1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/type.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Optimization - Graph Style
  38 
  39 class Chaitin;
  40 class NamedCounter;
  41 class MultiNode;
  42 class  SafePointNode;
  43 class   CallNode;
  44 class     CallJavaNode;
  45 class       CallStaticJavaNode;
  46 class       CallDynamicJavaNode;
  47 class     CallRuntimeNode;
  48 class       CallLeafNode;
  49 class         CallLeafNoFPNode;
  50 class     AllocateNode;
  51 class       AllocateArrayNode;
  52 class     LockNode;
  53 class     UnlockNode;
  54 class JVMState;
  55 class OopMap;
  56 class State;
  57 class StartNode;
  58 class MachCallNode;
  59 class FastLockNode;
  60 
  61 //------------------------------StartNode--------------------------------------
  62 // The method start node
  63 class StartNode : public MultiNode {
  64   virtual uint cmp( const Node &n ) const;
  65   virtual uint size_of() const; // Size is bigger
  66 public:
  67   const TypeTuple *_domain;
  68   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  69     init_class_id(Class_Start);
  70     init_req(0,this);
  71     init_req(1,root);
  72   }
  73   virtual int Opcode() const;
  74   virtual bool pinned() const { return true; };
  75   virtual const Type *bottom_type() const;
  76   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  77   virtual const Type *Value( PhaseTransform *phase ) const;
  78   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  79   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  80   virtual const RegMask &in_RegMask(uint) const;
  81   virtual Node *match( const ProjNode *proj, const Matcher *m );
  82   virtual uint ideal_reg() const { return 0; }
  83 #ifndef PRODUCT
  84   virtual void  dump_spec(outputStream *st) const;
  85 #endif
  86 };
  87 
  88 //------------------------------StartOSRNode-----------------------------------
  89 // The method start node for on stack replacement code
  90 class StartOSRNode : public StartNode {
  91 public:
  92   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  93   virtual int   Opcode() const;
  94   static  const TypeTuple *osr_domain();
  95 };
  96 
  97 
  98 //------------------------------ParmNode---------------------------------------
  99 // Incoming parameters
 100 class ParmNode : public ProjNode {
 101   static const char * const names[TypeFunc::Parms+1];
 102 public:
 103   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 104     init_class_id(Class_Parm);
 105   }
 106   virtual int Opcode() const;
 107   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 108   virtual uint ideal_reg() const;
 109 #ifndef PRODUCT
 110   virtual void dump_spec(outputStream *st) const;
 111 #endif
 112 };
 113 
 114 
 115 //------------------------------ReturnNode-------------------------------------
 116 // Return from subroutine node
 117 class ReturnNode : public Node {
 118 public:
 119   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 120   virtual int Opcode() const;
 121   virtual bool  is_CFG() const { return true; }
 122   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 123   virtual bool depends_only_on_test() const { return false; }
 124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 125   virtual const Type *Value( PhaseTransform *phase ) const;
 126   virtual uint ideal_reg() const { return NotAMachineReg; }
 127   virtual uint match_edge(uint idx) const;
 128 #ifndef PRODUCT
 129   virtual void dump_req() const;
 130 #endif
 131 };
 132 
 133 
 134 //------------------------------RethrowNode------------------------------------
 135 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 136 // ends the current basic block like a ReturnNode.  Restores registers and
 137 // unwinds stack.  Rethrow happens in the caller's method.
