1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/c2compiler.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/runtime.hpp"
  33 #ifdef TARGET_ARCH_MODEL_x86_32
  34 # include "adfiles/ad_x86_32.hpp"
  35 #endif
  36 #ifdef TARGET_ARCH_MODEL_x86_64
  37 # include "adfiles/ad_x86_64.hpp"
  38 #endif
  39 #ifdef TARGET_ARCH_MODEL_sparc
  40 # include "adfiles/ad_sparc.hpp"
  41 #endif
  42 #ifdef TARGET_ARCH_MODEL_zero
  43 # include "adfiles/ad_zero.hpp"
  44 #endif
  45 #ifdef TARGET_ARCH_MODEL_arm
  46 # include "adfiles/ad_arm.hpp"
  47 #endif
  48 #ifdef TARGET_ARCH_MODEL_ppc
  49 # include "adfiles/ad_ppc.hpp"
  50 #endif
  51 
  52 // Optimization - Graph Style
  53 
  54 //------------------------------implicit_null_check----------------------------
  55 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  56 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  57 // I can generate a memory op if there is not one nearby.
  58 // The proj is the control projection for the not-null case.
  59 // The val is the pointer being checked for nullness or
  60 // decodeHeapOop_not_null node if it did not fold into address.
  61 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
  62   // Assume if null check need for 0 offset then always needed
  63   // Intel solaris doesn't support any null checks yet and no
  64   // mechanism exists (yet) to set the switches at an os_cpu level
  65   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  66 
  67   // Make sure the ptr-is-null path appears to be uncommon!
  68   float f = end()->as_MachIf()->_prob;
  69   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  70   if( f > PROB_UNLIKELY_MAG(4) ) return;
  71 
  72   uint bidx = 0;                // Capture index of value into memop
  73   bool was_store;               // Memory op is a store op
  74 
  75   // Get the successor block for if the test ptr is non-null
  76   Block* not_null_block;  // this one goes with the proj
  77   Block* null_block;
  78   if (_nodes[_nodes.size()-1] == proj) {
  79     null_block     = _succs[0];
  80     not_null_block = _succs[1];
  81   } else {
  82     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
  83     not_null_block = _succs[0];
  84     null_block     = _succs[1];
  85   }
  86   while (null_block->is_Empty() == Block::empty_with_goto) {
  87     null_block     = null_block->_succs[0];
  88   }
  89 
  90   // Search the exception block for an uncommon trap.
  91   // (See Parse::do_if and Parse::do_ifnull for the reason
  92   // we need an uncommon trap.  Briefly, we need a way to
  93   // detect failure of this optimization, as in 6366351.)
  94   {
  95     bool found_trap = false;
  96     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
  97       Node* nn = null_block->_nodes[i1];
  98       if (nn->is_MachCall() &&
  99           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 100         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 101         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 102           jint tr_con = trtype->is_int()->get_con();
 103           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 104           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 105           assert((int)reason < (int)BitsPerInt, "recode bit map");
 106           if (is_set_nth_bit(allowed_reasons, (int) reason)
 107               && action != Deoptimization::Action_none) {
 108             // This uncommon trap is sure to recompile, eventually.
 109             // When that happens, C->too_many_traps will prevent
 110             // this transformation from happening again.
 111             found_trap = true;
 112           }
 113         }
 114         break;
 115       }
 116     }
 117     if (!found_trap) {
 118       // We did not find an uncommon trap.
 119       return;
 120     }
 121   }
 122 
 123   // Check for decodeHeapOop_not_null node which did not fold into address
 124   bool is_decoden = ((intptr_t)val) & 1;
 125   val = (Node*)(((intptr_t)val) & ~1);
 126 
 127   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 128          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 129 
 130   // Search the successor block for a load or store who's base value is also
 131   // the tested value.  There may be several.
 132   Node_List *out = new Node_List(Thread::current()->resource_area());
 133   MachNode *best = NULL;        // Best found so far
 134   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 135     Node *m = val->out(i);
 136     if( !m->is_Mach() ) continue;
 137     MachNode *mach = m->as_Mach();
 138     was_store = false;
 139     int iop = mach->ideal_Opcode();
 140     switch( iop ) {
 141     case Op_LoadB:
 142     case Op_LoadUS:
 143     case Op_LoadD:
 144     case Op_LoadF:
 145     case Op_LoadI:
 146     case Op_LoadL:
 147     case Op_LoadP:
 148     case Op_LoadN:
 149     case Op_LoadS:
 150     case Op_LoadKlass:
 151     case Op_LoadNKlass:
 152     case Op_LoadRange:
 153     case Op_LoadD_unaligned:
 154     case Op_LoadL_unaligned:
 155       assert(mach->in(2) == val, "should be address");
 156       break;
 157     case Op_StoreB:
 158     case Op_StoreC:
 159     case Op_StoreCM:
 160     case Op_StoreD:
 161     case Op_StoreF:
 162     case Op_StoreI:
 163     case Op_StoreL:
 164     case Op_StoreP:
 165     case Op_StoreN:
 166       was_store = true;         // Memory op is a store op
 167       // Stores will have their address in slot 2 (memory in slot 1).
