   bool is_verified_oop_store = false;
 775   int tmp_enc = -1;
 776   if (VerifyOops && src1_enc != R_SP_enc) {
 777     // classify the op, mainly for an assert check
 778     int st_op = 0, ld_op = 0;
 779     switch (primary) {
 780     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 781     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 782     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 783     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 784     case Assembler::std_op3:  st_op = Op_StoreL; break;
 785     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 786     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 787 
 788     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 789     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 790     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 791     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 792     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 793     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 794     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 795     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 796     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 797     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 798     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 799 
 800     default: ShouldNotReachHere();
 801     }
 802     if (tertiary == REGP_OP) {
 803       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 804       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 805       else                          ShouldNotReachHere();
 806       if (st_op) {
 807         // a store
 808         // inputs are (0:control, 1:memory, 2:address, 3:value)
 809         Node* n2 = n->in(3);
 810         if (n2 != NULL) {
 811           const Type* t = n2->bottom_type();
 812           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 813         }
 814       } else {
 815         // a load
 816         const Type* t = n->bottom_type();
 817         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 818       }
 819     }
 820 
 821     if (ld_op) {
 822       // a Load
 823       // inputs are (0:control, 1:memory, 2:address)
 824       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 825           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 826           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 827           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 828           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 829           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 830           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 831           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 832           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 833           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 834           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 835           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 836           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 837           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
 839           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
 840           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
 841           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
 842           !(n->rule() == loadUB_rule)) {
 843         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 844       }
 845     } else if (st_op) {
 846       // a Store
 847       // inputs are (0:control, 1:memory, 2:address, 3:value)
 848       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 849           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 850           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 851           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 852           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 853           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
 854           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
 855           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
 856           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 857         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 858       }
 859     }
 860 
 861     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 862       Node* addr = n->in(2);
 863       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 864         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 865         if (atype != NULL) {
 866           intptr_t offset = get_offset_from_base(n, atype, disp32);
 867           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 868           if (offset != offset_2) {
 869             get_offset_from_base(n, atype, disp32);
 870             get_offset_from_base_2(n, atype, disp32);
 871           }
 872           assert(offset == offset_2, "different offsets");
 873           if (offset == disp32) {
 874             // we now know that src1 is a true oop pointer
 875             is_verified_oop_base = true;
 876             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 877               if( primary == Assembler::ldd_op3 ) {
 878                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 879               } else {
 880                 tmp_enc = dst_enc;
 881                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 882                 assert(src1_enc != dst_enc, "");
 883               }
 884             }
 885           }
 886           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 887                        || offset == oopDesc::mark_offset_in_bytes())) {
 888                       // loading the mark should not be allowed either, but
 889                       // we don't check this since it conflicts with InlineObjectHash
 890                       // usage of LoadINode to get the mark. We could keep the
 891                       // check if we create a new LoadMarkNode
 892             // but do not verify the object before its header is initialized
 893             ShouldNotReachHere();
 894           }
 895         }
 896       }
 897     }
 898   }
 899 #endif
 900 
 901   uint instr;
 902   instr = (Assembler::ldst_op << 30)
 903         | (dst_enc        << 25)
 904         | (primary        << 19)
 905         | (src1_enc       << 14);
 906 
 907   uint index = src2_enc;
 908   int disp = disp32;
 909 
 910   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 911     disp += STACK_BIAS;
 912 
 913   // We should have a compiler bailout here rather than a guarantee.
 914   // Better yet would be some mechanism to handle variable-size matches correctly.
 915   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 916 
 917   if( disp == 0 ) {
 918     // use reg-reg form
 919     // bit 13 is already zero
 920     instr |= index;
 921   } else {
 922     // use reg-imm form
 923     instr |= 0x00002000;          // set bit 13 to one
 924     instr |= disp & 0x1FFF;
 925   }
 926 
 927   cbuf.insts()->emit_int32(instr);
 928 
 929 #ifdef ASSERT
 930   {
 931     MacroAssembler _masm(&cbuf);
 932     if (is_verified_oop_base) {
 933       __ verify_oop(reg_to_register_object(src1_enc));
 934     }
 935     if (is_verified_oop_store) {
 936       __ verify_oop(reg_to_register_object(dst_enc));
 937     }
 938     if (tmp_enc != -1) {
 939       __ mov(O7, reg_to_register_object(tmp_enc));
 940     }
 941     if (is_verified_oop_load) {
 942       __ verify_oop(reg_to_register_object(dst_enc));
 943     }
 944   }
 945 #endif
 946 }
 947 
 948 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 949   // The method which records debug information at every safepoint
 950   // expects the call to be the first instruction in the snippet as
 951   // it creates a PcDesc structure which tracks the offset of a call
 952   // from the start of the codeBlob. This offset is computed as
 953   // code_end() - code_begin() of the code which has been emitted
 954   // so far.
 955   // In this particular case we have skirted around the problem by
 956   // putting the "mov" instruction in the delay slot but the problem
 957   // may bite us again at some other point and a cleaner/generic
 958   // solution using relocations would be needed.
 959   MacroAssembler _masm(&cbuf);
 960   __ set_inst_mark();
 961 
 962   // We flush the current window just so that there is a valid stack copy
 963   // the fact that the current window becomes active again instantly is
 964   // not a problem there is nothing live in it.
 965 
 966 #ifdef ASSERT
 967   int startpos = __ offset();
 968 #endif /* ASSERT */
 969 
 970   __ call((address)entry_point, rtype);
 971 
 972   if (preserve_g2)   __ delayed()->mov(G2, L7);
 973   else __ delayed()->nop();
 974 
 975   if (preserve_g2)   __ mov(L7, G2);
 976 
 977 #ifdef ASSERT
 978   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 979 #ifdef _LP64
 980     // Trash argument dump slots.
 981     __ set(0xb0b8ac0db0b8ac0d, G1);
 982     __ mov(G1, G5);
 983     __ stx(G1, SP, STACK_BIAS + 0x80);
 984     __ stx(G1, SP, STACK_BIAS + 0x88);
 985     __ stx(G1, SP, STACK_BIAS + 0x90);
 986     __ stx(G1, SP, STACK_BIAS + 0x98);
 987     __ stx(G1, SP, STACK_BIAS + 0xA0);
 988     __ stx(G1, SP, STACK_BIAS + 0xA8);
 989 #else // _LP64
 990     // this is also a native call, so smash the first 7 stack locations,
 991     // and the various registers
 992 
 993     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
 994     // while [SP+0x44..0x58] are the argument dump slots.
 995     __ set((intptr_t)0xbaadf00d, G1);
 996     __ mov(G1, G5);
 997     __ sllx(G1, 32, G1);
 998     __ or3(G1, G5, G1);
 999     __ mov(G1, G5);
1000     __ stx(G1, SP, 0x40);
1001     __ stx(G1, SP, 0x48);
1002     __ stx(G1, SP, 0x50);
1003     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1004 #endif // _LP64
1005   }
1006 #endif /*ASSERT*/
1007 }
1008 
1009 //=============================================================================
1010 // REQUIRED FUNCTIONALITY for encoding
1011 void emit_lo(CodeBuffer &cbuf, int val) {  }
1012 void emit_hi(CodeBuffer &cbuf, int val) {  }
1013 
1014 
1015 //=============================================================================
1016 const bool Matcher::constant_table_absolute_addressing = false;
1017 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
1018 
1019 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1020   Compile* C = ra_->C;
1021   Compile::ConstantTable& constant_table = C->constant_table();
1022   MacroAssembler _masm(&cbuf);
1023 
1024   Register r = as_Register(ra_->get_encode(this));
1025   CodeSection* cs = __ code()->consts();
1026   int consts_size = cs->align_at_start(cs->size());
1027 
1028   if (UseRDPCForConstantTableBase) {
1029     // For the following RDPC logic to work correctly the consts
1030     // section must be allocated right before the insts section.  This
1031     // assert checks for that.  The layout and the SECT_* constants
1032     // are defined in src/share/vm/asm/codeBuffer.hpp.
1033     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1034     int offset = __ offset();
1035     int disp;
1036 
1037     // If the displacement from the current PC to the constant table
1038     // base fits into simm13 we set the constant table base to the
1039     // current PC.
1040     if (__ is_simm13(-(consts_size + offset))) {
1041       constant_table.set_table_base_offset(-(consts_size + offset));
1042       disp = 0;
1043     } else {
1044       // If the offset of the top constant (last entry in the table)
1045       // fits into simm13 we set the constant table base to the actual
1046       // table base.
1047       if (__ is_simm13(constant_table.top_offset())) {
1048         constant_table.set_table_base_offset(0);
1049         disp = consts_size + offset;
1050       } else {
1051         // Otherwise we set the constant table base in the middle of the
1052         // constant table.
1053         int half_consts_size = consts_size / 2;
1054         assert(half_consts_size * 2 == consts_size, "sanity");
1055         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
1056         disp = half_consts_size + offset;
1057       }
1058     }
1059 
1060     __ rdpc(r);
1061 
1062     if (disp != 0) {
1063       assert(r != O7, "need temporary");
1064       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1065     }
1066   }
1067   else {
1068     // Materialize the constant table base.
1069     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1070     address baseaddr = cs->start() + -(constant_table.table_base_offset());
1071     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1072     AddressLiteral base(baseaddr, rspec);
1073     __ set(base, r);
1074   }
1075 }
1076 
1077 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1078   if (UseRDPCForConstantTableBase) {
1079     // This is really the worst case but generally it's only 1 instruction.
1080     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1081   } else {
1082     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1083   }
1084 }
1085 
1086 #ifndef PRODUCT
1087 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1088   char reg[128];
1089   ra_->dump_register(this, reg);
1090   if (UseRDPCForConstantTableBase) {
1091     st->print("RDPC   %s\t! constant table base", reg);
1092   } else {
1093     st->print("SET    &constanttable,%s\t! constant table base", reg);
1094   }
1095 }
1096 #endif
1097 
1098 
1099 //=============================================================================
1100 
1101 #ifndef PRODUCT
1102 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1103   Compile* C = ra_->C;
1104 
1105   for (int i = 0; i < OptoPrologueNops; i++) {
1106     st->print_cr("NOP"); st->print("\t");
1107   }
1108 
1109   if( VerifyThread ) {
1110     st->print_cr("Verify_Thread"); st->print("\t");
1111   }
1112 
1113   size_t framesize = C->frame_slots() << LogBytesPerInt;
1114 
1115   // Calls to C2R adapters often do not accept exceptional returns.
1116   // We require that their callers must bang for them.  But be careful, because
1117   // some VM calls (such as call site linkage) can use several kilobytes of
1118   // stack.  But the stack safety zone should account for that.
1119   // See bugs 4446381, 4468289, 4497237.
1120   if (C->need_stack_bang(framesize)) {
1121     st->print_cr("! stack bang"); st->print("\t");
1122   }
1123 
1124   if (Assembler::is_simm13(-framesize)) {
1125     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1126   } else {
1127     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1128     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1129     st->print   ("SAVE   R_SP,R_G3,R_SP");
1130   }
1131 
1132 }
1133 #endif
1134 
1135 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1136   Compile* C = ra_->C;
1137   MacroAssembler _masm(&cbuf);
1138 
1139   for (int i = 0; i < OptoPrologueNops; i++) {
1140     __ nop();
1141   }
1142 
1143   __ verify_thread();
1144 
1145   size_t framesize = C->frame_slots() << LogBytesPerInt;
1146   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1147   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1148 
1149   // Calls to C2R adapters often do not accept exceptional returns.
1150   // We require that their callers must bang for them.  But be careful, because
1151   // some VM calls (such as call site linkage) can use several kilobytes of
1152   // stack.  But the stack safety zone should account for that.
1153   // See bugs 4446381, 4468289, 4497237.
1154   if (C->need_stack_bang(framesize)) {
1155     __ generate_stack_overflow_check(framesize);
1156   }
1157 
1158   if (Assembler::is_simm13(-framesize)) {
1159     __ save(SP, -framesize, SP);
1160   } else {
1161     __ sethi(-framesize & ~0x3ff, G3);
1162     __ add(G3, -framesize & 0x3ff, G3);
1163     __ save(SP, G3, SP);
1164   }
1165   C->set_frame_complete( __ offset() );
1166 }
1167 
1168 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1169   return MachNode::size(ra_);
1170 }
1171 
1172 int MachPrologNode::reloc() const {
1173   return 10; // a large enough number
1174 }
1175 
1176 //=============================================================================
1177 #ifndef PRODUCT
1178 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1179   Compile* C = ra_->C;
1180 
1181   if( do_polling() && ra_->C->is_method_compilation() ) {
1182     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1183 #ifdef _LP64
1184     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1185 #else
1186     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1187 #endif
1188   }
1189 
1190   if( do_polling() )
1191     st->print("RET\n\t");
1192 
1193   st->print("RESTORE");
1194 }
1195 #endif
1196 
1197 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1198   MacroAssembler _masm(&cbuf);
1199   Compile* C = ra_->C;
1200 
1201   __ verify_thread();
1202 
1203   // If this does safepoint polling, then do it here
1204   if( do_polling() && ra_->C->is_method_compilation() ) {
1205     AddressLiteral polling_page(os::get_polling_page());
1206     __ sethi(polling_page, L0);
1207     __ relocate(relocInfo::poll_return_type);
1208     __ ld_ptr( L0, 0, G0 );
1209   }
1210 
1211   // If this is a return, then stuff the restore in the delay slot
1212   if( do_polling() ) {
1213     __ ret();
1214     __ delayed()->restore();
1215   } else {
1216     __ restore();
1217   }
1218 }
1219 
1220 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1221   return MachNode::size(ra_);
1222 }
1223 
1224 int MachEpilogNode::reloc() const {
1225   return 16; // a large enough number
1226 }
1227 
1228 const Pipeline * MachEpilogNode::pipeline() const {
1229   return MachNode::pipeline_class();
1230 }
1231 
1232 int MachEpilogNode::safepoint_offset() const {
1233   assert( do_polling(), "no return for this epilog node");
1234   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1235 }
1236 
1237 //=============================================================================
1238 
1239 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1240 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1241 static enum RC rc_class( OptoReg::Name reg ) {
1242   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1243   if (OptoReg::is_stack(reg)) return rc_stack;
1244   VMReg r = OptoReg::as_VMReg(reg);
1245   if (r->is_Register()) return rc_int;
1246   assert(r->is_FloatRegister(), "must be");
1247   return rc_float;
1248 }
1249 
1250 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1251   if( cbuf ) {
1252     // Better yet would be some mechanism to handle variable-size matches correctly
1253     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1254       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1255     } else {
1256       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1257     }
1258   }
1259 #ifndef PRODUCT
1260   else if( !do_size ) {
1261     if( size != 0 ) st->print("\n\t");
1262     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1263     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1264   }
1265 #endif
1266   return size+4;
1267 }
1268 
1269 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1270   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1271 #ifndef PRODUCT
1272   else if( !do_size ) {
1273     if( size != 0 ) st->print("\n\t");
1274     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1275   }
1276 #endif
1277   return size+4;
1278 }
1279 
1280 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1281                                         PhaseRegAlloc *ra_,
1282                                         bool do_size,
1283                                         outputStream* st ) const {
1284   // Get registers to move
1285   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1286   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1287   OptoReg::Name dst_second = ra_->get_reg_second(this );
1288   OptoReg::Name dst_first = ra_->get_reg_first(this );
1289 
1290   enum RC src_second_rc = rc_class(src_second);
1291   enum RC src_first_rc = rc_class(src_first);
1292   enum RC dst_second_rc = rc_class(dst_second);
1293   enum RC dst_first_rc = rc_class(dst_first);
1294 
1295   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1296 
1297   // Generate spill code!
1298   int size = 0;
1299 
1300   if( src_first == dst_first && src_second == dst_second )
1301     return size;            // Self copy, no move
1302 
1303   // --------------------------------------
1304   // Check for mem-mem move.  Load into unused float registers and fall into
1305   // the float-store case.
1306   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1307     int offset = ra_->reg2offset(src_first);
1308     // Further check for aligned-adjacent pair, so we can use a double load
1309     if( (src_first&1)==0 && src_first+1 == src_second ) {
1310       src_second    = OptoReg::Name(R_F31_num);
1311       src_second_rc = rc_float;
1312       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1313     } else {
1314       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1315     }
1316     src_first    = OptoReg::Name(R_F30_num);
1317     src_first_rc = rc_float;
1318   }
1319 
1320   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1321     int offset = ra_->reg2offset(src_second);
1322     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1323     src_second    = OptoReg::Name(R_F31_num);
1324     src_second_rc = rc_float;
1325   }
1326 
1327   // --------------------------------------
1328   // Check for float->int copy; requires a trip through memory
1329   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1330     int offset = frame::register_save_words*wordSize;
1331     if (cbuf) {
1332       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1333       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1334       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1335       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1336     }
1337 #ifndef PRODUCT
1338     else if (!do_size) {
1339       if (size != 0) st->print("\n\t");
1340       st->print(  "SUB    R_SP,16,R_SP\n");
1341       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1342       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1343       st->print("\tADD    R_SP,16,R_SP\n");
1344     }
1345 #endif
1346     size += 16;
1347   }
1348 
1349   // Check for float->int copy on T4
1350   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1351     // Further check for aligned-adjacent pair, so we can use a double move
1352     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1353       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1354     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1355   }
1356   // Check for int->float copy on T4
1357   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1358     // Further check for aligned-adjacent pair, so we can use a double move
1359     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1360       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1361     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1362   }
1363 
1364   // --------------------------------------
1365   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1366   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1367   // hardware does the flop for me.  Doubles are always aligned, so no problem
1368   // there.  Misaligned sources only come from native-long-returns (handled
1369   // special below).
1370 #ifndef _LP64
1371   if( src_first_rc == rc_int &&     // source is already big-endian
1372       src_second_rc != rc_bad &&    // 64-bit move
1373       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1374     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1375     // Do the big-endian flop.
1376     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1377     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1378   }
1379 #endif
1380 
1381   // --------------------------------------
1382   // Check for integer reg-reg copy
1383   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1384 #ifndef _LP64
1385     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1386       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1387       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1388       //       operand contains the least significant word of the 64-bit value and vice versa.
1389       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1390       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1391       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1392       if( cbuf ) {
1393         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1394         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1395         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1396 #ifndef PRODUCT
1397       } else if( !do_size ) {
1398         if( size != 0 ) st->print("\n\t");
1399         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1400         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1401         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1402 #endif
1403       }
1404       return size+12;
1405     }
1406     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1407       // returning a long value in I0/I1
1408       // a SpillCopy must be able to target a return instruction's reg_class
1409       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1410       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1411       //       operand contains the least significant word of the 64-bit value and vice versa.
1412       OptoReg::Name tdest = dst_first;
1413 
1414       if (src_first == dst_first) {
1415         tdest = OptoReg::Name(R_O7_num);
1416         size += 4;
1417       }
1418 
1419       if( cbuf ) {
1420         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1421         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1422         // ShrL_reg_imm6
1423         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1424         // ShrR_reg_imm6  src, 0, dst
1425         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1426         if (tdest != dst_first) {
1427           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1428         }
1429       }
1430 #ifndef PRODUCT
1431       else if( !do_size ) {
1432         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1433         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1434         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1435         if (tdest != dst_first) {
1436           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1437         }
1438       }
1439 #endif // PRODUCT
1440       return size+8;
1441     }
1442 #endif // !_LP64
1443     // Else normal reg-reg copy
1444     assert( src_second != dst_first, "smashed second before evacuating it" );
1445     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1446     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1447     // This moves an aligned adjacent pair.
1448     // See if we are done.
1449     if( src_first+1 == src_second && dst_first+1 == dst_second )
1450       return size;
1451   }
1452 
1453   // Check for integer store
1454   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1455     int offset = ra_->reg2offset(dst_first);
1456     // Further check for aligned-adjacent pair, so we can use a double store
1457     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1458       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1459     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1460   }
1461 
1462   // Check for integer load
1463   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1464     int offset = ra_->reg2offset(src_first);
1465     // Further check for aligned-adjacent pair, so we can use a double load
1466     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1467       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1468     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1469   }
1470 
1471   // Check for float reg-reg copy
1472   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1473     // Further check for aligned-adjacent pair, so we can use a double move
1474     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1475       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1476     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1477   }
1478 
1479   // Check for float store
1480   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1481     int offset = ra_->reg2offset(dst_first);
1482     // Further check for aligned-adjacent pair, so we can use a double store
1483     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1484       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1485     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1486   }
1487 
1488   // Check for float load
1489   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1490     int offset = ra_->reg2offset(src_first);
1491     // Further check for aligned-adjacent pair, so we can use a double load
1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1493       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1494     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1495   }
1496 
1497   // --------------------------------------------------------------------
1498   // Check for hi bits still needing moving.  Only happens for misaligned
1499   // arguments to native calls.
1500   if( src_second == dst_second )
1501     return size;               // Self copy; no move
1502   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1503 
1504 #ifndef _LP64
1505   // In the LP64 build, all registers can be moved as aligned/adjacent
1506   // pairs, so there's never any need to move the high bits separately.
1507   // The 32-bit builds have to deal with the 32-bit ABI which can force
1508   // all sorts of silly alignment problems.
1509 
1510   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1511   // 32-bits of a 64-bit register, but are needed in low bits of another
1512   // register (else it's a hi-bits-to-hi-bits copy which should have
1513   // happened already as part of a 64-bit move)
1514   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1515     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1516     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1517     // Shift src_second down to dst_second's low bits.
1518     if( cbuf ) {
1519       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1520 #ifndef PRODUCT
1521     } else if( !do_size ) {
1522       if( size != 0 ) st->print("\n\t");
1523       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1524 #endif
1525     }
1526     return size+4;
1527   }
1528 
1529   // Check for high word integer store.  Must down-shift the hi bits
1530   // into a temp register, then fall into the case of storing int bits.
1531   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1532     // Shift src_second down to dst_second's low bits.
1533     if( cbuf ) {
1534       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1535 #ifndef PRODUCT
1536     } else if( !do_size ) {
1537       if( size != 0 ) st->print("\n\t");
1538       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1539 #endif
1540     }
1541     size+=4;
1542     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1543   }
1544 
1545   // Check for high word integer load
1546   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1547     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1548 
1549   // Check for high word integer store
1550   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1551     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1552 
1553   // Check for high word float store
1554   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1555     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1556 
1557 #endif // !_LP64
1558 
1559   Unimplemented();
1560 }
1561 
1562 #ifndef PRODUCT
1563 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1564   implementation( NULL, ra_, false, st );
1565 }
1566 #endif
1567 
1568 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1569   implementation( &cbuf, ra_, false, NULL );
1570 }
1571 
1572 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1573   return implementation( NULL, ra_, true, NULL );
1574 }
1575 
1576 //=============================================================================
1577 #ifndef PRODUCT
1578 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1579   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1580 }
1581 #endif
1582 
1583 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1584   MacroAssembler _masm(&cbuf);
1585   for(int i = 0; i < _count; i += 1) {
1586     __ nop();
1587   }
1588 }
1589 
1590 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1591   return 4 * _count;
1592 }
1593 
1594 
1595 //=============================================================================
1596 #ifndef PRODUCT
1597 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1598   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1599   int reg = ra_->get_reg_first(this);
1600   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1601 }
1602 #endif
1603 
1604 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1605   MacroAssembler _masm(&cbuf);
1606   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1607   int reg = ra_->get_encode(this);
1608 
1609   if (Assembler::is_simm13(offset)) {
1610      __ add(SP, offset, reg_to_register_object(reg));
1611   } else {
1612      __ set(offset, O7);
1613      __ add(SP, O7, reg_to_register_object(reg));
1614   }
1615 }
1616 
1617 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1618   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1619   assert(ra_ == ra_->C->regalloc(), "sanity");
1620   return ra_->C->scratch_emit_size(this);
1621 }
1622 
1623 //=============================================================================
1624 
1625 // emit call stub, compiled java to interpretor
1626 void emit_java_to_interp(CodeBuffer &cbuf ) {
1627 
1628   // Stub is fixed up when the corresponding call is converted from calling
1629   // compiled code to calling interpreted code.
1630   // set (empty), G5
1631   // jmp -1
1632 
1633   address mark = cbuf.insts_mark();  // get mark within main instrs section
1634 
1635   MacroAssembler _masm(&cbuf);
1636 
1637   address base =
1638   __ start_a_stub(Compile::MAX_stubs_size);
1639   if (base == NULL)  return;  // CodeBuffer::expand failed
1640 
1641   // static stub relocation stores the instruction address of the call
1642   __ relocate(static_stub_Relocation::spec(mark));
1643 
1644   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1645 
1646   __ set_inst_mark();
1647   AddressLiteral addrlit(-1);
1648   __ JUMP(addrlit, G3, 0);
1649 
1650   __ delayed()->nop();
1651 
1652   // Update current stubs pointer and restore code_end.
1653   __ end_a_stub();
1654 }
1655 
1656 // size of call stub, compiled java to interpretor
1657 uint size_java_to_interp() {
1658   // This doesn't need to be accurate but it must be larger or equal to
1659   // the real size of the stub.
1660   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1661           NativeJump::instruction_size + // sethi; jmp; nop
1662           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1663 }
1664 // relocation entries for call stub, compiled java to interpretor
1665 uint reloc_java_to_interp() {
1666   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1667 }
1668 
1669 
1670 //=============================================================================
1671 #ifndef PRODUCT
1672 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1673   st->print_cr("\nUEP:");
1674 #ifdef    _LP64
1675   if (UseCompressedOops) {
1676     assert(Universe::heap() != NULL, "java heap should be initialized");
1677     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1678     st->print_cr("\tSLL    R_G5,3,R_G5");
1679     if (Universe::narrow_oop_base() != NULL)
1680       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1681   } else {
1682     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1683   }
1684   st->print_cr("\tCMP    R_G5,R_G3" );
1685   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1686 #else  // _LP64
1687   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1688   st->print_cr("\tCMP    R_G5,R_G3" );
1689   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1690 #endif // _LP64
1691 }
1692 #endif
1693 
1694 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1695   MacroAssembler _masm(&cbuf);
1696   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1697   Register temp_reg   = G3;
1698   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1699 
1700   // Load klass from receiver
1701   __ load_klass(O0, temp_reg);
1702   // Compare against expected klass
1703   __ cmp(temp_reg, G5_ic_reg);
1704   // Branch to miss code, checks xcc or icc depending
1705   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1706 }
1707 
1708 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1709   return MachNode::size(ra_);
1710 }
1711 
1712 
1713 //=============================================================================
1714 
1715 uint size_exception_handler() {
1716   if (TraceJumps) {
1717     return (400); // just a guess
1718   }
1719   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1720 }
1721 
1722 uint size_deopt_handler() {
1723   if (TraceJumps) {
1724     return (400); // just a guess
1725   }
1726   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1727 }
1728 
1729 // Emit exception handler code.
1730 int emit_exception_handler(CodeBuffer& cbuf) {
1731   Register temp_reg = G3;
1732   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1733   MacroAssembler _masm(&cbuf);
1734 
1735   address base =
1736   __ start_a_stub(size_exception_handler());
1737   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1738 
1739   int offset = __ offset();
1740 
1741   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1742   __ delayed()->nop();
1743 
1744   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1745 
1746   __ end_a_stub();
1747 
1748   return offset;
1749 }
1750 
1751 int emit_deopt_handler(CodeBuffer& cbuf) {
1752   // Can't use any of the current frame's registers as we may have deopted
1753   // at a poll and everything (including G3) can be live.
1754   Register temp_reg = L0;
1755   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1756   MacroAssembler _masm(&cbuf);
1757 
1758   address base =
1759   __ start_a_stub(size_deopt_handler());
1760   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1761 
1762   int offset = __ offset();
1763   __ save_frame(0);
1764   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1765   __ delayed()->restore();
1766 
1767   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1768 
1769   __ end_a_stub();
1770   return offset;
1771 
1772 }
1773 
1774 // Given a register encoding, produce a Integer Register object
1775 static Register reg_to_register_object(int register_encoding) {
1776   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1777   return as_Register(register_encoding);
1778 }
1779 
1780 // Given a register encoding, produce a single-precision Float Register object
1781 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1782   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1783   return as_SingleFloatRegister(register_encoding);
1784 }
1785 
1786 // Given a register encoding, produce a double-precision Float Register object
1787 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1788   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1789   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1790   return as_DoubleFloatRegister(register_encoding);
1791 }
1792 
1793 const bool Matcher::match_rule_supported(int opcode) {
1794   if (!has_match_rule(opcode))
1795     return false;
1796 
1797   switch (opcode) {
1798   case Op_CountLeadingZerosI:
1799   case Op_CountLeadingZerosL:
1800   case Op_CountTrailingZerosI:
1801   case Op_CountTrailingZerosL:
1802     if (!UsePopCountInstruction)
1803       return false;
1804     break;
1805   }
1806 
1807   return true;  // Per default match rules are supported.
1808 }
1809 
1810 int Matcher::regnum_to_fpu_offset(int regnum) {
1811   return regnum - 32; // The FP registers are in the second chunk
1812 }
1813 
1814 #ifdef ASSERT
1815 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1816 #endif
1817 
1818 // Vector width in bytes
1819 const uint Matcher::vector_width_in_bytes(void) {
1820   return 8;
1821 }
1822 
1823 // Vector ideal reg
1824 const uint Matcher::vector_ideal_reg(void) {
1825   return Op_RegD;
1826 }
1827 
1828 // USII supports fxtof through the whole range of number, USIII doesn't
1829 const bool Matcher::convL2FSupported(void) {
1830   return VM_Version::has_fast_fxtof();
1831 }
1832 
1833 // Is this branch offset short enough that a short branch can be used?
1834 //
1835 // NOTE: If the platform does not provide any short branch variants, then
1836 //       this method should return false for offset 0.
1837 bool Matcher::is_short_branch_offset(int rule, int offset) {
1838   return false;
1839 }
1840 
1841 const bool Matcher::isSimpleConstant64(jlong value) {
1842   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1843   // Depends on optimizations in MacroAssembler::setx.
1844   int hi = (int)(value >> 32);
1845   int lo = (int)(value & ~0);
1846   return (hi == 0) || (hi == -1) || (lo == 0);
1847 }
1848 
1849 // No scaling for the parameter the ClearArray node.
1850 const bool Matcher::init_array_count_is_in_bytes = true;
1851 
1852 // Threshold size for cleararray.
1853 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1854 
1855 // Should the Matcher clone shifts on addressing modes, expecting them to
1856 // be subsumed into complex addressing expressions or compute them into
1857 // registers?  True for Intel but false for most RISCs
1858 const bool Matcher::clone_shift_expressions = false;
1859 
1860 // Do we need to mask the count passed to shift instructions or does
1861 // the cpu only look at the lower 5/6 bits anyway?
1862 const bool Matcher::need_masked_shift_count = false;
1863 
1864 bool Matcher::narrow_oop_use_complex_address() {
1865   NOT_LP64(ShouldNotCallThis());
1866   assert(UseCompressedOops, "only for compressed oops code");
1867   return false;
1868 }
1869 
1870 // Is it better to copy float constants, or load them directly from memory?
1871 // Intel can load a float constant from a direct address, requiring no
1872 // extra registers.  Most RISCs will have to materialize an address into a
1873 // register first, so they would do better to copy the constant from stack.
1874 const bool Matcher::rematerialize_float_constants = false;
1875 
1876 // If CPU can load and store mis-aligned doubles directly then no fixup is
1877 // needed.  Else we split the double into 2 integer pieces and move it
1878 // piece-by-piece.  Only happens when passing doubles into C code as the
1879 // Java calling convention forces doubles to be aligned.
1880 #ifdef _LP64
1881 const bool Matcher::misaligned_doubles_ok = true;
1882 #else
1883 const bool Matcher::misaligned_doubles_ok = false;
1884 #endif
1885 
1886 // No-op on SPARC.
1887 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1888 }
1889 
1890 // Advertise here if the CPU requires explicit rounding operations
1891 // to implement the UseStrictFP mode.
1892 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1893 
1894 // Are floats conerted to double when stored to stack during deoptimization?
1895 // Sparc does not handle callee-save floats.
1896 bool Matcher::float_in_double() { return false; }
1897 
1898 // Do ints take an entire long register or just half?
1899 // Note that we if-def off of _LP64.
1900 // The relevant question is how the int is callee-saved.  In _LP64
1901 // the whole long is written but de-opt'ing will have to extract
1902 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1903 #ifdef _LP64
1904 const bool Matcher::int_in_long = true;
1905 #else
1906 const bool Matcher::int_in_long = false;
1907 #endif
1908 
1909 // Return whether or not this register is ever used as an argument.  This
1910 // function is used on startup to build the trampoline stubs in generateOptoStub.
1911 // Registers not mentioned will be killed by the VM call in the trampoline, and
1912 // arguments in those registers not be available to the callee.
1913 bool Matcher::can_be_java_arg( int reg ) {
1914   // Standard sparc 6 args in registers
1915   if( reg == R_I0_num ||
1916       reg == R_I1_num ||
1917       reg == R_I2_num ||
1918       reg == R_I3_num ||
1919       reg == R_I4_num ||
1920       reg == R_I5_num ) return true;
1921 #ifdef _LP64
1922   // 64-bit builds can pass 64-bit pointers and longs in
1923   // the high I registers
1924   if( reg == R_I0H_num ||
1925       reg == R_I1H_num ||
1926       reg == R_I2H_num ||
1927       reg == R_I3H_num ||
1928       reg == R_I4H_num ||
1929       reg == R_I5H_num ) return true;
1930 
1931   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1932     return true;
1933   }
1934 
1935 #else
1936   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1937   // Longs cannot be passed in O regs, because O regs become I regs
1938   // after a 'save' and I regs get their high bits chopped off on
1939   // interrupt.
1940   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1941   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1942 #endif
1943   // A few float args in registers
1944   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1945 
1946   return false;
1947 }
1948 
1949 bool Matcher::is_spillable_arg( int reg ) {
1950   return can_be_java_arg(reg);
1951 }
1952 
1953 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1954   // Use hardware SDIVX instruction when it is
1955   // faster than a code which use multiply.
1956   return VM_Version::has_fast_idiv();
1957 }
1958 
1959 // Register for DIVI projection of divmodI
1960 RegMask Matcher::divI_proj_mask() {
1961   ShouldNotReachHere();
1962   return RegMask();
1963 }
1964 
1965 // Register for MODI projection of divmodI
1966 RegMask Matcher::modI_proj_mask() {
1967   ShouldNotReachHere();
1968   return RegMask();
1969 }
1970 
1971 // Register for DIVL projection of divmodL
1972 RegMask Matcher::divL_proj_mask() {
1973   ShouldNotReachHere();
1974   return RegMask();
1975 }
1976 
1977 // Register for MODL projection of divmodL
1978 RegMask Matcher::modL_proj_mask() {
1979   ShouldNotReachHere();
1980   return RegMask();
1981 }
1982 
1983 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1984   return L7_REGP_mask;
1985 }
1986 
1987 %}
1988 
1989 
1990 // The intptr_t operand types, defined by textual substitution.