 138 class RethrowNode : public Node {
 139  public:
 140   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 141   virtual int Opcode() const;
 142   virtual bool  is_CFG() const { return true; }
 143   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 144   virtual bool depends_only_on_test() const { return false; }
 145   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 146   virtual const Type *Value( PhaseTransform *phase ) const;
 147   virtual uint match_edge(uint idx) const;
 148   virtual uint ideal_reg() const { return NotAMachineReg; }
 149 #ifndef PRODUCT
 150   virtual void dump_req() const;
 151 #endif
 152 };
 153 
 154 
 155 //------------------------------TailCallNode-----------------------------------
 156 // Pop stack frame and jump indirect
 157 class TailCallNode : public ReturnNode {
 158 public:
 159   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 160     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 161     init_req(TypeFunc::Parms, target);
 162     init_req(TypeFunc::Parms+1, moop);
 163   }
 164 
 165   virtual int Opcode() const;
 166   virtual uint match_edge(uint idx) const;
 167 };
 168 
 169 //------------------------------TailJumpNode-----------------------------------
 170 // Pop stack frame and jump indirect
 171 class TailJumpNode : public ReturnNode {
 172 public:
 173   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 174     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 175     init_req(TypeFunc::Parms, target);
 176     init_req(TypeFunc::Parms+1, ex_oop);
 177   }
 178 
 179   virtual int Opcode() const;
 180   virtual uint match_edge(uint idx) const;
 181 };
 182 
 183 //-------------------------------JVMState-------------------------------------
 184 // A linked list of JVMState nodes captures the whole interpreter state,
 185 // plus GC roots, for all active calls at some call site in this compilation
 186 // unit.  (If there is no inlining, then the list has exactly one link.)
 187 // This provides a way to map the optimized program back into the interpreter,
 188 // or to let the GC mark the stack.
 189 class JVMState : public ResourceObj {
 190 public:
 191   typedef enum {
 192     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 193     Reexecute_False     =  0, // false       -- do not reexecute
 194     Reexecute_True      =  1  // true        -- reexecute the bytecode
 195   } ReexecuteState; //Reexecute State
 196 
 197 private:
 198   JVMState*         _caller;    // List pointer for forming scope chains
 199   uint              _depth;     // One mroe than caller depth, or one.
 200   uint              _locoff;    // Offset to locals in input edge mapping
 201   uint              _stkoff;    // Offset to stack in input edge mapping
 202   uint              _monoff;    // Offset to monitors in input edge mapping
 203   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 204   uint              _endoff;    // Offset to end of input edge mapping
 205   uint              _sp;        // Jave Expression Stack Pointer for this state
 206   int               _bci;       // Byte Code Index of this JVM point
 207   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 208   ciMethod*         _method;    // Method Pointer
 209   SafePointNode*    _map;       // Map node associated with this scope
 210 public:
 211   friend class Compile;
 212   friend class PreserveReexecuteState;
 213 
 214   // Because JVMState objects live over the entire lifetime of the
 215   // Compile object, they are allocated into the comp_arena, which
 216   // does not get resource marked or reset during the compile process
 217   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 218   void operator delete( void * ) { } // fast deallocation
 219 
 220   // Create a new JVMState, ready for abstract interpretation.
 221   JVMState(ciMethod* method, JVMState* caller);
 222   JVMState(int stack_size);  // root state; has a null method
 223 
 224   // Access functions for the JVM
 225   uint              locoff() const { return _locoff; }
 226   uint              stkoff() const { return _stkoff; }
 227   uint              argoff() const { return _stkoff + _sp; }
 228   uint              monoff() const { return _monoff; }
 229   uint              scloff() const { return _scloff; }
 230   uint              endoff() const { return _endoff; }
 231   uint              oopoff() const { return debug_end(); }
 232 
 233   int            loc_size() const { return _stkoff - _locoff; }
 234   int            stk_size() const { return _monoff - _stkoff; }
 235   int            mon_size() const { return _scloff - _monoff; }
 236   int            scl_size() const { return _endoff - _scloff; }
 237 
 238   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
 239   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
 240   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
 241   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
 242 
 243   uint                      sp() const { return _sp; }
 244   int                      bci() const { return _bci; }
 245   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 246   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 247   bool              has_method() const { return _method != NULL; }
 248   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 249   JVMState*             caller() const { return _caller; }
 250   SafePointNode*           map() const { return _map; }
 251   uint                   depth() const { return _depth; }
 252   uint             debug_start() const; // returns locoff of root caller
 253   uint               debug_end() const; // returns endoff of self
 254   uint              debug_size() const {
 255     return loc_size() + sp() + mon_size() + scl_size();
 256   }
 257   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 258 
 259   // Returns the JVM state at the desired depth (1 == root).