 168       // If the value being nul-checked is in another slot, it means we
 169       // are storing the checked value, which does NOT check the value!
 170       if( mach->in(2) != val ) continue;
 171       break;                    // Found a memory op?
 172     case Op_StrComp:
 173     case Op_StrEquals:
 174     case Op_StrIndexOf:
 175     case Op_AryEq:
 176       // Not a legit memory op for implicit null check regardless of
 177       // embedded loads
 178       continue;
 179     default:                    // Also check for embedded loads
 180       if( !mach->needs_anti_dependence_check() )
 181         continue;               // Not an memory op; skip it
 182       if( must_clone[iop] ) {
 183         // Do not move nodes which produce flags because
 184         // RA will try to clone it to place near branch and
 185         // it will cause recompilation, see clone_node().
 186         continue;
 187       }
 188       {
 189         // Check that value is used in memory address in
 190         // instructions with embedded load (CmpP val1,(val2+off)).
 191         Node* base;
 192         Node* index;
 193         const MachOper* oper = mach->memory_inputs(base, index);
 194         if (oper == NULL || oper == (MachOper*)-1) {
 195           continue;             // Not an memory op; skip it
 196         }
 197         if (val == base ||
 198             val == index && val->bottom_type()->isa_narrowoop()) {
 199           break;                // Found it
 200         } else {
 201           continue;             // Skip it
 202         }
 203       }
 204       break;
 205     }
 206     // check if the offset is not too high for implicit exception
 207     {
 208       intptr_t offset = 0;
 209       const TypePtr *adr_type = NULL;  // Do not need this return value here
 210       const Node* base = mach->get_base_and_disp(offset, adr_type);
 211       if (base == NULL || base == NodeSentinel) {
 212         // Narrow oop address doesn't have base, only index
 213         if( val->bottom_type()->isa_narrowoop() &&
 214             MacroAssembler::needs_explicit_null_check(offset) )
 215           continue;             // Give up if offset is beyond page size
 216         // cannot reason about it; is probably not implicit null exception
 217       } else {
 218         const TypePtr* tptr;
 219         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
 220           // 32-bits narrow oop can be the base of address expressions
 221           tptr = base->bottom_type()->make_ptr();
 222         } else {
 223           // only regular oops are expected here
 224           tptr = base->bottom_type()->is_ptr();
 225         }
 226         // Give up if offset is not a compile-time constant
 227         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 228           continue;
 229         offset += tptr->_offset; // correct if base is offseted
 230         if( MacroAssembler::needs_explicit_null_check(offset) )
 231           continue;             // Give up is reference is beyond 4K page size
 232       }
 233     }
 234 
 235     // Check ctrl input to see if the null-check dominates the memory op
 236     Block *cb = cfg->_bbs[mach->_idx];
 237     cb = cb->_idom;             // Always hoist at least 1 block
 238     if( !was_store ) {          // Stores can be hoisted only one block
 239       while( cb->_dom_depth > (_dom_depth + 1))
 240         cb = cb->_idom;         // Hoist loads as far as we want
 241       // The non-null-block should dominate the memory op, too. Live
 242       // range spilling will insert a spill in the non-null-block if it is
 243       // needs to spill the memory op for an implicit null check.
 244       if (cb->_dom_depth == (_dom_depth + 1)) {
 245         if (cb != not_null_block) continue;
 246         cb = cb->_idom;
 247       }
 248     }
 249     if( cb != this ) continue;
 250 
 251     // Found a memory user; see if it can be hoisted to check-block
 252     uint vidx = 0;              // Capture index of value into memop
 253     uint j;
 254     for( j = mach->req()-1; j > 0; j-- ) {
 255       if( mach->in(j) == val ) {
 256         vidx = j;
 257         // Ignore DecodeN val which could be hoisted to where needed.
 258         if( is_decoden ) continue;
 259       }
 260       // Block of memory-op input
 261       Block *inb = cfg->_bbs[mach->in(j)->_idx];
 262       Block *b = this;          // Start from nul check
 263       while( b != inb && b->_dom_depth > inb->_dom_depth )
 264         b = b->_idom;           // search upwards for input
 265       // See if input dominates null check
 266       if( b != inb )
 267         break;
 268     }
 269     if( j > 0 )
 270       continue;
 271     Block *mb = cfg->_bbs[mach->_idx];
 272     // Hoisting stores requires more checks for the anti-dependence case.