1991 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1992 #ifdef _LP64
1993 #define immX      immL
1994 #define immX13    immL13
1995 #define immX13m7  immL13m7
1996 #define iRegX     iRegL
1997 #define g1RegX    g1RegL
1998 #else
1999 #define immX      immI
2000 #define immX13    immI13
2001 #define immX13m7  immI13m7
2002 #define iRegX     iRegI
2003 #define g1RegX    g1RegI
2004 #endif
2005 
2006 //----------ENCODING BLOCK-----------------------------------------------------
2007 // This block specifies the encoding classes used by the compiler to output
2008 // byte streams.  Encoding classes are parameterized macros used by
2009 // Machine Instruction Nodes in order to generate the bit encoding of the
2010 // instruction.  Operands specify their base encoding interface with the
2011 // interface keyword.  There are currently supported four interfaces,
2012 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2013 // operand to generate a function which returns its register number when
2014 // queried.   CONST_INTER causes an operand to generate a function which
2015 // returns the value of the constant when queried.  MEMORY_INTER causes an
2016 // operand to generate four functions which return the Base Register, the
2017 // Index Register, the Scale Value, and the Offset Value of the operand when
2018 // queried.  COND_INTER causes an operand to generate six functions which
2019 // return the encoding code (ie - encoding bits for the instruction)
2020 // associated with each basic boolean condition for a conditional instruction.
2021 //
2022 // Instructions specify two basic values for encoding.  Again, a function
2023 // is available to check if the constant displacement is an oop. They use the
2024 // ins_encode keyword to specify their encoding classes (which must be
2025 // a sequence of enc_class names, and their parameters, specified in
2026 // the encoding block), and they use the
2027 // opcode keyword to specify, in order, their primary, secondary, and
2028 // tertiary opcode.  Only the opcode sections which a particular instruction
2029 // needs for encoding need to be specified.
2030 encode %{
2031   enc_class enc_untested %{
2032 #ifdef ASSERT
2033     MacroAssembler _masm(&cbuf);
2034     __ untested("encoding");
2035 #endif
2036   %}
2037 
2038   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2039     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2040                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2041   %}
2042 
2043   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2044     emit_form3_mem_reg(cbuf, this, $primary, -1,
2045                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2046   %}
2047 
2048   enc_class form3_mem_prefetch_read( memory mem ) %{
2049     emit_form3_mem_reg(cbuf, this, $primary, -1,
2050                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2051   %}
2052 
2053   enc_class form3_mem_prefetch_write( memory mem ) %{
2054     emit_form3_mem_reg(cbuf, this, $primary, -1,
2055                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2056   %}
2057 
2058   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2059     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2060     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2061     guarantee($mem$$index == R_G0_enc, "double index?");
2062     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2063     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2064     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2065     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2066   %}
2067 
2068   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2069     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2070     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2071     guarantee($mem$$index == R_G0_enc, "double index?");
2072     // Load long with 2 instructions
2073     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2074     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2075   %}
2076 
2077   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2078   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2079     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2080     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2081   %}
2082 
2083   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2084     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2085     if( $rs2$$reg != $rd$$reg )
2086       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2087   %}
2088 
2089   // Target lo half of long
2090   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2091     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2092     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2093       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2094   %}
2095 
2096   // Source lo half of long
2097   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2098     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2099     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2100       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2101   %}
2102 
2103   // Target hi half of long
2104   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2105     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2106   %}
2107 
2108   // Source lo half of long, and leave it sign extended.
2109   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2110     // Sign extend low half
2111     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2112   %}
2113 
2114   // Source hi half of long, and leave it sign extended.
2115   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2116     // Shift high half to low half
2117     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2118   %}
2119 
2120   // Source hi half of long
2121   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2122     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2123     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2124       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2125   %}
2126 
2127   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2128     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2129   %}
2130 
2131   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2132     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2133     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2134   %}
2135 
2136   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2137     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2138     // clear if nothing else is happening
2139     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2140     // blt,a,pn done
2141     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2142     // mov dst,-1 in delay slot
2143     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2144   %}
2145 
2146   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2147     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2148   %}
2149 
2150   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2151     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2152   %}
2153 
2154   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2155     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2156   %}
2157 
2158   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2159     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2160   %}
2161 
2162   enc_class move_return_pc_to_o1() %{
2163     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2164   %}
2165 
2166 #ifdef _LP64
2167   /* %%% merge with enc_to_bool */
2168   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2169     MacroAssembler _masm(&cbuf);
2170 
2171     Register   src_reg = reg_to_register_object($src$$reg);
2172     Register   dst_reg = reg_to_register_object($dst$$reg);
2173     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2174   %}
2175 #endif
2176 
2177   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2178     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2179     MacroAssembler _masm(&cbuf);
2180 
2181     Register   p_reg = reg_to_register_object($p$$reg);
2182     Register   q_reg = reg_to_register_object($q$$reg);
2183     Register   y_reg = reg_to_register_object($y$$reg);
2184     Register tmp_reg = reg_to_register_object($tmp$$reg);
2185 
2186     __ subcc( p_reg, q_reg,   p_reg );
2187     __ add  ( p_reg, y_reg, tmp_reg );
2188     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2189   %}
2190 
2191   enc_class form_d2i_helper(regD src, regF dst) %{
2192     // fcmp %fcc0,$src,$src
2193     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2194     // branch %fcc0 not-nan, predict taken
2195     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2196     // fdtoi $src,$dst
2197     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2198     // fitos $dst,$dst (if nan)
2199     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2200     // clear $dst (if nan)
2201     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2202     // carry on here...
2203   %}
2204 
2205   enc_class form_d2l_helper(regD src, regD dst) %{
2206     // fcmp %fcc0,$src,$src  check for NAN
2207     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2208     // branch %fcc0 not-nan, predict taken
2209     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2210     // fdtox $src,$dst   convert in delay slot
2211     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2212     // fxtod $dst,$dst  (if nan)
2213     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2214     // clear $dst (if nan)
2215     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2216     // carry on here...
2217   %}
2218 
2219   enc_class form_f2i_helper(regF src, regF dst) %{
2220     // fcmps %fcc0,$src,$src
2221     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2222     // branch %fcc0 not-nan, predict taken
2223     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2224     // fstoi $src,$dst
2225     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2226     // fitos $dst,$dst (if nan)
2227     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2228     // clear $dst (if nan)
2229     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2230     // carry on here...
2231   %}
2232 
2233   enc_class form_f2l_helper(regF src, regD dst) %{
2234     // fcmps %fcc0,$src,$src
2235     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2236     // branch %fcc0 not-nan, predict taken
2237     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2238     // fstox $src,$dst
2239     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2240     // fxtod $dst,$dst (if nan)
2241     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2242     // clear $dst (if nan)
2243     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2244     // carry on here...
2245   %}
2246 
2247   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2248   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2249   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2250   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2251 
2252   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2253 
2254   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2255   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2256 
2257   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2258     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2259   %}
2260 
2261   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2262     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2263   %}
2264 
2265   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2266     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2267   %}
2268 
2269   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2270     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2271   %}
2272 
2273   enc_class form3_convI2F(regF rs2, regF rd) %{
2274     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2275   %}
2276 
2277   // Encloding class for traceable jumps
2278   enc_class form_jmpl(g3RegP dest) %{
2279     emit_jmpl(cbuf, $dest$$reg);
2280   %}
2281 
2282   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2283     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2284   %}
2285 
2286   enc_class form2_nop() %{
2287     emit_nop(cbuf);
2288   %}
2289 
2290   enc_class form2_illtrap() %{
2291     emit_illtrap(cbuf);
2292   %}
2293 
2294 
2295   // Compare longs and convert into -1, 0, 1.
2296   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2297     // CMP $src1,$src2
2298     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2299     // blt,a,pn done
2300     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2301     // mov dst,-1 in delay slot
2302     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2303     // bgt,a,pn done
2304     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2305     // mov dst,1 in delay slot
2306     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2307     // CLR    $dst
2308     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2309   %}
2310 
2311   enc_class enc_PartialSubtypeCheck() %{
2312     MacroAssembler _masm(&cbuf);
2313     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2314     __ delayed()->nop();
2315   %}
2316 
2317   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2318     MacroAssembler _masm(&cbuf);
2319     Label* L = $labl$$label;
2320     Assembler::Predict predict_taken =
2321       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2322 
2323     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2324     __ delayed()->nop();
2325   %}
2326 
2327   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2328     MacroAssembler _masm(&cbuf);
2329     Label* L = $labl$$label;
2330     Assembler::Predict predict_taken =
2331       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2332 
2333     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2334     __ delayed()->nop();
2335   %}
2336 
2337   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2338     int op = (Assembler::arith_op << 30) |
2339              ($dst$$reg << 25) |
2340              (Assembler::movcc_op3 << 19) |
2341              (1 << 18) |                    // cc2 bit for 'icc'
2342              ($cmp$$cmpcode << 14) |
2343              (0 << 13) |                    // select register move
2344              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2345              ($src$$reg << 0);
2346     cbuf.insts()->emit_int32(op);
2347   %}
2348 
2349   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2350     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2351     int op = (Assembler::arith_op << 30) |
2352              ($dst$$reg << 25) |
2353              (Assembler::movcc_op3 << 19) |
2354              (1 << 18) |                    // cc2 bit for 'icc'
2355              ($cmp$$cmpcode << 14) |
2356              (1 << 13) |                    // select immediate move
2357              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2358              (simm11 << 0);
2359     cbuf.insts()->emit_int32(op);
2360   %}
2361 
2362   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2363     int op = (Assembler::arith_op << 30) |
2364              ($dst$$reg << 25) |
2365              (Assembler::movcc_op3 << 19) |
2366              (0 << 18) |                    // cc2 bit for 'fccX'
2367              ($cmp$$cmpcode << 14) |
2368              (0 << 13) |                    // select register move
2369              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2370              ($src$$reg << 0);
2371     cbuf.insts()->emit_int32(op);
2372   %}
2373 
2374   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2375     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2376     int op = (Assembler::arith_op << 30) |
2377              ($dst$$reg << 25) |
2378              (Assembler::movcc_op3 << 19) |
2379              (0 << 18) |                    // cc2 bit for 'fccX'
2380              ($cmp$$cmpcode << 14) |
2381              (1 << 13) |                    // select immediate move
2382              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2383              (simm11 << 0);
2384     cbuf.insts()->emit_int32(op);
2385   %}
2386 
2387   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2388     int op = (Assembler::arith_op << 30) |
2389              ($dst$$reg << 25) |
2390              (Assembler::fpop2_op3 << 19) |
2391              (0 << 18) |
2392              ($cmp$$cmpcode << 14) |
2393              (1 << 13) |                    // select register move
2394              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2395              ($primary << 5) |              // select single, double or quad
2396              ($src$$reg << 0);
2397     cbuf.insts()->emit_int32(op);
2398   %}
2399 
2400   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2401     int op = (Assembler::arith_op << 30) |
2402              ($dst$$reg << 25) |
2403              (Assembler::fpop2_op3 << 19) |
2404              (0 << 18) |
2405              ($cmp$$cmpcode << 14) |
2406              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2407              ($primary << 5) |              // select single, double or quad
2408              ($src$$reg << 0);
2409     cbuf.insts()->emit_int32(op);
2410   %}
2411 
2412   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2413   // the condition comes from opcode-field instead of an argument.
2414   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2415     int op = (Assembler::arith_op << 30) |
2416              ($dst$$reg << 25) |
2417              (Assembler::movcc_op3 << 19) |
2418              (1 << 18) |                    // cc2 bit for 'icc'
2419              ($primary << 14) |
2420              (0 << 13) |                    // select register move
2421              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2422              ($src$$reg << 0);
2423     cbuf.insts()->emit_int32(op);
2424   %}
2425 
2426   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2427     int op = (Assembler::arith_op << 30) |
2428              ($dst$$reg << 25) |
2429              (Assembler::movcc_op3 << 19) |
2430              (6 << 16) |                    // cc2 bit for 'xcc'
2431              ($primary << 14) |
2432              (0 << 13) |                    // select register move
2433              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2434              ($src$$reg << 0);
2435     cbuf.insts()->emit_int32(op);
2436   %}
2437 
2438   enc_class Set13( immI13 src, iRegI rd ) %{
2439     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2440   %}
2441 
2442   enc_class SetHi22( immI src, iRegI rd ) %{
2443     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2444   %}
2445 
2446   enc_class Set32( immI src, iRegI rd ) %{
2447     MacroAssembler _masm(&cbuf);
2448     __ set($src$$constant, reg_to_register_object($rd$$reg));
2449   %}
2450 
2451   enc_class call_epilog %{
2452     if( VerifyStackAtCalls ) {
2453       MacroAssembler _masm(&cbuf);
2454       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2455       Register temp_reg = G3;
2456       __ add(SP, framesize, temp_reg);
2457       __ cmp(temp_reg, FP);
2458       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2459     }
2460   %}
2461 
2462   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2463   // to G1 so the register allocator will not have to deal with the misaligned register
2464   // pair.
2465   enc_class adjust_long_from_native_call %{
2466 #ifndef _LP64
2467     if (returns_long()) {
2468       //    sllx  O0,32,O0
2469       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2470       //    srl   O1,0,O1
2471       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2472       //    or    O0,O1,G1
2473       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2474     }
2475 #endif
2476   %}
2477 
2478   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2479     // CALL directly to the runtime
2480     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2481     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2482                     /*preserve_g2=*/true);
2483   %}
2484 
2485   enc_class preserve_SP %{
2486     MacroAssembler _masm(&cbuf);
2487     __ mov(SP, L7_mh_SP_save);
2488   %}
2489 
2490   enc_class restore_SP %{
2491     MacroAssembler _masm(&cbuf);
2492     __ mov(L7_mh_SP_save, SP);
2493   %}
2494 
2495   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2496     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2497     // who we intended to call.
2498     if ( !_method ) {
2499       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2500     } else if (_optimized_virtual) {
2501       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2502     } else {
2503       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2504     }
2505     if( _method ) {  // Emit stub for static call
2506       emit_java_to_interp(cbuf);
2507     }
2508   %}
2509 
2510   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2511     MacroAssembler _masm(&cbuf);
2512     __ set_inst_mark();
2513     int vtable_index = this->_vtable_index;
2514     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2515     if (vtable_index < 0) {
2516       // must be invalid_vtable_index, not nonvirtual_vtable_index
2517       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2518       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2519       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2520       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2521       // !!!!!
2522       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2523       // emit_call_dynamic_prologue( cbuf );
2524       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2525 
2526       address  virtual_call_oop_addr = __ inst_mark();
2527       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2528       // who we intended to call.
2529       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2530       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2531     } else {
2532       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2533       // Just go thru the vtable
2534       // get receiver klass (receiver already checked for non-null)
2535       // If we end up going thru a c2i adapter interpreter expects method in G5
2536       int off = __ offset();
2537       __ load_klass(O0, G3_scratch);
2538       int klass_load_size;
2539       if (UseCompressedOops) {
2540         assert(Universe::heap() != NULL, "java heap should be initialized");
2541         if (Universe::narrow_oop_base() == NULL)
2542           klass_load_size = 2*BytesPerInstWord;
2543         else
2544           klass_load_size = 3*BytesPerInstWord;
2545       } else {
2546         klass_load_size = 1*BytesPerInstWord;
2547       }
2548       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2549       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2550       if( __ is_simm13(v_off) ) {
2551         __ ld_ptr(G3, v_off, G5_method);
2552       } else {
2553         // Generate 2 instructions
2554         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2555         __ or3(G5_method, v_off & 0x3ff, G5_method);
2556         // ld_ptr, set_hi, set
2557         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2558                "Unexpected instruction size(s)");
2559         __ ld_ptr(G3, G5_method, G5_method);
2560       }
2561       // NOTE: for vtable dispatches, the vtable entry will never be null.
2562       // However it may very well end up in handle_wrong_method if the
2563       // method is abstract for the particular class.
2564       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2565       // jump to target (either compiled code or c2iadapter)
2566       __ jmpl(G3_scratch, G0, O7);
2567       __ delayed()->nop();
2568     }
2569   %}
2570 
2571   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2572     MacroAssembler _masm(&cbuf);
2573 
2574     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2575     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2576                               // we might be calling a C2I adapter which needs it.
2577 
2578     assert(temp_reg != G5_ic_reg, "conflicting registers");
2579     // Load nmethod
2580     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2581 
2582     // CALL to compiled java, indirect the contents of G3
2583     __ set_inst_mark();
2584     __ callr(temp_reg, G0);
2585     __ delayed()->nop();
2586   %}
2587 
2588 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2589     MacroAssembler _masm(&cbuf);
2590     Register Rdividend = reg_to_register_object($src1$$reg);
2591     Register Rdivisor = reg_to_register_object($src2$$reg);
2592     Register Rresult = reg_to_register_object($dst$$reg);
2593 
2594     __ sra(Rdivisor, 0, Rdivisor);
2595     __ sra(Rdividend, 0, Rdividend);
2596     __ sdivx(Rdividend, Rdivisor, Rresult);
2597 %}
2598 
2599 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2600     MacroAssembler _masm(&cbuf);
2601 
2602     Register Rdividend = reg_to_register_object($src1$$reg);
2603     int divisor = $imm$$constant;
2604     Register Rresult = reg_to_register_object($dst$$reg);
2605 
2606     __ sra(Rdividend, 0, Rdividend);
2607     __ sdivx(Rdividend, divisor, Rresult);
2608 %}
2609 
2610 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2611     MacroAssembler _masm(&cbuf);
2612     Register Rsrc1 = reg_to_register_object($src1$$reg);
2613     Register Rsrc2 = reg_to_register_object($src2$$reg);
2614     Register Rdst  = reg_to_register_object($dst$$reg);
2615 
2616     __ sra( Rsrc1, 0, Rsrc1 );
2617     __ sra( Rsrc2, 0, Rsrc2 );
2618     __ mulx( Rsrc1, Rsrc2, Rdst );
2619     __ srlx( Rdst, 32, Rdst );
2620 %}
2621 
2622 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2623     MacroAssembler _masm(&cbuf);
2624     Register Rdividend = reg_to_register_object($src1$$reg);
2625     Register Rdivisor = reg_to_register_object($src2$$reg);
2626     Register Rresult = reg_to_register_object($dst$$reg);
2627     Register Rscratch = reg_to_register_object($scratch$$reg);
2628 
2629     assert(Rdividend != Rscratch, "");
2630     assert(Rdivisor  != Rscratch, "");
2631 
2632     __ sra(Rdividend, 0, Rdividend);
2633     __ sra(Rdivisor, 0, Rdivisor);
2634     __ sdivx(Rdividend, Rdivisor, Rscratch);
2635     __ mulx(Rscratch, Rdivisor, Rscratch);
2636     __ sub(Rdividend, Rscratch, Rresult);
2637 %}
2638 
2639 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2640     MacroAssembler _masm(&cbuf);
2641 
2642     Register Rdividend = reg_to_register_object($src1$$reg);
2643     int divisor = $imm$$constant;
2644     Register Rresult = reg_to_register_object($dst$$reg);
2645     Register Rscratch = reg_to_register_object($scratch$$reg);
2646 
2647     assert(Rdividend != Rscratch, "");
2648 
2649     __ sra(Rdividend, 0, Rdividend);
2650     __ sdivx(Rdividend, divisor, Rscratch);
2651     __ mulx(Rscratch, divisor, Rscratch);
2652     __ sub(Rdividend, Rscratch, Rresult);
2653 %}
2654 
2655 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2656     MacroAssembler _masm(&cbuf);
2657 
2658     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2659     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2660 
2661     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2662 %}
2663 
2664 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2665     MacroAssembler _masm(&cbuf);
2666 
2667     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2668     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2669 
2670     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2671 %}
2672 
2673 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2674     MacroAssembler _masm(&cbuf);
2675 
2676     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2677     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2678 
2679     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2680 %}
2681 
2682 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2683     MacroAssembler _masm(&cbuf);
2684 
2685     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2686     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2687 
2688     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2689 %}
2690 
2691 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2692     MacroAssembler _masm(&cbuf);
2693 
2694     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2695     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2696 
2697     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2698 %}
2699 
2700 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2701     MacroAssembler _masm(&cbuf);
2702 
2703     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2704     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2705 
2706     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2707 %}
2708 
2709 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2710     MacroAssembler _masm(&cbuf);
2711 
2712     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2713     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2714 
2715     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2716 %}
2717 
2718 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2719     MacroAssembler _masm(&cbuf);
2720 
2721     Register Roop  = reg_to_register_object($oop$$reg);
2722     Register Rbox  = reg_to_register_object($box$$reg);
2723     Register Rscratch = reg_to_register_object($scratch$$reg);
2724     Register Rmark =    reg_to_register_object($scratch2$$reg);
2725 
2726     assert(Roop  != Rscratch, "");
2727     assert(Roop  != Rmark, "");
2728     assert(Rbox  != Rscratch, "");
2729     assert(Rbox  != Rmark, "");
2730 
2731     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2732 %}
2733 
2734 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2735     MacroAssembler _masm(&cbuf);
2736 
2737     Register Roop  = reg_to_register_object($oop$$reg);
2738     Register Rbox  = reg_to_register_object($box$$reg);
2739     Register Rscratch = reg_to_register_object($scratch$$reg);
2740     Register Rmark =    reg_to_register_object($scratch2$$reg);
2741 
2742     assert(Roop  != Rscratch, "");
2743     assert(Roop  != Rmark, "");
2744     assert(Rbox  != Rscratch, "");
2745     assert(Rbox  != Rmark, "");
2746 
2747     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2748   %}
2749 
2750   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2751     MacroAssembler _masm(&cbuf);
2752     Register Rmem = reg_to_register_object($mem$$reg);
2753     Register Rold = reg_to_register_object($old$$reg);
2754     Register Rnew = reg_to_register_object($new$$reg);
2755 
2756     // casx_under_lock picks 1 of 3 encodings:
2757     // For 32-bit pointers you get a 32-bit CAS
2758     // For 64-bit pointers you get a 64-bit CASX
2759     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2760     __ cmp( Rold, Rnew );
2761   %}
2762 
2763   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2764     Register Rmem = reg_to_register_object($mem$$reg);
2765     Register Rold = reg_to_register_object($old$$reg);
2766     Register Rnew = reg_to_register_object($new$$reg);
2767 
2768     MacroAssembler _masm(&cbuf);
2769     __ mov(Rnew, O7);
2770     __ casx(Rmem, Rold, O7);
2771     __ cmp( Rold, O7 );
2772   %}
2773 
2774   // raw int cas, used for compareAndSwap
2775   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2776     Register Rmem = reg_to_register_object($mem$$reg);
2777     Register Rold = reg_to_register_object($old$$reg);
2778     Register Rnew = reg_to_register_object($new$$reg);
2779 
2780     MacroAssembler _masm(&cbuf);
2781     __ mov(Rnew, O7);
2782     __ cas(Rmem, Rold, O7);
2783     __ cmp( Rold, O7 );
2784   %}
2785 
2786   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2787     Register Rres = reg_to_register_object($res$$reg);
2788 
2789     MacroAssembler _masm(&cbuf);
2790     __ mov(1, Rres);
2791     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2792   %}
2793 
2794   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2795     Register Rres = reg_to_register_object($res$$reg);
2796 
2797     MacroAssembler _masm(&cbuf);
2798     __ mov(1, Rres);
2799     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2800   %}
2801 
2802   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2803     MacroAssembler _masm(&cbuf);
2804     Register Rdst = reg_to_register_object($dst$$reg);
2805     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2806                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2807     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2808                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2809 
2810     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2811     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2812   %}
2813 
2814   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2815   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2816     MacroAssembler _masm(&cbuf);
2817     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2818     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2819     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2820 
2821     Label loop;
2822     __ mov(nof_bytes_arg, nof_bytes_tmp);
2823 
2824     // Loop and clear, walking backwards through the array.
2825     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2826     __ bind(loop);
2827     __ deccc(nof_bytes_tmp, 8);
2828     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2829     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2830     // %%%% this mini-loop must not cross a cache boundary!
2831   %}
2832 
2833 
2834   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2835     Label Ldone, Lloop;
2836     MacroAssembler _masm(&cbuf);
2837 
2838     Register   str1_reg = reg_to_register_object($str1$$reg);
2839     Register   str2_reg = reg_to_register_object($str2$$reg);
2840     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2841     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2842     Register result_reg = reg_to_register_object($result$$reg);
2843 
2844     assert(result_reg != str1_reg &&
2845            result_reg != str2_reg &&
2846            result_reg != cnt1_reg &&
2847            result_reg != cnt2_reg ,
2848            "need different registers");
2849 
2850     // Compute the minimum of the string lengths(str1_reg) and the
2851     // difference of the string lengths (stack)
2852 
2853     // See if the lengths are different, and calculate min in str1_reg.
2854     // Stash diff in O7 in case we need it for a tie-breaker.
2855     Label Lskip;
2856     __ subcc(cnt1_reg, cnt2_reg, O7);
2857     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2858     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2859     // cnt2 is shorter, so use its count:
2860     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2861     __ bind(Lskip);
2862 
2863     // reallocate cnt1_reg, cnt2_reg, result_reg
2864     // Note:  limit_reg holds the string length pre-scaled by 2
2865     Register limit_reg =   cnt1_reg;
2866     Register  chr2_reg =   cnt2_reg;
2867     Register  chr1_reg = result_reg;
2868     // str{12} are the base pointers
2869 
2870     // Is the minimum length zero?
2871     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2872     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2873     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2874 
2875     // Load first characters
2876     __ lduh(str1_reg, 0, chr1_reg);
2877     __ lduh(str2_reg, 0, chr2_reg);
2878 
2879     // Compare first characters
2880     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2881     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2882     assert(chr1_reg == result_reg, "result must be pre-placed");
2883     __ delayed()->nop();
2884 
2885     {
2886       // Check after comparing first character to see if strings are equivalent
2887       Label LSkip2;
2888       // Check if the strings start at same location
2889       __ cmp(str1_reg, str2_reg);
2890       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2891       __ delayed()->nop();
2892 
2893       // Check if the length difference is zero (in O7)
2894       __ cmp(G0, O7);
2895       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2896       __ delayed()->mov(G0, result_reg);  // result is zero
2897 
2898       // Strings might not be equal
2899       __ bind(LSkip2);
2900     }
2901 
2902     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2903     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2904     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2905 
2906     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2907     __ add(str1_reg, limit_reg, str1_reg);
2908     __ add(str2_reg, limit_reg, str2_reg);
2909     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2910 
2911     // Compare the rest of the characters
2912     __ lduh(str1_reg, limit_reg, chr1_reg);
2913     __ bind(Lloop);
2914     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2915     __ lduh(str2_reg, limit_reg, chr2_reg);
2916     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2917     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2918     assert(chr1_reg == result_reg, "result must be pre-placed");
2919     __ delayed()->inccc(limit_reg, sizeof(jchar));
2920     // annul LDUH if branch is not taken to prevent access past end of string
2921     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2922     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2923 
2924     // If strings are equal up to min length, return the length difference.
2925     __ mov(O7, result_reg);
2926 
2927     // Otherwise, return the difference between the first mismatched chars.
2928     __ bind(Ldone);
2929   %}
2930 
2931 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2932     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2933     MacroAssembler _masm(&cbuf);
2934 
2935     Register   str1_reg = reg_to_register_object($str1$$reg);
2936     Register   str2_reg = reg_to_register_object($str2$$reg);
2937     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2938     Register   tmp1_reg = O7;
2939     Register result_reg = reg_to_register_object($result$$reg);
2940 
2941     assert(result_reg != str1_reg &&
2942            result_reg != str2_reg &&
2943            result_reg !=  cnt_reg &&
2944            result_reg != tmp1_reg ,
2945            "need different registers");
2946 
2947     __ cmp(str1_reg, str2_reg); //same char[] ?
2948     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2949     __ delayed()->add(G0, 1, result_reg);
2950 
2951     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2952     __ delayed()->add(G0, 1, result_reg); // count == 0
2953 
2954     //rename registers
2955     Register limit_reg =    cnt_reg;
2956     Register  chr1_reg = result_reg;
2957     Register  chr2_reg =   tmp1_reg;
2958 
2959     //check for alignment and position the pointers to the ends
2960     __ or3(str1_reg, str2_reg, chr1_reg);
2961     __ andcc(chr1_reg, 0x3, chr1_reg);
2962     // notZero means at least one not 4-byte aligned.
2963     // We could optimize the case when both arrays are not aligned
2964     // but it is not frequent case and it requires additional checks.
2965     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2966     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2967 
2968     // Compare char[] arrays aligned to 4 bytes.
2969     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2970                           chr1_reg, chr2_reg, Ldone);
2971     __ ba(Ldone);
2972     __ delayed()->add(G0, 1, result_reg);
2973 
2974     // char by char compare
2975     __ bind(Lchar);
2976     __ add(str1_reg, limit_reg, str1_reg);
2977     __ add(str2_reg, limit_reg, str2_reg);
2978     __ neg(limit_reg); //negate count
2979 
2980     __ lduh(str1_reg, limit_reg, chr1_reg);
2981     // Lchar_loop
2982     __ bind(Lchar_loop);
2983     __ lduh(str2_reg, limit_reg, chr2_reg);
2984     __ cmp(chr1_reg, chr2_reg);
2985     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2986     __ delayed()->mov(G0, result_reg); //not equal
2987     __ inccc(limit_reg, sizeof(jchar));
2988     // annul LDUH if branch is not taken to prevent access past end of string
2989     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
2990     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2991 
2992     __ add(G0, 1, result_reg);  //equal
2993 
2994     __ bind(Ldone);
2995   %}
2996 
2997 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
2998     Label Lvector, Ldone, Lloop;
2999     MacroAssembler _masm(&cbuf);
3000 
3001     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3002     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3003     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3004     Register   tmp2_reg = O7;
3005     Register result_reg = reg_to_register_object($result$$reg);
3006 
3007     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3008     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3009 
3010     // return true if the same array
3011     __ cmp(ary1_reg, ary2_reg);
3012     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3013     __ delayed()->add(G0, 1, result_reg); // equal
3014 
3015     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3016     __ delayed()->mov(G0, result_reg);    // not equal
3017 
3018     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3019     __ delayed()->mov(G0, result_reg);    // not equal
3020 
3021     //load the lengths of arrays
3022     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3023     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3024 
3025     // return false if the two arrays are not equal length
3026     __ cmp(tmp1_reg, tmp2_reg);
3027     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3028     __ delayed()->mov(G0, result_reg);     // not equal
3029 
3030     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3031     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3032 
3033     // load array addresses
3034     __ add(ary1_reg, base_offset, ary1_reg);
3035     __ add(ary2_reg, base_offset, ary2_reg);
3036 
3037     // renaming registers
3038     Register chr1_reg  =  result_reg; // for characters in ary1
3039     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3040     Register limit_reg =  tmp1_reg;   // length
3041 
3042     // set byte count
3043     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3044 
3045     // Compare char[] arrays aligned to 4 bytes.
3046     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3047                           chr1_reg, chr2_reg, Ldone);
3048     __ add(G0, 1, result_reg); // equals
3049 
3050     __ bind(Ldone);
3051   %}
3052 
3053   enc_class enc_rethrow() %{
3054     cbuf.set_insts_mark();
3055     Register temp_reg = G3;
3056     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3057     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3058     MacroAssembler _masm(&cbuf);
3059 #ifdef ASSERT
3060     __ save_frame(0);
3061     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3062     __ sethi(last_rethrow_addrlit, L1);
3063     Address addr(L1, last_rethrow_addrlit.low10());
3064     __ get_pc(L2);
3065     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3066     __ st_ptr(L2, addr);
3067     __ restore();
3068 #endif
3069     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3070     __ delayed()->nop();
3071   %}
3072 
3073   enc_class emit_mem_nop() %{
3074     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3075     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3076   %}
3077 
3078   enc_class emit_fadd_nop() %{
3079     // Generates the instruction FMOVS f31,f31
3080     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3081   %}
3082 
3083   enc_class emit_br_nop() %{
3084     // Generates the instruction BPN,PN .
3085     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3086   %}
3087 
3088   enc_class enc_membar_acquire %{
3089     MacroAssembler _masm(&cbuf);
3090     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3091   %}
3092 
3093   enc_class enc_membar_release %{
3094     MacroAssembler _masm(&cbuf);
3095     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3096   %}
3097 
3098   enc_class enc_membar_volatile %{
3099     MacroAssembler _masm(&cbuf);
3100     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3101   %}
3102 
3103   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3104     MacroAssembler _masm(&cbuf);
3105     Register src_reg = reg_to_register_object($src$$reg);
3106     Register dst_reg = reg_to_register_object($dst$$reg);
3107     __ sllx(src_reg, 56, dst_reg);
3108     __ srlx(dst_reg,  8, O7);
3109     __ or3 (dst_reg, O7, dst_reg);
3110     __ srlx(dst_reg, 16, O7);
3111     __ or3 (dst_reg, O7, dst_reg);
3112     __ srlx(dst_reg, 32, O7);
3113     __ or3 (dst_reg, O7, dst_reg);
3114   %}
3115 
3116   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3117     MacroAssembler _masm(&cbuf);
3118     Register src_reg = reg_to_register_object($src$$reg);
3119     Register dst_reg = reg_to_register_object($dst$$reg);
3120     __ sll(src_reg, 24, dst_reg);
3121     __ srl(dst_reg,  8, O7);
3122     __ or3(dst_reg, O7, dst_reg);
3123     __ srl(dst_reg, 16, O7);
3124     __ or3(dst_reg, O7, dst_reg);
3125   %}
3126 
3127   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3128     MacroAssembler _masm(&cbuf);
3129     Register src_reg = reg_to_register_object($src$$reg);
3130     Register dst_reg = reg_to_register_object($dst$$reg);
3131     __ sllx(src_reg, 48, dst_reg);
3132     __ srlx(dst_reg, 16, O7);
3133     __ or3 (dst_reg, O7, dst_reg);
3134     __ srlx(dst_reg, 32, O7);
3135     __ or3 (dst_reg, O7, dst_reg);
3136   %}
3137 
3138   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3139     MacroAssembler _masm(&cbuf);
3140     Register src_reg = reg_to_register_object($src$$reg);
3141     Register dst_reg = reg_to_register_object($dst$$reg);
3142     __ sllx(src_reg, 32, dst_reg);
3143     __ srlx(dst_reg, 32, O7);
3144     __ or3 (dst_reg, O7, dst_reg);
3145   %}
3146 
3147 %}
3148 
3149 //----------FRAME--------------------------------------------------------------
3150 // Definition of frame structure and management information.
