1 //
   2 // Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Special Registers
  78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
  79 
  80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  81 // allocator, and only shows up in the encodings.
  82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  84 // Ok so here's the trick FPR1 is really st(0) except in the midst
  85 // of emission of assembly for a machnode. During the emission the fpu stack
  86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  87 // the stack will not have this element so FPR1 == st(0) from the
  88 // oopMap viewpoint. This same weirdness with numbering causes
  89 // instruction encoding to have to play games with the register
  90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  91 // where it does flt->flt moves to see an example
  92 //
  93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
 100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
 101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
 102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 107 
 108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
 109 // Word a in each register holds a Float, words ab hold a Double.
 110 // We currently do not use the SIMD capabilities, so registers cd
 111 // are unused at the moment.
 112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
 113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
 114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
 115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
 116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
 117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
 118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
 119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
 120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
 121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
 122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
 123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
 124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
 125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
 126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
 127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
 128 
 129 // Specify priority of register selection within phases of register
 130 // allocation.  Highest priority is first.  A useful heuristic is to
 131 // give registers a low priority when they are required by machine
 132 // instructions, like EAX and EDX.  Registers which are used as
 133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 134 // For the Intel integer registers, the equivalent Long pairs are
 135 // EDX:EAX, EBX:ECX, and EDI:EBP.
 136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 139                     FPR6L, FPR6H, FPR7L, FPR7H );
 140 
 141 alloc_class chunk1( XMM0a, XMM0b,
 142                     XMM1a, XMM1b,
 143                     XMM2a, XMM2b,
 144                     XMM3a, XMM3b,
 145                     XMM4a, XMM4b,
 146                     XMM5a, XMM5b,
 147                     XMM6a, XMM6b,
 148                     XMM7a, XMM7b, EFLAGS);
 149 
 150 
 151 //----------Architecture Description Register Classes--------------------------
 152 // Several register classes are automatically defined based upon information in
 153 // this architecture description.
 154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 158 //
 159 // Class for all registers
 160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 161 // Class for general registers
 162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 163 // Class for general registers which may be used for implicit null checks on win95
 164 // Also safe for use by tailjump. We don't want to allocate in rbp,
 165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 166 // Class of "X" registers
 167 reg_class x_reg(EBX, ECX, EDX, EAX);
 168 // Class of registers that can appear in an address with no offset.
 169 // EBP and ESP require an extra instruction byte for zero offset.
 170 // Used in fast-unlock
 171 reg_class p_reg(EDX, EDI, ESI, EBX);
 172 // Class for general registers not including ECX
 173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 174 // Class for general registers not including EAX
 175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 176 // Class for general registers not including EAX or EBX.
 177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 178 // Class of EAX (for multiply and divide operations)
 179 reg_class eax_reg(EAX);
 180 // Class of EBX (for atomic add)
 181 reg_class ebx_reg(EBX);
 182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 183 reg_class ecx_reg(ECX);
 184 // Class of EDX (for multiply and divide operations)
 185 reg_class edx_reg(EDX);
 186 // Class of EDI (for synchronization)
 187 reg_class edi_reg(EDI);
 188 // Class of ESI (for synchronization)
 189 reg_class esi_reg(ESI);
 190 // Singleton class for interpreter's stack pointer
 191 reg_class ebp_reg(EBP);
 192 // Singleton class for stack pointer
 193 reg_class sp_reg(ESP);
 194 // Singleton class for instruction pointer
 195 // reg_class ip_reg(EIP);
 196 // Singleton class for condition codes
 197 reg_class int_flags(EFLAGS);
 198 // Class of integer register pairs
 199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 200 // Class of integer register pairs that aligns with calling convention
 201 reg_class eadx_reg( EAX,EDX );
 202 reg_class ebcx_reg( ECX,EBX );
 203 // Not AX or DX, used in divides
 204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 205 
 206 // Floating point registers.  Notice FPR0 is not a choice.
 207 // FPR0 is not ever allocated; we use clever encodings to fake
 208 // a 2-address instructions out of Intels FP stack.
 209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 210 
 211 // make a register class for SSE registers
 212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
 213 
 214 // make a double register class for SSE2 registers
 215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
 216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
 217 
 218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 220                    FPR7L,FPR7H );
 221 
 222 reg_class flt_reg0( FPR1L );
 223 reg_class dbl_reg0( FPR1L,FPR1H );
 224 reg_class dbl_reg1( FPR2L,FPR2H );
 225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 227 
 228 // XMM6 and XMM7 could be used as temporary registers for long, float and
 229 // double values for SSE2.
 230 reg_class xdb_reg6( XMM6a,XMM6b );
 231 reg_class xdb_reg7( XMM7a,XMM7b );
 232 %}
 233 
 234 
 235 //----------SOURCE BLOCK-------------------------------------------------------
 236 // This is a block of C++ code which provides values, functions, and
 237 // definitions necessary in the rest of the architecture description
 238 source_hpp %{
 239 // Must be visible to the DFA in dfa_x86_32.cpp
 240 extern bool is_operand_hi32_zero(Node* n);
 241 %}
 242 
 243 source %{
 244 #define   RELOC_IMM32    Assembler::imm_operand
 245 #define   RELOC_DISP32   Assembler::disp32_operand
 246 
 247 #define __ _masm.
 248 
 249 // How to find the high register of a Long pair, given the low register
 250 #define   HIGH_FROM_LOW(x) ((x)+2)
 251 
 252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 254 // fast versions of NegF/NegD and AbsF/AbsD.
 255 
 256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 259   // of 128-bits operands for SSE instructions.
 260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 261   // Store the value to a 128-bits operand.
 262   operand[0] = lo;
 263   operand[1] = hi;
 264   return operand;
 265 }
 266 
 267 // Buffer for 128-bits masks used by SSE instructions.
 268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 269 
 270 // Static initialization during VM startup.
 271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 275 
 276 // Offset hacking within calls.
 277 static int pre_call_FPU_size() {
 278   if (Compile::current()->in_24_bit_fp_mode())
 279     return 6; // fldcw
 280   return 0;
 281 }
 282 
 283 static int preserve_SP_size() {
 284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
 285 }
 286 
 287 // !!!!! Special hack to get all type of calls to specify the byte offset
 288 //       from the start of the call to the point where the return address
 289 //       will point.
 290 int MachCallStaticJavaNode::ret_addr_offset() {
 291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
 292   if (_method_handle_invoke)
 293     offset += preserve_SP_size();
 294   return offset;
 295 }
 296 
 297 int MachCallDynamicJavaNode::ret_addr_offset() {
 298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
 299 }
 300 
 301 static int sizeof_FFree_Float_Stack_All = -1;
 302 
 303 int MachCallRuntimeNode::ret_addr_offset() {
 304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
 306 }
 307 
 308 // Indicate if the safepoint node needs the polling page as an input.
 309 // Since x86 does have absolute addressing, it doesn't.
 310 bool SafePointNode::needs_polling_address_input() {
 311   return false;
 312 }
 313 
 314 //
 315 // Compute padding required for nodes which need alignment
 316 //
 317 
 318 // The address of the call instruction needs to be 4-byte aligned to
 319 // ensure that it does not span a cache line so that it can be patched.
 320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 322   current_offset += 1;      // skip call opcode byte
 323   return round_to(current_offset, alignment_required()) - current_offset;
 324 }
 325 
 326 // The address of the call instruction needs to be 4-byte aligned to
 327 // ensure that it does not span a cache line so that it can be patched.
 328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 331   current_offset += 1;      // skip call opcode byte
 332   return round_to(current_offset, alignment_required()) - current_offset;
 333 }
 334 
 335 // The address of the call instruction needs to be 4-byte aligned to
 336 // ensure that it does not span a cache line so that it can be patched.
 337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 339   current_offset += 5;      // skip MOV instruction
 340   current_offset += 1;      // skip call opcode byte
 341   return round_to(current_offset, alignment_required()) - current_offset;
 342 }
 343 
 344 #ifndef PRODUCT
 345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
 346   st->print("INT3");
 347 }
 348 #endif
 349 
 350 // EMIT_RM()
 351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 353   cbuf.insts()->emit_int8(c);
 354 }
 355 
 356 // EMIT_CC()
 357 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 358   unsigned char c = (unsigned char)( f1 | f2 );
 359   cbuf.insts()->emit_int8(c);
 360 }
 361 
 362 // EMIT_OPCODE()
 363 void emit_opcode(CodeBuffer &cbuf, int code) {
 364   cbuf.insts()->emit_int8((unsigned char) code);
 365 }
 366 
 367 // EMIT_OPCODE() w/ relocation information
 368 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 369   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 370   emit_opcode(cbuf, code);
 371 }
 372 
 373 // EMIT_D8()
 374 void emit_d8(CodeBuffer &cbuf, int d8) {
 375   cbuf.insts()->emit_int8((unsigned char) d8);
 376 }
 377 
 378 // EMIT_D16()
 379 void emit_d16(CodeBuffer &cbuf, int d16) {
 380   cbuf.insts()->emit_int16(d16);
 381 }
 382 
 383 // EMIT_D32()
 384 void emit_d32(CodeBuffer &cbuf, int d32) {
 385   cbuf.insts()->emit_int32(d32);
 386 }
 387 
 388 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 389 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 390         int format) {
 391   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 392   cbuf.insts()->emit_int32(d32);
 393 }
 394 
 395 // emit 32 bit value and construct relocation entry from RelocationHolder
 396 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 397         int format) {
 398 #ifdef ASSERT
 399   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 400     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 401   }
 402 #endif
 403   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 404   cbuf.insts()->emit_int32(d32);
 405 }
 406 
 407 // Access stack slot for load or store
 408 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 409   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 410   if( -128 <= disp && disp <= 127 ) {
 411     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 412     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 413     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 414   } else {
 415     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 416     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 417     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 418   }
 419 }
 420 
 421    // eRegI ereg, memory mem) %{    // emit_reg_mem
 422 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
 423   // There is no index & no scale, use form without SIB byte
 424   if ((index == 0x4) &&
 425       (scale == 0) && (base != ESP_enc)) {
 426     // If no displacement, mode is 0x0; unless base is [EBP]
 427     if ( (displace == 0) && (base != EBP_enc) ) {
 428       emit_rm(cbuf, 0x0, reg_encoding, base);
 429     }
 430     else {                    // If 8-bit displacement, mode 0x1
 431       if ((displace >= -128) && (displace <= 127)
 432           && !(displace_is_oop) ) {
 433         emit_rm(cbuf, 0x1, reg_encoding, base);
 434         emit_d8(cbuf, displace);
 435       }
 436       else {                  // If 32-bit displacement
 437         if (base == -1) { // Special flag for absolute address
 438           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 439           // (manual lies; no SIB needed here)
 440           if ( displace_is_oop ) {
 441             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 442           } else {
 443             emit_d32      (cbuf, displace);
 444           }
 445         }
 446         else {                // Normal base + offset
 447           emit_rm(cbuf, 0x2, reg_encoding, base);
 448           if ( displace_is_oop ) {
 449             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 450           } else {
 451             emit_d32      (cbuf, displace);
 452           }
 453         }
 454       }
 455     }
 456   }
 457   else {                      // Else, encode with the SIB byte
 458     // If no displacement, mode is 0x0; unless base is [EBP]
 459     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 460       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 461       emit_rm(cbuf, scale, index, base);
 462     }
 463     else {                    // If 8-bit displacement, mode 0x1
 464       if ((displace >= -128) && (displace <= 127)
 465           && !(displace_is_oop) ) {
 466         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 467         emit_rm(cbuf, scale, index, base);
 468         emit_d8(cbuf, displace);
 469       }
 470       else {                  // If 32-bit displacement
 471         if (base == 0x04 ) {
 472           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 473           emit_rm(cbuf, scale, index, 0x04);
 474         } else {
 475           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 476           emit_rm(cbuf, scale, index, base);
 477         }
 478         if ( displace_is_oop ) {
 479           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 480         } else {
 481           emit_d32      (cbuf, displace);
 482         }
 483       }
 484     }
 485   }
 486 }
 487 
 488 
 489 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 490   if( dst_encoding == src_encoding ) {
 491     // reg-reg copy, use an empty encoding
 492   } else {
 493     emit_opcode( cbuf, 0x8B );
 494     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 495   }
 496 }
 497 
 498 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 499   if( dst_encoding == src_encoding ) {
 500     // reg-reg copy, use an empty encoding
 501   } else {
 502     MacroAssembler _masm(&cbuf);
 503 
 504     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
 505   }
 506 }
 507 
 508 
 509 //=============================================================================
 510 const bool Matcher::constant_table_absolute_addressing = true;
 511 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 512 
 513 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 514   // Empty encoding
 515 }
 516 
 517 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 518   return 0;
 519 }
 520 
 521 #ifndef PRODUCT
 522 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 523   st->print("# MachConstantBaseNode (empty encoding)");
 524 }
 525 #endif
 526 
 527 
 528 //=============================================================================
 529 #ifndef PRODUCT
 530 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 531   Compile* C = ra_->C;
 532   if( C->in_24_bit_fp_mode() ) {
 533     st->print("FLDCW  24 bit fpu control word");
 534     st->print_cr(""); st->print("\t");
 535   }
 536 
 537   int framesize = C->frame_slots() << LogBytesPerInt;
 538   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 539   // Remove two words for return addr and rbp,
 540   framesize -= 2*wordSize;
 541 
 542   // Calls to C2R adapters often do not accept exceptional returns.
 543   // We require that their callers must bang for them.  But be careful, because
 544   // some VM calls (such as call site linkage) can use several kilobytes of
 545   // stack.  But the stack safety zone should account for that.
 546   // See bugs 4446381, 4468289, 4497237.
 547   if (C->need_stack_bang(framesize)) {
 548     st->print_cr("# stack bang"); st->print("\t");
 549   }
 550   st->print_cr("PUSHL  EBP"); st->print("\t");
 551 
 552   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 553     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
 554     st->print_cr(""); st->print("\t");
 555     framesize -= wordSize;
 556   }
 557 
 558   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 559     if (framesize) {
 560       st->print("SUB    ESP,%d\t# Create frame",framesize);
 561     }
 562   } else {
 563     st->print("SUB    ESP,%d\t# Create frame",framesize);
 564   }
 565 }
 566 #endif
 567 
 568 
 569 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 570   Compile* C = ra_->C;
 571 
 572   if (UseSSE >= 2 && VerifyFPU) {
 573     MacroAssembler masm(&cbuf);
 574     masm.verify_FPU(0, "FPU stack must be clean on entry");
 575   }
 576 
 577   // WARNING: Initial instruction MUST be 5 bytes or longer so that
 578   // NativeJump::patch_verified_entry will be able to patch out the entry
 579   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
 580   // depth is ok at 5 bytes, the frame allocation can be either 3 or
 581   // 6 bytes. So if we don't do the fldcw or the push then we must
 582   // use the 6 byte frame allocation even if we have no frame. :-(
 583   // If method sets FPU control word do it now
 584   if( C->in_24_bit_fp_mode() ) {
 585     MacroAssembler masm(&cbuf);
 586     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 587   }
 588 
 589   int framesize = C->frame_slots() << LogBytesPerInt;
 590   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 591   // Remove two words for return addr and rbp,
 592   framesize -= 2*wordSize;
 593 
 594   // Calls to C2R adapters often do not accept exceptional returns.
 595   // We require that their callers must bang for them.  But be careful, because
 596   // some VM calls (such as call site linkage) can use several kilobytes of
 597   // stack.  But the stack safety zone should account for that.
 598   // See bugs 4446381, 4468289, 4497237.
 599   if (C->need_stack_bang(framesize)) {
 600     MacroAssembler masm(&cbuf);
 601     masm.generate_stack_overflow_check(framesize);
 602   }
 603 
 604   // We always push rbp, so that on return to interpreter rbp, will be
 605   // restored correctly and we can correct the stack.
 606   emit_opcode(cbuf, 0x50 | EBP_enc);
 607 
 608   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 609     emit_opcode(cbuf, 0x68); // push 0xbadb100d
 610     emit_d32(cbuf, 0xbadb100d);
 611     framesize -= wordSize;
 612   }
 613 
 614   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 615     if (framesize) {
 616       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
 617       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 618       emit_d8(cbuf, framesize);
 619     }
 620   } else {
 621     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
 622     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 623     emit_d32(cbuf, framesize);
 624   }
 625   C->set_frame_complete(cbuf.insts_size());
 626 
 627 #ifdef ASSERT
 628   if (VerifyStackAtCalls) {
 629     Label L;
 630     MacroAssembler masm(&cbuf);
 631     masm.push(rax);
 632     masm.mov(rax, rsp);
 633     masm.andptr(rax, StackAlignmentInBytes-1);
 634     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
 635     masm.pop(rax);
 636     masm.jcc(Assembler::equal, L);
 637     masm.stop("Stack is not properly aligned!");
 638     masm.bind(L);
 639   }
 640 #endif
 641 
 642 }
 643 
 644 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 645   return MachNode::size(ra_); // too many variables; just compute it the hard way
 646 }
 647 
 648 int MachPrologNode::reloc() const {
 649   return 0; // a large enough number
 650 }
 651 
 652 //=============================================================================
 653 #ifndef PRODUCT
 654 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 655   Compile *C = ra_->C;
 656   int framesize = C->frame_slots() << LogBytesPerInt;
 657   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 658   // Remove two words for return addr and rbp,
 659   framesize -= 2*wordSize;
 660 
 661   if( C->in_24_bit_fp_mode() ) {
 662     st->print("FLDCW  standard control word");
 663     st->cr(); st->print("\t");
 664   }
 665   if( framesize ) {
 666     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 667     st->cr(); st->print("\t");
 668   }
 669   st->print_cr("POPL   EBP"); st->print("\t");
 670   if( do_polling() && C->is_method_compilation() ) {
 671     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 672     st->cr(); st->print("\t");
 673   }
 674 }
 675 #endif
 676 
 677 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 678   Compile *C = ra_->C;
 679 
 680   // If method set FPU control word, restore to standard control word
 681   if( C->in_24_bit_fp_mode() ) {
 682     MacroAssembler masm(&cbuf);
 683     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 684   }
 685 
 686   int framesize = C->frame_slots() << LogBytesPerInt;
 687   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 688   // Remove two words for return addr and rbp,
 689   framesize -= 2*wordSize;
 690 
 691   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 692 
 693   if( framesize >= 128 ) {
 694     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 695     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 696     emit_d32(cbuf, framesize);
 697   }
 698   else if( framesize ) {
 699     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 700     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 701     emit_d8(cbuf, framesize);
 702   }
 703 
 704   emit_opcode(cbuf, 0x58 | EBP_enc);
 705 
 706   if( do_polling() && C->is_method_compilation() ) {
 707     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 708     emit_opcode(cbuf,0x85);
 709     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 710     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 711   }
 712 }
 713 
 714 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 715   Compile *C = ra_->C;
 716   // If method set FPU control word, restore to standard control word
 717   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 718   if( do_polling() && C->is_method_compilation() ) size += 6;
 719 
 720   int framesize = C->frame_slots() << LogBytesPerInt;
 721   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 722   // Remove two words for return addr and rbp,
 723   framesize -= 2*wordSize;
 724 
 725   size++; // popl rbp,
 726 
 727   if( framesize >= 128 ) {
 728     size += 6;
 729   } else {
 730     size += framesize ? 3 : 0;
 731   }
 732   return size;
 733 }
 734 
 735 int MachEpilogNode::reloc() const {
 736   return 0; // a large enough number
 737 }
 738 
 739 const Pipeline * MachEpilogNode::pipeline() const {
 740   return MachNode::pipeline_class();
 741 }
 742 
 743 int MachEpilogNode::safepoint_offset() const { return 0; }
 744 
 745 //=============================================================================
 746 
 747 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 748 static enum RC rc_class( OptoReg::Name reg ) {
 749 
 750   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 751   if (OptoReg::is_stack(reg)) return rc_stack;
 752 
 753   VMReg r = OptoReg::as_VMReg(reg);
 754   if (r->is_Register()) return rc_int;
 755   if (r->is_FloatRegister()) {
 756     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 757     return rc_float;
 758   }
 759   assert(r->is_XMMRegister(), "must be");
 760   return rc_xmm;
 761 }
 762 
 763 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 764                         int opcode, const char *op_str, int size, outputStream* st ) {
 765   if( cbuf ) {
 766     emit_opcode  (*cbuf, opcode );
 767     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
 768 #ifndef PRODUCT
 769   } else if( !do_size ) {
 770     if( size != 0 ) st->print("\n\t");
 771     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 772       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 773       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 774     } else { // FLD, FST, PUSH, POP
 775       st->print("%s [ESP + #%d]",op_str,offset);
 776     }
 777 #endif
 778   }
 779   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 780   return size+3+offset_size;
 781 }
 782 
 783 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 784 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 785                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 786   if( cbuf ) {
 787     if( reg_lo+1 == reg_hi ) { // double move?
 788       if( is_load && !UseXmmLoadAndClearUpper )
 789         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
 790       else
 791         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
 792     } else {
 793       emit_opcode(*cbuf, 0xF3 );
 794     }
 795     emit_opcode(*cbuf, 0x0F );
 796     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
 797       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
 798     else
 799       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
 800     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
 801 #ifndef PRODUCT
 802   } else if( !do_size ) {
 803     if( size != 0 ) st->print("\n\t");
 804     if( reg_lo+1 == reg_hi ) { // double move?
 805       if( is_load ) st->print("%s %s,[ESP + #%d]",
 806                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 807                                Matcher::regName[reg_lo], offset);
 808       else          st->print("MOVSD  [ESP + #%d],%s",
 809                                offset, Matcher::regName[reg_lo]);
 810     } else {
 811       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
 812                                Matcher::regName[reg_lo], offset);
 813       else          st->print("MOVSS  [ESP + #%d],%s",
 814                                offset, Matcher::regName[reg_lo]);
 815     }
 816 #endif
 817   }
 818   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 819   return size+5+offset_size;
 820 }
 821 
 822 
 823 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 824                             int src_hi, int dst_hi, int size, outputStream* st ) {
 825   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
 826     if( cbuf ) {
 827       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
 828         emit_opcode(*cbuf, 0x66 );
 829       }
 830       emit_opcode(*cbuf, 0x0F );
 831       emit_opcode(*cbuf, 0x28 );
 832       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 833 #ifndef PRODUCT
 834     } else if( !do_size ) {
 835       if( size != 0 ) st->print("\n\t");
 836       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 837         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 838       } else {
 839         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 840       }
 841 #endif
 842     }
 843     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
 844   } else {
 845     if( cbuf ) {
 846       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
 847       emit_opcode(*cbuf, 0x0F );
 848       emit_opcode(*cbuf, 0x10 );
 849       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 850 #ifndef PRODUCT
 851     } else if( !do_size ) {
 852       if( size != 0 ) st->print("\n\t");
 853       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 854         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 855       } else {
 856         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 857       }
 858 #endif
 859     }
 860     return size+4;
 861   }
 862 }
 863 
 864 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 865                             int src_hi, int dst_hi, int size, outputStream* st ) {
 866   // 32-bit
 867   if (cbuf) {
 868     emit_opcode(*cbuf, 0x66);
 869     emit_opcode(*cbuf, 0x0F);
 870     emit_opcode(*cbuf, 0x6E);
 871     emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7);
 872 #ifndef PRODUCT
 873   } else if (!do_size) {
 874     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 875 #endif
 876   }
 877   return 4;
 878 }
 879 
 880 
 881 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 882                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 883   // 32-bit
 884   if (cbuf) {
 885     emit_opcode(*cbuf, 0x66);
 886     emit_opcode(*cbuf, 0x0F);
 887     emit_opcode(*cbuf, 0x7E);
 888     emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7);
 889 #ifndef PRODUCT
 890   } else if (!do_size) {
 891     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 892 #endif
 893   }
 894   return 4;
 895 }
 896 
 897 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 898   if( cbuf ) {
 899     emit_opcode(*cbuf, 0x8B );
 900     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 901 #ifndef PRODUCT
 902   } else if( !do_size ) {
 903     if( size != 0 ) st->print("\n\t");
 904     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 905 #endif
 906   }
 907   return size+2;
 908 }
 909 
 910 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 911                                  int offset, int size, outputStream* st ) {
 912   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 913     if( cbuf ) {
 914       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 915       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 916 #ifndef PRODUCT
 917     } else if( !do_size ) {
 918       if( size != 0 ) st->print("\n\t");
 919       st->print("FLD    %s",Matcher::regName[src_lo]);
 920 #endif
 921     }
 922     size += 2;
 923   }
 924 
 925   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 926   const char *op_str;
 927   int op;
 928   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 929     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 930     op = 0xDD;
 931   } else {                   // 32-bit store
 932     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 933     op = 0xD9;
 934     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 935   }
 936 
 937   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 938 }
 939 
 940 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 941   // Get registers to move
 942   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 943   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 944   OptoReg::Name dst_second = ra_->get_reg_second(this );
 945   OptoReg::Name dst_first = ra_->get_reg_first(this );
 946 
 947   enum RC src_second_rc = rc_class(src_second);
 948   enum RC src_first_rc = rc_class(src_first);
 949   enum RC dst_second_rc = rc_class(dst_second);
 950   enum RC dst_first_rc = rc_class(dst_first);
 951 
 952   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 953 
 954   // Generate spill code!
 955   int size = 0;
 956 
 957   if( src_first == dst_first && src_second == dst_second )
 958     return size;            // Self copy, no move
 959 
 960   // --------------------------------------
 961   // Check for mem-mem move.  push/pop to move.
 962   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
 963     if( src_second == dst_first ) { // overlapping stack copy ranges
 964       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
 965       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 966       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 967       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
 968     }
 969     // move low bits
 970     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
 971     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
 972     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
 973       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 974       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 975     }
 976     return size;
 977   }
 978 
 979   // --------------------------------------
 980   // Check for integer reg-reg copy
 981   if( src_first_rc == rc_int && dst_first_rc == rc_int )
 982     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
 983 
 984   // Check for integer store
 985   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
 986     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
 987 
 988   // Check for integer load
 989   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
 990     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
 991 
 992   // Check for integer reg-xmm reg copy
 993   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
 994     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
 995             "no 64 bit integer-float reg moves" );
 996     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
 997   }
 998   // --------------------------------------
 999   // Check for float reg-reg copy
1000   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1001     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1002             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1003     if( cbuf ) {
1004 
1005       // Note the mucking with the register encode to compensate for the 0/1
1006       // indexing issue mentioned in a comment in the reg_def sections
1007       // for FPR registers many lines above here.
1008 
1009       if( src_first != FPR1L_num ) {
1010         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1011         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1012         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1013         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1014      } else {
1015         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1016         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1017      }
1018 #ifndef PRODUCT
1019     } else if( !do_size ) {
1020       if( size != 0 ) st->print("\n\t");
1021       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1022       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1023 #endif
1024     }
1025     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1026   }
1027 
1028   // Check for float store
1029   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1030     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1031   }
1032 
1033   // Check for float load
1034   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1035     int offset = ra_->reg2offset(src_first);
1036     const char *op_str;
1037     int op;
1038     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1039       op_str = "FLD_D";
1040       op = 0xDD;
1041     } else {                   // 32-bit load
1042       op_str = "FLD_S";
1043       op = 0xD9;
1044       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1045     }
1046     if( cbuf ) {
1047       emit_opcode  (*cbuf, op );
1048       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
1049       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1050       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1051 #ifndef PRODUCT
1052     } else if( !do_size ) {
1053       if( size != 0 ) st->print("\n\t");
1054       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1055 #endif
1056     }
1057     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1058     return size + 3+offset_size+2;
1059   }
1060 
1061   // Check for xmm reg-reg copy
1062   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1063     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1064             (src_first+1 == src_second && dst_first+1 == dst_second),
1065             "no non-adjacent float-moves" );
1066     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1067   }
1068 
1069   // Check for xmm reg-integer reg copy
1070   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1071     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1072             "no 64 bit float-integer reg moves" );
1073     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1074   }
1075 
1076   // Check for xmm store
1077   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1078     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1079   }
1080 
1081   // Check for float xmm load
1082   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1083     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1084   }
1085 
1086   // Copy from float reg to xmm reg
1087   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1088     // copy to the top of stack from floating point reg
1089     // and use LEA to preserve flags
1090     if( cbuf ) {
1091       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1092       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1093       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1094       emit_d8(*cbuf,0xF8);
1095 #ifndef PRODUCT
1096     } else if( !do_size ) {
1097       if( size != 0 ) st->print("\n\t");
1098       st->print("LEA    ESP,[ESP-8]");
1099 #endif
1100     }
1101     size += 4;
1102 
1103     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1104 
1105     // Copy from the temp memory to the xmm reg.
1106     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1107 
1108     if( cbuf ) {
1109       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1110       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1111       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1112       emit_d8(*cbuf,0x08);
1113 #ifndef PRODUCT
1114     } else if( !do_size ) {
1115       if( size != 0 ) st->print("\n\t");
1116       st->print("LEA    ESP,[ESP+8]");
1117 #endif
1118     }
1119     size += 4;
1120     return size;
1121   }
1122 
1123   assert( size > 0, "missed a case" );
1124 
1125   // --------------------------------------------------------------------
1126   // Check for second bits still needing moving.
1127   if( src_second == dst_second )
1128     return size;               // Self copy; no move
1129   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1130 
1131   // Check for second word int-int move
1132   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1133     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1134 
1135   // Check for second word integer store
1136   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1137     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1138 
1139   // Check for second word integer load
1140   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1141     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1142 
1143 
1144   Unimplemented();
1145 }
1146 
1147 #ifndef PRODUCT
1148 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1149   implementation( NULL, ra_, false, st );
1150 }
1151 #endif
1152 
1153 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1154   implementation( &cbuf, ra_, false, NULL );
1155 }
1156 
1157 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1158   return implementation( NULL, ra_, true, NULL );
1159 }
1160 
1161 //=============================================================================
1162 #ifndef PRODUCT
1163 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1164   st->print("NOP \t# %d bytes pad for loops and calls", _count);
1165 }
1166 #endif
1167 
1168 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1169   MacroAssembler _masm(&cbuf);
1170   __ nop(_count);
1171 }
1172 
1173 uint MachNopNode::size(PhaseRegAlloc *) const {
1174   return _count;
1175 }
1176 
1177 
1178 //=============================================================================
1179 #ifndef PRODUCT
1180 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1181   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1182   int reg = ra_->get_reg_first(this);
1183   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1184 }
1185 #endif
1186 
1187 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1188   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1189   int reg = ra_->get_encode(this);
1190   if( offset >= 128 ) {
1191     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1192     emit_rm(cbuf, 0x2, reg, 0x04);
1193     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1194     emit_d32(cbuf, offset);
1195   }
1196   else {
1197     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1198     emit_rm(cbuf, 0x1, reg, 0x04);
1199     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1200     emit_d8(cbuf, offset);
1201   }
1202 }
1203 
1204 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1205   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1206   if( offset >= 128 ) {
1207     return 7;
1208   }
1209   else {
1210     return 4;
1211   }
1212 }
1213 
1214 //=============================================================================
1215 
1216 // emit call stub, compiled java to interpreter
1217 void emit_java_to_interp(CodeBuffer &cbuf ) {
1218   // Stub is fixed up when the corresponding call is converted from calling
1219   // compiled code to calling interpreted code.
1220   // mov rbx,0
1221   // jmp -1
1222 
1223   address mark = cbuf.insts_mark();  // get mark within main instrs section
1224 
1225   // Note that the code buffer's insts_mark is always relative to insts.
1226   // That's why we must use the macroassembler to generate a stub.
1227   MacroAssembler _masm(&cbuf);
1228 
1229   address base =
1230   __ start_a_stub(Compile::MAX_stubs_size);
1231   if (base == NULL)  return;  // CodeBuffer::expand failed
1232   // static stub relocation stores the instruction address of the call
1233   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1234   // static stub relocation also tags the methodOop in the code-stream.
1235   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1236   // This is recognized as unresolved by relocs/nativeInst/ic code
1237   __ jump(RuntimeAddress(__ pc()));
1238 
1239   __ end_a_stub();
1240   // Update current stubs pointer and restore insts_end.
1241 }
1242 // size of call stub, compiled java to interpretor
1243 uint size_java_to_interp() {
1244   return 10;  // movl; jmp
1245 }
1246 // relocation entries for call stub, compiled java to interpretor
1247 uint reloc_java_to_interp() {
1248   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1249 }
1250 
1251 //=============================================================================
1252 #ifndef PRODUCT
1253 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1254   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1255   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1256   st->print_cr("\tNOP");
1257   st->print_cr("\tNOP");
1258   if( !OptoBreakpoint )
1259     st->print_cr("\tNOP");
1260 }
1261 #endif
1262 
1263 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1264   MacroAssembler masm(&cbuf);
1265 #ifdef ASSERT
1266   uint insts_size = cbuf.insts_size();
1267 #endif
1268   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1269   masm.jump_cc(Assembler::notEqual,
1270                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1271   /* WARNING these NOPs are critical so that verified entry point is properly
1272      aligned for patching by NativeJump::patch_verified_entry() */
1273   int nops_cnt = 2;
1274   if( !OptoBreakpoint ) // Leave space for int3
1275      nops_cnt += 1;
1276   masm.nop(nops_cnt);
1277 
1278   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1279 }
1280 
1281 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1282   return OptoBreakpoint ? 11 : 12;
1283 }
1284 
1285 
1286 //=============================================================================
1287 uint size_exception_handler() {
1288   // NativeCall instruction size is the same as NativeJump.
1289   // exception handler starts out as jump and can be patched to
1290   // a call be deoptimization.  (4932387)
1291   // Note that this value is also credited (in output.cpp) to
1292   // the size of the code section.
1293   return NativeJump::instruction_size;
1294 }
1295 
1296 // Emit exception handler code.  Stuff framesize into a register
1297 // and call a VM stub routine.
1298 int emit_exception_handler(CodeBuffer& cbuf) {
1299 
1300   // Note that the code buffer's insts_mark is always relative to insts.
1301   // That's why we must use the macroassembler to generate a handler.
1302   MacroAssembler _masm(&cbuf);
1303   address base =
1304   __ start_a_stub(size_exception_handler());
1305   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1306   int offset = __ offset();
1307   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1308   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1309   __ end_a_stub();
1310   return offset;
1311 }
1312 
1313 uint size_deopt_handler() {
1314   // NativeCall instruction size is the same as NativeJump.
1315   // exception handler starts out as jump and can be patched to
1316   // a call be deoptimization.  (4932387)
1317   // Note that this value is also credited (in output.cpp) to
1318   // the size of the code section.
1319   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1320 }
1321 
1322 // Emit deopt handler code.
1323 int emit_deopt_handler(CodeBuffer& cbuf) {
1324 
1325   // Note that the code buffer's insts_mark is always relative to insts.
1326   // That's why we must use the macroassembler to generate a handler.
1327   MacroAssembler _masm(&cbuf);
1328   address base =
1329   __ start_a_stub(size_exception_handler());
1330   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1331   int offset = __ offset();
1332   InternalAddress here(__ pc());
1333   __ pushptr(here.addr());
1334 
1335   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1336   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1337   __ end_a_stub();
1338   return offset;
1339 }
1340 
1341 
1342 const bool Matcher::match_rule_supported(int opcode) {
1343   if (!has_match_rule(opcode))
1344     return false;
1345 
1346   return true;  // Per default match rules are supported.
1347 }
1348 
1349 int Matcher::regnum_to_fpu_offset(int regnum) {
1350   return regnum - 32; // The FP registers are in the second chunk
1351 }
1352 
1353 // This is UltraSparc specific, true just means we have fast l2f conversion
1354 const bool Matcher::convL2FSupported(void) {
1355   return true;
1356 }
1357 
1358 // Vector width in bytes
1359 const uint Matcher::vector_width_in_bytes(void) {
1360   return UseSSE >= 2 ? 8 : 0;
1361 }
1362 
1363 // Vector ideal reg
1364 const uint Matcher::vector_ideal_reg(void) {
1365   return Op_RegD;
1366 }
1367 
1368 // Is this branch offset short enough that a short branch can be used?
1369 //
1370 // NOTE: If the platform does not provide any short branch variants, then
1371 //       this method should return false for offset 0.
1372 bool Matcher::is_short_branch_offset(int rule, int offset) {
1373   // the short version of jmpConUCF2 contains multiple branches,
1374   // making the reach slightly less
1375   if (rule == jmpConUCF2_rule)
1376     return (-126 <= offset && offset <= 125);
1377   return (-128 <= offset && offset <= 127);
1378 }
1379 
1380 const bool Matcher::isSimpleConstant64(jlong value) {
1381   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1382   return false;
1383 }
1384 
1385 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1386 const bool Matcher::init_array_count_is_in_bytes = false;
1387 
1388 // Threshold size for cleararray.
1389 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1390 
1391 // Should the Matcher clone shifts on addressing modes, expecting them to
1392 // be subsumed into complex addressing expressions or compute them into
1393 // registers?  True for Intel but false for most RISCs
1394 const bool Matcher::clone_shift_expressions = true;
1395 
1396 // Do we need to mask the count passed to shift instructions or does
1397 // the cpu only look at the lower 5/6 bits anyway?
1398 const bool Matcher::need_masked_shift_count = false;
1399 
1400 bool Matcher::narrow_oop_use_complex_address() {
1401   ShouldNotCallThis();
1402   return true;
1403 }
1404 
1405 
1406 // Is it better to copy float constants, or load them directly from memory?
1407 // Intel can load a float constant from a direct address, requiring no
1408 // extra registers.  Most RISCs will have to materialize an address into a
1409 // register first, so they would do better to copy the constant from stack.
1410 const bool Matcher::rematerialize_float_constants = true;
1411 
1412 // If CPU can load and store mis-aligned doubles directly then no fixup is
1413 // needed.  Else we split the double into 2 integer pieces and move it
1414 // piece-by-piece.  Only happens when passing doubles into C code as the
1415 // Java calling convention forces doubles to be aligned.
1416 const bool Matcher::misaligned_doubles_ok = true;
1417 
1418 
1419 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1420   // Get the memory operand from the node
1421   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1422   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1423   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1424   uint opcnt     = 1;                 // First operand
1425   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1426   while( idx >= skipped+num_edges ) {
1427     skipped += num_edges;
1428     opcnt++;                          // Bump operand count
1429     assert( opcnt < numopnds, "Accessing non-existent operand" );
1430     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1431   }
1432 
1433   MachOper *memory = node->_opnds[opcnt];
1434   MachOper *new_memory = NULL;
1435   switch (memory->opcode()) {
1436   case DIRECT:
1437   case INDOFFSET32X:
1438     // No transformation necessary.
1439     return;
1440   case INDIRECT:
1441     new_memory = new (C) indirect_win95_safeOper( );
1442     break;
1443   case INDOFFSET8:
1444     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1445     break;
1446   case INDOFFSET32:
1447     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1448     break;
1449   case INDINDEXOFFSET:
1450     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1451     break;
1452   case INDINDEXSCALE:
1453     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1454     break;
1455   case INDINDEXSCALEOFFSET:
1456     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1457     break;
1458   case LOAD_LONG_INDIRECT:
1459   case LOAD_LONG_INDOFFSET32:
1460     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1461     return;
1462   default:
1463     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1464     return;
1465   }
1466   node->_opnds[opcnt] = new_memory;
1467 }
1468 
1469 // Advertise here if the CPU requires explicit rounding operations
1470 // to implement the UseStrictFP mode.
1471 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1472 
1473 // Are floats conerted to double when stored to stack during deoptimization?
1474 // On x32 it is stored with convertion only when FPU is used for floats.
1475 bool Matcher::float_in_double() { return (UseSSE == 0); }
1476 
1477 // Do ints take an entire long register or just half?
1478 const bool Matcher::int_in_long = false;
1479 
1480 // Return whether or not this register is ever used as an argument.  This
1481 // function is used on startup to build the trampoline stubs in generateOptoStub.
1482 // Registers not mentioned will be killed by the VM call in the trampoline, and
1483 // arguments in those registers not be available to the callee.
1484 bool Matcher::can_be_java_arg( int reg ) {
1485   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1486   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1487   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1488   return false;
1489 }
1490 
1491 bool Matcher::is_spillable_arg( int reg ) {
1492   return can_be_java_arg(reg);
1493 }
1494 
1495 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1496   // Use hardware integer DIV instruction when
1497   // it is faster than a code which use multiply.
1498   // Only when constant divisor fits into 32 bit
1499   // (min_jint is excluded to get only correct
1500   // positive 32 bit values from negative).
1501   return VM_Version::has_fast_idiv() &&
1502          (divisor == (int)divisor && divisor != min_jint);
1503 }
1504 
1505 // Register for DIVI projection of divmodI
1506 RegMask Matcher::divI_proj_mask() {
1507   return EAX_REG_mask;
1508 }
1509 
1510 // Register for MODI projection of divmodI
1511 RegMask Matcher::modI_proj_mask() {
1512   return EDX_REG_mask;
1513 }
1514 
1515 // Register for DIVL projection of divmodL
1516 RegMask Matcher::divL_proj_mask() {
1517   ShouldNotReachHere();
1518   return RegMask();
1519 }
1520 
1521 // Register for MODL projection of divmodL
1522 RegMask Matcher::modL_proj_mask() {
1523   ShouldNotReachHere();
1524   return RegMask();
1525 }
1526 
1527 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1528   return EBP_REG_mask;
1529 }
1530 
1531 // Returns true if the high 32 bits of the value is known to be zero.
1532 bool is_operand_hi32_zero(Node* n) {
1533   int opc = n->Opcode();
1534   if (opc == Op_LoadUI2L) {
1535     return true;
1536   }
1537   if (opc == Op_AndL) {
1538     Node* o2 = n->in(2);
1539     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1540       return true;
1541     }
1542   }
1543   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1544     return true;
1545   }
1546   return false;
1547 }
1548 
1549 %}
1550 
1551 //----------ENCODING BLOCK-----------------------------------------------------
1552 // This block specifies the encoding classes used by the compiler to output
1553 // byte streams.  Encoding classes generate functions which are called by
1554 // Machine Instruction Nodes in order to generate the bit encoding of the
1555 // instruction.  Operands specify their base encoding interface with the
1556 // interface keyword.  There are currently supported four interfaces,
1557 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1558 // operand to generate a function which returns its register number when
1559 // queried.   CONST_INTER causes an operand to generate a function which
1560 // returns the value of the constant when queried.  MEMORY_INTER causes an
1561 // operand to generate four functions which return the Base Register, the
1562 // Index Register, the Scale Value, and the Offset Value of the operand when
1563 // queried.  COND_INTER causes an operand to generate six functions which
1564 // return the encoding code (ie - encoding bits for the instruction)
1565 // associated with each basic boolean condition for a conditional instruction.
1566 // Instructions specify two basic values for encoding.  They use the
1567 // ins_encode keyword to specify their encoding class (which must be one of
1568 // the class names specified in the encoding block), and they use the
1569 // opcode keyword to specify, in order, their primary, secondary, and
1570 // tertiary opcode.  Only the opcode sections which a particular instruction
1571 // needs for encoding need to be specified.
1572 encode %{
1573   // Build emit functions for each basic byte or larger field in the intel
1574   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1575   // code in the enc_class source block.  Emit functions will live in the
1576   // main source block for now.  In future, we can generalize this by
1577   // adding a syntax that specifies the sizes of fields in an order,
1578   // so that the adlc can build the emit functions automagically
1579 
1580   // Emit primary opcode
1581   enc_class OpcP %{
1582     emit_opcode(cbuf, $primary);
1583   %}
1584 
1585   // Emit secondary opcode
1586   enc_class OpcS %{
1587     emit_opcode(cbuf, $secondary);
1588   %}
1589 
1590   // Emit opcode directly
1591   enc_class Opcode(immI d8) %{
1592     emit_opcode(cbuf, $d8$$constant);
1593   %}
1594 
1595   enc_class SizePrefix %{
1596     emit_opcode(cbuf,0x66);
1597   %}
1598 
1599   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1600     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1601   %}
1602 
1603   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1604     emit_opcode(cbuf,$opcode$$constant);
1605     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1606   %}
1607 
1608   enc_class mov_r32_imm0( eRegI dst ) %{
1609     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1610     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1611   %}
1612 
1613   enc_class cdq_enc %{
1614     // Full implementation of Java idiv and irem; checks for
1615     // special case as described in JVM spec., p.243 & p.271.
1616     //
1617     //         normal case                           special case
1618     //
1619     // input : rax,: dividend                         min_int
1620     //         reg: divisor                          -1
1621     //
1622     // output: rax,: quotient  (= rax, idiv reg)       min_int
1623     //         rdx: remainder (= rax, irem reg)       0
1624     //
1625     //  Code sequnce:
1626     //
1627     //  81 F8 00 00 00 80    cmp         rax,80000000h
1628     //  0F 85 0B 00 00 00    jne         normal_case
1629     //  33 D2                xor         rdx,edx
1630     //  83 F9 FF             cmp         rcx,0FFh
1631     //  0F 84 03 00 00 00    je          done
1632     //                  normal_case:
1633     //  99                   cdq
1634     //  F7 F9                idiv        rax,ecx
1635     //                  done:
1636     //
1637     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1638     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1639     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1640     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1641     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1642     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1643     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1644     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1645     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1646     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1647     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1648     // normal_case:
1649     emit_opcode(cbuf,0x99);                                         // cdq
1650     // idiv (note: must be emitted by the user of this rule)
1651     // normal:
1652   %}
1653 
1654   // Dense encoding for older common ops
1655   enc_class Opc_plus(immI opcode, eRegI reg) %{
1656     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1657   %}
1658 
1659 
1660   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1661   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1662     // Check for 8-bit immediate, and set sign extend bit in opcode
1663     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1664       emit_opcode(cbuf, $primary | 0x02);
1665     }
1666     else {                          // If 32-bit immediate
1667       emit_opcode(cbuf, $primary);
1668     }
1669   %}
1670 
1671   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1672     // Emit primary opcode and set sign-extend bit
1673     // Check for 8-bit immediate, and set sign extend bit in opcode
1674     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1675       emit_opcode(cbuf, $primary | 0x02);    }
1676     else {                          // If 32-bit immediate
1677       emit_opcode(cbuf, $primary);
1678     }
1679     // Emit r/m byte with secondary opcode, after primary opcode.
1680     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1681   %}
1682 
1683   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1684     // Check for 8-bit immediate, and set sign extend bit in opcode
1685     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1686       $$$emit8$imm$$constant;
1687     }
1688     else {                          // If 32-bit immediate
1689       // Output immediate
1690       $$$emit32$imm$$constant;
1691     }
1692   %}
1693 
1694   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1695     // Emit primary opcode and set sign-extend bit
1696     // Check for 8-bit immediate, and set sign extend bit in opcode
1697     int con = (int)$imm$$constant; // Throw away top bits
1698     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1699     // Emit r/m byte with secondary opcode, after primary opcode.
1700     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1701     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1702     else                               emit_d32(cbuf,con);
1703   %}
1704 
1705   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1706     // Emit primary opcode and set sign-extend bit
1707     // Check for 8-bit immediate, and set sign extend bit in opcode
1708     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1709     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1710     // Emit r/m byte with tertiary opcode, after primary opcode.
1711     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1712     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1713     else                               emit_d32(cbuf,con);
1714   %}
1715 
1716   enc_class Lbl (label labl) %{ // GOTO
1717     Label *l = $labl$$label;
1718     emit_d32(cbuf, (l->loc_pos() - (cbuf.insts_size()+4)));
1719   %}
1720 
1721   enc_class LblShort (label labl) %{ // GOTO
1722     Label *l = $labl$$label;
1723     int disp = l->loc_pos() - (cbuf.insts_size()+1);
1724     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1725     emit_d8(cbuf, disp);
1726   %}
1727 
1728   enc_class OpcSReg (eRegI dst) %{    // BSWAP
1729     emit_cc(cbuf, $secondary, $dst$$reg );
1730   %}
1731 
1732   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1733     int destlo = $dst$$reg;
1734     int desthi = HIGH_FROM_LOW(destlo);
1735     // bswap lo
1736     emit_opcode(cbuf, 0x0F);
1737     emit_cc(cbuf, 0xC8, destlo);
1738     // bswap hi
1739     emit_opcode(cbuf, 0x0F);
1740     emit_cc(cbuf, 0xC8, desthi);
1741     // xchg lo and hi
1742     emit_opcode(cbuf, 0x87);
1743     emit_rm(cbuf, 0x3, destlo, desthi);
1744   %}
1745 
1746   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1747     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1748   %}
1749 
1750   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
1751     Label *l = $labl$$label;
1752     $$$emit8$primary;
1753     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1754     emit_d32(cbuf, (l->loc_pos() - (cbuf.insts_size()+4)));
1755   %}
1756 
1757   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
1758     Label *l = $labl$$label;
1759     emit_cc(cbuf, $primary, $cop$$cmpcode);
1760     int disp = l->loc_pos() - (cbuf.insts_size()+1);
1761     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1762     emit_d8(cbuf, disp);
1763   %}
1764 
1765   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1766     $$$emit8$primary;
1767     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1768   %}
1769 
1770   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1771     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1772     emit_d8(cbuf, op >> 8 );
1773     emit_d8(cbuf, op & 255);
1774   %}
1775 
1776   // emulate a CMOV with a conditional branch around a MOV
1777   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1778     // Invert sense of branch from sense of CMOV
1779     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1780     emit_d8( cbuf, $brOffs$$constant );
1781   %}
1782 
1783   enc_class enc_PartialSubtypeCheck( ) %{
1784     Register Redi = as_Register(EDI_enc); // result register
1785     Register Reax = as_Register(EAX_enc); // super class
1786     Register Recx = as_Register(ECX_enc); // killed
1787     Register Resi = as_Register(ESI_enc); // sub class
1788     Label miss;
1789 
1790     MacroAssembler _masm(&cbuf);
1791     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1792                                      NULL, &miss,
1793                                      /*set_cond_codes:*/ true);
1794     if ($primary) {
1795       __ xorptr(Redi, Redi);
1796     }
1797     __ bind(miss);
1798   %}
1799 
1800   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1801     MacroAssembler masm(&cbuf);
1802     int start = masm.offset();
1803     if (UseSSE >= 2) {
1804       if (VerifyFPU) {
1805         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1806       }
1807     } else {
1808       // External c_calling_convention expects the FPU stack to be 'clean'.
1809       // Compiled code leaves it dirty.  Do cleanup now.
1810       masm.empty_FPU_stack();
1811     }
1812     if (sizeof_FFree_Float_Stack_All == -1) {
1813       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1814     } else {
1815       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1816     }
1817   %}
1818 
1819   enc_class Verify_FPU_For_Leaf %{
1820     if( VerifyFPU ) {
1821       MacroAssembler masm(&cbuf);
1822       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1823     }
1824   %}
1825 
1826   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1827     // This is the instruction starting address for relocation info.
1828     cbuf.set_insts_mark();
1829     $$$emit8$primary;
1830     // CALL directly to the runtime
1831     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1832                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1833 
1834     if (UseSSE >= 2) {
1835       MacroAssembler _masm(&cbuf);
1836       BasicType rt = tf()->return_type();
1837 
1838       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1839         // A C runtime call where the return value is unused.  In SSE2+
1840         // mode the result needs to be removed from the FPU stack.  It's
1841         // likely that this function call could be removed by the
1842         // optimizer if the C function is a pure function.
1843         __ ffree(0);
1844       } else if (rt == T_FLOAT) {
1845         __ lea(rsp, Address(rsp, -4));
1846         __ fstp_s(Address(rsp, 0));
1847         __ movflt(xmm0, Address(rsp, 0));
1848         __ lea(rsp, Address(rsp,  4));
1849       } else if (rt == T_DOUBLE) {
1850         __ lea(rsp, Address(rsp, -8));
1851         __ fstp_d(Address(rsp, 0));
1852         __ movdbl(xmm0, Address(rsp, 0));
1853         __ lea(rsp, Address(rsp,  8));
1854       }
1855     }
1856   %}
1857 
1858 
1859   enc_class pre_call_FPU %{
1860     // If method sets FPU control word restore it here
1861     debug_only(int off0 = cbuf.insts_size());
1862     if( Compile::current()->in_24_bit_fp_mode() ) {
1863       MacroAssembler masm(&cbuf);
1864       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1865     }
1866     debug_only(int off1 = cbuf.insts_size());
1867     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
1868   %}
1869 
1870   enc_class post_call_FPU %{
1871     // If method sets FPU control word do it here also
1872     if( Compile::current()->in_24_bit_fp_mode() ) {
1873       MacroAssembler masm(&cbuf);
1874       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1875     }
1876   %}
1877 
1878   enc_class preserve_SP %{
1879     debug_only(int off0 = cbuf.insts_size());
1880     MacroAssembler _masm(&cbuf);
1881     // RBP is preserved across all calls, even compiled calls.
1882     // Use it to preserve RSP in places where the callee might change the SP.
1883     __ movptr(rbp_mh_SP_save, rsp);
1884     debug_only(int off1 = cbuf.insts_size());
1885     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
1886   %}
1887 
1888   enc_class restore_SP %{
1889     MacroAssembler _masm(&cbuf);
1890     __ movptr(rsp, rbp_mh_SP_save);
1891   %}
1892 
1893   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1894     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1895     // who we intended to call.
1896     cbuf.set_insts_mark();
1897     $$$emit8$primary;
1898     if ( !_method ) {
1899       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1900                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1901     } else if(_optimized_virtual) {
1902       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1903                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1904     } else {
1905       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1906                      static_call_Relocation::spec(), RELOC_IMM32 );
1907     }
1908     if( _method ) {  // Emit stub for static call
1909       emit_java_to_interp(cbuf);
1910     }
1911   %}
1912 
1913   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1914     // !!!!!
1915     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1916     // emit_call_dynamic_prologue( cbuf );
1917     cbuf.set_insts_mark();
1918     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1919     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1920     address  virtual_call_oop_addr = cbuf.insts_mark();
1921     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1922     // who we intended to call.
1923     cbuf.set_insts_mark();
1924     $$$emit8$primary;
1925     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1926                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1927   %}
1928 
1929   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1930     int disp = in_bytes(methodOopDesc::from_compiled_offset());
1931     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1932 
1933     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1934     cbuf.set_insts_mark();
1935     $$$emit8$primary;
1936     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1937     emit_d8(cbuf, disp);             // Displacement
1938 
1939   %}
1940 
1941   enc_class Xor_Reg (eRegI dst) %{
1942     emit_opcode(cbuf, 0x33);
1943     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1944   %}
1945 
1946 //   Following encoding is no longer used, but may be restored if calling
1947 //   convention changes significantly.
1948 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1949 //
1950 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1951 //     // int ic_reg     = Matcher::inline_cache_reg();
1952 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1953 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1954 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1955 //
1956 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1957 //     // // so we load it immediately before the call
1958 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1959 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1960 //
1961 //     // xor rbp,ebp
1962 //     emit_opcode(cbuf, 0x33);
1963 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1964 //
1965 //     // CALL to interpreter.
1966 //     cbuf.set_insts_mark();
1967 //     $$$emit8$primary;
1968 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1969 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1970 //   %}
1971 
1972   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1973     $$$emit8$primary;
1974     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1975     $$$emit8$shift$$constant;
1976   %}
1977 
1978   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1979     // Load immediate does not have a zero or sign extended version
1980     // for 8-bit immediates
1981     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1982     $$$emit32$src$$constant;
1983   %}
1984 
1985   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1986     // Load immediate does not have a zero or sign extended version
1987     // for 8-bit immediates
1988     emit_opcode(cbuf, $primary + $dst$$reg);
1989     $$$emit32$src$$constant;
1990   %}
1991 
1992   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1993     // Load immediate does not have a zero or sign extended version
1994     // for 8-bit immediates
1995     int dst_enc = $dst$$reg;
1996     int src_con = $src$$constant & 0x0FFFFFFFFL;
1997     if (src_con == 0) {
1998       // xor dst, dst
1999       emit_opcode(cbuf, 0x33);
2000       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
2001     } else {
2002       emit_opcode(cbuf, $primary + dst_enc);
2003       emit_d32(cbuf, src_con);
2004     }
2005   %}
2006 
2007   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
2008     // Load immediate does not have a zero or sign extended version
2009     // for 8-bit immediates
2010     int dst_enc = $dst$$reg + 2;
2011     int src_con = ((julong)($src$$constant)) >> 32;
2012     if (src_con == 0) {
2013       // xor dst, dst
2014       emit_opcode(cbuf, 0x33);
2015       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
2016     } else {
2017       emit_opcode(cbuf, $primary + dst_enc);
2018       emit_d32(cbuf, src_con);
2019     }
2020   %}
2021 
2022 
2023   enc_class MovI2X_reg(regX dst, eRegI src) %{
2024     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2025     emit_opcode(cbuf, 0x0F );
2026     emit_opcode(cbuf, 0x6E );
2027     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2028   %}
2029 
2030   enc_class MovX2I_reg(eRegI dst, regX src) %{
2031     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2032     emit_opcode(cbuf, 0x0F );
2033     emit_opcode(cbuf, 0x7E );
2034     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2035   %}
2036 
2037   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
2038     { // MOVD $dst,$src.lo
2039       emit_opcode(cbuf,0x66);
2040       emit_opcode(cbuf,0x0F);
2041       emit_opcode(cbuf,0x6E);
2042       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2043     }
2044     { // MOVD $tmp,$src.hi
2045       emit_opcode(cbuf,0x66);
2046       emit_opcode(cbuf,0x0F);
2047       emit_opcode(cbuf,0x6E);
2048       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2049     }
2050     { // PUNPCKLDQ $dst,$tmp
2051       emit_opcode(cbuf,0x66);
2052       emit_opcode(cbuf,0x0F);
2053       emit_opcode(cbuf,0x62);
2054       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2055      }
2056   %}
2057 
2058   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2059     { // MOVD $dst.lo,$src
2060       emit_opcode(cbuf,0x66);
2061       emit_opcode(cbuf,0x0F);
2062       emit_opcode(cbuf,0x7E);
2063       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2064     }
2065     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2066       emit_opcode(cbuf,0xF2);
2067       emit_opcode(cbuf,0x0F);
2068       emit_opcode(cbuf,0x70);
2069       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2070       emit_d8(cbuf, 0x4E);
2071     }
2072     { // MOVD $dst.hi,$tmp
2073       emit_opcode(cbuf,0x66);
2074       emit_opcode(cbuf,0x0F);
2075       emit_opcode(cbuf,0x7E);
2076       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2077     }
2078   %}
2079 
2080 
2081   // Encode a reg-reg copy.  If it is useless, then empty encoding.