 273     // Give up hoisting if we have to move the store past any load.
 274     if( was_store ) {
 275       Block *b = mb;            // Start searching here for a local load
 276       // mach use (faulting) trying to hoist
 277       // n might be blocker to hoisting
 278       while( b != this ) {
 279         uint k;
 280         for( k = 1; k < b->_nodes.size(); k++ ) {
 281           Node *n = b->_nodes[k];
 282           if( n->needs_anti_dependence_check() &&
 283               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 284             break;              // Found anti-dependent load
 285         }
 286         if( k < b->_nodes.size() )
 287           break;                // Found anti-dependent load
 288         // Make sure control does not do a merge (would have to check allpaths)
 289         if( b->num_preds() != 2 ) break;
 290         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
 291       }
 292       if( b != this ) continue;
 293     }
 294 
 295     // Make sure this memory op is not already being used for a NullCheck
 296     Node *e = mb->end();
 297     if( e->is_MachNullCheck() && e->in(1) == mach )
 298       continue;                 // Already being used as a NULL check
 299 
 300     // Found a candidate!  Pick one with least dom depth - the highest
 301     // in the dom tree should be closest to the null check.
 302     if( !best ||
 303         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
 304       best = mach;
 305       bidx = vidx;
 306 
 307     }
 308   }
 309   // No candidate!
 310   if( !best ) return;
 311 
 312   // ---- Found an implicit null check
 313   extern int implicit_null_checks;
 314   implicit_null_checks++;
 315 
 316   if( is_decoden ) {
 317     // Check if we need to hoist decodeHeapOop_not_null first.
 318     Block *valb = cfg->_bbs[val->_idx];
 319     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
 320       // Hoist it up to the end of the test block.
 321       valb->find_remove(val);
 322       this->add_inst(val);
 323       cfg->_bbs.map(val->_idx,this);
 324       // DecodeN on x86 may kill flags. Check for flag-killing projections
 325       // that also need to be hoisted.
 326       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 327         Node* n = val->fast_out(j);
 328         if( n->Opcode() == Op_MachProj ) {
 329           cfg->_bbs[n->_idx]->find_remove(n);
 330           this->add_inst(n);
 331           cfg->_bbs.map(n->_idx,this);
 332         }
 333       }
 334     }
 335   }
 336   // Hoist the memory candidate up to the end of the test block.
 337   Block *old_block = cfg->_bbs[best->_idx];
 338   old_block->find_remove(best);
 339   add_inst(best);
 340   cfg->_bbs.map(best->_idx,this);
 341 
 342   // Move the control dependence
 343   if (best->in(0) && best->in(0) == old_block->_nodes[0])
 344     best->set_req(0, _nodes[0]);
 345 
 346   // Check for flag-killing projections that also need to be hoisted
 347   // Should be DU safe because no edge updates.
 348   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 349     Node* n = best->fast_out(j);
 350     if( n->Opcode() == Op_MachProj ) {
 351       cfg->_bbs[n->_idx]->find_remove(n);
 352       add_inst(n);
 353       cfg->_bbs.map(n->_idx,this);
 354     }
 355   }
 356 
 357   Compile *C = cfg->C;
 358   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 359   // One of two graph shapes got matched:
 360   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 361   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 362   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 363   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 364   // We need to flip the projections to keep the same semantics.
 365   if( proj->Opcode() == Op_IfTrue ) {
 366     // Swap order of projections in basic block to swap branch targets
 367     Node *tmp1 = _nodes[end_idx()+1];
 368     Node *tmp2 = _nodes[end_idx()+2];
 369     _nodes.map(end_idx()+1, tmp2);
 370     _nodes.map(end_idx()+2, tmp1);
 371     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
 372     tmp1->replace_by(tmp);
 373     tmp2->replace_by(tmp1);
 374     tmp->replace_by(tmp2);
 375     tmp->destruct();
 376   }
 377 
 378   // Remove the existing null check; use a new implicit null check instead.
 379   // Since schedule-local needs precise def-use info, we need to correct
 380   // it as well.