3151 //
3152 //  S T A C K   L A Y O U T    Allocators stack-slot number
3153 //                             |   (to get allocators register number
3154 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3155 //  r   CALLER     |        |
3156 //  o     |        +--------+      pad to even-align allocators stack-slot
3157 //  w     V        |  pad0  |        numbers; owned by CALLER
3158 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3159 //  h     ^        |   in   |  5
3160 //        |        |  args  |  4   Holes in incoming args owned by SELF
3161 //  |     |        |        |  3
3162 //  |     |        +--------+
3163 //  V     |        | old out|      Empty on Intel, window on Sparc
3164 //        |    old |preserve|      Must be even aligned.
3165 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3166 //        |        |   in   |  3   area for Intel ret address
3167 //     Owned by    |preserve|      Empty on Sparc.
3168 //       SELF      +--------+
3169 //        |        |  pad2  |  2   pad to align old SP
3170 //        |        +--------+  1
3171 //        |        | locks  |  0
3172 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3173 //        |        |  pad1  | 11   pad to align new SP
3174 //        |        +--------+
3175 //        |        |        | 10
3176 //        |        | spills |  9   spills
3177 //        V        |        |  8   (pad0 slot for callee)
3178 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3179 //        ^        |  out   |  7
3180 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3181 //     Owned by    +--------+
3182 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3183 //        |    new |preserve|      Must be even-aligned.
3184 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3185 //        |        |        |
3186 //
3187 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3188 //         known from SELF's arguments and the Java calling convention.
3189 //         Region 6-7 is determined per call site.
3190 // Note 2: If the calling convention leaves holes in the incoming argument
3191 //         area, those holes are owned by SELF.  Holes in the outgoing area
3192 //         are owned by the CALLEE.  Holes should not be nessecary in the
3193 //         incoming area, as the Java calling convention is completely under
3194 //         the control of the AD file.  Doubles can be sorted and packed to
3195 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3196 //         varargs C calling conventions.
3197 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3198 //         even aligned with pad0 as needed.
3199 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3200 //         region 6-11 is even aligned; it may be padded out more so that
3201 //         the region from SP to FP meets the minimum stack alignment.
3202 
3203 frame %{
3204   // What direction does stack grow in (assumed to be same for native & Java)
3205   stack_direction(TOWARDS_LOW);
3206 
3207   // These two registers define part of the calling convention
3208   // between compiled code and the interpreter.
3209   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3210   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3211 
3212   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3213   cisc_spilling_operand_name(indOffset);
3214 
3215   // Number of stack slots consumed by a Monitor enter
3216 #ifdef _LP64
3217   sync_stack_slots(2);
3218 #else
3219   sync_stack_slots(1);
3220 #endif
3221 
3222   // Compiled code's Frame Pointer
3223   frame_pointer(R_SP);
3224 
3225   // Stack alignment requirement
3226   stack_alignment(StackAlignmentInBytes);
3227   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3228   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3229 
3230   // Number of stack slots between incoming argument block and the start of
3231   // a new frame.  The PROLOG must add this many slots to the stack.  The
3232   // EPILOG must remove this many slots.
3233   in_preserve_stack_slots(0);
3234 
3235   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3236   // for calls to C.  Supports the var-args backing area for register parms.
3237   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3238 #ifdef _LP64
3239   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3240   varargs_C_out_slots_killed(12);
3241 #else
3242   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3243   varargs_C_out_slots_killed( 7);
3244 #endif
3245 
3246   // The after-PROLOG location of the return address.  Location of
3247   // return address specifies a type (REG or STACK) and a number
3248   // representing the register number (i.e. - use a register name) or
3249   // stack slot.
3250   return_addr(REG R_I7);          // Ret Addr is in register I7
3251 
3252   // Body of function which returns an OptoRegs array locating
3253   // arguments either in registers or in stack slots for calling
3254   // java
3255   calling_convention %{
3256     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3257 
3258   %}
3259 
3260   // Body of function which returns an OptoRegs array locating
3261   // arguments either in registers or in stack slots for callin
3262   // C.
3263   c_calling_convention %{
3264     // This is obviously always outgoing
3265     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3266   %}
3267 
3268   // Location of native (C/C++) and interpreter return values.  This is specified to
3269   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3270   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3271   // to and from the register pairs is done by the appropriate call and epilog
3272   // opcodes.  This simplifies the register allocator.
3273   c_return_value %{
3274     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3275 #ifdef     _LP64
3276     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3277     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3278     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3279     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3280 #else  // !_LP64
3281     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3282     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3283     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3284     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3285 #endif
3286     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3287                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3288   %}
3289 
3290   // Location of compiled Java return values.  Same as C
3291   return_value %{
3292     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3293 #ifdef     _LP64
3294     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3295     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3296     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3297     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3298 #else  // !_LP64
3299     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3300     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3301     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3302     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3303 #endif
3304     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3305                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3306   %}
3307 
3308 %}
3309 
3310 
3311 //----------ATTRIBUTES---------------------------------------------------------
3312 //----------Operand Attributes-------------------------------------------------
3313 op_attrib op_cost(1);          // Required cost attribute
3314 
3315 //----------Instruction Attributes---------------------------------------------
3316 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3317 ins_attrib ins_size(32);           // Required size attribute (in bits)
3318 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3319                                    // non-matching short branch variant of some
3320                                                             // long branch?
3321 
3322 //----------OPERANDS-----------------------------------------------------------
3323 // Operand definitions must precede instruction definitions for correct parsing
3324 // in the ADLC because operands constitute user defined types which are used in
3325 // instruction definitions.
3326 
3327 //----------Simple Operands----------------------------------------------------
3328 // Immediate Operands
3329 // Integer Immediate: 32-bit
3330 operand immI() %{
3331   match(ConI);
3332 
3333   op_cost(0);
3334   // formats are generated automatically for constants and base registers
3335   format %{ %}
3336   interface(CONST_INTER);
3337 %}
3338 
3339 // Integer Immediate: 8-bit
3340 operand immI8() %{
3341   predicate(Assembler::is_simm(n->get_int(), 8));
3342   match(ConI);
3343   op_cost(0);
3344   format %{ %}
3345   interface(CONST_INTER);
3346 %}
3347 
3348 // Integer Immediate: 13-bit
3349 operand immI13() %{
3350   predicate(Assembler::is_simm13(n->get_int()));
3351   match(ConI);
3352   op_cost(0);
3353 
3354   format %{ %}
3355   interface(CONST_INTER);
3356 %}
3357 
3358 // Integer Immediate: 13-bit minus 7
3359 operand immI13m7() %{
3360   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3361   match(ConI);
3362   op_cost(0);
3363 
3364   format %{ %}
3365   interface(CONST_INTER);
3366 %}
3367 
3368 // Integer Immediate: 16-bit
3369 operand immI16() %{
3370   predicate(Assembler::is_simm(n->get_int(), 16));
3371   match(ConI);
3372   op_cost(0);
3373   format %{ %}
3374   interface(CONST_INTER);
3375 %}
3376 
3377 // Unsigned (positive) Integer Immediate: 13-bit
3378 operand immU13() %{
3379   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3380   match(ConI);
3381   op_cost(0);
3382 
3383   format %{ %}
3384   interface(CONST_INTER);
3385 %}
3386 
3387 // Integer Immediate: 6-bit
3388 operand immU6() %{
3389   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3390   match(ConI);
3391   op_cost(0);
3392   format %{ %}
3393   interface(CONST_INTER);
3394 %}
3395 
3396 // Integer Immediate: 11-bit
3397 operand immI11() %{
3398   predicate(Assembler::is_simm(n->get_int(),11));
3399   match(ConI);
3400   op_cost(0);
3401   format %{ %}
3402   interface(CONST_INTER);
3403 %}
3404 
3405 // Integer Immediate: 0-bit
3406 operand immI0() %{
3407   predicate(n->get_int() == 0);
3408   match(ConI);
3409   op_cost(0);
3410 
3411   format %{ %}
3412   interface(CONST_INTER);
3413 %}
3414 
3415 // Integer Immediate: the value 10
3416 operand immI10() %{
3417   predicate(n->get_int() == 10);
3418   match(ConI);
3419   op_cost(0);
3420 
3421   format %{ %}
3422   interface(CONST_INTER);
3423 %}
3424 
3425 // Integer Immediate: the values 0-31
3426 operand immU5() %{
3427   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3428   match(ConI);
3429   op_cost(0);
3430 
3431   format %{ %}
3432   interface(CONST_INTER);
3433 %}
3434 
3435 // Integer Immediate: the values 1-31
3436 operand immI_1_31() %{
3437   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3438   match(ConI);
3439   op_cost(0);
3440 
3441   format %{ %}
3442   interface(CONST_INTER);
3443 %}
3444 
3445 // Integer Immediate: the values 32-63
3446 operand immI_32_63() %{
3447   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3448   match(ConI);
3449   op_cost(0);
3450 
3451   format %{ %}
3452   interface(CONST_INTER);
3453 %}
3454 
3455 // Immediates for special shifts (sign extend)
3456 
3457 // Integer Immediate: the value 16
3458 operand immI_16() %{
3459   predicate(n->get_int() == 16);
3460   match(ConI);
3461   op_cost(0);
3462 
3463   format %{ %}
3464   interface(CONST_INTER);
3465 %}
3466 
3467 // Integer Immediate: the value 24
3468 operand immI_24() %{
3469   predicate(n->get_int() == 24);
3470   match(ConI);
3471   op_cost(0);
3472 
3473   format %{ %}
3474   interface(CONST_INTER);
3475 %}
3476 
3477 // Integer Immediate: the value 255
3478 operand immI_255() %{
3479   predicate( n->get_int() == 255 );
3480   match(ConI);
3481   op_cost(0);
3482 
3483   format %{ %}
3484   interface(CONST_INTER);
3485 %}
3486 
3487 // Integer Immediate: the value 65535
3488 operand immI_65535() %{
3489   predicate(n->get_int() == 65535);
3490   match(ConI);
3491   op_cost(0);
3492 
3493   format %{ %}
3494   interface(CONST_INTER);
3495 %}
3496 
3497 // Long Immediate: the value FF
3498 operand immL_FF() %{
3499   predicate( n->get_long() == 0xFFL );
3500   match(ConL);
3501   op_cost(0);
3502 
3503   format %{ %}
3504   interface(CONST_INTER);
3505 %}
3506 
3507 // Long Immediate: the value FFFF
3508 operand immL_FFFF() %{
3509   predicate( n->get_long() == 0xFFFFL );
3510   match(ConL);
3511   op_cost(0);
3512 
3513   format %{ %}
3514   interface(CONST_INTER);
3515 %}
3516 
3517 // Pointer Immediate: 32 or 64-bit
3518 operand immP() %{
3519   match(ConP);
3520 
3521   op_cost(5);
3522   // formats are generated automatically for constants and base registers
3523   format %{ %}
3524   interface(CONST_INTER);
3525 %}
3526 
3527 #ifdef _LP64
3528 // Pointer Immediate: 64-bit
3529 operand immP_set() %{
3530   predicate(!VM_Version::is_niagara_plus());
3531   match(ConP);
3532 
3533   op_cost(5);
3534   // formats are generated automatically for constants and base registers
3535   format %{ %}
3536   interface(CONST_INTER);
3537 %}
3538 
3539 // Pointer Immediate: 64-bit
3540 // From Niagara2 processors on a load should be better than materializing.
3541 operand immP_load() %{
3542   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3543   match(ConP);
3544 
3545   op_cost(5);
3546   // formats are generated automatically for constants and base registers
3547   format %{ %}
3548   interface(CONST_INTER);
3549 %}
3550 
3551 // Pointer Immediate: 64-bit
3552 operand immP_no_oop_cheap() %{
3553   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3554   match(ConP);
3555 
3556   op_cost(5);
3557   // formats are generated automatically for constants and base registers
3558   format %{ %}
3559   interface(CONST_INTER);
3560 %}
3561 #endif
3562 
3563 operand immP13() %{
3564   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3565   match(ConP);
3566   op_cost(0);
3567 
3568   format %{ %}
3569   interface(CONST_INTER);
3570 %}
3571 
3572 operand immP0() %{
3573   predicate(n->get_ptr() == 0);
3574   match(ConP);
3575   op_cost(0);
3576 
3577   format %{ %}
3578   interface(CONST_INTER);
3579 %}
3580 
3581 operand immP_poll() %{
3582   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3583   match(ConP);
3584 
3585   // formats are generated automatically for constants and base registers
3586   format %{ %}
3587   interface(CONST_INTER);
3588 %}
3589 
3590 // Pointer Immediate
3591 operand immN()
3592 %{
3593   match(ConN);
3594 
3595   op_cost(10);
3596   format %{ %}
3597   interface(CONST_INTER);
3598 %}
3599 
3600 // NULL Pointer Immediate
3601 operand immN0()
3602 %{
3603   predicate(n->get_narrowcon() == 0);
3604   match(ConN);
3605 
3606   op_cost(0);
3607   format %{ %}
3608   interface(CONST_INTER);
3609 %}
3610 
3611 operand immL() %{
3612   match(ConL);
3613   op_cost(40);
3614   // formats are generated automatically for constants and base registers
3615   format %{ %}
3616   interface(CONST_INTER);
3617 %}
3618 
3619 operand immL0() %{
3620   predicate(n->get_long() == 0L);
3621   match(ConL);
3622   op_cost(0);
3623   // formats are generated automatically for constants and base registers
3624   format %{ %}
3625   interface(CONST_INTER);
3626 %}
3627 
3628 // Long Immediate: 13-bit
3629 operand immL13() %{
3630   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3631   match(ConL);
3632   op_cost(0);
3633 
3634   format %{ %}
3635   interface(CONST_INTER);
3636 %}
3637 
3638 // Long Immediate: 13-bit minus 7
3639 operand immL13m7() %{
3640   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3641   match(ConL);
3642   op_cost(0);
3643 
3644   format %{ %}
3645   interface(CONST_INTER);
3646 %}
3647 
3648 // Long Immediate: low 32-bit mask
3649 operand immL_32bits() %{
3650   predicate(n->get_long() == 0xFFFFFFFFL);
3651   match(ConL);
3652   op_cost(0);
3653 
3654   format %{ %}
3655   interface(CONST_INTER);
3656 %}
3657 
3658 // Long Immediate: cheap (materialize in <= 3 instructions)
3659 operand immL_cheap() %{
3660   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3661   match(ConL);
3662   op_cost(0);
3663 
3664   format %{ %}
3665   interface(CONST_INTER);
3666 %}
3667 
3668 // Long Immediate: expensive (materialize in > 3 instructions)
3669 operand immL_expensive() %{
3670   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3671   match(ConL);
3672   op_cost(0);
3673 
3674   format %{ %}
3675   interface(CONST_INTER);
3676 %}
3677 
3678 // Double Immediate
3679 operand immD() %{
3680   match(ConD);
3681 
3682   op_cost(40);
3683   format %{ %}
3684   interface(CONST_INTER);
3685 %}
3686 
3687 operand immD0() %{
3688 #ifdef _LP64
3689   // on 64-bit architectures this comparision is faster
3690   predicate(jlong_cast(n->getd()) == 0);
3691 #else
3692   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3693 #endif
3694   match(ConD);
3695 
3696   op_cost(0);
3697   format %{ %}
3698   interface(CONST_INTER);
3699 %}
3700 
3701 // Float Immediate
3702 operand immF() %{
3703   match(ConF);
3704 
3705   op_cost(20);
3706   format %{ %}
3707   interface(CONST_INTER);
3708 %}
3709 
3710 // Float Immediate: 0
3711 operand immF0() %{
3712   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3713   match(ConF);
3714 
3715   op_cost(0);
3716   format %{ %}
3717   interface(CONST_INTER);
3718 %}
3719 
3720 // Integer Register Operands
3721 // Integer Register
3722 operand iRegI() %{
3723   constraint(ALLOC_IN_RC(int_reg));
3724   match(RegI);
3725 
3726   match(notemp_iRegI);
3727   match(g1RegI);
3728   match(o0RegI);
3729   match(iRegIsafe);
3730 
3731   format %{ %}
3732   interface(REG_INTER);
3733 %}
3734 
3735 operand notemp_iRegI() %{
3736   constraint(ALLOC_IN_RC(notemp_int_reg));
3737   match(RegI);
3738 
3739   match(o0RegI);
3740 
3741   format %{ %}
3742   interface(REG_INTER);
3743 %}
3744 
3745 operand o0RegI() %{
3746   constraint(ALLOC_IN_RC(o0_regI));
3747   match(iRegI);
3748 
3749   format %{ %}
3750   interface(REG_INTER);
3751 %}
3752 
3753 // Pointer Register
3754 operand iRegP() %{
3755   constraint(ALLOC_IN_RC(ptr_reg));
3756   match(RegP);
3757 
3758   match(lock_ptr_RegP);
3759   match(g1RegP);
3760   match(g2RegP);
3761   match(g3RegP);
3762   match(g4RegP);
3763   match(i0RegP);
3764   match(o0RegP);
3765   match(o1RegP);
3766   match(l7RegP);
3767 
3768   format %{ %}
3769   interface(REG_INTER);
3770 %}
3771 
3772 operand sp_ptr_RegP() %{
3773   constraint(ALLOC_IN_RC(sp_ptr_reg));
3774   match(RegP);
3775   match(iRegP);
3776 
3777   format %{ %}
3778   interface(REG_INTER);
3779 %}
3780 
3781 operand lock_ptr_RegP() %{
3782   constraint(ALLOC_IN_RC(lock_ptr_reg));
3783   match(RegP);
3784   match(i0RegP);
3785   match(o0RegP);
3786   match(o1RegP);
3787   match(l7RegP);
3788 
3789   format %{ %}
3790   interface(REG_INTER);
3791 %}
3792 
3793 operand g1RegP() %{
3794   constraint(ALLOC_IN_RC(g1_regP));
3795   match(iRegP);
3796 
3797   format %{ %}
3798   interface(REG_INTER);
3799 %}
3800 
3801 operand g2RegP() %{
3802   constraint(ALLOC_IN_RC(g2_regP));
3803   match(iRegP);
3804 
3805   format %{ %}
3806   interface(REG_INTER);
3807 %}
3808 
3809 operand g3RegP() %{
3810   constraint(ALLOC_IN_RC(g3_regP));
3811   match(iRegP);
3812 
3813   format %{ %}
3814   interface(REG_INTER);
3815 %}
3816 
3817 operand g1RegI() %{
3818   constraint(ALLOC_IN_RC(g1_regI));
3819   match(iRegI);
3820 
3821   format %{ %}
3822   interface(REG_INTER);
3823 %}
3824 
3825 operand g3RegI() %{
3826   constraint(ALLOC_IN_RC(g3_regI));
3827   match(iRegI);
3828 
3829   format %{ %}
3830   interface(REG_INTER);
3831 %}
3832 
3833 operand g4RegI() %{
3834   constraint(ALLOC_IN_RC(g4_regI));
3835   match(iRegI);
3836 
3837   format %{ %}
3838   interface(REG_INTER);
3839 %}
3840 
3841 operand g4RegP() %{
3842   constraint(ALLOC_IN_RC(g4_regP));
3843   match(iRegP);
3844 
3845   format %{ %}
3846   interface(REG_INTER);
3847 %}
3848 
3849 operand i0RegP() %{
3850   constraint(ALLOC_IN_RC(i0_regP));
3851   match(iRegP);
3852 
3853   format %{ %}
3854   interface(REG_INTER);
3855 %}
3856 
3857 operand o0RegP() %{
3858   constraint(ALLOC_IN_RC(o0_regP));
3859   match(iRegP);
3860 
3861   format %{ %}
3862   interface(REG_INTER);
3863 %}
3864 
3865 operand o1RegP() %{
3866   constraint(ALLOC_IN_RC(o1_regP));
3867   match(iRegP);
3868 
3869   format %{ %}
3870   interface(REG_INTER);
3871 %}
3872 
3873 operand o2RegP() %{
3874   constraint(ALLOC_IN_RC(o2_regP));
3875   match(iRegP);
3876 
3877   format %{ %}
3878   interface(REG_INTER);
3879 %}
3880 
3881 operand o7RegP() %{
3882   constraint(ALLOC_IN_RC(o7_regP));
3883   match(iRegP);
3884 
3885   format %{ %}
3886   interface(REG_INTER);
3887 %}
3888 
3889 operand l7RegP() %{
3890   constraint(ALLOC_IN_RC(l7_regP));
3891   match(iRegP);
3892 
3893   format %{ %}
3894   interface(REG_INTER);
3895 %}
3896 
3897 operand o7RegI() %{
3898   constraint(ALLOC_IN_RC(o7_regI));
3899   match(iRegI);
3900 
3901   format %{ %}
3902   interface(REG_INTER);
3903 %}
3904 
3905 operand iRegN() %{
3906   constraint(ALLOC_IN_RC(int_reg));
3907   match(RegN);
3908 
3909   format %{ %}
3910   interface(REG_INTER);
3911 %}
3912 
3913 // Long Register
3914 operand iRegL() %{
3915   constraint(ALLOC_IN_RC(long_reg));
3916   match(RegL);
3917 
3918   format %{ %}
3919   interface(REG_INTER);
3920 %}
3921 
3922 operand o2RegL() %{
3923   constraint(ALLOC_IN_RC(o2_regL));
3924   match(iRegL);
3925 
3926   format %{ %}
3927   interface(REG_INTER);
3928 %}
3929 
3930 operand o7RegL() %{
3931   constraint(ALLOC_IN_RC(o7_regL));
3932   match(iRegL);
3933 
3934   format %{ %}
3935   interface(REG_INTER);
3936 %}
3937 
3938 operand g1RegL() %{
3939   constraint(ALLOC_IN_RC(g1_regL));
3940   match(iRegL);
3941 
3942   format %{ %}
3943   interface(REG_INTER);
3944 %}
3945 
3946 operand g3RegL() %{
3947   constraint(ALLOC_IN_RC(g3_regL));
3948   match(iRegL);
3949 
3950   format %{ %}
3951   interface(REG_INTER);
3952 %}
3953 
3954 // Int Register safe
3955 // This is 64bit safe
3956 operand iRegIsafe() %{
3957   constraint(ALLOC_IN_RC(long_reg));
3958 
3959   match(iRegI);
3960 
3961   format %{ %}
3962   interface(REG_INTER);
3963 %}
3964 
3965 // Condition Code Flag Register
3966 operand flagsReg() %{
3967   constraint(ALLOC_IN_RC(int_flags));
3968   match(RegFlags);
3969 
3970   format %{ "ccr" %} // both ICC and XCC
3971   interface(REG_INTER);
3972 %}
3973 
3974 // Condition Code Register, unsigned comparisons.
3975 operand flagsRegU() %{
3976   constraint(ALLOC_IN_RC(int_flags));
3977   match(RegFlags);
3978 
3979   format %{ "icc_U" %}
3980   interface(REG_INTER);
3981 %}
3982 
3983 // Condition Code Register, pointer comparisons.
3984 operand flagsRegP() %{
3985   constraint(ALLOC_IN_RC(int_flags));
3986   match(RegFlags);
3987 
3988 #ifdef _LP64
3989   format %{ "xcc_P" %}
3990 #else
3991   format %{ "icc_P" %}
3992 #endif
3993   interface(REG_INTER);
3994 %}
3995 
3996 // Condition Code Register, long comparisons.
3997 operand flagsRegL() %{
3998   constraint(ALLOC_IN_RC(int_flags));
3999   match(RegFlags);
4000 
4001   format %{ "xcc_L" %}
4002   interface(REG_INTER);
4003 %}
4004 
4005 // Condition Code Register, floating comparisons, unordered same as "less".
4006 operand flagsRegF() %{
4007   constraint(ALLOC_IN_RC(float_flags));
4008   match(RegFlags);
4009   match(flagsRegF0);
4010 
4011   format %{ %}
4012   interface(REG_INTER);
4013 %}
4014 
4015 operand flagsRegF0() %{
4016   constraint(ALLOC_IN_RC(float_flag0));
4017   match(RegFlags);
4018 
4019   format %{ %}
4020   interface(REG_INTER);
4021 %}
4022 
4023 
4024 // Condition Code Flag Register used by long compare
4025 operand flagsReg_long_LTGE() %{
4026   constraint(ALLOC_IN_RC(int_flags));
4027   match(RegFlags);
4028   format %{ "icc_LTGE" %}
4029   interface(REG_INTER);
4030 %}
4031 operand flagsReg_long_EQNE() %{
4032   constraint(ALLOC_IN_RC(int_flags));
4033   match(RegFlags);
4034   format %{ "icc_EQNE" %}
4035   interface(REG_INTER);
4036 %}
4037 operand flagsReg_long_LEGT() %{
4038   constraint(ALLOC_IN_RC(int_flags));
4039   match(RegFlags);
4040   format %{ "icc_LEGT" %}
4041   interface(REG_INTER);
4042 %}
4043 
4044 
4045 operand regD() %{
4046   constraint(ALLOC_IN_RC(dflt_reg));
4047   match(RegD);
4048 
4049   match(regD_low);
4050 
4051   format %{ %}
4052   interface(REG_INTER);
4053 %}
4054 
4055 operand regF() %{
4056   constraint(ALLOC_IN_RC(sflt_reg));
4057   match(RegF);
4058 
4059   format %{ %}
4060   interface(REG_INTER);
4061 %}
4062 
4063 operand regD_low() %{
4064   constraint(ALLOC_IN_RC(dflt_low_reg));
4065   match(regD);
4066 
4067   format %{ %}
4068   interface(REG_INTER);
4069 %}
4070 
4071 // Special Registers
4072 
4073 // Method Register
4074 operand inline_cache_regP(iRegP reg) %{
4075   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4076   match(reg);
4077   format %{ %}
4078   interface(REG_INTER);
4079 %}
4080 
4081 operand interpreter_method_oop_regP(iRegP reg) %{
4082   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4083   match(reg);
4084   format %{ %}
4085   interface(REG_INTER);
4086 %}
4087 
4088 
4089 //----------Complex Operands---------------------------------------------------
4090 // Indirect Memory Reference
4091 operand indirect(sp_ptr_RegP reg) %{
4092   constraint(ALLOC_IN_RC(sp_ptr_reg));
4093   match(reg);
4094 
4095   op_cost(100);
4096   format %{ "[$reg]" %}
4097   interface(MEMORY_INTER) %{
4098     base($reg);
4099     index(0x0);
4100     scale(0x0);
4101     disp(0x0);
4102   %}
4103 %}
4104 
4105 // Indirect with simm13 Offset
4106 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4107   constraint(ALLOC_IN_RC(sp_ptr_reg));
4108   match(AddP reg offset);
4109 
4110   op_cost(100);
4111   format %{ "[$reg + $offset]" %}
4112   interface(MEMORY_INTER) %{
4113     base($reg);
4114     index(0x0);
4115     scale(0x0);
4116     disp($offset);
4117   %}
4118 %}
4119 
4120 // Indirect with simm13 Offset minus 7
4121 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4122   constraint(ALLOC_IN_RC(sp_ptr_reg));
4123   match(AddP reg offset);
4124 
4125   op_cost(100);
4126   format %{ "[$reg + $offset]" %}
4127   interface(MEMORY_INTER) %{
4128     base($reg);
4129     index(0x0);
4130     scale(0x0);
4131     disp($offset);
4132   %}
4133 %}
4134 
4135 // Note:  Intel has a swapped version also, like this:
4136 //operand indOffsetX(iRegI reg, immP offset) %{
4137 //  constraint(ALLOC_IN_RC(int_reg));
4138 //  match(AddP offset reg);
4139 //
4140 //  op_cost(100);
4141 //  format %{ "[$reg + $offset]" %}
4142 //  interface(MEMORY_INTER) %{
4143 //    base($reg);
4144 //    index(0x0);
4145 //    scale(0x0);
4146 //    disp($offset);
4147 //  %}
4148 //%}
4149 //// However, it doesn't make sense for SPARC, since
4150 // we have no particularly good way to embed oops in
4151 // single instructions.
4152 
4153 // Indirect with Register Index
4154 operand indIndex(iRegP addr, iRegX index) %{
4155   constraint(ALLOC_IN_RC(ptr_reg));
4156   match(AddP addr index);
4157 
4158   op_cost(100);
4159   format %{ "[$addr + $index]" %}
4160   interface(MEMORY_INTER) %{
4161     base($addr);
4162     index($index);
4163     scale(0x0);
4164     disp(0x0);
4165   %}
4166 %}
4167 
4168 //----------Special Memory Operands--------------------------------------------
4169 // Stack Slot Operand - This operand is used for loading and storing temporary
4170 //                      values on the stack where a match requires a value to
4171 //                      flow through memory.
4172 operand stackSlotI(sRegI reg) %{
4173   constraint(ALLOC_IN_RC(stack_slots));
4174   op_cost(100);
4175   //match(RegI);
4176   format %{ "[$reg]" %}
4177   interface(MEMORY_INTER) %{
4178     base(0xE);   // R_SP
4179     index(0x0);
4180     scale(0x0);
4181     disp($reg);  // Stack Offset
4182   %}
4183 %}
4184 
4185 operand stackSlotP(sRegP reg) %{
4186   constraint(ALLOC_IN_RC(stack_slots));
4187   op_cost(100);
4188   //match(RegP);
4189   format %{ "[$reg]" %}
4190   interface(MEMORY_INTER) %{
4191     base(0xE);   // R_SP
4192     index(0x0);
4193     scale(0x0);
4194     disp($reg);  // Stack Offset
4195   %}
4196 %}
4197 
4198 operand stackSlotF(sRegF reg) %{
4199   constraint(ALLOC_IN_RC(stack_slots));
4200   op_cost(100);
4201   //match(RegF);
4202   format %{ "[$reg]" %}
4203   interface(MEMORY_INTER) %{
4204     base(0xE);   // R_SP
4205     index(0x0);
4206     scale(0x0);
4207     disp($reg);  // Stack Offset
4208   %}
4209 %}
4210 operand stackSlotD(sRegD reg) %{
4211   constraint(ALLOC_IN_RC(stack_slots));
4212   op_cost(100);
4213   //match(RegD);
4214   format %{ "[$reg]" %}
4215   interface(MEMORY_INTER) %{
4216     base(0xE);   // R_SP
4217     index(0x0);
4218     scale(0x0);
4219     disp($reg);  // Stack Offset
4220   %}
4221 %}
4222 operand stackSlotL(sRegL reg) %{
4223   constraint(ALLOC_IN_RC(stack_slots));
4224   op_cost(100);
4225   //match(RegL);
4226   format %{ "[$reg]" %}
4227   interface(MEMORY_INTER) %{
4228     base(0xE);   // R_SP
4229     index(0x0);
4230     scale(0x0);
4231     disp($reg);  // Stack Offset
4232   %}
4233 %}
4234 
4235 // Operands for expressing Control Flow
4236 // NOTE:  Label is a predefined operand which should not be redefined in
4237 //        the AD file.  It is generically handled within the ADLC.
4238 
4239 //----------Conditional Branch Operands----------------------------------------
4240 // Comparison Op  - This is the operation of the comparison, and is limited to
4241 //                  the following set of codes:
4242 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4243 //
4244 // Other attributes of the comparison, such as unsignedness, are specified
4245 // by the comparison instruction that sets a condition code flags register.
4246 // That result is represented by a flags operand whose subtype is appropriate
4247 // to the unsignedness (etc.) of the comparison.
4248 //
4249 // Later, the instruction which matches both the Comparison Op (a Bool) and
4250 // the flags (produced by the Cmp) specifies the coding of the comparison op
4251 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4252 
4253 operand cmpOp() %{
4254   match(Bool);
4255 
4256   format %{ "" %}
4257   interface(COND_INTER) %{
4258     equal(0x1);
4259     not_equal(0x9);
4260     less(0x3);
4261     greater_equal(0xB);
4262     less_equal(0x2);
4263     greater(0xA);
4264   %}
4265 %}
4266 
4267 // Comparison Op, unsigned
4268 operand cmpOpU() %{
4269   match(Bool);
4270 
4271   format %{ "u" %}
4272   interface(COND_INTER) %{
4273     equal(0x1);
4274     not_equal(0x9);
4275     less(0x5);
4276     greater_equal(0xD);
4277     less_equal(0x4);
4278     greater(0xC);
4279   %}
4280 %}
4281 
4282 // Comparison Op, pointer (same as unsigned)
4283 operand cmpOpP() %{
4284   match(Bool);
4285 
4286   format %{ "p" %}
4287   interface(COND_INTER) %{
4288     equal(0x1);
4289     not_equal(0x9);
4290     less(0x5);
4291     greater_equal(0xD);
4292     less_equal(0x4);
4293     greater(0xC);
4294   %}
4295 %}
4296 
4297 // Comparison Op, branch-register encoding
4298 operand cmpOp_reg() %{
4299   match(Bool);
4300 
4301   format %{ "" %}
4302   interface(COND_INTER) %{
4303     equal        (0x1);
4304     not_equal    (0x5);
4305     less         (0x3);
4306     greater_equal(0x7);
4307     less_equal   (0x2);
4308     greater      (0x6);
4309   %}
4310 %}
4311 
4312 // Comparison Code, floating, unordered same as less
4313 operand cmpOpF() %{
4314   match(Bool);
4315 
4316   format %{ "fl" %}
4317   interface(COND_INTER) %{
4318     equal(0x9);
4319     not_equal(0x1);
4320     less(0x3);
4321     greater_equal(0xB);
4322     less_equal(0xE);
4323     greater(0x6);
4324   %}
4325 %}
4326 
4327 // Used by long compare
4328 operand cmpOp_commute() %{
4329   match(Bool);
4330 
4331   format %{ "" %}
4332   interface(COND_INTER) %{
4333     equal(0x1);
4334     not_equal(0x9);
4335     less(0xA);
4336     greater_equal(0x2);
4337     less_equal(0xB);
4338     greater(0x3);
4339   %}
4340 %}
4341 
4342 //----------OPERAND CLASSES----------------------------------------------------
4343 // Operand Classes are groups of operands that are used to simplify
4344 // instruction definitions by not requiring the AD writer to specify separate
4345 // instructions for every form of operand when the instruction accepts
4346 // multiple operand types with the same basic encoding and format.  The classic
4347 // case of this is memory operands.
4348 opclass memory( indirect, indOffset13, indIndex );
4349 opclass indIndexMemory( indIndex );
4350 
4351 //----------PIPELINE-----------------------------------------------------------
4352 pipeline %{
4353 
4354 //----------ATTRIBUTES---------------------------------------------------------
4355 attributes %{
4356   fixed_size_instructions;           // Fixed size instructions
4357   branch_has_delay_slot;             // Branch has delay slot following
4358   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4359   instruction_unit_size = 4;         // An instruction is 4 bytes long
4360   instruction_fetch_unit_size = 16;  // The processor fetches one line
4361   instruction_fetch_units = 1;       // of 16 bytes
4362 
4363   // List of nop instructions
4364   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4365 %}
4366 
4367 //----------RESOURCES----------------------------------------------------------
4368 // Resources are the functional units available to the machine
4369 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4370 
4371 //----------PIPELINE DESCRIPTION-----------------------------------------------
4372 // Pipeline Description specifies the stages in the machine's pipeline
4373 
4374 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4375 
4376 //----------PIPELINE CLASSES---------------------------------------------------
4377 // Pipeline Classes describe the stages in which input and output are
4378 // referenced by the hardware pipeline.