2082   enc_class enc_Copy( eRegI dst, eRegI src ) %{
2083     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2084   %}
2085 
2086   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2087     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2088   %}
2089 
2090   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2091   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2092     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2093   %}
2094 
2095   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2096     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2097   %}
2098 
2099   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2100     $$$emit8$primary;
2101     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2102   %}
2103 
2104   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2105     $$$emit8$secondary;
2106     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2107   %}
2108 
2109   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2110     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2111   %}
2112 
2113   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2114     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2115   %}
2116 
2117   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2118     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2119   %}
2120 
2121   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2122     // Output immediate
2123     $$$emit32$src$$constant;
2124   %}
2125 
2126   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2127     // Output Float immediate bits
2128     jfloat jf = $src$$constant;
2129     int    jf_as_bits = jint_cast( jf );
2130     emit_d32(cbuf, jf_as_bits);
2131   %}
2132 
2133   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2134     // Output Float immediate bits
2135     jfloat jf = $src$$constant;
2136     int    jf_as_bits = jint_cast( jf );
2137     emit_d32(cbuf, jf_as_bits);
2138   %}
2139 
2140   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2141     // Output immediate
2142     $$$emit16$src$$constant;
2143   %}
2144 
2145   enc_class Con_d32(immI src) %{
2146     emit_d32(cbuf,$src$$constant);
2147   %}
2148 
2149   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2150     // Output immediate memory reference
2151     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2152     emit_d32(cbuf, 0x00);
2153   %}
2154 
2155   enc_class lock_prefix( ) %{
2156     if( os::is_MP() )
2157       emit_opcode(cbuf,0xF0);         // [Lock]
2158   %}
2159 
2160   // Cmp-xchg long value.
2161   // Note: we need to swap rbx, and rcx before and after the
2162   //       cmpxchg8 instruction because the instruction uses
2163   //       rcx as the high order word of the new value to store but
2164   //       our register encoding uses rbx,.
2165   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2166 
2167     // XCHG  rbx,ecx
2168     emit_opcode(cbuf,0x87);
2169     emit_opcode(cbuf,0xD9);
2170     // [Lock]
2171     if( os::is_MP() )
2172       emit_opcode(cbuf,0xF0);
2173     // CMPXCHG8 [Eptr]
2174     emit_opcode(cbuf,0x0F);
2175     emit_opcode(cbuf,0xC7);
2176     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2177     // XCHG  rbx,ecx
2178     emit_opcode(cbuf,0x87);
2179     emit_opcode(cbuf,0xD9);
2180   %}
2181 
2182   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2183     // [Lock]
2184     if( os::is_MP() )
2185       emit_opcode(cbuf,0xF0);
2186 
2187     // CMPXCHG [Eptr]
2188     emit_opcode(cbuf,0x0F);
2189     emit_opcode(cbuf,0xB1);
2190     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2191   %}
2192 
2193   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2194     int res_encoding = $res$$reg;
2195 
2196     // MOV  res,0
2197     emit_opcode( cbuf, 0xB8 + res_encoding);
2198     emit_d32( cbuf, 0 );
2199     // JNE,s  fail
2200     emit_opcode(cbuf,0x75);
2201     emit_d8(cbuf, 5 );
2202     // MOV  res,1
2203     emit_opcode( cbuf, 0xB8 + res_encoding);
2204     emit_d32( cbuf, 1 );
2205     // fail:
2206   %}
2207 
2208   enc_class set_instruction_start( ) %{
2209     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2210   %}
2211 
2212   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2213     int reg_encoding = $ereg$$reg;
2214     int base  = $mem$$base;
2215     int index = $mem$$index;
2216     int scale = $mem$$scale;
2217     int displace = $mem$$disp;
2218     bool disp_is_oop = $mem->disp_is_oop();
2219     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2220   %}
2221 
2222   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2223     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2224     int base  = $mem$$base;
2225     int index = $mem$$index;
2226     int scale = $mem$$scale;
2227     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2228     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2229     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2230   %}
2231 
2232   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2233     int r1, r2;
2234     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2235     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2236     emit_opcode(cbuf,0x0F);
2237     emit_opcode(cbuf,$tertiary);
2238     emit_rm(cbuf, 0x3, r1, r2);
2239     emit_d8(cbuf,$cnt$$constant);
2240     emit_d8(cbuf,$primary);
2241     emit_rm(cbuf, 0x3, $secondary, r1);
2242     emit_d8(cbuf,$cnt$$constant);
2243   %}
2244 
2245   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2246     emit_opcode( cbuf, 0x8B ); // Move
2247     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2248     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2249       emit_d8(cbuf,$primary);
2250       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2251       emit_d8(cbuf,$cnt$$constant-32);
2252     }
2253     emit_d8(cbuf,$primary);
2254     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2255     emit_d8(cbuf,31);
2256   %}
2257 
2258   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2259     int r1, r2;
2260     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2261     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2262 
2263     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2264     emit_rm(cbuf, 0x3, r1, r2);
2265     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2266       emit_opcode(cbuf,$primary);
2267       emit_rm(cbuf, 0x3, $secondary, r1);
2268       emit_d8(cbuf,$cnt$$constant-32);
2269     }
2270     emit_opcode(cbuf,0x33);  // XOR r2,r2
2271     emit_rm(cbuf, 0x3, r2, r2);
2272   %}
2273 
2274   // Clone of RegMem but accepts an extra parameter to access each
2275   // half of a double in memory; it never needs relocation info.
2276   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2277     emit_opcode(cbuf,$opcode$$constant);
2278     int reg_encoding = $rm_reg$$reg;
2279     int base     = $mem$$base;
2280     int index    = $mem$$index;
2281     int scale    = $mem$$scale;
2282     int displace = $mem$$disp + $disp_for_half$$constant;
2283     bool disp_is_oop = false;
2284     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2285   %}
2286 
2287   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2288   //
2289   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2290   // and it never needs relocation information.
2291   // Frequently used to move data between FPU's Stack Top and memory.
2292   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2293     int rm_byte_opcode = $rm_opcode$$constant;
2294     int base     = $mem$$base;
2295     int index    = $mem$$index;
2296     int scale    = $mem$$scale;
2297     int displace = $mem$$disp;
2298     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2299     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2300   %}
2301 
2302   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2303     int rm_byte_opcode = $rm_opcode$$constant;
2304     int base     = $mem$$base;
2305     int index    = $mem$$index;
2306     int scale    = $mem$$scale;
2307     int displace = $mem$$disp;
2308     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2309     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2310   %}
2311 
2312   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2313     int reg_encoding = $dst$$reg;
2314     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2315     int index        = 0x04;            // 0x04 indicates no index
2316     int scale        = 0x00;            // 0x00 indicates no scale
2317     int displace     = $src1$$constant; // 0x00 indicates no displacement
2318     bool disp_is_oop = false;
2319     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2320   %}
2321 
2322   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2323     // Compare dst,src
2324     emit_opcode(cbuf,0x3B);
2325     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2326     // jmp dst < src around move
2327     emit_opcode(cbuf,0x7C);
2328     emit_d8(cbuf,2);
2329     // move dst,src
2330     emit_opcode(cbuf,0x8B);
2331     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2332   %}
2333 
2334   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2335     // Compare dst,src
2336     emit_opcode(cbuf,0x3B);
2337     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2338     // jmp dst > src around move
2339     emit_opcode(cbuf,0x7F);
2340     emit_d8(cbuf,2);
2341     // move dst,src
2342     emit_opcode(cbuf,0x8B);
2343     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2344   %}
2345 
2346   enc_class enc_FP_store(memory mem, regD src) %{
2347     // If src is FPR1, we can just FST to store it.
2348     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2349     int reg_encoding = 0x2; // Just store
2350     int base  = $mem$$base;
2351     int index = $mem$$index;
2352     int scale = $mem$$scale;
2353     int displace = $mem$$disp;
2354     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2355     if( $src$$reg != FPR1L_enc ) {
2356       reg_encoding = 0x3;  // Store & pop
2357       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2358       emit_d8( cbuf, 0xC0-1+$src$$reg );
2359     }
2360     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2361     emit_opcode(cbuf,$primary);
2362     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2363   %}
2364 
2365   enc_class neg_reg(eRegI dst) %{
2366     // NEG $dst
2367     emit_opcode(cbuf,0xF7);
2368     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2369   %}
2370 
2371   enc_class setLT_reg(eCXRegI dst) %{
2372     // SETLT $dst
2373     emit_opcode(cbuf,0x0F);
2374     emit_opcode(cbuf,0x9C);
2375     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2376   %}
2377 
2378   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2379     int tmpReg = $tmp$$reg;
2380 
2381     // SUB $p,$q
2382     emit_opcode(cbuf,0x2B);
2383     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2384     // SBB $tmp,$tmp
2385     emit_opcode(cbuf,0x1B);
2386     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2387     // AND $tmp,$y
2388     emit_opcode(cbuf,0x23);
2389     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2390     // ADD $p,$tmp
2391     emit_opcode(cbuf,0x03);
2392     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2393   %}
2394 
2395   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2396     int tmpReg = $tmp$$reg;
2397 
2398     // SUB $p,$q
2399     emit_opcode(cbuf,0x2B);
2400     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2401     // SBB $tmp,$tmp
2402     emit_opcode(cbuf,0x1B);
2403     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2404     // AND $tmp,$y
2405     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2406     emit_opcode(cbuf,0x23);
2407     int reg_encoding = tmpReg;
2408     int base  = $mem$$base;
2409     int index = $mem$$index;
2410     int scale = $mem$$scale;
2411     int displace = $mem$$disp;
2412     bool disp_is_oop = $mem->disp_is_oop();
2413     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2414     // ADD $p,$tmp
2415     emit_opcode(cbuf,0x03);
2416     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2417   %}
2418 
2419   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2420     // TEST shift,32
2421     emit_opcode(cbuf,0xF7);
2422     emit_rm(cbuf, 0x3, 0, ECX_enc);
2423     emit_d32(cbuf,0x20);
2424     // JEQ,s small
2425     emit_opcode(cbuf, 0x74);
2426     emit_d8(cbuf, 0x04);
2427     // MOV    $dst.hi,$dst.lo
2428     emit_opcode( cbuf, 0x8B );
2429     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2430     // CLR    $dst.lo
2431     emit_opcode(cbuf, 0x33);
2432     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2433 // small:
2434     // SHLD   $dst.hi,$dst.lo,$shift
2435     emit_opcode(cbuf,0x0F);
2436     emit_opcode(cbuf,0xA5);
2437     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2438     // SHL    $dst.lo,$shift"
2439     emit_opcode(cbuf,0xD3);
2440     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2441   %}
2442 
2443   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2444     // TEST shift,32
2445     emit_opcode(cbuf,0xF7);
2446     emit_rm(cbuf, 0x3, 0, ECX_enc);
2447     emit_d32(cbuf,0x20);
2448     // JEQ,s small
2449     emit_opcode(cbuf, 0x74);
2450     emit_d8(cbuf, 0x04);
2451     // MOV    $dst.lo,$dst.hi
2452     emit_opcode( cbuf, 0x8B );
2453     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2454     // CLR    $dst.hi
2455     emit_opcode(cbuf, 0x33);
2456     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2457 // small:
2458     // SHRD   $dst.lo,$dst.hi,$shift
2459     emit_opcode(cbuf,0x0F);
2460     emit_opcode(cbuf,0xAD);
2461     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2462     // SHR    $dst.hi,$shift"
2463     emit_opcode(cbuf,0xD3);
2464     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2465   %}
2466 
2467   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2468     // TEST shift,32
2469     emit_opcode(cbuf,0xF7);
2470     emit_rm(cbuf, 0x3, 0, ECX_enc);
2471     emit_d32(cbuf,0x20);
2472     // JEQ,s small
2473     emit_opcode(cbuf, 0x74);
2474     emit_d8(cbuf, 0x05);
2475     // MOV    $dst.lo,$dst.hi
2476     emit_opcode( cbuf, 0x8B );
2477     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2478     // SAR    $dst.hi,31
2479     emit_opcode(cbuf, 0xC1);
2480     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2481     emit_d8(cbuf, 0x1F );
2482 // small:
2483     // SHRD   $dst.lo,$dst.hi,$shift
2484     emit_opcode(cbuf,0x0F);
2485     emit_opcode(cbuf,0xAD);
2486     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2487     // SAR    $dst.hi,$shift"
2488     emit_opcode(cbuf,0xD3);
2489     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2490   %}
2491 
2492 
2493   // ----------------- Encodings for floating point unit -----------------
2494   // May leave result in FPU-TOS or FPU reg depending on opcodes
2495   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2496     $$$emit8$primary;
2497     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2498   %}
2499 
2500   // Pop argument in FPR0 with FSTP ST(0)
2501   enc_class PopFPU() %{
2502     emit_opcode( cbuf, 0xDD );
2503     emit_d8( cbuf, 0xD8 );
2504   %}
2505 
2506   // !!!!! equivalent to Pop_Reg_F
2507   enc_class Pop_Reg_D( regD dst ) %{
2508     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2509     emit_d8( cbuf, 0xD8+$dst$$reg );
2510   %}
2511 
2512   enc_class Push_Reg_D( regD dst ) %{
2513     emit_opcode( cbuf, 0xD9 );
2514     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2515   %}
2516 
2517   enc_class strictfp_bias1( regD dst ) %{
2518     emit_opcode( cbuf, 0xDB );           // FLD m80real
2519     emit_opcode( cbuf, 0x2D );
2520     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2521     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2522     emit_opcode( cbuf, 0xC8+$dst$$reg );
2523   %}
2524 
2525   enc_class strictfp_bias2( regD dst ) %{
2526     emit_opcode( cbuf, 0xDB );           // FLD m80real
2527     emit_opcode( cbuf, 0x2D );
2528     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2529     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2530     emit_opcode( cbuf, 0xC8+$dst$$reg );
2531   %}
2532 
2533   // Special case for moving an integer register to a stack slot.
2534   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2535     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2536   %}
2537 
2538   // Special case for moving a register to a stack slot.
2539   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2540     // Opcode already emitted
2541     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2542     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2543     emit_d32(cbuf, $dst$$disp);   // Displacement
2544   %}
2545 
2546   // Push the integer in stackSlot 'src' onto FP-stack
2547   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2548     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2549   %}
2550 
2551   // Push the float in stackSlot 'src' onto FP-stack
2552   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2553     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2554   %}
2555 
2556   // Push the double in stackSlot 'src' onto FP-stack
2557   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2558     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2559   %}
2560 
2561   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2562   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2563     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2564   %}
2565 
2566   // Same as Pop_Mem_F except for opcode
2567   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2568   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2569     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2570   %}
2571 
2572   enc_class Pop_Reg_F( regF dst ) %{
2573     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2574     emit_d8( cbuf, 0xD8+$dst$$reg );
2575   %}
2576 
2577   enc_class Push_Reg_F( regF dst ) %{
2578     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2579     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2580   %}
2581 
2582   // Push FPU's float to a stack-slot, and pop FPU-stack
2583   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2584     int pop = 0x02;
2585     if ($src$$reg != FPR1L_enc) {
2586       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2587       emit_d8( cbuf, 0xC0-1+$src$$reg );
2588       pop = 0x03;
2589     }
2590     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2591   %}
2592 
2593   // Push FPU's double to a stack-slot, and pop FPU-stack
2594   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2595     int pop = 0x02;
2596     if ($src$$reg != FPR1L_enc) {
2597       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2598       emit_d8( cbuf, 0xC0-1+$src$$reg );
2599       pop = 0x03;
2600     }
2601     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2602   %}
2603 
2604   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2605   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2606     int pop = 0xD0 - 1; // -1 since we skip FLD
2607     if ($src$$reg != FPR1L_enc) {
2608       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2609       emit_d8( cbuf, 0xC0-1+$src$$reg );
2610       pop = 0xD8;
2611     }
2612     emit_opcode( cbuf, 0xDD );
2613     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2614   %}
2615 
2616 
2617   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2618     MacroAssembler masm(&cbuf);
2619     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2620     masm.fmul(   $src2$$reg+0);   // value at TOS
2621     masm.fadd(   $src$$reg+0);    // value at TOS
2622     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2623   %}
2624 
2625 
2626   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2627     // load dst in FPR0
2628     emit_opcode( cbuf, 0xD9 );
2629     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2630     if ($src$$reg != FPR1L_enc) {
2631       // fincstp
2632       emit_opcode (cbuf, 0xD9);
2633       emit_opcode (cbuf, 0xF7);
2634       // swap src with FPR1:
2635       // FXCH FPR1 with src
2636       emit_opcode(cbuf, 0xD9);
2637       emit_d8(cbuf, 0xC8-1+$src$$reg );
2638       // fdecstp
2639       emit_opcode (cbuf, 0xD9);
2640       emit_opcode (cbuf, 0xF6);
2641     }
2642   %}
2643 
2644   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2645     // Allocate a word
2646     emit_opcode(cbuf,0x83);            // SUB ESP,8
2647     emit_opcode(cbuf,0xEC);
2648     emit_d8(cbuf,0x08);
2649 
2650     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2651     emit_opcode  (cbuf, 0x0F );
2652     emit_opcode  (cbuf, 0x11 );
2653     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2654 
2655     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2656     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2657 
2658     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2659     emit_opcode  (cbuf, 0x0F );
2660     emit_opcode  (cbuf, 0x11 );
2661     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2662 
2663     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2664     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2665 
2666   %}
2667 
2668   enc_class Push_ModX_encoding( regX src0, regX src1) %{
2669     // Allocate a word
2670     emit_opcode(cbuf,0x83);            // SUB ESP,4
2671     emit_opcode(cbuf,0xEC);
2672     emit_d8(cbuf,0x04);
2673 
2674     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2675     emit_opcode  (cbuf, 0x0F );
2676     emit_opcode  (cbuf, 0x11 );
2677     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2678 
2679     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2680     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2681 
2682     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2683     emit_opcode  (cbuf, 0x0F );
2684     emit_opcode  (cbuf, 0x11 );
2685     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2686 
2687     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2688     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2689 
2690   %}
2691 
2692   enc_class Push_ResultXD(regXD dst) %{
2693     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2694 
2695     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2696     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2697     emit_opcode  (cbuf, 0x0F );
2698     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2699     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2700 
2701     emit_opcode(cbuf,0x83);    // ADD ESP,8
2702     emit_opcode(cbuf,0xC4);
2703     emit_d8(cbuf,0x08);
2704   %}
2705 
2706   enc_class Push_ResultX(regX dst, immI d8) %{
2707     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2708 
2709     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2710     emit_opcode  (cbuf, 0x0F );
2711     emit_opcode  (cbuf, 0x10 );
2712     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2713 
2714     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2715     emit_opcode(cbuf,0xC4);
2716     emit_d8(cbuf,$d8$$constant);
2717   %}
2718 
2719   enc_class Push_SrcXD(regXD src) %{
2720     // Allocate a word
2721     emit_opcode(cbuf,0x83);            // SUB ESP,8
2722     emit_opcode(cbuf,0xEC);
2723     emit_d8(cbuf,0x08);
2724 
2725     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2726     emit_opcode  (cbuf, 0x0F );
2727     emit_opcode  (cbuf, 0x11 );
2728     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2729 
2730     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2731     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2732   %}
2733 
2734   enc_class push_stack_temp_qword() %{
2735     emit_opcode(cbuf,0x83);     // SUB ESP,8
2736     emit_opcode(cbuf,0xEC);
2737     emit_d8    (cbuf,0x08);
2738   %}
2739 
2740   enc_class pop_stack_temp_qword() %{
2741     emit_opcode(cbuf,0x83);     // ADD ESP,8
2742     emit_opcode(cbuf,0xC4);
2743     emit_d8    (cbuf,0x08);
2744   %}
2745 
2746   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2747     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2748     emit_opcode  (cbuf, 0x0F );
2749     emit_opcode  (cbuf, 0x11 );
2750     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2751 
2752     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2753     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2754   %}
2755 
2756   // Compute X^Y using Intel's fast hardware instructions, if possible.
2757   // Otherwise return a NaN.
2758   enc_class pow_exp_core_encoding %{
2759     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2760     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2761     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2762     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2763     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2764     emit_opcode(cbuf,0x1C);
2765     emit_d8(cbuf,0x24);
2766     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2767     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2768     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2769     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2770     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2771     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2772     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2773     emit_d32(cbuf,0xFFFFF800);
2774     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2775     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2776     emit_d32(cbuf,1023);
2777     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2778     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2779     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2780     emit_rm(cbuf,0x3,0x4,EAX_enc);
2781     emit_d8(cbuf,20);
2782     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2783     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2784     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2785     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2786     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2787     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2788     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2789     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2790     emit_d32(cbuf,0);
2791     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2792     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2793   %}
2794 
2795 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2796 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2797 
2798   enc_class Push_Result_Mod_D( regD src) %{
2799     if ($src$$reg != FPR1L_enc) {
2800       // fincstp
2801       emit_opcode (cbuf, 0xD9);
2802       emit_opcode (cbuf, 0xF7);
2803       // FXCH FPR1 with src
2804       emit_opcode(cbuf, 0xD9);
2805       emit_d8(cbuf, 0xC8-1+$src$$reg );
2806       // fdecstp
2807       emit_opcode (cbuf, 0xD9);
2808       emit_opcode (cbuf, 0xF6);
2809     }
2810     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2811     // // FSTP   FPR$dst$$reg
2812     // emit_opcode( cbuf, 0xDD );
2813     // emit_d8( cbuf, 0xD8+$dst$$reg );
2814   %}
2815 
2816   enc_class fnstsw_sahf_skip_parity() %{
2817     // fnstsw ax
2818     emit_opcode( cbuf, 0xDF );
2819     emit_opcode( cbuf, 0xE0 );
2820     // sahf
2821     emit_opcode( cbuf, 0x9E );
2822     // jnp  ::skip
2823     emit_opcode( cbuf, 0x7B );
2824     emit_opcode( cbuf, 0x05 );
2825   %}
2826 
2827   enc_class emitModD() %{
2828     // fprem must be iterative
2829     // :: loop
2830     // fprem
2831     emit_opcode( cbuf, 0xD9 );
2832     emit_opcode( cbuf, 0xF8 );
2833     // wait
2834     emit_opcode( cbuf, 0x9b );
2835     // fnstsw ax
2836     emit_opcode( cbuf, 0xDF );
2837     emit_opcode( cbuf, 0xE0 );
2838     // sahf
2839     emit_opcode( cbuf, 0x9E );
2840     // jp  ::loop
2841     emit_opcode( cbuf, 0x0F );
2842     emit_opcode( cbuf, 0x8A );
2843     emit_opcode( cbuf, 0xF4 );
2844     emit_opcode( cbuf, 0xFF );
2845     emit_opcode( cbuf, 0xFF );
2846     emit_opcode( cbuf, 0xFF );
2847   %}
2848 
2849   enc_class fpu_flags() %{
2850     // fnstsw_ax
2851     emit_opcode( cbuf, 0xDF);
2852     emit_opcode( cbuf, 0xE0);
2853     // test ax,0x0400
2854     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2855     emit_opcode( cbuf, 0xA9 );
2856     emit_d16   ( cbuf, 0x0400 );
2857     // // // This sequence works, but stalls for 12-16 cycles on PPro
2858     // // test rax,0x0400
2859     // emit_opcode( cbuf, 0xA9 );
2860     // emit_d32   ( cbuf, 0x00000400 );
2861     //
2862     // jz exit (no unordered comparison)
2863     emit_opcode( cbuf, 0x74 );
2864     emit_d8    ( cbuf, 0x02 );
2865     // mov ah,1 - treat as LT case (set carry flag)
2866     emit_opcode( cbuf, 0xB4 );
2867     emit_d8    ( cbuf, 0x01 );
2868     // sahf
2869     emit_opcode( cbuf, 0x9E);
2870   %}
2871 
2872   enc_class cmpF_P6_fixup() %{
2873     // Fixup the integer flags in case comparison involved a NaN
2874     //
2875     // JNP exit (no unordered comparison, P-flag is set by NaN)
2876     emit_opcode( cbuf, 0x7B );
2877     emit_d8    ( cbuf, 0x03 );
2878     // MOV AH,1 - treat as LT case (set carry flag)
2879     emit_opcode( cbuf, 0xB4 );
2880     emit_d8    ( cbuf, 0x01 );
2881     // SAHF
2882     emit_opcode( cbuf, 0x9E);
2883     // NOP     // target for branch to avoid branch to branch
2884     emit_opcode( cbuf, 0x90);
2885   %}
2886 
2887 //     fnstsw_ax();
2888 //     sahf();
2889 //     movl(dst, nan_result);
2890 //     jcc(Assembler::parity, exit);
2891 //     movl(dst, less_result);
2892 //     jcc(Assembler::below, exit);
2893 //     movl(dst, equal_result);
2894 //     jcc(Assembler::equal, exit);
2895 //     movl(dst, greater_result);
2896 
2897 // less_result     =  1;
2898 // greater_result  = -1;
2899 // equal_result    = 0;
2900 // nan_result      = -1;
2901 
2902   enc_class CmpF_Result(eRegI dst) %{
2903     // fnstsw_ax();
2904     emit_opcode( cbuf, 0xDF);
2905     emit_opcode( cbuf, 0xE0);
2906     // sahf
2907     emit_opcode( cbuf, 0x9E);
2908     // movl(dst, nan_result);
2909     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2910     emit_d32( cbuf, -1 );
2911     // jcc(Assembler::parity, exit);
2912     emit_opcode( cbuf, 0x7A );
2913     emit_d8    ( cbuf, 0x13 );
2914     // movl(dst, less_result);
2915     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2916     emit_d32( cbuf, -1 );
2917     // jcc(Assembler::below, exit);
2918     emit_opcode( cbuf, 0x72 );
2919     emit_d8    ( cbuf, 0x0C );
2920     // movl(dst, equal_result);
2921     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2922     emit_d32( cbuf, 0 );
2923     // jcc(Assembler::equal, exit);
2924     emit_opcode( cbuf, 0x74 );
2925     emit_d8    ( cbuf, 0x05 );
2926     // movl(dst, greater_result);
2927     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2928     emit_d32( cbuf, 1 );
2929   %}
2930 
2931 
2932   // XMM version of CmpF_Result. Because the XMM compare
2933   // instructions set the EFLAGS directly. It becomes simpler than
2934   // the float version above.
2935   enc_class CmpX_Result(eRegI dst) %{
2936     MacroAssembler _masm(&cbuf);
2937     Label nan, inc, done;
2938 
2939     __ jccb(Assembler::parity, nan);
2940     __ jccb(Assembler::equal,  done);
2941     __ jccb(Assembler::above,  inc);
2942     __ bind(nan);
2943     __ decrement(as_Register($dst$$reg)); // NO L qqq
2944     __ jmpb(done);
2945     __ bind(inc);
2946     __ increment(as_Register($dst$$reg)); // NO L qqq
2947     __ bind(done);
2948   %}
2949 
2950   // Compare the longs and set flags
2951   // BROKEN!  Do Not use as-is
2952   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2953     // CMP    $src1.hi,$src2.hi
2954     emit_opcode( cbuf, 0x3B );
2955     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2956     // JNE,s  done
2957     emit_opcode(cbuf,0x75);
2958     emit_d8(cbuf, 2 );
2959     // CMP    $src1.lo,$src2.lo
2960     emit_opcode( cbuf, 0x3B );
2961     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2962 // done:
2963   %}
2964 
2965   enc_class convert_int_long( regL dst, eRegI src ) %{
2966     // mov $dst.lo,$src
2967     int dst_encoding = $dst$$reg;
2968     int src_encoding = $src$$reg;
2969     encode_Copy( cbuf, dst_encoding  , src_encoding );
2970     // mov $dst.hi,$src
2971     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2972     // sar $dst.hi,31
2973     emit_opcode( cbuf, 0xC1 );
2974     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2975     emit_d8(cbuf, 0x1F );
2976   %}
2977 
2978   enc_class convert_long_double( eRegL src ) %{
2979     // push $src.hi
2980     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2981     // push $src.lo
2982     emit_opcode(cbuf, 0x50+$src$$reg  );
2983     // fild 64-bits at [SP]
2984     emit_opcode(cbuf,0xdf);
2985     emit_d8(cbuf, 0x6C);
2986     emit_d8(cbuf, 0x24);
2987     emit_d8(cbuf, 0x00);
2988     // pop stack
2989     emit_opcode(cbuf, 0x83); // add  SP, #8
2990     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2991     emit_d8(cbuf, 0x8);
2992   %}
2993 
2994   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2995     // IMUL   EDX:EAX,$src1
2996     emit_opcode( cbuf, 0xF7 );
2997     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2998     // SAR    EDX,$cnt-32
2999     int shift_count = ((int)$cnt$$constant) - 32;
3000     if (shift_count > 0) {
3001       emit_opcode(cbuf, 0xC1);
3002       emit_rm(cbuf, 0x3, 7, $dst$$reg );
3003       emit_d8(cbuf, shift_count);
3004     }
3005   %}
3006 
3007   // this version doesn't have add sp, 8
3008   enc_class convert_long_double2( eRegL src ) %{
3009     // push $src.hi
3010     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
3011     // push $src.lo
3012     emit_opcode(cbuf, 0x50+$src$$reg  );
3013     // fild 64-bits at [SP]
3014     emit_opcode(cbuf,0xdf);
3015     emit_d8(cbuf, 0x6C);
3016     emit_d8(cbuf, 0x24);
3017     emit_d8(cbuf, 0x00);
3018   %}
3019 
3020   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
3021     // Basic idea: long = (long)int * (long)int
3022     // IMUL EDX:EAX, src
3023     emit_opcode( cbuf, 0xF7 );
3024     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
3025   %}
3026 
3027   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
3028     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
3029     // MUL EDX:EAX, src
3030     emit_opcode( cbuf, 0xF7 );
3031     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
3032   %}
3033 
3034   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
3035     // Basic idea: lo(result) = lo(x_lo * y_lo)
3036     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
3037     // MOV    $tmp,$src.lo
3038     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
3039     // IMUL   $tmp,EDX
3040     emit_opcode( cbuf, 0x0F );
3041     emit_opcode( cbuf, 0xAF );
3042     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3043     // MOV    EDX,$src.hi
3044     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
3045     // IMUL   EDX,EAX
3046     emit_opcode( cbuf, 0x0F );
3047     emit_opcode( cbuf, 0xAF );
3048     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
3049     // ADD    $tmp,EDX
3050     emit_opcode( cbuf, 0x03 );
3051     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3052     // MUL   EDX:EAX,$src.lo
3053     emit_opcode( cbuf, 0xF7 );
3054     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3055     // ADD    EDX,ESI
3056     emit_opcode( cbuf, 0x03 );
3057     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3058   %}
3059 
3060   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3061     // Basic idea: lo(result) = lo(src * y_lo)
3062     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3063     // IMUL   $tmp,EDX,$src
3064     emit_opcode( cbuf, 0x6B );
3065     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3066     emit_d8( cbuf, (int)$src$$constant );
3067     // MOV    EDX,$src
3068     emit_opcode(cbuf, 0xB8 + EDX_enc);
3069     emit_d32( cbuf, (int)$src$$constant );
3070     // MUL   EDX:EAX,EDX
3071     emit_opcode( cbuf, 0xF7 );
3072     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3073     // ADD    EDX,ESI
3074     emit_opcode( cbuf, 0x03 );
3075     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3076   %}
3077 
3078   enc_class long_div( eRegL src1, eRegL src2 ) %{
3079     // PUSH src1.hi
3080     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3081     // PUSH src1.lo
3082     emit_opcode(cbuf,               0x50+$src1$$reg  );
3083     // PUSH src2.hi
3084     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3085     // PUSH src2.lo
3086     emit_opcode(cbuf,               0x50+$src2$$reg  );
3087     // CALL directly to the runtime
3088     cbuf.set_insts_mark();
3089     emit_opcode(cbuf,0xE8);       // Call into runtime
3090     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3091     // Restore stack
3092     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3093     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3094     emit_d8(cbuf, 4*4);
3095   %}
3096 
3097   enc_class long_mod( eRegL src1, eRegL src2 ) %{
3098     // PUSH src1.hi
3099     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3100     // PUSH src1.lo
3101     emit_opcode(cbuf,               0x50+$src1$$reg  );
3102     // PUSH src2.hi
3103     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3104     // PUSH src2.lo
3105     emit_opcode(cbuf,               0x50+$src2$$reg  );
3106     // CALL directly to the runtime
3107     cbuf.set_insts_mark();
3108     emit_opcode(cbuf,0xE8);       // Call into runtime
3109     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3110     // Restore stack
3111     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3112     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3113     emit_d8(cbuf, 4*4);
3114   %}
3115 
3116   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3117     // MOV   $tmp,$src.lo
3118     emit_opcode(cbuf, 0x8B);
3119     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3120     // OR    $tmp,$src.hi
3121     emit_opcode(cbuf, 0x0B);
3122     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3123   %}
3124 
3125   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3126     // CMP    $src1.lo,$src2.lo
3127     emit_opcode( cbuf, 0x3B );
3128     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3129     // JNE,s  skip
3130     emit_cc(cbuf, 0x70, 0x5);
3131     emit_d8(cbuf,2);
3132     // CMP    $src1.hi,$src2.hi
3133     emit_opcode( cbuf, 0x3B );
3134     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3135   %}
3136 
3137   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3138     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3139     emit_opcode( cbuf, 0x3B );
3140     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3141     // MOV    $tmp,$src1.hi
3142     emit_opcode( cbuf, 0x8B );
3143     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3144     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3145     emit_opcode( cbuf, 0x1B );
3146     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3147   %}
3148 
3149   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3150     // XOR    $tmp,$tmp
3151     emit_opcode(cbuf,0x33);  // XOR
3152     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3153     // CMP    $tmp,$src.lo
3154     emit_opcode( cbuf, 0x3B );
3155     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3156     // SBB    $tmp,$src.hi
3157     emit_opcode( cbuf, 0x1B );
3158     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3159   %}
3160 
3161  // Sniff, sniff... smells like Gnu Superoptimizer
3162   enc_class neg_long( eRegL dst ) %{
3163     emit_opcode(cbuf,0xF7);    // NEG hi
3164     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3165     emit_opcode(cbuf,0xF7);    // NEG lo
3166     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3167     emit_opcode(cbuf,0x83);    // SBB hi,0
3168     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3169     emit_d8    (cbuf,0 );
3170   %}
3171 
3172   enc_class movq_ld(regXD dst, memory mem) %{
3173     MacroAssembler _masm(&cbuf);
3174     __ movq($dst$$XMMRegister, $mem$$Address);
3175   %}
3176 
3177   enc_class movq_st(memory mem, regXD src) %{
3178     MacroAssembler _masm(&cbuf);
3179     __ movq($mem$$Address, $src$$XMMRegister);
3180   %}
3181 
3182   enc_class pshufd_8x8(regX dst, regX src) %{
3183     MacroAssembler _masm(&cbuf);
3184 
3185     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3186     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3187     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3188   %}
3189 
3190   enc_class pshufd_4x16(regX dst, regX src) %{
3191     MacroAssembler _masm(&cbuf);
3192 
3193     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3194   %}
3195 
3196   enc_class pshufd(regXD dst, regXD src, int mode) %{
3197     MacroAssembler _masm(&cbuf);
3198 
3199     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3200   %}
3201 
3202   enc_class pxor(regXD dst, regXD src) %{
3203     MacroAssembler _masm(&cbuf);
3204 
3205     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3206   %}
3207 
3208   enc_class mov_i2x(regXD dst, eRegI src) %{
3209     MacroAssembler _masm(&cbuf);
3210 
3211     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3212   %}
3213 
3214 
3215   // Because the transitions from emitted code to the runtime
3216   // monitorenter/exit helper stubs are so slow it's critical that
3217   // we inline both the stack-locking fast-path and the inflated fast path.
3218   //
3219   // See also: cmpFastLock and cmpFastUnlock.
3220   //
3221   // What follows is a specialized inline transliteration of the code
3222   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3223   // another option would be to emit TrySlowEnter and TrySlowExit methods
3224   // at startup-time.  These methods would accept arguments as
3225   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3226   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3227   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3228   // In practice, however, the # of lock sites is bounded and is usually small.
3229   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3230   // if the processor uses simple bimodal branch predictors keyed by EIP
3231   // Since the helper routines would be called from multiple synchronization
3232   // sites.
3233   //
3234   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3235   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3236   // to those specialized methods.  That'd give us a mostly platform-independent
3237   // implementation that the JITs could optimize and inline at their pleasure.
3238   // Done correctly, the only time we'd need to cross to native could would be
3239   // to park() or unpark() threads.  We'd also need a few more unsafe operators
3240   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3241   // (b) explicit barriers or fence operations.
3242   //
3243   // TODO:
3244   //
3245   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3246   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3247   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3248   //    the lock operators would typically be faster than reifying Self.
3249   //
3250   // *  Ideally I'd define the primitives as:
3251   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3252   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3253   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3254   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3255   //    Furthermore the register assignments are overconstrained, possibly resulting in
3256   //    sub-optimal code near the synchronization site.
3257   //
3258   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3259   //    Alternately, use a better sp-proximity test.
3260   //
3261   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3262   //    Either one is sufficient to uniquely identify a thread.
3263   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3264   //
3265   // *  Intrinsify notify() and notifyAll() for the common cases where the
3266   //    object is locked by the calling thread but the waitlist is empty.
3267   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3268   //
3269   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3270   //    But beware of excessive branch density on AMD Opterons.
3271   //
3272   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3273   //    or failure of the fast-path.  If the fast-path fails then we pass
3274   //    control to the slow-path, typically in C.  In Fast_Lock and
3275   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3276   //    will emit a conditional branch immediately after the node.
3277   //    So we have branches to branches and lots of ICC.ZF games.
3278   //    Instead, it might be better to have C2 pass a "FailureLabel"
3279   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3280   //    will drop through the node.  ICC.ZF is undefined at exit.
3281   //    In the case of failure, the node will branch directly to the
3282   //    FailureLabel
3283 
3284 
3285   // obj: object to lock
3286   // box: on-stack box address (displaced header location) - KILLED
3287   // rax,: tmp -- KILLED
3288   // scr: tmp -- KILLED
3289   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3290 
3291     Register objReg = as_Register($obj$$reg);
3292     Register boxReg = as_Register($box$$reg);
3293     Register tmpReg = as_Register($tmp$$reg);
3294     Register scrReg = as_Register($scr$$reg);
3295 
3296     // Ensure the register assignents are disjoint
3297     guarantee (objReg != boxReg, "") ;
3298     guarantee (objReg != tmpReg, "") ;
3299     guarantee (objReg != scrReg, "") ;
3300     guarantee (boxReg != tmpReg, "") ;
3301     guarantee (boxReg != scrReg, "") ;
3302     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3303 
3304     MacroAssembler masm(&cbuf);
3305 
3306     if (_counters != NULL) {
3307       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3308     }
3309     if (EmitSync & 1) {
3310         // set box->dhw = unused_mark (3)
3311         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3312         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3313         masm.cmpptr (rsp, (int32_t)0) ;                        
3314     } else 
3315     if (EmitSync & 2) { 
3316         Label DONE_LABEL ;           
3317         if (UseBiasedLocking) {
3318            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3319            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3320         }
3321 
3322         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3323         masm.orptr (tmpReg, 0x1);
3324         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3325         if (os::is_MP()) { masm.lock();  }
3326         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3327         masm.jcc(Assembler::equal, DONE_LABEL);
3328         // Recursive locking
3329         masm.subptr(tmpReg, rsp);
3330         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3331         masm.movptr(Address(boxReg, 0), tmpReg);
3332         masm.bind(DONE_LABEL) ; 
3333     } else {  
3334       // Possible cases that we'll encounter in fast_lock 
3335       // ------------------------------------------------
3336       // * Inflated
3337       //    -- unlocked
3338       //    -- Locked
3339       //       = by self
3340       //       = by other
3341       // * biased
3342       //    -- by Self
3343       //    -- by other
3344       // * neutral
3345       // * stack-locked
3346       //    -- by self
3347       //       = sp-proximity test hits
3348       //       = sp-proximity test generates false-negative
3349       //    -- by other
3350       //
3351 
3352       Label IsInflated, DONE_LABEL, PopDone ;
3353 
3354       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3355       // order to reduce the number of conditional branches in the most common cases.
3356       // Beware -- there's a subtle invariant that fetch of the markword
3357       // at [FETCH], below, will never observe a biased encoding (*101b).
3358       // If this invariant is not held we risk exclusion (safety) failure.
3359       if (UseBiasedLocking && !UseOptoBiasInlining) {
3360         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3361       }
3362 
3363       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3364       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3365       masm.jccb  (Assembler::notZero, IsInflated) ;
3366 
3367       // Attempt stack-locking ...
3368       masm.orptr (tmpReg, 0x1);
3369       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3370       if (os::is_MP()) { masm.lock();  }
3371       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3372       if (_counters != NULL) {
3373         masm.cond_inc32(Assembler::equal,
3374                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3375       }
3376       masm.jccb (Assembler::equal, DONE_LABEL);
3377 
3378       // Recursive locking
3379       masm.subptr(tmpReg, rsp);
3380       masm.andptr(tmpReg, 0xFFFFF003 );
3381       masm.movptr(Address(boxReg, 0), tmpReg);
3382       if (_counters != NULL) {
3383         masm.cond_inc32(Assembler::equal,
3384                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3385       }
3386       masm.jmp  (DONE_LABEL) ;
3387 
3388       masm.bind (IsInflated) ;
3389 
3390       // The object is inflated.
3391       //
3392       // TODO-FIXME: eliminate the ugly use of manifest constants:
3393       //   Use markOopDesc::monitor_value instead of "2".
3394       //   use markOop::unused_mark() instead of "3".
3395       // The tmpReg value is an objectMonitor reference ORed with
3396       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3397       // objectmonitor pointer by masking off the "2" bit or we can just
3398       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3399       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3400       //
3401       // I use the latter as it avoids AGI stalls.
3402       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3403       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3404       //
3405       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3406 
3407       // boxReg refers to the on-stack BasicLock in the current frame.
3408       // We'd like to write:
3409       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3410       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3411       // additional latency as we have another ST in the store buffer that must drain.
3412 
3413       if (EmitSync & 8192) { 
3414          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3415          masm.get_thread (scrReg) ; 
3416          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3417          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3418          if (os::is_MP()) { masm.lock(); } 
3419          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3420       } else 
3421       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3422          masm.movptr(scrReg, boxReg) ; 
3423          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3424 
3425          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3426          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3427             // prefetchw [eax + Offset(_owner)-2]
3428             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3429          }
3430 
3431          if ((EmitSync & 64) == 0) {
3432            // Optimistic form: consider XORL tmpReg,tmpReg
3433            masm.movptr(tmpReg, NULL_WORD) ; 
3434          } else { 
3435            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3436            // Test-And-CAS instead of CAS
3437            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3438            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3439            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3440          }
3441 
3442          // Appears unlocked - try to swing _owner from null to non-null.
3443          // Ideally, I'd manifest "Self" with get_thread and then attempt
3444          // to CAS the register containing Self into m->Owner.
3445          // But we don't have enough registers, so instead we can either try to CAS
3446          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3447          // we later store "Self" into m->Owner.  Transiently storing a stack address
3448          // (rsp or the address of the box) into  m->owner is harmless.
3449          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3450          if (os::is_MP()) { masm.lock();  }
3451          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3452          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3453          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3454          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3455          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3456          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3457                        
3458          // If the CAS fails we can either retry or pass control to the slow-path.  
3459          // We use the latter tactic.  
3460          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3461          // If the CAS was successful ...
3462          //   Self has acquired the lock
3463          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3464          // Intentional fall-through into DONE_LABEL ...
3465       } else {
3466          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3467          masm.movptr(boxReg, tmpReg) ; 
3468 
3469          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3470          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3471             // prefetchw [eax + Offset(_owner)-2]
3472             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3473          }
3474 
3475          if ((EmitSync & 64) == 0) {
3476            // Optimistic form
3477            masm.xorptr  (tmpReg, tmpReg) ; 
3478          } else { 
3479            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3480            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3481            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3482            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3483          }
3484 
3485          // Appears unlocked - try to swing _owner from null to non-null.
3486          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3487          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3488          masm.get_thread (scrReg) ;
3489          if (os::is_MP()) { masm.lock(); }
3490          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3491 
3492          // If the CAS fails we can either retry or pass control to the slow-path.
3493          // We use the latter tactic.
3494          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3495          // If the CAS was successful ...
3496          //   Self has acquired the lock
3497          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3498          // Intentional fall-through into DONE_LABEL ...
3499       }
3500 
3501       // DONE_LABEL is a hot target - we'd really like to place it at the
3502       // start of cache line by padding with NOPs.
3503       // See the AMD and Intel software optimization manuals for the
3504       // most efficient "long" NOP encodings.
3505       // Unfortunately none of our alignment mechanisms suffice.
3506       masm.bind(DONE_LABEL);
3507 
3508       // Avoid branch-to-branch on AMD processors
3509       // This appears to be superstition.
3510       if (EmitSync & 32) masm.nop() ;
3511 
3512 
3513       // At DONE_LABEL the icc ZFlag is set as follows ...
3514       // Fast_Unlock uses the same protocol.
3515       // ZFlag == 1 -> Success
3516       // ZFlag == 0 -> Failure - force control through the slow-path
3517     }
3518   %}
3519 
3520   // obj: object to unlock
3521   // box: box address (displaced header location), killed.  Must be EAX.
3522   // rbx,: killed tmp; cannot be obj nor box.
3523   //
3524   // Some commentary on balanced locking:
3525   //
3526   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3527   // Methods that don't have provably balanced locking are forced to run in the
3528   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3529   // The interpreter provides two properties:
3530   // I1:  At return-time the interpreter automatically and quietly unlocks any
3531   //      objects acquired the current activation (frame).  Recall that the
3532   //      interpreter maintains an on-stack list of locks currently held by
3533   //      a frame.
3534   // I2:  If a method attempts to unlock an object that is not held by the
3535   //      the frame the interpreter throws IMSX.
3536   //
3537   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3538   // B() doesn't have provably balanced locking so it runs in the interpreter.
3539   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3540   // is still locked by A().
3541   //
3542   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3543   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3544   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3545   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3546 
3547   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3548 
3549     Register objReg = as_Register($obj$$reg);
3550     Register boxReg = as_Register($box$$reg);
3551     Register tmpReg = as_Register($tmp$$reg);
3552 
3553     guarantee (objReg != boxReg, "") ;
3554     guarantee (objReg != tmpReg, "") ;
3555     guarantee (boxReg != tmpReg, "") ;
3556     guarantee (boxReg == as_Register(EAX_enc), "") ;
3557     MacroAssembler masm(&cbuf);
3558 
3559     if (EmitSync & 4) {
3560       // Disable - inhibit all inlining.  Force control through the slow-path
3561       masm.cmpptr (rsp, 0) ; 
3562     } else 
3563     if (EmitSync & 8) {
3564       Label DONE_LABEL ;
3565       if (UseBiasedLocking) {
3566          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3567       }
3568       // classic stack-locking code ...
3569       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3570       masm.testptr(tmpReg, tmpReg) ;
3571       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3572       if (os::is_MP()) { masm.lock(); }
3573       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3574       masm.bind(DONE_LABEL);
3575     } else {
3576       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3577 
3578       // Critically, the biased locking test must have precedence over
3579       // and appear before the (box->dhw == 0) recursive stack-lock test.
3580       if (UseBiasedLocking && !UseOptoBiasInlining) {
3581          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3582       }
3583       
3584       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3585       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3586       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3587 
3588       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3589       masm.jccb  (Assembler::zero, Stacked) ;
3590 
3591       masm.bind  (Inflated) ;
3592       // It's inflated.
3593       // Despite our balanced locking property we still check that m->_owner == Self
3594       // as java routines or native JNI code called by this thread might
3595       // have released the lock.
3596       // Refer to the comments in synchronizer.cpp for how we might encode extra
3597       // state in _succ so we can avoid fetching EntryList|cxq.
3598       //
3599       // I'd like to add more cases in fast_lock() and fast_unlock() --
3600       // such as recursive enter and exit -- but we have to be wary of
3601       // I$ bloat, T$ effects and BP$ effects.
3602       //
3603       // If there's no contention try a 1-0 exit.  That is, exit without
3604       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3605       // we detect and recover from the race that the 1-0 exit admits.
3606       //
3607       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3608       // before it STs null into _owner, releasing the lock.  Updates
3609       // to data protected by the critical section must be visible before
3610       // we drop the lock (and thus before any other thread could acquire
3611       // the lock and observe the fields protected by the lock).
3612       // IA32's memory-model is SPO, so STs are ordered with respect to
3613       // each other and there's no need for an explicit barrier (fence).
3614       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3615 
3616       masm.get_thread (boxReg) ;
3617       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3618         // prefetchw [ebx + Offset(_owner)-2]
3619         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3620       }
3621 
3622       // Note that we could employ various encoding schemes to reduce
3623       // the number of loads below (currently 4) to just 2 or 3.
3624       // Refer to the comments in synchronizer.cpp.
3625       // In practice the chain of fetches doesn't seem to impact performance, however.
3626       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3627          // Attempt to reduce branch density - AMD's branch predictor.
3628          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3629          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3630          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3631          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3632          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3633          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3634          masm.jmpb  (DONE_LABEL) ; 
3635       } else { 
3636          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3637          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3638          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3639          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3640          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3641          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3642          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3643          masm.jmpb  (DONE_LABEL) ; 
3644       }
3645 
3646       // The Following code fragment (EmitSync & 65536) improves the performance of
3647       // contended applications and contended synchronization microbenchmarks.
3648       // Unfortunately the emission of the code - even though not executed - causes regressions
3649       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3650       // with an equal number of never-executed NOPs results in the same regression.
3651       // We leave it off by default.
3652 
3653       if ((EmitSync & 65536) != 0) {
3654          Label LSuccess, LGoSlowPath ;
3655 
3656          masm.bind  (CheckSucc) ;
3657 
3658          // Optional pre-test ... it's safe to elide this
3659          if ((EmitSync & 16) == 0) { 
3660             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3661             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3662          }
3663 
3664          // We have a classic Dekker-style idiom:
3665          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3666          // There are a number of ways to implement the barrier:
3667          // (1) lock:andl &m->_owner, 0
3668          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3669          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3670          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3671          // (2) If supported, an explicit MFENCE is appealing.
3672          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3673          //     particularly if the write-buffer is full as might be the case if
3674          //     if stores closely precede the fence or fence-equivalent instruction.
3675          //     In more modern implementations MFENCE appears faster, however.
3676          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3677          //     The $lines underlying the top-of-stack should be in M-state.
3678          //     The locked add instruction is serializing, of course.
3679          // (4) Use xchg, which is serializing
3680          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3681          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3682          //     The integer condition codes will tell us if succ was 0.
3683          //     Since _succ and _owner should reside in the same $line and
3684          //     we just stored into _owner, it's likely that the $line
3685          //     remains in M-state for the lock:orl.
3686          //
3687          // We currently use (3), although it's likely that switching to (2)
3688          // is correct for the future.
3689             
3690          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3691          if (os::is_MP()) { 
3692             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3693               masm.mfence();
3694             } else { 
3695               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3696             }
3697          }
3698          // Ratify _succ remains non-null
3699          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3700          masm.jccb  (Assembler::notZero, LSuccess) ; 
3701 
3702          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3703          if (os::is_MP()) { masm.lock(); }
3704          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3705          masm.jccb  (Assembler::notEqual, LSuccess) ;
3706          // Since we're low on registers we installed rsp as a placeholding in _owner.
3707          // Now install Self over rsp.  This is safe as we're transitioning from
3708          // non-null to non=null
3709          masm.get_thread (boxReg) ;
3710          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3711          // Intentional fall-through into LGoSlowPath ...
3712 
3713          masm.bind  (LGoSlowPath) ; 
3714          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3715          masm.jmpb  (DONE_LABEL) ; 
3716 
3717          masm.bind  (LSuccess) ; 
3718          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3719          masm.jmpb  (DONE_LABEL) ; 
3720       }
3721 
3722       masm.bind (Stacked) ;
3723       // It's not inflated and it's not recursively stack-locked and it's not biased.
3724       // It must be stack-locked.
3725       // Try to reset the header to displaced header.
3726       // The "box" value on the stack is stable, so we can reload
3727       // and be assured we observe the same value as above.
3728       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3729       if (os::is_MP()) {   masm.lock();    }
3730       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3731       // Intention fall-thru into DONE_LABEL
3732 
3733 
3734       // DONE_LABEL is a hot target - we'd really like to place it at the
3735       // start of cache line by padding with NOPs.
3736       // See the AMD and Intel software optimization manuals for the
3737       // most efficient "long" NOP encodings.
3738       // Unfortunately none of our alignment mechanisms suffice.
3739       if ((EmitSync & 65536) == 0) {
3740          masm.bind (CheckSucc) ;
3741       }
3742       masm.bind(DONE_LABEL);
3743 
3744       // Avoid branch to branch on AMD processors
3745       if (EmitSync & 32768) { masm.nop() ; }
3746     }
3747   %}
3748 
3749 
3750   enc_class enc_pop_rdx() %{
3751     emit_opcode(cbuf,0x5A);
3752   %}
3753 
3754   enc_class enc_rethrow() %{
3755     cbuf.set_insts_mark();
3756     emit_opcode(cbuf, 0xE9);        // jmp    entry
3757     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3758                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3759   %}
3760 
3761 
3762   // Convert a double to an int.  Java semantics require we do complex
3763   // manglelations in the corner cases.  So we set the rounding mode to
3764   // 'zero', store the darned double down as an int, and reset the
3765   // rounding mode to 'nearest'.  The hardware throws an exception which
3766   // patches up the correct value directly to the stack.
3767   enc_class D2I_encoding( regD src ) %{
3768     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3769     // exceptions here, so that a NAN or other corner-case value will
3770     // thrown an exception (but normal values get converted at full speed).
3771     // However, I2C adapters and other float-stack manglers leave pending
3772     // invalid-op exceptions hanging.  We would have to clear them before
3773     // enabling them and that is more expensive than just testing for the
3774     // invalid value Intel stores down in the corner cases.
3775     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3776     emit_opcode(cbuf,0x2D);
3777     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3778     // Allocate a word
3779     emit_opcode(cbuf,0x83);            // SUB ESP,4
3780     emit_opcode(cbuf,0xEC);
3781     emit_d8(cbuf,0x04);
3782     // Encoding assumes a double has been pushed into FPR0.
3783     // Store down the double as an int, popping the FPU stack
3784     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3785     emit_opcode(cbuf,0x1C);
3786     emit_d8(cbuf,0x24);
3787     // Restore the rounding mode; mask the exception
3788     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3789     emit_opcode(cbuf,0x2D);
3790     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3791         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3792         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3793 
3794     // Load the converted int; adjust CPU stack
3795     emit_opcode(cbuf,0x58);       // POP EAX
3796     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3797     emit_d32   (cbuf,0x80000000); //         0x80000000
3798     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3799     emit_d8    (cbuf,0x07);       // Size of slow_call
3800     // Push src onto stack slow-path
3801     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3802     emit_d8    (cbuf,0xC0-1+$src$$reg );
3803     // CALL directly to the runtime
3804     cbuf.set_insts_mark();
3805     emit_opcode(cbuf,0xE8);       // Call into runtime
3806     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3807     // Carry on here...