 260   JVMState* of_depth(int d) const;
 261 
 262   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 263   bool same_calls_as(const JVMState* that) const;
 264 
 265   // Monitors (monitors are stored as (boxNode, objNode) pairs
 266   enum { logMonitorEdges = 1 };
 267   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 268   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 269   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 270   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 271   bool is_monitor_box(uint off)    const {
 272     assert(is_mon(off), "should be called only for monitor edge");
 273     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 274   }
 275   bool is_monitor_use(uint off)    const { return (is_mon(off)
 276                                                    && is_monitor_box(off))
 277                                              || (caller() && caller()->is_monitor_use(off)); }
 278 
 279   // Initialization functions for the JVM
 280   void              set_locoff(uint off) { _locoff = off; }
 281   void              set_stkoff(uint off) { _stkoff = off; }
 282   void              set_monoff(uint off) { _monoff = off; }
 283   void              set_scloff(uint off) { _scloff = off; }
 284   void              set_endoff(uint off) { _endoff = off; }
 285   void              set_offsets(uint off) {
 286     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 287   }
 288   void              set_map(SafePointNode *map) { _map = map; }
 289   void              set_sp(uint sp) { _sp = sp; }
 290                     // _reexecute is initialized to "undefined" for a new bci
 291   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 292   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 293 
 294   // Miscellaneous utility functions
 295   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 296   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 297 
 298 #ifndef PRODUCT
 299   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 300   void      dump_spec(outputStream *st) const;
 301   void      dump_on(outputStream* st) const;
 302   void      dump() const {
 303     dump_on(tty);
 304   }
 305 #endif
 306 };
 307 
 308 //------------------------------SafePointNode----------------------------------
 309 // A SafePointNode is a subclass of a MultiNode for convenience (and
 310 // potential code sharing) only - conceptually it is independent of
 311 // the Node semantics.
 312 class SafePointNode : public MultiNode {
 313   virtual uint           cmp( const Node &n ) const;
 314   virtual uint           size_of() const;       // Size is bigger
 315 
 316 public:
 317   SafePointNode(uint edges, JVMState* jvms,
 318                 // A plain safepoint advertises no memory effects (NULL):
 319                 const TypePtr* adr_type = NULL)
 320     : MultiNode( edges ),
 321       _jvms(jvms),
 322       _oop_map(NULL),
 323       _adr_type(adr_type)
 324   {
 325     init_class_id(Class_SafePoint);
 326   }
 327 
 328   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 329   JVMState* const _jvms;      // Pointer to list of JVM State objects
 330   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 331 
 332   // Many calls take *all* of memory as input,
 333   // but some produce a limited subset of that memory as output.
 334   // The adr_type reports the call's behavior as a store, not a load.
 335 
 336   virtual JVMState* jvms() const { return _jvms; }
 337   void set_jvms(JVMState* s) {
 338     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 339   }
 340   OopMap *oop_map() const { return _oop_map; }
 341   void set_oop_map(OopMap *om) { _oop_map = om; }
 342 
 343   // Functionality from old debug nodes which has changed
 344   Node *local(JVMState* jvms, uint idx) const {
 345     assert(verify_jvms(jvms), "jvms must match");
 346     return in(jvms->locoff() + idx);
 347   }
 348   Node *stack(JVMState* jvms, uint idx) const {
 349     assert(verify_jvms(jvms), "jvms must match");
 350     return in(jvms->stkoff() + idx);
 351   }
 352   Node *argument(JVMState* jvms, uint idx) const {
 353     assert(verify_jvms(jvms), "jvms must match");
 354     return in(jvms->argoff() + idx);
 355   }
 356   Node *monitor_box(JVMState* jvms, uint idx) const {
 357     assert(verify_jvms(jvms), "jvms must match");
 358     return in(jvms->monitor_box_offset(idx));
 359   }
 360   Node *monitor_obj(JVMState* jvms, uint idx) const {
 361     assert(verify_jvms(jvms), "jvms must match");
 362     return in(jvms->monitor_obj_offset(idx));