4379 
4380 // Integer ALU reg-reg operation
4381 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4382     single_instruction;
4383     dst   : E(write);
4384     src1  : R(read);
4385     src2  : R(read);
4386     IALU  : R;
4387 %}
4388 
4389 // Integer ALU reg-reg long operation
4390 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4391     instruction_count(2);
4392     dst   : E(write);
4393     src1  : R(read);
4394     src2  : R(read);
4395     IALU  : R;
4396     IALU  : R;
4397 %}
4398 
4399 // Integer ALU reg-reg long dependent operation
4400 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4401     instruction_count(1); multiple_bundles;
4402     dst   : E(write);
4403     src1  : R(read);
4404     src2  : R(read);
4405     cr    : E(write);
4406     IALU  : R(2);
4407 %}
4408 
4409 // Integer ALU reg-imm operaion
4410 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4411     single_instruction;
4412     dst   : E(write);
4413     src1  : R(read);
4414     IALU  : R;
4415 %}
4416 
4417 // Integer ALU reg-reg operation with condition code
4418 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4419     single_instruction;
4420     dst   : E(write);
4421     cr    : E(write);
4422     src1  : R(read);
4423     src2  : R(read);
4424     IALU  : R;
4425 %}
4426 
4427 // Integer ALU reg-imm operation with condition code
4428 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4429     single_instruction;
4430     dst   : E(write);
4431     cr    : E(write);
4432     src1  : R(read);
4433     IALU  : R;
4434 %}
4435 
4436 // Integer ALU zero-reg operation
4437 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4438     single_instruction;
4439     dst   : E(write);
4440     src2  : R(read);
4441     IALU  : R;
4442 %}
4443 
4444 // Integer ALU zero-reg operation with condition code only
4445 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4446     single_instruction;
4447     cr    : E(write);
4448     src   : R(read);
4449     IALU  : R;
4450 %}
4451 
4452 // Integer ALU reg-reg operation with condition code only
4453 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4454     single_instruction;
4455     cr    : E(write);
4456     src1  : R(read);
4457     src2  : R(read);
4458     IALU  : R;
4459 %}
4460 
4461 // Integer ALU reg-imm operation with condition code only
4462 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4463     single_instruction;
4464     cr    : E(write);
4465     src1  : R(read);
4466     IALU  : R;
4467 %}
4468 
4469 // Integer ALU reg-reg-zero operation with condition code only
4470 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4471     single_instruction;
4472     cr    : E(write);
4473     src1  : R(read);
4474     src2  : R(read);
4475     IALU  : R;
4476 %}
4477 
4478 // Integer ALU reg-imm-zero operation with condition code only
4479 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4480     single_instruction;
4481     cr    : E(write);
4482     src1  : R(read);
4483     IALU  : R;
4484 %}
4485 
4486 // Integer ALU reg-reg operation with condition code, src1 modified
4487 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4488     single_instruction;
4489     cr    : E(write);
4490     src1  : E(write);
4491     src1  : R(read);
4492     src2  : R(read);
4493     IALU  : R;
4494 %}
4495 
4496 // Integer ALU reg-imm operation with condition code, src1 modified
4497 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4498     single_instruction;
4499     cr    : E(write);
4500     src1  : E(write);
4501     src1  : R(read);
4502     IALU  : R;
4503 %}
4504 
4505 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4506     multiple_bundles;
4507     dst   : E(write)+4;
4508     cr    : E(write);
4509     src1  : R(read);
4510     src2  : R(read);
4511     IALU  : R(3);
4512     BR    : R(2);
4513 %}
4514 
4515 // Integer ALU operation
4516 pipe_class ialu_none(iRegI dst) %{
4517     single_instruction;
4518     dst   : E(write);
4519     IALU  : R;
4520 %}
4521 
4522 // Integer ALU reg operation
4523 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4524     single_instruction; may_have_no_code;
4525     dst   : E(write);
4526     src   : R(read);
4527     IALU  : R;
4528 %}
4529 
4530 // Integer ALU reg conditional operation
4531 // This instruction has a 1 cycle stall, and cannot execute
4532 // in the same cycle as the instruction setting the condition
4533 // code. We kludge this by pretending to read the condition code
4534 // 1 cycle earlier, and by marking the functional units as busy
4535 // for 2 cycles with the result available 1 cycle later than
4536 // is really the case.
4537 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4538     single_instruction;
4539     op2_out : C(write);
4540     op1     : R(read);
4541     cr      : R(read);       // This is really E, with a 1 cycle stall
4542     BR      : R(2);
4543     MS      : R(2);
4544 %}
4545 
4546 #ifdef _LP64
4547 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4548     instruction_count(1); multiple_bundles;
4549     dst     : C(write)+1;
4550     src     : R(read)+1;
4551     IALU    : R(1);
4552     BR      : E(2);
4553     MS      : E(2);
4554 %}
4555 #endif
4556 
4557 // Integer ALU reg operation
4558 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4559     single_instruction; may_have_no_code;
4560     dst   : E(write);
4561     src   : R(read);
4562     IALU  : R;
4563 %}
4564 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4565     single_instruction; may_have_no_code;
4566     dst   : E(write);
4567     src   : R(read);
4568     IALU  : R;
4569 %}
4570 
4571 // Two integer ALU reg operations
4572 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4573     instruction_count(2);
4574     dst   : E(write);
4575     src   : R(read);
4576     A0    : R;
4577     A1    : R;
4578 %}
4579 
4580 // Two integer ALU reg operations
4581 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4582     instruction_count(2); may_have_no_code;
4583     dst   : E(write);
4584     src   : R(read);
4585     A0    : R;
4586     A1    : R;
4587 %}
4588 
4589 // Integer ALU imm operation
4590 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4591     single_instruction;
4592     dst   : E(write);
4593     IALU  : R;
4594 %}
4595 
4596 // Integer ALU reg-reg with carry operation
4597 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4598     single_instruction;
4599     dst   : E(write);
4600     src1  : R(read);
4601     src2  : R(read);
4602     IALU  : R;
4603 %}
4604 
4605 // Integer ALU cc operation
4606 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4607     single_instruction;
4608     dst   : E(write);
4609     cc    : R(read);
4610     IALU  : R;
4611 %}
4612 
4613 // Integer ALU cc / second IALU operation
4614 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4615     instruction_count(1); multiple_bundles;
4616     dst   : E(write)+1;
4617     src   : R(read);
4618     IALU  : R;
4619 %}
4620 
4621 // Integer ALU cc / second IALU operation
4622 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4623     instruction_count(1); multiple_bundles;
4624     dst   : E(write)+1;
4625     p     : R(read);
4626     q     : R(read);
4627     IALU  : R;
4628 %}
4629 
4630 // Integer ALU hi-lo-reg operation
4631 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4632     instruction_count(1); multiple_bundles;
4633     dst   : E(write)+1;
4634     IALU  : R(2);
4635 %}
4636 
4637 // Float ALU hi-lo-reg operation (with temp)
4638 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4639     instruction_count(1); multiple_bundles;
4640     dst   : E(write)+1;
4641     IALU  : R(2);
4642 %}
4643 
4644 // Long Constant
4645 pipe_class loadConL( iRegL dst, immL src ) %{
4646     instruction_count(2); multiple_bundles;
4647     dst   : E(write)+1;
4648     IALU  : R(2);
4649     IALU  : R(2);
4650 %}
4651 
4652 // Pointer Constant
4653 pipe_class loadConP( iRegP dst, immP src ) %{
4654     instruction_count(0); multiple_bundles;
4655     fixed_latency(6);
4656 %}
4657 
4658 // Polling Address
4659 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4660 #ifdef _LP64
4661     instruction_count(0); multiple_bundles;
4662     fixed_latency(6);
4663 #else
4664     dst   : E(write);
4665     IALU  : R;
4666 #endif
4667 %}
4668 
4669 // Long Constant small
4670 pipe_class loadConLlo( iRegL dst, immL src ) %{
4671     instruction_count(2);
4672     dst   : E(write);
4673     IALU  : R;
4674     IALU  : R;
4675 %}
4676 
4677 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4678 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4679     instruction_count(1); multiple_bundles;
4680     src   : R(read);
4681     dst   : M(write)+1;
4682     IALU  : R;
4683     MS    : E;
4684 %}
4685 
4686 // Integer ALU nop operation
4687 pipe_class ialu_nop() %{
4688     single_instruction;
4689     IALU  : R;
4690 %}
4691 
4692 // Integer ALU nop operation
4693 pipe_class ialu_nop_A0() %{
4694     single_instruction;
4695     A0    : R;
4696 %}
4697 
4698 // Integer ALU nop operation
4699 pipe_class ialu_nop_A1() %{
4700     single_instruction;
4701     A1    : R;
4702 %}
4703 
4704 // Integer Multiply reg-reg operation
4705 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4706     single_instruction;
4707     dst   : E(write);
4708     src1  : R(read);
4709     src2  : R(read);
4710     MS    : R(5);
4711 %}
4712 
4713 // Integer Multiply reg-imm operation
4714 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4715     single_instruction;
4716     dst   : E(write);
4717     src1  : R(read);
4718     MS    : R(5);
4719 %}
4720 
4721 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4722     single_instruction;
4723     dst   : E(write)+4;
4724     src1  : R(read);
4725     src2  : R(read);
4726     MS    : R(6);
4727 %}
4728 
4729 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4730     single_instruction;
4731     dst   : E(write)+4;
4732     src1  : R(read);
4733     MS    : R(6);
4734 %}
4735 
4736 // Integer Divide reg-reg
4737 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4738     instruction_count(1); multiple_bundles;
4739     dst   : E(write);
4740     temp  : E(write);
4741     src1  : R(read);
4742     src2  : R(read);
4743     temp  : R(read);
4744     MS    : R(38);
4745 %}
4746 
4747 // Integer Divide reg-imm
4748 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4749     instruction_count(1); multiple_bundles;
4750     dst   : E(write);
4751     temp  : E(write);
4752     src1  : R(read);
4753     temp  : R(read);
4754     MS    : R(38);
4755 %}
4756 
4757 // Long Divide
4758 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4759     dst  : E(write)+71;
4760     src1 : R(read);
4761     src2 : R(read)+1;
4762     MS   : R(70);
4763 %}
4764 
4765 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4766     dst  : E(write)+71;
4767     src1 : R(read);
4768     MS   : R(70);
4769 %}
4770 
4771 // Floating Point Add Float
4772 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4773     single_instruction;
4774     dst   : X(write);
4775     src1  : E(read);
4776     src2  : E(read);
4777     FA    : R;
4778 %}
4779 
4780 // Floating Point Add Double
4781 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4782     single_instruction;
4783     dst   : X(write);
4784     src1  : E(read);
4785     src2  : E(read);
4786     FA    : R;
4787 %}
4788 
4789 // Floating Point Conditional Move based on integer flags
4790 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4791     single_instruction;
4792     dst   : X(write);
4793     src   : E(read);
4794     cr    : R(read);
4795     FA    : R(2);
4796     BR    : R(2);
4797 %}
4798 
4799 // Floating Point Conditional Move based on integer flags
4800 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4801     single_instruction;
4802     dst   : X(write);
4803     src   : E(read);
4804     cr    : R(read);
4805     FA    : R(2);
4806     BR    : R(2);
4807 %}
4808 
4809 // Floating Point Multiply Float
4810 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4811     single_instruction;
4812     dst   : X(write);
4813     src1  : E(read);
4814     src2  : E(read);
4815     FM    : R;
4816 %}
4817 
4818 // Floating Point Multiply Double
4819 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4820     single_instruction;
4821     dst   : X(write);
4822     src1  : E(read);
4823     src2  : E(read);
4824     FM    : R;
4825 %}
4826 
4827 // Floating Point Divide Float
4828 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4829     single_instruction;
4830     dst   : X(write);
4831     src1  : E(read);
4832     src2  : E(read);
4833     FM    : R;
4834     FDIV  : C(14);
4835 %}
4836 
4837 // Floating Point Divide Double
4838 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4839     single_instruction;
4840     dst   : X(write);
4841     src1  : E(read);
4842     src2  : E(read);
4843     FM    : R;
4844     FDIV  : C(17);
4845 %}
4846 
4847 // Floating Point Move/Negate/Abs Float
4848 pipe_class faddF_reg(regF dst, regF src) %{
4849     single_instruction;
4850     dst   : W(write);
4851     src   : E(read);
4852     FA    : R(1);
4853 %}
4854 
4855 // Floating Point Move/Negate/Abs Double
4856 pipe_class faddD_reg(regD dst, regD src) %{
4857     single_instruction;
4858     dst   : W(write);
4859     src   : E(read);
4860     FA    : R;
4861 %}
4862 
4863 // Floating Point Convert F->D
4864 pipe_class fcvtF2D(regD dst, regF src) %{
4865     single_instruction;
4866     dst   : X(write);
4867     src   : E(read);
4868     FA    : R;
4869 %}
4870 
4871 // Floating Point Convert I->D
4872 pipe_class fcvtI2D(regD dst, regF src) %{
4873     single_instruction;
4874     dst   : X(write);
4875     src   : E(read);
4876     FA    : R;
4877 %}
4878 
4879 // Floating Point Convert LHi->D
4880 pipe_class fcvtLHi2D(regD dst, regD src) %{
4881     single_instruction;
4882     dst   : X(write);
4883     src   : E(read);
4884     FA    : R;
4885 %}
4886 
4887 // Floating Point Convert L->D
4888 pipe_class fcvtL2D(regD dst, regF src) %{
4889     single_instruction;
4890     dst   : X(write);
4891     src   : E(read);
4892     FA    : R;
4893 %}
4894 
4895 // Floating Point Convert L->F
4896 pipe_class fcvtL2F(regD dst, regF src) %{
4897     single_instruction;
4898     dst   : X(write);
4899     src   : E(read);
4900     FA    : R;
4901 %}
4902 
4903 // Floating Point Convert D->F
4904 pipe_class fcvtD2F(regD dst, regF src) %{
4905     single_instruction;
4906     dst   : X(write);
4907     src   : E(read);
4908     FA    : R;
4909 %}
4910 
4911 // Floating Point Convert I->L
4912 pipe_class fcvtI2L(regD dst, regF src) %{
4913     single_instruction;
4914     dst   : X(write);
4915     src   : E(read);
4916     FA    : R;
4917 %}
4918 
4919 // Floating Point Convert D->F
4920 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4921     instruction_count(1); multiple_bundles;
4922     dst   : X(write)+6;
4923     src   : E(read);
4924     FA    : R;
4925 %}
4926 
4927 // Floating Point Convert D->L
4928 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4929     instruction_count(1); multiple_bundles;
4930     dst   : X(write)+6;
4931     src   : E(read);
4932     FA    : R;
4933 %}
4934 
4935 // Floating Point Convert F->I
4936 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4937     instruction_count(1); multiple_bundles;
4938     dst   : X(write)+6;
4939     src   : E(read);
4940     FA    : R;
4941 %}
4942 
4943 // Floating Point Convert F->L
4944 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4945     instruction_count(1); multiple_bundles;
4946     dst   : X(write)+6;
4947     src   : E(read);
4948     FA    : R;
4949 %}
4950 
4951 // Floating Point Convert I->F
4952 pipe_class fcvtI2F(regF dst, regF src) %{
4953     single_instruction;
4954     dst   : X(write);
4955     src   : E(read);
4956     FA    : R;
4957 %}
4958 
4959 // Floating Point Compare
4960 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4961     single_instruction;
4962     cr    : X(write);
4963     src1  : E(read);
4964     src2  : E(read);
4965     FA    : R;
4966 %}
4967 
4968 // Floating Point Compare
4969 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4970     single_instruction;
4971     cr    : X(write);
4972     src1  : E(read);
4973     src2  : E(read);
4974     FA    : R;
4975 %}
4976 
4977 // Floating Add Nop
4978 pipe_class fadd_nop() %{
4979     single_instruction;
4980     FA  : R;
4981 %}
4982 
4983 // Integer Store to Memory
4984 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4985     single_instruction;
4986     mem   : R(read);
4987     src   : C(read);
4988     MS    : R;
4989 %}
4990 
4991 // Integer Store to Memory
4992 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4993     single_instruction;
4994     mem   : R(read);
4995     src   : C(read);
4996     MS    : R;
4997 %}
4998 
4999 // Integer Store Zero to Memory
5000 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5001     single_instruction;
5002     mem   : R(read);
5003     MS    : R;
5004 %}
5005 
5006 // Special Stack Slot Store
5007 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5008     single_instruction;
5009     stkSlot : R(read);
5010     src     : C(read);
5011     MS      : R;
5012 %}
5013 
5014 // Special Stack Slot Store
5015 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5016     instruction_count(2); multiple_bundles;
5017     stkSlot : R(read);
5018     src     : C(read);
5019     MS      : R(2);
5020 %}
5021 
5022 // Float Store
5023 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5024     single_instruction;
5025     mem : R(read);
5026     src : C(read);
5027     MS  : R;
5028 %}
5029 
5030 // Float Store
5031 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5032     single_instruction;
5033     mem : R(read);
5034     MS  : R;
5035 %}
5036 
5037 // Double Store
5038 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5039     instruction_count(1);
5040     mem : R(read);
5041     src : C(read);
5042     MS  : R;
5043 %}
5044 
5045 // Double Store
5046 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5047     single_instruction;
5048     mem : R(read);
5049     MS  : R;
5050 %}
5051 
5052 // Special Stack Slot Float Store
5053 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5054     single_instruction;
5055     stkSlot : R(read);
5056     src     : C(read);
5057     MS      : R;
5058 %}
5059 
5060 // Special Stack Slot Double Store
5061 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5062     single_instruction;
5063     stkSlot : R(read);
5064     src     : C(read);
5065     MS      : R;
5066 %}
5067 
5068 // Integer Load (when sign bit propagation not needed)
5069 pipe_class iload_mem(iRegI dst, memory mem) %{
5070     single_instruction;
5071     mem : R(read);
5072     dst : C(write);
5073     MS  : R;
5074 %}
5075 
5076 // Integer Load from stack operand
5077 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5078     single_instruction;
5079     mem : R(read);
5080     dst : C(write);
5081     MS  : R;
5082 %}
5083 
5084 // Integer Load (when sign bit propagation or masking is needed)
5085 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5086     single_instruction;
5087     mem : R(read);
5088     dst : M(write);
5089     MS  : R;
5090 %}
5091 
5092 // Float Load
5093 pipe_class floadF_mem(regF dst, memory mem) %{
5094     single_instruction;
5095     mem : R(read);
5096     dst : M(write);
5097     MS  : R;
5098 %}
5099 
5100 // Float Load
5101 pipe_class floadD_mem(regD dst, memory mem) %{
5102     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5103     mem : R(read);
5104     dst : M(write);
5105     MS  : R;
5106 %}
5107 
5108 // Float Load
5109 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5110     single_instruction;
5111     stkSlot : R(read);
5112     dst : M(write);
5113     MS  : R;
5114 %}
5115 
5116 // Float Load
5117 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5118     single_instruction;
5119     stkSlot : R(read);
5120     dst : M(write);
5121     MS  : R;
5122 %}
5123 
5124 // Memory Nop
5125 pipe_class mem_nop() %{
5126     single_instruction;
5127     MS  : R;
5128 %}
5129 
5130 pipe_class sethi(iRegP dst, immI src) %{
5131     single_instruction;
5132     dst  : E(write);
5133     IALU : R;
5134 %}
5135 
5136 pipe_class loadPollP(iRegP poll) %{
5137     single_instruction;
5138     poll : R(read);
5139     MS   : R;
5140 %}
5141 
5142 pipe_class br(Universe br, label labl) %{
5143     single_instruction_with_delay_slot;
5144     BR  : R;
5145 %}
5146 
5147 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5148     single_instruction_with_delay_slot;
5149     cr    : E(read);
5150     BR    : R;
5151 %}
5152 
5153 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5154     single_instruction_with_delay_slot;
5155     op1 : E(read);
5156     BR  : R;
5157     MS  : R;
5158 %}
5159 
5160 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5161     single_instruction_with_delay_slot;
5162     cr    : E(read);
5163     BR    : R;
5164 %}
5165 
5166 pipe_class br_nop() %{
5167     single_instruction;
5168     BR  : R;
5169 %}
5170 
5171 pipe_class simple_call(method meth) %{
5172     instruction_count(2); multiple_bundles; force_serialization;
5173     fixed_latency(100);
5174     BR  : R(1);
5175     MS  : R(1);
5176     A0  : R(1);
5177 %}
5178 
5179 pipe_class compiled_call(method meth) %{
5180     instruction_count(1); multiple_bundles; force_serialization;
5181     fixed_latency(100);
5182     MS  : R(1);
5183 %}
5184 
5185 pipe_class call(method meth) %{
5186     instruction_count(0); multiple_bundles; force_serialization;
5187     fixed_latency(100);
5188 %}
5189 
5190 pipe_class tail_call(Universe ignore, label labl) %{
5191     single_instruction; has_delay_slot;
5192     fixed_latency(100);
5193     BR  : R(1);
5194     MS  : R(1);
5195 %}
5196 
5197 pipe_class ret(Universe ignore) %{
5198     single_instruction; has_delay_slot;
5199     BR  : R(1);
5200     MS  : R(1);
5201 %}
5202 
5203 pipe_class ret_poll(g3RegP poll) %{
5204     instruction_count(3); has_delay_slot;
5205     poll : E(read);
5206     MS   : R;
5207 %}
5208 
5209 // The real do-nothing guy
5210 pipe_class empty( ) %{
5211     instruction_count(0);
5212 %}
5213 
5214 pipe_class long_memory_op() %{
5215     instruction_count(0); multiple_bundles; force_serialization;
5216     fixed_latency(25);
5217     MS  : R(1);
5218 %}
5219 
5220 // Check-cast
5221 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5222     array : R(read);
5223     match  : R(read);
5224     IALU   : R(2);
5225     BR     : R(2);
5226     MS     : R;
5227 %}
5228 
5229 // Convert FPU flags into +1,0,-1
5230 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5231     src1  : E(read);
5232     src2  : E(read);
5233     dst   : E(write);
5234     FA    : R;
5235     MS    : R(2);
5236     BR    : R(2);
5237 %}
5238 
5239 // Compare for p < q, and conditionally add y
5240 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5241     p     : E(read);
5242     q     : E(read);
5243     y     : E(read);
5244     IALU  : R(3)
5245 %}
5246 
5247 // Perform a compare, then move conditionally in a branch delay slot.
5248 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5249     src2   : E(read);
5250     srcdst : E(read);
5251     IALU   : R;
5252     BR     : R;
5253 %}
5254 
5255 // Define the class for the Nop node
5256 define %{
5257    MachNop = ialu_nop;
5258 %}
5259 
5260 %}
5261 
5262 //----------INSTRUCTIONS-------------------------------------------------------
5263 
5264 //------------Special Stack Slot instructions - no match rules-----------------
5265 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5266   // No match rule to avoid chain rule match.
5267   effect(DEF dst, USE src);
5268   ins_cost(MEMORY_REF_COST);
5269   size(4);
5270   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5271   opcode(Assembler::ldf_op3);
5272   ins_encode(simple_form3_mem_reg(src, dst));
5273   ins_pipe(floadF_stk);
5274 %}
5275 
5276 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5277   // No match rule to avoid chain rule match.
5278   effect(DEF dst, USE src);
5279   ins_cost(MEMORY_REF_COST);
5280   size(4);
5281   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5282   opcode(Assembler::lddf_op3);
5283   ins_encode(simple_form3_mem_reg(src, dst));
5284   ins_pipe(floadD_stk);
5285 %}
5286 
5287 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5288   // No match rule to avoid chain rule match.
5289   effect(DEF dst, USE src);
5290   ins_cost(MEMORY_REF_COST);
5291   size(4);
5292   format %{ "STF    $src,$dst\t! regF to stkI" %}
5293   opcode(Assembler::stf_op3);
5294   ins_encode(simple_form3_mem_reg(dst, src));
5295   ins_pipe(fstoreF_stk_reg);
5296 %}
5297 
5298 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5299   // No match rule to avoid chain rule match.
5300   effect(DEF dst, USE src);
5301   ins_cost(MEMORY_REF_COST);
5302   size(4);
5303   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5304   opcode(Assembler::stdf_op3);
5305   ins_encode(simple_form3_mem_reg(dst, src));
5306   ins_pipe(fstoreD_stk_reg);
5307 %}
5308 
5309 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5310   effect(DEF dst, USE src);
5311   ins_cost(MEMORY_REF_COST*2);
5312   size(8);
5313   format %{ "STW    $src,$dst.hi\t! long\n\t"
5314             "STW    R_G0,$dst.lo" %}
5315   opcode(Assembler::stw_op3);
5316   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5317   ins_pipe(lstoreI_stk_reg);
5318 %}
5319 
5320 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5321   // No match rule to avoid chain rule match.
5322   effect(DEF dst, USE src);
5323   ins_cost(MEMORY_REF_COST);
5324   size(4);
5325   format %{ "STX    $src,$dst\t! regL to stkD" %}
5326   opcode(Assembler::stx_op3);
5327   ins_encode(simple_form3_mem_reg( dst, src ) );
5328   ins_pipe(istore_stk_reg);
5329 %}
5330 
5331 //---------- Chain stack slots between similar types --------
5332 
5333 // Load integer from stack slot
5334 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5335   match(Set dst src);
5336   ins_cost(MEMORY_REF_COST);
5337 
5338   size(4);
5339   format %{ "LDUW   $src,$dst\t!stk" %}
5340   opcode(Assembler::lduw_op3);
5341   ins_encode(simple_form3_mem_reg( src, dst ) );
5342   ins_pipe(iload_mem);
5343 %}
5344 
5345 // Store integer to stack slot
5346 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5347   match(Set dst src);
5348   ins_cost(MEMORY_REF_COST);
5349 
5350   size(4);
5351   format %{ "STW    $src,$dst\t!stk" %}
5352   opcode(Assembler::stw_op3);
5353   ins_encode(simple_form3_mem_reg( dst, src ) );
5354   ins_pipe(istore_mem_reg);
5355 %}
5356 
5357 // Load long from stack slot
5358 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5359   match(Set dst src);
5360 
5361   ins_cost(MEMORY_REF_COST);
5362   size(4);
5363   format %{ "LDX    $src,$dst\t! long" %}
5364   opcode(Assembler::ldx_op3);
5365   ins_encode(simple_form3_mem_reg( src, dst ) );
5366   ins_pipe(iload_mem);
5367 %}
5368 
5369 // Store long to stack slot
5370 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5371   match(Set dst src);
5372 
5373   ins_cost(MEMORY_REF_COST);
5374   size(4);
5375   format %{ "STX    $src,$dst\t! long" %}
5376   opcode(Assembler::stx_op3);
5377   ins_encode(simple_form3_mem_reg( dst, src ) );
5378   ins_pipe(istore_mem_reg);
5379 %}
5380 
5381 #ifdef _LP64
5382 // Load pointer from stack slot, 64-bit encoding
5383 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5384   match(Set dst src);
5385   ins_cost(MEMORY_REF_COST);
5386   size(4);
5387   format %{ "LDX    $src,$dst\t!ptr" %}
5388   opcode(Assembler::ldx_op3);
5389   ins_encode(simple_form3_mem_reg( src, dst ) );
5390   ins_pipe(iload_mem);
5391 %}
5392 
5393 // Store pointer to stack slot
5394 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5395   match(Set dst src);
5396   ins_cost(MEMORY_REF_COST);
5397   size(4);
5398   format %{ "STX    $src,$dst\t!ptr" %}
5399   opcode(Assembler::stx_op3);
5400   ins_encode(simple_form3_mem_reg( dst, src ) );
5401   ins_pipe(istore_mem_reg);
5402 %}
5403 #else // _LP64
5404 // Load pointer from stack slot, 32-bit encoding
5405 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5406   match(Set dst src);
5407   ins_cost(MEMORY_REF_COST);
5408   format %{ "LDUW   $src,$dst\t!ptr" %}
5409   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5410   ins_encode(simple_form3_mem_reg( src, dst ) );
5411   ins_pipe(iload_mem);
5412 %}
5413 
5414 // Store pointer to stack slot
5415 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5416   match(Set dst src);
5417   ins_cost(MEMORY_REF_COST);
5418   format %{ "STW    $src,$dst\t!ptr" %}
5419   opcode(Assembler::stw_op3, Assembler::ldst_op);
5420   ins_encode(simple_form3_mem_reg( dst, src ) );
5421   ins_pipe(istore_mem_reg);
5422 %}
5423 #endif // _LP64
5424 
5425 //------------Special Nop instructions for bundling - no match rules-----------
5426 // Nop using the A0 functional unit
5427 instruct Nop_A0() %{
5428   ins_cost(0);
5429 
5430   format %{ "NOP    ! Alu Pipeline" %}
5431   opcode(Assembler::or_op3, Assembler::arith_op);
5432   ins_encode( form2_nop() );
5433   ins_pipe(ialu_nop_A0);
5434 %}
5435 
5436 // Nop using the A1 functional unit
5437 instruct Nop_A1( ) %{
5438   ins_cost(0);
5439 
5440   format %{ "NOP    ! Alu Pipeline" %}
5441   opcode(Assembler::or_op3, Assembler::arith_op);
5442   ins_encode( form2_nop() );
5443   ins_pipe(ialu_nop_A1);
5444 %}
5445 
5446 // Nop using the memory functional unit
5447 instruct Nop_MS( ) %{
5448   ins_cost(0);
5449 
5450   format %{ "NOP    ! Memory Pipeline" %}
5451   ins_encode( emit_mem_nop );
5452   ins_pipe(mem_nop);
5453 %}
5454 
5455 // Nop using the floating add functional unit
5456 instruct Nop_FA( ) %{
5457   ins_cost(0);
5458 
5459   format %{ "NOP    ! Floating Add Pipeline" %}
5460   ins_encode( emit_fadd_nop );
5461   ins_pipe(fadd_nop);
5462 %}
5463 
5464 // Nop using the branch functional unit
5465 instruct Nop_BR( ) %{
5466   ins_cost(0);
5467 
5468   format %{ "NOP    ! Branch Pipeline" %}
5469   ins_encode( emit_br_nop );
5470   ins_pipe(br_nop);
5471 %}
5472 
5473 //----------Load/Store/Move Instructions---------------------------------------
5474 //----------Load Instructions--------------------------------------------------
5475 // Load Byte (8bit signed)
5476 instruct loadB(iRegI dst, memory mem) %{
5477   match(Set dst (LoadB mem));
5478   ins_cost(MEMORY_REF_COST);
5479 
5480   size(4);
5481   format %{ "LDSB   $mem,$dst\t! byte" %}
5482   ins_encode %{
5483     __ ldsb($mem$$Address, $dst$$Register);
5484   %}
5485   ins_pipe(iload_mask_mem);
5486 %}
5487 
5488 // Load Byte (8bit signed) into a Long Register
5489 instruct loadB2L(iRegL dst, memory mem) %{
5490   match(Set dst (ConvI2L (LoadB mem)));
5491   ins_cost(MEMORY_REF_COST);
5492 
5493   size(4);
5494   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5495   ins_encode %{
5496     __ ldsb($mem$$Address, $dst$$Register);
5497   %}
5498   ins_pipe(iload_mask_mem);
5499 %}
5500 
5501 // Load Unsigned Byte (8bit UNsigned) into an int reg
5502 instruct loadUB(iRegI dst, memory mem) %{
5503   match(Set dst (LoadUB mem));
5504   ins_cost(MEMORY_REF_COST);
5505 
5506   size(4);
5507   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5508   ins_encode %{
5509     __ ldub($mem$$Address, $dst$$Register);
5510   %}
5511   ins_pipe(iload_mem);
5512 %}
5513 
5514 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5515 instruct loadUB2L(iRegL dst, memory mem) %{
5516   match(Set dst (ConvI2L (LoadUB mem)));
5517   ins_cost(MEMORY_REF_COST);
5518 
5519   size(4);
5520   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5521   ins_encode %{
5522     __ ldub($mem$$Address, $dst$$Register);
5523   %}
5524   ins_pipe(iload_mem);
5525 %}
5526 
5527 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5528 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5529   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5530   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5531 
5532   size(2*4);
5533   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5534             "AND    $dst,$mask,$dst" %}
5535   ins_encode %{
5536     __ ldub($mem$$Address, $dst$$Register);
5537     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5538   %}
5539   ins_pipe(iload_mem);
5540 %}
5541 
5542 // Load Short (16bit signed)
5543 instruct loadS(iRegI dst, memory mem) %{
5544   match(Set dst (LoadS mem));
5545   ins_cost(MEMORY_REF_COST);
5546 
5547   size(4);
5548   format %{ "LDSH   $mem,$dst\t! short" %}
5549   ins_encode %{
5550     __ ldsh($mem$$Address, $dst$$Register);
5551   %}
5552   ins_pipe(iload_mask_mem);
5553 %}
5554 
5555 // Load Short (16 bit signed) to Byte (8 bit signed)
5556 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5557   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5558   ins_cost(MEMORY_REF_COST);
5559 
5560   size(4);
5561 
5562   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5563   ins_encode %{
5564     __ ldsb($mem$$Address, $dst$$Register, 1);
5565   %}
5566   ins_pipe(iload_mask_mem);
5567 %}
5568 
5569 // Load Short (16bit signed) into a Long Register
5570 instruct loadS2L(iRegL dst, memory mem) %{
5571   match(Set dst (ConvI2L (LoadS mem)));
5572   ins_cost(MEMORY_REF_COST);
5573 
5574   size(4);
5575   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5576   ins_encode %{
5577     __ ldsh($mem$$Address, $dst$$Register);
5578   %}
5579   ins_pipe(iload_mask_mem);
5580 %}
5581 
5582 // Load Unsigned Short/Char (16bit UNsigned)
5583 instruct loadUS(iRegI dst, memory mem) %{
5584   match(Set dst (LoadUS mem));
5585   ins_cost(MEMORY_REF_COST);
5586 
5587   size(4);
5588   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5589   ins_encode %{
5590     __ lduh($mem$$Address, $dst$$Register);
5591   %}
5592   ins_pipe(iload_mem);
5593 %}
5594 
5595 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5596 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5597   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5598   ins_cost(MEMORY_REF_COST);
5599 
5600   size(4);
5601   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5602   ins_encode %{
5603     __ ldsb($mem$$Address, $dst$$Register, 1);
5604   %}
5605   ins_pipe(iload_mask_mem);
5606 %}
5607 
5608 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5609 instruct loadUS2L(iRegL dst, memory mem) %{
5610   match(Set dst (ConvI2L (LoadUS mem)));
5611   ins_cost(MEMORY_REF_COST);
5612 
5613   size(4);
5614   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5615   ins_encode %{
5616     __ lduh($mem$$Address, $dst$$Register);
5617   %}
5618   ins_pipe(iload_mem);
5619 %}
5620 
5621 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5622 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5623   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5624   ins_cost(MEMORY_REF_COST);
5625 
5626   size(4);
5627   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5628   ins_encode %{
5629     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5630   %}
5631   ins_pipe(iload_mem);
5632 %}
5633 
5634 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5635 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5636   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5637   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5638 
5639   size(2*4);
5640   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5641             "AND    $dst,$mask,$dst" %}
5642   ins_encode %{
5643     Register Rdst = $dst$$Register;
5644     __ lduh($mem$$Address, Rdst);
5645     __ and3(Rdst, $mask$$constant, Rdst);
5646   %}
5647   ins_pipe(iload_mem);
5648 %}
5649 
5650 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5651 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5652   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5653   effect(TEMP dst, TEMP tmp);
5654   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5655 
5656   size((3+1)*4);  // set may use two instructions.