3808   %}
3809 
3810   enc_class D2L_encoding( regD src ) %{
3811     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3812     emit_opcode(cbuf,0x2D);
3813     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3814     // Allocate a word
3815     emit_opcode(cbuf,0x83);            // SUB ESP,8
3816     emit_opcode(cbuf,0xEC);
3817     emit_d8(cbuf,0x08);
3818     // Encoding assumes a double has been pushed into FPR0.
3819     // Store down the double as a long, popping the FPU stack
3820     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3821     emit_opcode(cbuf,0x3C);
3822     emit_d8(cbuf,0x24);
3823     // Restore the rounding mode; mask the exception
3824     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3825     emit_opcode(cbuf,0x2D);
3826     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3827         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3828         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3829 
3830     // Load the converted int; adjust CPU stack
3831     emit_opcode(cbuf,0x58);       // POP EAX
3832     emit_opcode(cbuf,0x5A);       // POP EDX
3833     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3834     emit_d8    (cbuf,0xFA);       // rdx
3835     emit_d32   (cbuf,0x80000000); //         0x80000000
3836     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3837     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3838     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3839     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3840     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3841     emit_d8    (cbuf,0x07);       // Size of slow_call
3842     // Push src onto stack slow-path
3843     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3844     emit_d8    (cbuf,0xC0-1+$src$$reg );
3845     // CALL directly to the runtime
3846     cbuf.set_insts_mark();
3847     emit_opcode(cbuf,0xE8);       // Call into runtime
3848     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3849     // Carry on here...
3850   %}
3851 
3852   enc_class X2L_encoding( regX src ) %{
3853     // Allocate a word
3854     emit_opcode(cbuf,0x83);      // SUB ESP,8
3855     emit_opcode(cbuf,0xEC);
3856     emit_d8(cbuf,0x08);
3857 
3858     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3859     emit_opcode  (cbuf, 0x0F );
3860     emit_opcode  (cbuf, 0x11 );
3861     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3862 
3863     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3864     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3865 
3866     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3867     emit_opcode(cbuf,0x2D);
3868     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3869 
3870     // Encoding assumes a double has been pushed into FPR0.
3871     // Store down the double as a long, popping the FPU stack
3872     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3873     emit_opcode(cbuf,0x3C);
3874     emit_d8(cbuf,0x24);
3875 
3876     // Restore the rounding mode; mask the exception
3877     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3878     emit_opcode(cbuf,0x2D);
3879     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3880       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3881       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3882 
3883     // Load the converted int; adjust CPU stack
3884     emit_opcode(cbuf,0x58);      // POP EAX
3885 
3886     emit_opcode(cbuf,0x5A);      // POP EDX
3887 
3888     emit_opcode(cbuf,0x81);      // CMP EDX,imm
3889     emit_d8    (cbuf,0xFA);      // rdx
3890     emit_d32   (cbuf,0x80000000);//         0x80000000
3891 
3892     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3893     emit_d8    (cbuf,0x13+4);    // Size of slow_call
3894 
3895     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3896     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3897 
3898     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3899     emit_d8    (cbuf,0x13);      // Size of slow_call
3900 
3901     // Allocate a word
3902     emit_opcode(cbuf,0x83);      // SUB ESP,4
3903     emit_opcode(cbuf,0xEC);
3904     emit_d8(cbuf,0x04);
3905 
3906     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3907     emit_opcode  (cbuf, 0x0F );
3908     emit_opcode  (cbuf, 0x11 );
3909     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3910 
3911     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3912     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3913 
3914     emit_opcode(cbuf,0x83);      // ADD ESP,4
3915     emit_opcode(cbuf,0xC4);
3916     emit_d8(cbuf,0x04);
3917 
3918     // CALL directly to the runtime
3919     cbuf.set_insts_mark();
3920     emit_opcode(cbuf,0xE8);       // Call into runtime
3921     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3922     // Carry on here...
3923   %}
3924 
3925   enc_class XD2L_encoding( regXD src ) %{
3926     // Allocate a word
3927     emit_opcode(cbuf,0x83);      // SUB ESP,8
3928     emit_opcode(cbuf,0xEC);
3929     emit_d8(cbuf,0x08);
3930 
3931     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3932     emit_opcode  (cbuf, 0x0F );
3933     emit_opcode  (cbuf, 0x11 );
3934     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3935 
3936     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3937     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3938 
3939     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3940     emit_opcode(cbuf,0x2D);
3941     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3942 
3943     // Encoding assumes a double has been pushed into FPR0.
3944     // Store down the double as a long, popping the FPU stack
3945     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3946     emit_opcode(cbuf,0x3C);
3947     emit_d8(cbuf,0x24);
3948 
3949     // Restore the rounding mode; mask the exception
3950     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3951     emit_opcode(cbuf,0x2D);
3952     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3953       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3954       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3955 
3956     // Load the converted int; adjust CPU stack
3957     emit_opcode(cbuf,0x58);      // POP EAX
3958 
3959     emit_opcode(cbuf,0x5A);      // POP EDX
3960 
3961     emit_opcode(cbuf,0x81);      // CMP EDX,imm
3962     emit_d8    (cbuf,0xFA);      // rdx
3963     emit_d32   (cbuf,0x80000000); //         0x80000000
3964 
3965     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3966     emit_d8    (cbuf,0x13+4);    // Size of slow_call
3967 
3968     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3969     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3970 
3971     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3972     emit_d8    (cbuf,0x13);      // Size of slow_call
3973 
3974     // Push src onto stack slow-path
3975     // Allocate a word
3976     emit_opcode(cbuf,0x83);      // SUB ESP,8
3977     emit_opcode(cbuf,0xEC);
3978     emit_d8(cbuf,0x08);
3979 
3980     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3981     emit_opcode  (cbuf, 0x0F );
3982     emit_opcode  (cbuf, 0x11 );
3983     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3984 
3985     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3986     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3987 
3988     emit_opcode(cbuf,0x83);      // ADD ESP,8
3989     emit_opcode(cbuf,0xC4);
3990     emit_d8(cbuf,0x08);
3991 
3992     // CALL directly to the runtime
3993     cbuf.set_insts_mark();
3994     emit_opcode(cbuf,0xE8);      // Call into runtime
3995     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3996     // Carry on here...
3997   %}
3998 
3999   enc_class D2X_encoding( regX dst, regD src ) %{
4000     // Allocate a word
4001     emit_opcode(cbuf,0x83);            // SUB ESP,4
4002     emit_opcode(cbuf,0xEC);
4003     emit_d8(cbuf,0x04);
4004     int pop = 0x02;
4005     if ($src$$reg != FPR1L_enc) {
4006       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
4007       emit_d8( cbuf, 0xC0-1+$src$$reg );
4008       pop = 0x03;
4009     }
4010     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
4011 
4012     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
4013     emit_opcode  (cbuf, 0x0F );
4014     emit_opcode  (cbuf, 0x10 );
4015     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
4016 
4017     emit_opcode(cbuf,0x83);            // ADD ESP,4
4018     emit_opcode(cbuf,0xC4);
4019     emit_d8(cbuf,0x04);
4020     // Carry on here...
4021   %}
4022 
4023   enc_class FX2I_encoding( regX src, eRegI dst ) %{
4024     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
4025 
4026     // Compare the result to see if we need to go to the slow path
4027     emit_opcode(cbuf,0x81);       // CMP dst,imm
4028     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
4029     emit_d32   (cbuf,0x80000000); //         0x80000000
4030 
4031     emit_opcode(cbuf,0x75);       // JNE around_slow_call
4032     emit_d8    (cbuf,0x13);       // Size of slow_call
4033     // Store xmm to a temp memory
4034     // location and push it onto stack.
4035 
4036     emit_opcode(cbuf,0x83);  // SUB ESP,4
4037     emit_opcode(cbuf,0xEC);
4038     emit_d8(cbuf, $primary ? 0x8 : 0x4);
4039 
4040     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
4041     emit_opcode  (cbuf, 0x0F );
4042     emit_opcode  (cbuf, 0x11 );
4043     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4044 
4045     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4046     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4047 
4048     emit_opcode(cbuf,0x83);    // ADD ESP,4
4049     emit_opcode(cbuf,0xC4);
4050     emit_d8(cbuf, $primary ? 0x8 : 0x4);
4051 
4052     // CALL directly to the runtime
4053     cbuf.set_insts_mark();
4054     emit_opcode(cbuf,0xE8);       // Call into runtime
4055     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4056 
4057     // Carry on here...
4058   %}
4059 
4060   enc_class X2D_encoding( regD dst, regX src ) %{
4061     // Allocate a word
4062     emit_opcode(cbuf,0x83);     // SUB ESP,4
4063     emit_opcode(cbuf,0xEC);
4064     emit_d8(cbuf,0x04);
4065 
4066     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4067     emit_opcode  (cbuf, 0x0F );
4068     emit_opcode  (cbuf, 0x11 );
4069     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4070 
4071     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4072     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4073 
4074     emit_opcode(cbuf,0x83);     // ADD ESP,4
4075     emit_opcode(cbuf,0xC4);
4076     emit_d8(cbuf,0x04);
4077 
4078     // Carry on here...
4079   %}
4080 
4081   enc_class AbsXF_encoding(regX dst) %{
4082     address signmask_address=(address)float_signmask_pool;
4083     // andpd:\tANDPS  $dst,[signconst]
4084     emit_opcode(cbuf, 0x0F);
4085     emit_opcode(cbuf, 0x54);
4086     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4087     emit_d32(cbuf, (int)signmask_address);
4088   %}
4089 
4090   enc_class AbsXD_encoding(regXD dst) %{
4091     address signmask_address=(address)double_signmask_pool;
4092     // andpd:\tANDPD  $dst,[signconst]
4093     emit_opcode(cbuf, 0x66);
4094     emit_opcode(cbuf, 0x0F);
4095     emit_opcode(cbuf, 0x54);
4096     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4097     emit_d32(cbuf, (int)signmask_address);
4098   %}
4099 
4100   enc_class NegXF_encoding(regX dst) %{
4101     address signmask_address=(address)float_signflip_pool;
4102     // andpd:\tXORPS  $dst,[signconst]
4103     emit_opcode(cbuf, 0x0F);
4104     emit_opcode(cbuf, 0x57);
4105     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4106     emit_d32(cbuf, (int)signmask_address);
4107   %}
4108 
4109   enc_class NegXD_encoding(regXD dst) %{
4110     address signmask_address=(address)double_signflip_pool;
4111     // andpd:\tXORPD  $dst,[signconst]
4112     emit_opcode(cbuf, 0x66);
4113     emit_opcode(cbuf, 0x0F);
4114     emit_opcode(cbuf, 0x57);
4115     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4116     emit_d32(cbuf, (int)signmask_address);
4117   %}
4118 
4119   enc_class FMul_ST_reg( eRegF src1 ) %{
4120     // Operand was loaded from memory into fp ST (stack top)
4121     // FMUL   ST,$src  /* D8 C8+i */
4122     emit_opcode(cbuf, 0xD8);
4123     emit_opcode(cbuf, 0xC8 + $src1$$reg);
4124   %}
4125 
4126   enc_class FAdd_ST_reg( eRegF src2 ) %{
4127     // FADDP  ST,src2  /* D8 C0+i */
4128     emit_opcode(cbuf, 0xD8);
4129     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4130     //could use FADDP  src2,fpST  /* DE C0+i */
4131   %}
4132 
4133   enc_class FAddP_reg_ST( eRegF src2 ) %{
4134     // FADDP  src2,ST  /* DE C0+i */
4135     emit_opcode(cbuf, 0xDE);
4136     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4137   %}
4138 
4139   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4140     // Operand has been loaded into fp ST (stack top)
4141       // FSUB   ST,$src1
4142       emit_opcode(cbuf, 0xD8);
4143       emit_opcode(cbuf, 0xE0 + $src1$$reg);
4144 
4145       // FDIV
4146       emit_opcode(cbuf, 0xD8);
4147       emit_opcode(cbuf, 0xF0 + $src2$$reg);
4148   %}
4149 
4150   enc_class MulFAddF (eRegF src1, eRegF src2) %{
4151     // Operand was loaded from memory into fp ST (stack top)
4152     // FADD   ST,$src  /* D8 C0+i */
4153     emit_opcode(cbuf, 0xD8);
4154     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4155 
4156     // FMUL  ST,src2  /* D8 C*+i */
4157     emit_opcode(cbuf, 0xD8);
4158     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4159   %}
4160 
4161 
4162   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4163     // Operand was loaded from memory into fp ST (stack top)
4164     // FADD   ST,$src  /* D8 C0+i */
4165     emit_opcode(cbuf, 0xD8);
4166     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4167 
4168     // FMULP  src2,ST  /* DE C8+i */
4169     emit_opcode(cbuf, 0xDE);
4170     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4171   %}
4172 
4173   // Atomically load the volatile long
4174   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4175     emit_opcode(cbuf,0xDF);
4176     int rm_byte_opcode = 0x05;
4177     int base     = $mem$$base;
4178     int index    = $mem$$index;
4179     int scale    = $mem$$scale;
4180     int displace = $mem$$disp;
4181     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4182     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4183     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4184   %}
4185 
4186   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4187     { // Atomic long load
4188       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4189       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4190       emit_opcode(cbuf,0x0F);
4191       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4192       int base     = $mem$$base;
4193       int index    = $mem$$index;
4194       int scale    = $mem$$scale;
4195       int displace = $mem$$disp;
4196       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4197       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4198     }
4199     { // MOVSD $dst,$tmp ! atomic long store
4200       emit_opcode(cbuf,0xF2);
4201       emit_opcode(cbuf,0x0F);
4202       emit_opcode(cbuf,0x11);
4203       int base     = $dst$$base;
4204       int index    = $dst$$index;
4205       int scale    = $dst$$scale;
4206       int displace = $dst$$disp;
4207       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4208       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4209     }
4210   %}
4211 
4212   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4213     { // Atomic long load
4214       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4215       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4216       emit_opcode(cbuf,0x0F);
4217       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4218       int base     = $mem$$base;
4219       int index    = $mem$$index;
4220       int scale    = $mem$$scale;
4221       int displace = $mem$$disp;
4222       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4223       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4224     }
4225     { // MOVD $dst.lo,$tmp
4226       emit_opcode(cbuf,0x66);
4227       emit_opcode(cbuf,0x0F);
4228       emit_opcode(cbuf,0x7E);
4229       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4230     }
4231     { // PSRLQ $tmp,32
4232       emit_opcode(cbuf,0x66);
4233       emit_opcode(cbuf,0x0F);
4234       emit_opcode(cbuf,0x73);
4235       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4236       emit_d8(cbuf, 0x20);
4237     }
4238     { // MOVD $dst.hi,$tmp
4239       emit_opcode(cbuf,0x66);
4240       emit_opcode(cbuf,0x0F);
4241       emit_opcode(cbuf,0x7E);
4242       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4243     }
4244   %}
4245 
4246   // Volatile Store Long.  Must be atomic, so move it into
4247   // the FP TOS and then do a 64-bit FIST.  Has to probe the
4248   // target address before the store (for null-ptr checks)
4249   // so the memory operand is used twice in the encoding.
4250   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4251     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4252     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
4253     emit_opcode(cbuf,0xDF);
4254     int rm_byte_opcode = 0x07;
4255     int base     = $mem$$base;
4256     int index    = $mem$$index;
4257     int scale    = $mem$$scale;
4258     int displace = $mem$$disp;
4259     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4260     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4261   %}
4262 
4263   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4264     { // Atomic long load
4265       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4266       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4267       emit_opcode(cbuf,0x0F);
4268       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4269       int base     = $src$$base;
4270       int index    = $src$$index;
4271       int scale    = $src$$scale;
4272       int displace = $src$$disp;
4273       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4274       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4275     }
4276     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
4277     { // MOVSD $mem,$tmp ! atomic long store
4278       emit_opcode(cbuf,0xF2);
4279       emit_opcode(cbuf,0x0F);
4280       emit_opcode(cbuf,0x11);
4281       int base     = $mem$$base;
4282       int index    = $mem$$index;
4283       int scale    = $mem$$scale;
4284       int displace = $mem$$disp;
4285       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4286       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4287     }
4288   %}
4289 
4290   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4291     { // MOVD $tmp,$src.lo
4292       emit_opcode(cbuf,0x66);
4293       emit_opcode(cbuf,0x0F);
4294       emit_opcode(cbuf,0x6E);
4295       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4296     }
4297     { // MOVD $tmp2,$src.hi
4298       emit_opcode(cbuf,0x66);
4299       emit_opcode(cbuf,0x0F);
4300       emit_opcode(cbuf,0x6E);
4301       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4302     }
4303     { // PUNPCKLDQ $tmp,$tmp2
4304       emit_opcode(cbuf,0x66);
4305       emit_opcode(cbuf,0x0F);
4306       emit_opcode(cbuf,0x62);
4307       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4308     }
4309     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
4310     { // MOVSD $mem,$tmp ! atomic long store
4311       emit_opcode(cbuf,0xF2);
4312       emit_opcode(cbuf,0x0F);
4313       emit_opcode(cbuf,0x11);
4314       int base     = $mem$$base;
4315       int index    = $mem$$index;
4316       int scale    = $mem$$scale;
4317       int displace = $mem$$disp;
4318       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4319       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4320     }
4321   %}
4322 
4323   // Safepoint Poll.  This polls the safepoint page, and causes an
4324   // exception if it is not readable. Unfortunately, it kills the condition code
4325   // in the process
4326   // We current use TESTL [spp],EDI
4327   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4328 
4329   enc_class Safepoint_Poll() %{
4330     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
4331     emit_opcode(cbuf,0x85);
4332     emit_rm (cbuf, 0x0, 0x7, 0x5);
4333     emit_d32(cbuf, (intptr_t)os::get_polling_page());
4334   %}
4335 %}
4336 
4337 
4338 //----------FRAME--------------------------------------------------------------
4339 // Definition of frame structure and management information.
4340 //
4341 //  S T A C K   L A Y O U T    Allocators stack-slot number
4342 //                             |   (to get allocators register number
4343 //  G  Owned by    |        |  v    add OptoReg::stack0())
4344 //  r   CALLER     |        |
4345 //  o     |        +--------+      pad to even-align allocators stack-slot
4346 //  w     V        |  pad0  |        numbers; owned by CALLER
4347 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4348 //  h     ^        |   in   |  5
4349 //        |        |  args  |  4   Holes in incoming args owned by SELF
4350 //  |     |        |        |  3
4351 //  |     |        +--------+
4352 //  V     |        | old out|      Empty on Intel, window on Sparc
4353 //        |    old |preserve|      Must be even aligned.
4354 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
4355 //        |        |   in   |  3   area for Intel ret address
4356 //     Owned by    |preserve|      Empty on Sparc.
4357 //       SELF      +--------+
4358 //        |        |  pad2  |  2   pad to align old SP
4359 //        |        +--------+  1
4360 //        |        | locks  |  0
4361 //        |        +--------+----> OptoReg::stack0(), even aligned
4362 //        |        |  pad1  | 11   pad to align new SP
4363 //        |        +--------+
4364 //        |        |        | 10
4365 //        |        | spills |  9   spills
4366 //        V        |        |  8   (pad0 slot for callee)
4367 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4368 //        ^        |  out   |  7
4369 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4370 //     Owned by    +--------+
4371 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4372 //        |    new |preserve|      Must be even-aligned.
4373 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
4374 //        |        |        |
4375 //
4376 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4377 //         known from SELF's arguments and the Java calling convention.
4378 //         Region 6-7 is determined per call site.
4379 // Note 2: If the calling convention leaves holes in the incoming argument
4380 //         area, those holes are owned by SELF.  Holes in the outgoing area
4381 //         are owned by the CALLEE.  Holes should not be nessecary in the
4382 //         incoming area, as the Java calling convention is completely under
4383 //         the control of the AD file.  Doubles can be sorted and packed to
4384 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
4385 //         varargs C calling conventions.
4386 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4387 //         even aligned with pad0 as needed.
4388 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4389 //         region 6-11 is even aligned; it may be padded out more so that
4390 //         the region from SP to FP meets the minimum stack alignment.
4391 
4392 frame %{
4393   // What direction does stack grow in (assumed to be same for C & Java)
4394   stack_direction(TOWARDS_LOW);
4395 
4396   // These three registers define part of the calling convention
4397   // between compiled code and the interpreter.
4398   inline_cache_reg(EAX);                // Inline Cache Register
4399   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4400 
4401   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4402   cisc_spilling_operand_name(indOffset32);
4403 
4404   // Number of stack slots consumed by locking an object
4405   sync_stack_slots(1);
4406 
4407   // Compiled code's Frame Pointer
4408   frame_pointer(ESP);
4409   // Interpreter stores its frame pointer in a register which is
4410   // stored to the stack by I2CAdaptors.
4411   // I2CAdaptors convert from interpreted java to compiled java.
4412   interpreter_frame_pointer(EBP);
4413 
4414   // Stack alignment requirement
4415   // Alignment size in bytes (128-bit -> 16 bytes)
4416   stack_alignment(StackAlignmentInBytes);
4417 
4418   // Number of stack slots between incoming argument block and the start of
4419   // a new frame.  The PROLOG must add this many slots to the stack.  The
4420   // EPILOG must remove this many slots.  Intel needs one slot for
4421   // return address and one for rbp, (must save rbp)
4422   in_preserve_stack_slots(2+VerifyStackAtCalls);
4423 
4424   // Number of outgoing stack slots killed above the out_preserve_stack_slots
4425   // for calls to C.  Supports the var-args backing area for register parms.
4426   varargs_C_out_slots_killed(0);
4427 
4428   // The after-PROLOG location of the return address.  Location of
4429   // return address specifies a type (REG or STACK) and a number
4430   // representing the register number (i.e. - use a register name) or
4431   // stack slot.
4432   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4433   // Otherwise, it is above the locks and verification slot and alignment word
4434   return_addr(STACK - 1 +
4435               round_to(1+VerifyStackAtCalls+
4436               Compile::current()->fixed_slots(),
4437               (StackAlignmentInBytes/wordSize)));
4438 
4439   // Body of function which returns an integer array locating
4440   // arguments either in registers or in stack slots.  Passed an array
4441   // of ideal registers called "sig" and a "length" count.  Stack-slot
4442   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4443   // arguments for a CALLEE.  Incoming stack arguments are
4444   // automatically biased by the preserve_stack_slots field above.
4445   calling_convention %{
4446     // No difference between ingoing/outgoing just pass false
4447     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4448   %}
4449 
4450 
4451   // Body of function which returns an integer array locating
4452   // arguments either in registers or in stack slots.  Passed an array
4453   // of ideal registers called "sig" and a "length" count.  Stack-slot
4454   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4455   // arguments for a CALLEE.  Incoming stack arguments are
4456   // automatically biased by the preserve_stack_slots field above.
4457   c_calling_convention %{
4458     // This is obviously always outgoing
4459     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4460   %}
4461 
4462   // Location of C & interpreter return values
4463   c_return_value %{
4464     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4465     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4466     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4467 
4468     // in SSE2+ mode we want to keep the FPU stack clean so pretend
4469     // that C functions return float and double results in XMM0.
4470     if( ideal_reg == Op_RegD && UseSSE>=2 )
4471       return OptoRegPair(XMM0b_num,XMM0a_num);
4472     if( ideal_reg == Op_RegF && UseSSE>=2 )
4473       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4474 
4475     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4476   %}
4477 
4478   // Location of return values
4479   return_value %{
4480     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4481     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4482     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4483     if( ideal_reg == Op_RegD && UseSSE>=2 )
4484       return OptoRegPair(XMM0b_num,XMM0a_num);
4485     if( ideal_reg == Op_RegF && UseSSE>=1 )
4486       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4487     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4488   %}
4489 
4490 %}
4491 
4492 //----------ATTRIBUTES---------------------------------------------------------
4493 //----------Operand Attributes-------------------------------------------------
4494 op_attrib op_cost(0);        // Required cost attribute
4495 
4496 //----------Instruction Attributes---------------------------------------------
4497 ins_attrib ins_cost(100);       // Required cost attribute
4498 ins_attrib ins_size(8);         // Required size attribute (in bits)
4499 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
4500 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4501                                 // non-matching short branch variant of some
4502                                                             // long branch?
4503 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4504                                 // specifies the alignment that some part of the instruction (not
4505                                 // necessarily the start) requires.  If > 1, a compute_padding()
4506                                 // function must be provided for the instruction
4507 
4508 //----------OPERANDS-----------------------------------------------------------
4509 // Operand definitions must precede instruction definitions for correct parsing
4510 // in the ADLC because operands constitute user defined types which are used in
4511 // instruction definitions.
4512 
4513 //----------Simple Operands----------------------------------------------------
4514 // Immediate Operands
4515 // Integer Immediate
4516 operand immI() %{
4517   match(ConI);
4518 
4519   op_cost(10);
4520   format %{ %}
4521   interface(CONST_INTER);
4522 %}
4523 
4524 // Constant for test vs zero
4525 operand immI0() %{
4526   predicate(n->get_int() == 0);
4527   match(ConI);
4528 
4529   op_cost(0);
4530   format %{ %}
4531   interface(CONST_INTER);
4532 %}
4533 
4534 // Constant for increment
4535 operand immI1() %{
4536   predicate(n->get_int() == 1);
4537   match(ConI);
4538 
4539   op_cost(0);
4540   format %{ %}
4541   interface(CONST_INTER);
4542 %}
4543 
4544 // Constant for decrement
4545 operand immI_M1() %{
4546   predicate(n->get_int() == -1);
4547   match(ConI);
4548 
4549   op_cost(0);
4550   format %{ %}
4551   interface(CONST_INTER);
4552 %}
4553 
4554 // Valid scale values for addressing modes
4555 operand immI2() %{
4556   predicate(0 <= n->get_int() && (n->get_int() <= 3));
4557   match(ConI);
4558 
4559   format %{ %}
4560   interface(CONST_INTER);
4561 %}
4562 
4563 operand immI8() %{
4564   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4565   match(ConI);
4566 
4567   op_cost(5);
4568   format %{ %}
4569   interface(CONST_INTER);
4570 %}
4571 
4572 operand immI16() %{
4573   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4574   match(ConI);
4575 
4576   op_cost(10);
4577   format %{ %}
4578   interface(CONST_INTER);
4579 %}
4580 
4581 // Constant for long shifts
4582 operand immI_32() %{
4583   predicate( n->get_int() == 32 );
4584   match(ConI);
4585 
4586   op_cost(0);
4587   format %{ %}
4588   interface(CONST_INTER);
4589 %}
4590 
4591 operand immI_1_31() %{
4592   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4593   match(ConI);
4594 
4595   op_cost(0);
4596   format %{ %}
4597   interface(CONST_INTER);
4598 %}
4599 
4600 operand immI_32_63() %{
4601   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4602   match(ConI);
4603   op_cost(0);
4604 
4605   format %{ %}
4606   interface(CONST_INTER);
4607 %}
4608 
4609 operand immI_1() %{
4610   predicate( n->get_int() == 1 );
4611   match(ConI);
4612 
4613   op_cost(0);
4614   format %{ %}
4615   interface(CONST_INTER);
4616 %}
4617 
4618 operand immI_2() %{
4619   predicate( n->get_int() == 2 );
4620   match(ConI);
4621 
4622   op_cost(0);
4623   format %{ %}
4624   interface(CONST_INTER);
4625 %}
4626 
4627 operand immI_3() %{
4628   predicate( n->get_int() == 3 );
4629   match(ConI);
4630 
4631   op_cost(0);
4632   format %{ %}
4633   interface(CONST_INTER);
4634 %}
4635 
4636 // Pointer Immediate
4637 operand immP() %{
4638   match(ConP);
4639 
4640   op_cost(10);
4641   format %{ %}
4642   interface(CONST_INTER);
4643 %}
4644 
4645 // NULL Pointer Immediate
4646 operand immP0() %{
4647   predicate( n->get_ptr() == 0 );
4648   match(ConP);
4649   op_cost(0);
4650 
4651   format %{ %}
4652   interface(CONST_INTER);
4653 %}
4654 
4655 // Long Immediate
4656 operand immL() %{
4657   match(ConL);
4658 
4659   op_cost(20);
4660   format %{ %}
4661   interface(CONST_INTER);
4662 %}
4663 
4664 // Long Immediate zero
4665 operand immL0() %{
4666   predicate( n->get_long() == 0L );
4667   match(ConL);
4668   op_cost(0);
4669 
4670   format %{ %}
4671   interface(CONST_INTER);
4672 %}
4673 
4674 // Long Immediate zero
4675 operand immL_M1() %{
4676   predicate( n->get_long() == -1L );
4677   match(ConL);
4678   op_cost(0);
4679 
4680   format %{ %}
4681   interface(CONST_INTER);
4682 %}
4683 
4684 // Long immediate from 0 to 127.
4685 // Used for a shorter form of long mul by 10.
4686 operand immL_127() %{
4687   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4688   match(ConL);
4689   op_cost(0);
4690 
4691   format %{ %}
4692   interface(CONST_INTER);
4693 %}
4694 
4695 // Long Immediate: low 32-bit mask
4696 operand immL_32bits() %{
4697   predicate(n->get_long() == 0xFFFFFFFFL);
4698   match(ConL);
4699   op_cost(0);
4700 
4701   format %{ %}
4702   interface(CONST_INTER);
4703 %}
4704 
4705 // Long Immediate: low 32-bit mask
4706 operand immL32() %{
4707   predicate(n->get_long() == (int)(n->get_long()));
4708   match(ConL);
4709   op_cost(20);
4710 
4711   format %{ %}
4712   interface(CONST_INTER);
4713 %}
4714 
4715 //Double Immediate zero
4716 operand immD0() %{
4717   // Do additional (and counter-intuitive) test against NaN to work around VC++
4718   // bug that generates code such that NaNs compare equal to 0.0
4719   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4720   match(ConD);
4721 
4722   op_cost(5);
4723   format %{ %}
4724   interface(CONST_INTER);
4725 %}
4726 
4727 // Double Immediate one
4728 operand immD1() %{
4729   predicate( UseSSE<=1 && n->getd() == 1.0 );
4730   match(ConD);
4731 
4732   op_cost(5);
4733   format %{ %}
4734   interface(CONST_INTER);
4735 %}
4736 
4737 // Double Immediate
4738 operand immD() %{
4739   predicate(UseSSE<=1);
4740   match(ConD);
4741 
4742   op_cost(5);
4743   format %{ %}
4744   interface(CONST_INTER);
4745 %}
4746 
4747 operand immXD() %{
4748   predicate(UseSSE>=2);
4749   match(ConD);
4750 
4751   op_cost(5);
4752   format %{ %}
4753   interface(CONST_INTER);
4754 %}
4755 
4756 // Double Immediate zero
4757 operand immXD0() %{
4758   // Do additional (and counter-intuitive) test against NaN to work around VC++
4759   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4760   // compare equal to -0.0.
4761   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4762   match(ConD);
4763 
4764   format %{ %}
4765   interface(CONST_INTER);
4766 %}
4767 
4768 // Float Immediate zero
4769 operand immF0() %{
4770   predicate(UseSSE == 0 && n->getf() == 0.0F);
4771   match(ConF);
4772 
4773   op_cost(5);
4774   format %{ %}
4775   interface(CONST_INTER);
4776 %}
4777 
4778 // Float Immediate one
4779 operand immF1() %{
4780   predicate(UseSSE == 0 && n->getf() == 1.0F);
4781   match(ConF);
4782 
4783   op_cost(5);
4784   format %{ %}
4785   interface(CONST_INTER);
4786 %}
4787 
4788 // Float Immediate
4789 operand immF() %{
4790   predicate( UseSSE == 0 );
4791   match(ConF);
4792 
4793   op_cost(5);
4794   format %{ %}
4795   interface(CONST_INTER);
4796 %}
4797 
4798 // Float Immediate
4799 operand immXF() %{
4800   predicate(UseSSE >= 1);
4801   match(ConF);
4802 
4803   op_cost(5);
4804   format %{ %}
4805   interface(CONST_INTER);
4806 %}
4807 
4808 // Float Immediate zero.  Zero and not -0.0
4809 operand immXF0() %{
4810   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4811   match(ConF);
4812 
4813   op_cost(5);
4814   format %{ %}
4815   interface(CONST_INTER);
4816 %}
4817 
4818 // Immediates for special shifts (sign extend)
4819 
4820 // Constants for increment
4821 operand immI_16() %{
4822   predicate( n->get_int() == 16 );
4823   match(ConI);
4824 
4825   format %{ %}
4826   interface(CONST_INTER);
4827 %}
4828 
4829 operand immI_24() %{
4830   predicate( n->get_int() == 24 );
4831   match(ConI);
4832 
4833   format %{ %}
4834   interface(CONST_INTER);
4835 %}
4836 
4837 // Constant for byte-wide masking
4838 operand immI_255() %{
4839   predicate( n->get_int() == 255 );
4840   match(ConI);
4841 
4842   format %{ %}
4843   interface(CONST_INTER);
4844 %}
4845 
4846 // Constant for short-wide masking
4847 operand immI_65535() %{
4848   predicate(n->get_int() == 65535);
4849   match(ConI);
4850 
4851   format %{ %}
4852   interface(CONST_INTER);
4853 %}
4854 
4855 // Register Operands
4856 // Integer Register
4857 operand eRegI() %{
4858   constraint(ALLOC_IN_RC(e_reg));
4859   match(RegI);
4860   match(xRegI);
4861   match(eAXRegI);
4862   match(eBXRegI);
4863   match(eCXRegI);
4864   match(eDXRegI);
4865   match(eDIRegI);
4866   match(eSIRegI);
4867 
4868   format %{ %}
4869   interface(REG_INTER);
4870 %}
4871 
4872 // Subset of Integer Register
4873 operand xRegI(eRegI reg) %{
4874   constraint(ALLOC_IN_RC(x_reg));
4875   match(reg);
4876   match(eAXRegI);
4877   match(eBXRegI);
4878   match(eCXRegI);
4879   match(eDXRegI);
4880 
4881   format %{ %}
4882   interface(REG_INTER);
4883 %}
4884 
4885 // Special Registers
4886 operand eAXRegI(xRegI reg) %{
4887   constraint(ALLOC_IN_RC(eax_reg));
4888   match(reg);
4889   match(eRegI);
4890 
4891   format %{ "EAX" %}
4892   interface(REG_INTER);
4893 %}
4894 
4895 // Special Registers
4896 operand eBXRegI(xRegI reg) %{
4897   constraint(ALLOC_IN_RC(ebx_reg));
4898   match(reg);
4899   match(eRegI);
4900 
4901   format %{ "EBX" %}
4902   interface(REG_INTER);
4903 %}
4904 
4905 operand eCXRegI(xRegI reg) %{
4906   constraint(ALLOC_IN_RC(ecx_reg));
4907   match(reg);
4908   match(eRegI);
4909 
4910   format %{ "ECX" %}
4911   interface(REG_INTER);
4912 %}
4913 
4914 operand eDXRegI(xRegI reg) %{
4915   constraint(ALLOC_IN_RC(edx_reg));
4916   match(reg);
4917   match(eRegI);
4918 
4919   format %{ "EDX" %}
4920   interface(REG_INTER);
4921 %}
4922 
4923 operand eDIRegI(xRegI reg) %{
4924   constraint(ALLOC_IN_RC(edi_reg));
4925   match(reg);
4926   match(eRegI);
4927 
4928   format %{ "EDI" %}
4929   interface(REG_INTER);
4930 %}
4931 
4932 operand naxRegI() %{
4933   constraint(ALLOC_IN_RC(nax_reg));
4934   match(RegI);
4935   match(eCXRegI);
4936   match(eDXRegI);
4937   match(eSIRegI);
4938   match(eDIRegI);
4939 
4940   format %{ %}
4941   interface(REG_INTER);
4942 %}
4943 
4944 operand nadxRegI() %{
4945   constraint(ALLOC_IN_RC(nadx_reg));
4946   match(RegI);
4947   match(eBXRegI);
4948   match(eCXRegI);
4949   match(eSIRegI);
4950   match(eDIRegI);
4951 
4952   format %{ %}
4953   interface(REG_INTER);
4954 %}
4955 
4956 operand ncxRegI() %{
4957   constraint(ALLOC_IN_RC(ncx_reg));
4958   match(RegI);
4959   match(eAXRegI);
4960   match(eDXRegI);
4961   match(eSIRegI);
4962   match(eDIRegI);
4963 
4964   format %{ %}
4965   interface(REG_INTER);
4966 %}
4967 
4968 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4969 // //
4970 operand eSIRegI(xRegI reg) %{
4971    constraint(ALLOC_IN_RC(esi_reg));
4972    match(reg);
4973    match(eRegI);
4974 
4975    format %{ "ESI" %}
4976    interface(REG_INTER);
4977 %}
4978 
4979 // Pointer Register
4980 operand anyRegP() %{
4981   constraint(ALLOC_IN_RC(any_reg));
4982   match(RegP);
4983   match(eAXRegP);
4984   match(eBXRegP);
4985   match(eCXRegP);
4986   match(eDIRegP);
4987   match(eRegP);
4988 
4989   format %{ %}
4990   interface(REG_INTER);
4991 %}
4992 
4993 operand eRegP() %{
4994   constraint(ALLOC_IN_RC(e_reg));
4995   match(RegP);
4996   match(eAXRegP);
4997   match(eBXRegP);
4998   match(eCXRegP);
4999   match(eDIRegP);
5000 
5001   format %{ %}
5002   interface(REG_INTER);
5003 %}
5004 
5005 // On windows95, EBP is not safe to use for implicit null tests.
5006 operand eRegP_no_EBP() %{
5007   constraint(ALLOC_IN_RC(e_reg_no_rbp));
5008   match(RegP);
5009   match(eAXRegP);
5010   match(eBXRegP);
5011   match(eCXRegP);
5012   match(eDIRegP);
5013 
5014   op_cost(100);
5015   format %{ %}
5016   interface(REG_INTER);
5017 %}
5018 
5019 operand naxRegP() %{
5020   constraint(ALLOC_IN_RC(nax_reg));
5021   match(RegP);
5022   match(eBXRegP);
5023   match(eDXRegP);
5024   match(eCXRegP);
5025   match(eSIRegP);
5026   match(eDIRegP);
5027 
5028   format %{ %}
5029   interface(REG_INTER);
5030 %}
5031 
5032 operand nabxRegP() %{
5033   constraint(ALLOC_IN_RC(nabx_reg));
5034   match(RegP);
5035   match(eCXRegP);
5036   match(eDXRegP);
5037   match(eSIRegP);
5038   match(eDIRegP);
5039 
5040   format %{ %}
5041   interface(REG_INTER);
5042 %}
5043 
5044 operand pRegP() %{
5045   constraint(ALLOC_IN_RC(p_reg));
5046   match(RegP);
5047   match(eBXRegP);
5048   match(eDXRegP);
5049   match(eSIRegP);
5050   match(eDIRegP);
5051 
5052   format %{ %}
5053   interface(REG_INTER);
5054 %}
5055 
5056 // Special Registers
5057 // Return a pointer value
5058 operand eAXRegP(eRegP reg) %{
5059   constraint(ALLOC_IN_RC(eax_reg));
5060   match(reg);
5061   format %{ "EAX" %}
5062   interface(REG_INTER);
5063 %}
5064 
5065 // Used in AtomicAdd
5066 operand eBXRegP(eRegP reg) %{
5067   constraint(ALLOC_IN_RC(ebx_reg));
5068   match(reg);
5069   format %{ "EBX" %}
5070   interface(REG_INTER);
5071 %}
5072 
5073 // Tail-call (interprocedural jump) to interpreter
5074 operand eCXRegP(eRegP reg) %{
5075   constraint(ALLOC_IN_RC(ecx_reg));
5076   match(reg);
5077   format %{ "ECX" %}
5078   interface(REG_INTER);
5079 %}
5080 
5081 operand eSIRegP(eRegP reg) %{
5082   constraint(ALLOC_IN_RC(esi_reg));
5083   match(reg);
5084   format %{ "ESI" %}
5085   interface(REG_INTER);
5086 %}
5087 
5088 // Used in rep stosw
5089 operand eDIRegP(eRegP reg) %{
5090   constraint(ALLOC_IN_RC(edi_reg));
5091   match(reg);
5092   format %{ "EDI" %}
5093   interface(REG_INTER);
5094 %}
5095 
5096 operand eBPRegP() %{
5097   constraint(ALLOC_IN_RC(ebp_reg));
5098   match(RegP);
5099   format %{ "EBP" %}
5100   interface(REG_INTER);
5101 %}
5102 
5103 operand eRegL() %{
5104   constraint(ALLOC_IN_RC(long_reg));
5105   match(RegL);
5106   match(eADXRegL);
5107 
5108   format %{ %}
5109   interface(REG_INTER);
5110 %}
5111 
5112 operand eADXRegL( eRegL reg ) %{
5113   constraint(ALLOC_IN_RC(eadx_reg));
5114   match(reg);
5115 
5116   format %{ "EDX:EAX" %}
5117   interface(REG_INTER);
5118 %}
5119 
5120 operand eBCXRegL( eRegL reg ) %{
5121   constraint(ALLOC_IN_RC(ebcx_reg));
5122   match(reg);
5123 
5124   format %{ "EBX:ECX" %}
5125   interface(REG_INTER);
5126 %}
5127 
5128 // Special case for integer high multiply
5129 operand eADXRegL_low_only() %{
5130   constraint(ALLOC_IN_RC(eadx_reg));
5131   match(RegL);
5132 
5133   format %{ "EAX" %}
5134   interface(REG_INTER);
5135 %}
5136 
5137 // Flags register, used as output of compare instructions
5138 operand eFlagsReg() %{
5139   constraint(ALLOC_IN_RC(int_flags));
5140   match(RegFlags);
5141 
5142   format %{ "EFLAGS" %}
5143   interface(REG_INTER);
5144 %}
5145 
5146 // Flags register, used as output of FLOATING POINT compare instructions
5147 operand eFlagsRegU() %{
5148   constraint(ALLOC_IN_RC(int_flags));
5149   match(RegFlags);
5150 
5151   format %{ "EFLAGS_U" %}
5152   interface(REG_INTER);
5153 %}
5154 
5155 operand eFlagsRegUCF() %{
5156   constraint(ALLOC_IN_RC(int_flags));
5157   match(RegFlags);
5158   predicate(false);
5159 
5160   format %{ "EFLAGS_U_CF" %}
5161   interface(REG_INTER);
5162 %}
5163 
5164 // Condition Code Register used by long compare
5165 operand flagsReg_long_LTGE() %{
5166   constraint(ALLOC_IN_RC(int_flags));
5167   match(RegFlags);
5168   format %{ "FLAGS_LTGE" %}
5169   interface(REG_INTER);
5170 %}
5171 operand flagsReg_long_EQNE() %{
5172   constraint(ALLOC_IN_RC(int_flags));
5173   match(RegFlags);
5174   format %{ "FLAGS_EQNE" %}
5175   interface(REG_INTER);
5176 %}
5177 operand flagsReg_long_LEGT() %{
5178   constraint(ALLOC_IN_RC(int_flags));
5179   match(RegFlags);
5180   format %{ "FLAGS_LEGT" %}
5181   interface(REG_INTER);
5182 %}
5183 
5184 // Float register operands
5185 operand regD() %{
5186   predicate( UseSSE < 2 );
5187   constraint(ALLOC_IN_RC(dbl_reg));
5188   match(RegD);
5189   match(regDPR1);
5190   match(regDPR2);
5191   format %{ %}
5192   interface(REG_INTER);
5193 %}
5194 
5195 operand regDPR1(regD reg) %{
5196   predicate( UseSSE < 2 );
5197   constraint(ALLOC_IN_RC(dbl_reg0));
5198   match(reg);
5199   format %{ "FPR1" %}
5200   interface(REG_INTER);
5201 %}
5202 
5203 operand regDPR2(regD reg) %{
5204   predicate( UseSSE < 2 );
5205   constraint(ALLOC_IN_RC(dbl_reg1));
5206   match(reg);
5207   format %{ "FPR2" %}
5208   interface(REG_INTER);
5209 %}
5210 
5211 operand regnotDPR1(regD reg) %{
5212   predicate( UseSSE < 2 );
5213   constraint(ALLOC_IN_RC(dbl_notreg0));
5214   match(reg);
5215   format %{ %}
5216   interface(REG_INTER);
5217 %}
5218 
5219 // XMM Double register operands
5220 operand regXD() %{
5221   predicate( UseSSE>=2 );
5222   constraint(ALLOC_IN_RC(xdb_reg));
5223   match(RegD);
5224   match(regXD6);
5225   match(regXD7);
5226   format %{ %}
5227   interface(REG_INTER);
5228 %}
5229 
5230 // XMM6 double register operands
5231 operand regXD6(regXD reg) %{
5232   predicate( UseSSE>=2 );
5233   constraint(ALLOC_IN_RC(xdb_reg6));
5234   match(reg);
5235   format %{ "XMM6" %}
5236   interface(REG_INTER);
5237 %}
5238 
5239 // XMM7 double register operands
5240 operand regXD7(regXD reg) %{
5241   predicate( UseSSE>=2 );
5242   constraint(ALLOC_IN_RC(xdb_reg7));
5243   match(reg);
5244   format %{ "XMM7" %}
5245   interface(REG_INTER);
5246 %}
5247 
5248 // Float register operands
5249 operand regF() %{
5250   predicate( UseSSE < 2 );
5251   constraint(ALLOC_IN_RC(flt_reg));
5252   match(RegF);
5253   match(regFPR1);
5254   format %{ %}
5255   interface(REG_INTER);
5256 %}
5257 
5258 // Float register operands
5259 operand regFPR1(regF reg) %{
5260   predicate( UseSSE < 2 );
5261   constraint(ALLOC_IN_RC(flt_reg0));
5262   match(reg);
5263   format %{ "FPR1" %}
5264   interface(REG_INTER);
5265 %}
5266 
5267 // XMM register operands
5268 operand regX() %{
5269   predicate( UseSSE>=1 );
5270   constraint(ALLOC_IN_RC(xmm_reg));
5271   match(RegF);
5272   format %{ %}
5273   interface(REG_INTER);
5274 %}
5275 
5276 
5277 //----------Memory Operands----------------------------------------------------
5278 // Direct Memory Operand
5279 operand direct(immP addr) %{
5280   match(addr);
5281 
5282   format %{ "[$addr]" %}
5283   interface(MEMORY_INTER) %{
5284     base(0xFFFFFFFF);
5285     index(0x4);
5286     scale(0x0);
5287     disp($addr);
5288   %}
5289 %}
5290 
5291 // Indirect Memory Operand
5292 operand indirect(eRegP reg) %{
5293   constraint(ALLOC_IN_RC(e_reg));
5294   match(reg);
5295 
5296   format %{ "[$reg]" %}
5297   interface(MEMORY_INTER) %{
5298     base($reg);
5299     index(0x4);
5300     scale(0x0);
5301     disp(0x0);
5302   %}
5303 %}
5304 
5305 // Indirect Memory Plus Short Offset Operand
5306 operand indOffset8(eRegP reg, immI8 off) %{
5307   match(AddP reg off);
5308 
5309   format %{ "[$reg + $off]" %}
5310   interface(MEMORY_INTER) %{
5311     base($reg);
5312     index(0x4);
5313     scale(0x0);
5314     disp($off);
5315   %}
5316 %}
5317 
5318 // Indirect Memory Plus Long Offset Operand
5319 operand indOffset32(eRegP reg, immI off) %{
5320   match(AddP reg off);
5321 
5322   format %{ "[$reg + $off]" %}
5323   interface(MEMORY_INTER) %{
5324     base($reg);
5325     index(0x4);
5326     scale(0x0);
5327     disp($off);
5328   %}
5329 %}
5330 
5331 // Indirect Memory Plus Long Offset Operand
5332 operand indOffset32X(eRegI reg, immP off) %{
5333   match(AddP off reg);
5334 
5335   format %{ "[$reg + $off]" %}
5336   interface(MEMORY_INTER) %{
5337     base($reg);
5338     index(0x4);
5339     scale(0x0);
5340     disp($off);
5341   %}
5342 %}
5343 
5344 // Indirect Memory Plus Index Register Plus Offset Operand
5345 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5346   match(AddP (AddP reg ireg) off);
5347 
5348   op_cost(10);
5349   format %{"[$reg + $off + $ireg]" %}
5350   interface(MEMORY_INTER) %{
5351     base($reg);
5352     index($ireg);
5353     scale(0x0);
5354     disp($off);
5355   %}
5356 %}
5357 
5358 // Indirect Memory Plus Index Register Plus Offset Operand
5359 operand indIndex(eRegP reg, eRegI ireg) %{
5360   match(AddP reg ireg);
5361 
5362   op_cost(10);
5363   format %{"[$reg + $ireg]" %}
5364   interface(MEMORY_INTER) %{
5365     base($reg);
5366     index($ireg);
5367     scale(0x0);
5368     disp(0x0);
5369   %}
5370 %}
5371 
5372 // // -------------------------------------------------------------------------
5373 // // 486 architecture doesn't support "scale * index + offset" with out a base
5374 // // -------------------------------------------------------------------------
5375 // // Scaled Memory Operands
5376 // // Indirect Memory Times Scale Plus Offset Operand
5377 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5378 //   match(AddP off (LShiftI ireg scale));
5379 //
5380 //   op_cost(10);
5381 //   format %{"[$off + $ireg << $scale]" %}
5382 //   interface(MEMORY_INTER) %{
5383 //     base(0x4);
5384 //     index($ireg);
5385 //     scale($scale);
5386 //     disp($off);
5387 //   %}
5388 // %}
5389 
5390 // Indirect Memory Times Scale Plus Index Register
5391 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5392   match(AddP reg (LShiftI ireg scale));
5393 
5394   op_cost(10);
5395   format %{"[$reg + $ireg << $scale]" %}
5396   interface(MEMORY_INTER) %{
5397     base($reg);
5398     index($ireg);
5399     scale($scale);
5400     disp(0x0);
5401   %}
5402 %}
5403 
5404 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5405 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5406   match(AddP (AddP reg (LShiftI ireg scale)) off);
5407 
5408   op_cost(10);
5409   format %{"[$reg + $off + $ireg << $scale]" %}
5410   interface(MEMORY_INTER) %{
5411     base($reg);
5412     index($ireg);
5413     scale($scale);
5414     disp($off);
5415   %}
5416 %}
5417 
5418 //----------Load Long Memory Operands------------------------------------------
5419 // The load-long idiom will use it's address expression again after loading
5420 // the first word of the long.  If the load-long destination overlaps with
5421 // registers used in the addressing expression, the 2nd half will be loaded
5422 // from a clobbered address.  Fix this by requiring that load-long use
5423 // address registers that do not overlap with the load-long target.
5424 
5425 // load-long support
5426 operand load_long_RegP() %{
5427   constraint(ALLOC_IN_RC(esi_reg));
5428   match(RegP);
5429   match(eSIRegP);
5430   op_cost(100);
5431   format %{  %}
5432   interface(REG_INTER);
5433 %}
5434 
5435 // Indirect Memory Operand Long
5436 operand load_long_indirect(load_long_RegP reg) %{
5437   constraint(ALLOC_IN_RC(esi_reg));
5438   match(reg);
5439 
5440   format %{ "[$reg]" %}
5441   interface(MEMORY_INTER) %{
5442     base($reg);
5443     index(0x4);
5444     scale(0x0);
5445     disp(0x0);
5446   %}
5447 %}
5448 
5449 // Indirect Memory Plus Long Offset Operand
5450 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5451   match(AddP reg off);
5452 
5453   format %{ "[$reg + $off]" %}
5454   interface(MEMORY_INTER) %{
5455     base($reg);
5456     index(0x4);
5457     scale(0x0);
5458     disp($off);
5459   %}
5460 %}
5461 
5462 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5463 
5464 
5465 //----------Special Memory Operands--------------------------------------------
5466 // Stack Slot Operand - This operand is used for loading and storing temporary
5467 //                      values on the stack where a match requires a value to
5468 //                      flow through memory.
5469 operand stackSlotP(sRegP reg) %{
5470   constraint(ALLOC_IN_RC(stack_slots));
5471   // No match rule because this operand is only generated in matching
5472   format %{ "[$reg]" %}
5473   interface(MEMORY_INTER) %{
5474     base(0x4);   // ESP
5475     index(0x4);  // No Index
5476     scale(0x0);  // No Scale
5477     disp($reg);  // Stack Offset
5478   %}
5479 %}
5480 
5481 operand stackSlotI(sRegI reg) %{
5482   constraint(ALLOC_IN_RC(stack_slots));
5483   // No match rule because this operand is only generated in matching
5484   format %{ "[$reg]" %}
5485   interface(MEMORY_INTER) %{
5486     base(0x4);   // ESP
5487     index(0x4);  // No Index
5488     scale(0x0);  // No Scale
5489     disp($reg);  // Stack Offset
5490   %}
5491 %}
5492 
5493 operand stackSlotF(sRegF reg) %{
5494   constraint(ALLOC_IN_RC(stack_slots));
5495   // No match rule because this operand is only generated in matching
5496   format %{ "[$reg]" %}
5497   interface(MEMORY_INTER) %{
5498     base(0x4);   // ESP
5499     index(0x4);  // No Index
5500     scale(0x0);  // No Scale
5501     disp($reg);  // Stack Offset
5502   %}
5503 %}
5504 
5505 operand stackSlotD(sRegD reg) %{
5506   constraint(ALLOC_IN_RC(stack_slots));
5507   // No match rule because this operand is only generated in matching
5508   format %{ "[$reg]" %}
5509   interface(MEMORY_INTER) %{
5510     base(0x4);   // ESP
5511     index(0x4);  // No Index
5512     scale(0x0);  // No Scale
5513     disp($reg);  // Stack Offset
5514   %}
5515 %}
5516 
5517 operand stackSlotL(sRegL reg) %{
5518   constraint(ALLOC_IN_RC(stack_slots));
5519   // No match rule because this operand is only generated in matching
5520   format %{ "[$reg]" %}
5521   interface(MEMORY_INTER) %{
5522     base(0x4);   // ESP
5523     index(0x4);  // No Index
5524     scale(0x0);  // No Scale
5525     disp($reg);  // Stack Offset
5526   %}
5527 %}
5528 
5529 //----------Memory Operands - Win95 Implicit Null Variants----------------
5530 // Indirect Memory Operand
5531 operand indirect_win95_safe(eRegP_no_EBP reg)
5532 %{
5533   constraint(ALLOC_IN_RC(e_reg));
5534   match(reg);
5535 
5536   op_cost(100);
5537   format %{ "[$reg]" %}
5538   interface(MEMORY_INTER) %{
5539     base($reg);
5540     index(0x4);
5541     scale(0x0);
5542     disp(0x0);
5543   %}
5544 %}
5545 
5546 // Indirect Memory Plus Short Offset Operand
5547 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5548 %{
5549   match(AddP reg off);
5550 
5551   op_cost(100);
5552   format %{ "[$reg + $off]" %}
5553   interface(MEMORY_INTER) %{
5554     base($reg);
5555     index(0x4);
5556     scale(0x0);
5557     disp($off);
5558   %}
5559 %}
5560 
5561 // Indirect Memory Plus Long Offset Operand
5562 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5563 %{
5564   match(AddP reg off);
5565 
5566   op_cost(100);
5567   format %{ "[$reg + $off]" %}
5568   interface(MEMORY_INTER) %{
5569     base($reg);
5570     index(0x4);
5571     scale(0x0);
5572     disp($off);
5573   %}
5574 %}
5575 
5576 // Indirect Memory Plus Index Register Plus Offset Operand
5577 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5578 %{
5579   match(AddP (AddP reg ireg) off);
5580 
5581   op_cost(100);
5582   format %{"[$reg + $off + $ireg]" %}
5583   interface(MEMORY_INTER) %{
5584     base($reg);
5585     index($ireg);
5586     scale(0x0);
5587     disp($off);
5588   %}
5589 %}
5590 
5591 // Indirect Memory Times Scale Plus Index Register
5592 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5593 %{
5594   match(AddP reg (LShiftI ireg scale));
5595 
5596   op_cost(100);
5597   format %{"[$reg + $ireg << $scale]" %}
5598   interface(MEMORY_INTER) %{
5599     base($reg);
5600     index($ireg);
5601     scale($scale);
5602     disp(0x0);
5603   %}
5604 %}
5605 
5606 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5607 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5608 %{
5609   match(AddP (AddP reg (LShiftI ireg scale)) off);
5610 
5611   op_cost(100);
5612   format %{"[$reg + $off + $ireg << $scale]" %}
5613   interface(MEMORY_INTER) %{
5614     base($reg);
5615     index($ireg);
5616     scale($scale);
5617     disp($off);
5618   %}
5619 %}
5620 
5621 //----------Conditional Branch Operands----------------------------------------
5622 // Comparison Op  - This is the operation of the comparison, and is limited to
5623 //                  the following set of codes:
5624 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5625 //
5626 // Other attributes of the comparison, such as unsignedness, are specified
5627 // by the comparison instruction that sets a condition code flags register.