 363   }
 364 
 365   void  set_local(JVMState* jvms, uint idx, Node *c);
 366 
 367   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 368     assert(verify_jvms(jvms), "jvms must match");
 369     set_req(jvms->stkoff() + idx, c);
 370   }
 371   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 372     assert(verify_jvms(jvms), "jvms must match");
 373     set_req(jvms->argoff() + idx, c);
 374   }
 375   void ensure_stack(JVMState* jvms, uint stk_size) {
 376     assert(verify_jvms(jvms), "jvms must match");
 377     int grow_by = (int)stk_size - (int)jvms->stk_size();
 378     if (grow_by > 0)  grow_stack(jvms, grow_by);
 379   }
 380   void grow_stack(JVMState* jvms, uint grow_by);
 381   // Handle monitor stack
 382   void push_monitor( const FastLockNode *lock );
 383   void pop_monitor ();
 384   Node *peek_monitor_box() const;
 385   Node *peek_monitor_obj() const;
 386 
 387   // Access functions for the JVM
 388   Node *control  () const { return in(TypeFunc::Control  ); }
 389   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 390   Node *memory   () const { return in(TypeFunc::Memory   ); }
 391   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 392   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 393 
 394   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 395   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 396   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 397 
 398   MergeMemNode* merged_memory() const {
 399     return in(TypeFunc::Memory)->as_MergeMem();
 400   }
 401 
 402   // The parser marks useless maps as dead when it's done with them:
 403   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 404 
 405   // Exception states bubbling out of subgraphs such as inlined calls
 406   // are recorded here.  (There might be more than one, hence the "next".)
 407   // This feature is used only for safepoints which serve as "maps"
 408   // for JVM states during parsing, intrinsic expansion, etc.
 409   SafePointNode*         next_exception() const;
 410   void               set_next_exception(SafePointNode* n);
 411   bool                   has_exceptions() const { return next_exception() != NULL; }
 412 
 413   // Standard Node stuff
 414   virtual int            Opcode() const;
 415   virtual bool           pinned() const { return true; }
 416   virtual const Type    *Value( PhaseTransform *phase ) const;
 417   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 418   virtual const TypePtr *adr_type() const { return _adr_type; }
 419   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 420   virtual Node          *Identity( PhaseTransform *phase );
 421   virtual uint           ideal_reg() const { return 0; }
 422   virtual const RegMask &in_RegMask(uint) const;
 423   virtual const RegMask &out_RegMask() const;
 424   virtual uint           match_edge(uint idx) const;
 425 
 426   static  bool           needs_polling_address_input();
 427 
 428 #ifndef PRODUCT
 429   virtual void              dump_spec(outputStream *st) const;
 430 #endif
 431 };
 432 
 433 //------------------------------SafePointScalarObjectNode----------------------
 434 // A SafePointScalarObjectNode represents the state of a scalarized object
 435 // at a safepoint.
 436 
 437 class SafePointScalarObjectNode: public TypeNode {
 438   uint _first_index; // First input edge index of a SafePoint node where
 439                      // states of the scalarized object fields are collected.
 440   uint _n_fields;    // Number of non-static fields of the scalarized object.
 441   DEBUG_ONLY(AllocateNode* _alloc;)
 442 public:
 443   SafePointScalarObjectNode(const TypeOopPtr* tp,
 444 #ifdef ASSERT
 445                             AllocateNode* alloc,
 446 #endif
 447                             uint first_index, uint n_fields);
 448   virtual int Opcode() const;
 449   virtual uint           ideal_reg() const;
 450   virtual const RegMask &in_RegMask(uint) const;
 451   virtual const RegMask &out_RegMask() const;
 452   virtual uint           match_edge(uint idx) const;
 453 
 454   uint first_index() const { return _first_index; }
 455   uint n_fields()    const { return _n_fields; }
 456   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
 457 
 458   // SafePointScalarObject should be always pinned to the control edge
 459   // of the SafePoint node for which it was generated.
 460   virtual bool pinned() const; // { return true; }
 461 
 462   // SafePointScalarObject depends on the SafePoint node
 463   // for which it was generated.