 381   Node *old_tst = proj->in(0);
 382   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 383   _nodes.map(end_idx(),nul_chk);
 384   cfg->_bbs.map(nul_chk->_idx,this);
 385   // Redirect users of old_test to nul_chk
 386   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 387     old_tst->last_out(i2)->set_req(0, nul_chk);
 388   // Clean-up any dead code
 389   for (uint i3 = 0; i3 < old_tst->req(); i3++)
 390     old_tst->set_req(i3, NULL);
 391 
 392   cfg->latency_from_uses(nul_chk);
 393   cfg->latency_from_uses(best);
 394 }
 395 
 396 
 397 //------------------------------select-----------------------------------------
 398 // Select a nice fellow from the worklist to schedule next. If there is only
 399 // one choice, then use it. Projections take top priority for correctness
 400 // reasons - if I see a projection, then it is next.  There are a number of
 401 // other special cases, for instructions that consume condition codes, et al.
 402 // These are chosen immediately. Some instructions are required to immediately
 403 // precede the last instruction in the block, and these are taken last. Of the
 404 // remaining cases (most), choose the instruction with the greatest latency
 405 // (that is, the most number of pseudo-cycles required to the end of the
 406 // routine). If there is a tie, choose the instruction with the most inputs.
 407 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
 408 
 409   // If only a single entry on the stack, use it
 410   uint cnt = worklist.size();
 411   if (cnt == 1) {
 412     Node *n = worklist[0];
 413     worklist.map(0,worklist.pop());
 414     return n;
 415   }
 416 
 417   uint choice  = 0; // Bigger is most important
 418   uint latency = 0; // Bigger is scheduled first
 419   uint score   = 0; // Bigger is better
 420   int idx = -1;     // Index in worklist
 421 
 422   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 423     // Order in worklist is used to break ties.
 424     // See caller for how this is used to delay scheduling
 425     // of induction variable increments to after the other
 426     // uses of the phi are scheduled.
 427     Node *n = worklist[i];      // Get Node on worklist
 428 
 429     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 430     if( n->is_Proj() ||         // Projections always win
 431         n->Opcode()== Op_Con || // So does constant 'Top'
 432         iop == Op_CreateEx ||   // Create-exception must start block
 433         iop == Op_CheckCastPP
 434         ) {
 435       worklist.map(i,worklist.pop());
 436       return n;
 437     }
 438 
 439     // Final call in a block must be adjacent to 'catch'
 440     Node *e = end();
 441     if( e->is_Catch() && e->in(0)->in(0) == n )
 442       continue;
 443 
 444     // Memory op for an implicit null check has to be at the end of the block
 445     if( e->is_MachNullCheck() && e->in(1) == n )
 446       continue;
 447 
 448     uint n_choice  = 2;
 449 
 450     // See if this instruction is consumed by a branch. If so, then (as the
 451     // branch is the last instruction in the basic block) force it to the
 452     // end of the basic block
 453     if ( must_clone[iop] ) {
 454       // See if any use is a branch
 455       bool found_machif = false;
 456 
 457       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 458         Node* use = n->fast_out(j);
 459 
 460         // The use is a conditional branch, make them adjacent
 461         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
 462           found_machif = true;
 463           break;
 464         }
 465 
 466         // More than this instruction pending for successor to be ready,
 467         // don't choose this if other opportunities are ready
 468         if (ready_cnt[use->_idx] > 1)
 469           n_choice = 1;
 470       }
 471 
 472       // loop terminated, prefer not to use this instruction
 473       if (found_machif)
 474         continue;
 475     }
 476 
 477     // See if this has a predecessor that is "must_clone", i.e. sets the
 478     // condition code. If so, choose this first
 479     for (uint j = 0; j < n->req() ; j++) {
 480       Node *inn = n->in(j);
 481       if (inn) {
 482         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 483           n_choice = 3;
 484           break;
 485         }
 486       }
 487     }
 488 
 489     // MachTemps should be scheduled last so they are near their uses
 490     if (n->is_MachTemp()) {
 491       n_choice = 1;
 492     }
 493 
 494     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
 495     uint n_score   = n->req();   // Many inputs get high score to break ties
 496 
 497     // Keep best latency found
 498     if( choice < n_choice ||
 499         ( choice == n_choice &&
 500           ( latency < n_latency ||
 501             ( latency == n_latency &&
 502               ( score < n_score ))))) {
 503       choice  = n_choice;
 504       latency = n_latency;
 505       score   = n_score;
 506       idx     = i;               // Also keep index in worklist
 507     }
 508   } // End of for all ready nodes in worklist
 509 
 510   assert(idx >= 0, "index should be set");
 511   Node *n = worklist[(uint)idx];      // Get the winner
 512 
 513   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 514   return n;
 515 }
 516 
 517 
 518 //------------------------------set_next_call----------------------------------
 519 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
 520   if( next_call.test_set(n->_idx) ) return;
 521   for( uint i=0; i<n->len(); i++ ) {
 522     Node *m = n->in(i);
 523     if( !m ) continue;  // must see all nodes in block that precede call
 524     if( bbs[m->_idx] == this )
 525       set_next_call( m, next_call, bbs );
 526   }
 527 }
 528 
 529 //------------------------------needed_for_next_call---------------------------
 530 // Set the flag 'next_call' for each Node that is needed for the next call to
 531 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 532 // next subroutine call get priority - basically it moves things NOT needed
 533 // for the next call till after the call.  This prevents me from trying to
 534 // carry lots of stuff live across a call.