5628 // That result is represented by a flags operand whose subtype is appropriate
5629 // to the unsignedness (etc.) of the comparison.
5630 //
5631 // Later, the instruction which matches both the Comparison Op (a Bool) and
5632 // the flags (produced by the Cmp) specifies the coding of the comparison op
5633 // by matching a specific subtype of Bool operand below, such as cmpOpU.
5634 
5635 // Comparision Code
5636 operand cmpOp() %{
5637   match(Bool);
5638 
5639   format %{ "" %}
5640   interface(COND_INTER) %{
5641     equal(0x4, "e");
5642     not_equal(0x5, "ne");
5643     less(0xC, "l");
5644     greater_equal(0xD, "ge");
5645     less_equal(0xE, "le");
5646     greater(0xF, "g");
5647   %}
5648 %}
5649 
5650 // Comparison Code, unsigned compare.  Used by FP also, with
5651 // C2 (unordered) turned into GT or LT already.  The other bits
5652 // C0 and C3 are turned into Carry & Zero flags.
5653 operand cmpOpU() %{
5654   match(Bool);
5655 
5656   format %{ "" %}
5657   interface(COND_INTER) %{
5658     equal(0x4, "e");
5659     not_equal(0x5, "ne");
5660     less(0x2, "b");
5661     greater_equal(0x3, "nb");
5662     less_equal(0x6, "be");
5663     greater(0x7, "nbe");
5664   %}
5665 %}
5666 
5667 // Floating comparisons that don't require any fixup for the unordered case
5668 operand cmpOpUCF() %{
5669   match(Bool);
5670   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
5671             n->as_Bool()->_test._test == BoolTest::ge ||
5672             n->as_Bool()->_test._test == BoolTest::le ||
5673             n->as_Bool()->_test._test == BoolTest::gt);
5674   format %{ "" %}
5675   interface(COND_INTER) %{
5676     equal(0x4, "e");
5677     not_equal(0x5, "ne");
5678     less(0x2, "b");
5679     greater_equal(0x3, "nb");
5680     less_equal(0x6, "be");
5681     greater(0x7, "nbe");
5682   %}
5683 %}
5684 
5685 
5686 // Floating comparisons that can be fixed up with extra conditional jumps
5687 operand cmpOpUCF2() %{
5688   match(Bool);
5689   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5690             n->as_Bool()->_test._test == BoolTest::eq);
5691   format %{ "" %}
5692   interface(COND_INTER) %{
5693     equal(0x4, "e");
5694     not_equal(0x5, "ne");
5695     less(0x2, "b");
5696     greater_equal(0x3, "nb");
5697     less_equal(0x6, "be");
5698     greater(0x7, "nbe");
5699   %}
5700 %}
5701 
5702 // Comparison Code for FP conditional move
5703 operand cmpOp_fcmov() %{
5704   match(Bool);
5705 
5706   format %{ "" %}
5707   interface(COND_INTER) %{
5708     equal        (0x0C8);
5709     not_equal    (0x1C8);
5710     less         (0x0C0);
5711     greater_equal(0x1C0);
5712     less_equal   (0x0D0);
5713     greater      (0x1D0);
5714   %}
5715 %}
5716 
5717 // Comparision Code used in long compares
5718 operand cmpOp_commute() %{
5719   match(Bool);
5720 
5721   format %{ "" %}
5722   interface(COND_INTER) %{
5723     equal(0x4, "e");
5724     not_equal(0x5, "ne");
5725     less(0xF, "g");
5726     greater_equal(0xE, "le");
5727     less_equal(0xD, "ge");
5728     greater(0xC, "l");
5729   %}
5730 %}
5731 
5732 //----------OPERAND CLASSES----------------------------------------------------
5733 // Operand Classes are groups of operands that are used as to simplify
5734 // instruction definitions by not requiring the AD writer to specify separate
5735 // instructions for every form of operand when the instruction accepts
5736 // multiple operand types with the same basic encoding and format.  The classic
5737 // case of this is memory operands.
5738 
5739 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5740                indIndex, indIndexScale, indIndexScaleOffset);
5741 
5742 // Long memory operations are encoded in 2 instructions and a +4 offset.
5743 // This means some kind of offset is always required and you cannot use
5744 // an oop as the offset (done when working on static globals).
5745 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5746                     indIndex, indIndexScale, indIndexScaleOffset);
5747 
5748 
5749 //----------PIPELINE-----------------------------------------------------------
5750 // Rules which define the behavior of the target architectures pipeline.
5751 pipeline %{
5752 
5753 //----------ATTRIBUTES---------------------------------------------------------
5754 attributes %{
5755   variable_size_instructions;        // Fixed size instructions
5756   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5757   instruction_unit_size = 1;         // An instruction is 1 bytes long
5758   instruction_fetch_unit_size = 16;  // The processor fetches one line
5759   instruction_fetch_units = 1;       // of 16 bytes
5760 
5761   // List of nop instructions
5762   nops( MachNop );
5763 %}
5764 
5765 //----------RESOURCES----------------------------------------------------------
5766 // Resources are the functional units available to the machine
5767 
5768 // Generic P2/P3 pipeline
5769 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5770 // 3 instructions decoded per cycle.
5771 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5772 // 2 ALU op, only ALU0 handles mul/div instructions.
5773 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5774            MS0, MS1, MEM = MS0 | MS1,
5775            BR, FPU,
5776            ALU0, ALU1, ALU = ALU0 | ALU1 );
5777 
5778 //----------PIPELINE DESCRIPTION-----------------------------------------------
5779 // Pipeline Description specifies the stages in the machine's pipeline
5780 
5781 // Generic P2/P3 pipeline
5782 pipe_desc(S0, S1, S2, S3, S4, S5);
5783 
5784 //----------PIPELINE CLASSES---------------------------------------------------
5785 // Pipeline Classes describe the stages in which input and output are
5786 // referenced by the hardware pipeline.
5787 
5788 // Naming convention: ialu or fpu
5789 // Then: _reg
5790 // Then: _reg if there is a 2nd register
5791 // Then: _long if it's a pair of instructions implementing a long
5792 // Then: _fat if it requires the big decoder
5793 //   Or: _mem if it requires the big decoder and a memory unit.
5794 
5795 // Integer ALU reg operation
5796 pipe_class ialu_reg(eRegI dst) %{
5797     single_instruction;
5798     dst    : S4(write);
5799     dst    : S3(read);
5800     DECODE : S0;        // any decoder
5801     ALU    : S3;        // any alu
5802 %}
5803 
5804 // Long ALU reg operation
5805 pipe_class ialu_reg_long(eRegL dst) %{
5806     instruction_count(2);
5807     dst    : S4(write);
5808     dst    : S3(read);
5809     DECODE : S0(2);     // any 2 decoders
5810     ALU    : S3(2);     // both alus
5811 %}
5812 
5813 // Integer ALU reg operation using big decoder
5814 pipe_class ialu_reg_fat(eRegI dst) %{
5815     single_instruction;
5816     dst    : S4(write);
5817     dst    : S3(read);
5818     D0     : S0;        // big decoder only
5819     ALU    : S3;        // any alu
5820 %}
5821 
5822 // Long ALU reg operation using big decoder
5823 pipe_class ialu_reg_long_fat(eRegL dst) %{
5824     instruction_count(2);
5825     dst    : S4(write);
5826     dst    : S3(read);
5827     D0     : S0(2);     // big decoder only; twice
5828     ALU    : S3(2);     // any 2 alus
5829 %}
5830 
5831 // Integer ALU reg-reg operation
5832 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5833     single_instruction;
5834     dst    : S4(write);
5835     src    : S3(read);
5836     DECODE : S0;        // any decoder
5837     ALU    : S3;        // any alu
5838 %}
5839 
5840 // Long ALU reg-reg operation
5841 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5842     instruction_count(2);
5843     dst    : S4(write);
5844     src    : S3(read);
5845     DECODE : S0(2);     // any 2 decoders
5846     ALU    : S3(2);     // both alus
5847 %}
5848 
5849 // Integer ALU reg-reg operation
5850 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5851     single_instruction;
5852     dst    : S4(write);
5853     src    : S3(read);
5854     D0     : S0;        // big decoder only
5855     ALU    : S3;        // any alu
5856 %}
5857 
5858 // Long ALU reg-reg operation
5859 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5860     instruction_count(2);
5861     dst    : S4(write);
5862     src    : S3(read);
5863     D0     : S0(2);     // big decoder only; twice
5864     ALU    : S3(2);     // both alus
5865 %}
5866 
5867 // Integer ALU reg-mem operation
5868 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5869     single_instruction;
5870     dst    : S5(write);
5871     mem    : S3(read);
5872     D0     : S0;        // big decoder only
5873     ALU    : S4;        // any alu
5874     MEM    : S3;        // any mem
5875 %}
5876 
5877 // Long ALU reg-mem operation
5878 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5879     instruction_count(2);
5880     dst    : S5(write);
5881     mem    : S3(read);
5882     D0     : S0(2);     // big decoder only; twice
5883     ALU    : S4(2);     // any 2 alus
5884     MEM    : S3(2);     // both mems
5885 %}
5886 
5887 // Integer mem operation (prefetch)
5888 pipe_class ialu_mem(memory mem)
5889 %{
5890     single_instruction;
5891     mem    : S3(read);
5892     D0     : S0;        // big decoder only
5893     MEM    : S3;        // any mem
5894 %}
5895 
5896 // Integer Store to Memory
5897 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
5898     single_instruction;
5899     mem    : S3(read);
5900     src    : S5(read);
5901     D0     : S0;        // big decoder only
5902     ALU    : S4;        // any alu
5903     MEM    : S3;
5904 %}
5905 
5906 // Long Store to Memory
5907 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5908     instruction_count(2);
5909     mem    : S3(read);
5910     src    : S5(read);
5911     D0     : S0(2);     // big decoder only; twice
5912     ALU    : S4(2);     // any 2 alus
5913     MEM    : S3(2);     // Both mems
5914 %}
5915 
5916 // Integer Store to Memory
5917 pipe_class ialu_mem_imm(memory mem) %{
5918     single_instruction;
5919     mem    : S3(read);
5920     D0     : S0;        // big decoder only
5921     ALU    : S4;        // any alu
5922     MEM    : S3;
5923 %}
5924 
5925 // Integer ALU0 reg-reg operation
5926 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
5927     single_instruction;
5928     dst    : S4(write);
5929     src    : S3(read);
5930     D0     : S0;        // Big decoder only
5931     ALU0   : S3;        // only alu0
5932 %}
5933 
5934 // Integer ALU0 reg-mem operation
5935 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
5936     single_instruction;
5937     dst    : S5(write);
5938     mem    : S3(read);
5939     D0     : S0;        // big decoder only
5940     ALU0   : S4;        // ALU0 only
5941     MEM    : S3;        // any mem
5942 %}
5943 
5944 // Integer ALU reg-reg operation
5945 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
5946     single_instruction;
5947     cr     : S4(write);
5948     src1   : S3(read);
5949     src2   : S3(read);
5950     DECODE : S0;        // any decoder
5951     ALU    : S3;        // any alu
5952 %}
5953 
5954 // Integer ALU reg-imm operation
5955 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
5956     single_instruction;
5957     cr     : S4(write);
5958     src1   : S3(read);
5959     DECODE : S0;        // any decoder
5960     ALU    : S3;        // any alu
5961 %}
5962 
5963 // Integer ALU reg-mem operation
5964 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
5965     single_instruction;
5966     cr     : S4(write);
5967     src1   : S3(read);
5968     src2   : S3(read);
5969     D0     : S0;        // big decoder only
5970     ALU    : S4;        // any alu
5971     MEM    : S3;
5972 %}
5973 
5974 // Conditional move reg-reg
5975 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
5976     instruction_count(4);
5977     y      : S4(read);
5978     q      : S3(read);
5979     p      : S3(read);
5980     DECODE : S0(4);     // any decoder
5981 %}
5982 
5983 // Conditional move reg-reg
5984 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
5985     single_instruction;
5986     dst    : S4(write);
5987     src    : S3(read);
5988     cr     : S3(read);
5989     DECODE : S0;        // any decoder
5990 %}
5991 
5992 // Conditional move reg-mem
5993 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
5994     single_instruction;
5995     dst    : S4(write);
5996     src    : S3(read);
5997     cr     : S3(read);
5998     DECODE : S0;        // any decoder
5999     MEM    : S3;
6000 %}
6001 
6002 // Conditional move reg-reg long
6003 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
6004     single_instruction;
6005     dst    : S4(write);
6006     src    : S3(read);
6007     cr     : S3(read);
6008     DECODE : S0(2);     // any 2 decoders
6009 %}
6010 
6011 // Conditional move double reg-reg
6012 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
6013     single_instruction;
6014     dst    : S4(write);
6015     src    : S3(read);
6016     cr     : S3(read);
6017     DECODE : S0;        // any decoder
6018 %}
6019 
6020 // Float reg-reg operation
6021 pipe_class fpu_reg(regD dst) %{
6022     instruction_count(2);
6023     dst    : S3(read);
6024     DECODE : S0(2);     // any 2 decoders
6025     FPU    : S3;
6026 %}
6027 
6028 // Float reg-reg operation
6029 pipe_class fpu_reg_reg(regD dst, regD src) %{
6030     instruction_count(2);
6031     dst    : S4(write);
6032     src    : S3(read);
6033     DECODE : S0(2);     // any 2 decoders
6034     FPU    : S3;
6035 %}
6036 
6037 // Float reg-reg operation
6038 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
6039     instruction_count(3);
6040     dst    : S4(write);
6041     src1   : S3(read);
6042     src2   : S3(read);
6043     DECODE : S0(3);     // any 3 decoders
6044     FPU    : S3(2);
6045 %}
6046 
6047 // Float reg-reg operation
6048 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
6049     instruction_count(4);
6050     dst    : S4(write);
6051     src1   : S3(read);
6052     src2   : S3(read);
6053     src3   : S3(read);
6054     DECODE : S0(4);     // any 3 decoders
6055     FPU    : S3(2);
6056 %}
6057 
6058 // Float reg-reg operation
6059 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6060     instruction_count(4);
6061     dst    : S4(write);
6062     src1   : S3(read);
6063     src2   : S3(read);
6064     src3   : S3(read);
6065     DECODE : S1(3);     // any 3 decoders
6066     D0     : S0;        // Big decoder only
6067     FPU    : S3(2);
6068     MEM    : S3;
6069 %}
6070 
6071 // Float reg-mem operation
6072 pipe_class fpu_reg_mem(regD dst, memory mem) %{
6073     instruction_count(2);
6074     dst    : S5(write);
6075     mem    : S3(read);
6076     D0     : S0;        // big decoder only
6077     DECODE : S1;        // any decoder for FPU POP
6078     FPU    : S4;
6079     MEM    : S3;        // any mem
6080 %}
6081 
6082 // Float reg-mem operation
6083 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6084     instruction_count(3);
6085     dst    : S5(write);
6086     src1   : S3(read);
6087     mem    : S3(read);
6088     D0     : S0;        // big decoder only
6089     DECODE : S1(2);     // any decoder for FPU POP
6090     FPU    : S4;
6091     MEM    : S3;        // any mem
6092 %}
6093 
6094 // Float mem-reg operation
6095 pipe_class fpu_mem_reg(memory mem, regD src) %{
6096     instruction_count(2);
6097     src    : S5(read);
6098     mem    : S3(read);
6099     DECODE : S0;        // any decoder for FPU PUSH
6100     D0     : S1;        // big decoder only
6101     FPU    : S4;
6102     MEM    : S3;        // any mem
6103 %}
6104 
6105 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6106     instruction_count(3);
6107     src1   : S3(read);
6108     src2   : S3(read);
6109     mem    : S3(read);
6110     DECODE : S0(2);     // any decoder for FPU PUSH
6111     D0     : S1;        // big decoder only
6112     FPU    : S4;
6113     MEM    : S3;        // any mem
6114 %}
6115 
6116 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6117     instruction_count(3);
6118     src1   : S3(read);
6119     src2   : S3(read);
6120     mem    : S4(read);
6121     DECODE : S0;        // any decoder for FPU PUSH
6122     D0     : S0(2);     // big decoder only
6123     FPU    : S4;
6124     MEM    : S3(2);     // any mem
6125 %}
6126 
6127 pipe_class fpu_mem_mem(memory dst, memory src1) %{
6128     instruction_count(2);
6129     src1   : S3(read);
6130     dst    : S4(read);
6131     D0     : S0(2);     // big decoder only
6132     MEM    : S3(2);     // any mem
6133 %}
6134 
6135 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6136     instruction_count(3);
6137     src1   : S3(read);
6138     src2   : S3(read);
6139     dst    : S4(read);
6140     D0     : S0(3);     // big decoder only
6141     FPU    : S4;
6142     MEM    : S3(3);     // any mem
6143 %}
6144 
6145 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6146     instruction_count(3);
6147     src1   : S4(read);
6148     mem    : S4(read);
6149     DECODE : S0;        // any decoder for FPU PUSH
6150     D0     : S0(2);     // big decoder only
6151     FPU    : S4;
6152     MEM    : S3(2);     // any mem
6153 %}
6154 
6155 // Float load constant
6156 pipe_class fpu_reg_con(regD dst) %{
6157     instruction_count(2);
6158     dst    : S5(write);
6159     D0     : S0;        // big decoder only for the load
6160     DECODE : S1;        // any decoder for FPU POP
6161     FPU    : S4;
6162     MEM    : S3;        // any mem
6163 %}
6164 
6165 // Float load constant
6166 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6167     instruction_count(3);
6168     dst    : S5(write);
6169     src    : S3(read);
6170     D0     : S0;        // big decoder only for the load
6171     DECODE : S1(2);     // any decoder for FPU POP
6172     FPU    : S4;
6173     MEM    : S3;        // any mem
6174 %}
6175 
6176 // UnConditional branch
6177 pipe_class pipe_jmp( label labl ) %{
6178     single_instruction;
6179     BR   : S3;
6180 %}
6181 
6182 // Conditional branch
6183 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6184     single_instruction;
6185     cr    : S1(read);
6186     BR    : S3;
6187 %}
6188 
6189 // Allocation idiom
6190 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6191     instruction_count(1); force_serialization;
6192     fixed_latency(6);
6193     heap_ptr : S3(read);
6194     DECODE   : S0(3);
6195     D0       : S2;
6196     MEM      : S3;
6197     ALU      : S3(2);
6198     dst      : S5(write);
6199     BR       : S5;
6200 %}
6201 
6202 // Generic big/slow expanded idiom
6203 pipe_class pipe_slow(  ) %{
6204     instruction_count(10); multiple_bundles; force_serialization;
6205     fixed_latency(100);
6206     D0  : S0(2);
6207     MEM : S3(2);
6208 %}
6209 
6210 // The real do-nothing guy
6211 pipe_class empty( ) %{
6212     instruction_count(0);
6213 %}
6214 
6215 // Define the class for the Nop node
6216 define %{
6217    MachNop = empty;
6218 %}
6219 
6220 %}
6221 
6222 //----------INSTRUCTIONS-------------------------------------------------------
6223 //
6224 // match      -- States which machine-independent subtree may be replaced
6225 //               by this instruction.
6226 // ins_cost   -- The estimated cost of this instruction is used by instruction
6227 //               selection to identify a minimum cost tree of machine
6228 //               instructions that matches a tree of machine-independent
6229 //               instructions.
6230 // format     -- A string providing the disassembly for this instruction.
6231 //               The value of an instruction's operand may be inserted
6232 //               by referring to it with a '$' prefix.
6233 // opcode     -- Three instruction opcodes may be provided.  These are referred
6234 //               to within an encode class as $primary, $secondary, and $tertiary
6235 //               respectively.  The primary opcode is commonly used to
6236 //               indicate the type of machine instruction, while secondary
6237 //               and tertiary are often used for prefix options or addressing
6238 //               modes.
6239 // ins_encode -- A list of encode classes with parameters. The encode class
6240 //               name must have been defined in an 'enc_class' specification
6241 //               in the encode section of the architecture description.
6242 
6243 //----------BSWAP-Instruction--------------------------------------------------
6244 instruct bytes_reverse_int(eRegI dst) %{
6245   match(Set dst (ReverseBytesI dst));
6246 
6247   format %{ "BSWAP  $dst" %}
6248   opcode(0x0F, 0xC8);
6249   ins_encode( OpcP, OpcSReg(dst) );
6250   ins_pipe( ialu_reg );
6251 %}
6252 
6253 instruct bytes_reverse_long(eRegL dst) %{
6254   match(Set dst (ReverseBytesL dst));
6255 
6256   format %{ "BSWAP  $dst.lo\n\t"
6257             "BSWAP  $dst.hi\n\t"
6258             "XCHG   $dst.lo $dst.hi" %}
6259 
6260   ins_cost(125);
6261   ins_encode( bswap_long_bytes(dst) );
6262   ins_pipe( ialu_reg_reg);
6263 %}
6264 
6265 instruct bytes_reverse_unsigned_short(eRegI dst) %{
6266   match(Set dst (ReverseBytesUS dst));
6267 
6268   format %{ "BSWAP  $dst\n\t" 
6269             "SHR    $dst,16\n\t" %}
6270   ins_encode %{
6271     __ bswapl($dst$$Register);
6272     __ shrl($dst$$Register, 16); 
6273   %}
6274   ins_pipe( ialu_reg );
6275 %}
6276 
6277 instruct bytes_reverse_short(eRegI dst) %{
6278   match(Set dst (ReverseBytesS dst));
6279 
6280   format %{ "BSWAP  $dst\n\t" 
6281             "SAR    $dst,16\n\t" %}
6282   ins_encode %{
6283     __ bswapl($dst$$Register);
6284     __ sarl($dst$$Register, 16); 
6285   %}
6286   ins_pipe( ialu_reg );
6287 %}
6288 
6289 
6290 //---------- Zeros Count Instructions ------------------------------------------
6291 
6292 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6293   predicate(UseCountLeadingZerosInstruction);
6294   match(Set dst (CountLeadingZerosI src));
6295   effect(KILL cr);
6296 
6297   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
6298   ins_encode %{
6299     __ lzcntl($dst$$Register, $src$$Register);
6300   %}
6301   ins_pipe(ialu_reg);
6302 %}
6303 
6304 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
6305   predicate(!UseCountLeadingZerosInstruction);
6306   match(Set dst (CountLeadingZerosI src));
6307   effect(KILL cr);
6308 
6309   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
6310             "JNZ    skip\n\t"
6311             "MOV    $dst, -1\n"
6312       "skip:\n\t"
6313             "NEG    $dst\n\t"
6314             "ADD    $dst, 31" %}
6315   ins_encode %{
6316     Register Rdst = $dst$$Register;
6317     Register Rsrc = $src$$Register;
6318     Label skip;
6319     __ bsrl(Rdst, Rsrc);
6320     __ jccb(Assembler::notZero, skip);
6321     __ movl(Rdst, -1);
6322     __ bind(skip);
6323     __ negl(Rdst);
6324     __ addl(Rdst, BitsPerInt - 1);
6325   %}
6326   ins_pipe(ialu_reg);
6327 %}
6328 
6329 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6330   predicate(UseCountLeadingZerosInstruction);
6331   match(Set dst (CountLeadingZerosL src));
6332   effect(TEMP dst, KILL cr);
6333 
6334   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
6335             "JNC    done\n\t"
6336             "LZCNT  $dst, $src.lo\n\t"
6337             "ADD    $dst, 32\n"
6338       "done:" %}
6339   ins_encode %{
6340     Register Rdst = $dst$$Register;
6341     Register Rsrc = $src$$Register;
6342     Label done;
6343     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
6344     __ jccb(Assembler::carryClear, done);
6345     __ lzcntl(Rdst, Rsrc);
6346     __ addl(Rdst, BitsPerInt);
6347     __ bind(done);
6348   %}
6349   ins_pipe(ialu_reg);
6350 %}
6351 
6352 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
6353   predicate(!UseCountLeadingZerosInstruction);
6354   match(Set dst (CountLeadingZerosL src));
6355   effect(TEMP dst, KILL cr);
6356 
6357   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
6358             "JZ     msw_is_zero\n\t"
6359             "ADD    $dst, 32\n\t"
6360             "JMP    not_zero\n"
6361       "msw_is_zero:\n\t"
6362             "BSR    $dst, $src.lo\n\t"
6363             "JNZ    not_zero\n\t"
6364             "MOV    $dst, -1\n"
6365       "not_zero:\n\t"
6366             "NEG    $dst\n\t"
6367             "ADD    $dst, 63\n" %}
6368  ins_encode %{
6369     Register Rdst = $dst$$Register;
6370     Register Rsrc = $src$$Register;
6371     Label msw_is_zero;
6372     Label not_zero;
6373     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
6374     __ jccb(Assembler::zero, msw_is_zero);
6375     __ addl(Rdst, BitsPerInt);
6376     __ jmpb(not_zero);
6377     __ bind(msw_is_zero);
6378     __ bsrl(Rdst, Rsrc);
6379     __ jccb(Assembler::notZero, not_zero);
6380     __ movl(Rdst, -1);
6381     __ bind(not_zero);
6382     __ negl(Rdst);
6383     __ addl(Rdst, BitsPerLong - 1);
6384   %}
6385   ins_pipe(ialu_reg);
6386 %}
6387 
6388 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6389   match(Set dst (CountTrailingZerosI src));
6390   effect(KILL cr);
6391 
6392   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
6393             "JNZ    done\n\t"
6394             "MOV    $dst, 32\n"
6395       "done:" %}
6396   ins_encode %{
6397     Register Rdst = $dst$$Register;
6398     Label done;
6399     __ bsfl(Rdst, $src$$Register);
6400     __ jccb(Assembler::notZero, done);
6401     __ movl(Rdst, BitsPerInt);
6402     __ bind(done);
6403   %}
6404   ins_pipe(ialu_reg);
6405 %}
6406 
6407 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6408   match(Set dst (CountTrailingZerosL src));
6409   effect(TEMP dst, KILL cr);
6410 
6411   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
6412             "JNZ    done\n\t"
6413             "BSF    $dst, $src.hi\n\t"
6414             "JNZ    msw_not_zero\n\t"
6415             "MOV    $dst, 32\n"
6416       "msw_not_zero:\n\t"
6417             "ADD    $dst, 32\n"
6418       "done:" %}
6419   ins_encode %{
6420     Register Rdst = $dst$$Register;
6421     Register Rsrc = $src$$Register;
6422     Label msw_not_zero;
6423     Label done;
6424     __ bsfl(Rdst, Rsrc);
6425     __ jccb(Assembler::notZero, done);
6426     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
6427     __ jccb(Assembler::notZero, msw_not_zero);
6428     __ movl(Rdst, BitsPerInt);
6429     __ bind(msw_not_zero);
6430     __ addl(Rdst, BitsPerInt);
6431     __ bind(done);
6432   %}
6433   ins_pipe(ialu_reg);
6434 %}
6435 
6436 
6437 //---------- Population Count Instructions -------------------------------------
6438 
6439 instruct popCountI(eRegI dst, eRegI src) %{
6440   predicate(UsePopCountInstruction);
6441   match(Set dst (PopCountI src));
6442 
6443   format %{ "POPCNT $dst, $src" %}
6444   ins_encode %{
6445     __ popcntl($dst$$Register, $src$$Register);
6446   %}
6447   ins_pipe(ialu_reg);
6448 %}
6449 
6450 instruct popCountI_mem(eRegI dst, memory mem) %{
6451   predicate(UsePopCountInstruction);
6452   match(Set dst (PopCountI (LoadI mem)));
6453 
6454   format %{ "POPCNT $dst, $mem" %}
6455   ins_encode %{
6456     __ popcntl($dst$$Register, $mem$$Address);
6457   %}
6458   ins_pipe(ialu_reg);
6459 %}
6460 
6461 // Note: Long.bitCount(long) returns an int.
6462 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
6463   predicate(UsePopCountInstruction);
6464   match(Set dst (PopCountL src));
6465   effect(KILL cr, TEMP tmp, TEMP dst);
6466 
6467   format %{ "POPCNT $dst, $src.lo\n\t"
6468             "POPCNT $tmp, $src.hi\n\t"
6469             "ADD    $dst, $tmp" %}
6470   ins_encode %{
6471     __ popcntl($dst$$Register, $src$$Register);
6472     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
6473     __ addl($dst$$Register, $tmp$$Register);
6474   %}
6475   ins_pipe(ialu_reg);
6476 %}
6477 
6478 // Note: Long.bitCount(long) returns an int.
6479 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
6480   predicate(UsePopCountInstruction);
6481   match(Set dst (PopCountL (LoadL mem)));
6482   effect(KILL cr, TEMP tmp, TEMP dst);
6483 
6484   format %{ "POPCNT $dst, $mem\n\t"
6485             "POPCNT $tmp, $mem+4\n\t"
6486             "ADD    $dst, $tmp" %}
6487   ins_encode %{
6488     //__ popcntl($dst$$Register, $mem$$Address$$first);
6489     //__ popcntl($tmp$$Register, $mem$$Address$$second);
6490     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
6491     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
6492     __ addl($dst$$Register, $tmp$$Register);
6493   %}
6494   ins_pipe(ialu_reg);
6495 %}
6496 
6497 
6498 //----------Load/Store/Move Instructions---------------------------------------
6499 //----------Load Instructions--------------------------------------------------
6500 // Load Byte (8bit signed)
6501 instruct loadB(xRegI dst, memory mem) %{
6502   match(Set dst (LoadB mem));
6503 
6504   ins_cost(125);
6505   format %{ "MOVSX8 $dst,$mem\t# byte" %}
6506 
6507   ins_encode %{
6508     __ movsbl($dst$$Register, $mem$$Address);
6509   %}
6510 
6511   ins_pipe(ialu_reg_mem);
6512 %}
6513 
6514 // Load Byte (8bit signed) into Long Register
6515 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6516   match(Set dst (ConvI2L (LoadB mem)));
6517   effect(KILL cr);
6518 
6519   ins_cost(375);
6520   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
6521             "MOV    $dst.hi,$dst.lo\n\t"
6522             "SAR    $dst.hi,7" %}
6523 
6524   ins_encode %{
6525     __ movsbl($dst$$Register, $mem$$Address);
6526     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6527     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
6528   %}
6529 
6530   ins_pipe(ialu_reg_mem);
6531 %}
6532 
6533 // Load Unsigned Byte (8bit UNsigned)
6534 instruct loadUB(xRegI dst, memory mem) %{
6535   match(Set dst (LoadUB mem));
6536 
6537   ins_cost(125);
6538   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
6539 
6540   ins_encode %{
6541     __ movzbl($dst$$Register, $mem$$Address);
6542   %}
6543 
6544   ins_pipe(ialu_reg_mem);
6545 %}
6546 
6547 // Load Unsigned Byte (8 bit UNsigned) into Long Register
6548 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6549   match(Set dst (ConvI2L (LoadUB mem)));
6550   effect(KILL cr);
6551 
6552   ins_cost(250);
6553   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
6554             "XOR    $dst.hi,$dst.hi" %}
6555 
6556   ins_encode %{
6557     Register Rdst = $dst$$Register;
6558     __ movzbl(Rdst, $mem$$Address);
6559     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6560   %}
6561 
6562   ins_pipe(ialu_reg_mem);
6563 %}
6564 
6565 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
6566 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
6567   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
6568   effect(KILL cr);
6569 
6570   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
6571             "XOR    $dst.hi,$dst.hi\n\t"
6572             "AND    $dst.lo,$mask" %}
6573   ins_encode %{
6574     Register Rdst = $dst$$Register;
6575     __ movzbl(Rdst, $mem$$Address);
6576     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6577     __ andl(Rdst, $mask$$constant);
6578   %}
6579   ins_pipe(ialu_reg_mem);
6580 %}
6581 
6582 // Load Short (16bit signed)
6583 instruct loadS(eRegI dst, memory mem) %{
6584   match(Set dst (LoadS mem));
6585 
6586   ins_cost(125);
6587   format %{ "MOVSX  $dst,$mem\t# short" %}
6588 
6589   ins_encode %{
6590     __ movswl($dst$$Register, $mem$$Address);
6591   %}
6592 
6593   ins_pipe(ialu_reg_mem);
6594 %}
6595 
6596 // Load Short (16 bit signed) to Byte (8 bit signed)
6597 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6598   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
6599 
6600   ins_cost(125);
6601   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
6602   ins_encode %{
6603     __ movsbl($dst$$Register, $mem$$Address);
6604   %}
6605   ins_pipe(ialu_reg_mem);
6606 %}
6607 
6608 // Load Short (16bit signed) into Long Register
6609 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6610   match(Set dst (ConvI2L (LoadS mem)));
6611   effect(KILL cr);
6612 
6613   ins_cost(375);
6614   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
6615             "MOV    $dst.hi,$dst.lo\n\t"
6616             "SAR    $dst.hi,15" %}
6617 
6618   ins_encode %{
6619     __ movswl($dst$$Register, $mem$$Address);
6620     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6621     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
6622   %}
6623 
6624   ins_pipe(ialu_reg_mem);
6625 %}
6626 
6627 // Load Unsigned Short/Char (16bit unsigned)
6628 instruct loadUS(eRegI dst, memory mem) %{
6629   match(Set dst (LoadUS mem));
6630 
6631   ins_cost(125);
6632   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
6633 
6634   ins_encode %{
6635     __ movzwl($dst$$Register, $mem$$Address);
6636   %}
6637 
6638   ins_pipe(ialu_reg_mem);
6639 %}
6640 
6641 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
6642 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6643   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
6644 
6645   ins_cost(125);
6646   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
6647   ins_encode %{
6648     __ movsbl($dst$$Register, $mem$$Address);
6649   %}
6650   ins_pipe(ialu_reg_mem);
6651 %}
6652 
6653 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
6654 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6655   match(Set dst (ConvI2L (LoadUS mem)));
6656   effect(KILL cr);
6657 
6658   ins_cost(250);
6659   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
6660             "XOR    $dst.hi,$dst.hi" %}
6661 
6662   ins_encode %{
6663     __ movzwl($dst$$Register, $mem$$Address);
6664     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6665   %}
6666 
6667   ins_pipe(ialu_reg_mem);
6668 %}
6669 
6670 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6671 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6672   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6673   effect(KILL cr);
6674 
6675   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6676             "XOR    $dst.hi,$dst.hi" %}
6677   ins_encode %{
6678     Register Rdst = $dst$$Register;
6679     __ movzbl(Rdst, $mem$$Address);
6680     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6681   %}
6682   ins_pipe(ialu_reg_mem);
6683 %}
6684 
6685 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6686 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6687   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6688   effect(KILL cr);
6689 
6690   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6691             "XOR    $dst.hi,$dst.hi\n\t"
6692             "AND    $dst.lo,$mask" %}
6693   ins_encode %{
6694     Register Rdst = $dst$$Register;
6695     __ movzwl(Rdst, $mem$$Address);
6696     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6697     __ andl(Rdst, $mask$$constant);
6698   %}
6699   ins_pipe(ialu_reg_mem);
6700 %}
6701 
6702 // Load Integer
6703 instruct loadI(eRegI dst, memory mem) %{
6704   match(Set dst (LoadI mem));
6705 
6706   ins_cost(125);
6707   format %{ "MOV    $dst,$mem\t# int" %}
6708 
6709   ins_encode %{
6710     __ movl($dst$$Register, $mem$$Address);
6711   %}
6712 
6713   ins_pipe(ialu_reg_mem);
6714 %}
6715 
6716 // Load Integer (32 bit signed) to Byte (8 bit signed)
6717 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6718   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6719 
6720   ins_cost(125);
6721   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6722   ins_encode %{
6723     __ movsbl($dst$$Register, $mem$$Address);
6724   %}
6725   ins_pipe(ialu_reg_mem);
6726 %}
6727 
6728 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6729 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
6730   match(Set dst (AndI (LoadI mem) mask));
6731 
6732   ins_cost(125);
6733   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6734   ins_encode %{
6735     __ movzbl($dst$$Register, $mem$$Address);
6736   %}
6737   ins_pipe(ialu_reg_mem);
6738 %}
6739 
6740 // Load Integer (32 bit signed) to Short (16 bit signed)
6741 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
6742   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6743 
6744   ins_cost(125);
6745   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6746   ins_encode %{
6747     __ movswl($dst$$Register, $mem$$Address);
6748   %}
6749   ins_pipe(ialu_reg_mem);
6750 %}
6751 
6752 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6753 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
6754   match(Set dst (AndI (LoadI mem) mask));
6755 
6756   ins_cost(125);
6757   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6758   ins_encode %{
6759     __ movzwl($dst$$Register, $mem$$Address);
6760   %}
6761   ins_pipe(ialu_reg_mem);
6762 %}
6763 
6764 // Load Integer into Long Register
6765 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6766   match(Set dst (ConvI2L (LoadI mem)));
6767   effect(KILL cr);
6768 
6769   ins_cost(375);
6770   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6771             "MOV    $dst.hi,$dst.lo\n\t"
6772             "SAR    $dst.hi,31" %}
6773 
6774   ins_encode %{
6775     __ movl($dst$$Register, $mem$$Address);
6776     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6777     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6778   %}
6779 
6780   ins_pipe(ialu_reg_mem);
6781 %}
6782 
6783 // Load Integer with mask 0xFF into Long Register
6784 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6785   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6786   effect(KILL cr);
6787 
6788   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6789             "XOR    $dst.hi,$dst.hi" %}
6790   ins_encode %{
6791     Register Rdst = $dst$$Register;
6792     __ movzbl(Rdst, $mem$$Address);
6793     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6794   %}
6795   ins_pipe(ialu_reg_mem);
6796 %}
6797 
6798 // Load Integer with mask 0xFFFF into Long Register
6799 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6800   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6801   effect(KILL cr);
6802 
6803   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6804             "XOR    $dst.hi,$dst.hi" %}
6805   ins_encode %{
6806     Register Rdst = $dst$$Register;
6807     __ movzwl(Rdst, $mem$$Address);
6808     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6809   %}
6810   ins_pipe(ialu_reg_mem);
6811 %}
6812 
6813 // Load Integer with 32-bit mask into Long Register
6814 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6815   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6816   effect(KILL cr);
6817 
6818   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6819             "XOR    $dst.hi,$dst.hi\n\t"
6820             "AND    $dst.lo,$mask" %}
6821   ins_encode %{
6822     Register Rdst = $dst$$Register;
6823     __ movl(Rdst, $mem$$Address);
6824     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6825     __ andl(Rdst, $mask$$constant);
6826   %}
6827   ins_pipe(ialu_reg_mem);
6828 %}
6829 
6830 // Load Unsigned Integer into Long Register
6831 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6832   match(Set dst (LoadUI2L mem));
6833   effect(KILL cr);
6834 
6835   ins_cost(250);
6836   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6837             "XOR    $dst.hi,$dst.hi" %}
6838 
6839   ins_encode %{
6840     __ movl($dst$$Register, $mem$$Address);
6841     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6842   %}
6843 
6844   ins_pipe(ialu_reg_mem);
6845 %}
6846 
6847 // Load Long.  Cannot clobber address while loading, so restrict address
6848 // register to ESI
6849 instruct loadL(eRegL dst, load_long_memory mem) %{
6850   predicate(!((LoadLNode*)n)->require_atomic_access());
6851   match(Set dst (LoadL mem));
6852 
6853   ins_cost(250);
6854   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6855             "MOV    $dst.hi,$mem+4" %}
6856 
6857   ins_encode %{
6858     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
6859     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
6860     __ movl($dst$$Register, Amemlo);
6861     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6862   %}
6863 
6864   ins_pipe(ialu_reg_long_mem);
6865 %}
6866 
6867 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6868 // then store it down to the stack and reload on the int
6869 // side.
6870 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6871   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6872   match(Set dst (LoadL mem));
6873 
6874   ins_cost(200);
6875   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6876             "FISTp  $dst" %}
6877   ins_encode(enc_loadL_volatile(mem,dst));
6878   ins_pipe( fpu_reg_mem );
6879 %}
6880 
6881 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6882   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6883   match(Set dst (LoadL mem));
6884   effect(TEMP tmp);
6885   ins_cost(180);
6886   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6887             "MOVSD  $dst,$tmp" %}
6888   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6889   ins_pipe( pipe_slow );
6890 %}
6891 
6892 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6893   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6894   match(Set dst (LoadL mem));
6895   effect(TEMP tmp);
6896   ins_cost(160);
6897   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6898             "MOVD   $dst.lo,$tmp\n\t"
6899             "PSRLQ  $tmp,32\n\t"
6900             "MOVD   $dst.hi,$tmp" %}
6901   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6902   ins_pipe( pipe_slow );
6903 %}
6904 
6905 // Load Range
6906 instruct loadRange(eRegI dst, memory mem) %{
6907   match(Set dst (LoadRange mem));
6908 
6909   ins_cost(125);
6910   format %{ "MOV    $dst,$mem" %}
6911   opcode(0x8B);
6912   ins_encode( OpcP, RegMem(dst,mem));
6913   ins_pipe( ialu_reg_mem );
6914 %}
6915 
6916 
6917 // Load Pointer
6918 instruct loadP(eRegP dst, memory mem) %{
6919   match(Set dst (LoadP mem));
6920 
6921   ins_cost(125);
6922   format %{ "MOV    $dst,$mem" %}
6923   opcode(0x8B);
6924   ins_encode( OpcP, RegMem(dst,mem));
6925   ins_pipe( ialu_reg_mem );
6926 %}
6927 
6928 // Load Klass Pointer
6929 instruct loadKlass(eRegP dst, memory mem) %{
6930   match(Set dst (LoadKlass mem));
6931 
6932   ins_cost(125);
6933   format %{ "MOV    $dst,$mem" %}
6934   opcode(0x8B);
6935   ins_encode( OpcP, RegMem(dst,mem));
6936   ins_pipe( ialu_reg_mem );
6937 %}
6938 
6939 // Load Double
6940 instruct loadD(regD dst, memory mem) %{
6941   predicate(UseSSE<=1);
6942   match(Set dst (LoadD mem));
6943 
6944   ins_cost(150);
6945   format %{ "FLD_D  ST,$mem\n\t"
6946             "FSTP   $dst" %}
6947   opcode(0xDD);               /* DD /0 */
6948   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6949               Pop_Reg_D(dst) );
6950   ins_pipe( fpu_reg_mem );
6951 %}
6952 
6953 // Load Double to XMM
6954 instruct loadXD(regXD dst, memory mem) %{
6955   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6956   match(Set dst (LoadD mem));
6957   ins_cost(145);
6958   format %{ "MOVSD  $dst,$mem" %}
6959   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6960   ins_pipe( pipe_slow );
6961 %}
6962 
6963 instruct loadXD_partial(regXD dst, memory mem) %{
6964   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6965   match(Set dst (LoadD mem));
6966   ins_cost(145);
6967   format %{ "MOVLPD $dst,$mem" %}
6968   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
6969   ins_pipe( pipe_slow );
6970 %}
6971 
6972 // Load to XMM register (single-precision floating point)
6973 // MOVSS instruction
6974 instruct loadX(regX dst, memory mem) %{
6975   predicate(UseSSE>=1);
6976   match(Set dst (LoadF mem));
6977   ins_cost(145);
6978   format %{ "MOVSS  $dst,$mem" %}
6979   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6980   ins_pipe( pipe_slow );
6981 %}
6982 
6983 // Load Float
6984 instruct loadF(regF dst, memory mem) %{
6985   predicate(UseSSE==0);
6986   match(Set dst (LoadF mem));
6987 
6988   ins_cost(150);
6989   format %{ "FLD_S  ST,$mem\n\t"
6990             "FSTP   $dst" %}
6991   opcode(0xD9);               /* D9 /0 */
6992   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6993               Pop_Reg_F(dst) );
6994   ins_pipe( fpu_reg_mem );
6995 %}
6996 
6997 // Load Aligned Packed Byte to XMM register
6998 instruct loadA8B(regXD dst, memory mem) %{
6999   predicate(UseSSE>=1);
7000   match(Set dst (Load8B mem));
7001   ins_cost(125);
7002   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
7003   ins_encode( movq_ld(dst, mem));
7004   ins_pipe( pipe_slow );
7005 %}
7006 
7007 // Load Aligned Packed Short to XMM register
7008 instruct loadA4S(regXD dst, memory mem) %{
7009   predicate(UseSSE>=1);
7010   match(Set dst (Load4S mem));
7011   ins_cost(125);
7012   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
7013   ins_encode( movq_ld(dst, mem));
7014   ins_pipe( pipe_slow );
7015 %}
7016 
7017 // Load Aligned Packed Char to XMM register
7018 instruct loadA4C(regXD dst, memory mem) %{
7019   predicate(UseSSE>=1);
7020   match(Set dst (Load4C mem));
7021   ins_cost(125);
7022   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
7023   ins_encode( movq_ld(dst, mem));
7024   ins_pipe( pipe_slow );
7025 %}
7026 
7027 // Load Aligned Packed Integer to XMM register
7028 instruct load2IU(regXD dst, memory mem) %{
7029   predicate(UseSSE>=1);
7030   match(Set dst (Load2I mem));
7031   ins_cost(125);
7032   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
7033   ins_encode( movq_ld(dst, mem));
7034   ins_pipe( pipe_slow );
7035 %}
7036 
7037 // Load Aligned Packed Single to XMM
7038 instruct loadA2F(regXD dst, memory mem) %{
7039   predicate(UseSSE>=1);
7040   match(Set dst (Load2F mem));
7041   ins_cost(145);
7042   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
7043   ins_encode( movq_ld(dst, mem));
7044   ins_pipe( pipe_slow );
7045 %}
7046 
7047 // Load Effective Address
7048 instruct leaP8(eRegP dst, indOffset8 mem) %{
7049   match(Set dst mem);
7050 
7051   ins_cost(110);
7052   format %{ "LEA    $dst,$mem" %}
7053   opcode(0x8D);
7054   ins_encode( OpcP, RegMem(dst,mem));
7055   ins_pipe( ialu_reg_reg_fat );
7056 %}
7057 
7058 instruct leaP32(eRegP dst, indOffset32 mem) %{
7059   match(Set dst mem);
7060 
7061   ins_cost(110);
7062   format %{ "LEA    $dst,$mem" %}
7063   opcode(0x8D);
7064   ins_encode( OpcP, RegMem(dst,mem));
7065   ins_pipe( ialu_reg_reg_fat );
7066 %}
7067 
7068 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
7069   match(Set dst mem);
7070 
7071   ins_cost(110);
7072   format %{ "LEA    $dst,$mem" %}
7073   opcode(0x8D);
7074   ins_encode( OpcP, RegMem(dst,mem));
7075   ins_pipe( ialu_reg_reg_fat );
7076 %}
7077 
7078 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
7079   match(Set dst mem);
7080 
7081   ins_cost(110);
7082   format %{ "LEA    $dst,$mem" %}
7083   opcode(0x8D);
7084   ins_encode( OpcP, RegMem(dst,mem));
7085   ins_pipe( ialu_reg_reg_fat );
7086 %}
7087 
7088 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
7089   match(Set dst mem);
7090 
7091   ins_cost(110);
7092   format %{ "LEA    $dst,$mem" %}
7093   opcode(0x8D);
7094   ins_encode( OpcP, RegMem(dst,mem));
7095   ins_pipe( ialu_reg_reg_fat );
7096 %}
7097 
7098 // Load Constant
7099 instruct loadConI(eRegI dst, immI src) %{
7100   match(Set dst src);
7101 
7102   format %{ "MOV    $dst,$src" %}
7103   ins_encode( LdImmI(dst, src) );
7104   ins_pipe( ialu_reg_fat );
7105 %}
7106 
7107 // Load Constant zero
7108 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
7109   match(Set dst src);
7110   effect(KILL cr);
7111 
7112   ins_cost(50);
7113   format %{ "XOR    $dst,$dst" %}
7114   opcode(0x33);  /* + rd */
7115   ins_encode( OpcP, RegReg( dst, dst ) );
7116   ins_pipe( ialu_reg );
7117 %}
7118 
7119 instruct loadConP(eRegP dst, immP src) %{
7120   match(Set dst src);
7121 
7122   format %{ "MOV    $dst,$src" %}
7123   opcode(0xB8);  /* + rd */
7124   ins_encode( LdImmP(dst, src) );
7125   ins_pipe( ialu_reg_fat );
7126 %}
7127 
7128 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
7129   match(Set dst src);
7130   effect(KILL cr);
7131   ins_cost(200);
7132   format %{ "MOV    $dst.lo,$src.lo\n\t"
7133             "MOV    $dst.hi,$src.hi" %}
7134   opcode(0xB8);
7135   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
7136   ins_pipe( ialu_reg_long_fat );
7137 %}
7138 
7139 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
7140   match(Set dst src);
7141   effect(KILL cr);
7142   ins_cost(150);
7143   format %{ "XOR    $dst.lo,$dst.lo\n\t"
7144             "XOR    $dst.hi,$dst.hi" %}
7145   opcode(0x33,0x33);
7146   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
7147   ins_pipe( ialu_reg_long );
7148 %}
7149 
7150 // The instruction usage is guarded by predicate in operand immF().
7151 instruct loadConF(regF dst, immF con) %{
7152   match(Set dst con);
7153   ins_cost(125);
7154   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
7155             "FSTP   $dst" %}
7156   ins_encode %{
7157     __ fld_s($constantaddress($con));
7158     __ fstp_d($dst$$reg);
7159   %}
7160   ins_pipe(fpu_reg_con);
7161 %}
7162 
7163 // The instruction usage is guarded by predicate in operand immF0().
7164 instruct loadConF0(regF dst, immF0 con) %{
7165   match(Set dst con);
7166   ins_cost(125);
7167   format %{ "FLDZ   ST\n\t"
7168             "FSTP   $dst" %}
7169   ins_encode %{
7170     __ fldz();
7171     __ fstp_d($dst$$reg);
7172   %}
7173   ins_pipe(fpu_reg_con);
7174 %}
7175 
7176 // The instruction usage is guarded by predicate in operand immF1().
7177 instruct loadConF1(regF dst, immF1 con) %{
7178   match(Set dst con);
7179   ins_cost(125);
7180   format %{ "FLD1   ST\n\t"
7181             "FSTP   $dst" %}
7182   ins_encode %{
7183     __ fld1();
7184     __ fstp_d($dst$$reg);
7185   %}
7186   ins_pipe(fpu_reg_con);
7187 %}
7188 
7189 // The instruction usage is guarded by predicate in operand immXF().
7190 instruct loadConX(regX dst, immXF con) %{
7191   match(Set dst con);
7192   ins_cost(125);
7193   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
7194   ins_encode %{
7195     __ movflt($dst$$XMMRegister, $constantaddress($con));
7196   %}
7197   ins_pipe(pipe_slow);
7198 %}
7199 
7200 // The instruction usage is guarded by predicate in operand immXF0().
7201 instruct loadConX0(regX dst, immXF0 src) %{
7202   match(Set dst src);
7203   ins_cost(100);
7204   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
7205   ins_encode %{
7206     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
7207   %}
7208   ins_pipe(pipe_slow);
7209 %}
7210 
7211 // The instruction usage is guarded by predicate in operand immD().
7212 instruct loadConD(regD dst, immD con) %{
7213   match(Set dst con);
7214   ins_cost(125);
7215 
7216   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
7217             "FSTP   $dst" %}
7218   ins_encode %{
7219     __ fld_d($constantaddress($con));
7220     __ fstp_d($dst$$reg);
7221   %}
7222   ins_pipe(fpu_reg_con);
7223 %}
7224 
7225 // The instruction usage is guarded by predicate in operand immD0().
7226 instruct loadConD0(regD dst, immD0 con) %{
7227   match(Set dst con);
7228   ins_cost(125);
7229 
7230   format %{ "FLDZ   ST\n\t"
7231             "FSTP   $dst" %}
7232   ins_encode %{
7233     __ fldz();
7234     __ fstp_d($dst$$reg);
7235   %}
7236   ins_pipe(fpu_reg_con);
7237 %}
7238 
7239 // The instruction usage is guarded by predicate in operand immD1().
7240 instruct loadConD1(regD dst, immD1 con) %{
7241   match(Set dst con);
7242   ins_cost(125);
7243 
7244   format %{ "FLD1   ST\n\t"
7245             "FSTP   $dst" %}
7246   ins_encode %{
7247     __ fld1();
7248     __ fstp_d($dst$$reg);
7249   %}
7250   ins_pipe(fpu_reg_con);
7251 %}
7252 
7253 // The instruction usage is guarded by predicate in operand immXD().
7254 instruct loadConXD(regXD dst, immXD con) %{
7255   match(Set dst con);
7256   ins_cost(125);
7257   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
7258   ins_encode %{
7259     __ movdbl($dst$$XMMRegister, $constantaddress($con));
7260   %}
7261   ins_pipe(pipe_slow);
7262 %}
7263 
7264 // The instruction usage is guarded by predicate in operand immXD0().
7265 instruct loadConXD0(regXD dst, immXD0 src) %{
7266   match(Set dst src);
7267   ins_cost(100);
7268   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
7269   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7270   ins_pipe( pipe_slow );
7271 %}
7272 
7273 // Load Stack Slot
7274 instruct loadSSI(eRegI dst, stackSlotI src) %{
7275   match(Set dst src);
7276   ins_cost(125);
7277 
7278   format %{ "MOV    $dst,$src" %}
7279   opcode(0x8B);
7280   ins_encode( OpcP, RegMem(dst,src));
7281   ins_pipe( ialu_reg_mem );
7282 %}
7283 
7284 instruct loadSSL(eRegL dst, stackSlotL src) %{
7285   match(Set dst src);
7286 
7287   ins_cost(200);
7288   format %{ "MOV    $dst,$src.lo\n\t"
7289             "MOV    $dst+4,$src.hi" %}
7290   opcode(0x8B, 0x8B);
7291   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
7292   ins_pipe( ialu_mem_long_reg );
7293 %}
7294 
7295 // Load Stack Slot
7296 instruct loadSSP(eRegP dst, stackSlotP src) %{
7297   match(Set dst src);
7298   ins_cost(125);
7299 
7300   format %{ "MOV    $dst,$src" %}
7301   opcode(0x8B);
7302   ins_encode( OpcP, RegMem(dst,src));
7303   ins_pipe( ialu_reg_mem );
7304 %}
7305 
7306 // Load Stack Slot
7307 instruct loadSSF(regF dst, stackSlotF src) %{
7308   match(Set dst src);
7309   ins_cost(125);
7310 
7311   format %{ "FLD_S  $src\n\t"
7312             "FSTP   $dst" %}
7313   opcode(0xD9);               /* D9 /0, FLD m32real */
7314   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7315               Pop_Reg_F(dst) );
7316   ins_pipe( fpu_reg_mem );
7317 %}
7318 
7319 // Load Stack Slot
7320 instruct loadSSD(regD dst, stackSlotD src) %{
7321   match(Set dst src);
7322   ins_cost(125);
7323 
7324   format %{ "FLD_D  $src\n\t"
7325             "FSTP   $dst" %}
7326   opcode(0xDD);               /* DD /0, FLD m64real */
7327   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7328               Pop_Reg_D(dst) );
7329   ins_pipe( fpu_reg_mem );
7330 %}
7331 
7332 // Prefetch instructions.
7333 // Must be safe to execute with invalid address (cannot fault).