5657   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5658             "SET    $mask,$tmp\n\t"
5659             "AND    $dst,$tmp,$dst" %}
5660   ins_encode %{
5661     Register Rdst = $dst$$Register;
5662     Register Rtmp = $tmp$$Register;
5663     __ lduh($mem$$Address, Rdst);
5664     __ set($mask$$constant, Rtmp);
5665     __ and3(Rdst, Rtmp, Rdst);
5666   %}
5667   ins_pipe(iload_mem);
5668 %}
5669 
5670 // Load Integer
5671 instruct loadI(iRegI dst, memory mem) %{
5672   match(Set dst (LoadI mem));
5673   ins_cost(MEMORY_REF_COST);
5674 
5675   size(4);
5676   format %{ "LDUW   $mem,$dst\t! int" %}
5677   ins_encode %{
5678     __ lduw($mem$$Address, $dst$$Register);
5679   %}
5680   ins_pipe(iload_mem);
5681 %}
5682 
5683 // Load Integer to Byte (8 bit signed)
5684 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5685   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5686   ins_cost(MEMORY_REF_COST);
5687 
5688   size(4);
5689 
5690   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5691   ins_encode %{
5692     __ ldsb($mem$$Address, $dst$$Register, 3);
5693   %}
5694   ins_pipe(iload_mask_mem);
5695 %}
5696 
5697 // Load Integer to Unsigned Byte (8 bit UNsigned)
5698 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5699   match(Set dst (AndI (LoadI mem) mask));
5700   ins_cost(MEMORY_REF_COST);
5701 
5702   size(4);
5703 
5704   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5705   ins_encode %{
5706     __ ldub($mem$$Address, $dst$$Register, 3);
5707   %}
5708   ins_pipe(iload_mask_mem);
5709 %}
5710 
5711 // Load Integer to Short (16 bit signed)
5712 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5713   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5714   ins_cost(MEMORY_REF_COST);
5715 
5716   size(4);
5717 
5718   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5719   ins_encode %{
5720     __ ldsh($mem$$Address, $dst$$Register, 2);
5721   %}
5722   ins_pipe(iload_mask_mem);
5723 %}
5724 
5725 // Load Integer to Unsigned Short (16 bit UNsigned)
5726 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5727   match(Set dst (AndI (LoadI mem) mask));
5728   ins_cost(MEMORY_REF_COST);
5729 
5730   size(4);
5731 
5732   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5733   ins_encode %{
5734     __ lduh($mem$$Address, $dst$$Register, 2);
5735   %}
5736   ins_pipe(iload_mask_mem);
5737 %}
5738 
5739 // Load Integer into a Long Register
5740 instruct loadI2L(iRegL dst, memory mem) %{
5741   match(Set dst (ConvI2L (LoadI mem)));
5742   ins_cost(MEMORY_REF_COST);
5743 
5744   size(4);
5745   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5746   ins_encode %{
5747     __ ldsw($mem$$Address, $dst$$Register);
5748   %}
5749   ins_pipe(iload_mask_mem);
5750 %}
5751 
5752 // Load Integer with mask 0xFF into a Long Register
5753 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5754   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5755   ins_cost(MEMORY_REF_COST);
5756 
5757   size(4);
5758   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5759   ins_encode %{
5760     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5761   %}
5762   ins_pipe(iload_mem);
5763 %}
5764 
5765 // Load Integer with mask 0xFFFF into a Long Register
5766 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5767   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5768   ins_cost(MEMORY_REF_COST);
5769 
5770   size(4);
5771   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5772   ins_encode %{
5773     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5774   %}
5775   ins_pipe(iload_mem);
5776 %}
5777 
5778 // Load Integer with a 13-bit mask into a Long Register
5779 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5780   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5781   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5782 
5783   size(2*4);
5784   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5785             "AND    $dst,$mask,$dst" %}
5786   ins_encode %{
5787     Register Rdst = $dst$$Register;
5788     __ lduw($mem$$Address, Rdst);
5789     __ and3(Rdst, $mask$$constant, Rdst);
5790   %}
5791   ins_pipe(iload_mem);
5792 %}
5793 
5794 // Load Integer with a 32-bit mask into a Long Register
5795 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5796   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5797   effect(TEMP dst, TEMP tmp);
5798   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5799 
5800   size((3+1)*4);  // set may use two instructions.
5801   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5802             "SET    $mask,$tmp\n\t"
5803             "AND    $dst,$tmp,$dst" %}
5804   ins_encode %{
5805     Register Rdst = $dst$$Register;
5806     Register Rtmp = $tmp$$Register;
5807     __ lduw($mem$$Address, Rdst);
5808     __ set($mask$$constant, Rtmp);
5809     __ and3(Rdst, Rtmp, Rdst);
5810   %}
5811   ins_pipe(iload_mem);
5812 %}
5813 
5814 // Load Unsigned Integer into a Long Register
5815 instruct loadUI2L(iRegL dst, memory mem) %{
5816   match(Set dst (LoadUI2L mem));
5817   ins_cost(MEMORY_REF_COST);
5818 
5819   size(4);
5820   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5821   ins_encode %{
5822     __ lduw($mem$$Address, $dst$$Register);
5823   %}
5824   ins_pipe(iload_mem);
5825 %}
5826 
5827 // Load Long - aligned
5828 instruct loadL(iRegL dst, memory mem ) %{
5829   match(Set dst (LoadL mem));
5830   ins_cost(MEMORY_REF_COST);
5831 
5832   size(4);
5833   format %{ "LDX    $mem,$dst\t! long" %}
5834   ins_encode %{
5835     __ ldx($mem$$Address, $dst$$Register);
5836   %}
5837   ins_pipe(iload_mem);
5838 %}
5839 
5840 // Load Long - UNaligned
5841 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5842   match(Set dst (LoadL_unaligned mem));
5843   effect(KILL tmp);
5844   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5845   size(16);
5846   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5847           "\tLDUW   $mem  ,$dst\n"
5848           "\tSLLX   #32, $dst, $dst\n"
5849           "\tOR     $dst, R_O7, $dst" %}
5850   opcode(Assembler::lduw_op3);
5851   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5852   ins_pipe(iload_mem);
5853 %}
5854 
5855 // Load Aligned Packed Byte into a Double Register
5856 instruct loadA8B(regD dst, memory mem) %{
5857   match(Set dst (Load8B mem));
5858   ins_cost(MEMORY_REF_COST);
5859   size(4);
5860   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5861   opcode(Assembler::lddf_op3);
5862   ins_encode(simple_form3_mem_reg( mem, dst ) );
5863   ins_pipe(floadD_mem);
5864 %}
5865 
5866 // Load Aligned Packed Char into a Double Register
5867 instruct loadA4C(regD dst, memory mem) %{
5868   match(Set dst (Load4C mem));
5869   ins_cost(MEMORY_REF_COST);
5870   size(4);
5871   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5872   opcode(Assembler::lddf_op3);
5873   ins_encode(simple_form3_mem_reg( mem, dst ) );
5874   ins_pipe(floadD_mem);
5875 %}
5876 
5877 // Load Aligned Packed Short into a Double Register
5878 instruct loadA4S(regD dst, memory mem) %{
5879   match(Set dst (Load4S mem));
5880   ins_cost(MEMORY_REF_COST);
5881   size(4);
5882   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5883   opcode(Assembler::lddf_op3);
5884   ins_encode(simple_form3_mem_reg( mem, dst ) );
5885   ins_pipe(floadD_mem);
5886 %}
5887 
5888 // Load Aligned Packed Int into a Double Register
5889 instruct loadA2I(regD dst, memory mem) %{
5890   match(Set dst (Load2I mem));
5891   ins_cost(MEMORY_REF_COST);
5892   size(4);
5893   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5894   opcode(Assembler::lddf_op3);
5895   ins_encode(simple_form3_mem_reg( mem, dst ) );
5896   ins_pipe(floadD_mem);
5897 %}
5898 
5899 // Load Range
5900 instruct loadRange(iRegI dst, memory mem) %{
5901   match(Set dst (LoadRange mem));
5902   ins_cost(MEMORY_REF_COST);
5903 
5904   size(4);
5905   format %{ "LDUW   $mem,$dst\t! range" %}
5906   opcode(Assembler::lduw_op3);
5907   ins_encode(simple_form3_mem_reg( mem, dst ) );
5908   ins_pipe(iload_mem);
5909 %}
5910 
5911 // Load Integer into %f register (for fitos/fitod)
5912 instruct loadI_freg(regF dst, memory mem) %{
5913   match(Set dst (LoadI mem));
5914   ins_cost(MEMORY_REF_COST);
5915   size(4);
5916 
5917   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5918   opcode(Assembler::ldf_op3);
5919   ins_encode(simple_form3_mem_reg( mem, dst ) );
5920   ins_pipe(floadF_mem);
5921 %}
5922 
5923 // Load Pointer
5924 instruct loadP(iRegP dst, memory mem) %{
5925   match(Set dst (LoadP mem));
5926   ins_cost(MEMORY_REF_COST);
5927   size(4);
5928 
5929 #ifndef _LP64
5930   format %{ "LDUW   $mem,$dst\t! ptr" %}
5931   ins_encode %{
5932     __ lduw($mem$$Address, $dst$$Register);
5933   %}
5934 #else
5935   format %{ "LDX    $mem,$dst\t! ptr" %}
5936   ins_encode %{
5937     __ ldx($mem$$Address, $dst$$Register);
5938   %}
5939 #endif
5940   ins_pipe(iload_mem);
5941 %}
5942 
5943 // Load Compressed Pointer
5944 instruct loadN(iRegN dst, memory mem) %{
5945   match(Set dst (LoadN mem));
5946   ins_cost(MEMORY_REF_COST);
5947   size(4);
5948 
5949   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5950   ins_encode %{
5951     __ lduw($mem$$Address, $dst$$Register);
5952   %}
5953   ins_pipe(iload_mem);
5954 %}
5955 
5956 // Load Klass Pointer
5957 instruct loadKlass(iRegP dst, memory mem) %{
5958   match(Set dst (LoadKlass mem));
5959   ins_cost(MEMORY_REF_COST);
5960   size(4);
5961 
5962 #ifndef _LP64
5963   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5964   ins_encode %{
5965     __ lduw($mem$$Address, $dst$$Register);
5966   %}
5967 #else
5968   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5969   ins_encode %{
5970     __ ldx($mem$$Address, $dst$$Register);
5971   %}
5972 #endif
5973   ins_pipe(iload_mem);
5974 %}
5975 
5976 // Load narrow Klass Pointer
5977 instruct loadNKlass(iRegN dst, memory mem) %{
5978   match(Set dst (LoadNKlass mem));
5979   ins_cost(MEMORY_REF_COST);
5980   size(4);
5981 
5982   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5983   ins_encode %{
5984     __ lduw($mem$$Address, $dst$$Register);
5985   %}
5986   ins_pipe(iload_mem);
5987 %}
5988 
5989 // Load Double
5990 instruct loadD(regD dst, memory mem) %{
5991   match(Set dst (LoadD mem));
5992   ins_cost(MEMORY_REF_COST);
5993 
5994   size(4);
5995   format %{ "LDDF   $mem,$dst" %}
5996   opcode(Assembler::lddf_op3);
5997   ins_encode(simple_form3_mem_reg( mem, dst ) );
5998   ins_pipe(floadD_mem);
5999 %}
6000 
6001 // Load Double - UNaligned
6002 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6003   match(Set dst (LoadD_unaligned mem));
6004   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6005   size(8);
6006   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6007           "\tLDF    $mem+4,$dst.lo\t!" %}
6008   opcode(Assembler::ldf_op3);
6009   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6010   ins_pipe(iload_mem);
6011 %}
6012 
6013 // Load Float
6014 instruct loadF(regF dst, memory mem) %{
6015   match(Set dst (LoadF mem));
6016   ins_cost(MEMORY_REF_COST);
6017 
6018   size(4);
6019   format %{ "LDF    $mem,$dst" %}
6020   opcode(Assembler::ldf_op3);
6021   ins_encode(simple_form3_mem_reg( mem, dst ) );
6022   ins_pipe(floadF_mem);
6023 %}
6024 
6025 // Load Constant
6026 instruct loadConI( iRegI dst, immI src ) %{
6027   match(Set dst src);
6028   ins_cost(DEFAULT_COST * 3/2);
6029   format %{ "SET    $src,$dst" %}
6030   ins_encode( Set32(src, dst) );
6031   ins_pipe(ialu_hi_lo_reg);
6032 %}
6033 
6034 instruct loadConI13( iRegI dst, immI13 src ) %{
6035   match(Set dst src);
6036 
6037   size(4);
6038   format %{ "MOV    $src,$dst" %}
6039   ins_encode( Set13( src, dst ) );
6040   ins_pipe(ialu_imm);
6041 %}
6042 
6043 #ifndef _LP64
6044 instruct loadConP(iRegP dst, immP con) %{
6045   match(Set dst con);
6046   ins_cost(DEFAULT_COST * 3/2);
6047   format %{ "SET    $con,$dst\t!ptr" %}
6048   ins_encode %{
6049     // [RGV] This next line should be generated from ADLC
6050     if (_opnds[1]->constant_is_oop()) {
6051       intptr_t val = $con$$constant;
6052       __ set_oop_constant((jobject) val, $dst$$Register);
6053     } else {          // non-oop pointers, e.g. card mark base, heap top
6054       __ set($con$$constant, $dst$$Register);
6055     }
6056   %}
6057   ins_pipe(loadConP);
6058 %}
6059 #else
6060 instruct loadConP_set(iRegP dst, immP_set con) %{
6061   match(Set dst con);
6062   ins_cost(DEFAULT_COST * 3/2);
6063   format %{ "SET    $con,$dst\t! ptr" %}
6064   ins_encode %{
6065     // [RGV] This next line should be generated from ADLC
6066     if (_opnds[1]->constant_is_oop()) {
6067       intptr_t val = $con$$constant;
6068       __ set_oop_constant((jobject) val, $dst$$Register);
6069     } else {          // non-oop pointers, e.g. card mark base, heap top
6070       __ set($con$$constant, $dst$$Register);
6071     }
6072   %}
6073   ins_pipe(loadConP);
6074 %}
6075 
6076 instruct loadConP_load(iRegP dst, immP_load con) %{
6077   match(Set dst con);
6078   ins_cost(MEMORY_REF_COST);
6079   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6080   ins_encode %{
6081     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6082     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6083   %}
6084   ins_pipe(loadConP);
6085 %}
6086 
6087 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6088   match(Set dst con);
6089   ins_cost(DEFAULT_COST * 3/2);
6090   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6091   ins_encode %{
6092     __ set($con$$constant, $dst$$Register);
6093   %}
6094   ins_pipe(loadConP);
6095 %}
6096 #endif // _LP64
6097 
6098 instruct loadConP0(iRegP dst, immP0 src) %{
6099   match(Set dst src);
6100 
6101   size(4);
6102   format %{ "CLR    $dst\t!ptr" %}
6103   ins_encode %{
6104     __ clr($dst$$Register);
6105   %}
6106   ins_pipe(ialu_imm);
6107 %}
6108 
6109 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6110   match(Set dst src);
6111   ins_cost(DEFAULT_COST);
6112   format %{ "SET    $src,$dst\t!ptr" %}
6113   ins_encode %{
6114     AddressLiteral polling_page(os::get_polling_page());
6115     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6116   %}
6117   ins_pipe(loadConP_poll);
6118 %}
6119 
6120 instruct loadConN0(iRegN dst, immN0 src) %{
6121   match(Set dst src);
6122 
6123   size(4);
6124   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6125   ins_encode %{
6126     __ clr($dst$$Register);
6127   %}
6128   ins_pipe(ialu_imm);
6129 %}
6130 
6131 instruct loadConN(iRegN dst, immN src) %{
6132   match(Set dst src);
6133   ins_cost(DEFAULT_COST * 3/2);
6134   format %{ "SET    $src,$dst\t! compressed ptr" %}
6135   ins_encode %{
6136     Register dst = $dst$$Register;
6137     __ set_narrow_oop((jobject)$src$$constant, dst);
6138   %}
6139   ins_pipe(ialu_hi_lo_reg);
6140 %}
6141 
6142 // Materialize long value (predicated by immL_cheap).
6143 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6144   match(Set dst con);
6145   effect(KILL tmp);
6146   ins_cost(DEFAULT_COST * 3);
6147   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6148   ins_encode %{
6149     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6150   %}
6151   ins_pipe(loadConL);
6152 %}
6153 
6154 // Load long value from constant table (predicated by immL_expensive).
6155 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6156   match(Set dst con);
6157   ins_cost(MEMORY_REF_COST);
6158   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6159   ins_encode %{
6160       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6161     __ ldx($constanttablebase, con_offset, $dst$$Register);
6162   %}
6163   ins_pipe(loadConL);
6164 %}
6165 
6166 instruct loadConL0( iRegL dst, immL0 src ) %{
6167   match(Set dst src);
6168   ins_cost(DEFAULT_COST);
6169   size(4);
6170   format %{ "CLR    $dst\t! long" %}
6171   ins_encode( Set13( src, dst ) );
6172   ins_pipe(ialu_imm);
6173 %}
6174 
6175 instruct loadConL13( iRegL dst, immL13 src ) %{
6176   match(Set dst src);
6177   ins_cost(DEFAULT_COST * 2);
6178 
6179   size(4);
6180   format %{ "MOV    $src,$dst\t! long" %}
6181   ins_encode( Set13( src, dst ) );
6182   ins_pipe(ialu_imm);
6183 %}
6184 
6185 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6186   match(Set dst con);
6187   effect(KILL tmp);
6188   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6189   ins_encode %{
6190       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6191     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6192   %}
6193   ins_pipe(loadConFD);
6194 %}
6195 
6196 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6197   match(Set dst con);
6198   effect(KILL tmp);
6199   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6200   ins_encode %{
6201     // XXX This is a quick fix for 6833573.
6202     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6203     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6204     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6205   %}
6206   ins_pipe(loadConFD);
6207 %}
6208 
6209 // Prefetch instructions.
6210 // Must be safe to execute with invalid address (cannot fault).
6211 
6212 instruct prefetchr( memory mem ) %{
6213   match( PrefetchRead mem );
6214   ins_cost(MEMORY_REF_COST);
6215 
6216   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6217   opcode(Assembler::prefetch_op3);
6218   ins_encode( form3_mem_prefetch_read( mem ) );
6219   ins_pipe(iload_mem);
6220 %}
6221 
6222 instruct prefetchw( memory mem ) %{
6223   predicate(AllocatePrefetchStyle != 3 );
6224   match( PrefetchWrite mem );
6225   ins_cost(MEMORY_REF_COST);
6226 
6227   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6228   opcode(Assembler::prefetch_op3);
6229   ins_encode( form3_mem_prefetch_write( mem ) );
6230   ins_pipe(iload_mem);
6231 %}
6232 
6233 // Use BIS instruction to prefetch.
6234 instruct prefetchw_bis( memory mem ) %{
6235   predicate(AllocatePrefetchStyle == 3);
6236   match( PrefetchWrite mem );
6237   ins_cost(MEMORY_REF_COST);
6238 
6239   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
6240   ins_encode %{
6241      Register base = as_Register($mem$$base);
6242      int disp = $mem$$disp;
6243      if (disp != 0) {
6244        __ add(base, AllocatePrefetchStepSize, base);
6245      }
6246      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
6247   %}
6248   ins_pipe(istore_mem_reg);
6249 %}
6250 
6251 //----------Store Instructions-------------------------------------------------
6252 // Store Byte
6253 instruct storeB(memory mem, iRegI src) %{
6254   match(Set mem (StoreB mem src));
6255   ins_cost(MEMORY_REF_COST);
6256 
6257   size(4);
6258   format %{ "STB    $src,$mem\t! byte" %}
6259   opcode(Assembler::stb_op3);
6260   ins_encode(simple_form3_mem_reg( mem, src ) );
6261   ins_pipe(istore_mem_reg);
6262 %}
6263 
6264 instruct storeB0(memory mem, immI0 src) %{
6265   match(Set mem (StoreB mem src));
6266   ins_cost(MEMORY_REF_COST);
6267 
6268   size(4);
6269   format %{ "STB    $src,$mem\t! byte" %}
6270   opcode(Assembler::stb_op3);
6271   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6272   ins_pipe(istore_mem_zero);
6273 %}
6274 
6275 instruct storeCM0(memory mem, immI0 src) %{
6276   match(Set mem (StoreCM mem src));
6277   ins_cost(MEMORY_REF_COST);
6278 
6279   size(4);
6280   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6281   opcode(Assembler::stb_op3);
6282   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6283   ins_pipe(istore_mem_zero);
6284 %}
6285 
6286 // Store Char/Short
6287 instruct storeC(memory mem, iRegI src) %{
6288   match(Set mem (StoreC mem src));
6289   ins_cost(MEMORY_REF_COST);
6290 
6291   size(4);
6292   format %{ "STH    $src,$mem\t! short" %}
6293   opcode(Assembler::sth_op3);
6294   ins_encode(simple_form3_mem_reg( mem, src ) );
6295   ins_pipe(istore_mem_reg);
6296 %}
6297 
6298 instruct storeC0(memory mem, immI0 src) %{
6299   match(Set mem (StoreC mem src));
6300   ins_cost(MEMORY_REF_COST);
6301 
6302   size(4);
6303   format %{ "STH    $src,$mem\t! short" %}
6304   opcode(Assembler::sth_op3);
6305   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6306   ins_pipe(istore_mem_zero);
6307 %}
6308 
6309 // Store Integer
6310 instruct storeI(memory mem, iRegI src) %{
6311   match(Set mem (StoreI mem src));
6312   ins_cost(MEMORY_REF_COST);
6313 
6314   size(4);
6315   format %{ "STW    $src,$mem" %}
6316   opcode(Assembler::stw_op3);
6317   ins_encode(simple_form3_mem_reg( mem, src ) );
6318   ins_pipe(istore_mem_reg);
6319 %}
6320 
6321 // Store Long
6322 instruct storeL(memory mem, iRegL src) %{
6323   match(Set mem (StoreL mem src));
6324   ins_cost(MEMORY_REF_COST);
6325   size(4);
6326   format %{ "STX    $src,$mem\t! long" %}
6327   opcode(Assembler::stx_op3);
6328   ins_encode(simple_form3_mem_reg( mem, src ) );
6329   ins_pipe(istore_mem_reg);
6330 %}
6331 
6332 instruct storeI0(memory mem, immI0 src) %{
6333   match(Set mem (StoreI mem src));
6334   ins_cost(MEMORY_REF_COST);
6335 
6336   size(4);
6337   format %{ "STW    $src,$mem" %}
6338   opcode(Assembler::stw_op3);
6339   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6340   ins_pipe(istore_mem_zero);
6341 %}
6342 
6343 instruct storeL0(memory mem, immL0 src) %{
6344   match(Set mem (StoreL mem src));
6345   ins_cost(MEMORY_REF_COST);
6346 
6347   size(4);
6348   format %{ "STX    $src,$mem" %}
6349   opcode(Assembler::stx_op3);
6350   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6351   ins_pipe(istore_mem_zero);
6352 %}
6353 
6354 // Store Integer from float register (used after fstoi)
6355 instruct storeI_Freg(memory mem, regF src) %{
6356   match(Set mem (StoreI mem src));
6357   ins_cost(MEMORY_REF_COST);
6358 
6359   size(4);
6360   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6361   opcode(Assembler::stf_op3);
6362   ins_encode(simple_form3_mem_reg( mem, src ) );
6363   ins_pipe(fstoreF_mem_reg);
6364 %}
6365 
6366 // Store Pointer
6367 instruct storeP(memory dst, sp_ptr_RegP src) %{
6368   match(Set dst (StoreP dst src));
6369   ins_cost(MEMORY_REF_COST);
6370   size(4);
6371 
6372 #ifndef _LP64
6373   format %{ "STW    $src,$dst\t! ptr" %}
6374   opcode(Assembler::stw_op3, 0, REGP_OP);
6375 #else
6376   format %{ "STX    $src,$dst\t! ptr" %}
6377   opcode(Assembler::stx_op3, 0, REGP_OP);
6378 #endif
6379   ins_encode( form3_mem_reg( dst, src ) );
6380   ins_pipe(istore_mem_spORreg);
6381 %}
6382 
6383 instruct storeP0(memory dst, immP0 src) %{
6384   match(Set dst (StoreP dst src));
6385   ins_cost(MEMORY_REF_COST);
6386   size(4);
6387 
6388 #ifndef _LP64
6389   format %{ "STW    $src,$dst\t! ptr" %}
6390   opcode(Assembler::stw_op3, 0, REGP_OP);
6391 #else
6392   format %{ "STX    $src,$dst\t! ptr" %}
6393   opcode(Assembler::stx_op3, 0, REGP_OP);
6394 #endif
6395   ins_encode( form3_mem_reg( dst, R_G0 ) );
6396   ins_pipe(istore_mem_zero);
6397 %}
6398 
6399 // Store Compressed Pointer
6400 instruct storeN(memory dst, iRegN src) %{
6401    match(Set dst (StoreN dst src));
6402    ins_cost(MEMORY_REF_COST);
6403    size(4);
6404 
6405    format %{ "STW    $src,$dst\t! compressed ptr" %}
6406    ins_encode %{
6407      Register base = as_Register($dst$$base);
6408      Register index = as_Register($dst$$index);
6409      Register src = $src$$Register;
6410      if (index != G0) {
6411        __ stw(src, base, index);
6412      } else {
6413        __ stw(src, base, $dst$$disp);
6414      }
6415    %}
6416    ins_pipe(istore_mem_spORreg);
6417 %}
6418 
6419 instruct storeN0(memory dst, immN0 src) %{
6420    match(Set dst (StoreN dst src));
6421    ins_cost(MEMORY_REF_COST);
6422    size(4);
6423 
6424    format %{ "STW    $src,$dst\t! compressed ptr" %}
6425    ins_encode %{
6426      Register base = as_Register($dst$$base);
6427      Register index = as_Register($dst$$index);
6428      if (index != G0) {
6429        __ stw(0, base, index);
6430      } else {
6431        __ stw(0, base, $dst$$disp);
6432      }
6433    %}
6434    ins_pipe(istore_mem_zero);
6435 %}
6436 
6437 // Store Double
6438 instruct storeD( memory mem, regD src) %{
6439   match(Set mem (StoreD mem src));
6440   ins_cost(MEMORY_REF_COST);
6441 
6442   size(4);
6443   format %{ "STDF   $src,$mem" %}
6444   opcode(Assembler::stdf_op3);
6445   ins_encode(simple_form3_mem_reg( mem, src ) );
6446   ins_pipe(fstoreD_mem_reg);
6447 %}
6448 
6449 instruct storeD0( memory mem, immD0 src) %{
6450   match(Set mem (StoreD mem src));
6451   ins_cost(MEMORY_REF_COST);
6452 
6453   size(4);
6454   format %{ "STX    $src,$mem" %}
6455   opcode(Assembler::stx_op3);
6456   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6457   ins_pipe(fstoreD_mem_zero);
6458 %}
6459 
6460 // Store Float
6461 instruct storeF( memory mem, regF src) %{
6462   match(Set mem (StoreF mem src));
6463   ins_cost(MEMORY_REF_COST);
6464 
6465   size(4);
6466   format %{ "STF    $src,$mem" %}
6467   opcode(Assembler::stf_op3);
6468   ins_encode(simple_form3_mem_reg( mem, src ) );
6469   ins_pipe(fstoreF_mem_reg);
6470 %}
6471 
6472 instruct storeF0( memory mem, immF0 src) %{
6473   match(Set mem (StoreF mem src));
6474   ins_cost(MEMORY_REF_COST);
6475 
6476   size(4);
6477   format %{ "STW    $src,$mem\t! storeF0" %}
6478   opcode(Assembler::stw_op3);
6479   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6480   ins_pipe(fstoreF_mem_zero);
6481 %}
6482 
6483 // Store Aligned Packed Bytes in Double register to memory
6484 instruct storeA8B(memory mem, regD src) %{
6485   match(Set mem (Store8B mem src));
6486   ins_cost(MEMORY_REF_COST);
6487   size(4);
6488   format %{ "STDF   $src,$mem\t! packed8B" %}
6489   opcode(Assembler::stdf_op3);
6490   ins_encode(simple_form3_mem_reg( mem, src ) );
6491   ins_pipe(fstoreD_mem_reg);
6492 %}
6493 
6494 // Convert oop pointer into compressed form
6495 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6496   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6497   match(Set dst (EncodeP src));
6498   format %{ "encode_heap_oop $src, $dst" %}
6499   ins_encode %{
6500     __ encode_heap_oop($src$$Register, $dst$$Register);
6501   %}
6502   ins_pipe(ialu_reg);
6503 %}
6504 
6505 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6506   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6507   match(Set dst (EncodeP src));
6508   format %{ "encode_heap_oop_not_null $src, $dst" %}
6509   ins_encode %{
6510     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6511   %}
6512   ins_pipe(ialu_reg);
6513 %}
6514 
6515 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6516   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6517             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6518   match(Set dst (DecodeN src));
6519   format %{ "decode_heap_oop $src, $dst" %}
6520   ins_encode %{
6521     __ decode_heap_oop($src$$Register, $dst$$Register);
6522   %}
6523   ins_pipe(ialu_reg);
6524 %}
6525 
6526 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6527   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6528             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6529   match(Set dst (DecodeN src));
6530   format %{ "decode_heap_oop_not_null $src, $dst" %}
6531   ins_encode %{
6532     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6533   %}
6534   ins_pipe(ialu_reg);
6535 %}
6536 
6537 
6538 // Store Zero into Aligned Packed Bytes
6539 instruct storeA8B0(memory mem, immI0 zero) %{
6540   match(Set mem (Store8B mem zero));
6541   ins_cost(MEMORY_REF_COST);
6542   size(4);
6543   format %{ "STX    $zero,$mem\t! packed8B" %}
6544   opcode(Assembler::stx_op3);
6545   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6546   ins_pipe(fstoreD_mem_zero);
6547 %}
6548 
6549 // Store Aligned Packed Chars/Shorts in Double register to memory
6550 instruct storeA4C(memory mem, regD src) %{
6551   match(Set mem (Store4C mem src));
6552   ins_cost(MEMORY_REF_COST);
6553   size(4);
6554   format %{ "STDF   $src,$mem\t! packed4C" %}
6555   opcode(Assembler::stdf_op3);
6556   ins_encode(simple_form3_mem_reg( mem, src ) );
6557   ins_pipe(fstoreD_mem_reg);
6558 %}
6559 
6560 // Store Zero into Aligned Packed Chars/Shorts
6561 instruct storeA4C0(memory mem, immI0 zero) %{
6562   match(Set mem (Store4C mem (Replicate4C zero)));
6563   ins_cost(MEMORY_REF_COST);
6564   size(4);
6565   format %{ "STX    $zero,$mem\t! packed4C" %}
6566   opcode(Assembler::stx_op3);
6567   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6568   ins_pipe(fstoreD_mem_zero);
6569 %}
6570 
6571 // Store Aligned Packed Ints in Double register to memory
6572 instruct storeA2I(memory mem, regD src) %{
6573   match(Set mem (Store2I mem src));
6574   ins_cost(MEMORY_REF_COST);
6575   size(4);
6576   format %{ "STDF   $src,$mem\t! packed2I" %}
6577   opcode(Assembler::stdf_op3);
6578   ins_encode(simple_form3_mem_reg( mem, src ) );
6579   ins_pipe(fstoreD_mem_reg);
6580 %}
6581 
6582 // Store Zero into Aligned Packed Ints
6583 instruct storeA2I0(memory mem, immI0 zero) %{
6584   match(Set mem (Store2I mem zero));
6585   ins_cost(MEMORY_REF_COST);
6586   size(4);
6587   format %{ "STX    $zero,$mem\t! packed2I" %}
6588   opcode(Assembler::stx_op3);
6589   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6590   ins_pipe(fstoreD_mem_zero);
6591 %}
6592 
6593 
6594 //----------MemBar Instructions-----------------------------------------------
6595 // Memory barrier flavors
6596 
6597 instruct membar_acquire() %{
6598   match(MemBarAcquire);
6599   ins_cost(4*MEMORY_REF_COST);
6600 
6601   size(0);
6602   format %{ "MEMBAR-acquire" %}
6603   ins_encode( enc_membar_acquire );
6604   ins_pipe(long_memory_op);
6605 %}
6606 
6607 instruct membar_acquire_lock() %{
6608   match(MemBarAcquire);
6609   predicate(Matcher::prior_fast_lock(n));
6610   ins_cost(0);
6611 
6612   size(0);
6613   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6614   ins_encode( );
6615   ins_pipe(empty);
6616 %}
6617 
6618 instruct membar_release() %{
6619   match(MemBarRelease);
6620   ins_cost(4*MEMORY_REF_COST);
6621 
6622   size(0);
6623   format %{ "MEMBAR-release" %}
6624   ins_encode( enc_membar_release );
6625   ins_pipe(long_memory_op);
6626 %}
6627 
6628 instruct membar_release_lock() %{
6629   match(MemBarRelease);
6630   predicate(Matcher::post_fast_unlock(n));
6631   ins_cost(0);
6632 
6633   size(0);
6634   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6635   ins_encode( );
6636   ins_pipe(empty);
6637 %}
6638 
6639 instruct membar_volatile() %{
6640   match(MemBarVolatile);
6641   ins_cost(4*MEMORY_REF_COST);
6642 
6643   size(4);
6644   format %{ "MEMBAR-volatile" %}
6645   ins_encode( enc_membar_volatile );
6646   ins_pipe(long_memory_op);
6647 %}
6648 
6649 instruct unnecessary_membar_volatile() %{
6650   match(MemBarVolatile);
6651   predicate(Matcher::post_store_load_barrier(n));
6652   ins_cost(0);
6653 
6654   size(0);
6655   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6656   ins_encode( );
6657   ins_pipe(empty);
6658 %}
6659 
6660 //----------Register Move Instructions-----------------------------------------
6661 instruct roundDouble_nop(regD dst) %{
6662   match(Set dst (RoundDouble dst));
6663   ins_cost(0);
6664   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6665   ins_encode( );
6666   ins_pipe(empty);
6667 %}
6668 
6669 
6670 instruct roundFloat_nop(regF dst) %{
6671   match(Set dst (RoundFloat dst));
6672   ins_cost(0);
6673   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6674   ins_encode( );
6675   ins_pipe(empty);
6676 %}
6677 
6678 
6679 // Cast Index to Pointer for unsafe natives
6680 instruct castX2P(iRegX src, iRegP dst) %{
6681   match(Set dst (CastX2P src));
6682 
6683   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6684   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6685   ins_pipe(ialu_reg);
6686 %}
6687 
6688 // Cast Pointer to Index for unsafe natives
6689 instruct castP2X(iRegP src, iRegX dst) %{
6690   match(Set dst (CastP2X src));
6691 
6692   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6693   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6694   ins_pipe(ialu_reg);
6695 %}
6696 
6697 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6698   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6699   match(Set stkSlot src);   // chain rule
6700   ins_cost(MEMORY_REF_COST);
6701   format %{ "STDF   $src,$stkSlot\t!stk" %}
6702   opcode(Assembler::stdf_op3);
6703   ins_encode(simple_form3_mem_reg(stkSlot, src));
6704   ins_pipe(fstoreD_stk_reg);
6705 %}
6706 
6707 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6708   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6709   match(Set dst stkSlot);   // chain rule
6710   ins_cost(MEMORY_REF_COST);
6711   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6712   opcode(Assembler::lddf_op3);
6713   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6714   ins_pipe(floadD_stk);
6715 %}
6716 
6717 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6718   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6719   match(Set stkSlot src);   // chain rule
6720   ins_cost(MEMORY_REF_COST);
6721   format %{ "STF   $src,$stkSlot\t!stk" %}
6722   opcode(Assembler::stf_op3);
6723   ins_encode(simple_form3_mem_reg(stkSlot, src));
6724   ins_pipe(fstoreF_stk_reg);
6725 %}
6726 
6727 //----------Conditional Move---------------------------------------------------
6728 // Conditional move
6729 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6730   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6731   ins_cost(150);
6732   format %{ "MOV$cmp $pcc,$src,$dst" %}
6733   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6734   ins_pipe(ialu_reg);
6735 %}
6736 
6737 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6738   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6739   ins_cost(140);
6740   format %{ "MOV$cmp $pcc,$src,$dst" %}
6741   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6742   ins_pipe(ialu_imm);
6743 %}
6744 
6745 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6746   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6747   ins_cost(150);
6748   size(4);
6749   format %{ "MOV$cmp  $icc,$src,$dst" %}
6750   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6751   ins_pipe(ialu_reg);
6752 %}
6753 
6754 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6755   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6756   ins_cost(140);
6757   size(4);
6758   format %{ "MOV$cmp  $icc,$src,$dst" %}
6759   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6760   ins_pipe(ialu_imm);
6761 %}
6762 
6763 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6764   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6765   ins_cost(150);
6766   size(4);
6767   format %{ "MOV$cmp  $icc,$src,$dst" %}
6768   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6769   ins_pipe(ialu_reg);
6770 %}
6771 
6772 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6773   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6774   ins_cost(140);
6775   size(4);
6776   format %{ "MOV$cmp  $icc,$src,$dst" %}
6777   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6778   ins_pipe(ialu_imm);
6779 %}
6780 
6781 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6782   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6783   ins_cost(150);
6784   size(4);
6785   format %{ "MOV$cmp $fcc,$src,$dst" %}
6786   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6787   ins_pipe(ialu_reg);
6788 %}
6789 
6790 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6791   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6792   ins_cost(140);
6793   size(4);
6794   format %{ "MOV$cmp $fcc,$src,$dst" %}
6795   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6796   ins_pipe(ialu_imm);
6797 %}
6798 
6799 // Conditional move for RegN. Only cmov(reg,reg).