 464   virtual bool depends_only_on_test() const; // { return false; }
 465 
 466   virtual uint size_of() const { return sizeof(*this); }
 467 
 468   // Assumes that "this" is an argument to a safepoint node "s", and that
 469   // "new_call" is being created to correspond to "s".  But the difference
 470   // between the start index of the jvmstates of "new_call" and "s" is
 471   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 472   // corresponds appropriately to "this" in "new_call".  Assumes that
 473   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 474   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 475   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 476 
 477 #ifndef PRODUCT
 478   virtual void              dump_spec(outputStream *st) const;
 479 #endif
 480 };
 481 
 482 
 483 // Simple container for the outgoing projections of a call.  Useful
 484 // for serious surgery on calls.
 485 class CallProjections : public StackObj {
 486 public:
 487   Node* fallthrough_proj;
 488   Node* fallthrough_catchproj;
 489   Node* fallthrough_memproj;
 490   Node* fallthrough_ioproj;
 491   Node* catchall_catchproj;
 492   Node* catchall_memproj;
 493   Node* catchall_ioproj;
 494   Node* resproj;
 495   Node* exobj;
 496 };
 497 
 498 
 499 //------------------------------CallNode---------------------------------------
 500 // Call nodes now subsume the function of debug nodes at callsites, so they
 501 // contain the functionality of a full scope chain of debug nodes.
 502 class CallNode : public SafePointNode {
 503 public:
 504   const TypeFunc *_tf;        // Function type
 505   address      _entry_point;  // Address of method being called
 506   float        _cnt;          // Estimate of number of times called
 507 
 508   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 509     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 510       _tf(tf),
 511       _entry_point(addr),
 512       _cnt(COUNT_UNKNOWN)
 513   {
 514     init_class_id(Class_Call);
 515   }
 516 
 517   const TypeFunc* tf()        const { return _tf; }
 518   const address entry_point() const { return _entry_point; }
 519   const float   cnt()         const { return _cnt; }
 520 
 521   void set_tf(const TypeFunc* tf) { _tf = tf; }
 522   void set_entry_point(address p) { _entry_point = p; }
 523   void set_cnt(float c)           { _cnt = c; }
 524 
 525   virtual const Type *bottom_type() const;
 526   virtual const Type *Value( PhaseTransform *phase ) const;
 527   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 528   virtual uint        cmp( const Node &n ) const;
 529   virtual uint        size_of() const = 0;
 530   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 531   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 532   virtual uint        ideal_reg() const { return NotAMachineReg; }
 533   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 534   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 535   virtual bool        guaranteed_safepoint()  { return true; }
 536   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 537   // the node the JVMState must be cloned.
 538   virtual void        clone_jvms() { }   // default is not to clone
 539 
 540   // Returns true if the call may modify n
 541   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
 542   // Does this node have a use of n other than in debug information?
 543   bool                has_non_debug_use(Node *n);
 544   // Returns the unique CheckCastPP of a call
 545   // or result projection is there are several CheckCastPP
 546   // or returns NULL if there is no one.
 547   Node *result_cast();
 548 
 549   // Collect all the interesting edges from a call for use in
 550   // replacing the call by something else.  Used by macro expansion
 551   // and the late inlining support.
 552   void extract_projections(CallProjections* projs, bool separate_io_proj);
 553 
 554   virtual uint match_edge(uint idx) const;
 555 
 556 #ifndef PRODUCT
 557   virtual void        dump_req()  const;
 558   virtual void        dump_spec(outputStream *st) const;
 559 #endif
 560 };
 561 
 562 
 563 //------------------------------CallJavaNode-----------------------------------
 564 // Make a static or dynamic subroutine call node using Java calling
 565 // convention.  (The "Java" calling convention is the compiler's calling
 566 // convention, as opposed to the interpreter's or that of native C.)