7334 
7335 instruct prefetchr0( memory mem ) %{
7336   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
7337   match(PrefetchRead mem);
7338   ins_cost(0);
7339   size(0);
7340   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
7341   ins_encode();
7342   ins_pipe(empty);
7343 %}
7344 
7345 instruct prefetchr( memory mem ) %{
7346   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
7347   match(PrefetchRead mem);
7348   ins_cost(100);
7349 
7350   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
7351   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
7352   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7353   ins_pipe(ialu_mem);
7354 %}
7355 
7356 instruct prefetchrNTA( memory mem ) %{
7357   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
7358   match(PrefetchRead mem);
7359   ins_cost(100);
7360 
7361   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
7362   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7363   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7364   ins_pipe(ialu_mem);
7365 %}
7366 
7367 instruct prefetchrT0( memory mem ) %{
7368   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
7369   match(PrefetchRead mem);
7370   ins_cost(100);
7371 
7372   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
7373   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7374   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7375   ins_pipe(ialu_mem);
7376 %}
7377 
7378 instruct prefetchrT2( memory mem ) %{
7379   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
7380   match(PrefetchRead mem);
7381   ins_cost(100);
7382 
7383   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
7384   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7385   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7386   ins_pipe(ialu_mem);
7387 %}
7388 
7389 instruct prefetchw0( memory mem ) %{
7390   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
7391   match(PrefetchWrite mem);
7392   ins_cost(0);
7393   size(0);
7394   format %{ "Prefetch (non-SSE is empty encoding)" %}
7395   ins_encode();
7396   ins_pipe(empty);
7397 %}
7398 
7399 instruct prefetchw( memory mem ) %{
7400   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || AllocatePrefetchInstr==3);
7401   match( PrefetchWrite mem );
7402   ins_cost(100);
7403 
7404   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
7405   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
7406   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7407   ins_pipe(ialu_mem);
7408 %}
7409 
7410 instruct prefetchwNTA( memory mem ) %{
7411   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
7412   match(PrefetchWrite mem);
7413   ins_cost(100);
7414 
7415   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
7416   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7417   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7418   ins_pipe(ialu_mem);
7419 %}
7420 
7421 instruct prefetchwT0( memory mem ) %{
7422   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
7423   match(PrefetchWrite mem);
7424   ins_cost(100);
7425 
7426   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
7427   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7428   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7429   ins_pipe(ialu_mem);
7430 %}
7431 
7432 instruct prefetchwT2( memory mem ) %{
7433   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
7434   match(PrefetchWrite mem);
7435   ins_cost(100);
7436 
7437   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
7438   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7439   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7440   ins_pipe(ialu_mem);
7441 %}
7442 
7443 //----------Store Instructions-------------------------------------------------
7444 
7445 // Store Byte
7446 instruct storeB(memory mem, xRegI src) %{
7447   match(Set mem (StoreB mem src));
7448 
7449   ins_cost(125);
7450   format %{ "MOV8   $mem,$src" %}
7451   opcode(0x88);
7452   ins_encode( OpcP, RegMem( src, mem ) );
7453   ins_pipe( ialu_mem_reg );
7454 %}
7455 
7456 // Store Char/Short
7457 instruct storeC(memory mem, eRegI src) %{
7458   match(Set mem (StoreC mem src));
7459 
7460   ins_cost(125);
7461   format %{ "MOV16  $mem,$src" %}
7462   opcode(0x89, 0x66);
7463   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
7464   ins_pipe( ialu_mem_reg );
7465 %}
7466 
7467 // Store Integer
7468 instruct storeI(memory mem, eRegI src) %{
7469   match(Set mem (StoreI mem src));
7470 
7471   ins_cost(125);
7472   format %{ "MOV    $mem,$src" %}
7473   opcode(0x89);
7474   ins_encode( OpcP, RegMem( src, mem ) );
7475   ins_pipe( ialu_mem_reg );
7476 %}
7477 
7478 // Store Long
7479 instruct storeL(long_memory mem, eRegL src) %{
7480   predicate(!((StoreLNode*)n)->require_atomic_access());
7481   match(Set mem (StoreL mem src));
7482 
7483   ins_cost(200);
7484   format %{ "MOV    $mem,$src.lo\n\t"
7485             "MOV    $mem+4,$src.hi" %}
7486   opcode(0x89, 0x89);
7487   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
7488   ins_pipe( ialu_mem_long_reg );
7489 %}
7490 
7491 // Store Long to Integer
7492 instruct storeL2I(memory mem, eRegL src) %{
7493   match(Set mem (StoreI mem (ConvL2I src)));
7494 
7495   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
7496   ins_encode %{
7497     __ movl($mem$$Address, $src$$Register);
7498   %}
7499   ins_pipe(ialu_mem_reg);
7500 %}
7501 
7502 // Volatile Store Long.  Must be atomic, so move it into
7503 // the FP TOS and then do a 64-bit FIST.  Has to probe the
7504 // target address before the store (for null-ptr checks)
7505 // so the memory operand is used twice in the encoding.
7506 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
7507   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
7508   match(Set mem (StoreL mem src));
7509   effect( KILL cr );
7510   ins_cost(400);
7511   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7512             "FILD   $src\n\t"
7513             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
7514   opcode(0x3B);
7515   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
7516   ins_pipe( fpu_reg_mem );
7517 %}
7518 
7519 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
7520   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7521   match(Set mem (StoreL mem src));
7522   effect( TEMP tmp, KILL cr );
7523   ins_cost(380);
7524   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7525             "MOVSD  $tmp,$src\n\t"
7526             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7527   opcode(0x3B);
7528   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
7529   ins_pipe( pipe_slow );
7530 %}
7531 
7532 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
7533   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7534   match(Set mem (StoreL mem src));
7535   effect( TEMP tmp2 , TEMP tmp, KILL cr );
7536   ins_cost(360);
7537   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7538             "MOVD   $tmp,$src.lo\n\t"
7539             "MOVD   $tmp2,$src.hi\n\t"
7540             "PUNPCKLDQ $tmp,$tmp2\n\t"
7541             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7542   opcode(0x3B);
7543   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
7544   ins_pipe( pipe_slow );
7545 %}
7546 
7547 // Store Pointer; for storing unknown oops and raw pointers
7548 instruct storeP(memory mem, anyRegP src) %{
7549   match(Set mem (StoreP mem src));
7550 
7551   ins_cost(125);
7552   format %{ "MOV    $mem,$src" %}
7553   opcode(0x89);
7554   ins_encode( OpcP, RegMem( src, mem ) );
7555   ins_pipe( ialu_mem_reg );
7556 %}
7557 
7558 // Store Integer Immediate
7559 instruct storeImmI(memory mem, immI src) %{
7560   match(Set mem (StoreI mem src));
7561 
7562   ins_cost(150);
7563   format %{ "MOV    $mem,$src" %}
7564   opcode(0xC7);               /* C7 /0 */
7565   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7566   ins_pipe( ialu_mem_imm );
7567 %}
7568 
7569 // Store Short/Char Immediate
7570 instruct storeImmI16(memory mem, immI16 src) %{
7571   predicate(UseStoreImmI16);
7572   match(Set mem (StoreC mem src));
7573 
7574   ins_cost(150);
7575   format %{ "MOV16  $mem,$src" %}
7576   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
7577   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
7578   ins_pipe( ialu_mem_imm );
7579 %}
7580 
7581 // Store Pointer Immediate; null pointers or constant oops that do not
7582 // need card-mark barriers.
7583 instruct storeImmP(memory mem, immP src) %{
7584   match(Set mem (StoreP mem src));
7585 
7586   ins_cost(150);
7587   format %{ "MOV    $mem,$src" %}
7588   opcode(0xC7);               /* C7 /0 */
7589   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7590   ins_pipe( ialu_mem_imm );
7591 %}
7592 
7593 // Store Byte Immediate
7594 instruct storeImmB(memory mem, immI8 src) %{
7595   match(Set mem (StoreB mem src));
7596 
7597   ins_cost(150);
7598   format %{ "MOV8   $mem,$src" %}
7599   opcode(0xC6);               /* C6 /0 */
7600   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7601   ins_pipe( ialu_mem_imm );
7602 %}
7603 
7604 // Store Aligned Packed Byte XMM register to memory
7605 instruct storeA8B(memory mem, regXD src) %{
7606   predicate(UseSSE>=1);
7607   match(Set mem (Store8B mem src));
7608   ins_cost(145);
7609   format %{ "MOVQ  $mem,$src\t! packed8B" %}
7610   ins_encode( movq_st(mem, src));
7611   ins_pipe( pipe_slow );
7612 %}
7613 
7614 // Store Aligned Packed Char/Short XMM register to memory
7615 instruct storeA4C(memory mem, regXD src) %{
7616   predicate(UseSSE>=1);
7617   match(Set mem (Store4C mem src));
7618   ins_cost(145);
7619   format %{ "MOVQ  $mem,$src\t! packed4C" %}
7620   ins_encode( movq_st(mem, src));
7621   ins_pipe( pipe_slow );
7622 %}
7623 
7624 // Store Aligned Packed Integer XMM register to memory
7625 instruct storeA2I(memory mem, regXD src) %{
7626   predicate(UseSSE>=1);
7627   match(Set mem (Store2I mem src));
7628   ins_cost(145);
7629   format %{ "MOVQ  $mem,$src\t! packed2I" %}
7630   ins_encode( movq_st(mem, src));
7631   ins_pipe( pipe_slow );
7632 %}
7633 
7634 // Store CMS card-mark Immediate
7635 instruct storeImmCM(memory mem, immI8 src) %{
7636   match(Set mem (StoreCM mem src));
7637 
7638   ins_cost(150);
7639   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7640   opcode(0xC6);               /* C6 /0 */
7641   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7642   ins_pipe( ialu_mem_imm );
7643 %}
7644 
7645 // Store Double
7646 instruct storeD( memory mem, regDPR1 src) %{
7647   predicate(UseSSE<=1);
7648   match(Set mem (StoreD mem src));
7649 
7650   ins_cost(100);
7651   format %{ "FST_D  $mem,$src" %}
7652   opcode(0xDD);       /* DD /2 */
7653   ins_encode( enc_FP_store(mem,src) );
7654   ins_pipe( fpu_mem_reg );
7655 %}
7656 
7657 // Store double does rounding on x86
7658 instruct storeD_rounded( memory mem, regDPR1 src) %{
7659   predicate(UseSSE<=1);
7660   match(Set mem (StoreD mem (RoundDouble src)));
7661 
7662   ins_cost(100);
7663   format %{ "FST_D  $mem,$src\t# round" %}
7664   opcode(0xDD);       /* DD /2 */
7665   ins_encode( enc_FP_store(mem,src) );
7666   ins_pipe( fpu_mem_reg );
7667 %}
7668 
7669 // Store XMM register to memory (double-precision floating points)
7670 // MOVSD instruction
7671 instruct storeXD(memory mem, regXD src) %{
7672   predicate(UseSSE>=2);
7673   match(Set mem (StoreD mem src));
7674   ins_cost(95);
7675   format %{ "MOVSD  $mem,$src" %}
7676   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7677   ins_pipe( pipe_slow );
7678 %}
7679 
7680 // Store XMM register to memory (single-precision floating point)
7681 // MOVSS instruction
7682 instruct storeX(memory mem, regX src) %{
7683   predicate(UseSSE>=1);
7684   match(Set mem (StoreF mem src));
7685   ins_cost(95);
7686   format %{ "MOVSS  $mem,$src" %}
7687   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7688   ins_pipe( pipe_slow );
7689 %}
7690 
7691 // Store Aligned Packed Single Float XMM register to memory
7692 instruct storeA2F(memory mem, regXD src) %{
7693   predicate(UseSSE>=1);
7694   match(Set mem (Store2F mem src));
7695   ins_cost(145);
7696   format %{ "MOVQ  $mem,$src\t! packed2F" %}
7697   ins_encode( movq_st(mem, src));
7698   ins_pipe( pipe_slow );
7699 %}
7700 
7701 // Store Float
7702 instruct storeF( memory mem, regFPR1 src) %{
7703   predicate(UseSSE==0);
7704   match(Set mem (StoreF mem src));
7705 
7706   ins_cost(100);
7707   format %{ "FST_S  $mem,$src" %}
7708   opcode(0xD9);       /* D9 /2 */
7709   ins_encode( enc_FP_store(mem,src) );
7710   ins_pipe( fpu_mem_reg );
7711 %}
7712 
7713 // Store Float does rounding on x86
7714 instruct storeF_rounded( memory mem, regFPR1 src) %{
7715   predicate(UseSSE==0);
7716   match(Set mem (StoreF mem (RoundFloat src)));
7717 
7718   ins_cost(100);
7719   format %{ "FST_S  $mem,$src\t# round" %}
7720   opcode(0xD9);       /* D9 /2 */
7721   ins_encode( enc_FP_store(mem,src) );
7722   ins_pipe( fpu_mem_reg );
7723 %}
7724 
7725 // Store Float does rounding on x86
7726 instruct storeF_Drounded( memory mem, regDPR1 src) %{
7727   predicate(UseSSE<=1);
7728   match(Set mem (StoreF mem (ConvD2F src)));
7729 
7730   ins_cost(100);
7731   format %{ "FST_S  $mem,$src\t# D-round" %}
7732   opcode(0xD9);       /* D9 /2 */
7733   ins_encode( enc_FP_store(mem,src) );
7734   ins_pipe( fpu_mem_reg );
7735 %}
7736 
7737 // Store immediate Float value (it is faster than store from FPU register)
7738 // The instruction usage is guarded by predicate in operand immF().
7739 instruct storeF_imm( memory mem, immF src) %{
7740   match(Set mem (StoreF mem src));
7741 
7742   ins_cost(50);
7743   format %{ "MOV    $mem,$src\t# store float" %}
7744   opcode(0xC7);               /* C7 /0 */
7745   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7746   ins_pipe( ialu_mem_imm );
7747 %}
7748 
7749 // Store immediate Float value (it is faster than store from XMM register)
7750 // The instruction usage is guarded by predicate in operand immXF().
7751 instruct storeX_imm( memory mem, immXF src) %{
7752   match(Set mem (StoreF mem src));
7753 
7754   ins_cost(50);
7755   format %{ "MOV    $mem,$src\t# store float" %}
7756   opcode(0xC7);               /* C7 /0 */
7757   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7758   ins_pipe( ialu_mem_imm );
7759 %}
7760 
7761 // Store Integer to stack slot
7762 instruct storeSSI(stackSlotI dst, eRegI src) %{
7763   match(Set dst src);
7764 
7765   ins_cost(100);
7766   format %{ "MOV    $dst,$src" %}
7767   opcode(0x89);
7768   ins_encode( OpcPRegSS( dst, src ) );
7769   ins_pipe( ialu_mem_reg );
7770 %}
7771 
7772 // Store Integer to stack slot
7773 instruct storeSSP(stackSlotP dst, eRegP src) %{
7774   match(Set dst src);
7775 
7776   ins_cost(100);
7777   format %{ "MOV    $dst,$src" %}
7778   opcode(0x89);
7779   ins_encode( OpcPRegSS( dst, src ) );
7780   ins_pipe( ialu_mem_reg );
7781 %}
7782 
7783 // Store Long to stack slot
7784 instruct storeSSL(stackSlotL dst, eRegL src) %{
7785   match(Set dst src);
7786 
7787   ins_cost(200);
7788   format %{ "MOV    $dst,$src.lo\n\t"
7789             "MOV    $dst+4,$src.hi" %}
7790   opcode(0x89, 0x89);
7791   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7792   ins_pipe( ialu_mem_long_reg );
7793 %}
7794 
7795 //----------MemBar Instructions-----------------------------------------------
7796 // Memory barrier flavors
7797 
7798 instruct membar_acquire() %{
7799   match(MemBarAcquire);
7800   ins_cost(400);
7801 
7802   size(0);
7803   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7804   ins_encode();
7805   ins_pipe(empty);
7806 %}
7807 
7808 instruct membar_acquire_lock() %{
7809   match(MemBarAcquire);
7810   predicate(Matcher::prior_fast_lock(n));
7811   ins_cost(0);
7812 
7813   size(0);
7814   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7815   ins_encode( );
7816   ins_pipe(empty);
7817 %}
7818 
7819 instruct membar_release() %{
7820   match(MemBarRelease);
7821   ins_cost(400);
7822 
7823   size(0);
7824   format %{ "MEMBAR-release ! (empty encoding)" %}
7825   ins_encode( );
7826   ins_pipe(empty);
7827 %}
7828 
7829 instruct membar_release_lock() %{
7830   match(MemBarRelease);
7831   predicate(Matcher::post_fast_unlock(n));
7832   ins_cost(0);
7833 
7834   size(0);
7835   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7836   ins_encode( );
7837   ins_pipe(empty);
7838 %}
7839 
7840 instruct membar_volatile(eFlagsReg cr) %{
7841   match(MemBarVolatile);
7842   effect(KILL cr);
7843   ins_cost(400);
7844 
7845   format %{ 
7846     $$template
7847     if (os::is_MP()) {
7848       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7849     } else {
7850       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7851     }
7852   %}
7853   ins_encode %{
7854     __ membar(Assembler::StoreLoad);
7855   %}
7856   ins_pipe(pipe_slow);
7857 %}
7858 
7859 instruct unnecessary_membar_volatile() %{
7860   match(MemBarVolatile);
7861   predicate(Matcher::post_store_load_barrier(n));
7862   ins_cost(0);
7863 
7864   size(0);
7865   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7866   ins_encode( );
7867   ins_pipe(empty);
7868 %}
7869 
7870 //----------Move Instructions--------------------------------------------------
7871 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7872   match(Set dst (CastX2P src));
7873   format %{ "# X2P  $dst, $src" %}
7874   ins_encode( /*empty encoding*/ );
7875   ins_cost(0);
7876   ins_pipe(empty);
7877 %}
7878 
7879 instruct castP2X(eRegI dst, eRegP src ) %{
7880   match(Set dst (CastP2X src));
7881   ins_cost(50);
7882   format %{ "MOV    $dst, $src\t# CastP2X" %}
7883   ins_encode( enc_Copy( dst, src) );
7884   ins_pipe( ialu_reg_reg );
7885 %}
7886 
7887 //----------Conditional Move---------------------------------------------------
7888 // Conditional move
7889 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7890   predicate(VM_Version::supports_cmov() );
7891   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7892   ins_cost(200);
7893   format %{ "CMOV$cop $dst,$src" %}
7894   opcode(0x0F,0x40);
7895   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7896   ins_pipe( pipe_cmov_reg );
7897 %}
7898 
7899 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
7900   predicate(VM_Version::supports_cmov() );
7901   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7902   ins_cost(200);
7903   format %{ "CMOV$cop $dst,$src" %}
7904   opcode(0x0F,0x40);
7905   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7906   ins_pipe( pipe_cmov_reg );
7907 %}
7908 
7909 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
7910   predicate(VM_Version::supports_cmov() );
7911   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7912   ins_cost(200);
7913   expand %{
7914     cmovI_regU(cop, cr, dst, src);
7915   %}
7916 %}
7917 
7918 // Conditional move
7919 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7920   predicate(VM_Version::supports_cmov() );
7921   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7922   ins_cost(250);
7923   format %{ "CMOV$cop $dst,$src" %}
7924   opcode(0x0F,0x40);
7925   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7926   ins_pipe( pipe_cmov_mem );
7927 %}
7928 
7929 // Conditional move
7930 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7931   predicate(VM_Version::supports_cmov() );
7932   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7933   ins_cost(250);
7934   format %{ "CMOV$cop $dst,$src" %}
7935   opcode(0x0F,0x40);
7936   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7937   ins_pipe( pipe_cmov_mem );
7938 %}
7939 
7940 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
7941   predicate(VM_Version::supports_cmov() );
7942   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7943   ins_cost(250);
7944   expand %{
7945     cmovI_memU(cop, cr, dst, src);
7946   %}
7947 %}
7948 
7949 // Conditional move
7950 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7951   predicate(VM_Version::supports_cmov() );
7952   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7953   ins_cost(200);
7954   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7955   opcode(0x0F,0x40);
7956   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7957   ins_pipe( pipe_cmov_reg );
7958 %}
7959 
7960 // Conditional move (non-P6 version)
7961 // Note:  a CMoveP is generated for  stubs and native wrappers
7962 //        regardless of whether we are on a P6, so we
7963 //        emulate a cmov here
7964 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7965   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7966   ins_cost(300);
7967   format %{ "Jn$cop   skip\n\t"
7968           "MOV    $dst,$src\t# pointer\n"
7969       "skip:" %}
7970   opcode(0x8b);
7971   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7972   ins_pipe( pipe_cmov_reg );
7973 %}
7974 
7975 // Conditional move
7976 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7977   predicate(VM_Version::supports_cmov() );
7978   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7979   ins_cost(200);
7980   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7981   opcode(0x0F,0x40);
7982   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7983   ins_pipe( pipe_cmov_reg );
7984 %}
7985 
7986 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7987   predicate(VM_Version::supports_cmov() );
7988   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7989   ins_cost(200);
7990   expand %{
7991     cmovP_regU(cop, cr, dst, src);
7992   %}
7993 %}
7994 
7995 // DISABLED: Requires the ADLC to emit a bottom_type call that
7996 // correctly meets the two pointer arguments; one is an incoming
7997 // register but the other is a memory operand.  ALSO appears to
7998 // be buggy with implicit null checks.
7999 //
8000 //// Conditional move
8001 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
8002 //  predicate(VM_Version::supports_cmov() );
8003 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
8004 //  ins_cost(250);
8005 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
8006 //  opcode(0x0F,0x40);
8007 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
8008 //  ins_pipe( pipe_cmov_mem );
8009 //%}
8010 //
8011 //// Conditional move
8012 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
8013 //  predicate(VM_Version::supports_cmov() );
8014 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
8015 //  ins_cost(250);
8016 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
8017 //  opcode(0x0F,0x40);
8018 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
8019 //  ins_pipe( pipe_cmov_mem );
8020 //%}
8021 
8022 // Conditional move
8023 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
8024   predicate(UseSSE<=1);
8025   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8026   ins_cost(200);
8027   format %{ "FCMOV$cop $dst,$src\t# double" %}
8028   opcode(0xDA);
8029   ins_encode( enc_cmov_d(cop,src) );
8030   ins_pipe( pipe_cmovD_reg );
8031 %}
8032 
8033 // Conditional move
8034 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
8035   predicate(UseSSE==0);
8036   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8037   ins_cost(200);
8038   format %{ "FCMOV$cop $dst,$src\t# float" %}
8039   opcode(0xDA);
8040   ins_encode( enc_cmov_d(cop,src) );
8041   ins_pipe( pipe_cmovD_reg );
8042 %}
8043 
8044 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8045 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
8046   predicate(UseSSE<=1);
8047   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8048   ins_cost(200);
8049   format %{ "Jn$cop   skip\n\t"
8050             "MOV    $dst,$src\t# double\n"
8051       "skip:" %}
8052   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8053   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
8054   ins_pipe( pipe_cmovD_reg );
8055 %}
8056 
8057 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8058 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
8059   predicate(UseSSE==0);
8060   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8061   ins_cost(200);
8062   format %{ "Jn$cop    skip\n\t"
8063             "MOV    $dst,$src\t# float\n"
8064       "skip:" %}
8065   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8066   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
8067   ins_pipe( pipe_cmovD_reg );
8068 %}
8069 
8070 // No CMOVE with SSE/SSE2
8071 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
8072   predicate (UseSSE>=1);
8073   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8074   ins_cost(200);
8075   format %{ "Jn$cop   skip\n\t"
8076             "MOVSS  $dst,$src\t# float\n"
8077       "skip:" %}
8078   ins_encode %{
8079     Label skip;
8080     // Invert sense of branch from sense of CMOV
8081     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8082     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8083     __ bind(skip);
8084   %}
8085   ins_pipe( pipe_slow );
8086 %}
8087 
8088 // No CMOVE with SSE/SSE2
8089 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
8090   predicate (UseSSE>=2);
8091   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8092   ins_cost(200);
8093   format %{ "Jn$cop   skip\n\t"
8094             "MOVSD  $dst,$src\t# float\n"
8095       "skip:" %}
8096   ins_encode %{
8097     Label skip;
8098     // Invert sense of branch from sense of CMOV
8099     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8100     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8101     __ bind(skip);
8102   %}
8103   ins_pipe( pipe_slow );
8104 %}
8105 
8106 // unsigned version
8107 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
8108   predicate (UseSSE>=1);
8109   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8110   ins_cost(200);
8111   format %{ "Jn$cop   skip\n\t"
8112             "MOVSS  $dst,$src\t# float\n"
8113       "skip:" %}
8114   ins_encode %{
8115     Label skip;
8116     // Invert sense of branch from sense of CMOV
8117     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8118     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8119     __ bind(skip);
8120   %}
8121   ins_pipe( pipe_slow );
8122 %}
8123 
8124 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
8125   predicate (UseSSE>=1);
8126   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8127   ins_cost(200);
8128   expand %{
8129     fcmovX_regU(cop, cr, dst, src);
8130   %}
8131 %}
8132 
8133 // unsigned version
8134 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
8135   predicate (UseSSE>=2);
8136   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8137   ins_cost(200);
8138   format %{ "Jn$cop   skip\n\t"
8139             "MOVSD  $dst,$src\t# float\n"
8140       "skip:" %}
8141   ins_encode %{
8142     Label skip;
8143     // Invert sense of branch from sense of CMOV
8144     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8145     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8146     __ bind(skip);
8147   %}
8148   ins_pipe( pipe_slow );
8149 %}
8150 
8151 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
8152   predicate (UseSSE>=2);
8153   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8154   ins_cost(200);
8155   expand %{
8156     fcmovXD_regU(cop, cr, dst, src);
8157   %}
8158 %}
8159 
8160 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
8161   predicate(VM_Version::supports_cmov() );
8162   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8163   ins_cost(200);
8164   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8165             "CMOV$cop $dst.hi,$src.hi" %}
8166   opcode(0x0F,0x40);
8167   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8168   ins_pipe( pipe_cmov_reg_long );
8169 %}
8170 
8171 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
8172   predicate(VM_Version::supports_cmov() );
8173   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8174   ins_cost(200);
8175   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8176             "CMOV$cop $dst.hi,$src.hi" %}
8177   opcode(0x0F,0x40);
8178   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8179   ins_pipe( pipe_cmov_reg_long );
8180 %}
8181 
8182 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
8183   predicate(VM_Version::supports_cmov() );
8184   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8185   ins_cost(200);
8186   expand %{
8187     cmovL_regU(cop, cr, dst, src);
8188   %}
8189 %}
8190 
8191 //----------Arithmetic Instructions--------------------------------------------
8192 //----------Addition Instructions----------------------------------------------
8193 // Integer Addition Instructions
8194 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8195   match(Set dst (AddI dst src));
8196   effect(KILL cr);
8197 
8198   size(2);
8199   format %{ "ADD    $dst,$src" %}
8200   opcode(0x03);
8201   ins_encode( OpcP, RegReg( dst, src) );
8202   ins_pipe( ialu_reg_reg );
8203 %}
8204 
8205 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8206   match(Set dst (AddI dst src));
8207   effect(KILL cr);
8208 
8209   format %{ "ADD    $dst,$src" %}
8210   opcode(0x81, 0x00); /* /0 id */
8211   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8212   ins_pipe( ialu_reg );
8213 %}
8214 
8215 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
8216   predicate(UseIncDec);
8217   match(Set dst (AddI dst src));
8218   effect(KILL cr);
8219 
8220   size(1);
8221   format %{ "INC    $dst" %}
8222   opcode(0x40); /*  */
8223   ins_encode( Opc_plus( primary, dst ) );
8224   ins_pipe( ialu_reg );
8225 %}
8226 
8227 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
8228   match(Set dst (AddI src0 src1));
8229   ins_cost(110);
8230 
8231   format %{ "LEA    $dst,[$src0 + $src1]" %}
8232   opcode(0x8D); /* 0x8D /r */
8233   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8234   ins_pipe( ialu_reg_reg );
8235 %}
8236 
8237 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
8238   match(Set dst (AddP src0 src1));
8239   ins_cost(110);
8240 
8241   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
8242   opcode(0x8D); /* 0x8D /r */
8243   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8244   ins_pipe( ialu_reg_reg );
8245 %}
8246 
8247 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
8248   predicate(UseIncDec);
8249   match(Set dst (AddI dst src));
8250   effect(KILL cr);
8251 
8252   size(1);
8253   format %{ "DEC    $dst" %}
8254   opcode(0x48); /*  */
8255   ins_encode( Opc_plus( primary, dst ) );
8256   ins_pipe( ialu_reg );
8257 %}
8258 
8259 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
8260   match(Set dst (AddP dst src));
8261   effect(KILL cr);
8262 
8263   size(2);
8264   format %{ "ADD    $dst,$src" %}
8265   opcode(0x03);
8266   ins_encode( OpcP, RegReg( dst, src) );
8267   ins_pipe( ialu_reg_reg );
8268 %}
8269 
8270 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
8271   match(Set dst (AddP dst src));
8272   effect(KILL cr);
8273 
8274   format %{ "ADD    $dst,$src" %}
8275   opcode(0x81,0x00); /* Opcode 81 /0 id */
8276   // ins_encode( RegImm( dst, src) );
8277   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8278   ins_pipe( ialu_reg );
8279 %}
8280 
8281 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8282   match(Set dst (AddI dst (LoadI src)));
8283   effect(KILL cr);
8284 
8285   ins_cost(125);
8286   format %{ "ADD    $dst,$src" %}
8287   opcode(0x03);
8288   ins_encode( OpcP, RegMem( dst, src) );
8289   ins_pipe( ialu_reg_mem );
8290 %}
8291 
8292 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8293   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8294   effect(KILL cr);
8295 
8296   ins_cost(150);
8297   format %{ "ADD    $dst,$src" %}
8298   opcode(0x01);  /* Opcode 01 /r */
8299   ins_encode( OpcP, RegMem( src, dst ) );
8300   ins_pipe( ialu_mem_reg );
8301 %}
8302 
8303 // Add Memory with Immediate
8304 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8305   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8306   effect(KILL cr);
8307 
8308   ins_cost(125);
8309   format %{ "ADD    $dst,$src" %}
8310   opcode(0x81);               /* Opcode 81 /0 id */
8311   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
8312   ins_pipe( ialu_mem_imm );
8313 %}
8314 
8315 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
8316   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8317   effect(KILL cr);
8318 
8319   ins_cost(125);
8320   format %{ "INC    $dst" %}
8321   opcode(0xFF);               /* Opcode FF /0 */
8322   ins_encode( OpcP, RMopc_Mem(0x00,dst));
8323   ins_pipe( ialu_mem_imm );
8324 %}
8325 
8326 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
8327   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8328   effect(KILL cr);
8329 
8330   ins_cost(125);
8331   format %{ "DEC    $dst" %}
8332   opcode(0xFF);               /* Opcode FF /1 */
8333   ins_encode( OpcP, RMopc_Mem(0x01,dst));
8334   ins_pipe( ialu_mem_imm );
8335 %}
8336 
8337 
8338 instruct checkCastPP( eRegP dst ) %{
8339   match(Set dst (CheckCastPP dst));
8340 
8341   size(0);
8342   format %{ "#checkcastPP of $dst" %}
8343   ins_encode( /*empty encoding*/ );
8344   ins_pipe( empty );
8345 %}
8346 
8347 instruct castPP( eRegP dst ) %{
8348   match(Set dst (CastPP dst));
8349   format %{ "#castPP of $dst" %}
8350   ins_encode( /*empty encoding*/ );
8351   ins_pipe( empty );
8352 %}
8353 
8354 instruct castII( eRegI dst ) %{
8355   match(Set dst (CastII dst));
8356   format %{ "#castII of $dst" %}
8357   ins_encode( /*empty encoding*/ );
8358   ins_cost(0);
8359   ins_pipe( empty );
8360 %}
8361 
8362 
8363 // Load-locked - same as a regular pointer load when used with compare-swap
8364 instruct loadPLocked(eRegP dst, memory mem) %{
8365   match(Set dst (LoadPLocked mem));
8366 
8367   ins_cost(125);
8368   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
8369   opcode(0x8B);
8370   ins_encode( OpcP, RegMem(dst,mem));
8371   ins_pipe( ialu_reg_mem );
8372 %}
8373 
8374 // LoadLong-locked - same as a volatile long load when used with compare-swap
8375 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
8376   predicate(UseSSE<=1);
8377   match(Set dst (LoadLLocked mem));
8378 
8379   ins_cost(200);
8380   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
8381             "FISTp  $dst" %}
8382   ins_encode(enc_loadL_volatile(mem,dst));
8383   ins_pipe( fpu_reg_mem );
8384 %}
8385 
8386 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
8387   predicate(UseSSE>=2);
8388   match(Set dst (LoadLLocked mem));
8389   effect(TEMP tmp);
8390   ins_cost(180);
8391   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8392             "MOVSD  $dst,$tmp" %}
8393   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
8394   ins_pipe( pipe_slow );
8395 %}
8396 
8397 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
8398   predicate(UseSSE>=2);
8399   match(Set dst (LoadLLocked mem));
8400   effect(TEMP tmp);
8401   ins_cost(160);
8402   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8403             "MOVD   $dst.lo,$tmp\n\t"
8404             "PSRLQ  $tmp,32\n\t"
8405             "MOVD   $dst.hi,$tmp" %}
8406   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
8407   ins_pipe( pipe_slow );
8408 %}
8409 
8410 // Conditional-store of the updated heap-top.
8411 // Used during allocation of the shared heap.
8412 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
8413 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
8414   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
8415   // EAX is killed if there is contention, but then it's also unused.
8416   // In the common case of no contention, EAX holds the new oop address.
8417   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
8418   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
8419   ins_pipe( pipe_cmpxchg );
8420 %}
8421 
8422 // Conditional-store of an int value.
8423 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
8424 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
8425   match(Set cr (StoreIConditional mem (Binary oldval newval)));
8426   effect(KILL oldval);
8427   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
8428   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
8429   ins_pipe( pipe_cmpxchg );
8430 %}
8431 
8432 // Conditional-store of a long value.
8433 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
8434 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8435   match(Set cr (StoreLConditional mem (Binary oldval newval)));
8436   effect(KILL oldval);
8437   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
8438             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
8439             "XCHG   EBX,ECX"
8440   %}
8441   ins_encode %{
8442     // Note: we need to swap rbx, and rcx before and after the
8443     //       cmpxchg8 instruction because the instruction uses
8444     //       rcx as the high order word of the new value to store but
8445     //       our register encoding uses rbx.
8446     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8447     if( os::is_MP() )
8448       __ lock();
8449     __ cmpxchg8($mem$$Address);
8450     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8451   %}
8452   ins_pipe( pipe_cmpxchg );
8453 %}
8454 
8455 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
8456 
8457 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8458   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
8459   effect(KILL cr, KILL oldval);
8460   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8461             "MOV    $res,0\n\t"
8462             "JNE,s  fail\n\t"
8463             "MOV    $res,1\n"
8464           "fail:" %}
8465   ins_encode( enc_cmpxchg8(mem_ptr),
8466               enc_flags_ne_to_boolean(res) );
8467   ins_pipe( pipe_cmpxchg );
8468 %}
8469 
8470 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
8471   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
8472   effect(KILL cr, KILL oldval);
8473   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8474             "MOV    $res,0\n\t"
8475             "JNE,s  fail\n\t"
8476             "MOV    $res,1\n"
8477           "fail:" %}
8478   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8479   ins_pipe( pipe_cmpxchg );
8480 %}
8481 
8482 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
8483   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
8484   effect(KILL cr, KILL oldval);
8485   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8486             "MOV    $res,0\n\t"
8487             "JNE,s  fail\n\t"
8488             "MOV    $res,1\n"
8489           "fail:" %}
8490   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8491   ins_pipe( pipe_cmpxchg );
8492 %}
8493 
8494 //----------Subtraction Instructions-------------------------------------------
8495 // Integer Subtraction Instructions
8496 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8497   match(Set dst (SubI dst src));
8498   effect(KILL cr);
8499 
8500   size(2);
8501   format %{ "SUB    $dst,$src" %}
8502   opcode(0x2B);
8503   ins_encode( OpcP, RegReg( dst, src) );
8504   ins_pipe( ialu_reg_reg );
8505 %}
8506 
8507 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8508   match(Set dst (SubI dst src));
8509   effect(KILL cr);
8510 
8511   format %{ "SUB    $dst,$src" %}
8512   opcode(0x81,0x05);  /* Opcode 81 /5 */
8513   // ins_encode( RegImm( dst, src) );
8514   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8515   ins_pipe( ialu_reg );
8516 %}
8517 
8518 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8519   match(Set dst (SubI dst (LoadI src)));
8520   effect(KILL cr);
8521 
8522   ins_cost(125);
8523   format %{ "SUB    $dst,$src" %}
8524   opcode(0x2B);
8525   ins_encode( OpcP, RegMem( dst, src) );
8526   ins_pipe( ialu_reg_mem );
8527 %}
8528 
8529 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8530   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8531   effect(KILL cr);
8532 
8533   ins_cost(150);
8534   format %{ "SUB    $dst,$src" %}
8535   opcode(0x29);  /* Opcode 29 /r */
8536   ins_encode( OpcP, RegMem( src, dst ) );
8537   ins_pipe( ialu_mem_reg );
8538 %}
8539 
8540 // Subtract from a pointer
8541 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
8542   match(Set dst (AddP dst (SubI zero src)));
8543   effect(KILL cr);
8544 
8545   size(2);
8546   format %{ "SUB    $dst,$src" %}
8547   opcode(0x2B);
8548   ins_encode( OpcP, RegReg( dst, src) );
8549   ins_pipe( ialu_reg_reg );
8550 %}
8551 
8552 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
8553   match(Set dst (SubI zero dst));
8554   effect(KILL cr);
8555 
8556   size(2);
8557   format %{ "NEG    $dst" %}
8558   opcode(0xF7,0x03);  // Opcode F7 /3
8559   ins_encode( OpcP, RegOpc( dst ) );
8560   ins_pipe( ialu_reg );
8561 %}
8562 
8563 
8564 //----------Multiplication/Division Instructions-------------------------------
8565 // Integer Multiplication Instructions
8566 // Multiply Register
8567 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8568   match(Set dst (MulI dst src));
8569   effect(KILL cr);
8570 
8571   size(3);
8572   ins_cost(300);
8573   format %{ "IMUL   $dst,$src" %}
8574   opcode(0xAF, 0x0F);
8575   ins_encode( OpcS, OpcP, RegReg( dst, src) );
8576   ins_pipe( ialu_reg_reg_alu0 );
8577 %}
8578 
8579 // Multiply 32-bit Immediate
8580 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
8581   match(Set dst (MulI src imm));
8582   effect(KILL cr);
8583 
8584   ins_cost(300);
8585   format %{ "IMUL   $dst,$src,$imm" %}
8586   opcode(0x69);  /* 69 /r id */
8587   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8588   ins_pipe( ialu_reg_reg_alu0 );
8589 %}
8590 
8591 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8592   match(Set dst src);
8593   effect(KILL cr);
8594 
8595   // Note that this is artificially increased to make it more expensive than loadConL
8596   ins_cost(250);
8597   format %{ "MOV    EAX,$src\t// low word only" %}
8598   opcode(0xB8);
8599   ins_encode( LdImmL_Lo(dst, src) );
8600   ins_pipe( ialu_reg_fat );
8601 %}
8602 
8603 // Multiply by 32-bit Immediate, taking the shifted high order results
8604 //  (special case for shift by 32)
8605 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8606   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8607   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8608              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8609              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8610   effect(USE src1, KILL cr);
8611 
8612   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8613   ins_cost(0*100 + 1*400 - 150);
8614   format %{ "IMUL   EDX:EAX,$src1" %}
8615   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8616   ins_pipe( pipe_slow );
8617 %}
8618 
8619 // Multiply by 32-bit Immediate, taking the shifted high order results
8620 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8621   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8622   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8623              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8624              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8625   effect(USE src1, KILL cr);
8626 
8627   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8628   ins_cost(1*100 + 1*400 - 150);
8629   format %{ "IMUL   EDX:EAX,$src1\n\t"
8630             "SAR    EDX,$cnt-32" %}
8631   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8632   ins_pipe( pipe_slow );
8633 %}
8634 
8635 // Multiply Memory 32-bit Immediate
8636 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
8637   match(Set dst (MulI (LoadI src) imm));
8638   effect(KILL cr);
8639 
8640   ins_cost(300);
8641   format %{ "IMUL   $dst,$src,$imm" %}
8642   opcode(0x69);  /* 69 /r id */
8643   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8644   ins_pipe( ialu_reg_mem_alu0 );
8645 %}
8646 
8647 // Multiply Memory
8648 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
8649   match(Set dst (MulI dst (LoadI src)));
8650   effect(KILL cr);
8651 
8652   ins_cost(350);
8653   format %{ "IMUL   $dst,$src" %}
8654   opcode(0xAF, 0x0F);
8655   ins_encode( OpcS, OpcP, RegMem( dst, src) );
8656   ins_pipe( ialu_reg_mem_alu0 );
8657 %}
8658 
8659 // Multiply Register Int to Long
8660 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8661   // Basic Idea: long = (long)int * (long)int
8662   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8663   effect(DEF dst, USE src, USE src1, KILL flags);
8664 
8665   ins_cost(300);
8666   format %{ "IMUL   $dst,$src1" %}
8667 
8668   ins_encode( long_int_multiply( dst, src1 ) );
8669   ins_pipe( ialu_reg_reg_alu0 );
8670 %}
8671 
8672 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8673   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8674   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8675   effect(KILL flags);
8676 
8677   ins_cost(300);
8678   format %{ "MUL    $dst,$src1" %}
8679 
8680   ins_encode( long_uint_multiply(dst, src1) );
8681   ins_pipe( ialu_reg_reg_alu0 );
8682 %}
8683 
8684 // Multiply Register Long
8685 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8686   match(Set dst (MulL dst src));
8687   effect(KILL cr, TEMP tmp);
8688   ins_cost(4*100+3*400);
8689 // Basic idea: lo(result) = lo(x_lo * y_lo)
8690 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8691   format %{ "MOV    $tmp,$src.lo\n\t"
8692             "IMUL   $tmp,EDX\n\t"
8693             "MOV    EDX,$src.hi\n\t"
8694             "IMUL   EDX,EAX\n\t"
8695             "ADD    $tmp,EDX\n\t"
8696             "MUL    EDX:EAX,$src.lo\n\t"
8697             "ADD    EDX,$tmp" %}
8698   ins_encode( long_multiply( dst, src, tmp ) );
8699   ins_pipe( pipe_slow );
8700 %}
8701 
8702 // Multiply Register Long where the left operand's high 32 bits are zero
8703 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8704   predicate(is_operand_hi32_zero(n->in(1)));
8705   match(Set dst (MulL dst src));
8706   effect(KILL cr, TEMP tmp);
8707   ins_cost(2*100+2*400);
8708 // Basic idea: lo(result) = lo(x_lo * y_lo)
8709 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8710   format %{ "MOV    $tmp,$src.hi\n\t"
8711             "IMUL   $tmp,EAX\n\t"
8712             "MUL    EDX:EAX,$src.lo\n\t"
8713             "ADD    EDX,$tmp" %}
8714   ins_encode %{
8715     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8716     __ imull($tmp$$Register, rax);
8717     __ mull($src$$Register);
8718     __ addl(rdx, $tmp$$Register);
8719   %}
8720   ins_pipe( pipe_slow );
8721 %}
8722 
8723 // Multiply Register Long where the right operand's high 32 bits are zero
8724 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8725   predicate(is_operand_hi32_zero(n->in(2)));
8726   match(Set dst (MulL dst src));
8727   effect(KILL cr, TEMP tmp);
8728   ins_cost(2*100+2*400);
8729 // Basic idea: lo(result) = lo(x_lo * y_lo)
8730 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8731   format %{ "MOV    $tmp,$src.lo\n\t"
8732             "IMUL   $tmp,EDX\n\t"
8733             "MUL    EDX:EAX,$src.lo\n\t"
8734             "ADD    EDX,$tmp" %}
8735   ins_encode %{
8736     __ movl($tmp$$Register, $src$$Register);
8737     __ imull($tmp$$Register, rdx);
8738     __ mull($src$$Register);
8739     __ addl(rdx, $tmp$$Register);
8740   %}
8741   ins_pipe( pipe_slow );
8742 %}
8743 
8744 // Multiply Register Long where the left and the right operands' high 32 bits are zero
8745 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8746   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8747   match(Set dst (MulL dst src));
8748   effect(KILL cr);
8749   ins_cost(1*400);
8750 // Basic idea: lo(result) = lo(x_lo * y_lo)
8751 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8752   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8753   ins_encode %{
8754     __ mull($src$$Register);
8755   %}
8756   ins_pipe( pipe_slow );
8757 %}
8758 
8759 // Multiply Register Long by small constant
8760 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8761   match(Set dst (MulL dst src));
8762   effect(KILL cr, TEMP tmp);
8763   ins_cost(2*100+2*400);
8764   size(12);
8765 // Basic idea: lo(result) = lo(src * EAX)
8766 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8767   format %{ "IMUL   $tmp,EDX,$src\n\t"
8768             "MOV    EDX,$src\n\t"
8769             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8770             "ADD    EDX,$tmp" %}
8771   ins_encode( long_multiply_con( dst, src, tmp ) );
8772   ins_pipe( pipe_slow );
8773 %}
8774 
8775 // Integer DIV with Register
8776 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8777   match(Set rax (DivI rax div));
8778   effect(KILL rdx, KILL cr);
8779   size(26);
8780   ins_cost(30*100+10*100);
8781   format %{ "CMP    EAX,0x80000000\n\t"
8782             "JNE,s  normal\n\t"
8783             "XOR    EDX,EDX\n\t"
8784             "CMP    ECX,-1\n\t"
8785             "JE,s   done\n"
8786     "normal: CDQ\n\t"
8787             "IDIV   $div\n\t"
8788     "done:"        %}
8789   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8790   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8791   ins_pipe( ialu_reg_reg_alu0 );
8792 %}
8793 
8794 // Divide Register Long
8795 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8796   match(Set dst (DivL src1 src2));
8797   effect( KILL cr, KILL cx, KILL bx );
8798   ins_cost(10000);
8799   format %{ "PUSH   $src1.hi\n\t"
8800             "PUSH   $src1.lo\n\t"
8801             "PUSH   $src2.hi\n\t"
8802             "PUSH   $src2.lo\n\t"
8803             "CALL   SharedRuntime::ldiv\n\t"
8804             "ADD    ESP,16" %}
8805   ins_encode( long_div(src1,src2) );
8806   ins_pipe( pipe_slow );
8807 %}
8808 
8809 // Integer DIVMOD with Register, both quotient and mod results
8810 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8811   match(DivModI rax div);
8812   effect(KILL cr);
8813   size(26);
8814   ins_cost(30*100+10*100);
8815   format %{ "CMP    EAX,0x80000000\n\t"
8816             "JNE,s  normal\n\t"
8817             "XOR    EDX,EDX\n\t"
8818             "CMP    ECX,-1\n\t"
8819             "JE,s   done\n"
8820     "normal: CDQ\n\t"
8821             "IDIV   $div\n\t"
8822     "done:"        %}
8823   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8824   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8825   ins_pipe( pipe_slow );
8826 %}
8827 
8828 // Integer MOD with Register
8829 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8830   match(Set rdx (ModI rax div));
8831   effect(KILL rax, KILL cr);
8832 
8833   size(26);
8834   ins_cost(300);
8835   format %{ "CDQ\n\t"
8836             "IDIV   $div" %}
8837   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8838   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8839   ins_pipe( ialu_reg_reg_alu0 );
8840 %}
8841 
8842 // Remainder Register Long
8843 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8844   match(Set dst (ModL src1 src2));
8845   effect( KILL cr, KILL cx, KILL bx );
8846   ins_cost(10000);
8847   format %{ "PUSH   $src1.hi\n\t"
8848             "PUSH   $src1.lo\n\t"
8849             "PUSH   $src2.hi\n\t"
8850             "PUSH   $src2.lo\n\t"
8851             "CALL   SharedRuntime::lrem\n\t"
8852             "ADD    ESP,16" %}
8853   ins_encode( long_mod(src1,src2) );
8854   ins_pipe( pipe_slow );
8855 %}
8856 
8857 // Divide Register Long (no special case since divisor != -1)
8858 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
8859   match(Set dst (DivL dst imm));
8860   effect( TEMP tmp, TEMP tmp2, KILL cr );
8861   ins_cost(1000);
8862   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8863             "XOR    $tmp2,$tmp2\n\t"
8864             "CMP    $tmp,EDX\n\t"
8865             "JA,s   fast\n\t"
8866             "MOV    $tmp2,EAX\n\t"
8867             "MOV    EAX,EDX\n\t"
8868             "MOV    EDX,0\n\t"
8869             "JLE,s  pos\n\t"
8870             "LNEG   EAX : $tmp2\n\t"
8871             "DIV    $tmp # unsigned division\n\t"
8872             "XCHG   EAX,$tmp2\n\t"
8873             "DIV    $tmp\n\t"
8874             "LNEG   $tmp2 : EAX\n\t"
8875             "JMP,s  done\n"
8876     "pos:\n\t"
8877             "DIV    $tmp\n\t"
8878             "XCHG   EAX,$tmp2\n"
8879     "fast:\n\t"
8880             "DIV    $tmp\n"
8881     "done:\n\t"
8882             "MOV    EDX,$tmp2\n\t"
8883             "NEG    EDX:EAX # if $imm < 0" %}
8884   ins_encode %{
8885     int con = (int)$imm$$constant;
8886     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8887     int pcon = (con > 0) ? con : -con;
8888     Label Lfast, Lpos, Ldone;
8889 
8890     __ movl($tmp$$Register, pcon);
8891     __ xorl($tmp2$$Register,$tmp2$$Register);
8892     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8893     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8894 
8895     __ movl($tmp2$$Register, $dst$$Register); // save
8896     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8897     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8898     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8899 
8900     // Negative dividend.
8901     // convert value to positive to use unsigned division
8902     __ lneg($dst$$Register, $tmp2$$Register);
8903     __ divl($tmp$$Register);
8904     __ xchgl($dst$$Register, $tmp2$$Register);
8905     __ divl($tmp$$Register);
8906     // revert result back to negative
8907     __ lneg($tmp2$$Register, $dst$$Register);
8908     __ jmpb(Ldone);
8909 
8910     __ bind(Lpos);
8911     __ divl($tmp$$Register); // Use unsigned division
8912     __ xchgl($dst$$Register, $tmp2$$Register);
8913     // Fallthrow for final divide, tmp2 has 32 bit hi result
8914 
8915     __ bind(Lfast);
8916     // fast path: src is positive
8917     __ divl($tmp$$Register); // Use unsigned division
8918 
8919     __ bind(Ldone);
8920     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8921     if (con < 0) {
8922       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8923     }
8924   %}
8925   ins_pipe( pipe_slow );
8926 %}
8927 
8928 // Remainder Register Long (remainder fit into 32 bits)
8929 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
8930   match(Set dst (ModL dst imm));
8931   effect( TEMP tmp, TEMP tmp2, KILL cr );
8932   ins_cost(1000);
8933   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8934             "CMP    $tmp,EDX\n\t"
8935             "JA,s   fast\n\t"
8936             "MOV    $tmp2,EAX\n\t"
8937             "MOV    EAX,EDX\n\t"
8938             "MOV    EDX,0\n\t"
8939             "JLE,s  pos\n\t"
8940             "LNEG   EAX : $tmp2\n\t"
8941             "DIV    $tmp # unsigned division\n\t"
8942             "MOV    EAX,$tmp2\n\t"
8943             "DIV    $tmp\n\t"
8944             "NEG    EDX\n\t"
8945             "JMP,s  done\n"
8946     "pos:\n\t"
8947             "DIV    $tmp\n\t"
8948             "MOV    EAX,$tmp2\n"
8949     "fast:\n\t"
8950             "DIV    $tmp\n"
8951     "done:\n\t"
8952             "MOV    EAX,EDX\n\t"
8953             "SAR    EDX,31\n\t" %}
8954   ins_encode %{
8955     int con = (int)$imm$$constant;
8956     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8957     int pcon = (con > 0) ? con : -con;
8958     Label  Lfast, Lpos, Ldone;
8959 
8960     __ movl($tmp$$Register, pcon);
8961     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8962     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8963 
8964     __ movl($tmp2$$Register, $dst$$Register); // save
8965     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8966     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8967     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8968 
8969     // Negative dividend.
8970     // convert value to positive to use unsigned division
8971     __ lneg($dst$$Register, $tmp2$$Register);
8972     __ divl($tmp$$Register);
8973     __ movl($dst$$Register, $tmp2$$Register);
8974     __ divl($tmp$$Register);
8975     // revert remainder back to negative
8976     __ negl(HIGH_FROM_LOW($dst$$Register));
8977     __ jmpb(Ldone);
8978 
8979     __ bind(Lpos);
8980     __ divl($tmp$$Register);
8981     __ movl($dst$$Register, $tmp2$$Register);
8982 
8983     __ bind(Lfast);
8984     // fast path: src is positive
8985     __ divl($tmp$$Register);
8986 
8987     __ bind(Ldone);
8988     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8989     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
8990 
8991   %}
8992   ins_pipe( pipe_slow );
8993 %}
8994 
8995 // Integer Shift Instructions
8996 // Shift Left by one
8997 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8998   match(Set dst (LShiftI dst shift));
8999   effect(KILL cr);
9000 
9001   size(2);
9002   format %{ "SHL    $dst,$shift" %}
9003   opcode(0xD1, 0x4);  /* D1 /4 */
9004   ins_encode( OpcP, RegOpc( dst ) );
9005   ins_pipe( ialu_reg );
9006 %}
9007 
9008 // Shift Left by 8-bit immediate
9009 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
9010   match(Set dst (LShiftI dst shift));
9011   effect(KILL cr);
9012 
9013   size(3);
9014   format %{ "SHL    $dst,$shift" %}
9015   opcode(0xC1, 0x4);  /* C1 /4 ib */
9016   ins_encode( RegOpcImm( dst, shift) );
9017   ins_pipe( ialu_reg );
9018 %}
9019 
9020 // Shift Left by variable
9021 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
9022   match(Set dst (LShiftI dst shift));
9023   effect(KILL cr);
9024 
9025   size(2);
9026   format %{ "SHL    $dst,$shift" %}
9027   opcode(0xD3, 0x4);  /* D3 /4 */
9028   ins_encode( OpcP, RegOpc( dst ) );
9029   ins_pipe( ialu_reg_reg );
9030 %}
9031 
9032 // Arithmetic shift right by one
9033 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9034   match(Set dst (RShiftI dst shift));
9035   effect(KILL cr);
9036 
9037   size(2);
9038   format %{ "SAR    $dst,$shift" %}
9039   opcode(0xD1, 0x7);  /* D1 /7 */
9040   ins_encode( OpcP, RegOpc( dst ) );
9041   ins_pipe( ialu_reg );
9042 %}
9043 
9044 // Arithmetic shift right by one
9045 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
9046   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
9047   effect(KILL cr);
9048   format %{ "SAR    $dst,$shift" %}
9049   opcode(0xD1, 0x7);  /* D1 /7 */
9050   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
9051   ins_pipe( ialu_mem_imm );
9052 %}
9053 
9054 // Arithmetic Shift Right by 8-bit immediate
9055 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
9056   match(Set dst (RShiftI dst shift));
9057   effect(KILL cr);
9058 
9059   size(3);
9060   format %{ "SAR    $dst,$shift" %}
9061   opcode(0xC1, 0x7);  /* C1 /7 ib */
9062   ins_encode( RegOpcImm( dst, shift ) );
9063   ins_pipe( ialu_mem_imm );
9064 %}
9065 
9066 // Arithmetic Shift Right by 8-bit immediate
9067 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
9068   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
9069   effect(KILL cr);
9070 
9071   format %{ "SAR    $dst,$shift" %}
9072   opcode(0xC1, 0x7);  /* C1 /7 ib */
9073   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
9074   ins_pipe( ialu_mem_imm );
9075 %}
9076 
9077 // Arithmetic Shift Right by variable
9078 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
9079   match(Set dst (RShiftI dst shift));
9080   effect(KILL cr);
9081 
9082   size(2);
9083   format %{ "SAR    $dst,$shift" %}
9084   opcode(0xD3, 0x7);  /* D3 /7 */
9085   ins_encode( OpcP, RegOpc( dst ) );
9086   ins_pipe( ialu_reg_reg );
9087 %}
9088 
9089 // Logical shift right by one
9090 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9091   match(Set dst (URShiftI dst shift));
9092   effect(KILL cr);
9093 
9094   size(2);
9095   format %{ "SHR    $dst,$shift" %}
9096   opcode(0xD1, 0x5);  /* D1 /5 */
9097   ins_encode( OpcP, RegOpc( dst ) );
9098   ins_pipe( ialu_reg );
9099 %}
9100 
9101 // Logical Shift Right by 8-bit immediate
9102 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
9103   match(Set dst (URShiftI dst shift));
9104   effect(KILL cr);
9105 
9106   size(3);
9107   format %{ "SHR    $dst,$shift" %}
9108   opcode(0xC1, 0x5);  /* C1 /5 ib */
9109   ins_encode( RegOpcImm( dst, shift) );
9110   ins_pipe( ialu_reg );
9111 %}
9112 
9113 
9114 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
9115 // This idiom is used by the compiler for the i2b bytecode.