6800 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6801   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6802   ins_cost(150);
6803   format %{ "MOV$cmp $pcc,$src,$dst" %}
6804   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6805   ins_pipe(ialu_reg);
6806 %}
6807 
6808 // This instruction also works with CmpN so we don't need cmovNN_reg.
6809 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6810   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6811   ins_cost(150);
6812   size(4);
6813   format %{ "MOV$cmp  $icc,$src,$dst" %}
6814   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6815   ins_pipe(ialu_reg);
6816 %}
6817 
6818 // This instruction also works with CmpN so we don't need cmovNN_reg.
6819 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6820   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6821   ins_cost(150);
6822   size(4);
6823   format %{ "MOV$cmp  $icc,$src,$dst" %}
6824   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6825   ins_pipe(ialu_reg);
6826 %}
6827 
6828 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6829   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6830   ins_cost(150);
6831   size(4);
6832   format %{ "MOV$cmp $fcc,$src,$dst" %}
6833   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6834   ins_pipe(ialu_reg);
6835 %}
6836 
6837 // Conditional move
6838 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6839   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6840   ins_cost(150);
6841   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6842   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6843   ins_pipe(ialu_reg);
6844 %}
6845 
6846 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6847   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6848   ins_cost(140);
6849   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6850   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6851   ins_pipe(ialu_imm);
6852 %}
6853 
6854 // This instruction also works with CmpN so we don't need cmovPN_reg.
6855 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6856   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6857   ins_cost(150);
6858 
6859   size(4);
6860   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6861   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6862   ins_pipe(ialu_reg);
6863 %}
6864 
6865 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6866   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6867   ins_cost(150);
6868 
6869   size(4);
6870   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6871   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6872   ins_pipe(ialu_reg);
6873 %}
6874 
6875 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6876   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6877   ins_cost(140);
6878 
6879   size(4);
6880   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6881   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6882   ins_pipe(ialu_imm);
6883 %}
6884 
6885 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6886   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6887   ins_cost(140);
6888 
6889   size(4);
6890   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6891   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6892   ins_pipe(ialu_imm);
6893 %}
6894 
6895 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6896   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6897   ins_cost(150);
6898   size(4);
6899   format %{ "MOV$cmp $fcc,$src,$dst" %}
6900   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6901   ins_pipe(ialu_imm);
6902 %}
6903 
6904 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6905   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6906   ins_cost(140);
6907   size(4);
6908   format %{ "MOV$cmp $fcc,$src,$dst" %}
6909   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6910   ins_pipe(ialu_imm);
6911 %}
6912 
6913 // Conditional move
6914 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6915   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6916   ins_cost(150);
6917   opcode(0x101);
6918   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6919   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6920   ins_pipe(int_conditional_float_move);
6921 %}
6922 
6923 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6924   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6925   ins_cost(150);
6926 
6927   size(4);
6928   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6929   opcode(0x101);
6930   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6931   ins_pipe(int_conditional_float_move);
6932 %}
6933 
6934 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6935   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6936   ins_cost(150);
6937 
6938   size(4);
6939   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6940   opcode(0x101);
6941   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6942   ins_pipe(int_conditional_float_move);
6943 %}
6944 
6945 // Conditional move,
6946 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6947   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6948   ins_cost(150);
6949   size(4);
6950   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6951   opcode(0x1);
6952   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6953   ins_pipe(int_conditional_double_move);
6954 %}
6955 
6956 // Conditional move
6957 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6958   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6959   ins_cost(150);
6960   size(4);
6961   opcode(0x102);
6962   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6963   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6964   ins_pipe(int_conditional_double_move);
6965 %}
6966 
6967 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6968   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6969   ins_cost(150);
6970 
6971   size(4);
6972   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6973   opcode(0x102);
6974   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6975   ins_pipe(int_conditional_double_move);
6976 %}
6977 
6978 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6979   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6980   ins_cost(150);
6981 
6982   size(4);
6983   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6984   opcode(0x102);
6985   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6986   ins_pipe(int_conditional_double_move);
6987 %}
6988 
6989 // Conditional move,
6990 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6991   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6992   ins_cost(150);
6993   size(4);
6994   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6995   opcode(0x2);
6996   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6997   ins_pipe(int_conditional_double_move);
6998 %}
6999 
7000 // Conditional move
7001 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7002   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7003   ins_cost(150);
7004   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7005   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7006   ins_pipe(ialu_reg);
7007 %}
7008 
7009 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7010   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7011   ins_cost(140);
7012   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7013   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7014   ins_pipe(ialu_imm);
7015 %}
7016 
7017 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7018   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7019   ins_cost(150);
7020 
7021   size(4);
7022   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7023   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7024   ins_pipe(ialu_reg);
7025 %}
7026 
7027 
7028 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7029   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7030   ins_cost(150);
7031 
7032   size(4);
7033   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7034   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7035   ins_pipe(ialu_reg);
7036 %}
7037 
7038 
7039 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7040   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7041   ins_cost(150);
7042 
7043   size(4);
7044   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7045   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7046   ins_pipe(ialu_reg);
7047 %}
7048 
7049 
7050 
7051 //----------OS and Locking Instructions----------------------------------------
7052 
7053 // This name is KNOWN by the ADLC and cannot be changed.
7054 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7055 // for this guy.
7056 instruct tlsLoadP(g2RegP dst) %{
7057   match(Set dst (ThreadLocal));
7058 
7059   size(0);
7060   ins_cost(0);
7061   format %{ "# TLS is in G2" %}
7062   ins_encode( /*empty encoding*/ );
7063   ins_pipe(ialu_none);
7064 %}
7065 
7066 instruct checkCastPP( iRegP dst ) %{
7067   match(Set dst (CheckCastPP dst));
7068 
7069   size(0);
7070   format %{ "# checkcastPP of $dst" %}
7071   ins_encode( /*empty encoding*/ );
7072   ins_pipe(empty);
7073 %}
7074 
7075 
7076 instruct castPP( iRegP dst ) %{
7077   match(Set dst (CastPP dst));
7078   format %{ "# castPP of $dst" %}
7079   ins_encode( /*empty encoding*/ );
7080   ins_pipe(empty);
7081 %}
7082 
7083 instruct castII( iRegI dst ) %{
7084   match(Set dst (CastII dst));
7085   format %{ "# castII of $dst" %}
7086   ins_encode( /*empty encoding*/ );
7087   ins_cost(0);
7088   ins_pipe(empty);
7089 %}
7090 
7091 //----------Arithmetic Instructions--------------------------------------------
7092 // Addition Instructions
7093 // Register Addition
7094 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7095   match(Set dst (AddI src1 src2));
7096 
7097   size(4);
7098   format %{ "ADD    $src1,$src2,$dst" %}
7099   ins_encode %{
7100     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7101   %}
7102   ins_pipe(ialu_reg_reg);
7103 %}
7104 
7105 // Immediate Addition
7106 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7107   match(Set dst (AddI src1 src2));
7108 
7109   size(4);
7110   format %{ "ADD    $src1,$src2,$dst" %}
7111   opcode(Assembler::add_op3, Assembler::arith_op);
7112   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7113   ins_pipe(ialu_reg_imm);
7114 %}
7115 
7116 // Pointer Register Addition
7117 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7118   match(Set dst (AddP src1 src2));
7119 
7120   size(4);
7121   format %{ "ADD    $src1,$src2,$dst" %}
7122   opcode(Assembler::add_op3, Assembler::arith_op);
7123   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7124   ins_pipe(ialu_reg_reg);
7125 %}
7126 
7127 // Pointer Immediate Addition
7128 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7129   match(Set dst (AddP src1 src2));
7130 
7131   size(4);
7132   format %{ "ADD    $src1,$src2,$dst" %}
7133   opcode(Assembler::add_op3, Assembler::arith_op);
7134   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7135   ins_pipe(ialu_reg_imm);
7136 %}
7137 
7138 // Long Addition
7139 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7140   match(Set dst (AddL src1 src2));
7141 
7142   size(4);
7143   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7144   opcode(Assembler::add_op3, Assembler::arith_op);
7145   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7146   ins_pipe(ialu_reg_reg);
7147 %}
7148 
7149 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7150   match(Set dst (AddL src1 con));
7151 
7152   size(4);
7153   format %{ "ADD    $src1,$con,$dst" %}
7154   opcode(Assembler::add_op3, Assembler::arith_op);
7155   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7156   ins_pipe(ialu_reg_imm);
7157 %}
7158 
7159 //----------Conditional_store--------------------------------------------------
7160 // Conditional-store of the updated heap-top.
7161 // Used during allocation of the shared heap.
7162 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7163 
7164 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7165 instruct loadPLocked(iRegP dst, memory mem) %{
7166   match(Set dst (LoadPLocked mem));
7167   ins_cost(MEMORY_REF_COST);
7168 
7169 #ifndef _LP64
7170   size(4);
7171   format %{ "LDUW   $mem,$dst\t! ptr" %}
7172   opcode(Assembler::lduw_op3, 0, REGP_OP);
7173 #else
7174   format %{ "LDX    $mem,$dst\t! ptr" %}
7175   opcode(Assembler::ldx_op3, 0, REGP_OP);
7176 #endif
7177   ins_encode( form3_mem_reg( mem, dst ) );
7178   ins_pipe(iload_mem);
7179 %}
7180 
7181 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7182 instruct loadLLocked(iRegL dst, memory mem) %{
7183   match(Set dst (LoadLLocked mem));
7184   ins_cost(MEMORY_REF_COST);
7185   size(4);
7186   format %{ "LDX    $mem,$dst\t! long" %}
7187   opcode(Assembler::ldx_op3);
7188   ins_encode(simple_form3_mem_reg( mem, dst ) );
7189   ins_pipe(iload_mem);
7190 %}
7191 
7192 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7193   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7194   effect( KILL newval );
7195   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7196             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7197   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7198   ins_pipe( long_memory_op );
7199 %}
7200 
7201 // Conditional-store of an int value.
7202 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7203   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7204   effect( KILL newval );
7205   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7206             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7207   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7208   ins_pipe( long_memory_op );
7209 %}
7210 
7211 // Conditional-store of a long value.
7212 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7213   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7214   effect( KILL newval );
7215   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7216             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7217   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7218   ins_pipe( long_memory_op );
7219 %}
7220 
7221 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7222 
7223 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7224   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7225   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7226   format %{
7227             "MOV    $newval,O7\n\t"
7228             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7229             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7230             "MOV    1,$res\n\t"
7231             "MOVne  xcc,R_G0,$res"
7232   %}
7233   ins_encode( enc_casx(mem_ptr, oldval, newval),
7234               enc_lflags_ne_to_boolean(res) );
7235   ins_pipe( long_memory_op );
7236 %}
7237 
7238 
7239 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7240   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7241   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7242   format %{
7243             "MOV    $newval,O7\n\t"
7244             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7245             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7246             "MOV    1,$res\n\t"
7247             "MOVne  icc,R_G0,$res"
7248   %}
7249   ins_encode( enc_casi(mem_ptr, oldval, newval),
7250               enc_iflags_ne_to_boolean(res) );
7251   ins_pipe( long_memory_op );
7252 %}
7253 
7254 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7255   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7256   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7257   format %{
7258             "MOV    $newval,O7\n\t"
7259             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7260             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7261             "MOV    1,$res\n\t"
7262             "MOVne  xcc,R_G0,$res"
7263   %}
7264 #ifdef _LP64
7265   ins_encode( enc_casx(mem_ptr, oldval, newval),
7266               enc_lflags_ne_to_boolean(res) );
7267 #else
7268   ins_encode( enc_casi(mem_ptr, oldval, newval),
7269               enc_iflags_ne_to_boolean(res) );
7270 #endif
7271   ins_pipe( long_memory_op );
7272 %}
7273 
7274 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7275   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7276   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7277   format %{
7278             "MOV    $newval,O7\n\t"
7279             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7280             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7281             "MOV    1,$res\n\t"
7282             "MOVne  icc,R_G0,$res"
7283   %}
7284   ins_encode( enc_casi(mem_ptr, oldval, newval),
7285               enc_iflags_ne_to_boolean(res) );
7286   ins_pipe( long_memory_op );
7287 %}
7288 
7289 //---------------------
7290 // Subtraction Instructions
7291 // Register Subtraction
7292 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7293   match(Set dst (SubI src1 src2));
7294 
7295   size(4);
7296   format %{ "SUB    $src1,$src2,$dst" %}
7297   opcode(Assembler::sub_op3, Assembler::arith_op);
7298   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7299   ins_pipe(ialu_reg_reg);
7300 %}
7301 
7302 // Immediate Subtraction
7303 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7304   match(Set dst (SubI src1 src2));
7305 
7306   size(4);
7307   format %{ "SUB    $src1,$src2,$dst" %}
7308   opcode(Assembler::sub_op3, Assembler::arith_op);
7309   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7310   ins_pipe(ialu_reg_imm);
7311 %}
7312 
7313 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7314   match(Set dst (SubI zero src2));
7315 
7316   size(4);
7317   format %{ "NEG    $src2,$dst" %}
7318   opcode(Assembler::sub_op3, Assembler::arith_op);
7319   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7320   ins_pipe(ialu_zero_reg);
7321 %}
7322 
7323 // Long subtraction
7324 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7325   match(Set dst (SubL src1 src2));
7326 
7327   size(4);
7328   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7329   opcode(Assembler::sub_op3, Assembler::arith_op);
7330   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7331   ins_pipe(ialu_reg_reg);
7332 %}
7333 
7334 // Immediate Subtraction
7335 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7336   match(Set dst (SubL src1 con));
7337 
7338   size(4);
7339   format %{ "SUB    $src1,$con,$dst\t! long" %}
7340   opcode(Assembler::sub_op3, Assembler::arith_op);
7341   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7342   ins_pipe(ialu_reg_imm);
7343 %}
7344 
7345 // Long negation
7346 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7347   match(Set dst (SubL zero src2));
7348 
7349   size(4);
7350   format %{ "NEG    $src2,$dst\t! long" %}
7351   opcode(Assembler::sub_op3, Assembler::arith_op);
7352   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7353   ins_pipe(ialu_zero_reg);
7354 %}
7355 
7356 // Multiplication Instructions
7357 // Integer Multiplication
7358 // Register Multiplication
7359 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7360   match(Set dst (MulI src1 src2));
7361 
7362   size(4);
7363   format %{ "MULX   $src1,$src2,$dst" %}
7364   opcode(Assembler::mulx_op3, Assembler::arith_op);
7365   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7366   ins_pipe(imul_reg_reg);
7367 %}
7368 
7369 // Immediate Multiplication
7370 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7371   match(Set dst (MulI src1 src2));
7372 
7373   size(4);
7374   format %{ "MULX   $src1,$src2,$dst" %}
7375   opcode(Assembler::mulx_op3, Assembler::arith_op);
7376   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7377   ins_pipe(imul_reg_imm);
7378 %}
7379 
7380 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7381   match(Set dst (MulL src1 src2));
7382   ins_cost(DEFAULT_COST * 5);
7383   size(4);
7384   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7385   opcode(Assembler::mulx_op3, Assembler::arith_op);
7386   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7387   ins_pipe(mulL_reg_reg);
7388 %}
7389 
7390 // Immediate Multiplication
7391 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7392   match(Set dst (MulL src1 src2));
7393   ins_cost(DEFAULT_COST * 5);
7394   size(4);
7395   format %{ "MULX   $src1,$src2,$dst" %}
7396   opcode(Assembler::mulx_op3, Assembler::arith_op);
7397   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7398   ins_pipe(mulL_reg_imm);
7399 %}
7400 
7401 // Integer Division
7402 // Register Division
7403 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7404   match(Set dst (DivI src1 src2));
7405   ins_cost((2+71)*DEFAULT_COST);
7406 
7407   format %{ "SRA     $src2,0,$src2\n\t"
7408             "SRA     $src1,0,$src1\n\t"
7409             "SDIVX   $src1,$src2,$dst" %}
7410   ins_encode( idiv_reg( src1, src2, dst ) );
7411   ins_pipe(sdiv_reg_reg);
7412 %}
7413 
7414 // Immediate Division
7415 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7416   match(Set dst (DivI src1 src2));
7417   ins_cost((2+71)*DEFAULT_COST);
7418 
7419   format %{ "SRA     $src1,0,$src1\n\t"
7420             "SDIVX   $src1,$src2,$dst" %}
7421   ins_encode( idiv_imm( src1, src2, dst ) );
7422   ins_pipe(sdiv_reg_imm);
7423 %}
7424 
7425 //----------Div-By-10-Expansion------------------------------------------------
7426 // Extract hi bits of a 32x32->64 bit multiply.
7427 // Expand rule only, not matched
7428 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7429   effect( DEF dst, USE src1, USE src2 );
7430   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7431             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7432   ins_encode( enc_mul_hi(dst,src1,src2));
7433   ins_pipe(sdiv_reg_reg);
7434 %}
7435 
7436 // Magic constant, reciprocal of 10
7437 instruct loadConI_x66666667(iRegIsafe dst) %{
7438   effect( DEF dst );
7439 
7440   size(8);
7441   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7442   ins_encode( Set32(0x66666667, dst) );
7443   ins_pipe(ialu_hi_lo_reg);
7444 %}
7445 
7446 // Register Shift Right Arithmetic Long by 32-63
7447 instruct sra_31( iRegI dst, iRegI src ) %{
7448   effect( DEF dst, USE src );
7449   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7450   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7451   ins_pipe(ialu_reg_reg);
7452 %}
7453 
7454 // Arithmetic Shift Right by 8-bit immediate
7455 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7456   effect( DEF dst, USE src );
7457   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7458   opcode(Assembler::sra_op3, Assembler::arith_op);
7459   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7460   ins_pipe(ialu_reg_imm);
7461 %}
7462 
7463 // Integer DIV with 10
7464 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7465   match(Set dst (DivI src div));
7466   ins_cost((6+6)*DEFAULT_COST);
7467   expand %{
7468     iRegIsafe tmp1;               // Killed temps;
7469     iRegIsafe tmp2;               // Killed temps;
7470     iRegI tmp3;                   // Killed temps;
7471     iRegI tmp4;                   // Killed temps;
7472     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7473     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7474     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7475     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7476     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7477   %}
7478 %}
7479 
7480 // Register Long Division
7481 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7482   match(Set dst (DivL src1 src2));
7483   ins_cost(DEFAULT_COST*71);
7484   size(4);
7485   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7486   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7487   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7488   ins_pipe(divL_reg_reg);
7489 %}
7490 
7491 // Register Long Division
7492 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7493   match(Set dst (DivL src1 src2));
7494   ins_cost(DEFAULT_COST*71);
7495   size(4);
7496   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7497   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7498   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7499   ins_pipe(divL_reg_imm);
7500 %}
7501 
7502 // Integer Remainder
7503 // Register Remainder
7504 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7505   match(Set dst (ModI src1 src2));
7506   effect( KILL ccr, KILL temp);
7507 
7508   format %{ "SREM   $src1,$src2,$dst" %}
7509   ins_encode( irem_reg(src1, src2, dst, temp) );
7510   ins_pipe(sdiv_reg_reg);
7511 %}
7512 
7513 // Immediate Remainder
7514 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7515   match(Set dst (ModI src1 src2));
7516   effect( KILL ccr, KILL temp);
7517 
7518   format %{ "SREM   $src1,$src2,$dst" %}
7519   ins_encode( irem_imm(src1, src2, dst, temp) );
7520   ins_pipe(sdiv_reg_imm);
7521 %}
7522 
7523 // Register Long Remainder
7524 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7525   effect(DEF dst, USE src1, USE src2);
7526   size(4);
7527   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7528   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7529   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7530   ins_pipe(divL_reg_reg);
7531 %}
7532 
7533 // Register Long Division
7534 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7535   effect(DEF dst, USE src1, USE src2);
7536   size(4);
7537   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7538   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7539   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7540   ins_pipe(divL_reg_imm);
7541 %}
7542 
7543 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7544   effect(DEF dst, USE src1, USE src2);
7545   size(4);
7546   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7547   opcode(Assembler::mulx_op3, Assembler::arith_op);
7548   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7549   ins_pipe(mulL_reg_reg);
7550 %}
7551 
7552 // Immediate Multiplication
7553 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7554   effect(DEF dst, USE src1, USE src2);
7555   size(4);
7556   format %{ "MULX   $src1,$src2,$dst" %}
7557   opcode(Assembler::mulx_op3, Assembler::arith_op);
7558   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7559   ins_pipe(mulL_reg_imm);
7560 %}
7561 
7562 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7563   effect(DEF dst, USE src1, USE src2);
7564   size(4);
7565   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7566   opcode(Assembler::sub_op3, Assembler::arith_op);
7567   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7568   ins_pipe(ialu_reg_reg);
7569 %}
7570 
7571 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7572   effect(DEF dst, USE src1, USE src2);
7573   size(4);
7574   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7575   opcode(Assembler::sub_op3, Assembler::arith_op);
7576   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7577   ins_pipe(ialu_reg_reg);
7578 %}
7579 
7580 // Register Long Remainder
7581 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7582   match(Set dst (ModL src1 src2));
7583   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7584   expand %{
7585     iRegL tmp1;
7586     iRegL tmp2;
7587     divL_reg_reg_1(tmp1, src1, src2);
7588     mulL_reg_reg_1(tmp2, tmp1, src2);
7589     subL_reg_reg_1(dst,  src1, tmp2);
7590   %}
7591 %}
7592 
7593 // Register Long Remainder
7594 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7595   match(Set dst (ModL src1 src2));
7596   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7597   expand %{
7598     iRegL tmp1;
7599     iRegL tmp2;
7600     divL_reg_imm13_1(tmp1, src1, src2);
7601     mulL_reg_imm13_1(tmp2, tmp1, src2);
7602     subL_reg_reg_2  (dst,  src1, tmp2);
7603   %}
7604 %}
7605 
7606 // Integer Shift Instructions
7607 // Register Shift Left
7608 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7609   match(Set dst (LShiftI src1 src2));
7610 
7611   size(4);
7612   format %{ "SLL    $src1,$src2,$dst" %}
7613   opcode(Assembler::sll_op3, Assembler::arith_op);
7614   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7615   ins_pipe(ialu_reg_reg);
7616 %}
7617 
7618 // Register Shift Left Immediate
7619 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7620   match(Set dst (LShiftI src1 src2));
7621 
7622   size(4);
7623   format %{ "SLL    $src1,$src2,$dst" %}
7624   opcode(Assembler::sll_op3, Assembler::arith_op);
7625   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7626   ins_pipe(ialu_reg_imm);
7627 %}
7628 
7629 // Register Shift Left
7630 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7631   match(Set dst (LShiftL src1 src2));
7632 
7633   size(4);
7634   format %{ "SLLX   $src1,$src2,$dst" %}
7635   opcode(Assembler::sllx_op3, Assembler::arith_op);
7636   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7637   ins_pipe(ialu_reg_reg);
7638 %}
7639 
7640 // Register Shift Left Immediate
7641 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7642   match(Set dst (LShiftL src1 src2));
7643 
7644   size(4);
7645   format %{ "SLLX   $src1,$src2,$dst" %}
7646   opcode(Assembler::sllx_op3, Assembler::arith_op);
7647   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7648   ins_pipe(ialu_reg_imm);
7649 %}
7650 
7651 // Register Arithmetic Shift Right
7652 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7653   match(Set dst (RShiftI src1 src2));
7654   size(4);
7655   format %{ "SRA    $src1,$src2,$dst" %}
7656   opcode(Assembler::sra_op3, Assembler::arith_op);
7657   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7658   ins_pipe(ialu_reg_reg);
7659 %}
7660 
7661 // Register Arithmetic Shift Right Immediate
7662 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7663   match(Set dst (RShiftI src1 src2));
7664 
7665   size(4);
7666   format %{ "SRA    $src1,$src2,$dst" %}
7667   opcode(Assembler::sra_op3, Assembler::arith_op);
7668   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7669   ins_pipe(ialu_reg_imm);
7670 %}
7671 
7672 // Register Shift Right Arithmatic Long
7673 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7674   match(Set dst (RShiftL src1 src2));
7675 
7676   size(4);
7677   format %{ "SRAX   $src1,$src2,$dst" %}
7678   opcode(Assembler::srax_op3, Assembler::arith_op);
7679   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7680   ins_pipe(ialu_reg_reg);
7681 %}
7682 
7683 // Register Shift Left Immediate
7684 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7685   match(Set dst (RShiftL src1 src2));
7686 
7687   size(4);
7688   format %{ "SRAX   $src1,$src2,$dst" %}
7689   opcode(Assembler::srax_op3, Assembler::arith_op);
7690   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7691   ins_pipe(ialu_reg_imm);
7692 %}
7693 
7694 // Register Shift Right
7695 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7696   match(Set dst (URShiftI src1 src2));
7697 
7698   size(4);
7699   format %{ "SRL    $src1,$src2,$dst" %}
7700   opcode(Assembler::srl_op3, Assembler::arith_op);
7701   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7702   ins_pipe(ialu_reg_reg);
7703 %}
7704 
7705 // Register Shift Right Immediate
7706 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7707   match(Set dst (URShiftI src1 src2));
7708 
7709   size(4);
7710   format %{ "SRL    $src1,$src2,$dst" %}
7711   opcode(Assembler::srl_op3, Assembler::arith_op);
7712   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7713   ins_pipe(ialu_reg_imm);
7714 %}
7715 
7716 // Register Shift Right
7717 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7718   match(Set dst (URShiftL src1 src2));
7719 
7720   size(4);
7721   format %{ "SRLX   $src1,$src2,$dst" %}
7722   opcode(Assembler::srlx_op3, Assembler::arith_op);
7723   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7724   ins_pipe(ialu_reg_reg);
7725 %}
7726 
7727 // Register Shift Right Immediate
7728 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7729   match(Set dst (URShiftL src1 src2));
7730 
7731   size(4);
7732   format %{ "SRLX   $src1,$src2,$dst" %}
7733   opcode(Assembler::srlx_op3, Assembler::arith_op);
7734   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7735   ins_pipe(ialu_reg_imm);
7736 %}
7737 
7738 // Register Shift Right Immediate with a CastP2X
7739 #ifdef _LP64
7740 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7741   match(Set dst (URShiftL (CastP2X src1) src2));
7742   size(4);
7743   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7744   opcode(Assembler::srlx_op3, Assembler::arith_op);
7745   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7746   ins_pipe(ialu_reg_imm);
7747 %}
7748 #else
7749 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7750   match(Set dst (URShiftI (CastP2X src1) src2));
7751   size(4);
7752   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7753   opcode(Assembler::srl_op3, Assembler::arith_op);
7754   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7755   ins_pipe(ialu_reg_imm);
7756 %}
7757 #endif
7758 
7759 
7760 //----------Floating Point Arithmetic Instructions-----------------------------
7761 
7762 //  Add float single precision
7763 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7764   match(Set dst (AddF src1 src2));
7765 
7766   size(4);
7767   format %{ "FADDS  $src1,$src2,$dst" %}
7768   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7769   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7770   ins_pipe(faddF_reg_reg);
7771 %}
7772 
7773 //  Add float double precision
7774 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7775   match(Set dst (AddD src1 src2));
7776 
7777   size(4);
7778   format %{ "FADDD  $src1,$src2,$dst" %}
7779   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7780   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7781   ins_pipe(faddD_reg_reg);
7782 %}
7783 
7784 //  Sub float single precision
7785 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7786   match(Set dst (SubF src1 src2));
7787 
7788   size(4);
7789   format %{ "FSUBS  $src1,$src2,$dst" %}
7790   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7791   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7792   ins_pipe(faddF_reg_reg);
7793 %}
7794 
7795 //  Sub float double precision
7796 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7797   match(Set dst (SubD src1 src2));
7798 
7799   size(4);
7800   format %{ "FSUBD  $src1,$src2,$dst" %}
7801   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7802   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7803   ins_pipe(faddD_reg_reg);
7804 %}
7805 
7806 //  Mul float single precision
7807 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7808   match(Set dst (MulF src1 src2));
7809 
7810   size(4);
7811   format %{ "FMULS  $src1,$src2,$dst" %}
7812   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7813   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7814   ins_pipe(fmulF_reg_reg);
7815 %}
7816 
7817 //  Mul float double precision
7818 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7819   match(Set dst (MulD src1 src2));
7820 
7821   size(4);
7822   format %{ "FMULD  $src1,$src2,$dst" %}
7823   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7824   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7825   ins_pipe(fmulD_reg_reg);
7826 %}
7827 
7828 //  Div float single precision
7829 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7830   match(Set dst (DivF src1 src2));
7831 
7832   size(4);
7833   format %{ "FDIVS  $src1,$src2,$dst" %}
7834   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7835   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7836   ins_pipe(fdivF_reg_reg);
7837 %}
7838 
7839 //  Div float double precision
7840 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7841   match(Set dst (DivD src1 src2));
7842 
7843   size(4);
7844   format %{ "FDIVD  $src1,$src2,$dst" %}
7845   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7846   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7847   ins_pipe(fdivD_reg_reg);
7848 %}
7849 
7850 //  Absolute float double precision
7851 instruct absD_reg(regD dst, regD src) %{
7852   match(Set dst (AbsD src));
7853 
7854   format %{ "FABSd  $src,$dst" %}
7855   ins_encode(fabsd(dst, src));
7856   ins_pipe(faddD_reg);
7857 %}
7858 
7859 //  Absolute float single precision
7860 instruct absF_reg(regF dst, regF src) %{
7861   match(Set dst (AbsF src));
7862 
7863   format %{ "FABSs  $src,$dst" %}
7864   ins_encode(fabss(dst, src));
7865   ins_pipe(faddF_reg);
7866 %}
7867 
7868 instruct negF_reg(regF dst, regF src) %{
7869   match(Set dst (NegF src));
7870 
7871   size(4);
7872   format %{ "FNEGs  $src,$dst" %}
7873   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7874   ins_encode(form3_opf_rs2F_rdF(src, dst));
7875   ins_pipe(faddF_reg);
7876 %}
7877 
7878 instruct negD_reg(regD dst, regD src) %{
7879   match(Set dst (NegD src));
7880 
7881   format %{ "FNEGd  $src,$dst" %}
7882   ins_encode(fnegd(dst, src));
7883   ins_pipe(faddD_reg);
7884 %}
7885 
7886 //  Sqrt float double precision
7887 instruct sqrtF_reg_reg(regF dst, regF src) %{
7888   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7889 
7890   size(4);
7891   format %{ "FSQRTS $src,$dst" %}
7892   ins_encode(fsqrts(dst, src));
7893   ins_pipe(fdivF_reg_reg);
7894 %}
7895 
7896 //  Sqrt float double precision
7897 instruct sqrtD_reg_reg(regD dst, regD src) %{
7898   match(Set dst (SqrtD src));
7899 
7900   size(4);
7901   format %{ "FSQRTD $src,$dst" %}
7902   ins_encode(fsqrtd(dst, src));
7903   ins_pipe(fdivD_reg_reg);
7904 %}
7905 
7906 //----------Logical Instructions-----------------------------------------------
7907 // And Instructions
7908 // Register And
7909 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7910   match(Set dst (AndI src1 src2));
7911 
7912   size(4);
7913   format %{ "AND    $src1,$src2,$dst" %}
7914   opcode(Assembler::and_op3, Assembler::arith_op);
7915   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7916   ins_pipe(ialu_reg_reg);
7917 %}
7918 
7919 // Immediate And
7920 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7921   match(Set dst (AndI src1 src2));
7922 
7923   size(4);
7924   format %{ "AND    $src1,$src2,$dst" %}
7925   opcode(Assembler::and_op3, Assembler::arith_op);
7926   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7927   ins_pipe(ialu_reg_imm);
7928 %}
7929 
7930 // Register And Long
7931 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7932   match(Set dst (AndL src1 src2));
7933 
7934   ins_cost(DEFAULT_COST);
7935   size(4);
7936   format %{ "AND    $src1,$src2,$dst\t! long" %}
7937   opcode(Assembler::and_op3, Assembler::arith_op);
7938   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7939   ins_pipe(ialu_reg_reg);
7940 %}
7941 
7942 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7943   match(Set dst (AndL src1 con));
7944 
7945   ins_cost(DEFAULT_COST);
7946   size(4);
7947   format %{ "AND    $src1,$con,$dst\t! long" %}
7948   opcode(Assembler::and_op3, Assembler::arith_op);
7949   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7950   ins_pipe(ialu_reg_imm);
7951 %}
7952 
7953 // Or Instructions
7954 // Register Or
7955 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7956   match(Set dst (OrI src1 src2));
7957 
7958   size(4);
7959   format %{ "OR     $src1,$src2,$dst" %}
7960   opcode(Assembler::or_op3, Assembler::arith_op);
7961   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7962   ins_pipe(ialu_reg_reg);
7963 %}
7964 
7965 // Immediate Or
7966 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7967   match(Set dst (OrI src1 src2));
7968 
7969   size(4);
7970   format %{ "OR     $src1,$src2,$dst" %}
7971   opcode(Assembler::or_op3, Assembler::arith_op);
7972   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7973   ins_pipe(ialu_reg_imm);
7974 %}
7975 
7976 // Register Or Long
7977 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7978   match(Set dst (OrL src1 src2));
7979 
7980   ins_cost(DEFAULT_COST);
7981   size(4);
7982   format %{ "OR     $src1,$src2,$dst\t! long" %}
7983   opcode(Assembler::or_op3, Assembler::arith_op);
7984   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7985   ins_pipe(ialu_reg_reg);
7986 %}
7987 
7988 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7989   match(Set dst (OrL src1 con));
7990   ins_cost(DEFAULT_COST*2);
7991 
7992   ins_cost(DEFAULT_COST);
7993   size(4);
7994   format %{ "OR     $src1,$con,$dst\t! long" %}
7995   opcode(Assembler::or_op3, Assembler::arith_op);
7996   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7997   ins_pipe(ialu_reg_imm);
7998 %}
7999 
8000 #ifndef _LP64
8001 
8002 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8003 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8004   match(Set dst (OrI src1 (CastP2X src2)));
8005 
8006   size(4);
8007   format %{ "OR     $src1,$src2,$dst" %}
8008   opcode(Assembler::or_op3, Assembler::arith_op);
8009   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8010   ins_pipe(ialu_reg_reg);
8011 %}
8012 
8013 #else
8014 
8015 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8016   match(Set dst (OrL src1 (CastP2X src2)));
8017 
8018   ins_cost(DEFAULT_COST);
8019   size(4);
8020   format %{ "OR     $src1,$src2,$dst\t! long" %}
8021   opcode(Assembler::or_op3, Assembler::arith_op);
8022   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8023   ins_pipe(ialu_reg_reg);
8024 %}
8025 
8026 #endif
8027 
8028 // Xor Instructions
8029 // Register Xor
8030 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8031   match(Set dst (XorI src1 src2));
8032 
8033   size(4);
8034   format %{ "XOR    $src1,$src2,$dst" %}
8035   opcode(Assembler::xor_op3, Assembler::arith_op);
8036   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8037   ins_pipe(ialu_reg_reg);
8038 %}
8039 
8040 // Immediate Xor
8041 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8042   match(Set dst (XorI src1 src2));
8043 
8044   size(4);
8045   format %{ "XOR    $src1,$src2,$dst" %}
8046   opcode(Assembler::xor_op3, Assembler::arith_op);
8047   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8048   ins_pipe(ialu_reg_imm);
8049 %}
8050 
8051 // Register Xor Long
8052 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8053   match(Set dst (XorL src1 src2));
8054 
8055   ins_cost(DEFAULT_COST);
8056   size(4);
8057   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8058   opcode(Assembler::xor_op3, Assembler::arith_op);
8059   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8060   ins_pipe(ialu_reg_reg);
8061 %}
8062 
8063 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8064   match(Set dst (XorL src1 con));
8065 
8066   ins_cost(DEFAULT_COST);
8067   size(4);
8068   format %{ "XOR    $src1,$con,$dst\t! long" %}
8069   opcode(Assembler::xor_op3, Assembler::arith_op);
8070   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8071   ins_pipe(ialu_reg_imm);
8072 %}
8073 
8074 //----------Convert to Boolean-------------------------------------------------
8075 // Nice hack for 32-bit tests but doesn't work for
8076 // 64-bit pointers.