 567 class CallJavaNode : public CallNode {
 568 protected:
 569   virtual uint cmp( const Node &n ) const;
 570   virtual uint size_of() const; // Size is bigger
 571 
 572   bool    _optimized_virtual;
 573   bool    _method_handle_invoke;
 574   ciMethod* _method;            // Method being direct called
 575 public:
 576   const int       _bci;         // Byte Code Index of call byte code
 577   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 578     : CallNode(tf, addr, TypePtr::BOTTOM),
 579       _method(method), _bci(bci),
 580       _optimized_virtual(false),
 581       _method_handle_invoke(false)
 582   {
 583     init_class_id(Class_CallJava);
 584   }
 585 
 586   virtual int   Opcode() const;
 587   ciMethod* method() const                { return _method; }
 588   void  set_method(ciMethod *m)           { _method = m; }
 589   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 590   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 591   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 592   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 593 
 594 #ifndef PRODUCT
 595   virtual void  dump_spec(outputStream *st) const;
 596 #endif
 597 };
 598 
 599 //------------------------------CallStaticJavaNode-----------------------------
 600 // Make a direct subroutine call using Java calling convention (for static
 601 // calls and optimized virtual calls, plus calls to wrappers for run-time
 602 // routines); generates static stub.
 603 class CallStaticJavaNode : public CallJavaNode {
 604   virtual uint cmp( const Node &n ) const;
 605   virtual uint size_of() const; // Size is bigger
 606 public:
 607   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
 608     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 609     init_class_id(Class_CallStaticJava);
 610   }
 611   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 612                      const TypePtr* adr_type)
 613     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 614     init_class_id(Class_CallStaticJava);
 615     // This node calls a runtime stub, which often has narrow memory effects.
 616     _adr_type = adr_type;
 617   }
 618   const char *_name;            // Runtime wrapper name
 619 
 620   // If this is an uncommon trap, return the request code, else zero.
 621   int uncommon_trap_request() const;
 622   static int extract_uncommon_trap_request(const Node* call);
 623 
 624   virtual int         Opcode() const;
 625 #ifndef PRODUCT
 626   virtual void        dump_spec(outputStream *st) const;
 627 #endif
 628 };
 629 
 630 //------------------------------CallDynamicJavaNode----------------------------
 631 // Make a dispatched call using Java calling convention.
 632 class CallDynamicJavaNode : public CallJavaNode {
 633   virtual uint cmp( const Node &n ) const;
 634   virtual uint size_of() const; // Size is bigger
 635 public:
 636   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 637     init_class_id(Class_CallDynamicJava);
 638   }
 639 
 640   int _vtable_index;
 641   virtual int   Opcode() const;
 642 #ifndef PRODUCT
 643   virtual void  dump_spec(outputStream *st) const;
 644 #endif
 645 };
 646 
 647 //------------------------------CallRuntimeNode--------------------------------
 648 // Make a direct subroutine call node into compiled C++ code.
 649 class CallRuntimeNode : public CallNode {
 650   virtual uint cmp( const Node &n ) const;
 651   virtual uint size_of() const; // Size is bigger
 652 public:
 653   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 654                   const TypePtr* adr_type)
 655     : CallNode(tf, addr, adr_type),
 656       _name(name)
 657   {
 658     init_class_id(Class_CallRuntime);
 659   }
 660 
 661   const char *_name;            // Printable name, if _method is NULL
 662   virtual int   Opcode() const;
 663   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 664 
 665 #ifndef PRODUCT
 666   virtual void  dump_spec(outputStream *st) const;
 667 #endif
 668 };
 669 
 670 //------------------------------CallLeafNode-----------------------------------
 671 // Make a direct subroutine call node into compiled C++ code, without
 672 // safepoints
 673 class CallLeafNode : public CallRuntimeNode {
 674 public:
 675   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 676                const TypePtr* adr_type)
 677     : CallRuntimeNode(tf, addr, name, adr_type)
 678   {
 679     init_class_id(Class_CallLeaf);
 680   }
 681   virtual int   Opcode() const;
 682   virtual bool        guaranteed_safepoint()  { return false; }
 683 #ifndef PRODUCT
 684   virtual void  dump_spec(outputStream *st) const;
 685 #endif
 686 };
 687 
 688 //------------------------------CallLeafNoFPNode-------------------------------
 689 // CallLeafNode, not using floating point or using it in the same manner as
 690 // the generated code
 691 class CallLeafNoFPNode : public CallLeafNode {
 692 public:
 693   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 694                    const TypePtr* adr_type)
 695     : CallLeafNode(tf, addr, name, adr_type)
 696   {
 697   }
 698   virtual int   Opcode() const;
 699 };
 700 
 701 
 702 //------------------------------Allocate---------------------------------------
 703 // High-level memory allocation
 704 //
 705 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 706 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 707 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 708 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 709 //  order to differentiate the uses of the projection on the normal control path from
 710 //  those on the exception return path.