9116 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
9117   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
9118 
9119   size(3);
9120   format %{ "MOVSX  $dst,$src :8" %}
9121   ins_encode %{
9122     __ movsbl($dst$$Register, $src$$Register);
9123   %}
9124   ins_pipe(ialu_reg_reg);
9125 %}
9126 
9127 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
9128 // This idiom is used by the compiler the i2s bytecode.
9129 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
9130   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
9131 
9132   size(3);
9133   format %{ "MOVSX  $dst,$src :16" %}
9134   ins_encode %{
9135     __ movswl($dst$$Register, $src$$Register);
9136   %}
9137   ins_pipe(ialu_reg_reg);
9138 %}
9139 
9140 
9141 // Logical Shift Right by variable
9142 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
9143   match(Set dst (URShiftI dst shift));
9144   effect(KILL cr);
9145 
9146   size(2);
9147   format %{ "SHR    $dst,$shift" %}
9148   opcode(0xD3, 0x5);  /* D3 /5 */
9149   ins_encode( OpcP, RegOpc( dst ) );
9150   ins_pipe( ialu_reg_reg );
9151 %}
9152 
9153 
9154 //----------Logical Instructions-----------------------------------------------
9155 //----------Integer Logical Instructions---------------------------------------
9156 // And Instructions
9157 // And Register with Register
9158 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9159   match(Set dst (AndI dst src));
9160   effect(KILL cr);
9161 
9162   size(2);
9163   format %{ "AND    $dst,$src" %}
9164   opcode(0x23);
9165   ins_encode( OpcP, RegReg( dst, src) );
9166   ins_pipe( ialu_reg_reg );
9167 %}
9168 
9169 // And Register with Immediate
9170 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9171   match(Set dst (AndI dst src));
9172   effect(KILL cr);
9173 
9174   format %{ "AND    $dst,$src" %}
9175   opcode(0x81,0x04);  /* Opcode 81 /4 */
9176   // ins_encode( RegImm( dst, src) );
9177   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9178   ins_pipe( ialu_reg );
9179 %}
9180 
9181 // And Register with Memory
9182 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9183   match(Set dst (AndI dst (LoadI src)));
9184   effect(KILL cr);
9185 
9186   ins_cost(125);
9187   format %{ "AND    $dst,$src" %}
9188   opcode(0x23);
9189   ins_encode( OpcP, RegMem( dst, src) );
9190   ins_pipe( ialu_reg_mem );
9191 %}
9192 
9193 // And Memory with Register
9194 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9195   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9196   effect(KILL cr);
9197 
9198   ins_cost(150);
9199   format %{ "AND    $dst,$src" %}
9200   opcode(0x21);  /* Opcode 21 /r */
9201   ins_encode( OpcP, RegMem( src, dst ) );
9202   ins_pipe( ialu_mem_reg );
9203 %}
9204 
9205 // And Memory with Immediate
9206 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9207   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9208   effect(KILL cr);
9209 
9210   ins_cost(125);
9211   format %{ "AND    $dst,$src" %}
9212   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
9213   // ins_encode( MemImm( dst, src) );
9214   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9215   ins_pipe( ialu_mem_imm );
9216 %}
9217 
9218 // Or Instructions
9219 // Or Register with Register
9220 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9221   match(Set dst (OrI dst src));
9222   effect(KILL cr);
9223 
9224   size(2);
9225   format %{ "OR     $dst,$src" %}
9226   opcode(0x0B);
9227   ins_encode( OpcP, RegReg( dst, src) );
9228   ins_pipe( ialu_reg_reg );
9229 %}
9230 
9231 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
9232   match(Set dst (OrI dst (CastP2X src)));
9233   effect(KILL cr);
9234 
9235   size(2);
9236   format %{ "OR     $dst,$src" %}
9237   opcode(0x0B);
9238   ins_encode( OpcP, RegReg( dst, src) );
9239   ins_pipe( ialu_reg_reg );
9240 %}
9241 
9242 
9243 // Or Register with Immediate
9244 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9245   match(Set dst (OrI dst src));
9246   effect(KILL cr);
9247 
9248   format %{ "OR     $dst,$src" %}
9249   opcode(0x81,0x01);  /* Opcode 81 /1 id */
9250   // ins_encode( RegImm( dst, src) );
9251   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9252   ins_pipe( ialu_reg );
9253 %}
9254 
9255 // Or Register with Memory
9256 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9257   match(Set dst (OrI dst (LoadI src)));
9258   effect(KILL cr);
9259 
9260   ins_cost(125);
9261   format %{ "OR     $dst,$src" %}
9262   opcode(0x0B);
9263   ins_encode( OpcP, RegMem( dst, src) );
9264   ins_pipe( ialu_reg_mem );
9265 %}
9266 
9267 // Or Memory with Register
9268 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9269   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9270   effect(KILL cr);
9271 
9272   ins_cost(150);
9273   format %{ "OR     $dst,$src" %}
9274   opcode(0x09);  /* Opcode 09 /r */
9275   ins_encode( OpcP, RegMem( src, dst ) );
9276   ins_pipe( ialu_mem_reg );
9277 %}
9278 
9279 // Or Memory with Immediate
9280 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9281   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9282   effect(KILL cr);
9283 
9284   ins_cost(125);
9285   format %{ "OR     $dst,$src" %}
9286   opcode(0x81,0x1);  /* Opcode 81 /1 id */
9287   // ins_encode( MemImm( dst, src) );
9288   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9289   ins_pipe( ialu_mem_imm );
9290 %}
9291 
9292 // ROL/ROR
9293 // ROL expand
9294 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9295   effect(USE_DEF dst, USE shift, KILL cr);
9296 
9297   format %{ "ROL    $dst, $shift" %}
9298   opcode(0xD1, 0x0); /* Opcode D1 /0 */
9299   ins_encode( OpcP, RegOpc( dst ));
9300   ins_pipe( ialu_reg );
9301 %}
9302 
9303 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9304   effect(USE_DEF dst, USE shift, KILL cr);
9305 
9306   format %{ "ROL    $dst, $shift" %}
9307   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
9308   ins_encode( RegOpcImm(dst, shift) );
9309   ins_pipe(ialu_reg);
9310 %}
9311 
9312 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
9313   effect(USE_DEF dst, USE shift, KILL cr);
9314 
9315   format %{ "ROL    $dst, $shift" %}
9316   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
9317   ins_encode(OpcP, RegOpc(dst));
9318   ins_pipe( ialu_reg_reg );
9319 %}
9320 // end of ROL expand
9321 
9322 // ROL 32bit by one once
9323 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
9324   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9325 
9326   expand %{
9327     rolI_eReg_imm1(dst, lshift, cr);
9328   %}
9329 %}
9330 
9331 // ROL 32bit var by imm8 once
9332 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
9333   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9334   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9335 
9336   expand %{
9337     rolI_eReg_imm8(dst, lshift, cr);
9338   %}
9339 %}
9340 
9341 // ROL 32bit var by var once
9342 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9343   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9344 
9345   expand %{
9346     rolI_eReg_CL(dst, shift, cr);
9347   %}
9348 %}
9349 
9350 // ROL 32bit var by var once
9351 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9352   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9353 
9354   expand %{
9355     rolI_eReg_CL(dst, shift, cr);
9356   %}
9357 %}
9358 
9359 // ROR expand
9360 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9361   effect(USE_DEF dst, USE shift, KILL cr);
9362 
9363   format %{ "ROR    $dst, $shift" %}
9364   opcode(0xD1,0x1);  /* Opcode D1 /1 */
9365   ins_encode( OpcP, RegOpc( dst ) );
9366   ins_pipe( ialu_reg );
9367 %}
9368 
9369 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9370   effect (USE_DEF dst, USE shift, KILL cr);
9371 
9372   format %{ "ROR    $dst, $shift" %}
9373   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
9374   ins_encode( RegOpcImm(dst, shift) );
9375   ins_pipe( ialu_reg );
9376 %}
9377 
9378 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
9379   effect(USE_DEF dst, USE shift, KILL cr);
9380 
9381   format %{ "ROR    $dst, $shift" %}
9382   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
9383   ins_encode(OpcP, RegOpc(dst));
9384   ins_pipe( ialu_reg_reg );
9385 %}
9386 // end of ROR expand
9387 
9388 // ROR right once
9389 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
9390   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9391 
9392   expand %{
9393     rorI_eReg_imm1(dst, rshift, cr);
9394   %}
9395 %}
9396 
9397 // ROR 32bit by immI8 once
9398 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
9399   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9400   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9401 
9402   expand %{
9403     rorI_eReg_imm8(dst, rshift, cr);
9404   %}
9405 %}
9406 
9407 // ROR 32bit var by var once
9408 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9409   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9410 
9411   expand %{
9412     rorI_eReg_CL(dst, shift, cr);
9413   %}
9414 %}
9415 
9416 // ROR 32bit var by var once
9417 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9418   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9419 
9420   expand %{
9421     rorI_eReg_CL(dst, shift, cr);
9422   %}
9423 %}
9424 
9425 // Xor Instructions
9426 // Xor Register with Register
9427 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9428   match(Set dst (XorI dst src));
9429   effect(KILL cr);
9430 
9431   size(2);
9432   format %{ "XOR    $dst,$src" %}
9433   opcode(0x33);
9434   ins_encode( OpcP, RegReg( dst, src) );
9435   ins_pipe( ialu_reg_reg );
9436 %}
9437 
9438 // Xor Register with Immediate -1
9439 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
9440   match(Set dst (XorI dst imm));  
9441 
9442   size(2);
9443   format %{ "NOT    $dst" %}  
9444   ins_encode %{
9445      __ notl($dst$$Register);
9446   %}
9447   ins_pipe( ialu_reg );
9448 %}
9449 
9450 // Xor Register with Immediate
9451 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9452   match(Set dst (XorI dst src));
9453   effect(KILL cr);
9454 
9455   format %{ "XOR    $dst,$src" %}
9456   opcode(0x81,0x06);  /* Opcode 81 /6 id */
9457   // ins_encode( RegImm( dst, src) );
9458   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9459   ins_pipe( ialu_reg );
9460 %}
9461 
9462 // Xor Register with Memory
9463 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9464   match(Set dst (XorI dst (LoadI src)));
9465   effect(KILL cr);
9466 
9467   ins_cost(125);
9468   format %{ "XOR    $dst,$src" %}
9469   opcode(0x33);
9470   ins_encode( OpcP, RegMem(dst, src) );
9471   ins_pipe( ialu_reg_mem );
9472 %}
9473 
9474 // Xor Memory with Register
9475 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9476   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9477   effect(KILL cr);
9478 
9479   ins_cost(150);
9480   format %{ "XOR    $dst,$src" %}
9481   opcode(0x31);  /* Opcode 31 /r */
9482   ins_encode( OpcP, RegMem( src, dst ) );
9483   ins_pipe( ialu_mem_reg );
9484 %}
9485 
9486 // Xor Memory with Immediate
9487 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9488   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9489   effect(KILL cr);
9490 
9491   ins_cost(125);
9492   format %{ "XOR    $dst,$src" %}
9493   opcode(0x81,0x6);  /* Opcode 81 /6 id */
9494   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9495   ins_pipe( ialu_mem_imm );
9496 %}
9497 
9498 //----------Convert Int to Boolean---------------------------------------------
9499 
9500 instruct movI_nocopy(eRegI dst, eRegI src) %{
9501   effect( DEF dst, USE src );
9502   format %{ "MOV    $dst,$src" %}
9503   ins_encode( enc_Copy( dst, src) );
9504   ins_pipe( ialu_reg_reg );
9505 %}
9506 
9507 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
9508   effect( USE_DEF dst, USE src, KILL cr );
9509 
9510   size(4);
9511   format %{ "NEG    $dst\n\t"
9512             "ADC    $dst,$src" %}
9513   ins_encode( neg_reg(dst),
9514               OpcRegReg(0x13,dst,src) );
9515   ins_pipe( ialu_reg_reg_long );
9516 %}
9517 
9518 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
9519   match(Set dst (Conv2B src));
9520 
9521   expand %{
9522     movI_nocopy(dst,src);
9523     ci2b(dst,src,cr);
9524   %}
9525 %}
9526 
9527 instruct movP_nocopy(eRegI dst, eRegP src) %{
9528   effect( DEF dst, USE src );
9529   format %{ "MOV    $dst,$src" %}
9530   ins_encode( enc_Copy( dst, src) );
9531   ins_pipe( ialu_reg_reg );
9532 %}
9533 
9534 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
9535   effect( USE_DEF dst, USE src, KILL cr );
9536   format %{ "NEG    $dst\n\t"
9537             "ADC    $dst,$src" %}
9538   ins_encode( neg_reg(dst),
9539               OpcRegReg(0x13,dst,src) );
9540   ins_pipe( ialu_reg_reg_long );
9541 %}
9542 
9543 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
9544   match(Set dst (Conv2B src));
9545 
9546   expand %{
9547     movP_nocopy(dst,src);
9548     cp2b(dst,src,cr);
9549   %}
9550 %}
9551 
9552 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
9553   match(Set dst (CmpLTMask p q));
9554   effect( KILL cr );
9555   ins_cost(400);
9556 
9557   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
9558   format %{ "XOR    $dst,$dst\n\t"
9559             "CMP    $p,$q\n\t"
9560             "SETlt  $dst\n\t"
9561             "NEG    $dst" %}
9562   ins_encode( OpcRegReg(0x33,dst,dst),
9563               OpcRegReg(0x3B,p,q),
9564               setLT_reg(dst), neg_reg(dst) );
9565   ins_pipe( pipe_slow );
9566 %}
9567 
9568 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
9569   match(Set dst (CmpLTMask dst zero));
9570   effect( DEF dst, KILL cr );
9571   ins_cost(100);
9572 
9573   format %{ "SAR    $dst,31" %}
9574   opcode(0xC1, 0x7);  /* C1 /7 ib */
9575   ins_encode( RegOpcImm( dst, 0x1F ) );
9576   ins_pipe( ialu_reg );
9577 %}
9578 
9579 
9580 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
9581   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9582   effect( KILL tmp, KILL cr );
9583   ins_cost(400);
9584   // annoyingly, $tmp has no edges so you cant ask for it in
9585   // any format or encoding
9586   format %{ "SUB    $p,$q\n\t"
9587             "SBB    ECX,ECX\n\t"
9588             "AND    ECX,$y\n\t"
9589             "ADD    $p,ECX" %}
9590   ins_encode( enc_cmpLTP(p,q,y,tmp) );
9591   ins_pipe( pipe_cmplt );
9592 %}
9593 
9594 /* If I enable this, I encourage spilling in the inner loop of compress.
9595 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
9596   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9597   effect( USE_KILL tmp, KILL cr );
9598   ins_cost(400);
9599 
9600   format %{ "SUB    $p,$q\n\t"
9601             "SBB    ECX,ECX\n\t"
9602             "AND    ECX,$y\n\t"
9603             "ADD    $p,ECX" %}
9604   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
9605 %}
9606 */
9607 
9608 //----------Long Instructions------------------------------------------------
9609 // Add Long Register with Register
9610 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9611   match(Set dst (AddL dst src));
9612   effect(KILL cr);
9613   ins_cost(200);
9614   format %{ "ADD    $dst.lo,$src.lo\n\t"
9615             "ADC    $dst.hi,$src.hi" %}
9616   opcode(0x03, 0x13);
9617   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9618   ins_pipe( ialu_reg_reg_long );
9619 %}
9620 
9621 // Add Long Register with Immediate
9622 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9623   match(Set dst (AddL dst src));
9624   effect(KILL cr);
9625   format %{ "ADD    $dst.lo,$src.lo\n\t"
9626             "ADC    $dst.hi,$src.hi" %}
9627   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9628   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9629   ins_pipe( ialu_reg_long );
9630 %}
9631 
9632 // Add Long Register with Memory
9633 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9634   match(Set dst (AddL dst (LoadL mem)));
9635   effect(KILL cr);
9636   ins_cost(125);
9637   format %{ "ADD    $dst.lo,$mem\n\t"
9638             "ADC    $dst.hi,$mem+4" %}
9639   opcode(0x03, 0x13);
9640   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9641   ins_pipe( ialu_reg_long_mem );
9642 %}
9643 
9644 // Subtract Long Register with Register.
9645 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9646   match(Set dst (SubL dst src));
9647   effect(KILL cr);
9648   ins_cost(200);
9649   format %{ "SUB    $dst.lo,$src.lo\n\t"
9650             "SBB    $dst.hi,$src.hi" %}
9651   opcode(0x2B, 0x1B);
9652   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9653   ins_pipe( ialu_reg_reg_long );
9654 %}
9655 
9656 // Subtract Long Register with Immediate
9657 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9658   match(Set dst (SubL dst src));
9659   effect(KILL cr);
9660   format %{ "SUB    $dst.lo,$src.lo\n\t"
9661             "SBB    $dst.hi,$src.hi" %}
9662   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9663   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9664   ins_pipe( ialu_reg_long );
9665 %}
9666 
9667 // Subtract Long Register with Memory
9668 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9669   match(Set dst (SubL dst (LoadL mem)));
9670   effect(KILL cr);
9671   ins_cost(125);
9672   format %{ "SUB    $dst.lo,$mem\n\t"
9673             "SBB    $dst.hi,$mem+4" %}
9674   opcode(0x2B, 0x1B);
9675   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9676   ins_pipe( ialu_reg_long_mem );
9677 %}
9678 
9679 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9680   match(Set dst (SubL zero dst));
9681   effect(KILL cr);
9682   ins_cost(300);
9683   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9684   ins_encode( neg_long(dst) );
9685   ins_pipe( ialu_reg_reg_long );
9686 %}
9687 
9688 // And Long Register with Register
9689 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9690   match(Set dst (AndL dst src));
9691   effect(KILL cr);
9692   format %{ "AND    $dst.lo,$src.lo\n\t"
9693             "AND    $dst.hi,$src.hi" %}
9694   opcode(0x23,0x23);
9695   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9696   ins_pipe( ialu_reg_reg_long );
9697 %}
9698 
9699 // And Long Register with Immediate
9700 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9701   match(Set dst (AndL dst src));
9702   effect(KILL cr);
9703   format %{ "AND    $dst.lo,$src.lo\n\t"
9704             "AND    $dst.hi,$src.hi" %}
9705   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9706   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9707   ins_pipe( ialu_reg_long );
9708 %}
9709 
9710 // And Long Register with Memory
9711 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9712   match(Set dst (AndL dst (LoadL mem)));
9713   effect(KILL cr);
9714   ins_cost(125);
9715   format %{ "AND    $dst.lo,$mem\n\t"
9716             "AND    $dst.hi,$mem+4" %}
9717   opcode(0x23, 0x23);
9718   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9719   ins_pipe( ialu_reg_long_mem );
9720 %}
9721 
9722 // Or Long Register with Register
9723 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9724   match(Set dst (OrL dst src));
9725   effect(KILL cr);
9726   format %{ "OR     $dst.lo,$src.lo\n\t"
9727             "OR     $dst.hi,$src.hi" %}
9728   opcode(0x0B,0x0B);
9729   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9730   ins_pipe( ialu_reg_reg_long );
9731 %}
9732 
9733 // Or Long Register with Immediate
9734 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9735   match(Set dst (OrL dst src));
9736   effect(KILL cr);
9737   format %{ "OR     $dst.lo,$src.lo\n\t"
9738             "OR     $dst.hi,$src.hi" %}
9739   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9740   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9741   ins_pipe( ialu_reg_long );
9742 %}
9743 
9744 // Or Long Register with Memory
9745 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9746   match(Set dst (OrL dst (LoadL mem)));
9747   effect(KILL cr);
9748   ins_cost(125);
9749   format %{ "OR     $dst.lo,$mem\n\t"
9750             "OR     $dst.hi,$mem+4" %}
9751   opcode(0x0B,0x0B);
9752   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9753   ins_pipe( ialu_reg_long_mem );
9754 %}
9755 
9756 // Xor Long Register with Register
9757 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9758   match(Set dst (XorL dst src));
9759   effect(KILL cr);
9760   format %{ "XOR    $dst.lo,$src.lo\n\t"
9761             "XOR    $dst.hi,$src.hi" %}
9762   opcode(0x33,0x33);
9763   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9764   ins_pipe( ialu_reg_reg_long );
9765 %}
9766 
9767 // Xor Long Register with Immediate -1
9768 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9769   match(Set dst (XorL dst imm));  
9770   format %{ "NOT    $dst.lo\n\t"
9771             "NOT    $dst.hi" %}
9772   ins_encode %{
9773      __ notl($dst$$Register);
9774      __ notl(HIGH_FROM_LOW($dst$$Register));
9775   %}
9776   ins_pipe( ialu_reg_long );
9777 %}
9778 
9779 // Xor Long Register with Immediate
9780 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9781   match(Set dst (XorL dst src));
9782   effect(KILL cr);
9783   format %{ "XOR    $dst.lo,$src.lo\n\t"
9784             "XOR    $dst.hi,$src.hi" %}
9785   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9786   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9787   ins_pipe( ialu_reg_long );
9788 %}
9789 
9790 // Xor Long Register with Memory
9791 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9792   match(Set dst (XorL dst (LoadL mem)));
9793   effect(KILL cr);
9794   ins_cost(125);
9795   format %{ "XOR    $dst.lo,$mem\n\t"
9796             "XOR    $dst.hi,$mem+4" %}
9797   opcode(0x33,0x33);
9798   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9799   ins_pipe( ialu_reg_long_mem );
9800 %}
9801 
9802 // Shift Left Long by 1
9803 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9804   predicate(UseNewLongLShift);
9805   match(Set dst (LShiftL dst cnt));
9806   effect(KILL cr);
9807   ins_cost(100);
9808   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9809             "ADC    $dst.hi,$dst.hi" %}
9810   ins_encode %{
9811     __ addl($dst$$Register,$dst$$Register);
9812     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9813   %}
9814   ins_pipe( ialu_reg_long );
9815 %}
9816 
9817 // Shift Left Long by 2
9818 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9819   predicate(UseNewLongLShift);
9820   match(Set dst (LShiftL dst cnt));
9821   effect(KILL cr);
9822   ins_cost(100);
9823   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9824             "ADC    $dst.hi,$dst.hi\n\t" 
9825             "ADD    $dst.lo,$dst.lo\n\t"
9826             "ADC    $dst.hi,$dst.hi" %}
9827   ins_encode %{
9828     __ addl($dst$$Register,$dst$$Register);
9829     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9830     __ addl($dst$$Register,$dst$$Register);
9831     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9832   %}
9833   ins_pipe( ialu_reg_long );
9834 %}
9835 
9836 // Shift Left Long by 3
9837 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9838   predicate(UseNewLongLShift);
9839   match(Set dst (LShiftL dst cnt));
9840   effect(KILL cr);
9841   ins_cost(100);
9842   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9843             "ADC    $dst.hi,$dst.hi\n\t" 
9844             "ADD    $dst.lo,$dst.lo\n\t"
9845             "ADC    $dst.hi,$dst.hi\n\t" 
9846             "ADD    $dst.lo,$dst.lo\n\t"
9847             "ADC    $dst.hi,$dst.hi" %}
9848   ins_encode %{
9849     __ addl($dst$$Register,$dst$$Register);
9850     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9851     __ addl($dst$$Register,$dst$$Register);
9852     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9853     __ addl($dst$$Register,$dst$$Register);
9854     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9855   %}
9856   ins_pipe( ialu_reg_long );
9857 %}
9858 
9859 // Shift Left Long by 1-31
9860 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9861   match(Set dst (LShiftL dst cnt));
9862   effect(KILL cr);
9863   ins_cost(200);
9864   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9865             "SHL    $dst.lo,$cnt" %}
9866   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9867   ins_encode( move_long_small_shift(dst,cnt) );
9868   ins_pipe( ialu_reg_long );
9869 %}
9870 
9871 // Shift Left Long by 32-63
9872 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9873   match(Set dst (LShiftL dst cnt));
9874   effect(KILL cr);
9875   ins_cost(300);
9876   format %{ "MOV    $dst.hi,$dst.lo\n"
9877           "\tSHL    $dst.hi,$cnt-32\n"
9878           "\tXOR    $dst.lo,$dst.lo" %}
9879   opcode(0xC1, 0x4);  /* C1 /4 ib */
9880   ins_encode( move_long_big_shift_clr(dst,cnt) );
9881   ins_pipe( ialu_reg_long );
9882 %}
9883 
9884 // Shift Left Long by variable
9885 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9886   match(Set dst (LShiftL dst shift));
9887   effect(KILL cr);
9888   ins_cost(500+200);
9889   size(17);
9890   format %{ "TEST   $shift,32\n\t"
9891             "JEQ,s  small\n\t"
9892             "MOV    $dst.hi,$dst.lo\n\t"
9893             "XOR    $dst.lo,$dst.lo\n"
9894     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9895             "SHL    $dst.lo,$shift" %}
9896   ins_encode( shift_left_long( dst, shift ) );
9897   ins_pipe( pipe_slow );
9898 %}
9899 
9900 // Shift Right Long by 1-31
9901 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9902   match(Set dst (URShiftL dst cnt));
9903   effect(KILL cr);
9904   ins_cost(200);
9905   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9906             "SHR    $dst.hi,$cnt" %}
9907   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9908   ins_encode( move_long_small_shift(dst,cnt) );
9909   ins_pipe( ialu_reg_long );
9910 %}
9911 
9912 // Shift Right Long by 32-63
9913 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9914   match(Set dst (URShiftL dst cnt));
9915   effect(KILL cr);
9916   ins_cost(300);
9917   format %{ "MOV    $dst.lo,$dst.hi\n"
9918           "\tSHR    $dst.lo,$cnt-32\n"
9919           "\tXOR    $dst.hi,$dst.hi" %}
9920   opcode(0xC1, 0x5);  /* C1 /5 ib */
9921   ins_encode( move_long_big_shift_clr(dst,cnt) );
9922   ins_pipe( ialu_reg_long );
9923 %}
9924 
9925 // Shift Right Long by variable
9926 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9927   match(Set dst (URShiftL dst shift));
9928   effect(KILL cr);
9929   ins_cost(600);
9930   size(17);
9931   format %{ "TEST   $shift,32\n\t"
9932             "JEQ,s  small\n\t"
9933             "MOV    $dst.lo,$dst.hi\n\t"
9934             "XOR    $dst.hi,$dst.hi\n"
9935     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9936             "SHR    $dst.hi,$shift" %}
9937   ins_encode( shift_right_long( dst, shift ) );
9938   ins_pipe( pipe_slow );
9939 %}
9940 
9941 // Shift Right Long by 1-31
9942 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9943   match(Set dst (RShiftL dst cnt));
9944   effect(KILL cr);
9945   ins_cost(200);
9946   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9947             "SAR    $dst.hi,$cnt" %}
9948   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9949   ins_encode( move_long_small_shift(dst,cnt) );
9950   ins_pipe( ialu_reg_long );
9951 %}
9952 
9953 // Shift Right Long by 32-63
9954 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9955   match(Set dst (RShiftL dst cnt));
9956   effect(KILL cr);
9957   ins_cost(300);
9958   format %{ "MOV    $dst.lo,$dst.hi\n"
9959           "\tSAR    $dst.lo,$cnt-32\n"
9960           "\tSAR    $dst.hi,31" %}
9961   opcode(0xC1, 0x7);  /* C1 /7 ib */
9962   ins_encode( move_long_big_shift_sign(dst,cnt) );
9963   ins_pipe( ialu_reg_long );
9964 %}
9965 
9966 // Shift Right arithmetic Long by variable
9967 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9968   match(Set dst (RShiftL dst shift));
9969   effect(KILL cr);
9970   ins_cost(600);
9971   size(18);
9972   format %{ "TEST   $shift,32\n\t"
9973             "JEQ,s  small\n\t"
9974             "MOV    $dst.lo,$dst.hi\n\t"
9975             "SAR    $dst.hi,31\n"
9976     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9977             "SAR    $dst.hi,$shift" %}
9978   ins_encode( shift_right_arith_long( dst, shift ) );
9979   ins_pipe( pipe_slow );
9980 %}
9981 
9982 
9983 //----------Double Instructions------------------------------------------------
9984 // Double Math
9985 
9986 // Compare & branch
9987 
9988 // P6 version of float compare, sets condition codes in EFLAGS
9989 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9990   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9991   match(Set cr (CmpD src1 src2));
9992   effect(KILL rax);
9993   ins_cost(150);
9994   format %{ "FLD    $src1\n\t"
9995             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9996             "JNP    exit\n\t"
9997             "MOV    ah,1       // saw a NaN, set CF\n\t"
9998             "SAHF\n"
9999      "exit:\tNOP               // avoid branch to branch" %}
10000   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10001   ins_encode( Push_Reg_D(src1),
10002               OpcP, RegOpc(src2),
10003               cmpF_P6_fixup );
10004   ins_pipe( pipe_slow );
10005 %}
10006 
10007 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
10008   predicate(VM_Version::supports_cmov() && UseSSE <=1);
10009   match(Set cr (CmpD src1 src2));
10010   ins_cost(150);
10011   format %{ "FLD    $src1\n\t"
10012             "FUCOMIP ST,$src2  // P6 instruction" %}
10013   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10014   ins_encode( Push_Reg_D(src1),
10015               OpcP, RegOpc(src2));
10016   ins_pipe( pipe_slow );
10017 %}
10018 
10019 // Compare & branch
10020 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
10021   predicate(UseSSE<=1);
10022   match(Set cr (CmpD src1 src2));
10023   effect(KILL rax);
10024   ins_cost(200);
10025   format %{ "FLD    $src1\n\t"
10026             "FCOMp  $src2\n\t"
10027             "FNSTSW AX\n\t"
10028             "TEST   AX,0x400\n\t"
10029             "JZ,s   flags\n\t"
10030             "MOV    AH,1\t# unordered treat as LT\n"
10031     "flags:\tSAHF" %}
10032   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10033   ins_encode( Push_Reg_D(src1),
10034               OpcP, RegOpc(src2),
10035               fpu_flags);
10036   ins_pipe( pipe_slow );
10037 %}
10038 
10039 // Compare vs zero into -1,0,1
10040 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
10041   predicate(UseSSE<=1);
10042   match(Set dst (CmpD3 src1 zero));
10043   effect(KILL cr, KILL rax);
10044   ins_cost(280);
10045   format %{ "FTSTD  $dst,$src1" %}
10046   opcode(0xE4, 0xD9);
10047   ins_encode( Push_Reg_D(src1),
10048               OpcS, OpcP, PopFPU,
10049               CmpF_Result(dst));
10050   ins_pipe( pipe_slow );
10051 %}
10052 
10053 // Compare into -1,0,1
10054 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
10055   predicate(UseSSE<=1);
10056   match(Set dst (CmpD3 src1 src2));
10057   effect(KILL cr, KILL rax);
10058   ins_cost(300);
10059   format %{ "FCMPD  $dst,$src1,$src2" %}
10060   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10061   ins_encode( Push_Reg_D(src1),
10062               OpcP, RegOpc(src2),
10063               CmpF_Result(dst));
10064   ins_pipe( pipe_slow );
10065 %}
10066 
10067 // float compare and set condition codes in EFLAGS by XMM regs
10068 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
10069   predicate(UseSSE>=2);
10070   match(Set cr (CmpD dst src));
10071   effect(KILL rax);
10072   ins_cost(125);
10073   format %{ "COMISD $dst,$src\n"
10074           "\tJNP    exit\n"
10075           "\tMOV    ah,1       // saw a NaN, set CF\n"
10076           "\tSAHF\n"
10077      "exit:\tNOP               // avoid branch to branch" %}
10078   opcode(0x66, 0x0F, 0x2F);
10079   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
10080   ins_pipe( pipe_slow );
10081 %}
10082 
10083 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
10084   predicate(UseSSE>=2);
10085   match(Set cr (CmpD dst src));
10086   ins_cost(100);
10087   format %{ "COMISD $dst,$src" %}
10088   opcode(0x66, 0x0F, 0x2F);
10089   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
10090   ins_pipe( pipe_slow );
10091 %}
10092 
10093 // float compare and set condition codes in EFLAGS by XMM regs
10094 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
10095   predicate(UseSSE>=2);
10096   match(Set cr (CmpD dst (LoadD src)));
10097   effect(KILL rax);
10098   ins_cost(145);
10099   format %{ "COMISD $dst,$src\n"
10100           "\tJNP    exit\n"
10101           "\tMOV    ah,1       // saw a NaN, set CF\n"
10102           "\tSAHF\n"
10103      "exit:\tNOP               // avoid branch to branch" %}
10104   opcode(0x66, 0x0F, 0x2F);
10105   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
10106   ins_pipe( pipe_slow );
10107 %}
10108 
10109 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
10110   predicate(UseSSE>=2);
10111   match(Set cr (CmpD dst (LoadD src)));
10112   ins_cost(100);
10113   format %{ "COMISD $dst,$src" %}
10114   opcode(0x66, 0x0F, 0x2F);
10115   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
10116   ins_pipe( pipe_slow );
10117 %}
10118 
10119 // Compare into -1,0,1 in XMM
10120 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
10121   predicate(UseSSE>=2);
10122   match(Set dst (CmpD3 src1 src2));
10123   effect(KILL cr);
10124   ins_cost(255);
10125   format %{ "XOR    $dst,$dst\n"
10126           "\tCOMISD $src1,$src2\n"
10127           "\tJP,s   nan\n"
10128           "\tJEQ,s  exit\n"
10129           "\tJA,s   inc\n"
10130       "nan:\tDEC    $dst\n"
10131           "\tJMP,s  exit\n"
10132       "inc:\tINC    $dst\n"
10133       "exit:"
10134                 %}
10135   opcode(0x66, 0x0F, 0x2F);
10136   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
10137              CmpX_Result(dst));
10138   ins_pipe( pipe_slow );
10139 %}
10140 
10141 // Compare into -1,0,1 in XMM and memory
10142 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
10143   predicate(UseSSE>=2);
10144   match(Set dst (CmpD3 src1 (LoadD mem)));
10145   effect(KILL cr);
10146   ins_cost(275);
10147   format %{ "COMISD $src1,$mem\n"
10148           "\tMOV    $dst,0\t\t# do not blow flags\n"
10149           "\tJP,s   nan\n"
10150           "\tJEQ,s  exit\n"
10151           "\tJA,s   inc\n"
10152       "nan:\tDEC    $dst\n"
10153           "\tJMP,s  exit\n"
10154       "inc:\tINC    $dst\n"
10155       "exit:"
10156                 %}
10157   opcode(0x66, 0x0F, 0x2F);
10158   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
10159              LdImmI(dst,0x0), CmpX_Result(dst));
10160   ins_pipe( pipe_slow );
10161 %}
10162 
10163 
10164 instruct subD_reg(regD dst, regD src) %{
10165   predicate (UseSSE <=1);
10166   match(Set dst (SubD dst src));
10167 
10168   format %{ "FLD    $src\n\t"
10169             "DSUBp  $dst,ST" %}
10170   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10171   ins_cost(150);
10172   ins_encode( Push_Reg_D(src),
10173               OpcP, RegOpc(dst) );
10174   ins_pipe( fpu_reg_reg );
10175 %}
10176 
10177 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10178   predicate (UseSSE <=1);
10179   match(Set dst (RoundDouble (SubD src1 src2)));
10180   ins_cost(250);
10181 
10182   format %{ "FLD    $src2\n\t"
10183             "DSUB   ST,$src1\n\t"
10184             "FSTP_D $dst\t# D-round" %}
10185   opcode(0xD8, 0x5);
10186   ins_encode( Push_Reg_D(src2),
10187               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10188   ins_pipe( fpu_mem_reg_reg );
10189 %}
10190 
10191 
10192 instruct subD_reg_mem(regD dst, memory src) %{
10193   predicate (UseSSE <=1);
10194   match(Set dst (SubD dst (LoadD src)));
10195   ins_cost(150);
10196 
10197   format %{ "FLD    $src\n\t"
10198             "DSUBp  $dst,ST" %}
10199   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10200   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10201               OpcP, RegOpc(dst) );
10202   ins_pipe( fpu_reg_mem );
10203 %}
10204 
10205 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
10206   predicate (UseSSE<=1);
10207   match(Set dst (AbsD src));
10208   ins_cost(100);
10209   format %{ "FABS" %}
10210   opcode(0xE1, 0xD9);
10211   ins_encode( OpcS, OpcP );
10212   ins_pipe( fpu_reg_reg );
10213 %}
10214 
10215 instruct absXD_reg( regXD dst ) %{
10216   predicate(UseSSE>=2);
10217   match(Set dst (AbsD dst));
10218   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
10219   ins_encode( AbsXD_encoding(dst));
10220   ins_pipe( pipe_slow );
10221 %}
10222 
10223 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
10224   predicate(UseSSE<=1);
10225   match(Set dst (NegD src));
10226   ins_cost(100);
10227   format %{ "FCHS" %}
10228   opcode(0xE0, 0xD9);
10229   ins_encode( OpcS, OpcP );
10230   ins_pipe( fpu_reg_reg );
10231 %}
10232 
10233 instruct negXD_reg( regXD dst ) %{
10234   predicate(UseSSE>=2);
10235   match(Set dst (NegD dst));
10236   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
10237   ins_encode %{
10238      __ xorpd($dst$$XMMRegister,
10239               ExternalAddress((address)double_signflip_pool));
10240   %}
10241   ins_pipe( pipe_slow );
10242 %}
10243 
10244 instruct addD_reg(regD dst, regD src) %{
10245   predicate(UseSSE<=1);
10246   match(Set dst (AddD dst src));
10247   format %{ "FLD    $src\n\t"
10248             "DADD   $dst,ST" %}
10249   size(4);
10250   ins_cost(150);
10251   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10252   ins_encode( Push_Reg_D(src),
10253               OpcP, RegOpc(dst) );
10254   ins_pipe( fpu_reg_reg );
10255 %}
10256 
10257 
10258 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10259   predicate(UseSSE<=1);
10260   match(Set dst (RoundDouble (AddD src1 src2)));
10261   ins_cost(250);
10262 
10263   format %{ "FLD    $src2\n\t"
10264             "DADD   ST,$src1\n\t"
10265             "FSTP_D $dst\t# D-round" %}
10266   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
10267   ins_encode( Push_Reg_D(src2),
10268               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10269   ins_pipe( fpu_mem_reg_reg );
10270 %}
10271 
10272 
10273 instruct addD_reg_mem(regD dst, memory src) %{
10274   predicate(UseSSE<=1);
10275   match(Set dst (AddD dst (LoadD src)));
10276   ins_cost(150);
10277 
10278   format %{ "FLD    $src\n\t"
10279             "DADDp  $dst,ST" %}
10280   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10281   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10282               OpcP, RegOpc(dst) );
10283   ins_pipe( fpu_reg_mem );
10284 %}
10285 
10286 // add-to-memory
10287 instruct addD_mem_reg(memory dst, regD src) %{
10288   predicate(UseSSE<=1);
10289   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
10290   ins_cost(150);
10291 
10292   format %{ "FLD_D  $dst\n\t"
10293             "DADD   ST,$src\n\t"
10294             "FST_D  $dst" %}
10295   opcode(0xDD, 0x0);
10296   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
10297               Opcode(0xD8), RegOpc(src),
10298               set_instruction_start,
10299               Opcode(0xDD), RMopc_Mem(0x03,dst) );
10300   ins_pipe( fpu_reg_mem );
10301 %}
10302 
10303 instruct addD_reg_imm1(regD dst, immD1 con) %{
10304   predicate(UseSSE<=1);
10305   match(Set dst (AddD dst con));
10306   ins_cost(125);
10307   format %{ "FLD1\n\t"
10308             "DADDp  $dst,ST" %}
10309   ins_encode %{
10310     __ fld1();
10311     __ faddp($dst$$reg);
10312   %}
10313   ins_pipe(fpu_reg);
10314 %}
10315 
10316 instruct addD_reg_imm(regD dst, immD con) %{
10317   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10318   match(Set dst (AddD dst con));
10319   ins_cost(200);
10320   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10321             "DADDp  $dst,ST" %}
10322   ins_encode %{
10323     __ fld_d($constantaddress($con));
10324     __ faddp($dst$$reg);
10325   %}
10326   ins_pipe(fpu_reg_mem);
10327 %}
10328 
10329 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
10330   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
10331   match(Set dst (RoundDouble (AddD src con)));
10332   ins_cost(200);
10333   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10334             "DADD   ST,$src\n\t"
10335             "FSTP_D $dst\t# D-round" %}
10336   ins_encode %{
10337     __ fld_d($constantaddress($con));
10338     __ fadd($src$$reg);
10339     __ fstp_d(Address(rsp, $dst$$disp));
10340   %}
10341   ins_pipe(fpu_mem_reg_con);
10342 %}
10343 
10344 // Add two double precision floating point values in xmm
10345 instruct addXD_reg(regXD dst, regXD src) %{
10346   predicate(UseSSE>=2);
10347   match(Set dst (AddD dst src));
10348   format %{ "ADDSD  $dst,$src" %}
10349   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10350   ins_pipe( pipe_slow );
10351 %}
10352 
10353 instruct addXD_imm(regXD dst, immXD con) %{
10354   predicate(UseSSE>=2);
10355   match(Set dst (AddD dst con));
10356   format %{ "ADDSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10357   ins_encode %{
10358     __ addsd($dst$$XMMRegister, $constantaddress($con));
10359   %}
10360   ins_pipe(pipe_slow);
10361 %}
10362 
10363 instruct addXD_mem(regXD dst, memory mem) %{
10364   predicate(UseSSE>=2);
10365   match(Set dst (AddD dst (LoadD mem)));
10366   format %{ "ADDSD  $dst,$mem" %}
10367   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
10368   ins_pipe( pipe_slow );
10369 %}
10370 
10371 // Sub two double precision floating point values in xmm
10372 instruct subXD_reg(regXD dst, regXD src) %{
10373   predicate(UseSSE>=2);
10374   match(Set dst (SubD dst src));
10375   format %{ "SUBSD  $dst,$src" %}
10376   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10377   ins_pipe( pipe_slow );
10378 %}
10379 
10380 instruct subXD_imm(regXD dst, immXD con) %{
10381   predicate(UseSSE>=2);
10382   match(Set dst (SubD dst con));
10383   format %{ "SUBSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10384   ins_encode %{
10385     __ subsd($dst$$XMMRegister, $constantaddress($con));
10386   %}
10387   ins_pipe(pipe_slow);
10388 %}
10389 
10390 instruct subXD_mem(regXD dst, memory mem) %{
10391   predicate(UseSSE>=2);
10392   match(Set dst (SubD dst (LoadD mem)));
10393   format %{ "SUBSD  $dst,$mem" %}
10394   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10395   ins_pipe( pipe_slow );
10396 %}
10397 
10398 // Mul two double precision floating point values in xmm
10399 instruct mulXD_reg(regXD dst, regXD src) %{
10400   predicate(UseSSE>=2);
10401   match(Set dst (MulD dst src));
10402   format %{ "MULSD  $dst,$src" %}
10403   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10404   ins_pipe( pipe_slow );
10405 %}
10406 
10407 instruct mulXD_imm(regXD dst, immXD con) %{
10408   predicate(UseSSE>=2);
10409   match(Set dst (MulD dst con));
10410   format %{ "MULSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10411   ins_encode %{
10412     __ mulsd($dst$$XMMRegister, $constantaddress($con));
10413   %}
10414   ins_pipe(pipe_slow);
10415 %}
10416 
10417 instruct mulXD_mem(regXD dst, memory mem) %{
10418   predicate(UseSSE>=2);
10419   match(Set dst (MulD dst (LoadD mem)));
10420   format %{ "MULSD  $dst,$mem" %}
10421   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10422   ins_pipe( pipe_slow );
10423 %}
10424 
10425 // Div two double precision floating point values in xmm
10426 instruct divXD_reg(regXD dst, regXD src) %{
10427   predicate(UseSSE>=2);
10428   match(Set dst (DivD dst src));
10429   format %{ "DIVSD  $dst,$src" %}
10430   opcode(0xF2, 0x0F, 0x5E);
10431   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10432   ins_pipe( pipe_slow );
10433 %}
10434 
10435 instruct divXD_imm(regXD dst, immXD con) %{
10436   predicate(UseSSE>=2);
10437   match(Set dst (DivD dst con));
10438   format %{ "DIVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10439   ins_encode %{
10440     __ divsd($dst$$XMMRegister, $constantaddress($con));
10441   %}
10442   ins_pipe(pipe_slow);
10443 %}
10444 
10445 instruct divXD_mem(regXD dst, memory mem) %{
10446   predicate(UseSSE>=2);
10447   match(Set dst (DivD dst (LoadD mem)));
10448   format %{ "DIVSD  $dst,$mem" %}
10449   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10450   ins_pipe( pipe_slow );
10451 %}
10452 
10453 
10454 instruct mulD_reg(regD dst, regD src) %{
10455   predicate(UseSSE<=1);
10456   match(Set dst (MulD dst src));
10457   format %{ "FLD    $src\n\t"
10458             "DMULp  $dst,ST" %}
10459   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10460   ins_cost(150);
10461   ins_encode( Push_Reg_D(src),
10462               OpcP, RegOpc(dst) );
10463   ins_pipe( fpu_reg_reg );
10464 %}
10465 
10466 // Strict FP instruction biases argument before multiply then
10467 // biases result to avoid double rounding of subnormals.
10468 //
10469 // scale arg1 by multiplying arg1 by 2^(-15360)
10470 // load arg2
10471 // multiply scaled arg1 by arg2
10472 // rescale product by 2^(15360)
10473 //
10474 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
10475   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10476   match(Set dst (MulD dst src));
10477   ins_cost(1);   // Select this instruction for all strict FP double multiplies
10478 
10479   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10480             "DMULp  $dst,ST\n\t"
10481             "FLD    $src\n\t"
10482             "DMULp  $dst,ST\n\t"
10483             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10484             "DMULp  $dst,ST\n\t" %}
10485   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10486   ins_encode( strictfp_bias1(dst),
10487               Push_Reg_D(src),
10488               OpcP, RegOpc(dst),
10489               strictfp_bias2(dst) );
10490   ins_pipe( fpu_reg_reg );
10491 %}
10492 
10493 instruct mulD_reg_imm(regD dst, immD con) %{
10494   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10495   match(Set dst (MulD dst con));
10496   ins_cost(200);
10497   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10498             "DMULp  $dst,ST" %}
10499   ins_encode %{
10500     __ fld_d($constantaddress($con));
10501     __ fmulp($dst$$reg);
10502   %}
10503   ins_pipe(fpu_reg_mem);
10504 %}
10505 
10506 
10507 instruct mulD_reg_mem(regD dst, memory src) %{
10508   predicate( UseSSE<=1 );
10509   match(Set dst (MulD dst (LoadD src)));
10510   ins_cost(200);
10511   format %{ "FLD_D  $src\n\t"
10512             "DMULp  $dst,ST" %}
10513   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
10514   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10515               OpcP, RegOpc(dst) );
10516   ins_pipe( fpu_reg_mem );
10517 %}
10518 
10519 //
10520 // Cisc-alternate to reg-reg multiply
10521 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
10522   predicate( UseSSE<=1 );
10523   match(Set dst (MulD src (LoadD mem)));
10524   ins_cost(250);
10525   format %{ "FLD_D  $mem\n\t"
10526             "DMUL   ST,$src\n\t"
10527             "FSTP_D $dst" %}
10528   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
10529   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
10530               OpcReg_F(src),
10531               Pop_Reg_D(dst) );
10532   ins_pipe( fpu_reg_reg_mem );
10533 %}
10534 
10535 
10536 // MACRO3 -- addD a mulD
10537 // This instruction is a '2-address' instruction in that the result goes
10538 // back to src2.  This eliminates a move from the macro; possibly the
10539 // register allocator will have to add it back (and maybe not).
10540 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
10541   predicate( UseSSE<=1 );
10542   match(Set src2 (AddD (MulD src0 src1) src2));
10543   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10544             "DMUL   ST,$src1\n\t"
10545             "DADDp  $src2,ST" %}
10546   ins_cost(250);
10547   opcode(0xDD); /* LoadD DD /0 */
10548   ins_encode( Push_Reg_F(src0),
10549               FMul_ST_reg(src1),
10550               FAddP_reg_ST(src2) );
10551   ins_pipe( fpu_reg_reg_reg );
10552 %}
10553 
10554 
10555 // MACRO3 -- subD a mulD
10556 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
10557   predicate( UseSSE<=1 );
10558   match(Set src2 (SubD (MulD src0 src1) src2));
10559   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10560             "DMUL   ST,$src1\n\t"
10561             "DSUBRp $src2,ST" %}
10562   ins_cost(250);
10563   ins_encode( Push_Reg_F(src0),
10564               FMul_ST_reg(src1),
10565               Opcode(0xDE), Opc_plus(0xE0,src2));
10566   ins_pipe( fpu_reg_reg_reg );
10567 %}
10568 
10569 
10570 instruct divD_reg(regD dst, regD src) %{
10571   predicate( UseSSE<=1 );
10572   match(Set dst (DivD dst src));
10573 
10574   format %{ "FLD    $src\n\t"
10575             "FDIVp  $dst,ST" %}
10576   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10577   ins_cost(150);
10578   ins_encode( Push_Reg_D(src),
10579               OpcP, RegOpc(dst) );
10580   ins_pipe( fpu_reg_reg );
10581 %}
10582 
10583 // Strict FP instruction biases argument before division then
10584 // biases result, to avoid double rounding of subnormals.