8077 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8078   match(Set dst (Conv2B src));
8079   effect( KILL ccr );
8080   ins_cost(DEFAULT_COST*2);
8081   format %{ "CMP    R_G0,$src\n\t"
8082             "ADDX   R_G0,0,$dst" %}
8083   ins_encode( enc_to_bool( src, dst ) );
8084   ins_pipe(ialu_reg_ialu);
8085 %}
8086 
8087 #ifndef _LP64
8088 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8089   match(Set dst (Conv2B src));
8090   effect( KILL ccr );
8091   ins_cost(DEFAULT_COST*2);
8092   format %{ "CMP    R_G0,$src\n\t"
8093             "ADDX   R_G0,0,$dst" %}
8094   ins_encode( enc_to_bool( src, dst ) );
8095   ins_pipe(ialu_reg_ialu);
8096 %}
8097 #else
8098 instruct convP2B( iRegI dst, iRegP src ) %{
8099   match(Set dst (Conv2B src));
8100   ins_cost(DEFAULT_COST*2);
8101   format %{ "MOV    $src,$dst\n\t"
8102             "MOVRNZ $src,1,$dst" %}
8103   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8104   ins_pipe(ialu_clr_and_mover);
8105 %}
8106 #endif
8107 
8108 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8109   match(Set dst (CmpLTMask src zero));
8110   effect(KILL ccr);
8111   size(4);
8112   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8113   ins_encode %{
8114     __ sra($src$$Register, 31, $dst$$Register);
8115   %}
8116   ins_pipe(ialu_reg_imm);
8117 %}
8118 
8119 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8120   match(Set dst (CmpLTMask p q));
8121   effect( KILL ccr );
8122   ins_cost(DEFAULT_COST*4);
8123   format %{ "CMP    $p,$q\n\t"
8124             "MOV    #0,$dst\n\t"
8125             "BLT,a  .+8\n\t"
8126             "MOV    #-1,$dst" %}
8127   ins_encode( enc_ltmask(p,q,dst) );
8128   ins_pipe(ialu_reg_reg_ialu);
8129 %}
8130 
8131 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8132   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8133   effect(KILL ccr, TEMP tmp);
8134   ins_cost(DEFAULT_COST*3);
8135 
8136   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8137             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8138             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8139   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8140   ins_pipe( cadd_cmpltmask );
8141 %}
8142 
8143 
8144 //-----------------------------------------------------------------
8145 // Direct raw moves between float and general registers using VIS3.
8146 
8147 //  ins_pipe(faddF_reg);
8148 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8149   predicate(UseVIS >= 3);
8150   match(Set dst (MoveF2I src));
8151 
8152   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8153   ins_encode %{
8154     __ movstouw($src$$FloatRegister, $dst$$Register);
8155   %}
8156   ins_pipe(ialu_reg_reg);
8157 %}
8158 
8159 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8160   predicate(UseVIS >= 3);
8161   match(Set dst (MoveI2F src));
8162 
8163   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8164   ins_encode %{
8165     __ movwtos($src$$Register, $dst$$FloatRegister);
8166   %}
8167   ins_pipe(ialu_reg_reg);
8168 %}
8169 
8170 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8171   predicate(UseVIS >= 3);
8172   match(Set dst (MoveD2L src));
8173 
8174   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8175   ins_encode %{
8176     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8177   %}
8178   ins_pipe(ialu_reg_reg);
8179 %}
8180 
8181 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8182   predicate(UseVIS >= 3);
8183   match(Set dst (MoveL2D src));
8184 
8185   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8186   ins_encode %{
8187     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8188   %}
8189   ins_pipe(ialu_reg_reg);
8190 %}
8191 
8192 
8193 // Raw moves between float and general registers using stack.
8194 
8195 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8196   match(Set dst (MoveF2I src));
8197   effect(DEF dst, USE src);
8198   ins_cost(MEMORY_REF_COST);
8199 
8200   size(4);
8201   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8202   opcode(Assembler::lduw_op3);
8203   ins_encode(simple_form3_mem_reg( src, dst ) );
8204   ins_pipe(iload_mem);
8205 %}
8206 
8207 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8208   match(Set dst (MoveI2F src));
8209   effect(DEF dst, USE src);
8210   ins_cost(MEMORY_REF_COST);
8211 
8212   size(4);
8213   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8214   opcode(Assembler::ldf_op3);
8215   ins_encode(simple_form3_mem_reg(src, dst));
8216   ins_pipe(floadF_stk);
8217 %}
8218 
8219 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8220   match(Set dst (MoveD2L src));
8221   effect(DEF dst, USE src);
8222   ins_cost(MEMORY_REF_COST);
8223 
8224   size(4);
8225   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8226   opcode(Assembler::ldx_op3);
8227   ins_encode(simple_form3_mem_reg( src, dst ) );
8228   ins_pipe(iload_mem);
8229 %}
8230 
8231 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8232   match(Set dst (MoveL2D src));
8233   effect(DEF dst, USE src);
8234   ins_cost(MEMORY_REF_COST);
8235 
8236   size(4);
8237   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8238   opcode(Assembler::lddf_op3);
8239   ins_encode(simple_form3_mem_reg(src, dst));
8240   ins_pipe(floadD_stk);
8241 %}
8242 
8243 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8244   match(Set dst (MoveF2I src));
8245   effect(DEF dst, USE src);
8246   ins_cost(MEMORY_REF_COST);
8247 
8248   size(4);
8249   format %{ "STF   $src,$dst\t! MoveF2I" %}
8250   opcode(Assembler::stf_op3);
8251   ins_encode(simple_form3_mem_reg(dst, src));
8252   ins_pipe(fstoreF_stk_reg);
8253 %}
8254 
8255 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8256   match(Set dst (MoveI2F src));
8257   effect(DEF dst, USE src);
8258   ins_cost(MEMORY_REF_COST);
8259 
8260   size(4);
8261   format %{ "STW    $src,$dst\t! MoveI2F" %}
8262   opcode(Assembler::stw_op3);
8263   ins_encode(simple_form3_mem_reg( dst, src ) );
8264   ins_pipe(istore_mem_reg);
8265 %}
8266 
8267 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8268   match(Set dst (MoveD2L src));
8269   effect(DEF dst, USE src);
8270   ins_cost(MEMORY_REF_COST);
8271 
8272   size(4);
8273   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8274   opcode(Assembler::stdf_op3);
8275   ins_encode(simple_form3_mem_reg(dst, src));
8276   ins_pipe(fstoreD_stk_reg);
8277 %}
8278 
8279 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8280   match(Set dst (MoveL2D src));
8281   effect(DEF dst, USE src);
8282   ins_cost(MEMORY_REF_COST);
8283 
8284   size(4);
8285   format %{ "STX    $src,$dst\t! MoveL2D" %}
8286   opcode(Assembler::stx_op3);
8287   ins_encode(simple_form3_mem_reg( dst, src ) );
8288   ins_pipe(istore_mem_reg);
8289 %}
8290 
8291 
8292 //----------Arithmetic Conversion Instructions---------------------------------
8293 // The conversions operations are all Alpha sorted.  Please keep it that way!
8294 
8295 instruct convD2F_reg(regF dst, regD src) %{
8296   match(Set dst (ConvD2F src));
8297   size(4);
8298   format %{ "FDTOS  $src,$dst" %}
8299   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8300   ins_encode(form3_opf_rs2D_rdF(src, dst));
8301   ins_pipe(fcvtD2F);
8302 %}
8303 
8304 
8305 // Convert a double to an int in a float register.
8306 // If the double is a NAN, stuff a zero in instead.
8307 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8308   effect(DEF dst, USE src, KILL fcc0);
8309   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8310             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8311             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8312             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8313             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8314       "skip:" %}
8315   ins_encode(form_d2i_helper(src,dst));
8316   ins_pipe(fcvtD2I);
8317 %}
8318 
8319 instruct convD2I_stk(stackSlotI dst, regD src) %{
8320   match(Set dst (ConvD2I src));
8321   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8322   expand %{
8323     regF tmp;
8324     convD2I_helper(tmp, src);
8325     regF_to_stkI(dst, tmp);
8326   %}
8327 %}
8328 
8329 instruct convD2I_reg(iRegI dst, regD src) %{
8330   predicate(UseVIS >= 3);
8331   match(Set dst (ConvD2I src));
8332   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8333   expand %{
8334     regF tmp;
8335     convD2I_helper(tmp, src);
8336     MoveF2I_reg_reg(dst, tmp);
8337   %}
8338 %}
8339 
8340 
8341 // Convert a double to a long in a double register.
8342 // If the double is a NAN, stuff a zero in instead.
8343 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8344   effect(DEF dst, USE src, KILL fcc0);
8345   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8346             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8347             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8348             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8349             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8350       "skip:" %}
8351   ins_encode(form_d2l_helper(src,dst));
8352   ins_pipe(fcvtD2L);
8353 %}
8354 
8355 instruct convD2L_stk(stackSlotL dst, regD src) %{
8356   match(Set dst (ConvD2L src));
8357   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8358   expand %{
8359     regD tmp;
8360     convD2L_helper(tmp, src);
8361     regD_to_stkL(dst, tmp);
8362   %}
8363 %}
8364 
8365 instruct convD2L_reg(iRegL dst, regD src) %{
8366   predicate(UseVIS >= 3);
8367   match(Set dst (ConvD2L src));
8368   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8369   expand %{
8370     regD tmp;
8371     convD2L_helper(tmp, src);
8372     MoveD2L_reg_reg(dst, tmp);
8373   %}
8374 %}
8375 
8376 
8377 instruct convF2D_reg(regD dst, regF src) %{
8378   match(Set dst (ConvF2D src));
8379   format %{ "FSTOD  $src,$dst" %}
8380   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8381   ins_encode(form3_opf_rs2F_rdD(src, dst));
8382   ins_pipe(fcvtF2D);
8383 %}
8384 
8385 
8386 // Convert a float to an int in a float register.
8387 // If the float is a NAN, stuff a zero in instead.
8388 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8389   effect(DEF dst, USE src, KILL fcc0);
8390   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8391             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8392             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8393             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8394             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8395       "skip:" %}
8396   ins_encode(form_f2i_helper(src,dst));
8397   ins_pipe(fcvtF2I);
8398 %}
8399 
8400 instruct convF2I_stk(stackSlotI dst, regF src) %{
8401   match(Set dst (ConvF2I src));
8402   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8403   expand %{
8404     regF tmp;
8405     convF2I_helper(tmp, src);
8406     regF_to_stkI(dst, tmp);
8407   %}
8408 %}
8409 
8410 instruct convF2I_reg(iRegI dst, regF src) %{
8411   predicate(UseVIS >= 3);
8412   match(Set dst (ConvF2I src));
8413   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8414   expand %{
8415     regF tmp;
8416     convF2I_helper(tmp, src);
8417     MoveF2I_reg_reg(dst, tmp);
8418   %}
8419 %}
8420 
8421 
8422 // Convert a float to a long in a float register.
8423 // If the float is a NAN, stuff a zero in instead.
8424 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8425   effect(DEF dst, USE src, KILL fcc0);
8426   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8427             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8428             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8429             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8430             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8431       "skip:" %}
8432   ins_encode(form_f2l_helper(src,dst));
8433   ins_pipe(fcvtF2L);
8434 %}
8435 
8436 instruct convF2L_stk(stackSlotL dst, regF src) %{
8437   match(Set dst (ConvF2L src));
8438   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8439   expand %{
8440     regD tmp;
8441     convF2L_helper(tmp, src);
8442     regD_to_stkL(dst, tmp);
8443   %}
8444 %}
8445 
8446 instruct convF2L_reg(iRegL dst, regF src) %{
8447   predicate(UseVIS >= 3);
8448   match(Set dst (ConvF2L src));
8449   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8450   expand %{
8451     regD tmp;
8452     convF2L_helper(tmp, src);
8453     MoveD2L_reg_reg(dst, tmp);
8454   %}
8455 %}
8456 
8457 
8458 instruct convI2D_helper(regD dst, regF tmp) %{
8459   effect(USE tmp, DEF dst);
8460   format %{ "FITOD  $tmp,$dst" %}
8461   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8462   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8463   ins_pipe(fcvtI2D);
8464 %}
8465 
8466 instruct convI2D_stk(stackSlotI src, regD dst) %{
8467   match(Set dst (ConvI2D src));
8468   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8469   expand %{
8470     regF tmp;
8471     stkI_to_regF(tmp, src);
8472     convI2D_helper(dst, tmp);
8473   %}
8474 %}
8475 
8476 instruct convI2D_reg(regD_low dst, iRegI src) %{
8477   predicate(UseVIS >= 3);
8478   match(Set dst (ConvI2D src));
8479   expand %{
8480     regF tmp;
8481     MoveI2F_reg_reg(tmp, src);
8482     convI2D_helper(dst, tmp);
8483   %}
8484 %}
8485 
8486 instruct convI2D_mem(regD_low dst, memory mem) %{
8487   match(Set dst (ConvI2D (LoadI mem)));
8488   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8489   size(8);
8490   format %{ "LDF    $mem,$dst\n\t"
8491             "FITOD  $dst,$dst" %}
8492   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8493   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8494   ins_pipe(floadF_mem);
8495 %}
8496 
8497 
8498 instruct convI2F_helper(regF dst, regF tmp) %{
8499   effect(DEF dst, USE tmp);
8500   format %{ "FITOS  $tmp,$dst" %}
8501   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8502   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8503   ins_pipe(fcvtI2F);
8504 %}
8505 
8506 instruct convI2F_stk(regF dst, stackSlotI src) %{
8507   match(Set dst (ConvI2F src));
8508   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8509   expand %{
8510     regF tmp;
8511     stkI_to_regF(tmp,src);
8512     convI2F_helper(dst, tmp);
8513   %}
8514 %}
8515 
8516 instruct convI2F_reg(regF dst, iRegI src) %{
8517   predicate(UseVIS >= 3);
8518   match(Set dst (ConvI2F src));
8519   ins_cost(DEFAULT_COST);
8520   expand %{
8521     regF tmp;
8522     MoveI2F_reg_reg(tmp, src);
8523     convI2F_helper(dst, tmp);
8524   %}
8525 %}
8526 
8527 instruct convI2F_mem( regF dst, memory mem ) %{
8528   match(Set dst (ConvI2F (LoadI mem)));
8529   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8530   size(8);
8531   format %{ "LDF    $mem,$dst\n\t"
8532             "FITOS  $dst,$dst" %}
8533   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8534   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8535   ins_pipe(floadF_mem);
8536 %}
8537 
8538 
8539 instruct convI2L_reg(iRegL dst, iRegI src) %{
8540   match(Set dst (ConvI2L src));
8541   size(4);
8542   format %{ "SRA    $src,0,$dst\t! int->long" %}
8543   opcode(Assembler::sra_op3, Assembler::arith_op);
8544   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8545   ins_pipe(ialu_reg_reg);
8546 %}
8547 
8548 // Zero-extend convert int to long
8549 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8550   match(Set dst (AndL (ConvI2L src) mask) );
8551   size(4);
8552   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8553   opcode(Assembler::srl_op3, Assembler::arith_op);
8554   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8555   ins_pipe(ialu_reg_reg);
8556 %}
8557 
8558 // Zero-extend long
8559 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8560   match(Set dst (AndL src mask) );
8561   size(4);
8562   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8563   opcode(Assembler::srl_op3, Assembler::arith_op);
8564   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8565   ins_pipe(ialu_reg_reg);
8566 %}
8567 
8568 
8569 //-----------
8570 // Long to Double conversion using V8 opcodes.
8571 // Still useful because cheetah traps and becomes
8572 // amazingly slow for some common numbers.
8573 
8574 // Magic constant, 0x43300000
8575 instruct loadConI_x43300000(iRegI dst) %{
8576   effect(DEF dst);
8577   size(4);
8578   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8579   ins_encode(SetHi22(0x43300000, dst));
8580   ins_pipe(ialu_none);
8581 %}
8582 
8583 // Magic constant, 0x41f00000
8584 instruct loadConI_x41f00000(iRegI dst) %{
8585   effect(DEF dst);
8586   size(4);
8587   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8588   ins_encode(SetHi22(0x41f00000, dst));
8589   ins_pipe(ialu_none);
8590 %}
8591 
8592 // Construct a double from two float halves
8593 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8594   effect(DEF dst, USE src1, USE src2);
8595   size(8);
8596   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8597             "FMOVS  $src2.lo,$dst.lo" %}
8598   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8599   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8600   ins_pipe(faddD_reg_reg);
8601 %}
8602 
8603 // Convert integer in high half of a double register (in the lower half of
8604 // the double register file) to double
8605 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8606   effect(DEF dst, USE src);
8607   size(4);
8608   format %{ "FITOD  $src,$dst" %}
8609   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8610   ins_encode(form3_opf_rs2D_rdD(src, dst));
8611   ins_pipe(fcvtLHi2D);
8612 %}
8613 
8614 // Add float double precision
8615 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8616   effect(DEF dst, USE src1, USE src2);
8617   size(4);
8618   format %{ "FADDD  $src1,$src2,$dst" %}
8619   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8620   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8621   ins_pipe(faddD_reg_reg);
8622 %}
8623 
8624 // Sub float double precision
8625 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8626   effect(DEF dst, USE src1, USE src2);
8627   size(4);
8628   format %{ "FSUBD  $src1,$src2,$dst" %}
8629   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8630   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8631   ins_pipe(faddD_reg_reg);
8632 %}
8633 
8634 // Mul float double precision
8635 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8636   effect(DEF dst, USE src1, USE src2);
8637   size(4);
8638   format %{ "FMULD  $src1,$src2,$dst" %}
8639   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8640   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8641   ins_pipe(fmulD_reg_reg);
8642 %}
8643 
8644 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8645   match(Set dst (ConvL2D src));
8646   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8647 
8648   expand %{
8649     regD_low   tmpsrc;
8650     iRegI      ix43300000;
8651     iRegI      ix41f00000;
8652     stackSlotL lx43300000;
8653     stackSlotL lx41f00000;
8654     regD_low   dx43300000;
8655     regD       dx41f00000;
8656     regD       tmp1;
8657     regD_low   tmp2;
8658     regD       tmp3;
8659     regD       tmp4;
8660 
8661     stkL_to_regD(tmpsrc, src);
8662 
8663     loadConI_x43300000(ix43300000);
8664     loadConI_x41f00000(ix41f00000);
8665     regI_to_stkLHi(lx43300000, ix43300000);
8666     regI_to_stkLHi(lx41f00000, ix41f00000);
8667     stkL_to_regD(dx43300000, lx43300000);
8668     stkL_to_regD(dx41f00000, lx41f00000);
8669 
8670     convI2D_regDHi_regD(tmp1, tmpsrc);
8671     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8672     subD_regD_regD(tmp3, tmp2, dx43300000);
8673     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8674     addD_regD_regD(dst, tmp3, tmp4);
8675   %}
8676 %}
8677 
8678 // Long to Double conversion using fast fxtof
8679 instruct convL2D_helper(regD dst, regD tmp) %{
8680   effect(DEF dst, USE tmp);
8681   size(4);
8682   format %{ "FXTOD  $tmp,$dst" %}
8683   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8684   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8685   ins_pipe(fcvtL2D);
8686 %}
8687 
8688 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8689   predicate(VM_Version::has_fast_fxtof());
8690   match(Set dst (ConvL2D src));
8691   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8692   expand %{
8693     regD tmp;
8694     stkL_to_regD(tmp, src);
8695     convL2D_helper(dst, tmp);
8696   %}
8697 %}
8698 
8699 instruct convL2D_reg(regD dst, iRegL src) %{
8700   predicate(UseVIS >= 3);
8701   match(Set dst (ConvL2D src));
8702   expand %{
8703     regD tmp;
8704     MoveL2D_reg_reg(tmp, src);
8705     convL2D_helper(dst, tmp);
8706   %}
8707 %}
8708 
8709 // Long to Float conversion using fast fxtof
8710 instruct convL2F_helper(regF dst, regD tmp) %{
8711   effect(DEF dst, USE tmp);
8712   size(4);
8713   format %{ "FXTOS  $tmp,$dst" %}
8714   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8715   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8716   ins_pipe(fcvtL2F);
8717 %}
8718 
8719 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8720   match(Set dst (ConvL2F src));
8721   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8722   expand %{
8723     regD tmp;
8724     stkL_to_regD(tmp, src);
8725     convL2F_helper(dst, tmp);
8726   %}
8727 %}
8728 
8729 instruct convL2F_reg(regF dst, iRegL src) %{
8730   predicate(UseVIS >= 3);
8731   match(Set dst (ConvL2F src));
8732   ins_cost(DEFAULT_COST);
8733   expand %{
8734     regD tmp;
8735     MoveL2D_reg_reg(tmp, src);
8736     convL2F_helper(dst, tmp);
8737   %}
8738 %}
8739 
8740 //-----------
8741 
8742 instruct convL2I_reg(iRegI dst, iRegL src) %{
8743   match(Set dst (ConvL2I src));
8744 #ifndef _LP64
8745   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8746   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8747   ins_pipe(ialu_move_reg_I_to_L);
8748 #else
8749   size(4);
8750   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8751   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8752   ins_pipe(ialu_reg);
8753 #endif
8754 %}
8755 
8756 // Register Shift Right Immediate
8757 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8758   match(Set dst (ConvL2I (RShiftL src cnt)));
8759 
8760   size(4);
8761   format %{ "SRAX   $src,$cnt,$dst" %}
8762   opcode(Assembler::srax_op3, Assembler::arith_op);
8763   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8764   ins_pipe(ialu_reg_imm);
8765 %}
8766 
8767 // Replicate scalar to packed byte values in Double register
8768 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8769   effect(DEF dst, USE src);
8770   format %{ "SLLX  $src,56,$dst\n\t"
8771             "SRLX  $dst, 8,O7\n\t"
8772             "OR    $dst,O7,$dst\n\t"
8773             "SRLX  $dst,16,O7\n\t"
8774             "OR    $dst,O7,$dst\n\t"
8775             "SRLX  $dst,32,O7\n\t"
8776             "OR    $dst,O7,$dst\t! replicate8B" %}
8777   ins_encode( enc_repl8b(src, dst));
8778   ins_pipe(ialu_reg);
8779 %}
8780 
8781 // Replicate scalar to packed byte values in Double register
8782 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8783   match(Set dst (Replicate8B src));
8784   expand %{
8785     iRegL tmp;
8786     Repl8B_reg_helper(tmp, src);
8787     regL_to_stkD(dst, tmp);
8788   %}
8789 %}
8790 
8791 // Replicate scalar constant to packed byte values in Double register
8792 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
8793   match(Set dst (Replicate8B con));
8794   effect(KILL tmp);
8795   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
8796   ins_encode %{
8797     // XXX This is a quick fix for 6833573.
8798     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
8799     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
8800     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8801   %}
8802   ins_pipe(loadConFD);
8803 %}
8804 
8805 // Replicate scalar to packed char values into stack slot
8806 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8807   effect(DEF dst, USE src);
8808   format %{ "SLLX  $src,48,$dst\n\t"
8809             "SRLX  $dst,16,O7\n\t"
8810             "OR    $dst,O7,$dst\n\t"
8811             "SRLX  $dst,32,O7\n\t"
8812             "OR    $dst,O7,$dst\t! replicate4C" %}
8813   ins_encode( enc_repl4s(src, dst) );
8814   ins_pipe(ialu_reg);
8815 %}
8816 
8817 // Replicate scalar to packed char values into stack slot
8818 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8819   match(Set dst (Replicate4C src));
8820   expand %{
8821     iRegL tmp;
8822     Repl4C_reg_helper(tmp, src);
8823     regL_to_stkD(dst, tmp);
8824   %}
8825 %}
8826 
8827 // Replicate scalar constant to packed char values in Double register
8828 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
8829   match(Set dst (Replicate4C con));
8830   effect(KILL tmp);
8831   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
8832   ins_encode %{
8833     // XXX This is a quick fix for 6833573.
8834     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8835     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8836     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8837   %}
8838   ins_pipe(loadConFD);
8839 %}
8840 
8841 // Replicate scalar to packed short values into stack slot
8842 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8843   effect(DEF dst, USE src);
8844   format %{ "SLLX  $src,48,$dst\n\t"
8845             "SRLX  $dst,16,O7\n\t"
8846             "OR    $dst,O7,$dst\n\t"
8847             "SRLX  $dst,32,O7\n\t"
8848             "OR    $dst,O7,$dst\t! replicate4S" %}
8849   ins_encode( enc_repl4s(src, dst) );
8850   ins_pipe(ialu_reg);
8851 %}
8852 
8853 // Replicate scalar to packed short values into stack slot
8854 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8855   match(Set dst (Replicate4S src));
8856   expand %{
8857     iRegL tmp;
8858     Repl4S_reg_helper(tmp, src);
8859     regL_to_stkD(dst, tmp);
8860   %}
8861 %}
8862 
8863 // Replicate scalar constant to packed short values in Double register
8864 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
8865   match(Set dst (Replicate4S con));
8866   effect(KILL tmp);
8867   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
8868   ins_encode %{
8869     // XXX This is a quick fix for 6833573.
8870     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8871     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8872     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8873   %}
8874   ins_pipe(loadConFD);
8875 %}
8876 
8877 // Replicate scalar to packed int values in Double register
8878 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8879   effect(DEF dst, USE src);
8880   format %{ "SLLX  $src,32,$dst\n\t"
8881             "SRLX  $dst,32,O7\n\t"
8882             "OR    $dst,O7,$dst\t! replicate2I" %}
8883   ins_encode( enc_repl2i(src, dst));
8884   ins_pipe(ialu_reg);
8885 %}
8886 
8887 // Replicate scalar to packed int values in Double register
8888 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8889   match(Set dst (Replicate2I src));
8890   expand %{
8891     iRegL tmp;
8892     Repl2I_reg_helper(tmp, src);
8893     regL_to_stkD(dst, tmp);
8894   %}
8895 %}
8896 
8897 // Replicate scalar zero constant to packed int values in Double register
8898 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
8899   match(Set dst (Replicate2I con));
8900   effect(KILL tmp);
8901   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
8902   ins_encode %{
8903     // XXX This is a quick fix for 6833573.
8904     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
8905     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
8906     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8907   %}
8908   ins_pipe(loadConFD);
8909 %}
8910 
8911 //----------Control Flow Instructions------------------------------------------
8912 // Compare Instructions
8913 // Compare Integers
8914 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8915   match(Set icc (CmpI op1 op2));
8916   effect( DEF icc, USE op1, USE op2 );
8917 
8918   size(4);
8919   format %{ "CMP    $op1,$op2" %}
8920   opcode(Assembler::subcc_op3, Assembler::arith_op);
8921   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8922   ins_pipe(ialu_cconly_reg_reg);
8923 %}
8924 
8925 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8926   match(Set icc (CmpU op1 op2));
8927 
8928   size(4);
8929   format %{ "CMP    $op1,$op2\t! unsigned" %}
8930   opcode(Assembler::subcc_op3, Assembler::arith_op);
8931   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8932   ins_pipe(ialu_cconly_reg_reg);
8933 %}
8934 
8935 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8936   match(Set icc (CmpI op1 op2));
8937   effect( DEF icc, USE op1 );
8938 
8939   size(4);
8940   format %{ "CMP    $op1,$op2" %}
8941   opcode(Assembler::subcc_op3, Assembler::arith_op);
8942   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8943   ins_pipe(ialu_cconly_reg_imm);
8944 %}
8945 
8946 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8947   match(Set icc (CmpI (AndI op1 op2) zero));
8948 
8949   size(4);
8950   format %{ "BTST   $op2,$op1" %}
8951   opcode(Assembler::andcc_op3, Assembler::arith_op);
8952   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8953   ins_pipe(ialu_cconly_reg_reg_zero);
8954 %}
8955 
8956 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8957   match(Set icc (CmpI (AndI op1 op2) zero));
8958 
8959   size(4);
8960   format %{ "BTST   $op2,$op1" %}
8961   opcode(Assembler::andcc_op3, Assembler::arith_op);
8962   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8963   ins_pipe(ialu_cconly_reg_imm_zero);
8964 %}
8965 
8966 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8967   match(Set xcc (CmpL op1 op2));
8968   effect( DEF xcc, USE op1, USE op2 );
8969 
8970   size(4);
8971   format %{ "CMP    $op1,$op2\t\t! long" %}
8972   opcode(Assembler::subcc_op3, Assembler::arith_op);
8973   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8974   ins_pipe(ialu_cconly_reg_reg);
8975 %}
8976 
8977 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8978   match(Set xcc (CmpL op1 con));
8979   effect( DEF xcc, USE op1, USE con );
8980 
8981   size(4);
8982   format %{ "CMP    $op1,$con\t\t! long" %}
8983   opcode(Assembler::subcc_op3, Assembler::arith_op);
8984   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8985   ins_pipe(ialu_cconly_reg_reg);
8986 %}
8987 
8988 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8989   match(Set xcc (CmpL (AndL op1 op2) zero));
8990   effect( DEF xcc, USE op1, USE op2 );
8991 
8992   size(4);
8993   format %{ "BTST   $op1,$op2\t\t! long" %}
8994   opcode(Assembler::andcc_op3, Assembler::arith_op);
8995   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8996   ins_pipe(ialu_cconly_reg_reg);
8997 %}
8998 
8999 // useful for checking the alignment of a pointer:
9000 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9001   match(Set xcc (CmpL (AndL op1 con) zero));
9002   effect( DEF xcc, USE op1, USE con );
9003 
9004   size(4);
9005   format %{ "BTST   $op1,$con\t\t! long" %}
9006   opcode(Assembler::andcc_op3, Assembler::arith_op);
9007   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9008   ins_pipe(ialu_cconly_reg_reg);
9009 %}
9010 
9011 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
9012   match(Set icc (CmpU op1 op2));
9013 
9014   size(4);
9015   format %{ "CMP    $op1,$op2\t! unsigned" %}
9016   opcode(Assembler::subcc_op3, Assembler::arith_op);
9017   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9018   ins_pipe(ialu_cconly_reg_imm);
9019 %}
9020 
9021 // Compare Pointers
9022 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9023   match(Set pcc (CmpP op1 op2));
9024 
9025   size(4);
9026   format %{ "CMP    $op1,$op2\t! ptr" %}
9027   opcode(Assembler::subcc_op3, Assembler::arith_op);
9028   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9029   ins_pipe(ialu_cconly_reg_reg);
9030 %}
9031 
9032 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9033   match(Set pcc (CmpP op1 op2));
9034 
9035   size(4);
9036   format %{ "CMP    $op1,$op2\t! ptr" %}
9037   opcode(Assembler::subcc_op3, Assembler::arith_op);
9038   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9039   ins_pipe(ialu_cconly_reg_imm);
9040 %}
9041 
9042 // Compare Narrow oops
9043 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9044   match(Set icc (CmpN op1 op2));
9045 
9046   size(4);
9047   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9048   opcode(Assembler::subcc_op3, Assembler::arith_op);
9049   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9050   ins_pipe(ialu_cconly_reg_reg);
9051 %}
9052 
9053 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9054   match(Set icc (CmpN op1 op2));
9055 
9056   size(4);
9057   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9058   opcode(Assembler::subcc_op3, Assembler::arith_op);
9059   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9060   ins_pipe(ialu_cconly_reg_imm);
9061 %}
9062 
9063 //----------Max and Min--------------------------------------------------------
9064 // Min Instructions
9065 // Conditional move for min
9066 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9067   effect( USE_DEF op2, USE op1, USE icc );
9068 
9069   size(4);
9070   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9071   opcode(Assembler::less);
9072   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9073   ins_pipe(ialu_reg_flags);
9074 %}
9075 
9076 // Min Register with Register.