 535 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
 536   // Find the next control-defining Node in this block
 537   Node* call = NULL;
 538   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 539     Node* m = this_call->fast_out(i);
 540     if( bbs[m->_idx] == this && // Local-block user
 541         m != this_call &&       // Not self-start node
 542         m->is_Call() )
 543       call = m;
 544       break;
 545   }
 546   if (call == NULL)  return;    // No next call (e.g., block end is near)
 547   // Set next-call for all inputs to this call
 548   set_next_call(call, next_call, bbs);
 549 }
 550 
 551 //------------------------------sched_call-------------------------------------
 552 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
 553   RegMask regs;
 554 
 555   // Schedule all the users of the call right now.  All the users are
 556   // projection Nodes, so they must be scheduled next to the call.
 557   // Collect all the defined registers.
 558   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 559     Node* n = mcall->fast_out(i);
 560     assert( n->Opcode()==Op_MachProj, "" );
 561     --ready_cnt[n->_idx];
 562     assert( !ready_cnt[n->_idx], "" );
 563     // Schedule next to call
 564     _nodes.map(node_cnt++, n);
 565     // Collect defined registers
 566     regs.OR(n->out_RegMask());
 567     // Check for scheduling the next control-definer
 568     if( n->bottom_type() == Type::CONTROL )
 569       // Warm up next pile of heuristic bits
 570       needed_for_next_call(n, next_call, bbs);
 571 
 572     // Children of projections are now all ready
 573     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 574       Node* m = n->fast_out(j); // Get user
 575       if( bbs[m->_idx] != this ) continue;
 576       if( m->is_Phi() ) continue;
 577       if( !--ready_cnt[m->_idx] )
 578         worklist.push(m);
 579     }
 580 
 581   }
 582 
 583   // Act as if the call defines the Frame Pointer.
 584   // Certainly the FP is alive and well after the call.
 585   regs.Insert(matcher.c_frame_pointer());
 586 
 587   // Set all registers killed and not already defined by the call.
 588   uint r_cnt = mcall->tf()->range()->cnt();
 589   int op = mcall->ideal_Opcode();
 590   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 591   bbs.map(proj->_idx,this);
 592   _nodes.insert(node_cnt++, proj);
 593 
 594   // Select the right register save policy.
 595   const char * save_policy;
 596   switch (op) {
 597     case Op_CallRuntime:
 598     case Op_CallLeaf:
 599     case Op_CallLeafNoFP:
 600       // Calling C code so use C calling convention
 601       save_policy = matcher._c_reg_save_policy;
 602       break;
 603 
 604     case Op_CallStaticJava:
 605     case Op_CallDynamicJava:
 606       // Calling Java code so use Java calling convention
 607       save_policy = matcher._register_save_policy;
 608       break;
 609 
 610     default:
 611       ShouldNotReachHere();
 612   }
 613 
 614   // When using CallRuntime mark SOE registers as killed by the call
 615   // so values that could show up in the RegisterMap aren't live in a
 616   // callee saved register since the register wouldn't know where to
 617   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 618   // have debug info on them.  Strictly speaking this only needs to be
 619   // done for oops since idealreg2debugmask takes care of debug info
 620   // references but there no way to handle oops differently than other
 621   // pointers as far as the kill mask goes.
 622   bool exclude_soe = op == Op_CallRuntime;
 623 
 624   // If the call is a MethodHandle invoke, we need to exclude the
 625   // register which is used to save the SP value over MH invokes from
 626   // the mask.  Otherwise this register could be used for
 627   // deoptimization information.
 628   if (op == Op_CallStaticJava) {
 629     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 630     if (mcallstaticjava->_method_handle_invoke)
 631       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 632   }
 633 
 634   // Fill in the kill mask for the call
 635   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 636     if( !regs.Member(r) ) {     // Not already defined by the call
 637       // Save-on-call register?
 638       if ((save_policy[r] == 'C') ||
 639           (save_policy[r] == 'A') ||
 640           ((save_policy[r] == 'E') && exclude_soe)) {
 641         proj->_rout.Insert(r);
 642       }
 643     }
 644   }
 645 
 646   return node_cnt;
 647 }
 648 
 649 
 650 //------------------------------schedule_local---------------------------------
 651 // Topological sort within a block.  Someday become a real scheduler.