10585 //
10586 // scale dividend by multiplying dividend by 2^(-15360)
10587 // load divisor
10588 // divide scaled dividend by divisor
10589 // rescale quotient by 2^(15360)
10590 //
10591 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
10592   predicate (UseSSE<=1);
10593   match(Set dst (DivD dst src));
10594   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10595   ins_cost(01);
10596 
10597   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10598             "DMULp  $dst,ST\n\t"
10599             "FLD    $src\n\t"
10600             "FDIVp  $dst,ST\n\t"
10601             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10602             "DMULp  $dst,ST\n\t" %}
10603   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10604   ins_encode( strictfp_bias1(dst),
10605               Push_Reg_D(src),
10606               OpcP, RegOpc(dst),
10607               strictfp_bias2(dst) );
10608   ins_pipe( fpu_reg_reg );
10609 %}
10610 
10611 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10612   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
10613   match(Set dst (RoundDouble (DivD src1 src2)));
10614 
10615   format %{ "FLD    $src1\n\t"
10616             "FDIV   ST,$src2\n\t"
10617             "FSTP_D $dst\t# D-round" %}
10618   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
10619   ins_encode( Push_Reg_D(src1),
10620               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
10621   ins_pipe( fpu_mem_reg_reg );
10622 %}
10623 
10624 
10625 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
10626   predicate(UseSSE<=1);
10627   match(Set dst (ModD dst src));
10628   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10629 
10630   format %{ "DMOD   $dst,$src" %}
10631   ins_cost(250);
10632   ins_encode(Push_Reg_Mod_D(dst, src),
10633               emitModD(),
10634               Push_Result_Mod_D(src),
10635               Pop_Reg_D(dst));
10636   ins_pipe( pipe_slow );
10637 %}
10638 
10639 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
10640   predicate(UseSSE>=2);
10641   match(Set dst (ModD src0 src1));
10642   effect(KILL rax, KILL cr);
10643 
10644   format %{ "SUB    ESP,8\t # DMOD\n"
10645           "\tMOVSD  [ESP+0],$src1\n"
10646           "\tFLD_D  [ESP+0]\n"
10647           "\tMOVSD  [ESP+0],$src0\n"
10648           "\tFLD_D  [ESP+0]\n"
10649      "loop:\tFPREM\n"
10650           "\tFWAIT\n"
10651           "\tFNSTSW AX\n"
10652           "\tSAHF\n"
10653           "\tJP     loop\n"
10654           "\tFSTP_D [ESP+0]\n"
10655           "\tMOVSD  $dst,[ESP+0]\n"
10656           "\tADD    ESP,8\n"
10657           "\tFSTP   ST0\t # Restore FPU Stack"
10658     %}
10659   ins_cost(250);
10660   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
10661   ins_pipe( pipe_slow );
10662 %}
10663 
10664 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
10665   predicate (UseSSE<=1);
10666   match(Set dst (SinD src));
10667   ins_cost(1800);
10668   format %{ "DSIN   $dst" %}
10669   opcode(0xD9, 0xFE);
10670   ins_encode( OpcP, OpcS );
10671   ins_pipe( pipe_slow );
10672 %}
10673 
10674 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
10675   predicate (UseSSE>=2);
10676   match(Set dst (SinD dst));
10677   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10678   ins_cost(1800);
10679   format %{ "DSIN   $dst" %}
10680   opcode(0xD9, 0xFE);
10681   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10682   ins_pipe( pipe_slow );
10683 %}
10684 
10685 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
10686   predicate (UseSSE<=1);
10687   match(Set dst (CosD src));
10688   ins_cost(1800);
10689   format %{ "DCOS   $dst" %}
10690   opcode(0xD9, 0xFF);
10691   ins_encode( OpcP, OpcS );
10692   ins_pipe( pipe_slow );
10693 %}
10694 
10695 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
10696   predicate (UseSSE>=2);
10697   match(Set dst (CosD dst));
10698   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10699   ins_cost(1800);
10700   format %{ "DCOS   $dst" %}
10701   opcode(0xD9, 0xFF);
10702   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10703   ins_pipe( pipe_slow );
10704 %}
10705 
10706 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
10707   predicate (UseSSE<=1);
10708   match(Set dst(TanD src));
10709   format %{ "DTAN   $dst" %}
10710   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10711               Opcode(0xDD), Opcode(0xD8));   // fstp st
10712   ins_pipe( pipe_slow );
10713 %}
10714 
10715 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
10716   predicate (UseSSE>=2);
10717   match(Set dst(TanD dst));
10718   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10719   format %{ "DTAN   $dst" %}
10720   ins_encode( Push_SrcXD(dst),
10721               Opcode(0xD9), Opcode(0xF2),    // fptan
10722               Opcode(0xDD), Opcode(0xD8),   // fstp st
10723               Push_ResultXD(dst) );
10724   ins_pipe( pipe_slow );
10725 %}
10726 
10727 instruct atanD_reg(regD dst, regD src) %{
10728   predicate (UseSSE<=1);
10729   match(Set dst(AtanD dst src));
10730   format %{ "DATA   $dst,$src" %}
10731   opcode(0xD9, 0xF3);
10732   ins_encode( Push_Reg_D(src),
10733               OpcP, OpcS, RegOpc(dst) );
10734   ins_pipe( pipe_slow );
10735 %}
10736 
10737 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10738   predicate (UseSSE>=2);
10739   match(Set dst(AtanD dst src));
10740   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10741   format %{ "DATA   $dst,$src" %}
10742   opcode(0xD9, 0xF3);
10743   ins_encode( Push_SrcXD(src),
10744               OpcP, OpcS, Push_ResultXD(dst) );
10745   ins_pipe( pipe_slow );
10746 %}
10747 
10748 instruct sqrtD_reg(regD dst, regD src) %{
10749   predicate (UseSSE<=1);
10750   match(Set dst (SqrtD src));
10751   format %{ "DSQRT  $dst,$src" %}
10752   opcode(0xFA, 0xD9);
10753   ins_encode( Push_Reg_D(src),
10754               OpcS, OpcP, Pop_Reg_D(dst) );
10755   ins_pipe( pipe_slow );
10756 %}
10757 
10758 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10759   predicate (UseSSE<=1);
10760   match(Set Y (PowD X Y));  // Raise X to the Yth power
10761   effect(KILL rax, KILL rbx, KILL rcx);
10762   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10763             "FLD_D  $X\n\t"
10764             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10765 
10766             "FDUP   \t\t\t# Q Q\n\t"
10767             "FRNDINT\t\t\t# int(Q) Q\n\t"
10768             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10769             "FISTP  dword [ESP]\n\t"
10770             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10771             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10772             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10773             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10774             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10775             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10776             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10777             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10778             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10779             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10780             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10781             "MOV    [ESP+0],0\n\t"
10782             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10783 
10784             "ADD    ESP,8"
10785              %}
10786   ins_encode( push_stack_temp_qword,
10787               Push_Reg_D(X),
10788               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10789               pow_exp_core_encoding,
10790               pop_stack_temp_qword);
10791   ins_pipe( pipe_slow );
10792 %}
10793 
10794 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
10795   predicate (UseSSE>=2);
10796   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10797   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
10798   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10799             "MOVSD  [ESP],$src1\n\t"
10800             "FLD    FPR1,$src1\n\t"
10801             "MOVSD  [ESP],$src0\n\t"
10802             "FLD    FPR1,$src0\n\t"
10803             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10804 
10805             "FDUP   \t\t\t# Q Q\n\t"
10806             "FRNDINT\t\t\t# int(Q) Q\n\t"
10807             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10808             "FISTP  dword [ESP]\n\t"
10809             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10810             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10811             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10812             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10813             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10814             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10815             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10816             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10817             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10818             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10819             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10820             "MOV    [ESP+0],0\n\t"
10821             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10822 
10823             "FST_D  [ESP]\n\t"
10824             "MOVSD  $dst,[ESP]\n\t"
10825             "ADD    ESP,8"
10826              %}
10827   ins_encode( push_stack_temp_qword,
10828               push_xmm_to_fpr1(src1),
10829               push_xmm_to_fpr1(src0),
10830               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10831               pow_exp_core_encoding,
10832               Push_ResultXD(dst) );
10833   ins_pipe( pipe_slow );
10834 %}
10835 
10836 
10837 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10838   predicate (UseSSE<=1);
10839   match(Set dpr1 (ExpD dpr1));
10840   effect(KILL rax, KILL rbx, KILL rcx);
10841   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
10842             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10843             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
10844 
10845             "FDUP   \t\t\t# Q Q\n\t"
10846             "FRNDINT\t\t\t# int(Q) Q\n\t"
10847             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10848             "FISTP  dword [ESP]\n\t"
10849             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10850             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10851             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10852             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10853             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10854             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10855             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10856             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10857             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10858             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10859             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10860             "MOV    [ESP+0],0\n\t"
10861             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10862 
10863             "ADD    ESP,8"
10864              %}
10865   ins_encode( push_stack_temp_qword,
10866               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10867               Opcode(0xDE), Opcode(0xC9),   // fmulp
10868               pow_exp_core_encoding,
10869               pop_stack_temp_qword);
10870   ins_pipe( pipe_slow );
10871 %}
10872 
10873 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10874   predicate (UseSSE>=2);
10875   match(Set dst (ExpD src));
10876   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
10877   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
10878             "MOVSD  [ESP],$src\n\t"
10879             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10880             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
10881 
10882             "FDUP   \t\t\t# Q Q\n\t"
10883             "FRNDINT\t\t\t# int(Q) Q\n\t"
10884             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10885             "FISTP  dword [ESP]\n\t"
10886             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10887             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10888             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10889             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10890             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10891             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10892             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10893             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10894             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10895             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10896             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10897             "MOV    [ESP+0],0\n\t"
10898             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10899 
10900             "FST_D  [ESP]\n\t"
10901             "MOVSD  $dst,[ESP]\n\t"
10902             "ADD    ESP,8"
10903              %}
10904   ins_encode( Push_SrcXD(src),
10905               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10906               Opcode(0xDE), Opcode(0xC9),   // fmulp
10907               pow_exp_core_encoding,
10908               Push_ResultXD(dst) );
10909   ins_pipe( pipe_slow );
10910 %}
10911 
10912 
10913 
10914 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
10915   predicate (UseSSE<=1);
10916   // The source Double operand on FPU stack
10917   match(Set dst (Log10D src));
10918   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10919   // fxch         ; swap ST(0) with ST(1)
10920   // fyl2x        ; compute log_10(2) * log_2(x)
10921   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10922             "FXCH   \n\t"
10923             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10924          %}
10925   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10926               Opcode(0xD9), Opcode(0xC9),   // fxch
10927               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10928 
10929   ins_pipe( pipe_slow );
10930 %}
10931 
10932 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10933   predicate (UseSSE>=2);
10934   effect(KILL cr);
10935   match(Set dst (Log10D src));
10936   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10937   // fyl2x        ; compute log_10(2) * log_2(x)
10938   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10939             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10940          %}
10941   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10942               Push_SrcXD(src),
10943               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10944               Push_ResultXD(dst));
10945 
10946   ins_pipe( pipe_slow );
10947 %}
10948 
10949 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
10950   predicate (UseSSE<=1);
10951   // The source Double operand on FPU stack
10952   match(Set dst (LogD src));
10953   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10954   // fxch         ; swap ST(0) with ST(1)
10955   // fyl2x        ; compute log_e(2) * log_2(x)
10956   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10957             "FXCH   \n\t"
10958             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10959          %}
10960   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10961               Opcode(0xD9), Opcode(0xC9),   // fxch
10962               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10963 
10964   ins_pipe( pipe_slow );
10965 %}
10966 
10967 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10968   predicate (UseSSE>=2);
10969   effect(KILL cr);
10970   // The source and result Double operands in XMM registers
10971   match(Set dst (LogD src));
10972   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10973   // fyl2x        ; compute log_e(2) * log_2(x)
10974   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10975             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10976          %}
10977   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10978               Push_SrcXD(src),
10979               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10980               Push_ResultXD(dst));
10981   ins_pipe( pipe_slow );
10982 %}
10983 
10984 //-------------Float Instructions-------------------------------
10985 // Float Math
10986 
10987 // Code for float compare:
10988 //     fcompp();
10989 //     fwait(); fnstsw_ax();
10990 //     sahf();
10991 //     movl(dst, unordered_result);
10992 //     jcc(Assembler::parity, exit);
10993 //     movl(dst, less_result);
10994 //     jcc(Assembler::below, exit);
10995 //     movl(dst, equal_result);
10996 //     jcc(Assembler::equal, exit);
10997 //     movl(dst, greater_result);
10998 //   exit:
10999 
11000 // P6 version of float compare, sets condition codes in EFLAGS
11001 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
11002   predicate(VM_Version::supports_cmov() && UseSSE == 0);
11003   match(Set cr (CmpF src1 src2));
11004   effect(KILL rax);
11005   ins_cost(150);
11006   format %{ "FLD    $src1\n\t"
11007             "FUCOMIP ST,$src2  // P6 instruction\n\t"
11008             "JNP    exit\n\t"
11009             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
11010             "SAHF\n"
11011      "exit:\tNOP               // avoid branch to branch" %}
11012   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
11013   ins_encode( Push_Reg_D(src1),
11014               OpcP, RegOpc(src2),
11015               cmpF_P6_fixup );
11016   ins_pipe( pipe_slow );
11017 %}
11018 
11019 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
11020   predicate(VM_Version::supports_cmov() && UseSSE == 0);
11021   match(Set cr (CmpF src1 src2));
11022   ins_cost(100);
11023   format %{ "FLD    $src1\n\t"
11024             "FUCOMIP ST,$src2  // P6 instruction" %}
11025   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
11026   ins_encode( Push_Reg_D(src1),
11027               OpcP, RegOpc(src2));
11028   ins_pipe( pipe_slow );
11029 %}
11030 
11031 
11032 // Compare & branch
11033 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
11034   predicate(UseSSE == 0);
11035   match(Set cr (CmpF src1 src2));
11036   effect(KILL rax);
11037   ins_cost(200);
11038   format %{ "FLD    $src1\n\t"
11039             "FCOMp  $src2\n\t"
11040             "FNSTSW AX\n\t"
11041             "TEST   AX,0x400\n\t"
11042             "JZ,s   flags\n\t"
11043             "MOV    AH,1\t# unordered treat as LT\n"
11044     "flags:\tSAHF" %}
11045   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
11046   ins_encode( Push_Reg_D(src1),
11047               OpcP, RegOpc(src2),
11048               fpu_flags);
11049   ins_pipe( pipe_slow );
11050 %}
11051 
11052 // Compare vs zero into -1,0,1
11053 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
11054   predicate(UseSSE == 0);
11055   match(Set dst (CmpF3 src1 zero));
11056   effect(KILL cr, KILL rax);
11057   ins_cost(280);
11058   format %{ "FTSTF  $dst,$src1" %}
11059   opcode(0xE4, 0xD9);
11060   ins_encode( Push_Reg_D(src1),
11061               OpcS, OpcP, PopFPU,
11062               CmpF_Result(dst));
11063   ins_pipe( pipe_slow );
11064 %}
11065 
11066 // Compare into -1,0,1
11067 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11068   predicate(UseSSE == 0);
11069   match(Set dst (CmpF3 src1 src2));
11070   effect(KILL cr, KILL rax);
11071   ins_cost(300);
11072   format %{ "FCMPF  $dst,$src1,$src2" %}
11073   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
11074   ins_encode( Push_Reg_D(src1),
11075               OpcP, RegOpc(src2),
11076               CmpF_Result(dst));
11077   ins_pipe( pipe_slow );
11078 %}
11079 
11080 // float compare and set condition codes in EFLAGS by XMM regs
11081 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
11082   predicate(UseSSE>=1);
11083   match(Set cr (CmpF dst src));
11084   effect(KILL rax);
11085   ins_cost(145);
11086   format %{ "COMISS $dst,$src\n"
11087           "\tJNP    exit\n"
11088           "\tMOV    ah,1       // saw a NaN, set CF\n"
11089           "\tSAHF\n"
11090      "exit:\tNOP               // avoid branch to branch" %}
11091   opcode(0x0F, 0x2F);
11092   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
11093   ins_pipe( pipe_slow );
11094 %}
11095 
11096 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
11097   predicate(UseSSE>=1);
11098   match(Set cr (CmpF dst src));
11099   ins_cost(100);
11100   format %{ "COMISS $dst,$src" %}
11101   opcode(0x0F, 0x2F);
11102   ins_encode(OpcP, OpcS, RegReg(dst, src));
11103   ins_pipe( pipe_slow );
11104 %}
11105 
11106 // float compare and set condition codes in EFLAGS by XMM regs
11107 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
11108   predicate(UseSSE>=1);
11109   match(Set cr (CmpF dst (LoadF src)));
11110   effect(KILL rax);
11111   ins_cost(165);
11112   format %{ "COMISS $dst,$src\n"
11113           "\tJNP    exit\n"
11114           "\tMOV    ah,1       // saw a NaN, set CF\n"
11115           "\tSAHF\n"
11116      "exit:\tNOP               // avoid branch to branch" %}
11117   opcode(0x0F, 0x2F);
11118   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
11119   ins_pipe( pipe_slow );
11120 %}
11121 
11122 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
11123   predicate(UseSSE>=1);
11124   match(Set cr (CmpF dst (LoadF src)));
11125   ins_cost(100);
11126   format %{ "COMISS $dst,$src" %}
11127   opcode(0x0F, 0x2F);
11128   ins_encode(OpcP, OpcS, RegMem(dst, src));
11129   ins_pipe( pipe_slow );
11130 %}
11131 
11132 // Compare into -1,0,1 in XMM
11133 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
11134   predicate(UseSSE>=1);
11135   match(Set dst (CmpF3 src1 src2));
11136   effect(KILL cr);
11137   ins_cost(255);
11138   format %{ "XOR    $dst,$dst\n"
11139           "\tCOMISS $src1,$src2\n"
11140           "\tJP,s   nan\n"
11141           "\tJEQ,s  exit\n"
11142           "\tJA,s   inc\n"
11143       "nan:\tDEC    $dst\n"
11144           "\tJMP,s  exit\n"
11145       "inc:\tINC    $dst\n"
11146       "exit:"
11147                 %}
11148   opcode(0x0F, 0x2F);
11149   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
11150   ins_pipe( pipe_slow );
11151 %}
11152 
11153 // Compare into -1,0,1 in XMM and memory
11154 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
11155   predicate(UseSSE>=1);
11156   match(Set dst (CmpF3 src1 (LoadF mem)));
11157   effect(KILL cr);
11158   ins_cost(275);
11159   format %{ "COMISS $src1,$mem\n"
11160           "\tMOV    $dst,0\t\t# do not blow flags\n"
11161           "\tJP,s   nan\n"
11162           "\tJEQ,s  exit\n"
11163           "\tJA,s   inc\n"
11164       "nan:\tDEC    $dst\n"
11165           "\tJMP,s  exit\n"
11166       "inc:\tINC    $dst\n"
11167       "exit:"
11168                 %}
11169   opcode(0x0F, 0x2F);
11170   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
11171   ins_pipe( pipe_slow );
11172 %}
11173 
11174 // Spill to obtain 24-bit precision
11175 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
11176   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11177   match(Set dst (SubF src1 src2));
11178 
11179   format %{ "FSUB   $dst,$src1 - $src2" %}
11180   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
11181   ins_encode( Push_Reg_F(src1),
11182               OpcReg_F(src2),
11183               Pop_Mem_F(dst) );
11184   ins_pipe( fpu_mem_reg_reg );
11185 %}
11186 //
11187 // This instruction does not round to 24-bits
11188 instruct subF_reg(regF dst, regF src) %{
11189   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11190   match(Set dst (SubF dst src));
11191 
11192   format %{ "FSUB   $dst,$src" %}
11193   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
11194   ins_encode( Push_Reg_F(src),
11195               OpcP, RegOpc(dst) );
11196   ins_pipe( fpu_reg_reg );
11197 %}
11198 
11199 // Spill to obtain 24-bit precision
11200 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
11201   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11202   match(Set dst (AddF src1 src2));
11203 
11204   format %{ "FADD   $dst,$src1,$src2" %}
11205   opcode(0xD8, 0x0); /* D8 C0+i */
11206   ins_encode( Push_Reg_F(src2),
11207               OpcReg_F(src1),
11208               Pop_Mem_F(dst) );
11209   ins_pipe( fpu_mem_reg_reg );
11210 %}
11211 //
11212 // This instruction does not round to 24-bits
11213 instruct addF_reg(regF dst, regF src) %{
11214   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11215   match(Set dst (AddF dst src));
11216 
11217   format %{ "FLD    $src\n\t"
11218             "FADDp  $dst,ST" %}
11219   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
11220   ins_encode( Push_Reg_F(src),
11221               OpcP, RegOpc(dst) );
11222   ins_pipe( fpu_reg_reg );
11223 %}
11224 
11225 // Add two single precision floating point values in xmm
11226 instruct addX_reg(regX dst, regX src) %{
11227   predicate(UseSSE>=1);
11228   match(Set dst (AddF dst src));
11229   format %{ "ADDSS  $dst,$src" %}
11230   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
11231   ins_pipe( pipe_slow );
11232 %}
11233 
11234 instruct addX_imm(regX dst, immXF con) %{
11235   predicate(UseSSE>=1);
11236   match(Set dst (AddF dst con));
11237   format %{ "ADDSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11238   ins_encode %{
11239     __ addss($dst$$XMMRegister, $constantaddress($con));
11240   %}
11241   ins_pipe(pipe_slow);
11242 %}
11243 
11244 instruct addX_mem(regX dst, memory mem) %{
11245   predicate(UseSSE>=1);
11246   match(Set dst (AddF dst (LoadF mem)));
11247   format %{ "ADDSS  $dst,$mem" %}
11248   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
11249   ins_pipe( pipe_slow );
11250 %}
11251 
11252 // Subtract two single precision floating point values in xmm
11253 instruct subX_reg(regX dst, regX src) %{
11254   predicate(UseSSE>=1);
11255   match(Set dst (SubF dst src));
11256   format %{ "SUBSS  $dst,$src" %}
11257   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
11258   ins_pipe( pipe_slow );
11259 %}
11260 
11261 instruct subX_imm(regX dst, immXF con) %{
11262   predicate(UseSSE>=1);
11263   match(Set dst (SubF dst con));
11264   format %{ "SUBSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11265   ins_encode %{
11266     __ subss($dst$$XMMRegister, $constantaddress($con));
11267   %}
11268   ins_pipe(pipe_slow);
11269 %}
11270 
11271 instruct subX_mem(regX dst, memory mem) %{
11272   predicate(UseSSE>=1);
11273   match(Set dst (SubF dst (LoadF mem)));
11274   format %{ "SUBSS  $dst,$mem" %}
11275   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
11276   ins_pipe( pipe_slow );
11277 %}
11278 
11279 // Multiply two single precision floating point values in xmm
11280 instruct mulX_reg(regX dst, regX src) %{
11281   predicate(UseSSE>=1);
11282   match(Set dst (MulF dst src));
11283   format %{ "MULSS  $dst,$src" %}
11284   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
11285   ins_pipe( pipe_slow );
11286 %}
11287 
11288 instruct mulX_imm(regX dst, immXF con) %{
11289   predicate(UseSSE>=1);
11290   match(Set dst (MulF dst con));
11291   format %{ "MULSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11292   ins_encode %{
11293     __ mulss($dst$$XMMRegister, $constantaddress($con));
11294   %}
11295   ins_pipe(pipe_slow);
11296 %}
11297 
11298 instruct mulX_mem(regX dst, memory mem) %{
11299   predicate(UseSSE>=1);
11300   match(Set dst (MulF dst (LoadF mem)));
11301   format %{ "MULSS  $dst,$mem" %}
11302   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
11303   ins_pipe( pipe_slow );
11304 %}
11305 
11306 // Divide two single precision floating point values in xmm
11307 instruct divX_reg(regX dst, regX src) %{
11308   predicate(UseSSE>=1);
11309   match(Set dst (DivF dst src));
11310   format %{ "DIVSS  $dst,$src" %}
11311   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
11312   ins_pipe( pipe_slow );
11313 %}
11314 
11315 instruct divX_imm(regX dst, immXF con) %{
11316   predicate(UseSSE>=1);
11317   match(Set dst (DivF dst con));
11318   format %{ "DIVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11319   ins_encode %{
11320     __ divss($dst$$XMMRegister, $constantaddress($con));
11321   %}
11322   ins_pipe(pipe_slow);
11323 %}
11324 
11325 instruct divX_mem(regX dst, memory mem) %{
11326   predicate(UseSSE>=1);
11327   match(Set dst (DivF dst (LoadF mem)));
11328   format %{ "DIVSS  $dst,$mem" %}
11329   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
11330   ins_pipe( pipe_slow );
11331 %}
11332 
11333 // Get the square root of a single precision floating point values in xmm
11334 instruct sqrtX_reg(regX dst, regX src) %{
11335   predicate(UseSSE>=1);
11336   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
11337   format %{ "SQRTSS $dst,$src" %}
11338   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11339   ins_pipe( pipe_slow );
11340 %}
11341 
11342 instruct sqrtX_mem(regX dst, memory mem) %{
11343   predicate(UseSSE>=1);
11344   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
11345   format %{ "SQRTSS $dst,$mem" %}
11346   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11347   ins_pipe( pipe_slow );
11348 %}
11349 
11350 // Get the square root of a double precision floating point values in xmm
11351 instruct sqrtXD_reg(regXD dst, regXD src) %{
11352   predicate(UseSSE>=2);
11353   match(Set dst (SqrtD src));
11354   format %{ "SQRTSD $dst,$src" %}
11355   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11356   ins_pipe( pipe_slow );
11357 %}
11358 
11359 instruct sqrtXD_mem(regXD dst, memory mem) %{
11360   predicate(UseSSE>=2);
11361   match(Set dst (SqrtD (LoadD mem)));
11362   format %{ "SQRTSD $dst,$mem" %}
11363   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11364   ins_pipe( pipe_slow );
11365 %}
11366 
11367 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
11368   predicate(UseSSE==0);
11369   match(Set dst (AbsF src));
11370   ins_cost(100);
11371   format %{ "FABS" %}
11372   opcode(0xE1, 0xD9);
11373   ins_encode( OpcS, OpcP );
11374   ins_pipe( fpu_reg_reg );
11375 %}
11376 
11377 instruct absX_reg(regX dst ) %{
11378   predicate(UseSSE>=1);
11379   match(Set dst (AbsF dst));
11380   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
11381   ins_encode( AbsXF_encoding(dst));
11382   ins_pipe( pipe_slow );
11383 %}
11384 
11385 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
11386   predicate(UseSSE==0);
11387   match(Set dst (NegF src));
11388   ins_cost(100);
11389   format %{ "FCHS" %}
11390   opcode(0xE0, 0xD9);
11391   ins_encode( OpcS, OpcP );
11392   ins_pipe( fpu_reg_reg );
11393 %}
11394 
11395 instruct negX_reg( regX dst ) %{
11396   predicate(UseSSE>=1);
11397   match(Set dst (NegF dst));
11398   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
11399   ins_encode( NegXF_encoding(dst));
11400   ins_pipe( pipe_slow );
11401 %}
11402 
11403 // Cisc-alternate to addF_reg
11404 // Spill to obtain 24-bit precision
11405 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11406   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11407   match(Set dst (AddF src1 (LoadF src2)));
11408 
11409   format %{ "FLD    $src2\n\t"
11410             "FADD   ST,$src1\n\t"
11411             "FSTP_S $dst" %}
11412   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11413   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11414               OpcReg_F(src1),
11415               Pop_Mem_F(dst) );
11416   ins_pipe( fpu_mem_reg_mem );
11417 %}
11418 //
11419 // Cisc-alternate to addF_reg
11420 // This instruction does not round to 24-bits
11421 instruct addF_reg_mem(regF dst, memory src) %{
11422   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11423   match(Set dst (AddF dst (LoadF src)));
11424 
11425   format %{ "FADD   $dst,$src" %}
11426   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
11427   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
11428               OpcP, RegOpc(dst) );
11429   ins_pipe( fpu_reg_mem );
11430 %}
11431 
11432 // // Following two instructions for _222_mpegaudio
11433 // Spill to obtain 24-bit precision
11434 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
11435   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11436   match(Set dst (AddF src1 src2));
11437 
11438   format %{ "FADD   $dst,$src1,$src2" %}
11439   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11440   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
11441               OpcReg_F(src2),
11442               Pop_Mem_F(dst) );
11443   ins_pipe( fpu_mem_reg_mem );
11444 %}
11445 
11446 // Cisc-spill variant
11447 // Spill to obtain 24-bit precision
11448 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
11449   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11450   match(Set dst (AddF src1 (LoadF src2)));
11451 
11452   format %{ "FADD   $dst,$src1,$src2 cisc" %}
11453   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11454   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11455               set_instruction_start,
11456               OpcP, RMopc_Mem(secondary,src1),
11457               Pop_Mem_F(dst) );
11458   ins_pipe( fpu_mem_mem_mem );
11459 %}
11460 
11461 // Spill to obtain 24-bit precision
11462 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11463   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11464   match(Set dst (AddF src1 src2));
11465 
11466   format %{ "FADD   $dst,$src1,$src2" %}
11467   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
11468   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11469               set_instruction_start,
11470               OpcP, RMopc_Mem(secondary,src1),
11471               Pop_Mem_F(dst) );
11472   ins_pipe( fpu_mem_mem_mem );
11473 %}
11474 
11475 
11476 // Spill to obtain 24-bit precision
11477 instruct addF24_reg_imm(stackSlotF dst, regF src, immF con) %{
11478   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11479   match(Set dst (AddF src con));
11480   format %{ "FLD    $src\n\t"
11481             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11482             "FSTP_S $dst"  %}
11483   ins_encode %{
11484     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11485     __ fadd_s($constantaddress($con));
11486     __ fstp_s(Address(rsp, $dst$$disp));
11487   %}
11488   ins_pipe(fpu_mem_reg_con);
11489 %}
11490 //
11491 // This instruction does not round to 24-bits
11492 instruct addF_reg_imm(regF dst, regF src, immF con) %{
11493   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11494   match(Set dst (AddF src con));
11495   format %{ "FLD    $src\n\t"
11496             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11497             "FSTP   $dst"  %}
11498   ins_encode %{
11499     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11500     __ fadd_s($constantaddress($con));
11501     __ fstp_d($dst$$reg);
11502   %}
11503   ins_pipe(fpu_reg_reg_con);
11504 %}
11505 
11506 // Spill to obtain 24-bit precision
11507 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
11508   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11509   match(Set dst (MulF src1 src2));
11510 
11511   format %{ "FLD    $src1\n\t"
11512             "FMUL   $src2\n\t"
11513             "FSTP_S $dst"  %}
11514   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
11515   ins_encode( Push_Reg_F(src1),
11516               OpcReg_F(src2),
11517               Pop_Mem_F(dst) );
11518   ins_pipe( fpu_mem_reg_reg );
11519 %}
11520 //
11521 // This instruction does not round to 24-bits
11522 instruct mulF_reg(regF dst, regF src1, regF src2) %{
11523   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11524   match(Set dst (MulF src1 src2));
11525 
11526   format %{ "FLD    $src1\n\t"
11527             "FMUL   $src2\n\t"
11528             "FSTP_S $dst"  %}
11529   opcode(0xD8, 0x1); /* D8 C8+i */
11530   ins_encode( Push_Reg_F(src2),
11531               OpcReg_F(src1),
11532               Pop_Reg_F(dst) );
11533   ins_pipe( fpu_reg_reg_reg );
11534 %}
11535 
11536 
11537 // Spill to obtain 24-bit precision
11538 // Cisc-alternate to reg-reg multiply
11539 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11540   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11541   match(Set dst (MulF src1 (LoadF src2)));
11542 
11543   format %{ "FLD_S  $src2\n\t"
11544             "FMUL   $src1\n\t"
11545             "FSTP_S $dst"  %}
11546   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
11547   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11548               OpcReg_F(src1),
11549               Pop_Mem_F(dst) );
11550   ins_pipe( fpu_mem_reg_mem );
11551 %}
11552 //
11553 // This instruction does not round to 24-bits
11554 // Cisc-alternate to reg-reg multiply
11555 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
11556   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11557   match(Set dst (MulF src1 (LoadF src2)));
11558 
11559   format %{ "FMUL   $dst,$src1,$src2" %}
11560   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
11561   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11562               OpcReg_F(src1),
11563               Pop_Reg_F(dst) );
11564   ins_pipe( fpu_reg_reg_mem );
11565 %}
11566 
11567 // Spill to obtain 24-bit precision
11568 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11569   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11570   match(Set dst (MulF src1 src2));
11571 
11572   format %{ "FMUL   $dst,$src1,$src2" %}
11573   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
11574   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11575               set_instruction_start,
11576               OpcP, RMopc_Mem(secondary,src1),
11577               Pop_Mem_F(dst) );
11578   ins_pipe( fpu_mem_mem_mem );
11579 %}
11580 
11581 // Spill to obtain 24-bit precision
11582 instruct mulF24_reg_imm(stackSlotF dst, regF src, immF con) %{
11583   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11584   match(Set dst (MulF src con));
11585 
11586   format %{ "FLD    $src\n\t"
11587             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11588             "FSTP_S $dst"  %}
11589   ins_encode %{
11590     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11591     __ fmul_s($constantaddress($con));
11592     __ fstp_s(Address(rsp, $dst$$disp));
11593   %}
11594   ins_pipe(fpu_mem_reg_con);
11595 %}
11596 //
11597 // This instruction does not round to 24-bits
11598 instruct mulF_reg_imm(regF dst, regF src, immF con) %{
11599   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11600   match(Set dst (MulF src con));
11601 
11602   format %{ "FLD    $src\n\t"
11603             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11604             "FSTP   $dst"  %}
11605   ins_encode %{
11606     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11607     __ fmul_s($constantaddress($con));
11608     __ fstp_d($dst$$reg);
11609   %}
11610   ins_pipe(fpu_reg_reg_con);
11611 %}
11612 
11613 
11614 //
11615 // MACRO1 -- subsume unshared load into mulF
11616 // This instruction does not round to 24-bits
11617 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
11618   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11619   match(Set dst (MulF (LoadF mem1) src));
11620 
11621   format %{ "FLD    $mem1    ===MACRO1===\n\t"
11622             "FMUL   ST,$src\n\t"
11623             "FSTP   $dst" %}
11624   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
11625   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
11626               OpcReg_F(src),
11627               Pop_Reg_F(dst) );
11628   ins_pipe( fpu_reg_reg_mem );
11629 %}
11630 //
11631 // MACRO2 -- addF a mulF which subsumed an unshared load
11632 // This instruction does not round to 24-bits
11633 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
11634   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11635   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
11636   ins_cost(95);
11637 
11638   format %{ "FLD    $mem1     ===MACRO2===\n\t"
11639             "FMUL   ST,$src1  subsume mulF left load\n\t"
11640             "FADD   ST,$src2\n\t"
11641             "FSTP   $dst" %}
11642   opcode(0xD9); /* LoadF D9 /0 */
11643   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
11644               FMul_ST_reg(src1),
11645               FAdd_ST_reg(src2),
11646               Pop_Reg_F(dst) );
11647   ins_pipe( fpu_reg_mem_reg_reg );
11648 %}
11649 
11650 // MACRO3 -- addF a mulF
11651 // This instruction does not round to 24-bits.  It is a '2-address'
11652 // instruction in that the result goes back to src2.  This eliminates
11653 // a move from the macro; possibly the register allocator will have
11654 // to add it back (and maybe not).
11655 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
11656   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11657   match(Set src2 (AddF (MulF src0 src1) src2));
11658 
11659   format %{ "FLD    $src0     ===MACRO3===\n\t"
11660             "FMUL   ST,$src1\n\t"
11661             "FADDP  $src2,ST" %}
11662   opcode(0xD9); /* LoadF D9 /0 */
11663   ins_encode( Push_Reg_F(src0),
11664               FMul_ST_reg(src1),
11665               FAddP_reg_ST(src2) );
11666   ins_pipe( fpu_reg_reg_reg );
11667 %}
11668 
11669 // MACRO4 -- divF subF
11670 // This instruction does not round to 24-bits
11671 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
11672   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11673   match(Set dst (DivF (SubF src2 src1) src3));
11674 
11675   format %{ "FLD    $src2   ===MACRO4===\n\t"
11676             "FSUB   ST,$src1\n\t"
11677             "FDIV   ST,$src3\n\t"
11678             "FSTP  $dst" %}
11679   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11680   ins_encode( Push_Reg_F(src2),
11681               subF_divF_encode(src1,src3),
11682               Pop_Reg_F(dst) );
11683   ins_pipe( fpu_reg_reg_reg_reg );
11684 %}
11685 
11686 // Spill to obtain 24-bit precision
11687 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
11688   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11689   match(Set dst (DivF src1 src2));
11690 
11691   format %{ "FDIV   $dst,$src1,$src2" %}
11692   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
11693   ins_encode( Push_Reg_F(src1),
11694               OpcReg_F(src2),
11695               Pop_Mem_F(dst) );
11696   ins_pipe( fpu_mem_reg_reg );
11697 %}
11698 //
11699 // This instruction does not round to 24-bits
11700 instruct divF_reg(regF dst, regF src) %{
11701   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11702   match(Set dst (DivF dst src));
11703 
11704   format %{ "FDIV   $dst,$src" %}
11705   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11706   ins_encode( Push_Reg_F(src),
11707               OpcP, RegOpc(dst) );
11708   ins_pipe( fpu_reg_reg );
11709 %}
11710 
11711 
11712 // Spill to obtain 24-bit precision
11713 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11714   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11715   match(Set dst (ModF src1 src2));
11716   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11717 
11718   format %{ "FMOD   $dst,$src1,$src2" %}
11719   ins_encode( Push_Reg_Mod_D(src1, src2),
11720               emitModD(),
11721               Push_Result_Mod_D(src2),
11722               Pop_Mem_F(dst));
11723   ins_pipe( pipe_slow );
11724 %}
11725 //
11726 // This instruction does not round to 24-bits
11727 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
11728   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11729   match(Set dst (ModF dst src));
11730   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11731 
11732   format %{ "FMOD   $dst,$src" %}
11733   ins_encode(Push_Reg_Mod_D(dst, src),
11734               emitModD(),
11735               Push_Result_Mod_D(src),
11736               Pop_Reg_F(dst));
11737   ins_pipe( pipe_slow );
11738 %}
11739 
11740 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
11741   predicate(UseSSE>=1);
11742   match(Set dst (ModF src0 src1));
11743   effect(KILL rax, KILL cr);
11744   format %{ "SUB    ESP,4\t # FMOD\n"
11745           "\tMOVSS  [ESP+0],$src1\n"
11746           "\tFLD_S  [ESP+0]\n"
11747           "\tMOVSS  [ESP+0],$src0\n"
11748           "\tFLD_S  [ESP+0]\n"
11749      "loop:\tFPREM\n"
11750           "\tFWAIT\n"
11751           "\tFNSTSW AX\n"
11752           "\tSAHF\n"
11753           "\tJP     loop\n"
11754           "\tFSTP_S [ESP+0]\n"
11755           "\tMOVSS  $dst,[ESP+0]\n"
11756           "\tADD    ESP,4\n"
11757           "\tFSTP   ST0\t # Restore FPU Stack"
11758     %}
11759   ins_cost(250);
11760   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
11761   ins_pipe( pipe_slow );
11762 %}
11763 
11764 
11765 //----------Arithmetic Conversion Instructions---------------------------------
11766 // The conversions operations are all Alpha sorted.  Please keep it that way!
11767 
11768 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
11769   predicate(UseSSE==0);
11770   match(Set dst (RoundFloat src));
11771   ins_cost(125);
11772   format %{ "FST_S  $dst,$src\t# F-round" %}
11773   ins_encode( Pop_Mem_Reg_F(dst, src) );
11774   ins_pipe( fpu_mem_reg );
11775 %}
11776 
11777 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
11778   predicate(UseSSE<=1);
11779   match(Set dst (RoundDouble src));
11780   ins_cost(125);
11781   format %{ "FST_D  $dst,$src\t# D-round" %}
11782   ins_encode( Pop_Mem_Reg_D(dst, src) );
11783   ins_pipe( fpu_mem_reg );
11784 %}
11785 
11786 // Force rounding to 24-bit precision and 6-bit exponent
11787 instruct convD2F_reg(stackSlotF dst, regD src) %{
11788   predicate(UseSSE==0);
11789   match(Set dst (ConvD2F src));
11790   format %{ "FST_S  $dst,$src\t# F-round" %}
11791   expand %{
11792     roundFloat_mem_reg(dst,src);
11793   %}
11794 %}
11795 
11796 // Force rounding to 24-bit precision and 6-bit exponent
11797 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
11798   predicate(UseSSE==1);
11799   match(Set dst (ConvD2F src));
11800   effect( KILL cr );
11801   format %{ "SUB    ESP,4\n\t"
11802             "FST_S  [ESP],$src\t# F-round\n\t"
11803             "MOVSS  $dst,[ESP]\n\t"
11804             "ADD ESP,4" %}
11805   ins_encode( D2X_encoding(dst, src) );
11806   ins_pipe( pipe_slow );
11807 %}
11808 
11809 // Force rounding double precision to single precision
11810 instruct convXD2X_reg(regX dst, regXD src) %{
11811   predicate(UseSSE>=2);
11812   match(Set dst (ConvD2F src));
11813   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
11814   opcode(0xF2, 0x0F, 0x5A);
11815   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11816   ins_pipe( pipe_slow );
11817 %}
11818 
11819 instruct convF2D_reg_reg(regD dst, regF src) %{
11820   predicate(UseSSE==0);
11821   match(Set dst (ConvF2D src));
11822   format %{ "FST_S  $dst,$src\t# D-round" %}
11823   ins_encode( Pop_Reg_Reg_D(dst, src));
11824   ins_pipe( fpu_reg_reg );
11825 %}
11826 
11827 instruct convF2D_reg(stackSlotD dst, regF src) %{
11828   predicate(UseSSE==1);
11829   match(Set dst (ConvF2D src));
11830   format %{ "FST_D  $dst,$src\t# D-round" %}
11831   expand %{
11832     roundDouble_mem_reg(dst,src);
11833   %}
11834 %}
11835 
11836 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
11837   predicate(UseSSE==1);
11838   match(Set dst (ConvF2D src));
11839   effect( KILL cr );
11840   format %{ "SUB    ESP,4\n\t"
11841             "MOVSS  [ESP] $src\n\t"
11842             "FLD_S  [ESP]\n\t"
11843             "ADD    ESP,4\n\t"
11844             "FSTP   $dst\t# D-round" %}
11845   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
11846   ins_pipe( pipe_slow );
11847 %}
11848 
11849 instruct convX2XD_reg(regXD dst, regX src) %{
11850   predicate(UseSSE>=2);
11851   match(Set dst (ConvF2D src));
11852   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11853   opcode(0xF3, 0x0F, 0x5A);
11854   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11855   ins_pipe( pipe_slow );
11856 %}
11857 
11858 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11859 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11860   predicate(UseSSE<=1);
11861   match(Set dst (ConvD2I src));
11862   effect( KILL tmp, KILL cr );
11863   format %{ "FLD    $src\t# Convert double to int \n\t"
11864             "FLDCW  trunc mode\n\t"
11865             "SUB    ESP,4\n\t"
11866             "FISTp  [ESP + #0]\n\t"
11867             "FLDCW  std/24-bit mode\n\t"
11868             "POP    EAX\n\t"
11869             "CMP    EAX,0x80000000\n\t"
11870             "JNE,s  fast\n\t"
11871             "FLD_D  $src\n\t"
11872             "CALL   d2i_wrapper\n"
11873       "fast:" %}
11874   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
11875   ins_pipe( pipe_slow );
11876 %}
11877 
11878 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11879 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
11880   predicate(UseSSE>=2);
11881   match(Set dst (ConvD2I src));
11882   effect( KILL tmp, KILL cr );
11883   format %{ "CVTTSD2SI $dst, $src\n\t"
11884             "CMP    $dst,0x80000000\n\t"
11885             "JNE,s  fast\n\t"
11886             "SUB    ESP, 8\n\t"
11887             "MOVSD  [ESP], $src\n\t"
11888             "FLD_D  [ESP]\n\t"
11889             "ADD    ESP, 8\n\t"
11890             "CALL   d2i_wrapper\n"
11891       "fast:" %}
11892   opcode(0x1); // double-precision conversion
11893   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11894   ins_pipe( pipe_slow );
11895 %}
11896 
11897 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11898   predicate(UseSSE<=1);
11899   match(Set dst (ConvD2L src));
11900   effect( KILL cr );
11901   format %{ "FLD    $src\t# Convert double to long\n\t"
11902             "FLDCW  trunc mode\n\t"
11903             "SUB    ESP,8\n\t"
11904             "FISTp  [ESP + #0]\n\t"
11905             "FLDCW  std/24-bit mode\n\t"
11906             "POP    EAX\n\t"
11907             "POP    EDX\n\t"
11908             "CMP    EDX,0x80000000\n\t"
11909             "JNE,s  fast\n\t"
11910             "TEST   EAX,EAX\n\t"
11911             "JNE,s  fast\n\t"
11912             "FLD    $src\n\t"
11913             "CALL   d2l_wrapper\n"
11914       "fast:" %}
11915   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
11916   ins_pipe( pipe_slow );
11917 %}
11918 
11919 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11920 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
11921   predicate (UseSSE>=2);
11922   match(Set dst (ConvD2L src));
11923   effect( KILL cr );
11924   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11925             "MOVSD  [ESP],$src\n\t"
11926             "FLD_D  [ESP]\n\t"
11927             "FLDCW  trunc mode\n\t"
11928             "FISTp  [ESP + #0]\n\t"
11929             "FLDCW  std/24-bit mode\n\t"
11930             "POP    EAX\n\t"
11931             "POP    EDX\n\t"
11932             "CMP    EDX,0x80000000\n\t"
11933             "JNE,s  fast\n\t"
11934             "TEST   EAX,EAX\n\t"
11935             "JNE,s  fast\n\t"
11936             "SUB    ESP,8\n\t"
11937             "MOVSD  [ESP],$src\n\t"
11938             "FLD_D  [ESP]\n\t"
11939             "CALL   d2l_wrapper\n"
11940       "fast:" %}
11941   ins_encode( XD2L_encoding(src) );
11942   ins_pipe( pipe_slow );
11943 %}
11944 
11945 // Convert a double to an int.  Java semantics require we do complex
11946 // manglations in the corner cases.  So we set the rounding mode to
11947 // 'zero', store the darned double down as an int, and reset the
11948 // rounding mode to 'nearest'.  The hardware stores a flag value down
11949 // if we would overflow or converted a NAN; we check for this and
11950 // and go the slow path if needed.
11951 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11952   predicate(UseSSE==0);
11953   match(Set dst (ConvF2I src));
11954   effect( KILL tmp, KILL cr );
11955   format %{ "FLD    $src\t# Convert float to int \n\t"
11956             "FLDCW  trunc mode\n\t"
11957             "SUB    ESP,4\n\t"
11958             "FISTp  [ESP + #0]\n\t"
11959             "FLDCW  std/24-bit mode\n\t"
11960             "POP    EAX\n\t"
11961             "CMP    EAX,0x80000000\n\t"
11962             "JNE,s  fast\n\t"
11963             "FLD    $src\n\t"
11964             "CALL   d2i_wrapper\n"
11965       "fast:" %}
11966   // D2I_encoding works for F2I
11967   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
11968   ins_pipe( pipe_slow );
11969 %}
11970 
11971 // Convert a float in xmm to an int reg.
11972 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
11973   predicate(UseSSE>=1);
11974   match(Set dst (ConvF2I src));
11975   effect( KILL tmp, KILL cr );
11976   format %{ "CVTTSS2SI $dst, $src\n\t"
11977             "CMP    $dst,0x80000000\n\t"
11978             "JNE,s  fast\n\t"
11979             "SUB    ESP, 4\n\t"
11980             "MOVSS  [ESP], $src\n\t"
11981             "FLD    [ESP]\n\t"
11982             "ADD    ESP, 4\n\t"
11983             "CALL   d2i_wrapper\n"
11984       "fast:" %}
11985   opcode(0x0); // single-precision conversion
11986   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11987   ins_pipe( pipe_slow );
11988 %}
11989 
11990 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11991   predicate(UseSSE==0);
11992   match(Set dst (ConvF2L src));
11993   effect( KILL cr );
11994   format %{ "FLD    $src\t# Convert float to long\n\t"
11995             "FLDCW  trunc mode\n\t"
11996             "SUB    ESP,8\n\t"
11997             "FISTp  [ESP + #0]\n\t"
11998             "FLDCW  std/24-bit mode\n\t"
11999             "POP    EAX\n\t"
12000             "POP    EDX\n\t"
12001             "CMP    EDX,0x80000000\n\t"
12002             "JNE,s  fast\n\t"
12003             "TEST   EAX,EAX\n\t"
12004             "JNE,s  fast\n\t"
12005             "FLD    $src\n\t"
12006             "CALL   d2l_wrapper\n"
12007       "fast:" %}
12008   // D2L_encoding works for F2L
12009   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
12010   ins_pipe( pipe_slow );
12011 %}
12012 
12013 // XMM lacks a float/double->long conversion, so use the old FPU stack.
12014 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
12015   predicate (UseSSE>=1);
12016   match(Set dst (ConvF2L src));
12017   effect( KILL cr );
12018   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
12019             "MOVSS  [ESP],$src\n\t"
12020             "FLD_S  [ESP]\n\t"
12021             "FLDCW  trunc mode\n\t"
12022             "FISTp  [ESP + #0]\n\t"
12023             "FLDCW  std/24-bit mode\n\t"
12024             "POP    EAX\n\t"
12025             "POP    EDX\n\t"
12026             "CMP    EDX,0x80000000\n\t"
12027             "JNE,s  fast\n\t"
12028             "TEST   EAX,EAX\n\t"
12029             "JNE,s  fast\n\t"
12030             "SUB    ESP,4\t# Convert float to long\n\t"
12031             "MOVSS  [ESP],$src\n\t"
12032             "FLD_S  [ESP]\n\t"
12033             "ADD    ESP,4\n\t"
12034             "CALL   d2l_wrapper\n"
12035       "fast:" %}
12036   ins_encode( X2L_encoding(src) );
12037   ins_pipe( pipe_slow );
12038 %}
12039 
12040 instruct convI2D_reg(regD dst, stackSlotI src) %{
12041   predicate( UseSSE<=1 );
12042   match(Set dst (ConvI2D src));
12043   format %{ "FILD   $src\n\t"
12044             "FSTP   $dst" %}
12045   opcode(0xDB, 0x0);  /* DB /0 */
12046   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
12047   ins_pipe( fpu_reg_mem );
12048 %}
12049 
12050 instruct convI2XD_reg(regXD dst, eRegI src) %{
12051   predicate( UseSSE>=2 && !UseXmmI2D );
12052   match(Set dst (ConvI2D src));
12053   format %{ "CVTSI2SD $dst,$src" %}
12054   opcode(0xF2, 0x0F, 0x2A);
12055   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
12056   ins_pipe( pipe_slow );
12057 %}
12058 
12059 instruct convI2XD_mem(regXD dst, memory mem) %{
12060   predicate( UseSSE>=2 );
12061   match(Set dst (ConvI2D (LoadI mem)));
12062   format %{ "CVTSI2SD $dst,$mem" %}
12063   opcode(0xF2, 0x0F, 0x2A);
12064   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
12065   ins_pipe( pipe_slow );
12066 %}
12067 
12068 instruct convXI2XD_reg(regXD dst, eRegI src)
12069 %{
12070   predicate( UseSSE>=2 && UseXmmI2D );
12071   match(Set dst (ConvI2D src));
12072 
12073   format %{ "MOVD  $dst,$src\n\t"
12074             "CVTDQ2PD $dst,$dst\t# i2d" %}
12075   ins_encode %{
12076     __ movdl($dst$$XMMRegister, $src$$Register);
12077     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
12078   %}
12079   ins_pipe(pipe_slow); // XXX
12080 %}
12081 
12082 instruct convI2D_mem(regD dst, memory mem) %{
12083   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
12084   match(Set dst (ConvI2D (LoadI mem)));
12085   format %{ "FILD   $mem\n\t"
12086             "FSTP   $dst" %}
12087   opcode(0xDB);      /* DB /0 */
12088   ins_encode( OpcP, RMopc_Mem(0x00,mem),
12089               Pop_Reg_D(dst));
12090   ins_pipe( fpu_reg_mem );
12091 %}
12092 
12093 // Convert a byte to a float; no rounding step needed.
12094 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
12095   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
12096   match(Set dst (ConvI2F src));
12097   format %{ "FILD   $src\n\t"
12098             "FSTP   $dst" %}
12099 
12100   opcode(0xDB, 0x0);  /* DB /0 */
12101   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
12102   ins_pipe( fpu_reg_mem );
12103 %}
12104 
12105 // In 24-bit mode, force exponent rounding by storing back out
12106 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
12107   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
12108   match(Set dst (ConvI2F src));
12109   ins_cost(200);
12110   format %{ "FILD   $src\n\t"
12111             "FSTP_S $dst" %}
12112   opcode(0xDB, 0x0);  /* DB /0 */
12113   ins_encode( Push_Mem_I(src),
12114               Pop_Mem_F(dst));
12115   ins_pipe( fpu_mem_mem );
12116 %}
12117 
12118 // In 24-bit mode, force exponent rounding by storing back out
12119 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
12120   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
12121   match(Set dst (ConvI2F (LoadI mem)));
12122   ins_cost(200);
12123   format %{ "FILD   $mem\n\t"
12124             "FSTP_S $dst" %}
12125   opcode(0xDB);  /* DB /0 */
12126   ins_encode( OpcP, RMopc_Mem(0x00,mem),
12127               Pop_Mem_F(dst));
12128   ins_pipe( fpu_mem_mem );
12129 %}
12130 
12131 // This instruction does not round to 24-bits
12132 instruct convI2F_reg(regF dst, stackSlotI src) %{
12133   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
12134   match(Set dst (ConvI2F src));
12135   format %{ "FILD   $src\n\t"
12136             "FSTP   $dst" %}
12137   opcode(0xDB, 0x0);  /* DB /0 */
12138   ins_encode( Push_Mem_I(src),
12139               Pop_Reg_F(dst));
12140   ins_pipe( fpu_reg_mem );
12141 %}
12142 
12143 // This instruction does not round to 24-bits
12144 instruct convI2F_mem(regF dst, memory mem) %{
12145   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
12146   match(Set dst (ConvI2F (LoadI mem)));
12147   format %{ "FILD   $mem\n\t"
12148             "FSTP   $dst" %}
12149   opcode(0xDB);      /* DB /0 */
12150   ins_encode( OpcP, RMopc_Mem(0x00,mem),
12151               Pop_Reg_F(dst));
12152   ins_pipe( fpu_reg_mem );
12153 %}
12154 
12155 // Convert an int to a float in xmm; no rounding step needed.
12156 instruct convI2X_reg(regX dst, eRegI src) %{
12157   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
12158   match(Set dst (ConvI2F src));
12159   format %{ "CVTSI2SS $dst, $src" %}
12160 
12161   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
12162   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
12163   ins_pipe( pipe_slow );
12164 %}
12165 
12166  instruct convXI2X_reg(regX dst, eRegI src)
12167 %{
12168   predicate( UseSSE>=2 && UseXmmI2F );
12169   match(Set dst (ConvI2F src));
12170 
12171   format %{ "MOVD  $dst,$src\n\t"
12172             "CVTDQ2PS $dst,$dst\t# i2f" %}
12173   ins_encode %{
12174     __ movdl($dst$$XMMRegister, $src$$Register);
12175     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
12176   %}
12177   ins_pipe(pipe_slow); // XXX
12178 %}
12179 
12180 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
12181   match(Set dst (ConvI2L src));
12182   effect(KILL cr);
12183   ins_cost(375);
12184   format %{ "MOV    $dst.lo,$src\n\t"
12185             "MOV    $dst.hi,$src\n\t"
12186             "SAR    $dst.hi,31" %}
12187   ins_encode(convert_int_long(dst,src));
12188   ins_pipe( ialu_reg_reg_long );
12189 %}
12190 
12191 // Zero-extend convert int to long
12192 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
12193   match(Set dst (AndL (ConvI2L src) mask) );
12194   effect( KILL flags );
12195   ins_cost(250);
12196   format %{ "MOV    $dst.lo,$src\n\t"
12197             "XOR    $dst.hi,$dst.hi" %}
12198   opcode(0x33); // XOR
12199   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
12200   ins_pipe( ialu_reg_reg_long );
12201 %}
12202 
12203 // Zero-extend long
12204 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
12205   match(Set dst (AndL src mask) );
12206   effect( KILL flags );
12207   ins_cost(250);
12208   format %{ "MOV    $dst.lo,$src.lo\n\t"
12209             "XOR    $dst.hi,$dst.hi\n\t" %}
12210   opcode(0x33); // XOR
12211   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
12212   ins_pipe( ialu_reg_reg_long );
12213 %}
12214 
12215 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
12216   predicate (UseSSE<=1);
12217   match(Set dst (ConvL2D src));
12218   effect( KILL cr );
12219   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12220             "PUSH   $src.lo\n\t"
12221             "FILD   ST,[ESP + #0]\n\t"
12222             "ADD    ESP,8\n\t"
12223             "FSTP_D $dst\t# D-round" %}
12224   opcode(0xDF, 0x5);  /* DF /5 */
12225   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
12226   ins_pipe( pipe_slow );
12227 %}
12228 
12229 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
12230   predicate (UseSSE>=2);
12231   match(Set dst (ConvL2D src));
12232   effect( KILL cr );
12233   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12234             "PUSH   $src.lo\n\t"
12235             "FILD_D [ESP]\n\t"
12236             "FSTP_D [ESP]\n\t"
12237             "MOVSD  $dst,[ESP]\n\t"
12238             "ADD    ESP,8" %}
12239   opcode(0xDF, 0x5);  /* DF /5 */
12240   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
12241   ins_pipe( pipe_slow );
12242 %}
12243 
12244 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
12245   predicate (UseSSE>=1);
12246   match(Set dst (ConvL2F src));
12247   effect( KILL cr );
12248   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12249             "PUSH   $src.lo\n\t"
12250             "FILD_D [ESP]\n\t"
12251             "FSTP_S [ESP]\n\t"
12252             "MOVSS  $dst,[ESP]\n\t"
12253             "ADD    ESP,8" %}
12254   opcode(0xDF, 0x5);  /* DF /5 */
12255   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
12256   ins_pipe( pipe_slow );
12257 %}
12258 
12259 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
12260   match(Set dst (ConvL2F src));
12261   effect( KILL cr );
12262   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12263             "PUSH   $src.lo\n\t"
12264             "FILD   ST,[ESP + #0]\n\t"
12265             "ADD    ESP,8\n\t"
12266             "FSTP_S $dst\t# F-round" %}
12267   opcode(0xDF, 0x5);  /* DF /5 */
12268   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
12269   ins_pipe( pipe_slow );
12270 %}
12271 
12272 instruct convL2I_reg( eRegI dst, eRegL src ) %{
12273   match(Set dst (ConvL2I src));
12274   effect( DEF dst, USE src );
12275   format %{ "MOV    $dst,$src.lo" %}
12276   ins_encode(enc_CopyL_Lo(dst,src));
12277   ins_pipe( ialu_reg_reg );
12278 %}
12279 
12280 
12281 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
12282   match(Set dst (MoveF2I src));
12283   effect( DEF dst, USE src );
12284   ins_cost(100);
12285   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
12286   opcode(0x8B);
12287   ins_encode( OpcP, RegMem(dst,src));
12288   ins_pipe( ialu_reg_mem );
12289 %}
12290 
12291 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
12292   predicate(UseSSE==0);
12293   match(Set dst (MoveF2I src));
12294   effect( DEF dst, USE src );
12295 
12296   ins_cost(125);
12297   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
12298   ins_encode( Pop_Mem_Reg_F(dst, src) );
12299   ins_pipe( fpu_mem_reg );
12300 %}
12301 
12302 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
12303   predicate(UseSSE>=1);
12304   match(Set dst (MoveF2I src));
12305   effect( DEF dst, USE src );
12306 
12307   ins_cost(95);
12308   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
12309   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
12310   ins_pipe( pipe_slow );
12311 %}
12312 
12313 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
12314   predicate(UseSSE>=2);
12315   match(Set dst (MoveF2I src));
12316   effect( DEF dst, USE src );
12317   ins_cost(85);
12318   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
12319   ins_encode( MovX2I_reg(dst, src));
12320   ins_pipe( pipe_slow );
12321 %}
12322 
12323 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
12324   match(Set dst (MoveI2F src));
12325   effect( DEF dst, USE src );
12326 
12327   ins_cost(100);
12328   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
12329   opcode(0x89);
12330   ins_encode( OpcPRegSS( dst, src ) );
12331   ins_pipe( ialu_mem_reg );
12332 %}
12333 
12334 
12335 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
12336   predicate(UseSSE==0);
12337   match(Set dst (MoveI2F src));
12338   effect(DEF dst, USE src);
12339 
12340   ins_cost(125);
12341   format %{ "FLD_S  $src\n\t"
12342             "FSTP   $dst\t# MoveI2F_stack_reg" %}
12343   opcode(0xD9);               /* D9 /0, FLD m32real */
12344   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12345               Pop_Reg_F(dst) );
12346   ins_pipe( fpu_reg_mem );
12347 %}
12348 
12349 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
12350   predicate(UseSSE>=1);
12351   match(Set dst (MoveI2F src));
12352   effect( DEF dst, USE src );
12353 
12354   ins_cost(95);
12355   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
12356   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12357   ins_pipe( pipe_slow );
12358 %}
12359 
12360 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
12361   predicate(UseSSE>=2);
12362   match(Set dst (MoveI2F src));
12363   effect( DEF dst, USE src );
12364 
12365   ins_cost(85);
12366   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
12367   ins_encode( MovI2X_reg(dst, src) );
12368   ins_pipe( pipe_slow );
12369 %}
12370 
12371 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
12372   match(Set dst (MoveD2L src));
12373   effect(DEF dst, USE src);
12374 
12375   ins_cost(250);
12376   format %{ "MOV    $dst.lo,$src\n\t"
12377             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
12378   opcode(0x8B, 0x8B);
12379   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
12380   ins_pipe( ialu_mem_long_reg );
12381 %}
12382 
12383 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
12384   predicate(UseSSE<=1);
12385   match(Set dst (MoveD2L src));
12386   effect(DEF dst, USE src);
12387 
12388   ins_cost(125);
12389   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
12390   ins_encode( Pop_Mem_Reg_D(dst, src) );
12391   ins_pipe( fpu_mem_reg );
12392 %}
12393 
12394 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
12395   predicate(UseSSE>=2);
12396   match(Set dst (MoveD2L src));
12397   effect(DEF dst, USE src);
12398   ins_cost(95);
12399 
12400   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
12401   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
12402   ins_pipe( pipe_slow );
12403 %}
12404 
12405 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
12406   predicate(UseSSE>=2);
12407   match(Set dst (MoveD2L src));
12408   effect(DEF dst, USE src, TEMP tmp);
12409   ins_cost(85);
12410   format %{ "MOVD   $dst.lo,$src\n\t"
12411             "PSHUFLW $tmp,$src,0x4E\n\t"
12412             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
12413   ins_encode( MovXD2L_reg(dst, src, tmp) );
12414   ins_pipe( pipe_slow );
12415 %}
12416 
12417 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
12418   match(Set dst (MoveL2D src));
12419   effect(DEF dst, USE src);
12420 
12421   ins_cost(200);
12422   format %{ "MOV    $dst,$src.lo\n\t"
12423             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
12424   opcode(0x89, 0x89);
12425   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
12426   ins_pipe( ialu_mem_long_reg );
12427 %}
12428 
12429 
12430 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
12431   predicate(UseSSE<=1);
12432   match(Set dst (MoveL2D src));
12433   effect(DEF dst, USE src);
12434   ins_cost(125);
12435 
12436   format %{ "FLD_D  $src\n\t"
12437             "FSTP   $dst\t# MoveL2D_stack_reg" %}
12438   opcode(0xDD);               /* DD /0, FLD m64real */
12439   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12440               Pop_Reg_D(dst) );
12441   ins_pipe( fpu_reg_mem );
12442 %}
12443 
12444 
12445 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
12446   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
12447   match(Set dst (MoveL2D src));
12448   effect(DEF dst, USE src);
12449 
12450   ins_cost(95);
12451   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
12452   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12453   ins_pipe( pipe_slow );
12454 %}
12455 
12456 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
12457   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
12458   match(Set dst (MoveL2D src));
12459   effect(DEF dst, USE src);
12460 
12461   ins_cost(95);
12462   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
12463   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
12464   ins_pipe( pipe_slow );
12465 %}
12466 
12467 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
12468   predicate(UseSSE>=2);
12469   match(Set dst (MoveL2D src));
12470   effect(TEMP dst, USE src, TEMP tmp);
12471   ins_cost(85);
12472   format %{ "MOVD   $dst,$src.lo\n\t"
12473             "MOVD   $tmp,$src.hi\n\t"
12474             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
12475   ins_encode( MovL2XD_reg(dst, src, tmp) );
12476   ins_pipe( pipe_slow );
12477 %}
12478 
12479 // Replicate scalar to packed byte (1 byte) values in xmm
12480 instruct Repl8B_reg(regXD dst, regXD src) %{
12481   predicate(UseSSE>=2);
12482   match(Set dst (Replicate8B src));
12483   format %{ "MOVDQA  $dst,$src\n\t"
12484             "PUNPCKLBW $dst,$dst\n\t"
12485             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12486   ins_encode( pshufd_8x8(dst, src));
12487   ins_pipe( pipe_slow );
12488 %}
12489 
12490 // Replicate scalar to packed byte (1 byte) values in xmm
12491 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
12492   predicate(UseSSE>=2);
12493   match(Set dst (Replicate8B src));
12494   format %{ "MOVD    $dst,$src\n\t"
12495             "PUNPCKLBW $dst,$dst\n\t"
12496             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12497   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
12498   ins_pipe( pipe_slow );
12499 %}
12500 
12501 // Replicate scalar zero to packed byte (1 byte) values in xmm
12502 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
12503   predicate(UseSSE>=2);
12504   match(Set dst (Replicate8B zero));
12505   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
12506   ins_encode( pxor(dst, dst));
12507   ins_pipe( fpu_reg_reg );
12508 %}
12509 
12510 // Replicate scalar to packed shore (2 byte) values in xmm
12511 instruct Repl4S_reg(regXD dst, regXD src) %{
12512   predicate(UseSSE>=2);
12513   match(Set dst (Replicate4S src));
12514   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
12515   ins_encode( pshufd_4x16(dst, src));
12516   ins_pipe( fpu_reg_reg );
12517 %}
12518 
12519 // Replicate scalar to packed shore (2 byte) values in xmm
12520 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
12521   predicate(UseSSE>=2);
12522   match(Set dst (Replicate4S src));
12523   format %{ "MOVD    $dst,$src\n\t"
12524             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
12525   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12526   ins_pipe( fpu_reg_reg );
12527 %}
12528 
12529 // Replicate scalar zero to packed short (2 byte) values in xmm
12530 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
12531   predicate(UseSSE>=2);
12532   match(Set dst (Replicate4S zero));
12533   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
12534   ins_encode( pxor(dst, dst));
12535   ins_pipe( fpu_reg_reg );
12536 %}
12537 
12538 // Replicate scalar to packed char (2 byte) values in xmm
12539 instruct Repl4C_reg(regXD dst, regXD src) %{
12540   predicate(UseSSE>=2);
12541   match(Set dst (Replicate4C src));
12542   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
12543   ins_encode( pshufd_4x16(dst, src));
12544   ins_pipe( fpu_reg_reg );
12545 %}
12546 
12547 // Replicate scalar to packed char (2 byte) values in xmm
12548 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
12549   predicate(UseSSE>=2);
12550   match(Set dst (Replicate4C src));
12551   format %{ "MOVD    $dst,$src\n\t"
12552             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
12553   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12554   ins_pipe( fpu_reg_reg );
12555 %}
12556 
12557 // Replicate scalar zero to packed char (2 byte) values in xmm
12558 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
12559   predicate(UseSSE>=2);
12560   match(Set dst (Replicate4C zero));
12561   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
12562   ins_encode( pxor(dst, dst));
12563   ins_pipe( fpu_reg_reg );
12564 %}
12565 
12566 // Replicate scalar to packed integer (4 byte) values in xmm
12567 instruct Repl2I_reg(regXD dst, regXD src) %{
12568   predicate(UseSSE>=2);
12569   match(Set dst (Replicate2I src));
12570   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
12571   ins_encode( pshufd(dst, src, 0x00));
12572   ins_pipe( fpu_reg_reg );
12573 %}
12574 
12575 // Replicate scalar to packed integer (4 byte) values in xmm
12576 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
12577   predicate(UseSSE>=2);
12578   match(Set dst (Replicate2I src));
12579   format %{ "MOVD   $dst,$src\n\t"
12580             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
12581   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
12582   ins_pipe( fpu_reg_reg );
12583 %}
12584 
12585 // Replicate scalar zero to packed integer (2 byte) values in xmm
12586 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
12587   predicate(UseSSE>=2);
12588   match(Set dst (Replicate2I zero));
12589   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
12590   ins_encode( pxor(dst, dst));
12591   ins_pipe( fpu_reg_reg );
12592 %}
12593 
12594 // Replicate scalar to packed single precision floating point values in xmm
12595 instruct Repl2F_reg(regXD dst, regXD src) %{
12596   predicate(UseSSE>=2);
12597   match(Set dst (Replicate2F src));
12598   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12599   ins_encode( pshufd(dst, src, 0xe0));
12600   ins_pipe( fpu_reg_reg );
12601 %}
12602 
12603 // Replicate scalar to packed single precision floating point values in xmm
12604 instruct Repl2F_regX(regXD dst, regX src) %{
12605   predicate(UseSSE>=2);
12606   match(Set dst (Replicate2F src));
12607   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12608   ins_encode( pshufd(dst, src, 0xe0));
12609   ins_pipe( fpu_reg_reg );
12610 %}
12611 
12612 // Replicate scalar to packed single precision floating point values in xmm
12613 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
12614   predicate(UseSSE>=2);
12615   match(Set dst (Replicate2F zero));
12616   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
12617   ins_encode( pxor(dst, dst));
12618   ins_pipe( fpu_reg_reg );
12619 %}
12620 
12621 // =======================================================================
12622 // fast clearing of an array
12623 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
12624   match(Set dummy (ClearArray cnt base));
12625   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
12626   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
12627             "XOR    EAX,EAX\n\t"
12628             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
12629   opcode(0,0x4);
12630   ins_encode( Opcode(0xD1), RegOpc(ECX),
12631               OpcRegReg(0x33,EAX,EAX),
12632               Opcode(0xF3), Opcode(0xAB) );
12633   ins_pipe( pipe_slow );
12634 %}
12635 
12636 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
12637                         eAXRegI result, regXD tmp1, eFlagsReg cr) %{
12638   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
12639   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
12640 
12641   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
12642   ins_encode %{
12643     __ string_compare($str1$$Register, $str2$$Register,
12644                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
12645                       $tmp1$$XMMRegister);
12646   %}
12647   ins_pipe( pipe_slow );
12648 %}
12649 
12650 // fast string equals
12651 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
12652                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
12653   match(Set result (StrEquals (Binary str1 str2) cnt));
12654   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
12655 
12656   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
12657   ins_encode %{
12658     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
12659                           $cnt$$Register, $result$$Register, $tmp3$$Register,
12660                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12661   %}
12662   ins_pipe( pipe_slow );
12663 %}
12664 
12665 // fast search of substring with known size.