 711 //
 712 class AllocateNode : public CallNode {
 713 public:
 714   enum {
 715     // Output:
 716     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 717     // Inputs:
 718     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 719     KlassNode,                        // type (maybe dynamic) of the obj.
 720     InitialTest,                      // slow-path test (may be constant)
 721     ALength,                          // array length (or TOP if none)
 722     ParmLimit
 723   };
 724 
 725   static const TypeFunc* alloc_type() {
 726     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 727     fields[AllocSize]   = TypeInt::POS;
 728     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 729     fields[InitialTest] = TypeInt::BOOL;
 730     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
 731 
 732     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 733 
 734     // create result type (range)
 735     fields = TypeTuple::fields(1);
 736     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 737 
 738     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 739 
 740     return TypeFunc::make(domain, range);
 741   }
 742 
 743   bool _is_scalar_replaceable;  // Result of Escape Analysis
 744 
 745   virtual uint size_of() const; // Size is bigger
 746   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 747                Node *size, Node *klass_node, Node *initial_test);
 748   // Expansion modifies the JVMState, so we need to clone it
 749   virtual void  clone_jvms() {
 750     set_jvms(jvms()->clone_deep(Compile::current()));
 751   }
 752   virtual int Opcode() const;
 753   virtual uint ideal_reg() const { return Op_RegP; }
 754   virtual bool        guaranteed_safepoint()  { return false; }
 755 
 756   // allocations do not modify their arguments
 757   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
 758 
 759   // Pattern-match a possible usage of AllocateNode.
 760   // Return null if no allocation is recognized.
 761   // The operand is the pointer produced by the (possible) allocation.
 762   // It must be a projection of the Allocate or its subsequent CastPP.
 763   // (Note:  This function is defined in file graphKit.cpp, near
 764   // GraphKit::new_instance/new_array, whose output it recognizes.)
 765   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 766   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 767 
 768   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 769   // an offset, which is reported back to the caller.
 770   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 771   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 772                                         intptr_t& offset);
 773 
 774   // Dig the klass operand out of a (possible) allocation site.
 775   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 776     AllocateNode* allo = Ideal_allocation(ptr, phase);
 777     return (allo == NULL) ? NULL : allo->in(KlassNode);
 778   }
 779 
 780   // Conservatively small estimate of offset of first non-header byte.
 781   int minimum_header_size() {
 782     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 783                                 instanceOopDesc::base_offset_in_bytes();
 784   }
 785 
 786   // Return the corresponding initialization barrier (or null if none).
 787   // Walks out edges to find it...
 788   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 789   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 790   InitializeNode* initialization();
 791 
 792   // Convenience for initialization->maybe_set_complete(phase)
 793   bool maybe_set_complete(PhaseGVN* phase);
 794 };
 795 
 796 //------------------------------AllocateArray---------------------------------
 797 //
 798 // High-level array allocation
 799 //
 800 class AllocateArrayNode : public AllocateNode {
 801 public:
 802   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 803                     Node* size, Node* klass_node, Node* initial_test,
 804                     Node* count_val
 805                     )
 806     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 807                    initial_test)
 808   {
 809     init_class_id(Class_AllocateArray);
 810     set_req(AllocateNode::ALength,        count_val);
 811   }
 812   virtual int Opcode() const;
 813   virtual uint size_of() const; // Size is bigger
 814   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 815 
 816   // Dig the length operand out of a array allocation site.
 817   Node* Ideal_length() {
 818     return in(AllocateNode::ALength);
 819   }
 820 
 821   // Dig the length operand out of a array allocation site and narrow the
 822   // type with a CastII, if necesssary
 823   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 824 
 825   // Pattern-match a possible usage of AllocateArrayNode.