 652 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
 653   // Already "sorted" are the block start Node (as the first entry), and
 654   // the block-ending Node and any trailing control projections.  We leave
 655   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 656   // Node.  Everything else gets topo-sorted.
 657 
 658 #ifndef PRODUCT
 659     if (cfg->trace_opto_pipelining()) {
 660       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
 661       for (uint i = 0;i < _nodes.size();i++) {
 662         tty->print("# ");
 663         _nodes[i]->fast_dump();
 664       }
 665       tty->print_cr("#");
 666     }
 667 #endif
 668 
 669   // RootNode is already sorted
 670   if( _nodes.size() == 1 ) return true;
 671 
 672   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 673   uint node_cnt = end_idx();
 674   uint phi_cnt = 1;
 675   uint i;
 676   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 677     Node *n = _nodes[i];
 678     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 679         (n->is_Proj()  && n->in(0) == head()) ) {
 680       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 681       _nodes.map(i,_nodes[phi_cnt]);
 682       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
 683     } else {                    // All others
 684       // Count block-local inputs to 'n'
 685       uint cnt = n->len();      // Input count
 686       uint local = 0;
 687       for( uint j=0; j<cnt; j++ ) {
 688         Node *m = n->in(j);
 689         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
 690           local++;              // One more block-local input
 691       }
 692       ready_cnt[n->_idx] = local; // Count em up
 693 
 694 #ifdef ASSERT
 695       if( UseConcMarkSweepGC || UseG1GC ) {
 696         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 697           // Check the precedence edges
 698           for (uint prec = n->req(); prec < n->len(); prec++) {
 699             Node* oop_store = n->in(prec);
 700             if (oop_store != NULL) {
 701               assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
 702             }
 703           }
 704         }
 705       }
 706 #endif
 707 
 708       // A few node types require changing a required edge to a precedence edge
 709       // before allocation.
 710       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 711           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 712            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 713         // MemBarAcquire could be created without Precedent edge.
 714         // del_req() replaces the specified edge with the last input edge
 715         // and then removes the last edge. If the specified edge > number of
 716         // edges the last edge will be moved outside of the input edges array
 717         // and the edge will be lost. This is why this code should be
 718         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 719         Node *x = n->in(TypeFunc::Parms);
 720         n->del_req(TypeFunc::Parms);
 721         n->add_prec(x);
 722       }
 723     }
 724   }
 725   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
 726     ready_cnt[_nodes[i2]->_idx] = 0;
 727 
 728   // All the prescheduled guys do not hold back internal nodes
 729   uint i3;
 730   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 731     Node *n = _nodes[i3];       // Get pre-scheduled
 732     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 733       Node* m = n->fast_out(j);
 734       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
 735         ready_cnt[m->_idx]--;   // Fix ready count
 736     }
 737   }
 738 
 739   Node_List delay;
 740   // Make a worklist
 741   Node_List worklist;
 742   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 743     Node *m = _nodes[i4];
 744     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
 745       if (m->is_iteratively_computed()) {
 746         // Push induction variable increments last to allow other uses
 747         // of the phi to be scheduled first. The select() method breaks
 748         // ties in scheduling by worklist order.
 749         delay.push(m);
 750       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 751         // Force the CreateEx to the top of the list so it's processed
 752         // first and ends up at the start of the block.
 753         worklist.insert(0, m);
 754       } else {
 755         worklist.push(m);         // Then on to worklist!