12666 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
12667                             eBXRegI result, regXD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
12668   predicate(UseSSE42Intrinsics);
12669   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
12670   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
12671 
12672   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
12673   ins_encode %{
12674     int icnt2 = (int)$int_cnt2$$constant;
12675     if (icnt2 >= 8) {
12676       // IndexOf for constant substrings with size >= 8 elements
12677       // which don't need to be loaded through stack.
12678       __ string_indexofC8($str1$$Register, $str2$$Register,
12679                           $cnt1$$Register, $cnt2$$Register,
12680                           icnt2, $result$$Register,
12681                           $vec$$XMMRegister, $tmp$$Register);
12682     } else {
12683       // Small strings are loaded through stack if they cross page boundary.
12684       __ string_indexof($str1$$Register, $str2$$Register,
12685                         $cnt1$$Register, $cnt2$$Register,
12686                         icnt2, $result$$Register,
12687                         $vec$$XMMRegister, $tmp$$Register);
12688     }
12689   %}
12690   ins_pipe( pipe_slow );
12691 %}
12692 
12693 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
12694                         eBXRegI result, regXD vec, eCXRegI tmp, eFlagsReg cr) %{
12695   predicate(UseSSE42Intrinsics);
12696   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
12697   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
12698 
12699   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
12700   ins_encode %{
12701     __ string_indexof($str1$$Register, $str2$$Register,
12702                       $cnt1$$Register, $cnt2$$Register,
12703                       (-1), $result$$Register,
12704                       $vec$$XMMRegister, $tmp$$Register);
12705   %}
12706   ins_pipe( pipe_slow );
12707 %}
12708 
12709 // fast array equals
12710 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
12711                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
12712 %{
12713   match(Set result (AryEq ary1 ary2));
12714   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
12715   //ins_cost(300);
12716 
12717   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
12718   ins_encode %{
12719     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
12720                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
12721                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12722   %}
12723   ins_pipe( pipe_slow );
12724 %}
12725 
12726 //----------Control Flow Instructions------------------------------------------
12727 // Signed compare Instructions
12728 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
12729   match(Set cr (CmpI op1 op2));
12730   effect( DEF cr, USE op1, USE op2 );
12731   format %{ "CMP    $op1,$op2" %}
12732   opcode(0x3B);  /* Opcode 3B /r */
12733   ins_encode( OpcP, RegReg( op1, op2) );
12734   ins_pipe( ialu_cr_reg_reg );
12735 %}
12736 
12737 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
12738   match(Set cr (CmpI op1 op2));
12739   effect( DEF cr, USE op1 );
12740   format %{ "CMP    $op1,$op2" %}
12741   opcode(0x81,0x07);  /* Opcode 81 /7 */
12742   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
12743   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12744   ins_pipe( ialu_cr_reg_imm );
12745 %}
12746 
12747 // Cisc-spilled version of cmpI_eReg
12748 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
12749   match(Set cr (CmpI op1 (LoadI op2)));
12750 
12751   format %{ "CMP    $op1,$op2" %}
12752   ins_cost(500);
12753   opcode(0x3B);  /* Opcode 3B /r */
12754   ins_encode( OpcP, RegMem( op1, op2) );
12755   ins_pipe( ialu_cr_reg_mem );
12756 %}
12757 
12758 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
12759   match(Set cr (CmpI src zero));
12760   effect( DEF cr, USE src );
12761 
12762   format %{ "TEST   $src,$src" %}
12763   opcode(0x85);
12764   ins_encode( OpcP, RegReg( src, src ) );
12765   ins_pipe( ialu_cr_reg_imm );
12766 %}
12767 
12768 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
12769   match(Set cr (CmpI (AndI src con) zero));
12770 
12771   format %{ "TEST   $src,$con" %}
12772   opcode(0xF7,0x00);
12773   ins_encode( OpcP, RegOpc(src), Con32(con) );
12774   ins_pipe( ialu_cr_reg_imm );
12775 %}
12776 
12777 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
12778   match(Set cr (CmpI (AndI src mem) zero));
12779 
12780   format %{ "TEST   $src,$mem" %}
12781   opcode(0x85);
12782   ins_encode( OpcP, RegMem( src, mem ) );
12783   ins_pipe( ialu_cr_reg_mem );
12784 %}
12785 
12786 // Unsigned compare Instructions; really, same as signed except they
12787 // produce an eFlagsRegU instead of eFlagsReg.
12788 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
12789   match(Set cr (CmpU op1 op2));
12790 
12791   format %{ "CMPu   $op1,$op2" %}
12792   opcode(0x3B);  /* Opcode 3B /r */
12793   ins_encode( OpcP, RegReg( op1, op2) );
12794   ins_pipe( ialu_cr_reg_reg );
12795 %}
12796 
12797 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
12798   match(Set cr (CmpU op1 op2));
12799 
12800   format %{ "CMPu   $op1,$op2" %}
12801   opcode(0x81,0x07);  /* Opcode 81 /7 */
12802   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12803   ins_pipe( ialu_cr_reg_imm );
12804 %}
12805 
12806 // // Cisc-spilled version of cmpU_eReg
12807 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
12808   match(Set cr (CmpU op1 (LoadI op2)));
12809 
12810   format %{ "CMPu   $op1,$op2" %}
12811   ins_cost(500);
12812   opcode(0x3B);  /* Opcode 3B /r */
12813   ins_encode( OpcP, RegMem( op1, op2) );
12814   ins_pipe( ialu_cr_reg_mem );
12815 %}
12816 
12817 // // Cisc-spilled version of cmpU_eReg
12818 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
12819 //  match(Set cr (CmpU (LoadI op1) op2));
12820 //
12821 //  format %{ "CMPu   $op1,$op2" %}
12822 //  ins_cost(500);
12823 //  opcode(0x39);  /* Opcode 39 /r */
12824 //  ins_encode( OpcP, RegMem( op1, op2) );
12825 //%}
12826 
12827 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
12828   match(Set cr (CmpU src zero));
12829 
12830   format %{ "TESTu  $src,$src" %}
12831   opcode(0x85);
12832   ins_encode( OpcP, RegReg( src, src ) );
12833   ins_pipe( ialu_cr_reg_imm );
12834 %}
12835 
12836 // Unsigned pointer compare Instructions
12837 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
12838   match(Set cr (CmpP op1 op2));
12839 
12840   format %{ "CMPu   $op1,$op2" %}
12841   opcode(0x3B);  /* Opcode 3B /r */
12842   ins_encode( OpcP, RegReg( op1, op2) );
12843   ins_pipe( ialu_cr_reg_reg );
12844 %}
12845 
12846 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
12847   match(Set cr (CmpP op1 op2));
12848 
12849   format %{ "CMPu   $op1,$op2" %}
12850   opcode(0x81,0x07);  /* Opcode 81 /7 */
12851   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12852   ins_pipe( ialu_cr_reg_imm );
12853 %}
12854 
12855 // // Cisc-spilled version of cmpP_eReg
12856 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
12857   match(Set cr (CmpP op1 (LoadP op2)));
12858 
12859   format %{ "CMPu   $op1,$op2" %}
12860   ins_cost(500);
12861   opcode(0x3B);  /* Opcode 3B /r */
12862   ins_encode( OpcP, RegMem( op1, op2) );
12863   ins_pipe( ialu_cr_reg_mem );
12864 %}
12865 
12866 // // Cisc-spilled version of cmpP_eReg
12867 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12868 //  match(Set cr (CmpP (LoadP op1) op2));
12869 //
12870 //  format %{ "CMPu   $op1,$op2" %}
12871 //  ins_cost(500);
12872 //  opcode(0x39);  /* Opcode 39 /r */
12873 //  ins_encode( OpcP, RegMem( op1, op2) );
12874 //%}
12875 
12876 // Compare raw pointer (used in out-of-heap check).
12877 // Only works because non-oop pointers must be raw pointers
12878 // and raw pointers have no anti-dependencies.
12879 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12880   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
12881   match(Set cr (CmpP op1 (LoadP op2)));
12882 
12883   format %{ "CMPu   $op1,$op2" %}
12884   opcode(0x3B);  /* Opcode 3B /r */
12885   ins_encode( OpcP, RegMem( op1, op2) );
12886   ins_pipe( ialu_cr_reg_mem );
12887 %}
12888 
12889 //
12890 // This will generate a signed flags result. This should be ok
12891 // since any compare to a zero should be eq/neq.
12892 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12893   match(Set cr (CmpP src zero));
12894 
12895   format %{ "TEST   $src,$src" %}
12896   opcode(0x85);
12897   ins_encode( OpcP, RegReg( src, src ) );
12898   ins_pipe( ialu_cr_reg_imm );
12899 %}
12900 
12901 // Cisc-spilled version of testP_reg
12902 // This will generate a signed flags result. This should be ok
12903 // since any compare to a zero should be eq/neq.
12904 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12905   match(Set cr (CmpP (LoadP op) zero));
12906 
12907   format %{ "TEST   $op,0xFFFFFFFF" %}
12908   ins_cost(500);
12909   opcode(0xF7);               /* Opcode F7 /0 */
12910   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12911   ins_pipe( ialu_cr_reg_imm );
12912 %}
12913 
12914 // Yanked all unsigned pointer compare operations.
12915 // Pointer compares are done with CmpP which is already unsigned.
12916 
12917 //----------Max and Min--------------------------------------------------------
12918 // Min Instructions
12919 ////
12920 //   *** Min and Max using the conditional move are slower than the
12921 //   *** branch version on a Pentium III.
12922 // // Conditional move for min
12923 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12924 //  effect( USE_DEF op2, USE op1, USE cr );
12925 //  format %{ "CMOVlt $op2,$op1\t! min" %}
12926 //  opcode(0x4C,0x0F);
12927 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12928 //  ins_pipe( pipe_cmov_reg );
12929 //%}
12930 //
12931 //// Min Register with Register (P6 version)
12932 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
12933 //  predicate(VM_Version::supports_cmov() );
12934 //  match(Set op2 (MinI op1 op2));
12935 //  ins_cost(200);
12936 //  expand %{
12937 //    eFlagsReg cr;
12938 //    compI_eReg(cr,op1,op2);
12939 //    cmovI_reg_lt(op2,op1,cr);
12940 //  %}
12941 //%}
12942 
12943 // Min Register with Register (generic version)
12944 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12945   match(Set dst (MinI dst src));
12946   effect(KILL flags);
12947   ins_cost(300);
12948 
12949   format %{ "MIN    $dst,$src" %}
12950   opcode(0xCC);
12951   ins_encode( min_enc(dst,src) );
12952   ins_pipe( pipe_slow );
12953 %}
12954 
12955 // Max Register with Register
12956 //   *** Min and Max using the conditional move are slower than the
12957 //   *** branch version on a Pentium III.
12958 // // Conditional move for max
12959 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12960 //  effect( USE_DEF op2, USE op1, USE cr );
12961 //  format %{ "CMOVgt $op2,$op1\t! max" %}
12962 //  opcode(0x4F,0x0F);
12963 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12964 //  ins_pipe( pipe_cmov_reg );
12965 //%}
12966 //
12967 // // Max Register with Register (P6 version)
12968 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
12969 //  predicate(VM_Version::supports_cmov() );
12970 //  match(Set op2 (MaxI op1 op2));
12971 //  ins_cost(200);
12972 //  expand %{
12973 //    eFlagsReg cr;
12974 //    compI_eReg(cr,op1,op2);
12975 //    cmovI_reg_gt(op2,op1,cr);
12976 //  %}
12977 //%}
12978 
12979 // Max Register with Register (generic version)
12980 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12981   match(Set dst (MaxI dst src));
12982   effect(KILL flags);
12983   ins_cost(300);
12984 
12985   format %{ "MAX    $dst,$src" %}
12986   opcode(0xCC);
12987   ins_encode( max_enc(dst,src) );
12988   ins_pipe( pipe_slow );
12989 %}
12990 
12991 // ============================================================================
12992 // Counted Loop limit node which represents exact final iterator value.
12993 // Note: the resulting value should fit into integer range since
12994 // counted loops have limit check on overflow.
12995 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
12996   match(Set limit (LoopLimit (Binary init limit) stride));
12997   effect(TEMP limit_hi, TEMP tmp, KILL flags);
12998   ins_cost(300);
12999 
13000   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
13001   ins_encode %{
13002     int strd = (int)$stride$$constant;
13003     assert(strd != 1 && strd != -1, "sanity");
13004     int m1 = (strd > 0) ? 1 : -1;
13005     // Convert limit to long (EAX:EDX)
13006     __ cdql();
13007     // Convert init to long (init:tmp)
13008     __ movl($tmp$$Register, $init$$Register);
13009     __ sarl($tmp$$Register, 31);
13010     // $limit - $init
13011     __ subl($limit$$Register, $init$$Register);
13012     __ sbbl($limit_hi$$Register, $tmp$$Register);
13013     // + ($stride - 1)
13014     if (strd > 0) {
13015       __ addl($limit$$Register, (strd - 1));
13016       __ adcl($limit_hi$$Register, 0);
13017       __ movl($tmp$$Register, strd);
13018     } else {
13019       __ addl($limit$$Register, (strd + 1));
13020       __ adcl($limit_hi$$Register, -1);
13021       __ lneg($limit_hi$$Register, $limit$$Register);
13022       __ movl($tmp$$Register, -strd);
13023     }
13024     // signed devision: (EAX:EDX) / pos_stride
13025     __ idivl($tmp$$Register);
13026     if (strd < 0) {
13027       // restore sign
13028       __ negl($tmp$$Register);
13029     }
13030     // (EAX) * stride
13031     __ mull($tmp$$Register);
13032     // + init (ignore upper bits)
13033     __ addl($limit$$Register, $init$$Register);
13034   %}
13035   ins_pipe( pipe_slow );
13036 %}
13037 
13038 // ============================================================================
13039 // Branch Instructions
13040 // Jump Table
13041 instruct jumpXtnd(eRegI switch_val) %{
13042   match(Jump switch_val);
13043   ins_cost(350);
13044   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
13045   ins_encode %{
13046     // Jump to Address(table_base + switch_reg)
13047     Address index(noreg, $switch_val$$Register, Address::times_1);
13048     __ jump(ArrayAddress($constantaddress, index));
13049   %}
13050   ins_pc_relative(1);
13051   ins_pipe(pipe_jmp);
13052 %}
13053 
13054 // Jump Direct - Label defines a relative address from JMP+1
13055 instruct jmpDir(label labl) %{
13056   match(Goto);
13057   effect(USE labl);
13058 
13059   ins_cost(300);
13060   format %{ "JMP    $labl" %}
13061   size(5);
13062   opcode(0xE9);
13063   ins_encode( OpcP, Lbl( labl ) );
13064   ins_pipe( pipe_jmp );
13065   ins_pc_relative(1);
13066 %}
13067 
13068 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13069 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
13070   match(If cop cr);
13071   effect(USE labl);
13072 
13073   ins_cost(300);
13074   format %{ "J$cop    $labl" %}
13075   size(6);
13076   opcode(0x0F, 0x80);
13077   ins_encode( Jcc( cop, labl) );
13078   ins_pipe( pipe_jcc );
13079   ins_pc_relative(1);
13080 %}
13081 
13082 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13083 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
13084   match(CountedLoopEnd cop cr);
13085   effect(USE labl);
13086 
13087   ins_cost(300);
13088   format %{ "J$cop    $labl\t# Loop end" %}
13089   size(6);
13090   opcode(0x0F, 0x80);
13091   ins_encode( Jcc( cop, labl) );
13092   ins_pipe( pipe_jcc );
13093   ins_pc_relative(1);
13094 %}
13095 
13096 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13097 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13098   match(CountedLoopEnd cop cmp);
13099   effect(USE labl);
13100 
13101   ins_cost(300);
13102   format %{ "J$cop,u  $labl\t# Loop end" %}
13103   size(6);
13104   opcode(0x0F, 0x80);
13105   ins_encode( Jcc( cop, labl) );
13106   ins_pipe( pipe_jcc );
13107   ins_pc_relative(1);
13108 %}
13109 
13110 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13111   match(CountedLoopEnd cop cmp);
13112   effect(USE labl);
13113 
13114   ins_cost(200);
13115   format %{ "J$cop,u  $labl\t# Loop end" %}
13116   size(6);
13117   opcode(0x0F, 0x80);
13118   ins_encode( Jcc( cop, labl) );
13119   ins_pipe( pipe_jcc );
13120   ins_pc_relative(1);
13121 %}
13122 
13123 // Jump Direct Conditional - using unsigned comparison
13124 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13125   match(If cop cmp);
13126   effect(USE labl);
13127 
13128   ins_cost(300);
13129   format %{ "J$cop,u  $labl" %}
13130   size(6);
13131   opcode(0x0F, 0x80);
13132   ins_encode(Jcc(cop, labl));
13133   ins_pipe(pipe_jcc);
13134   ins_pc_relative(1);
13135 %}
13136 
13137 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13138   match(If cop cmp);
13139   effect(USE labl);
13140 
13141   ins_cost(200);
13142   format %{ "J$cop,u  $labl" %}
13143   size(6);
13144   opcode(0x0F, 0x80);
13145   ins_encode(Jcc(cop, labl));
13146   ins_pipe(pipe_jcc);
13147   ins_pc_relative(1);
13148 %}
13149 
13150 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
13151   match(If cop cmp);
13152   effect(USE labl);
13153 
13154   ins_cost(200);
13155   format %{ $$template
13156     if ($cop$$cmpcode == Assembler::notEqual) {
13157       $$emit$$"JP,u   $labl\n\t"
13158       $$emit$$"J$cop,u   $labl"
13159     } else {
13160       $$emit$$"JP,u   done\n\t"
13161       $$emit$$"J$cop,u   $labl\n\t"
13162       $$emit$$"done:"
13163     }
13164   %}
13165   size(12);
13166   opcode(0x0F, 0x80);
13167   ins_encode %{
13168     Label* l = $labl$$label;
13169     $$$emit8$primary;
13170     emit_cc(cbuf, $secondary, Assembler::parity);
13171     int parity_disp = -1;
13172     bool ok = false;
13173     if ($cop$$cmpcode == Assembler::notEqual) {
13174        // the two jumps 6 bytes apart so the jump distances are too
13175        parity_disp = l->loc_pos() - (cbuf.insts_size() + 4);
13176     } else if ($cop$$cmpcode == Assembler::equal) {
13177        parity_disp = 6;
13178        ok = true;
13179     } else {
13180        ShouldNotReachHere();
13181     }
13182     emit_d32(cbuf, parity_disp);
13183     $$$emit8$primary;
13184     emit_cc(cbuf, $secondary, $cop$$cmpcode);
13185     int disp = l->loc_pos() - (cbuf.insts_size() + 4);
13186     emit_d32(cbuf, disp);
13187   %}
13188   ins_pipe(pipe_jcc);
13189   ins_pc_relative(1);
13190 %}
13191 
13192 // ============================================================================
13193 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
13194 // array for an instance of the superklass.  Set a hidden internal cache on a
13195 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
13196 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
13197 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
13198   match(Set result (PartialSubtypeCheck sub super));
13199   effect( KILL rcx, KILL cr );
13200 
13201   ins_cost(1100);  // slightly larger than the next version
13202   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
13203             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
13204             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
13205             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
13206             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
13207             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
13208             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
13209      "miss:\t" %}
13210 
13211   opcode(0x1); // Force a XOR of EDI
13212   ins_encode( enc_PartialSubtypeCheck() );
13213   ins_pipe( pipe_slow );
13214 %}
13215 
13216 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
13217   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
13218   effect( KILL rcx, KILL result );
13219 
13220   ins_cost(1000);
13221   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
13222             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
13223             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
13224             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
13225             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
13226             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
13227      "miss:\t" %}
13228 
13229   opcode(0x0);  // No need to XOR EDI
13230   ins_encode( enc_PartialSubtypeCheck() );
13231   ins_pipe( pipe_slow );
13232 %}
13233 
13234 // ============================================================================
13235 // Branch Instructions -- short offset versions
13236 //
13237 // These instructions are used to replace jumps of a long offset (the default
13238 // match) with jumps of a shorter offset.  These instructions are all tagged
13239 // with the ins_short_branch attribute, which causes the ADLC to suppress the
13240 // match rules in general matching.  Instead, the ADLC generates a conversion
13241 // method in the MachNode which can be used to do in-place replacement of the
13242 // long variant with the shorter variant.  The compiler will determine if a
13243 // branch can be taken by the is_short_branch_offset() predicate in the machine
13244 // specific code section of the file.
13245 
13246 // Jump Direct - Label defines a relative address from JMP+1
13247 instruct jmpDir_short(label labl) %{
13248   match(Goto);
13249   effect(USE labl);
13250 
13251   ins_cost(300);
13252   format %{ "JMP,s  $labl" %}
13253   size(2);
13254   opcode(0xEB);
13255   ins_encode( OpcP, LblShort( labl ) );
13256   ins_pipe( pipe_jmp );
13257   ins_pc_relative(1);
13258   ins_short_branch(1);
13259 %}
13260 
13261 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13262 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
13263   match(If cop cr);
13264   effect(USE labl);
13265 
13266   ins_cost(300);
13267   format %{ "J$cop,s  $labl" %}
13268   size(2);
13269   opcode(0x70);
13270   ins_encode( JccShort( cop, labl) );
13271   ins_pipe( pipe_jcc );
13272   ins_pc_relative(1);
13273   ins_short_branch(1);
13274 %}
13275 
13276 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13277 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
13278   match(CountedLoopEnd cop cr);
13279   effect(USE labl);
13280 
13281   ins_cost(300);
13282   format %{ "J$cop,s  $labl\t# Loop end" %}
13283   size(2);
13284   opcode(0x70);
13285   ins_encode( JccShort( cop, labl) );
13286   ins_pipe( pipe_jcc );
13287   ins_pc_relative(1);
13288   ins_short_branch(1);
13289 %}
13290 
13291 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13292 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13293   match(CountedLoopEnd cop cmp);
13294   effect(USE labl);
13295 
13296   ins_cost(300);
13297   format %{ "J$cop,us $labl\t# Loop end" %}
13298   size(2);
13299   opcode(0x70);
13300   ins_encode( JccShort( cop, labl) );
13301   ins_pipe( pipe_jcc );
13302   ins_pc_relative(1);
13303   ins_short_branch(1);
13304 %}
13305 
13306 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13307   match(CountedLoopEnd cop cmp);
13308   effect(USE labl);
13309 
13310   ins_cost(300);
13311   format %{ "J$cop,us $labl\t# Loop end" %}
13312   size(2);
13313   opcode(0x70);
13314   ins_encode( JccShort( cop, labl) );
13315   ins_pipe( pipe_jcc );
13316   ins_pc_relative(1);
13317   ins_short_branch(1);
13318 %}
13319 
13320 // Jump Direct Conditional - using unsigned comparison
13321 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13322   match(If cop cmp);
13323   effect(USE labl);
13324 
13325   ins_cost(300);
13326   format %{ "J$cop,us $labl" %}
13327   size(2);
13328   opcode(0x70);
13329   ins_encode( JccShort( cop, labl) );
13330   ins_pipe( pipe_jcc );
13331   ins_pc_relative(1);
13332   ins_short_branch(1);
13333 %}
13334 
13335 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13336   match(If cop cmp);
13337   effect(USE labl);
13338 
13339   ins_cost(300);
13340   format %{ "J$cop,us $labl" %}
13341   size(2);
13342   opcode(0x70);
13343   ins_encode( JccShort( cop, labl) );
13344   ins_pipe( pipe_jcc );
13345   ins_pc_relative(1);
13346   ins_short_branch(1);
13347 %}
13348 
13349 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
13350   match(If cop cmp);
13351   effect(USE labl);
13352 
13353   ins_cost(300);
13354   format %{ $$template
13355     if ($cop$$cmpcode == Assembler::notEqual) {
13356       $$emit$$"JP,u,s   $labl\n\t"
13357       $$emit$$"J$cop,u,s   $labl"
13358     } else {
13359       $$emit$$"JP,u,s   done\n\t"
13360       $$emit$$"J$cop,u,s  $labl\n\t"
13361       $$emit$$"done:"
13362     }
13363   %}
13364   size(4);
13365   opcode(0x70);
13366   ins_encode %{
13367     Label* l = $labl$$label;
13368     emit_cc(cbuf, $primary, Assembler::parity);
13369     int parity_disp = -1;
13370     if ($cop$$cmpcode == Assembler::notEqual) {
13371       parity_disp = l->loc_pos() - (cbuf.insts_size() + 1);
13372     } else if ($cop$$cmpcode == Assembler::equal) {
13373       parity_disp = 2;
13374     } else {
13375       ShouldNotReachHere();
13376     }
13377     emit_d8(cbuf, parity_disp);
13378     emit_cc(cbuf, $primary, $cop$$cmpcode);
13379     int disp = l->loc_pos() - (cbuf.insts_size() + 1);
13380     emit_d8(cbuf, disp);
13381     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
13382     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
13383   %}
13384   ins_pipe(pipe_jcc);
13385   ins_pc_relative(1);
13386   ins_short_branch(1);
13387 %}
13388 
13389 // ============================================================================
13390 // Long Compare
13391 //
13392 // Currently we hold longs in 2 registers.  Comparing such values efficiently
13393 // is tricky.  The flavor of compare used depends on whether we are testing
13394 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
13395 // The GE test is the negated LT test.  The LE test can be had by commuting
13396 // the operands (yielding a GE test) and then negating; negate again for the
13397 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
13398 // NE test is negated from that.
13399 
13400 // Due to a shortcoming in the ADLC, it mixes up expressions like:
13401 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
13402 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
13403 // are collapsed internally in the ADLC's dfa-gen code.  The match for
13404 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
13405 // foo match ends up with the wrong leaf.  One fix is to not match both
13406 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
13407 // both forms beat the trinary form of long-compare and both are very useful
13408 // on Intel which has so few registers.
13409 
13410 // Manifest a CmpL result in an integer register.  Very painful.
13411 // This is the test to avoid.
13412 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
13413   match(Set dst (CmpL3 src1 src2));
13414   effect( KILL flags );
13415   ins_cost(1000);
13416   format %{ "XOR    $dst,$dst\n\t"
13417             "CMP    $src1.hi,$src2.hi\n\t"
13418             "JLT,s  m_one\n\t"
13419             "JGT,s  p_one\n\t"
13420             "CMP    $src1.lo,$src2.lo\n\t"
13421             "JB,s   m_one\n\t"
13422             "JEQ,s  done\n"
13423     "p_one:\tINC    $dst\n\t"
13424             "JMP,s  done\n"
13425     "m_one:\tDEC    $dst\n"
13426      "done:" %}
13427   ins_encode %{
13428     Label p_one, m_one, done;
13429     __ xorptr($dst$$Register, $dst$$Register);
13430     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
13431     __ jccb(Assembler::less,    m_one);
13432     __ jccb(Assembler::greater, p_one);
13433     __ cmpl($src1$$Register, $src2$$Register);
13434     __ jccb(Assembler::below,   m_one);
13435     __ jccb(Assembler::equal,   done);
13436     __ bind(p_one);
13437     __ incrementl($dst$$Register);
13438     __ jmpb(done);
13439     __ bind(m_one);
13440     __ decrementl($dst$$Register);
13441     __ bind(done);
13442   %}
13443   ins_pipe( pipe_slow );
13444 %}
13445 
13446 //======
13447 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
13448 // compares.  Can be used for LE or GT compares by reversing arguments.
13449 // NOT GOOD FOR EQ/NE tests.
13450 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
13451   match( Set flags (CmpL src zero ));
13452   ins_cost(100);
13453   format %{ "TEST   $src.hi,$src.hi" %}
13454   opcode(0x85);
13455   ins_encode( OpcP, RegReg_Hi2( src, src ) );
13456   ins_pipe( ialu_cr_reg_reg );
13457 %}
13458 
13459 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
13460 // compares.  Can be used for LE or GT compares by reversing arguments.
13461 // NOT GOOD FOR EQ/NE tests.
13462 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13463   match( Set flags (CmpL src1 src2 ));
13464   effect( TEMP tmp );
13465   ins_cost(300);
13466   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13467             "MOV    $tmp,$src1.hi\n\t"
13468             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
13469   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
13470   ins_pipe( ialu_cr_reg_reg );
13471 %}
13472 
13473 // Long compares reg < zero/req OR reg >= zero/req.
13474 // Just a wrapper for a normal branch, plus the predicate test.
13475 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
13476   match(If cmp flags);
13477   effect(USE labl);
13478   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13479   expand %{
13480     jmpCon(cmp,flags,labl);    // JLT or JGE...
13481   %}
13482 %}
13483 
13484 // Compare 2 longs and CMOVE longs.
13485 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
13486   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13487   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13488   ins_cost(400);
13489   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13490             "CMOV$cmp $dst.hi,$src.hi" %}
13491   opcode(0x0F,0x40);
13492   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13493   ins_pipe( pipe_cmov_reg_long );
13494 %}
13495 
13496 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
13497   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13498   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13499   ins_cost(500);
13500   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13501             "CMOV$cmp $dst.hi,$src.hi" %}
13502   opcode(0x0F,0x40);
13503   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13504   ins_pipe( pipe_cmov_reg_long );
13505 %}
13506 
13507 // Compare 2 longs and CMOVE ints.
13508 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
13509   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13510   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13511   ins_cost(200);
13512   format %{ "CMOV$cmp $dst,$src" %}
13513   opcode(0x0F,0x40);
13514   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13515   ins_pipe( pipe_cmov_reg );
13516 %}
13517 
13518 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
13519   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13520   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13521   ins_cost(250);
13522   format %{ "CMOV$cmp $dst,$src" %}
13523   opcode(0x0F,0x40);
13524   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13525   ins_pipe( pipe_cmov_mem );
13526 %}
13527 
13528 // Compare 2 longs and CMOVE ints.
13529 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
13530   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13531   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13532   ins_cost(200);
13533   format %{ "CMOV$cmp $dst,$src" %}
13534   opcode(0x0F,0x40);
13535   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13536   ins_pipe( pipe_cmov_reg );
13537 %}
13538 
13539 // Compare 2 longs and CMOVE doubles
13540 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
13541   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13542   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13543   ins_cost(200);
13544   expand %{
13545     fcmovD_regS(cmp,flags,dst,src);
13546   %}
13547 %}
13548 
13549 // Compare 2 longs and CMOVE doubles
13550 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
13551   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13552   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13553   ins_cost(200);
13554   expand %{
13555     fcmovXD_regS(cmp,flags,dst,src);
13556   %}
13557 %}
13558 
13559 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
13560   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13561   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13562   ins_cost(200);
13563   expand %{
13564     fcmovF_regS(cmp,flags,dst,src);
13565   %}
13566 %}
13567 
13568 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
13569   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13570   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13571   ins_cost(200);
13572   expand %{
13573     fcmovX_regS(cmp,flags,dst,src);
13574   %}
13575 %}
13576 
13577 //======
13578 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13579 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
13580   match( Set flags (CmpL src zero ));
13581   effect(TEMP tmp);
13582   ins_cost(200);
13583   format %{ "MOV    $tmp,$src.lo\n\t"
13584             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
13585   ins_encode( long_cmp_flags0( src, tmp ) );
13586   ins_pipe( ialu_reg_reg_long );
13587 %}
13588 
13589 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13590 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
13591   match( Set flags (CmpL src1 src2 ));
13592   ins_cost(200+300);
13593   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13594             "JNE,s  skip\n\t"
13595             "CMP    $src1.hi,$src2.hi\n\t"
13596      "skip:\t" %}
13597   ins_encode( long_cmp_flags1( src1, src2 ) );
13598   ins_pipe( ialu_cr_reg_reg );
13599 %}
13600 
13601 // Long compare reg == zero/reg OR reg != zero/reg
13602 // Just a wrapper for a normal branch, plus the predicate test.
13603 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
13604   match(If cmp flags);
13605   effect(USE labl);
13606   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13607   expand %{
13608     jmpCon(cmp,flags,labl);    // JEQ or JNE...
13609   %}
13610 %}
13611 
13612 // Compare 2 longs and CMOVE longs.
13613 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
13614   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13615   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13616   ins_cost(400);
13617   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13618             "CMOV$cmp $dst.hi,$src.hi" %}
13619   opcode(0x0F,0x40);
13620   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13621   ins_pipe( pipe_cmov_reg_long );
13622 %}
13623 
13624 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
13625   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13626   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13627   ins_cost(500);
13628   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13629             "CMOV$cmp $dst.hi,$src.hi" %}
13630   opcode(0x0F,0x40);
13631   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13632   ins_pipe( pipe_cmov_reg_long );
13633 %}
13634 
13635 // Compare 2 longs and CMOVE ints.
13636 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
13637   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13638   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13639   ins_cost(200);
13640   format %{ "CMOV$cmp $dst,$src" %}
13641   opcode(0x0F,0x40);
13642   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13643   ins_pipe( pipe_cmov_reg );
13644 %}
13645 
13646 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
13647   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13648   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13649   ins_cost(250);
13650   format %{ "CMOV$cmp $dst,$src" %}
13651   opcode(0x0F,0x40);
13652   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13653   ins_pipe( pipe_cmov_mem );
13654 %}
13655 
13656 // Compare 2 longs and CMOVE ints.
13657 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
13658   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13659   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13660   ins_cost(200);
13661   format %{ "CMOV$cmp $dst,$src" %}
13662   opcode(0x0F,0x40);
13663   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13664   ins_pipe( pipe_cmov_reg );
13665 %}
13666 
13667 // Compare 2 longs and CMOVE doubles
13668 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
13669   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13670   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13671   ins_cost(200);
13672   expand %{
13673     fcmovD_regS(cmp,flags,dst,src);
13674   %}
13675 %}
13676 
13677 // Compare 2 longs and CMOVE doubles
13678 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
13679   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13680   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13681   ins_cost(200);
13682   expand %{
13683     fcmovXD_regS(cmp,flags,dst,src);
13684   %}
13685 %}
13686 
13687 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
13688   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13689   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13690   ins_cost(200);
13691   expand %{
13692     fcmovF_regS(cmp,flags,dst,src);
13693   %}
13694 %}
13695 
13696 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
13697   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13698   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13699   ins_cost(200);
13700   expand %{
13701     fcmovX_regS(cmp,flags,dst,src);
13702   %}
13703 %}
13704 
13705 //======
13706 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13707 // Same as cmpL_reg_flags_LEGT except must negate src
13708 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
13709   match( Set flags (CmpL src zero ));
13710   effect( TEMP tmp );
13711   ins_cost(300);
13712   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
13713             "CMP    $tmp,$src.lo\n\t"
13714             "SBB    $tmp,$src.hi\n\t" %}
13715   ins_encode( long_cmp_flags3(src, tmp) );
13716   ins_pipe( ialu_reg_reg_long );
13717 %}
13718 
13719 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13720 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
13721 // requires a commuted test to get the same result.
13722 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13723   match( Set flags (CmpL src1 src2 ));
13724   effect( TEMP tmp );
13725   ins_cost(300);
13726   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
13727             "MOV    $tmp,$src2.hi\n\t"
13728             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
13729   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
13730   ins_pipe( ialu_cr_reg_reg );
13731 %}
13732 
13733 // Long compares reg < zero/req OR reg >= zero/req.
13734 // Just a wrapper for a normal branch, plus the predicate test
13735 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
13736   match(If cmp flags);
13737   effect(USE labl);
13738   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
13739   ins_cost(300);
13740   expand %{
13741     jmpCon(cmp,flags,labl);    // JGT or JLE...
13742   %}
13743 %}
13744 
13745 // Compare 2 longs and CMOVE longs.
13746 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
13747   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13748   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13749   ins_cost(400);
13750   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13751             "CMOV$cmp $dst.hi,$src.hi" %}
13752   opcode(0x0F,0x40);
13753   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13754   ins_pipe( pipe_cmov_reg_long );
13755 %}
13756 
13757 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
13758   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13759   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13760   ins_cost(500);
13761   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13762             "CMOV$cmp $dst.hi,$src.hi+4" %}
13763   opcode(0x0F,0x40);
13764   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13765   ins_pipe( pipe_cmov_reg_long );
13766 %}
13767 
13768 // Compare 2 longs and CMOVE ints.
13769 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
13770   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13771   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13772   ins_cost(200);
13773   format %{ "CMOV$cmp $dst,$src" %}
13774   opcode(0x0F,0x40);
13775   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13776   ins_pipe( pipe_cmov_reg );
13777 %}
13778 
13779 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
13780   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13781   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13782   ins_cost(250);
13783   format %{ "CMOV$cmp $dst,$src" %}
13784   opcode(0x0F,0x40);
13785   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13786   ins_pipe( pipe_cmov_mem );
13787 %}
13788 
13789 // Compare 2 longs and CMOVE ptrs.
13790 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
13791   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13792   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13793   ins_cost(200);
13794   format %{ "CMOV$cmp $dst,$src" %}
13795   opcode(0x0F,0x40);
13796   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13797   ins_pipe( pipe_cmov_reg );
13798 %}
13799 
13800 // Compare 2 longs and CMOVE doubles
13801 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
13802   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13803   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13804   ins_cost(200);
13805   expand %{
13806     fcmovD_regS(cmp,flags,dst,src);
13807   %}
13808 %}
13809 
13810 // Compare 2 longs and CMOVE doubles
13811 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
13812   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13813   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13814   ins_cost(200);
13815   expand %{
13816     fcmovXD_regS(cmp,flags,dst,src);
13817   %}
13818 %}
13819 
13820 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
13821   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13822   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13823   ins_cost(200);
13824   expand %{
13825     fcmovF_regS(cmp,flags,dst,src);
13826   %}
13827 %}
13828 
13829 
13830 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
13831   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13832   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13833   ins_cost(200);
13834   expand %{
13835     fcmovX_regS(cmp,flags,dst,src);
13836   %}
13837 %}
13838 
13839 
13840 // ============================================================================
13841 // Procedure Call/Return Instructions
13842 // Call Java Static Instruction
13843 // Note: If this code changes, the corresponding ret_addr_offset() and
13844 //       compute_padding() functions will have to be adjusted.
13845 instruct CallStaticJavaDirect(method meth) %{
13846   match(CallStaticJava);
13847   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
13848   effect(USE meth);
13849 
13850   ins_cost(300);
13851   format %{ "CALL,static " %}
13852   opcode(0xE8); /* E8 cd */
13853   ins_encode( pre_call_FPU,
13854               Java_Static_Call( meth ),
13855               call_epilog,
13856               post_call_FPU );
13857   ins_pipe( pipe_slow );
13858   ins_pc_relative(1);
13859   ins_alignment(4);
13860 %}
13861 
13862 // Call Java Static Instruction (method handle version)
13863 // Note: If this code changes, the corresponding ret_addr_offset() and
13864 //       compute_padding() functions will have to be adjusted.
13865 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
13866   match(CallStaticJava);
13867   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
13868   effect(USE meth);
13869   // EBP is saved by all callees (for interpreter stack correction).
13870   // We use it here for a similar purpose, in {preserve,restore}_SP.
13871 
13872   ins_cost(300);
13873   format %{ "CALL,static/MethodHandle " %}
13874   opcode(0xE8); /* E8 cd */
13875   ins_encode( pre_call_FPU,
13876               preserve_SP,
13877               Java_Static_Call( meth ),
13878               restore_SP,
13879               call_epilog,
13880               post_call_FPU );
13881   ins_pipe( pipe_slow );
13882   ins_pc_relative(1);
13883   ins_alignment(4);
13884 %}
13885 
13886 // Call Java Dynamic Instruction
13887 // Note: If this code changes, the corresponding ret_addr_offset() and
13888 //       compute_padding() functions will have to be adjusted.
13889 instruct CallDynamicJavaDirect(method meth) %{
13890   match(CallDynamicJava);
13891   effect(USE meth);
13892 
13893   ins_cost(300);
13894   format %{ "MOV    EAX,(oop)-1\n\t"
13895             "CALL,dynamic" %}
13896   opcode(0xE8); /* E8 cd */
13897   ins_encode( pre_call_FPU,
13898               Java_Dynamic_Call( meth ),
13899               call_epilog,
13900               post_call_FPU );
13901   ins_pipe( pipe_slow );
13902   ins_pc_relative(1);
13903   ins_alignment(4);
13904 %}
13905 
13906 // Call Runtime Instruction
13907 instruct CallRuntimeDirect(method meth) %{
13908   match(CallRuntime );
13909   effect(USE meth);
13910 
13911   ins_cost(300);
13912   format %{ "CALL,runtime " %}
13913   opcode(0xE8); /* E8 cd */
13914   // Use FFREEs to clear entries in float stack
13915   ins_encode( pre_call_FPU,
13916               FFree_Float_Stack_All,
13917               Java_To_Runtime( meth ),
13918               post_call_FPU );
13919   ins_pipe( pipe_slow );
13920   ins_pc_relative(1);
13921 %}
13922 
13923 // Call runtime without safepoint
13924 instruct CallLeafDirect(method meth) %{
13925   match(CallLeaf);
13926   effect(USE meth);
13927 
13928   ins_cost(300);
13929   format %{ "CALL_LEAF,runtime " %}
13930   opcode(0xE8); /* E8 cd */
13931   ins_encode( pre_call_FPU,
13932               FFree_Float_Stack_All,
13933               Java_To_Runtime( meth ),
13934               Verify_FPU_For_Leaf, post_call_FPU );
13935   ins_pipe( pipe_slow );
13936   ins_pc_relative(1);
13937 %}
13938 
13939 instruct CallLeafNoFPDirect(method meth) %{
13940   match(CallLeafNoFP);
13941   effect(USE meth);
13942 
13943   ins_cost(300);
13944   format %{ "CALL_LEAF_NOFP,runtime " %}
13945   opcode(0xE8); /* E8 cd */
13946   ins_encode(Java_To_Runtime(meth));
13947   ins_pipe( pipe_slow );
13948   ins_pc_relative(1);
13949 %}
13950 
13951 
13952 // Return Instruction
13953 // Remove the return address & jump to it.
13954 instruct Ret() %{
13955   match(Return);
13956   format %{ "RET" %}
13957   opcode(0xC3);
13958   ins_encode(OpcP);
13959   ins_pipe( pipe_jmp );
13960 %}
13961 
13962 // Tail Call; Jump from runtime stub to Java code.
13963 // Also known as an 'interprocedural jump'.
13964 // Target of jump will eventually return to caller.
13965 // TailJump below removes the return address.
13966 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13967   match(TailCall jump_target method_oop );
13968   ins_cost(300);
13969   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13970   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13971   ins_encode( OpcP, RegOpc(jump_target) );
13972   ins_pipe( pipe_jmp );
13973 %}
13974 
13975 
13976 // Tail Jump; remove the return address; jump to target.
13977 // TailCall above leaves the return address around.
13978 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13979   match( TailJump jump_target ex_oop );
13980   ins_cost(300);
13981   format %{ "POP    EDX\t# pop return address into dummy\n\t"
13982             "JMP    $jump_target " %}
13983   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13984   ins_encode( enc_pop_rdx,
13985               OpcP, RegOpc(jump_target) );
13986   ins_pipe( pipe_jmp );
13987 %}
13988 
13989 // Create exception oop: created by stack-crawling runtime code.
13990 // Created exception is now available to this handler, and is setup
13991 // just prior to jumping to this handler.  No code emitted.
13992 instruct CreateException( eAXRegP ex_oop )
13993 %{
13994   match(Set ex_oop (CreateEx));
13995 
13996   size(0);
13997   // use the following format syntax
13998   format %{ "# exception oop is in EAX; no code emitted" %}
13999   ins_encode();
14000   ins_pipe( empty );
14001 %}
14002 
14003 
14004 // Rethrow exception:
14005 // The exception oop will come in the first argument position.
14006 // Then JUMP (not call) to the rethrow stub code.
14007 instruct RethrowException()
14008 %{
14009   match(Rethrow);
14010 
14011   // use the following format syntax
14012   format %{ "JMP    rethrow_stub" %}
14013   ins_encode(enc_rethrow);
14014   ins_pipe( pipe_jmp );
14015 %}
14016 
14017 // inlined locking and unlocking
14018 
14019 
14020 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
14021   match( Set cr (FastLock object box) );
14022   effect( TEMP tmp, TEMP scr );
14023   ins_cost(300);
14024   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
14025   ins_encode( Fast_Lock(object,box,tmp,scr) );
14026   ins_pipe( pipe_slow );
14027   ins_pc_relative(1);
14028 %}
14029 
14030 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
14031   match( Set cr (FastUnlock object box) );
14032   effect( TEMP tmp );
14033   ins_cost(300);
14034   format %{ "FASTUNLOCK $object, $box, $tmp" %}
14035   ins_encode( Fast_Unlock(object,box,tmp) );
14036   ins_pipe( pipe_slow );
14037   ins_pc_relative(1);
14038 %}
14039 
14040 
14041 
14042 // ============================================================================
14043 // Safepoint Instruction
14044 instruct safePoint_poll(eFlagsReg cr) %{
14045   match(SafePoint);
14046   effect(KILL cr);
14047 
14048   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
14049   // On SPARC that might be acceptable as we can generate the address with
14050   // just a sethi, saving an or.  By polling at offset 0 we can end up
14051   // putting additional pressure on the index-0 in the D$.  Because of
14052   // alignment (just like the situation at hand) the lower indices tend
14053   // to see more traffic.  It'd be better to change the polling address
14054   // to offset 0 of the last $line in the polling page.
14055 
14056   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
14057   ins_cost(125);
14058   size(6) ;
14059   ins_encode( Safepoint_Poll() );
14060   ins_pipe( ialu_reg_mem );
14061 %}
14062 
14063 //----------PEEPHOLE RULES-----------------------------------------------------
14064 // These must follow all instruction definitions as they use the names
14065 // defined in the instructions definitions.
14066 //
14067 // peepmatch ( root_instr_name [preceding_instruction]* );
14068 //
14069 // peepconstraint %{
14070 // (instruction_number.operand_name relational_op instruction_number.operand_name
14071 //  [, ...] );
14072 // // instruction numbers are zero-based using left to right order in peepmatch
14073 //
14074 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
14075 // // provide an instruction_number.operand_name for each operand that appears
14076 // // in the replacement instruction's match rule
14077 //
14078 // ---------VM FLAGS---------------------------------------------------------
14079 //
14080 // All peephole optimizations can be turned off using -XX:-OptoPeephole
14081 //
14082 // Each peephole rule is given an identifying number starting with zero and
14083 // increasing by one in the order seen by the parser.  An individual peephole
14084 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
14085 // on the command-line.
14086 //
14087 // ---------CURRENT LIMITATIONS----------------------------------------------
14088 //
14089 // Only match adjacent instructions in same basic block
14090 // Only equality constraints
14091 // Only constraints between operands, not (0.dest_reg == EAX_enc)
14092 // Only one replacement instruction
14093 //
14094 // ---------EXAMPLE----------------------------------------------------------
14095 //
14096 // // pertinent parts of existing instructions in architecture description
14097 // instruct movI(eRegI dst, eRegI src) %{
14098 //   match(Set dst (CopyI src));
14099 // %}
14100 //
14101 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
14102 //   match(Set dst (AddI dst src));
14103 //   effect(KILL cr);
14104 // %}
14105 //
14106 // // Change (inc mov) to lea
14107 // peephole %{
14108 //   // increment preceeded by register-register move
14109 //   peepmatch ( incI_eReg movI );
14110 //   // require that the destination register of the increment
14111 //   // match the destination register of the move
14112 //   peepconstraint ( 0.dst == 1.dst );
14113 //   // construct a replacement instruction that sets
14114 //   // the destination to ( move's source register + one )
14115 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14116 // %}
14117 //
14118 // Implementation no longer uses movX instructions since
14119 // machine-independent system no longer uses CopyX nodes.
14120 //
14121 // peephole %{
14122 //   peepmatch ( incI_eReg movI );
14123 //   peepconstraint ( 0.dst == 1.dst );
14124 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14125 // %}
14126 //
14127 // peephole %{
14128 //   peepmatch ( decI_eReg movI );
14129 //   peepconstraint ( 0.dst == 1.dst );
14130 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14131 // %}
14132 //
14133 // peephole %{
14134 //   peepmatch ( addI_eReg_imm movI );
14135 //   peepconstraint ( 0.dst == 1.dst );
14136 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14137 // %}
14138 //
14139 // peephole %{
14140 //   peepmatch ( addP_eReg_imm movP );
14141 //   peepconstraint ( 0.dst == 1.dst );
14142 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
14143 // %}
14144 
14145 // // Change load of spilled value to only a spill
14146 // instruct storeI(memory mem, eRegI src) %{
14147 //   match(Set mem (StoreI mem src));
14148 // %}
14149 //
14150 // instruct loadI(eRegI dst, memory mem) %{
14151 //   match(Set dst (LoadI mem));
14152 // %}
14153 //
14154 peephole %{
14155   peepmatch ( loadI storeI );
14156   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
14157   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
14158 %}
14159 
14160 //----------SMARTSPILL RULES---------------------------------------------------
14161 // These must follow all instruction definitions as they use the names
14162 // defined in the instructions definitions.