 826   // Return null if no allocation is recognized.
 827   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 828     AllocateNode* allo = Ideal_allocation(ptr, phase);
 829     return (allo == NULL || !allo->is_AllocateArray())
 830            ? NULL : allo->as_AllocateArray();
 831   }
 832 };
 833 
 834 //------------------------------AbstractLockNode-----------------------------------
 835 class AbstractLockNode: public CallNode {
 836 private:
 837   bool _eliminate;    // indicates this lock can be safely eliminated
 838   bool _coarsened;    // indicates this lock was coarsened
 839 #ifndef PRODUCT
 840   NamedCounter* _counter;
 841 #endif
 842 
 843 protected:
 844   // helper functions for lock elimination
 845   //
 846 
 847   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 848                             GrowableArray<AbstractLockNode*> &lock_ops);
 849   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 850                                        GrowableArray<AbstractLockNode*> &lock_ops);
 851   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 852                                GrowableArray<AbstractLockNode*> &lock_ops);
 853   LockNode *find_matching_lock(UnlockNode* unlock);
 854 
 855 
 856 public:
 857   AbstractLockNode(const TypeFunc *tf)
 858     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 859       _coarsened(false),
 860       _eliminate(false)
 861   {
 862 #ifndef PRODUCT
 863     _counter = NULL;
 864 #endif
 865   }
 866   virtual int Opcode() const = 0;
 867   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 868   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 869   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 870   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 871 
 872   virtual uint size_of() const { return sizeof(*this); }
 873 
 874   bool is_eliminated()         {return _eliminate; }
 875   // mark node as eliminated and update the counter if there is one
 876   void set_eliminated();
 877 
 878   bool is_coarsened()  { return _coarsened; }
 879   void set_coarsened() { _coarsened = true; }
 880 
 881   // locking does not modify its arguments
 882   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
 883 
 884 #ifndef PRODUCT
 885   void create_lock_counter(JVMState* s);
 886   NamedCounter* counter() const { return _counter; }
 887 #endif
 888 };
 889 
 890 //------------------------------Lock---------------------------------------
 891 // High-level lock operation
 892 //
 893 // This is a subclass of CallNode because it is a macro node which gets expanded
 894 // into a code sequence containing a call.  This node takes 3 "parameters":
 895 //    0  -  object to lock
 896 //    1 -   a BoxLockNode
 897 //    2 -   a FastLockNode
 898 //
 899 class LockNode : public AbstractLockNode {
 900 public:
 901 
 902   static const TypeFunc *lock_type() {
 903     // create input type (domain)
 904     const Type **fields = TypeTuple::fields(3);
 905     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 906     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 907     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 908     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 909 
 910     // create result type (range)
 911     fields = TypeTuple::fields(0);
 912 
 913     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 914 
 915     return TypeFunc::make(domain,range);
 916   }
 917 
 918   virtual int Opcode() const;
 919   virtual uint size_of() const; // Size is bigger
 920   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 921     init_class_id(Class_Lock);
 922     init_flags(Flag_is_macro);
 923     C->add_macro_node(this);
 924   }
 925   virtual bool        guaranteed_safepoint()  { return false; }
 926 
 927   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 928   // Expansion modifies the JVMState, so we need to clone it
 929   virtual void  clone_jvms() {
 930     set_jvms(jvms()->clone_deep(Compile::current()));
 931   }
 932 };
 933 
 934 //------------------------------Unlock---------------------------------------
 935 // High-level unlock operation
 936 class UnlockNode : public AbstractLockNode {
 937 public:
 938   virtual int Opcode() const;
 939   virtual uint size_of() const; // Size is bigger
 940   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 941     init_class_id(Class_Unlock);
 942     init_flags(Flag_is_macro);
 943     C->add_macro_node(this);
 944   }
 945   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 946   // unlock is never a safepoint
 947   virtual bool        guaranteed_safepoint()  { return false; }
 948 };
 949 
 950 #endif // SHARE_VM_OPTO_CALLNODE_HPP