 756       }
 757     }
 758   }
 759   while (delay.size()) {
 760     Node* d = delay.pop();
 761     worklist.push(d);
 762   }
 763 
 764   // Warm up the 'next_call' heuristic bits
 765   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
 766 
 767 #ifndef PRODUCT
 768     if (cfg->trace_opto_pipelining()) {
 769       for (uint j=0; j<_nodes.size(); j++) {
 770         Node     *n = _nodes[j];
 771         int     idx = n->_idx;
 772         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
 773         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
 774         tty->print("%4d: %s\n", idx, n->Name());
 775       }
 776     }
 777 #endif
 778 
 779   // Pull from worklist and schedule
 780   while( worklist.size() ) {    // Worklist is not ready
 781 
 782 #ifndef PRODUCT
 783     if (cfg->trace_opto_pipelining()) {
 784       tty->print("#   ready list:");
 785       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 786         Node *n = worklist[i];      // Get Node on worklist
 787         tty->print(" %d", n->_idx);
 788       }
 789       tty->cr();
 790     }
 791 #endif
 792 
 793     // Select and pop a ready guy from worklist
 794     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
 795     _nodes.map(phi_cnt++,n);    // Schedule him next
 796 
 797 #ifndef PRODUCT
 798     if (cfg->trace_opto_pipelining()) {
 799       tty->print("#    select %d: %s", n->_idx, n->Name());
 800       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
 801       n->dump();
 802       if (Verbose) {
 803         tty->print("#   ready list:");
 804         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 805           Node *n = worklist[i];      // Get Node on worklist
 806           tty->print(" %d", n->_idx);
 807         }
 808         tty->cr();
 809       }
 810     }
 811 
 812 #endif
 813     if( n->is_MachCall() ) {
 814       MachCallNode *mcall = n->as_MachCall();
 815       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
 816       continue;
 817     }
 818     // Children are now all ready
 819     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 820       Node* m = n->fast_out(i5); // Get user
 821       if( cfg->_bbs[m->_idx] != this ) continue;
 822       if( m->is_Phi() ) continue;
 823       if( !--ready_cnt[m->_idx] )
 824         worklist.push(m);
 825     }
 826   }
 827 
 828   if( phi_cnt != end_idx() ) {
 829     // did not schedule all.  Retry, Bailout, or Die
 830     Compile* C = matcher.C;
 831     if (C->subsume_loads() == true && !C->failing()) {
 832       // Retry with subsume_loads == false
 833       // If this is the first failure, the sentinel string will "stick"
 834       // to the Compile object, and the C2Compiler will see it and retry.
 835       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 836     }
 837     // assert( phi_cnt == end_idx(), "did not schedule all" );
 838     return false;
 839   }
 840 
 841 #ifndef PRODUCT
 842   if (cfg->trace_opto_pipelining()) {
 843     tty->print_cr("#");
 844     tty->print_cr("# after schedule_local");
 845     for (uint i = 0;i < _nodes.size();i++) {
 846       tty->print("# ");
 847       _nodes[i]->fast_dump();
 848     }
 849     tty->cr();
 850   }
 851 #endif
 852 
 853 
 854   return true;
 855 }
 856 
 857 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 858 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 859   for (uint l = 0; l < use->len(); l++) {
 860     if (use->in(l) == old_def) {
 861       if (l < use->req()) {
 862         use->set_req(l, new_def);
 863       } else {
 864         use->rm_prec(l);
 865         use->add_prec(new_def);
 866         l--;
 867       }
 868     }
 869   }
 870 }
 871 
 872 //------------------------------catch_cleanup_find_cloned_def------------------
 873 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
 874   assert( use_blk != def_blk, "Inter-block cleanup only");
 875 
 876   // The use is some block below the Catch.  Find and return the clone of the def
 877   // that dominates the use. If there is no clone in a dominating block, then
 878   // create a phi for the def in a dominating block.
 879 
 880   // Find which successor block dominates this use.  The successor
 881   // blocks must all be single-entry (from the Catch only; I will have
 882   // split blocks to make this so), hence they all dominate.
 883   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 884     use_blk = use_blk->_idom;
 885 
 886   // Find the successor
 887   Node *fixup = NULL;
 888 
 889   uint j;
 890   for( j = 0; j < def_blk->_num_succs; j++ )
 891     if( use_blk == def_blk->_succs[j] )
 892       break;
 893 
 894   if( j == def_blk->_num_succs ) {
 895     // Block at same level in dom-tree is not a successor.  It needs a
 896     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 897     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 898     for(uint k = 1; k < use_blk->num_preds(); k++) {
 899       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
 900     }
 901 
 902     // Check to see if the use_blk already has an identical phi inserted.
 903     // If it exists, it will be at the first position since all uses of a
 904     // def are processed together.
 905     Node *phi = use_blk->_nodes[1];
 906     if( phi->is_Phi() ) {
 907       fixup = phi;
 908       for (uint k = 1; k < use_blk->num_preds(); k++) {
 909         if (phi->in(k) != inputs[k]) {
 910           // Not a match
 911           fixup = NULL;
 912           break;
 913         }
 914       }
 915     }
 916 
 917     // If an existing PhiNode was not found, make a new one.
 918     if (fixup == NULL) {
 919       Node *new_phi = PhiNode::make(use_blk->head(), def);
 920       use_blk->_nodes.insert(1, new_phi);
 921       bbs.map(new_phi->_idx, use_blk);
 922       for (uint k = 1; k < use_blk->num_preds(); k++) {
 923         new_phi->set_req(k, inputs[k]);
 924       }
 925       fixup = new_phi;
 926     }
 927 
 928   } else {
 929     // Found the use just below the Catch.  Make it use the clone.