9077 instruct minI_eReg(iRegI op1, iRegI op2) %{
9078   match(Set op2 (MinI op1 op2));
9079   ins_cost(DEFAULT_COST*2);
9080   expand %{
9081     flagsReg icc;
9082     compI_iReg(icc,op1,op2);
9083     cmovI_reg_lt(op2,op1,icc);
9084   %}
9085 %}
9086 
9087 // Max Instructions
9088 // Conditional move for max
9089 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9090   effect( USE_DEF op2, USE op1, USE icc );
9091   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9092   opcode(Assembler::greater);
9093   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9094   ins_pipe(ialu_reg_flags);
9095 %}
9096 
9097 // Max Register with Register
9098 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9099   match(Set op2 (MaxI op1 op2));
9100   ins_cost(DEFAULT_COST*2);
9101   expand %{
9102     flagsReg icc;
9103     compI_iReg(icc,op1,op2);
9104     cmovI_reg_gt(op2,op1,icc);
9105   %}
9106 %}
9107 
9108 
9109 //----------Float Compares----------------------------------------------------
9110 // Compare floating, generate condition code
9111 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9112   match(Set fcc (CmpF src1 src2));
9113 
9114   size(4);
9115   format %{ "FCMPs  $fcc,$src1,$src2" %}
9116   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9117   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9118   ins_pipe(faddF_fcc_reg_reg_zero);
9119 %}
9120 
9121 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9122   match(Set fcc (CmpD src1 src2));
9123 
9124   size(4);
9125   format %{ "FCMPd  $fcc,$src1,$src2" %}
9126   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9127   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9128   ins_pipe(faddD_fcc_reg_reg_zero);
9129 %}
9130 
9131 
9132 // Compare floating, generate -1,0,1
9133 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9134   match(Set dst (CmpF3 src1 src2));
9135   effect(KILL fcc0);
9136   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9137   format %{ "fcmpl  $dst,$src1,$src2" %}
9138   // Primary = float
9139   opcode( true );
9140   ins_encode( floating_cmp( dst, src1, src2 ) );
9141   ins_pipe( floating_cmp );
9142 %}
9143 
9144 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9145   match(Set dst (CmpD3 src1 src2));
9146   effect(KILL fcc0);
9147   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9148   format %{ "dcmpl  $dst,$src1,$src2" %}
9149   // Primary = double (not float)
9150   opcode( false );
9151   ins_encode( floating_cmp( dst, src1, src2 ) );
9152   ins_pipe( floating_cmp );
9153 %}
9154 
9155 //----------Branches---------------------------------------------------------
9156 // Jump
9157 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9158 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9159   match(Jump switch_val);
9160 
9161   ins_cost(350);
9162 
9163   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9164              "LD     [O7 + $switch_val], O7\n\t"
9165              "JUMP   O7"
9166          %}
9167   ins_encode %{
9168     // Calculate table address into a register.
9169     Register table_reg;
9170     Register label_reg = O7;
9171     if (constant_offset() == 0) {
9172       table_reg = $constanttablebase;
9173     } else {
9174       table_reg = O7;
9175       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9176       __ add($constanttablebase, con_offset, table_reg);
9177     }
9178 
9179     // Jump to base address + switch value
9180     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9181     __ jmp(label_reg, G0);
9182     __ delayed()->nop();
9183   %}
9184   ins_pipe(ialu_reg_reg);
9185 %}
9186 
9187 // Direct Branch.  Use V8 version with longer range.
9188 instruct branch(label labl) %{
9189   match(Goto);
9190   effect(USE labl);
9191 
9192   size(8);
9193   ins_cost(BRANCH_COST);
9194   format %{ "BA     $labl" %}
9195   ins_encode %{
9196     Label* L = $labl$$label;
9197     __ ba(*L);
9198     __ delayed()->nop();
9199   %}
9200   ins_pipe(br);
9201 %}
9202 
9203 // Conditional Direct Branch
9204 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9205   match(If cmp icc);
9206   effect(USE labl);
9207 
9208   size(8);
9209   ins_cost(BRANCH_COST);
9210   format %{ "BP$cmp   $icc,$labl" %}
9211   // Prim = bits 24-22, Secnd = bits 31-30
9212   ins_encode( enc_bp( labl, cmp, icc ) );
9213   ins_pipe(br_cc);
9214 %}
9215 
9216 // Branch-on-register tests all 64 bits.  We assume that values
9217 // in 64-bit registers always remains zero or sign extended
9218 // unless our code munges the high bits.  Interrupts can chop
9219 // the high order bits to zero or sign at any time.
9220 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9221   match(If cmp (CmpI op1 zero));
9222   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9223   effect(USE labl);
9224 
9225   size(8);
9226   ins_cost(BRANCH_COST);
9227   format %{ "BR$cmp   $op1,$labl" %}
9228   ins_encode( enc_bpr( labl, cmp, op1 ) );
9229   ins_pipe(br_reg);
9230 %}
9231 
9232 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9233   match(If cmp (CmpP op1 null));
9234   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9235   effect(USE labl);
9236 
9237   size(8);
9238   ins_cost(BRANCH_COST);
9239   format %{ "BR$cmp   $op1,$labl" %}
9240   ins_encode( enc_bpr( labl, cmp, op1 ) );
9241   ins_pipe(br_reg);
9242 %}
9243 
9244 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9245   match(If cmp (CmpL op1 zero));
9246   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9247   effect(USE labl);
9248 
9249   size(8);
9250   ins_cost(BRANCH_COST);
9251   format %{ "BR$cmp   $op1,$labl" %}
9252   ins_encode( enc_bpr( labl, cmp, op1 ) );
9253   ins_pipe(br_reg);
9254 %}
9255 
9256 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9257   match(If cmp icc);
9258   effect(USE labl);
9259 
9260   format %{ "BP$cmp  $icc,$labl" %}
9261   // Prim = bits 24-22, Secnd = bits 31-30
9262   ins_encode( enc_bp( labl, cmp, icc ) );
9263   ins_pipe(br_cc);
9264 %}
9265 
9266 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9267   match(If cmp pcc);
9268   effect(USE labl);
9269 
9270   size(8);
9271   ins_cost(BRANCH_COST);
9272   format %{ "BP$cmp  $pcc,$labl" %}
9273   ins_encode %{
9274     Label* L = $labl$$label;
9275     Assembler::Predict predict_taken =
9276       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9277 
9278     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9279     __ delayed()->nop();
9280   %}
9281   ins_pipe(br_cc);
9282 %}
9283 
9284 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9285   match(If cmp fcc);
9286   effect(USE labl);
9287 
9288   size(8);
9289   ins_cost(BRANCH_COST);
9290   format %{ "FBP$cmp $fcc,$labl" %}
9291   ins_encode %{
9292     Label* L = $labl$$label;
9293     Assembler::Predict predict_taken =
9294       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9295 
9296     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9297     __ delayed()->nop();
9298   %}
9299   ins_pipe(br_fcc);
9300 %}
9301 
9302 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9303   match(CountedLoopEnd cmp icc);
9304   effect(USE labl);
9305 
9306   size(8);
9307   ins_cost(BRANCH_COST);
9308   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9309   // Prim = bits 24-22, Secnd = bits 31-30
9310   ins_encode( enc_bp( labl, cmp, icc ) );
9311   ins_pipe(br_cc);
9312 %}
9313 
9314 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9315   match(CountedLoopEnd cmp icc);
9316   effect(USE labl);
9317 
9318   size(8);
9319   ins_cost(BRANCH_COST);
9320   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9321   // Prim = bits 24-22, Secnd = bits 31-30
9322   ins_encode( enc_bp( labl, cmp, icc ) );
9323   ins_pipe(br_cc);
9324 %}
9325 
9326 // ============================================================================
9327 // Long Compare
9328 //
9329 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9330 // is tricky.  The flavor of compare used depends on whether we are testing
9331 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9332 // The GE test is the negated LT test.  The LE test can be had by commuting
9333 // the operands (yielding a GE test) and then negating; negate again for the
9334 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9335 // NE test is negated from that.
9336 
9337 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9338 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9339 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9340 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9341 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9342 // foo match ends up with the wrong leaf.  One fix is to not match both
9343 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9344 // both forms beat the trinary form of long-compare and both are very useful
9345 // on Intel which has so few registers.
9346 
9347 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9348   match(If cmp xcc);
9349   effect(USE labl);
9350 
9351   size(8);
9352   ins_cost(BRANCH_COST);
9353   format %{ "BP$cmp   $xcc,$labl" %}
9354   ins_encode %{
9355     Label* L = $labl$$label;
9356     Assembler::Predict predict_taken =
9357       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9358 
9359     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9360     __ delayed()->nop();
9361   %}
9362   ins_pipe(br_cc);
9363 %}
9364 
9365 // Manifest a CmpL3 result in an integer register.  Very painful.
9366 // This is the test to avoid.
9367 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9368   match(Set dst (CmpL3 src1 src2) );
9369   effect( KILL ccr );
9370   ins_cost(6*DEFAULT_COST);
9371   size(24);
9372   format %{ "CMP    $src1,$src2\t\t! long\n"
9373           "\tBLT,a,pn done\n"
9374           "\tMOV    -1,$dst\t! delay slot\n"
9375           "\tBGT,a,pn done\n"
9376           "\tMOV    1,$dst\t! delay slot\n"
9377           "\tCLR    $dst\n"
9378     "done:"     %}
9379   ins_encode( cmpl_flag(src1,src2,dst) );
9380   ins_pipe(cmpL_reg);
9381 %}
9382 
9383 // Conditional move
9384 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9385   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9386   ins_cost(150);
9387   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9388   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9389   ins_pipe(ialu_reg);
9390 %}
9391 
9392 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9393   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9394   ins_cost(140);
9395   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9396   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9397   ins_pipe(ialu_imm);
9398 %}
9399 
9400 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9401   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9402   ins_cost(150);
9403   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9404   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9405   ins_pipe(ialu_reg);
9406 %}
9407 
9408 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9409   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9410   ins_cost(140);
9411   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9412   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9413   ins_pipe(ialu_imm);
9414 %}
9415 
9416 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9417   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9418   ins_cost(150);
9419   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9420   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9421   ins_pipe(ialu_reg);
9422 %}
9423 
9424 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9425   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9426   ins_cost(150);
9427   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9428   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9429   ins_pipe(ialu_reg);
9430 %}
9431 
9432 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9433   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9434   ins_cost(140);
9435   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9436   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9437   ins_pipe(ialu_imm);
9438 %}
9439 
9440 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9441   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9442   ins_cost(150);
9443   opcode(0x101);
9444   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9445   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9446   ins_pipe(int_conditional_float_move);
9447 %}
9448 
9449 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9450   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9451   ins_cost(150);
9452   opcode(0x102);
9453   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9454   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9455   ins_pipe(int_conditional_float_move);
9456 %}
9457 
9458 // ============================================================================
9459 // Safepoint Instruction
9460 instruct safePoint_poll(iRegP poll) %{
9461   match(SafePoint poll);
9462   effect(USE poll);
9463 
9464   size(4);
9465 #ifdef _LP64
9466   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9467 #else
9468   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9469 #endif
9470   ins_encode %{
9471     __ relocate(relocInfo::poll_type);
9472     __ ld_ptr($poll$$Register, 0, G0);
9473   %}
9474   ins_pipe(loadPollP);
9475 %}
9476 
9477 // ============================================================================
9478 // Call Instructions
9479 // Call Java Static Instruction
9480 instruct CallStaticJavaDirect( method meth ) %{
9481   match(CallStaticJava);
9482   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9483   effect(USE meth);
9484 
9485   size(8);
9486   ins_cost(CALL_COST);
9487   format %{ "CALL,static  ; NOP ==> " %}
9488   ins_encode( Java_Static_Call( meth ), call_epilog );
9489   ins_pipe(simple_call);
9490 %}
9491 
9492 // Call Java Static Instruction (method handle version)
9493 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9494   match(CallStaticJava);
9495   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9496   effect(USE meth, KILL l7_mh_SP_save);
9497 
9498   size(8);
9499   ins_cost(CALL_COST);
9500   format %{ "CALL,static/MethodHandle" %}
9501   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9502   ins_pipe(simple_call);
9503 %}
9504 
9505 // Call Java Dynamic Instruction
9506 instruct CallDynamicJavaDirect( method meth ) %{
9507   match(CallDynamicJava);
9508   effect(USE meth);
9509 
9510   ins_cost(CALL_COST);
9511   format %{ "SET    (empty),R_G5\n\t"
9512             "CALL,dynamic  ; NOP ==> " %}
9513   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9514   ins_pipe(call);
9515 %}
9516 
9517 // Call Runtime Instruction
9518 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9519   match(CallRuntime);
9520   effect(USE meth, KILL l7);
9521   ins_cost(CALL_COST);
9522   format %{ "CALL,runtime" %}
9523   ins_encode( Java_To_Runtime( meth ),
9524               call_epilog, adjust_long_from_native_call );
9525   ins_pipe(simple_call);
9526 %}
9527 
9528 // Call runtime without safepoint - same as CallRuntime
9529 instruct CallLeafDirect(method meth, l7RegP l7) %{
9530   match(CallLeaf);
9531   effect(USE meth, KILL l7);
9532   ins_cost(CALL_COST);
9533   format %{ "CALL,runtime leaf" %}
9534   ins_encode( Java_To_Runtime( meth ),
9535               call_epilog,
9536               adjust_long_from_native_call );
9537   ins_pipe(simple_call);
9538 %}
9539 
9540 // Call runtime without safepoint - same as CallLeaf
9541 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9542   match(CallLeafNoFP);
9543   effect(USE meth, KILL l7);
9544   ins_cost(CALL_COST);
9545   format %{ "CALL,runtime leaf nofp" %}
9546   ins_encode( Java_To_Runtime( meth ),
9547               call_epilog,
9548               adjust_long_from_native_call );
9549   ins_pipe(simple_call);
9550 %}
9551 
9552 // Tail Call; Jump from runtime stub to Java code.
9553 // Also known as an 'interprocedural jump'.
9554 // Target of jump will eventually return to caller.
9555 // TailJump below removes the return address.
9556 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9557   match(TailCall jump_target method_oop );
9558 
9559   ins_cost(CALL_COST);
9560   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9561   ins_encode(form_jmpl(jump_target));
9562   ins_pipe(tail_call);
9563 %}
9564 
9565 
9566 // Return Instruction
9567 instruct Ret() %{
9568   match(Return);
9569 
9570   // The epilogue node did the ret already.
9571   size(0);
9572   format %{ "! return" %}
9573   ins_encode();
9574   ins_pipe(empty);
9575 %}
9576 
9577 
9578 // Tail Jump; remove the return address; jump to target.
9579 // TailCall above leaves the return address around.
9580 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9581 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9582 // "restore" before this instruction (in Epilogue), we need to materialize it
9583 // in %i0.
9584 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9585   match( TailJump jump_target ex_oop );
9586   ins_cost(CALL_COST);
9587   format %{ "! discard R_O7\n\t"
9588             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9589   ins_encode(form_jmpl_set_exception_pc(jump_target));
9590   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9591   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9592   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9593   ins_pipe(tail_call);
9594 %}
9595 
9596 // Create exception oop: created by stack-crawling runtime code.
9597 // Created exception is now available to this handler, and is setup
9598 // just prior to jumping to this handler.  No code emitted.
9599 instruct CreateException( o0RegP ex_oop )
9600 %{
9601   match(Set ex_oop (CreateEx));
9602   ins_cost(0);
9603 
9604   size(0);
9605   // use the following format syntax
9606   format %{ "! exception oop is in R_O0; no code emitted" %}
9607   ins_encode();
9608   ins_pipe(empty);
9609 %}
9610 
9611 
9612 // Rethrow exception:
9613 // The exception oop will come in the first argument position.
9614 // Then JUMP (not call) to the rethrow stub code.
9615 instruct RethrowException()
9616 %{
9617   match(Rethrow);
9618   ins_cost(CALL_COST);
9619 
9620   // use the following format syntax
9621   format %{ "Jmp    rethrow_stub" %}
9622   ins_encode(enc_rethrow);
9623   ins_pipe(tail_call);
9624 %}
9625 
9626 
9627 // Die now
9628 instruct ShouldNotReachHere( )
9629 %{
9630   match(Halt);
9631   ins_cost(CALL_COST);
9632 
9633   size(4);
9634   // Use the following format syntax
9635   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9636   ins_encode( form2_illtrap() );
9637   ins_pipe(tail_call);
9638 %}
9639 
9640 // ============================================================================
9641 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9642 // array for an instance of the superklass.  Set a hidden internal cache on a
9643 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9644 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9645 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9646   match(Set index (PartialSubtypeCheck sub super));
9647   effect( KILL pcc, KILL o7 );
9648   ins_cost(DEFAULT_COST*10);
9649   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9650   ins_encode( enc_PartialSubtypeCheck() );
9651   ins_pipe(partial_subtype_check_pipe);
9652 %}
9653 
9654 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9655   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9656   effect( KILL idx, KILL o7 );
9657   ins_cost(DEFAULT_COST*10);
9658   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9659   ins_encode( enc_PartialSubtypeCheck() );
9660   ins_pipe(partial_subtype_check_pipe);
9661 %}
9662 
9663 
9664 // ============================================================================
9665 // inlined locking and unlocking
9666 
9667 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9668   match(Set pcc (FastLock object box));
9669 
9670   effect(KILL scratch, TEMP scratch2);
9671   ins_cost(100);
9672 
9673   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9674   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9675   ins_pipe(long_memory_op);
9676 %}
9677 
9678 
9679 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9680   match(Set pcc (FastUnlock object box));
9681   effect(KILL scratch, TEMP scratch2);
9682   ins_cost(100);
9683 
9684   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9685   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9686   ins_pipe(long_memory_op);
9687 %}
9688 
9689 // Count and Base registers are fixed because the allocator cannot
9690 // kill unknown registers.  The encodings are generic.
9691 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9692   match(Set dummy (ClearArray cnt base));
9693   effect(TEMP temp, KILL ccr);
9694   ins_cost(300);
9695   format %{ "MOV    $cnt,$temp\n"
9696     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9697     "        BRge   loop\t\t! Clearing loop\n"
9698     "        STX    G0,[$base+$temp]\t! delay slot" %}
9699   ins_encode( enc_Clear_Array(cnt, base, temp) );
9700   ins_pipe(long_memory_op);
9701 %}
9702 
9703 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9704                         o7RegI tmp, flagsReg ccr) %{
9705   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9706   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9707   ins_cost(300);
9708   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9709   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
9710   ins_pipe(long_memory_op);
9711 %}
9712 
9713 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9714                        o7RegI tmp, flagsReg ccr) %{
9715   match(Set result (StrEquals (Binary str1 str2) cnt));
9716   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9717   ins_cost(300);
9718   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9719   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
9720   ins_pipe(long_memory_op);
9721 %}
9722 
9723 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9724                       o7RegI tmp2, flagsReg ccr) %{
9725   match(Set result (AryEq ary1 ary2));
9726   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9727   ins_cost(300);
9728   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9729   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
9730   ins_pipe(long_memory_op);
9731 %}
9732 
9733 
9734 //---------- Zeros Count Instructions ------------------------------------------
9735 
9736 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9737   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9738   match(Set dst (CountLeadingZerosI src));
9739   effect(TEMP dst, TEMP tmp, KILL cr);
9740 
9741   // x |= (x >> 1);
9742   // x |= (x >> 2);
9743   // x |= (x >> 4);
9744   // x |= (x >> 8);
9745   // x |= (x >> 16);
9746   // return (WORDBITS - popc(x));
9747   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
9748             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
9749             "OR      $dst,$tmp,$dst\n\t"
9750             "SRL     $dst,2,$tmp\n\t"
9751             "OR      $dst,$tmp,$dst\n\t"
9752             "SRL     $dst,4,$tmp\n\t"
9753             "OR      $dst,$tmp,$dst\n\t"
9754             "SRL     $dst,8,$tmp\n\t"
9755             "OR      $dst,$tmp,$dst\n\t"
9756             "SRL     $dst,16,$tmp\n\t"
9757             "OR      $dst,$tmp,$dst\n\t"
9758             "POPC    $dst,$dst\n\t"
9759             "MOV     32,$tmp\n\t"
9760             "SUB     $tmp,$dst,$dst" %}
9761   ins_encode %{
9762     Register Rdst = $dst$$Register;
9763     Register Rsrc = $src$$Register;
9764     Register Rtmp = $tmp$$Register;
9765     __ srl(Rsrc, 1,    Rtmp);
9766     __ srl(Rsrc, 0,    Rdst);
9767     __ or3(Rdst, Rtmp, Rdst);
9768     __ srl(Rdst, 2,    Rtmp);
9769     __ or3(Rdst, Rtmp, Rdst);
9770     __ srl(Rdst, 4,    Rtmp);
9771     __ or3(Rdst, Rtmp, Rdst);
9772     __ srl(Rdst, 8,    Rtmp);
9773     __ or3(Rdst, Rtmp, Rdst);
9774     __ srl(Rdst, 16,   Rtmp);
9775     __ or3(Rdst, Rtmp, Rdst);
9776     __ popc(Rdst, Rdst);
9777     __ mov(BitsPerInt, Rtmp);
9778     __ sub(Rtmp, Rdst, Rdst);
9779   %}
9780   ins_pipe(ialu_reg);
9781 %}
9782 
9783 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
9784   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9785   match(Set dst (CountLeadingZerosL src));
9786   effect(TEMP dst, TEMP tmp, KILL cr);
9787 
9788   // x |= (x >> 1);
9789   // x |= (x >> 2);
9790   // x |= (x >> 4);
9791   // x |= (x >> 8);
9792   // x |= (x >> 16);
9793   // x |= (x >> 32);
9794   // return (WORDBITS - popc(x));
9795   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
9796             "OR      $src,$tmp,$dst\n\t"
9797             "SRLX    $dst,2,$tmp\n\t"
9798             "OR      $dst,$tmp,$dst\n\t"
9799             "SRLX    $dst,4,$tmp\n\t"
9800             "OR      $dst,$tmp,$dst\n\t"
9801             "SRLX    $dst,8,$tmp\n\t"
9802             "OR      $dst,$tmp,$dst\n\t"
9803             "SRLX    $dst,16,$tmp\n\t"
9804             "OR      $dst,$tmp,$dst\n\t"
9805             "SRLX    $dst,32,$tmp\n\t"
9806             "OR      $dst,$tmp,$dst\n\t"
9807             "POPC    $dst,$dst\n\t"
9808             "MOV     64,$tmp\n\t"
9809             "SUB     $tmp,$dst,$dst" %}
9810   ins_encode %{
9811     Register Rdst = $dst$$Register;
9812     Register Rsrc = $src$$Register;
9813     Register Rtmp = $tmp$$Register;
9814     __ srlx(Rsrc, 1,    Rtmp);
9815     __ or3( Rsrc, Rtmp, Rdst);
9816     __ srlx(Rdst, 2,    Rtmp);
9817     __ or3( Rdst, Rtmp, Rdst);
9818     __ srlx(Rdst, 4,    Rtmp);
9819     __ or3( Rdst, Rtmp, Rdst);
9820     __ srlx(Rdst, 8,    Rtmp);
9821     __ or3( Rdst, Rtmp, Rdst);
9822     __ srlx(Rdst, 16,   Rtmp);
9823     __ or3( Rdst, Rtmp, Rdst);
9824     __ srlx(Rdst, 32,   Rtmp);
9825     __ or3( Rdst, Rtmp, Rdst);
9826     __ popc(Rdst, Rdst);
9827     __ mov(BitsPerLong, Rtmp);
9828     __ sub(Rtmp, Rdst, Rdst);
9829   %}
9830   ins_pipe(ialu_reg);
9831 %}
9832 
9833 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9834   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9835   match(Set dst (CountTrailingZerosI src));
9836   effect(TEMP dst, KILL cr);
9837 
9838   // return popc(~x & (x - 1));
9839   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9840             "ANDN    $dst,$src,$dst\n\t"
9841             "SRL     $dst,R_G0,$dst\n\t"
9842             "POPC    $dst,$dst" %}
9843   ins_encode %{
9844     Register Rdst = $dst$$Register;
9845     Register Rsrc = $src$$Register;
9846     __ sub(Rsrc, 1, Rdst);
9847     __ andn(Rdst, Rsrc, Rdst);
9848     __ srl(Rdst, G0, Rdst);
9849     __ popc(Rdst, Rdst);
9850   %}
9851   ins_pipe(ialu_reg);
9852 %}
9853 
9854 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9855   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9856   match(Set dst (CountTrailingZerosL src));
9857   effect(TEMP dst, KILL cr);
9858 
9859   // return popc(~x & (x - 1));
9860   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9861             "ANDN    $dst,$src,$dst\n\t"
9862             "POPC    $dst,$dst" %}
9863   ins_encode %{
9864     Register Rdst = $dst$$Register;
9865     Register Rsrc = $src$$Register;
9866     __ sub(Rsrc, 1, Rdst);
9867     __ andn(Rdst, Rsrc, Rdst);
9868     __ popc(Rdst, Rdst);
9869   %}
9870   ins_pipe(ialu_reg);
9871 %}
9872 
9873 
9874 //---------- Population Count Instructions -------------------------------------
9875 
9876 instruct popCountI(iRegI dst, iRegI src) %{
9877   predicate(UsePopCountInstruction);
9878   match(Set dst (PopCountI src));
9879 
9880   format %{ "POPC   $src, $dst" %}
9881   ins_encode %{
9882     __ popc($src$$Register, $dst$$Register);
9883   %}
9884   ins_pipe(ialu_reg);
9885 %}
9886 
9887 // Note: Long.bitCount(long) returns an int.
9888 instruct popCountL(iRegI dst, iRegL src) %{
9889   predicate(UsePopCountInstruction);
9890   match(Set dst (PopCountL src));
9891 
9892   format %{ "POPC   $src, $dst" %}
9893   ins_encode %{
9894     __ popc($src$$Register, $dst$$Register);
9895   %}
9896   ins_pipe(ialu_reg);
9897 %}
9898 
9899 
9900 // ============================================================================
9901 //------------Bytes reverse--------------------------------------------------
9902 
9903 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9904   match(Set dst (ReverseBytesI src));
9905 
9906   // Op cost is artificially doubled to make sure that load or store
9907   // instructions are preferred over this one which requires a spill
9908   // onto a stack slot.
9909   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9910   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9911 
9912   ins_encode %{
9913     __ set($src$$disp + STACK_BIAS, O7);
9914     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9915   %}
9916   ins_pipe( iload_mem );
9917 %}
9918 
9919 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9920   match(Set dst (ReverseBytesL src));
9921 
9922   // Op cost is artificially doubled to make sure that load or store
9923   // instructions are preferred over this one which requires a spill
9924   // onto a stack slot.
9925   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9926   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9927 
9928   ins_encode %{
9929     __ set($src$$disp + STACK_BIAS, O7);
9930     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9931   %}
9932   ins_pipe( iload_mem );
9933 %}
9934 
9935 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
9936   match(Set dst (ReverseBytesUS src));
9937 
9938   // Op cost is artificially doubled to make sure that load or store
9939   // instructions are preferred over this one which requires a spill
9940   // onto a stack slot.
9941   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9942   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
9943 
9944   ins_encode %{
9945     // the value was spilled as an int so bias the load
9946     __ set($src$$disp + STACK_BIAS + 2, O7);
9947     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9948   %}
9949   ins_pipe( iload_mem );
9950 %}
9951 
9952 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
9953   match(Set dst (ReverseBytesS src));
9954 
9955   // Op cost is artificially doubled to make sure that load or store
9956   // instructions are preferred over this one which requires a spill
9957   // onto a stack slot.
9958   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9959   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
9960 
9961   ins_encode %{
9962     // the value was spilled as an int so bias the load
9963     __ set($src$$disp + STACK_BIAS + 2, O7);
9964     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9965   %}
9966   ins_pipe( iload_mem );
9967 %}
9968 
9969 // Load Integer reversed byte order
9970 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
9971   match(Set dst (ReverseBytesI (LoadI src)));
9972 
9973   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9974   size(4);
9975   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9976 
9977   ins_encode %{
9978     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9979   %}
9980   ins_pipe(iload_mem);
9981 %}
9982 
9983 // Load Long - aligned and reversed
9984 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
9985   match(Set dst (ReverseBytesL (LoadL src)));
9986 
9987   ins_cost(MEMORY_REF_COST);
9988   size(4);
9989   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9990 
9991   ins_encode %{
9992     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9993   %}
9994   ins_pipe(iload_mem);
9995 %}
9996 
9997 // Load unsigned short / char reversed byte order
9998 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
9999   match(Set dst (ReverseBytesUS (LoadUS src)));
10000 
10001   ins_cost(MEMORY_REF_COST);
10002   size(4);
10003   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10004 
10005   ins_encode %{
10006     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10007   %}
10008   ins_pipe(iload_mem);
10009 %}
10010 
10011 // Load short reversed byte order
10012 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10013   match(Set dst (ReverseBytesS (LoadS src)));
10014 
10015   ins_cost(MEMORY_REF_COST);
10016   size(4);
10017   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10018 
10019   ins_encode %{
10020     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10021   %}
10022   ins_pipe(iload_mem);
10023 %}
10024 
10025 // Store Integer reversed byte order
10026 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10027   match(Set dst (StoreI dst (ReverseBytesI src)));
10028 
10029   ins_cost(MEMORY_REF_COST);
10030   size(4);
10031   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10032 
10033   ins_encode %{
10034     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10035   %}
10036   ins_pipe(istore_mem_reg);
10037 %}
10038 
10039 // Store Long reversed byte order
10040 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10041   match(Set dst (StoreL dst (ReverseBytesL src)));
10042 
10043   ins_cost(MEMORY_REF_COST);
10044   size(4);
10045   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10046 
10047   ins_encode %{
10048     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10049   %}
10050   ins_pipe(istore_mem_reg);
10051 %}
10052 
10053 // Store unsighed short/char reversed byte order
10054 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10055   match(Set dst (StoreC dst (ReverseBytesUS src)));
10056 
10057   ins_cost(MEMORY_REF_COST);
10058   size(4);
10059   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10060 
10061   ins_encode %{
10062     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10063   %}
10064   ins_pipe(istore_mem_reg);
10065 %}
10066 
10067 // Store short reversed byte order
10068 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10069   match(Set dst (StoreC dst (ReverseBytesS src)));
10070 
10071   ins_cost(MEMORY_REF_COST);
10072   size(4);
10073   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10074 
10075   ins_encode %{
10076     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10077   %}
10078   ins_pipe(istore_mem_reg);
10079 %}
10080 
10081 //----------PEEPHOLE RULES-----------------------------------------------------
10082 // These must follow all instruction definitions as they use the names
10083 // defined in the instructions definitions.
10084 //
10085 // peepmatch ( root_instr_name [preceding_instruction]* );
10086 //
10087 // peepconstraint %{
10088 // (instruction_number.operand_name relational_op instruction_number.operand_name
10089 //  [, ...] );
10090 // // instruction numbers are zero-based using left to right order in peepmatch
10091 //
10092 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10093 // // provide an instruction_number.operand_name for each operand that appears
10094 // // in the replacement instruction's match rule
10095 //
10096 // ---------VM FLAGS---------------------------------------------------------
10097 //
10098 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10099 //
10100 // Each peephole rule is given an identifying number starting with zero and
10101 // increasing by one in the order seen by the parser.  An individual peephole
10102 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10103 // on the command-line.
10104 //
10105 // ---------CURRENT LIMITATIONS----------------------------------------------
10106 //
10107 // Only match adjacent instructions in same basic block
10108 // Only equality constraints
10109 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10110 // Only one replacement instruction
10111 //
10112 // ---------EXAMPLE----------------------------------------------------------
10113 //
10114 // // pertinent parts of existing instructions in architecture description
10115 // instruct movI(eRegI dst, eRegI src) %{
10116 //   match(Set dst (CopyI src));
10117 // %}
10118 //
10119 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10120 //   match(Set dst (AddI dst src));
10121 //   effect(KILL cr);
10122 // %}
10123 //
10124 // // Change (inc mov) to lea
10125 // peephole %{
10126 //   // increment preceeded by register-register move
10127 //   peepmatch ( incI_eReg movI );
10128 //   // require that the destination register of the increment
10129 //   // match the destination register of the move
10130 //   peepconstraint ( 0.dst == 1.dst );
10131 //   // construct a replacement instruction that sets
10132 //   // the destination to ( move's source register + one )
10133 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10134 // %}
10135 //
10136 
10137 // // Change load of spilled value to only a spill
10138 // instruct storeI(memory mem, eRegI src) %{
10139 //   match(Set mem (StoreI mem src));
10140 // %}
10141 //
10142 // instruct loadI(eRegI dst, memory mem) %{
10143 //   match(Set dst (LoadI mem));
10144 // %}
10145 //
10146 // peephole %{
10147 //   peepmatch ( loadI storeI );
10148 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10149 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10150 // %}
10151 
10152 //----------SMARTSPILL RULES---------------------------------------------------
10153 // These must follow all instruction definitions as they use the names
10154 // defined in the instructions definitions.
10155 //
10156 // SPARC will probably not have any of these rules due to RISC instruction set.
10157 
10158 //----------PIPELINE-----------------------------------------------------------
10159 // Rules which define the behavior of the target architectures pipeline.