 930     fixup = use_blk->_nodes[n_clone_idx];
 931   }
 932 
 933   return fixup;
 934 }
 935 
 936 //--------------------------catch_cleanup_intra_block--------------------------
 937 // Fix all input edges in use that reference "def".  The use is in the same
 938 // block as the def and both have been cloned in each successor block.
 939 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
 940 
 941   // Both the use and def have been cloned. For each successor block,
 942   // get the clone of the use, and make its input the clone of the def
 943   // found in that block.
 944 
 945   uint use_idx = blk->find_node(use);
 946   uint offset_idx = use_idx - beg;
 947   for( uint k = 0; k < blk->_num_succs; k++ ) {
 948     // Get clone in each successor block
 949     Block *sb = blk->_succs[k];
 950     Node *clone = sb->_nodes[offset_idx+1];
 951     assert( clone->Opcode() == use->Opcode(), "" );
 952 
 953     // Make use-clone reference the def-clone
 954     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
 955   }
 956 }
 957 
 958 //------------------------------catch_cleanup_inter_block---------------------
 959 // Fix all input edges in use that reference "def".  The use is in a different
 960 // block than the def.
 961 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
 962   if( !use_blk ) return;        // Can happen if the use is a precedence edge
 963 
 964   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
 965   catch_cleanup_fix_all_inputs(use, def, new_def);
 966 }
 967 
 968 //------------------------------call_catch_cleanup-----------------------------
 969 // If we inserted any instructions between a Call and his CatchNode,
 970 // clone the instructions on all paths below the Catch.
 971 void Block::call_catch_cleanup(Block_Array &bbs) {
 972 
 973   // End of region to clone
 974   uint end = end_idx();
 975   if( !_nodes[end]->is_Catch() ) return;
 976   // Start of region to clone
 977   uint beg = end;
 978   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
 979         !_nodes[beg-1]->in(0)->is_Call() ) {
 980     beg--;
 981     assert(beg > 0,"Catch cleanup walking beyond block boundary");
 982   }
 983   // Range of inserted instructions is [beg, end)
 984   if( beg == end ) return;
 985 
 986   // Clone along all Catch output paths.  Clone area between the 'beg' and
 987   // 'end' indices.
 988   for( uint i = 0; i < _num_succs; i++ ) {
 989     Block *sb = _succs[i];
 990     // Clone the entire area; ignoring the edge fixup for now.
 991     for( uint j = end; j > beg; j-- ) {
 992       // It is safe here to clone a node with anti_dependence
 993       // since clones dominate on each path.
 994       Node *clone = _nodes[j-1]->clone();
 995       sb->_nodes.insert( 1, clone );
 996       bbs.map(clone->_idx,sb);
 997     }
 998   }
 999 
1000 
1001   // Fixup edges.  Check the def-use info per cloned Node
1002   for(uint i2 = beg; i2 < end; i2++ ) {
1003     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1004     Node *n = _nodes[i2];        // Node that got cloned
1005     // Need DU safe iterator because of edge manipulation in calls.
1006     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1007     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1008       out->push(n->fast_out(j1));
1009     }
1010     uint max = out->size();
1011     for (uint j = 0; j < max; j++) {// For all users
1012       Node *use = out->pop();
1013       Block *buse = bbs[use->_idx];
1014       if( use->is_Phi() ) {
1015         for( uint k = 1; k < use->req(); k++ )
1016           if( use->in(k) == n ) {
1017             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
1018             use->set_req(k, fixup);
1019           }
1020       } else {
1021         if (this == buse) {
1022           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
1023         } else {
1024           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
1025         }
1026       }
1027     } // End for all users
1028 
1029   } // End of for all Nodes in cloned area
1030 
1031   // Remove the now-dead cloned ops
1032   for(uint i3 = beg; i3 < end; i3++ ) {
1033     _nodes[beg]->disconnect_inputs(NULL);
1034     _nodes.remove(beg);
1035   }
1036 
1037   // If the successor blocks have a CreateEx node, move it back to the top
1038   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
1039     Block *sb = _succs[i4];
1040     uint new_cnt = end - beg;
1041     // Remove any newly created, but dead, nodes.
1042     for( uint j = new_cnt; j > 0; j-- ) {
1043       Node *n = sb->_nodes[j];
1044       if (n->outcnt() == 0 &&
1045           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1046         n->disconnect_inputs(NULL);
1047         sb->_nodes.remove(j);
1048         new_cnt--;
1049       }
1050     }
1051     // If any newly created nodes remain, move the CreateEx node to the top
1052     if (new_cnt > 0) {
1053       Node *cex = sb->_nodes[1+new_cnt];
1054       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1055         sb->_nodes.remove(1+new_cnt);
1056         sb->_nodes.insert(1,cex);
1057       }
1058     }
1059   }
1060 }